
 

 

RADIOMICS-BASED MACHINE LEARNING 

CLASSIFICATION OF BONE CHONDROSARCOMA 

 

 

 

 

 

Salvatore Gitto 

  



 

 

 

 

 

 

 

 

 

 
 

 

 

ISBN: 978-94-6419-438-8 

Cover design by XERIOS 

Printed by GILDEPRINT 

 

This doctoral thesis was carried out jointly (co-tutelle) at the Radiology Department of the 

Leiden University Medical Center in The Netherlands and the Department of Biomedical 

Sciences for Health of the University of Milan (Università degli Studi di Milano) in Italy. 

The doctoral thesis includes studies partially supported by the 2020 Young Researchers 

Grant awarded by the European Society of Musculoskeletal Radiology. 

 

Copyright 2022 Salvatore Gitto, Milan, Italy. All rights reserved. No part of this thesis may 

be reproduced or transmitted in any form, by any means, without prior written permission of 

the author.  



 
Radiomics-based Machine Learning 

Classification of Bone Chondrosarcoma 

 

PROEFSCHRIFT 
 

ter verkrijging van 

de graad van doctor aan de Universiteit Leiden, 

op gezag van de rector magnificus prof. dr. ir. H. Bijl, 

volgens besluit van het college voor promoties 

te verdedigen op woensdag 16 februari 2022 

klokke 15.00 uur 

 

door 

 

Salvatore Gitto 

 

geboren te Messina (Italië) 

in 1990 

 

  



 

Promotores 
Prof. dr. J.L. Bloem 

Prof. dr. L.M. Sconfienza (University of Milan) 

 

Leden promotiecommissie 
Prof. dr. J.V.M.G. Bovée 

Prof. dr. P. Erba (University of Pisa and University Medical Center Groningen) 

Dr. K. van Langevelde 

Prof. dr. M. Maas (Amsterdam University Medical Center) 

Prof. dr. M.A.J. van de Sande  



 

 

 

This thesis is dedicated to my parents 

For their constant encouragement and invaluable support 

  



 



 7 

Contents 

 
Chapter 1 
Introduction 

 
9 

 
Chapter 2  
CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review 
of reproducibility and validation strategies 
Gitto S et al. Insights Imaging 2021; 12:68 

 
17 

 
Chapter 3 
MRI radiomics-based machine-learning classification of bone chondrosarcoma 
Gitto S et al. Eur J Radiol 2020; 128:109043 

 
45 

 
Chapter 4 
Effects of interobserver variability on 2D and 3D CT- and MRI-based texture 
feature reproducibility of cartilaginous bone tumors 
Gitto S et al. J Digit Imaging 2021; 34:820-832 

 
65 

 
Chapter 5 
CT radiomics-based machine learning classification of atypical cartilaginous 
tumours and appendicular chondrosarcomas 
Gitto S et al. EBioMedicine 2021; 68:103407 

 
87 

 
Chapter 6 
MRI radiomics-based machine learning classification of atypical cartilaginous 
tumour and grade II chondrosarcoma of long bones 
Gitto S et al. EBioMedicine 2022; 75:103757 

 
111 

 
Chapter 7 
Summary and general discussion 

 
135 

 
 
Samenvatting en algemene discussie 
 

 
 

145 

List of publications 
 

155 

Curriculum Vitae 
 

161 

Acknowledgments 163 



 8 

  



 

 9 

 
Chapter 1 

 

Introduction 

  



 

 10 

List of abbreviations (Chapter 1) 

ACT, atypical cartilaginous tumor 

CT, computed tomography 

CS, chondrosarcoma 

MRI, magnetic resonance imaging 

PET-CT, positron emission tomography-computed tomography  



 

 11 

1.1 Bone chondrosarcoma: incidence and current definitions 

Chondrosarcomas (CSs) are a heterogenous group of cartilage-forming lesions and 

account for 20-30% of primary bone tumors in adulthood [1]. In most cases, they arise de 

novo from the medullary cavity and are referred as primary central conventional CS. Less 

commonly, they are secondary to malignant transformation of benign lesions, such as 

osteochondroma (secondary peripheral CS) or enchondroma (secondary central CS) [2]. 

Based upon histopathology, conventional CSs are grouped into low to high grades, 

namely atypical cartilaginous tumor (ACT), CS grade I – and grades II-III  [3]. The latter are 

malignant lesions with metastatic potential and high recurrence rates after surgery [3]. In the 

2020 edition of the World Health Organization classification, the term ACT is reserved for 

low grade lesions located in long bones, reflecting their relatively indolent clinical behavior 

with unlikelihood to metastasize [4]. The incidence of ACTs has increased over the last 

decades mainly due to an increase in incidental findings on diagnostic imaging [5]. 

Cartilaginous tumors with the same histology as ACT, but located in the axial skeleton, 

including pelvis and skull base, are classified as CS grade I [4]. A fifth group of CS is called 

dedifferentiated CS, which could be seen as grade IV [3]. Two less common histotypes are 

mesenchymal and clear cell CSs [3], the first is highly malignant with strong tendency 

towards recurrence, while the second is low-grade [2]. Clinical outcome strongly depends on 

tumor grading, as reported 5- and 10-year overall survival rates are 87-99% and 88-95% for 

ACT/CS grade I, 74-99% and 58-86% for CS grade II, 31-77% and 26-55% for CS grade III, 

respectively [4, 5]. Overall 5-year survival rates of 7-24% have been reported in 

dedifferentiated or grade IV CS [4]. 

 

1.2 Bone chondrosarcoma: therapeutic strategies and diagnosis 

In long bones, ACTs can be managed with marginal resection or curettage (with or 

without local adjuvant, such as phenol, cement, and cryotherapy) for sufficient local control 

[6]. The increased incidence of ACT secondary to an increase in diagnostic imaging, relative 

to the lack of increase in CS grades II-III, does not support the previous opinion that ACTs 

are at risk of dedifferentiation into high-grade lesions [5]. Also the effectiveness of curettage 

in preventing ACT transformation into high-grade CS has not been demonstrated. Thus, 

therapeutic strategy is currently shifting towards conservative approach (watchful waiting) 

in order to prevent overtreatment and morbidity associated with surgery [5]. 
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Surgical excision with wide margins is the current standard of care for grade II or 

higher CS of long bones and for all-grade CS of the axial skeleton, pelvis and shoulder girdle 

[6]. CS is usually not sensitive to both radiotherapy and chemotherapy. Radiotherapy can be 

used for local control after incomplete resection with curative intent or for palliation if 

resection is not an option. Particularly, proton beam radiotherapy is used as alternative or in 

combination with surgery to achieve local control in CS located in skull base or sacrum. 

Mesenchymal CS is more sensitive to chemotherapy, which is therefore considered for 

adjuvant or neoadjuvant therapy [6]. 

As clinical management is now very different, the main challenge is to discriminate 

ACT from high-grade CS. Preoperative biopsy suffers from sample errors [7] and 

discrepancies in tumor grading even among specialized bone tumor pathologists [8]. Imaging 

has added substantially to our ability to differentiate between these tumors preoperatively. 

Particularly, magnetic resonance imaging (MRI) is the method of choice for local staging, 

and computed tomography (CT) and positron emission tomography-CT (PET-CT) are 

employed for general staging, respectively [6]. However, low reliability in tumor grading has 

been reported even among expert observers [9, 10]. Thus, new imaging-based methods like 

radiomics may improve our ability to better diagnose and grade cartilaginous bone tumors 

more objectively [11]. 

 

1.3 Radiomics and machine learning 

The term “radiomics” derives from a combination of “radio”, which refers to 

medical images, and “omics”, which indicates the analysis of high amounts of data 

representing an entire set of some kind, like genome (genomics) and proteome (proteomics) 

[12]. Radiomics includes the extraction and analysis of large numbers of quantitative 

parameters, known as radiomic features, from medical images [13]. Radiomics has recently 

gained much attention in oncologic imaging and, to date, studies have focused on 

discriminating tumor grades and types before treatment, monitoring response to therapy, and 

predicting patients’ outcome [14]. The primary purpose of radiomics is to extract as much 

and meaningful quantitative information as possible to be used in decision support. This is 

also known as precision medicine, where patients that belong to different subtypes can be 

identified to improve their outcomes [12].  
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Due to its ever-growing high-dimensional nature consisting of numerous 

quantitative features, radiomics needs powerful analytic tools and artificial intelligence 

perfectly addresses this issue. Artificial intelligence comprises a broad set of systems that 

accurately perform inferences from large amounts of data based on computational 

algorithms, namely the machine learning algorithms. These algorithms learn the 

administered data by analyzing patterns (on the training dataset) and then make predictions 

on unseen dataset based on previously acquired information (test dataset) [12]. Ideally, if 

radiomic data could be derived from routine imaging studies, radiologists would have 

quantitative information that integrates qualitative assessment, helping diagnosis and 

outcome prediction, therefore directing clinicians towards a tailored therapeutic approach. 

Despite its great potential as a non-invasive biomarker to quantify several tumor 

characteristics, radiomics still faces difficulties to clinical implementation [14]. Particularly, 

the assessment of feature reproducibility and the use of independent (external test dataset) 

clinical validation are two main challenges and currently lacking in most radiomic studies, 

as emerged in a recent systematic review we conducted on musculoskeletal sarcomas [15]. 

Thus, these issues need to be addressed to facilitate application and clinical transferability of 

radiomic models. 

 

1.4 Objectives and outline of the thesis 

The primary objective of this thesis is to determine diagnostic performance of 

radiomics-based machine learning in differentiating ACT from high-grade CS. The 

secondary objectives are: (i) to address the issue of segmentation variability and identify 

subsets of reproducible, robust radiomic features of cartilaginous bone tumors; and (ii) to 

compare the performance of radiomics-based machine learning with experienced 

musculoskeletal oncology radiologists. 

In chapter 2, the concept of radiomics of musculoskeletal sarcomas is introduced 

and a systematic review on radiomic feature reproducibility and validation strategies is 

conducted. In chapter 3, a preliminary study is performed to investigate the performance of 

MRI radiomics-based machine learning in discriminating ACT from high-grade CS, using a 

single-center cohort, in comparison with an expert radiologist. In chapter 4, the influence of 

interobserver segmentation variability on the reproducibility of CT and MRI radiomic 

features of cartilaginous bone tumors is assessed. In chapter 5, the performance of CT 
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radiomics-based machine learning in discriminating ACT from high-grade CS of long bones 

is determined and validated using independent data from a multicenter cohort, compared to 

an expert radiologist. In chapter 6, the performance of MRI radiomics-based machine 

learning in differentiating between ACT and grade II CS of long bones is determined and 

validated using independent data from a multicenter cohort, in comparison with an expert 

radiologist. Finally, in chapter 7, the main results and implications of this thesis are 

summarized and discussed.  
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Abstract 

Background. Feature reproducibility and model validation are two main challenges of 

radiomics. This study aims to systematically review radiomic feature reproducibility and 

predictive model validation strategies in studies dealing with CT and MRI radiomics of bone 

and soft-tissue sarcomas. The ultimate goal is to promote achieving a consensus on these 

aspects in radiomic workflows and facilitate clinical transferability. 

Results. Out of 278 identified papers, forty-nine papers published between 2008 and 2020 

were included. They dealt with radiomics of bone (n=12) or soft-tissue (n=37) tumors. 

Eighteen (37%) studies included a feature reproducibility analysis. Inter/intra-reader 

segmentation variability was the theme of reproducibility analysis in 16 (33%) 

investigations, outnumbering the analyses focused on image acquisition or post-processing 

(n=2, 4%). The intraclass correlation coefficient was the most commonly used statistical 

method to assess reproducibility, which ranged from 0.6 and 0.9. At least one machine 

learning validation technique was used for model development in 25 (51%) papers and K-

fold cross validation was the most commonly employed. A clinical validation of the model 

was reported in 19 (39%) papers. It was performed using a separate dataset from the primary 

institution (i.e., internal validation) in 14 (29%) studies and an independent dataset related to 

different scanners or from another institution (i.e., independent validation) in 5 (10%) 

studies. 

Conclusions. The issues of radiomic feature reproducibility and model validation varied 

largely among the studies dealing with musculoskeletal sarcomas and should be addressed 

in future investigations to bring the field of radiomics from a preclinical research area to the 

clinical stage.  
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2.1 Background 

Bone and soft-tissue primary malignant tumors or sarcomas are rare entities with 

several histological subtypes, and each has an incidence < 1/100,000/year [1, 2]. Among 

them, osteosarcoma is the most common sarcoma of the bone. Along with Ewing sarcoma, 

it has a higher incidence in the second decade of life, while chondrosarcoma is the most 

prevalent bone sarcoma in adulthood [1]. The most frequent soft-tissue sarcomas are 

liposarcoma and leiomyosarcoma [2]. Due to the rarity of these diseases, bone and soft-tissue 

sarcomas are managed in tertiary sarcoma centers according to current guidelines [1, 2]. Both 

biopsy and imaging integrate clinical data prior to the beginning of any treatment, with the 

former representing the reference standard for preoperative diagnosis [1, 2]. However, biopsy 

may be inaccurate in large, heterogenous tumors due to sampling errors and, in turn, 

inaccurate diagnosis may lead to inadequate treatment and subsequent need for further 

interventions, with increased morbidity. Additionally, the risk of biopsy tract contamination 

remains a concern. Imaging already plays a pivotal role in the assessment of bone and soft-

tissue sarcomas. Magnetic resonance imaging (MRI) and computed tomography (CT) are 

employed for local and general staging, respectively [1, 2]. These modalities may certainly 

benefit from new imaging-based tools such as those based on radiomics, which may 

potentially provide additional information regarding both diagnosis and prognosis non-

invasively [3]. 

The term “radiomics” derives from a combination of “radio”, referring to medical 

images, and “omics”, which indicates the analysis of high amounts of data representing an 

entire set of some kind, like genome (genomics) and proteome (proteomics) [3]. Therefore, 

“radiomics” includes extraction and analysis of large numbers of quantitative parameters, 

known as radiomic features, from medical images [4]. This technique has recently gained 

much attention in oncologic imaging as it can potentially quantify tumor heterogeneity, 

which can be challenging to capture by means of qualitative imaging assessment or sampling 

biopsies. Particularly, radiomic studies to date have focused on discriminating tumor grades 

and types before treatment, monitoring response to therapy and predicting outcome [5].  

Despite its great potential as a non-invasive tumor biomarker, radiomics still faces 

challenges preventing its clinical implementation. Two main initiatives have addressed 

methodological issues of radiomic studies to bridge the gap between academic endeavors 

and real-life application. In 2017, Lambin et al. proposed the Radiomics Quality Score that 
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details the sequential steps to follow in radiomic pipelines and offers a tool to asses 

methodological rigor in their implementation [6]. In 2020, the Image Biomarkers 

Standardization Initiative produced and validated reference values for radiomic features, 

which enable verification and calibration of different software for radiomic feature extraction 

[7]. However, numerous challenges still remain to ensure clinical transferability of 

radiomics. As radiomics is essentially a two-step approach consisting of data extraction and 

analysis, in the first step (i.e., data extraction), the main challenge is reproducibility of 

radiomic features, which can be influenced by image acquisition parameters, region of 

interest segmentation technique and image post-processing technique [8, 9]. In the second 

step (i.e., data analysis), models can be built upon either conventional statistical methods or 

machine learning algorithms with the aim of predicting the diagnosis or outcome of interest. 

In either case, the main challenge is model validation [9]. 

The challenges of reproducibility and validation strategies in radiomics have been 

recently addressed in a review focusing on renal masses [10]. The aim of our study is to 

systematically review radiomic feature reproducibility and predictive model validation 

strategies in studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas. 

The ultimate goal is to promote and facilitate achieving a consensus on these aspects in 

radiomic workflows. 

 

2.2 Methods 

2.2.1 Reviewers 

No Local Ethics Committee approval was needed for this systematic review. 

Literature search, study selection, and data extraction were performed independently by two 

recently-boarded radiologists with experience in musculoskeletal tumors and radiomics (S.G. 

and F.M.). In case of disagreement, agreement was achieved by consensus of these two 

readers and a third reviewer with radiology specialty and doctorate in artificial intelligence 

and radiomics (R.C.). The Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) guidelines [11] were followed. 

 

2.2.2 Literature search 

An electronic literature search was conducted on EMBASE (Elsevier) and PubMed 

(MEDLINE, U.S. National Library of Medicine and National Institutes of Health) databases 
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for articles published up to 31st December 2020 and dealing with CT and MRI radiomics of 

bone and soft-tissue sarcomas. A controlled vocabulary was adopted using medical subject 

headings in PubMed and the thesaurus in EMBASE. Search syntax was built by combining 

search terms related to two main domains, namely “musculoskeletal sarcomas” and 

“radiomics”. The exact search query was: (“sarcoma”/exp OR “sarcoma”) AND 

(“radiomics”/exp OR “radiomics” OR “texture”/exp OR “texture”). Studies were first 

screened by title and abstract, and then the full text of eligible studies was retrieved for further 

review. The references of selected publications were checked for additional publications to 

include. 

 

2.2.3 Inclusion and exclusion criteria 

Inclusion criteria were: (i) original research papers published in peer-reviewed 

journals; (ii) focus on CT or MRI radiomics-based characterization of sarcomas located in 

bone and soft-tissues for either diagnosis- or prognosis-related tasks; (iii) statement that local 

ethics committee approval was obtained, or ethical standards of the institutional or national 

research committee were followed.  

Exclusion criteria were: (i) papers not dealing with mass characterization, such as 

those focused on computer-assisted diagnosis and detection systems; (ii) papers dealing with 

head and neck, retroperitoneal or visceral sarcomas; (iii) animal, cadaveric or laboratory 

studies; (iv) papers not written in English language. 

 

2.2.4 Data extraction 

Data were extracted to a spreadsheet with a drop-down list for each item, as defined 

by the first author, grouped into three main categories, namely baseline study characteristics, 

radiomic feature reproducibility strategies and predictive model validation strategies. Items 

regarding baseline study characteristics included first author’s last name, year of publication, 

study aim, tumor type, study design, reference standard, imaging modality, database size, 

use of public data, segmentation process, and segmentation style. Those concerning radiomic 

feature reproducibility strategies included reproducibility assessment based on repeated 

segmentations, reproducibility assessment related to acquisition or post-processing 

techniques, statistical method used for reproducibility analysis, and cut-off or threshold used 

for reproducibility analysis. Finally, data regarding predictive model validation strategies 
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included the use of machine learning validation techniques, clinical validation performed on 

a separate internal dataset, and clinical validation performed on an external or independent 

dataset. 

 

2.3 Results 

2.3.1 Baseline study characteristics 

A flowchart illustrating the literature search process is presented in Figure 1. After 

screening 278 papers and applying our eligibility criteria, 49 papers were included in this 

systematic review. Tables 1 and 2 detail the characteristics of papers dealing with radiomics 

of bone (n=12) and soft-tissue (n=37) tumors, respectively. 

All studies were published between 2008 and 2020. Twenty-three out of 49 

investigations (47%) were published in 2020, 14 (29%) in 2019, 4 (8%) in 2018 and 8 (16%) 

between 2008 and 2017. The design was prospective in 6 studies (12%) and retrospective in 

the remaining 43 (88%). The imaging modality of choice was MRI in 42 (86%), including 

one or multiple MRI sequences, and CT in 7 (14%) cases. The median size of the database 

was 60 patients (range, 19-226). Public data were used only in 3 (6%) studies. 

The research was aimed at predicting either diagnosis or prognosis, as follows: 

benign vs. malignant tumor discrimination (n=14); grading (n=10); tumor histotype 

discrimination (n=4); proliferation index Ki67 expression (n=1); survival (n=12); response 

to therapy, either chemotherapy or radiotherapy (n=8); local and/or metastatic relapse (n=9). 

It should be noted that the aim was twofold in some studies, as detailed in Tables 1 and 2. In 

those focused on diagnosis-related tasks, including benign vs. malignant discrimination, 

grading, tumor histotype discrimination and proliferation index expression, histology was 

the reference standard in all cases excepting benign lesions diagnosed on the basis of stable 

imaging findings over time in two papers [12, 13]. In studies focused on prediction of 

response to chemotherapy or radiotherapy, the reference standard was histology if lesions 

were surgically treated, based on the percentage of viable tumor and necrosis relative to the 

surgical tissue specimen, or consistent imaging findings if lesions were not operated. In 

studies focused on prediction of tumor relapse, the diagnosis was based on histology or 

consistent imaging findings, as the reference standard. In studies dealing with survival 

prediction, survival was assessed based on follow-up. 
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Regarding segmentation, the process was performed manually in 45 (92%) studies 

and semiautomatically in 4 (8%) studies. In no case the segmentation process was fully 

automated. The following segmentation styles were identified: 2D without multiple sampling 

in 11 (23%) studies; 2D with multiple sampling in 3 (6%); 3D in 35 (71%). Of note, a single 

slice showing maximum tumor extension was chosen in all studies employing 2D 

segmentation without multiple sampling, excepting one case [14] where it was chosen based 

on signal intensity homogeneity. 

 

 
 

Fig. 1 PRISMA (preferred reporting items for systematic reviews and meta-analyses) flowchart of systematic 
identification, screening, eligibility and inclusion information from retrieved studies. 
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Table 1 Characteristics of the papers dealing with bone sarcomas included in the systematic review. MS, 
multiple sampling. 
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Table 2 Characteristics of the papers dealing with soft-tissue sarcomas included in the systematic review. MS, 
multiple sampling (continued on the next page). 
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Table 2 (continued) Characteristics of the papers dealing with soft-tissue sarcomas included in the systematic 
review. MS, multiple sampling. 
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2.3.2 Reproducibility strategies 

Eighteen (37%) of the 49 studies included a reproducibility analysis of the radiomic 

features in their workflow. In 16 (33%) investigations [13, 15–29], the reproducibility of 

radiomic features was assessed on the basis of repeated segmentations performed by different 

readers and/or the same reader at different time points. Two (4%) studies presented an 

analysis to assess the reproducibility based on different acquisition [30] or post-processing 

[31] techniques. Of note, segmentations were validated by a second experienced reader in 15 

studies [12, 32–45] without however addressing the issue of radiomic feature reproducibility. 

The intraclass correlation coefficient (ICC) was the statistical method used in most 

of the papers reporting a reproducibility analysis [13, 15–18, 20, 22–25, 27–29, 31]. ICC 

threshold ranged between 0.6 [13] and 0.9 [22] for reproducible features. The following 

statistical methods were used less commonly: analysis of variance [30, 31]; Cronbach alpha 

statistic [26]; Pearson correlation coefficient [19] and Spearman correlation coefficient [21]. 

 

2.3.3 Validation strategies 

At least one machine learning validation technique was used in 25 (51%) of the 49 

papers. K-fold cross validation was used in most of the studies [13, 25, 28, 31–33, 37, 38, 

40, 43, 44, 46–50]. The following machine learning validation techniques were used less 

commonly: bootstrapping [42, 51]; leave-one-out cross validation [34, 35, 41]; leave-p-out 

cross validation [52]; Monte Carlo cross validation [23]; nested cross validation [25, 27]; 

random-split cross validation [20]. Figure 2 provides an overview of machine learning 

validation techniques. Figure 3 illustrates an example of a radiomics-based machine learning 

pipeline. 

 

2.3.4 Clinical validation 

A clinical validation of the radiomics-based prediction model was reported in 19 

(39%) of the 49 papers. It was performed on a separate set of data from the primary 

institution, i.e. internal test set, in 14 (29%) studies [15, 16, 22, 24, 28, 31, 32, 35, 37, 38, 41, 

46, 47, 52]. It was performed on an independent set of data from the primary institution 

(related to a different scanner) or from an external institution, i.e. external test set, in 5 (10%) 

studies [25, 27, 29, 43, 51]. 
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(2a) 
 

 
 

(2b) 
 

 
 

(2c) 
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(2d) 
 

 
 

(2e) 
 

 
 

(2f) 
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(2g) 
 

                 

 
 

Fig. 2 Overview of machine learning validation techniques. (a) Bootstrapping is based on resampling with 
replacement, allowing to create n datasets from an original sample. These may include any number of copies of 
a specific instance from the original case, even none. (b) K-fold cross-validation is based on dividing the dataset 
in k parts, using each in turn as the validation set and the remaining as the training data. (c) In leave-one-out 
cross-validation, each instance in the dataset is used for model validation, using the remaining for model training. 
(d) In nested cross-validation, two loops of validation take place. The training data from each outer loop 
undergoes an additional K-fold cross-validation. The figure depicts a 4-fold outer loop paired with a 3-fold inner 
loop. In (e) Monte Carlo and (f) random split cross-validation, the folds are not made up of contiguous data but 
from random sampling of the entire dataset. During the first, a sample may appear in multiple folds, which is not 
possible in random split cross-validation. (g) In leave-P-out cross validation, the K-fold cross validation process 
is iterated to obtain all possible folding splits for the data.  
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Fig. 3 Example of a radiomics-based machine learning pipeline, listing the most commonly employed steps in 
an ideal order of execution. 

 
2.4 Discussion 

This systematic review focused on the radiomics literature regarding MRI and CT 

of bone and soft-tissue sarcomas with particular emphasis on reproducibility and validation 

strategies. The number of papers reporting the assessment of radiomic feature reproducibility 

and the use of independent or external clinical validation was relatively small. This finding 

is in line with recent literature reviews showing that the quality of sarcoma radiomics studies 

is low [53, 54], which may hamper performance generalizability of radiomic models on 

independent cohorts and, consequently, their practical application [53]. Thus, these issues 

need to be addressed in the radiomic workflow of future studies to facilitate clinical 

transferability. 

 

2.4.1 Baseline study characteristics 

MRI and CT radiomics of bone and soft-tissue sarcomas has progressively gained 

attention in musculoskeletal and oncologic imaging. The number of papers has rapidly 

increased over the recent years, and almost half of those included in our review (47%) was 

published in 2020. Radiomics was used in attempt to answer clinical questions related to both 
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diagnosis and prognosis of musculoskeletal sarcomas. Most studies (88%) were retrospective 

in nature, as this design allowed including relatively large number of patients with imaging 

data already available and bone or soft-tissue sarcomas, which are rare diseases. A 

prospective analysis, while not strictly necessary in radiomic studies [5], may however have 

advantages for controlling data gathering in reproducibility assessment and matching certain 

patient or imaging characteristics in independent datasets. Public data were used in no study 

regarding bone sarcomas and in a small proportion of the studies (6%) concerning soft-tissue 

sarcomas. A public database [55] available on The Cancer Imaging Archive 

(https://www.cancerimagingarchive.net) was used in all these studies. Public databases 

afford opportunities for researchers who do not have sufficient data at their institution and 

allow research groups from around the world to test and compare new radiomic methods 

using common data. Thus, research employing radiomics in this field would certainly be 

enhanced if further imaging databases are made publicly available in the near future. 

Regarding segmentation, the process was performed manually in most of the studies 

(92%) and semiautomatically in the remaining, both requiring human intervention to some 

extent. Even though the influence of inter-observer and/or intra-observer variability on the 

reproducibility of radiomic features can be assessed as part of the radiomic workflow, fully 

automated segmentation algorithms would ideally achieve higher reliability and deserve 

future investigation. Annotations included the entire lesion volume (3D segmentation) in 

most of the studies (71%) and a single slice (2D), without multiple sampling, in the remaining 

(23%). However, to date no study has compared the outcome of 2D and 3D segmentations 

in musculoskeletal sarcomas. As 2D annotations are time saving and have recently proven 

higher performance than 3D segmentation in oropharyngeal cancers [56], this should 

represent another area of research in the near future. Of note, a limited number of studies 

(6%) used a 2D segmentation style with multiple sampling as a data augmentation technique 

to increase the number of labeled slices [26, 48, 57]. This practice can be useful for an 

uncommon entity as musculoskeletal sarcomas but should be employed with care to avoid 

the introduction of bias in the final model. The inclusion of samples from the same case in 

both the training and test sets could lead to overly optimistic results. 
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2.4.2 Reproducibility strategies 

A great variability in radiomic features has emerged as a major issue across studies 

and attributed to different segmentation, image acquisition and post-processing approaches 

[4]. Therefore, methodological analyses are advisable prior to conducting radiomic studies 

in order to assess feature robustness and avoid biases due to non-reproducible, noisy features. 

This concept is in line with recent literature emphasizing the importance of reproducibility 

in artificial intelligence and radiology [58]. In our review, we noted that about one third of 

the included papers described a reproducibility analysis in their workflow. In this subgroup 

of papers, inter- and/or intra-reader segmentation variability was the main focus of the 

reproducibility analysis. Segmentation variability-related analyses outnumbered those 

addressing reproducibility issues due to image acquisition or post-processing differences, 

which were reported in one paper per each [30, 31]. This finding underlines that further 

research should deal with dependencies of radiomic features on image acquisition and post-

processing. While these analyses may already be performed in retrospective series, when 

patients underwent more than one study in a short interval, prospective studies could 

facilitate the identification of reliable radiomic features within this domain. Finally, ICC was 

the statistical method used in most of the papers evaluating radiomic feature reproducibility. 

Of note, guidelines for performing and assessing ICC are available and can be followed to 

achieve consensus on the cut-off and threshold values [59]. 

 

2.4.3 Validation strategies 

Proper validation of radiomic models is highly desirable to bridge the gap between 

concepts and clinical application [53]. Machine learning validation techniques are employed 

to avoid any information leak from the test to the training set during model development 

[60]. Resampling strategies can be extremely useful, especially with relatively limited 

samples of data, which may not be truly representative for the population of interest, with 

the aim of reducing overfitting and better estimating the performance of the radiomics-based 

predictive model on new data (i.e., the test set) [61, 62]. K-fold cross validation was the most 

commonly used technique for this task in the studies included in this review.  

Ideally, in both prospective and retrospective studies, a clinical validation of the 

model is performed against completely independent sets of data, i.e., the external or 

independent test set [4]. We found that clinical validation was performed against an 
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independent dataset from the primary institution (using different scanners) or from a different 

institution only in a small number of studies (10%) included in this systematic review. More 

studies (29%) validated the model using a separate set of data from the primary institution, 

i.e., an internal test set. Therefore, future studies should be carried out in more than one 

institution and include external testing of the model with large and independent sets of data. 

 

2.5 Limitations and conclusions 

This study is limited to a systematic review of the literature, and no meta-analysis 

was performed due to the lack of homogeneity between studies in terms of objectives and 

subgroups of sarcoma with a rather limited number of papers per each objective and 

subgroup. Different metrics were also used, preventing us from providing an estimation of 

model performance for each objective. Furthermore, it was outside of the scope of the review 

to perform a formal assessment of the quality of each included study, as our focus was on 

reporting methodological data that can be in and of themselves quality indicators. Limitations 

notwithstanding, we reviewed the radiomics literature regarding bone and soft-tissue 

sarcomas with emphasis on the methodologic issues of feature reproducibility and predictive 

model validation. They varied largely among the included studies, and, in particular, no 

reproducibility analysis was provided in more than half the papers. Additionally, less than 

half the studies included a clinical validation and only 10% used an independent dataset for 

this purpose. Thus, in order to bring the field of radiomics from a preclinical research area to 

the clinical stage, both these issues should be addressed in future studies dealing with 

musculoskeletal sarcomas.  
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Abstract  

Purpose. To evaluate the diagnostic performance of machine learning for discrimination 

between low-grade and high-grade cartilaginous bone tumors based on radiomic parameters 

extracted from unenhanced Magnetic Resonance Imaging (MRI). 

Methods. We retrospectively enrolled 58 patients with histologically-proven low-

grade/atypical cartilaginous tumor of the appendicular skeleton (n=26) or higher-grade 

chondrosarcoma (n=32, including 16 appendicular and 16 axial lesions). They were 

randomly divided into training (n=42) and test (n=16) groups for model tuning and testing, 

respectively. All tumors were manually segmented on T1-weighted and T2-weighted images 

by drawing bidimensional regions of interest, which were used for first order and texture 

feature extraction. A Random Forest wrapper was employed for feature selection. The 

resulting dataset was used to train a locally weighted ensemble classifier (AdaboostM1). Its 

performance was assessed via 10-fold cross-validation on the training data and then on the 

previously unseen test set. Thereafter, an experienced musculoskeletal radiologist blinded to 

histological and radiomic data qualitatively evaluated the cartilaginous tumors in the test 

group. 

Results. After feature selection, the dataset was reduced to 4 features extracted from T1-

weighted images. AdaboostM1 correctly classified 85.7% and 75% of the lesions in the 

training and test groups, respectively. The corresponding areas under the Receiver Operating 

Characteristic curve were 0.85 and 0.78. The radiologist correctly graded 81.3% of the 

lesions. There was no significant difference in performance between the radiologist and 

machine learning classifier (P=0.453). 

Conclusions. Our machine learning approach showed good diagnostic performance for 

classification of low-to-high grade cartilaginous bone tumors and could prove a valuable aid 

in preoperative tumor characterization.  
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3.1 Introduction 

Chondrosarcoma accounts for approximately 25% of primary bone malignant 

tumors and, excluding hematopoietic malignancies of bone marrow origin, is exceeded in 

frequency only by osteosarcoma [1]. It shows an increased incidence after the fourth decade 

[2]. Chondrosarcoma can be either primary and develop de novo [3], or secondary and 

superimpose on a preexisting benign cartilage-forming tumor [4]. The clinical outcome 

depends on the histological grading, as the 10-year overall survival decreases from 88% for 

low-grade/atypical cartilaginous tumor to 62% and 26% for grade II and grade III 

chondrosarcoma, respectively [5]. Treatment changes substantially and consists of curettage 

or even watchful waiting for low-grade lesions in the extremities, and resection with wide 

margins for axial skeleton tumors and higher-grade lesions in the extremities [6]. A reliable 

preoperative diagnosis is thus crucial, and relies on a combination of clinical presentation, 

imaging and biopsy [6–8]. However, discrepancies in tumor grading are common even 

among expert radiologists and pathologists due to overlapping imaging and histological 

findings [9,10], advocating the need for more accurate diagnostic tools. 

Texture analysis is an emerging post-processing method for quantification of tumor 

heterogeneity, a key feature of malignancy that reflects adverse tumor biology but is hard to 

capture using conventional imaging tools or sampling biopsies [11,12]. It belongs to the 

growing field of radiomics, which includes extraction, analysis and interpretation of large 

numbers of quantitative data from medical images [13]. Their interpretation can be aided by 

data mining techniques and machine learning algorithms to identify the best subset of texture 

features and create usable predictive model for the diagnosis of interest [14]. 

To date, texture analysis has been applied to imaging studies in combination to 

classical univariate and multivariate statistical analyses with the aim of discriminating tumor 

grades and types before treatment, monitoring response to therapy and predicting outcome 

[15]. The purpose of this study is to evaluate the diagnostic accuracy of machine learning for 

discrimination between low-grade and high-grade cartilaginous bone tumors based on 

radiomic parameters extracted from unenhanced magnetic resonance imaging (MRI). 
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3.2 Material and Methods 

3.2.1 Study design and population 

Institutional Review Board approval and a waiver for informed consent were 

obtained. This retrospective study included patients with low-to-high grade cartilaginous 

tumors of the bone who underwent MRI, between 2015 and 2018, at a tertiary bone tumor 

center. Information was retrieved through electronic surgical records. Inclusion criteria were: 

(i) primary low-to-high grade cartilaginous tumor that underwent surgery, such as 

intralesional curettage or resection; (ii) definitive histological diagnosis based on the 

assessment of the surgical specimen and considered as the reference standard; (iii) 1.5-T MRI 

performed within 3 months before surgery; and (iv) available T1-weighted and T2-weighted 

sequences. Patients with pathological fractures or images affected by artifacts were excluded.  

Overall, a total of 58 patients (53 ± 16 [mean ± standard deviation] years of age) 

were enrolled, including: 

• 26 low-grade/atypical cartilaginous tumors of the appendicular skeleton. These 

lesions were located in the femur (n=12), fibula (n=2), humerus (n=11) and tibia 

(n=1); 

• 32 high-grade tumors, such as conventional G2 (n=18), conventional G3 (n=11), 

dedifferentiated (n=2) or mesenchymal (n=1) chondrosarcomas. These lesions were 

located in the femur (n=7), fibula (n=1), humerus (n=7), pelvis (n=5), scapula (n=4), 

spine (n=7) and tibia (n=1). 

 

3.2.2 Quantitative image analysis 

Patients were randomly divided into training (n=42) and test (n=16) groups for 

model tuning and testing, respectively. A last-year radiology resident with 12 months of 

supervised experience in musculoskeletal imaging performed image segmentation blinded to 

information about histological diagnosis, course of the disease and any other imaging study. 

The T1-weighted and T2-weighted images showing the largest tumor area were selected, on 

axial sequences as first choice and coronal or sagittal sequences as second choice, and then 

imported into ITK-SNAP (v3.6) [16], an open-source software for medical image 

segmentation. Next, the reader manually segmented each tumor by drawing a bidimensional 

polygonal region of interest (ROI) along its borders.  
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ROIs were used for first order and texture feature extraction using PyRadiomics 

(v2.2.0) [17], an open-source Python software. Image pre-processing consisted in resampling 

to a 2x2x2 isotropic voxel, intensity normalization and discretization with a fixed bin width 

of 2. A detailed description of the implementation of these steps and radiomic features 

extracted by the software is available in the official documentation 

(https://pyradiomics.readthedocs.io/en/latest/features.html). 

Data mining and machine learning analysis were performed using the Weka data 

mining platform (v3.8.3) [18]. A Random Forest feature subset selection wrapper and an 

ensemble meta-algorithm (AdaboostM1) were employed for feature selection and for final 

model development, respectively, as they have shown good performance on similar datasets 

in literature [19,20]. Feature subset selection is a technique that aims to identify the optimal 

set of parameters while taking into consideration both the relevance of features in relation to 

the class of interest and their redundancy [21]. Using the wrapper approach, feature relevance 

evaluation is performed via a black box induction algorithm (random forest in our case) and 

cross-validation within the training set. Random forest was selected for this task as it is an 

ensemble algorithm, as the AdaboostM1 used for developing the final model, often employed 

to compute feature importance [22]. Final model performance was first assessed through 

stratified 10-fold cross-validation in the training cohort, and then the test cohort was used to 

confirm our findings on previously unseen cases. Our radiomics workflow pipeline is shown 

in Fig. 1. 

 

3.2.3 Qualitative image analysis 

A musculoskeletal radiologist with 10 years of experience performed qualitative 

MRI analysis on the test set cases independently and blinded to information regarding 

histological diagnosis, course of the disease and any other imaging study. Non-contrast MRI 

sequences were available for review, including T2-weighted with and without fat suppression 

and T1-weighted sequences. The reader was asked to predict tumor grade based on the 

following features: tumor location; maximum diameter; adjacent bone marrow edema; bone 

expansion; cortical thickening; cortical breakthrough; periosteal reaction; soft-tissue mass 

edema; and soft-tissue mass. 
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Fig. 1 Radiomics workflow pipeline. Manual segmentation of the lesions was performed on T1-weighted and 
T2-weighted images. Image pre-processing included resampling to a 2x2x2 isotropic voxel, intensity 
normalization and discretization with a fixed bin width of 2. First-order and texture features were extracted and 
then selected using a Random Forest wrapper. Finally, an ensemble meta-algorithm (AdaboostM1) was 
employed to automatically classify the lesions with a training-test approach. 

 

3.2.4 Statistical analysis 

Categorical variables were reported as absolute value and percentage; continuous 

variables were reported as mean ± standard deviation. Accuracy measures of the machine-

learning classifier performance included, among others: 

• F-score, i.e. the harmonic average of the precision (also known as positive 

predictive value) and recall (also known as sensitivity), ranging from 0 to 1 (perfect 

accuracy); 

• Matthews correlation coefficient, i.e. a measure of the quality of binary 

classifications in machine learning, ranging from + 1 (perfect prediction) to 0 

(average random prediction) and − 1 (inverse prediction); 

• Area under the precision-recall curve, i.e. an alternative to the area under the 

receiver operator characteristic (ROC) curve, which is more informative for 

imbalanced classes. 

Data analysis was performed using IBM SPSS Statistics (IBM Corp., Armonk, NY, USA). 

The diagnostic performances of the machine learning classifier and the radiologist were 

compared using McNemar’s test. A p-value < 0.05 indicated statistical significance. 
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3.3 Results 

A total of 172 radiomic features were extracted from each patient, 86 for each MRI 

sequence, shown in their pairwise correlation cluster map (Supplementary file 1). Among 

these, the Random Forest wrapper selected the 4 most informative. These were all derived 

from T1-weighted images and included: Energy derived from first order histogram analysis; 

Joint Average derived from Gray Level Co-occurrence Matrix; Large Dependence High 

Gray Level Emphasis derived from Gray Level Dependence Matrix; and Gray Level Non-

Uniformity derived from Gray Level Size Zone Matrix. Table 1 details the characteristics of 

each feature and relative class. Figure 2 shows their univariate and bivariate distribution in 

our population based on lesion grade. 

The final model was a locally weighted (k=3) boosted (AdaboostM1, 10 iterations) 

decision stump ensemble algorithm. AdaboostM1 algorithm code is provided as 

supplementary material (Supplementary file 2). Overall, its accuracy was 85.7% in the 10-

fold stratified cross-validation performed in the training cohort (36/42 correctly classified 

lesions), and 75% in the test one (12/16 correctly classified lesions). The corresponding areas 

under the ROC curve were 0.85 and 0.78 (Supplementary file 3). Specifically, model 

accuracy for the identification of high-grade and low-grade tumors was 86.4% and 85% in 

the training, and 70% and 83.3% in the test cohort, respectively. Other evaluation metrics are 

reported in Table 2, derived from the confusion matrix presented in Table 3. 

The musculoskeletal radiologist correctly graded 81.3% (13/16) of cartilaginous 

tumors from the test cohort. Specifically, his accuracy was 90% (9/10) for the detection of 

high-grade and 66.7% (4/6) for that of low-grade tumors. Maximum tumor diameter was 9 ± 

6 cm. There was no statistical difference in terms of diagnostic performance between the 

machine learning classifier and the radiologist (P=0.453). 
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Fig. 2 Univariate and bivariate distribution with regression lines for the selected feature subset in relation to the 
tumor grade. Firstorder_energy, Energy derived from first order histogram analysis; glcm_JA, Joint Average 
derived from Gray Level Co-occurrence Matrix; gldm_LDHGLE, Large Dependence High Gray Level Emphasis 
derived from Gray Level Dependence Matrix; glszm_GLNU, Gray Level Non-Uniformity derived from Gray 
Level Size Zone Matrix; HG, high-grade tumor; LG, low-grade/atypical cartilaginous tumor. 
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Table 1 Characteristics of each selected feature and relative class according to PyRadiomics official 
documentation (https://pyradiomics.readthedocs.io/en/latest/features.html). All features were extracted from T1-
weighted images. 

Feature Feature characteristics Feature class Class characteristics 
Energy Measures the magnitude 

of voxel values 
First order Describes the 

distribution of voxel 
intensities 

Joint Average Returns the mean gray 
level intensity 

Gray Level Co-
occurrence Matrix 

Quantifies how often 
pairs of pixels with 
specific values occur in a 
specified spatial range 

Large Dependence 
High Gray Level 
Emphasis 

Measures the joint 
distribution of large 
dependence with higher 
gray-level values 

Gray Level 
Dependence Matrix 

Quantifies gray level 
dependencies, i.e. the 
number of connected 
voxels within a set 
distance that are 
dependent on the center 
voxel 

Gray Level Non-
Uniformity 

Measures the variability 
of gray-level intensity 
values 

Gray Level Size Zone 
Matrix 

Quantifies gray level 
zones, i.e. the number of 
connected voxels sharing 
the same intensity value 

 

 
Table 2 Classifier accuracy metrics weighted average and by class in both the training and test cohorts. FP, false 
positive; MCC, Matthews correlation coefficient; PRC, precision-recall curve; ROC, receiver operator curve; 
TP, true positive. 

Cohort Class TP rate FP rate Precision F-score MCC 
ROC 
area 

PRC 
area 

Training 

High-grade 0.864 0.150 0.864 0.864 0.714 0.850 0.812 
Low-grade 0.850 0.136 0.850 0.850 0.714 0.853 0.794 
Weighted 
average 

0.857 0.144 0.857 0.857 0.714 0.852 0.803 

Test 

High-grade 0.700 0.167 0.875 0.778 0.516 0.775 0.813 
Low-grade 0.833 0.300 0.625 0.714 0.516 0.775 0.588 
Weighted 
average 

0.750 0.217 0.781 0.754 0.516 0.775 0.728 
 

 
Table 3 Confusion matrix for the training and test cohorts. 

 
Actual class 

High-grade Low-grade 

Predicted class 
Training cohort 

High-grade 19 3 
Low-grade 3 17 

Test cohort 
High-grade 7 1 
Low-grade 3 5 
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3.4 Discussion 

The main finding of this study is that our machine learning approach showed good 

diagnostic performance for classification of low-to-high grade cartilaginous bone tumors 

based on radiomic features extracted from unenhanced MRI, which was not significantly 

different compared to an experienced musculoskeletal radiologist. 

The accurate grading of cartilaginous bone tumors is highly desired to select the 

most appropriate treatment, which ranges from conservative-to-aggressive for low-to-high 

grade lesions [6]. However, preoperative biopsy may erroneously lead to down-grading of 

chondrosarcoma as only small tumor areas are sampled [23], and interobserver variability in 

tumor grading has been seen even among specialized bone pathologists [9,10]. In turn, 

inaccurate preoperative grading may result in an inadequate treatment and subsequent need 

for further surgery with increased morbidity. Imaging plays a crucial role by integrating 

clinical data and biopsy before surgery is performed, and MRI is the method of choice [24]. 

On unenhanced MRI, bone expansion, periosteal reaction, soft-tissue mass and tumor length 

have been demonstrated to yield a diagnostic accuracy greater than 90% [25]. Bone marrow 

edema, cortical thickening or destruction and soft-tissue edema are also useful signs in the 

grading of chondrosarcoma [25]. These findings are consistent with our qualitative image 

analysis as the radiologist yielded an accuracy of 81.3%, which was a little lower than 

previously reported probably due to the small size of our test cohort. Diffusion-weighted 

MRI has been shown unable to differentiate low-grade lesions from high-grade 

chondrosarcomas [26] and was then not included in our analysis. On the other hand, contrast-

enhanced MRI and particularly dynamic MRI aid in the diagnosis, as high-grade tumor areas 

enhance fast because of richly vascularized intralesional septations [27–29]. However, 

contrast-enhanced sequences were not evaluated in our series because they were not available 

in all patients. 

Current imaging techniques may potentially be further equipped to better grade and 

safely diagnose cartilaginous bone lesions preoperatively [24]. In this regard, radiomics may 

prove a valuable aid by providing quantitative data that integrate qualitative image 

information already available [30,31]. To our knowledge, two studies to date have focused 

on radiomics and cartilaginous bone tumors [32,33]. Lisson et al. [32] evaluated 22 patients 

with enchondroma or low-grade cartilaginous tumor and observed that MRI-based 

volumetric texture analysis could discriminate these two entities by some individual texture 
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features. They included kurtosis and skewness on contrast-enhanced T1-weighted images, 

and entropy and uniformity of distribution of positive pixels on non-contrast T1-weighted 

images. Surprisingly, no texture feature showed a significant difference between benign and 

low-grade tumors on T2-weighted images [32]. This finding is consistent with our results, as 

exclusively T1-weighted image-derived features were selected during data dimensionality 

reduction. More recently, Fritz et al. [33] assessed the diagnostic accuracy of morphologic 

MRI and MRI-based bidimensional texture analysis for tumor grading in a series of 53 

chondromas and 63 low-to-high grade cartilaginous tumors. Independent morphologic MRI 

and texture analysis predictors were found, and a combination of both achieved the highest 

diagnostic accuracy for differentiation of benign from malignant as well as benign from low-

grade tumors. However, no statistically significant texture analysis predictors existed for 

differentiation of low-grade from high-grade lesions [33]. This could be interpreted as a 

limitation of classical statistical approaches in this field, which could be solved by means of 

data mining and machine learning [34], as shown in our study. Our study attempted to 

discriminate low-grade/atypical cartilaginous tumors from higher-grade lesions using 

radiomic data extracted from T1-weighted and T2-weighted sequences, which are 

cornerstones of morphologic MRI assessment. We integrated texture analysis with machine 

learning, a branch of computer science that enables algorithms to learn from data without 

explicitly being programmed [35–38]. A Random Forest wrapper was used to perform 

feature selection and provided four features, which were all derived from T1-weighted 

images. Thereafter, a locally weighted ensemble classifier (AdaboostM1) was trained on the 

training cohort and then its performance was evaluated on the test cohort. It demonstrated a 

substantial performance (area under the ROC curve = 0.78 in the test cohort), which was not 

different compared to a musculoskeletal radiologist. 

Our classification model might potentially help radiologists express the probability 

that a cartilaginous bone tumor is low-to-high grade, integrating histological information and 

directing clinicians towards a conservative or an aggressive approach. Nonetheless, some 

limitations of this study need to be addressed. First, chondrosarcoma is a rare tumor and our 

small population of study did not allow us to analyze separately appendicular and axial high-

grade lesions, which were grouped together as they are all treated with surgical resection 

with free margins [6]. Second, we used a bidimensional approach for segmentation and 

selected the image with the largest tumor area. This decision was based on previous studies 
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suggesting that bidimensional texture analysis is not inferior to volumetric texture analysis 

[39], and it is also easier to implement in clinical practice. Third, the retrospective study 

design accounts for the exclusion of contrast-enhanced MRI sequences, as they were not 

available in all patients. Finally, an external patient population for testing of the classification 

model was not available. Future investigations will require data exchange between different 

institutions to obtain high-volume image databases, also including contrast-enhanced MRI 

and allowing for testing of the classifier in an external population. 

In conclusion, even though qualitative image assessment still plays a central role in 

the diagnosis, our machine learning classification model of low-to-high grade cartilaginous 

bone tumors is promising and may prove a valuable aid in the preoperative tumor 

characterization. Further studies with a larger sample of patients from multiple institutions 

are warranted.  
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Pairwise feature correlation matrix represented as a hierarchically clustered heatmap. 
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Machine learning algorithm code, as presented in the Weka data mining software: weka.classifiers.lazy.LWL -U 0 
-K 3 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-last\"" -W 
weka.classifiers.meta.AdaBoostM1 -- -P 100 -S 1 -I 
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ROC curve showing the diagnostic performance of the classifier in the test cohort. 
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Abstract 

This study aims to investigate the influence of interobserver manual segmentation variability 

on the reproducibility of 2D and 3D unenhanced computed tomography (CT)- and magnetic 

resonance imaging (MRI)-based texture analysis. Thirty patients with cartilaginous bone 

tumors (10 enchondromas, 10 atypical cartilaginous tumors, 10 chondrosarcomas) were 

retrospectively included. Three radiologists independently performed manual contour-

focused segmentation on unenhanced CT, T1-weighted and T2-weighted MRI by drawing 

both a 2D region of interest (ROI) on the slice showing the largest tumor area and a 3D ROI 

including the whole tumor volume. Additionally, a marginal erosion was applied to both 2D 

and 3D segmentations to evaluate the influence of segmentation margins. A total of 783 and 

1132 features were extracted from original and filtered 2D and 3D images, respectively. 

Intraclass correlation coefficient ≥0.75 defined feature stability. In 2D vs. 3D contour-

focused segmentation, the rates of stable features were 74.71% vs. 86.57% (p<0.001), 

77.14% vs. 80.04% (p=0.142) and 95.66% vs. 94.97% (p=0.554) for CT, T1-weighted and 

T2-weighted images, respectively. Margin shrinkage did not improve 2D (p=0.343) and 

performed worse than 3D (p<0.001) contour-focused segmentation in terms of feature 

stability. In 2D vs. 3D contour-focused segmentation, matching stable features derived from 

CT and MRI were 65.8% vs. 68.7% (p=0.191), and those derived from T1-weighted and T2-

weighted images were 76.0% vs. 78.2% (p=0.285). 2D and 3D radiomic features of 

cartilaginous bone tumors extracted from unenhanced CT and MRI are reproducible, 

although some degree of interobserver segmentation variability highlights the need for 

reliability analysis in future studies.  
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4.1 Introduction 

Cartilaginous tumors of the bone include a broad spectrum of lesions that range 

from benign to malignant entities [1, 2]. Reliable identification and grading are crucial, as 

clinical management varies widely. Specifically, asymptomatic benign enchondromas do not 

require any treatment, appendicular atypical cartilaginous tumors are managed with 

intralesional curettage or even watchful waiting, appendicular higher-grade lesions and axial 

skeleton chondrosarcomas are resected with free margins [3]. The diagnosis relies on a 

combination of clinical presentation, imaging and biopsy [3, 4]. Imaging, and particularly 

magnetic resonance imaging (MRI), has good accuracy in discriminating atypical 

cartilaginous tumors from higher-grade lesions [5] but is less reliable in differentiating the 

former from enchondromas [6]. Biopsy is considered the reference standard but has the 

disadvantages of sampling errors [7] and discrepancies even among specialized bone 

pathologists due to overlapping histological findings [8]. Additionally, the risk of biopsy-

tract contamination remains a concern. Thus, the need for cutting-edge imaging-based tools, 

such as radiomics, is advocated to safely diagnose and grade cartilaginous bone tumors non-

invasively [9]. 

Texture analysis is a post-processing method for quantification of tumor 

heterogeneity, which reflects adverse tumor biology but cannot be captured using 

conventional imaging modalities or sampling biopsies [10]. It belongs to the growing field 

of radiomics, which includes extraction, analysis and interpretation of large amounts of 

quantitative parameters from medical images [11, 12]. To date, texture analysis has been 

used to discriminate tumor grades and types before treatment, monitor response to therapy 

and predict outcome [13]. The resulting quantitative parameters, known as texture or 

radiomic features, may suffer however from interobserver variability, particularly with 

regard to tumor delineation while performing manual segmentation  [14–16]. The influence 

of segmentation margins is also critical because of textural details of the peritumoral area, 

which may affect the reproducibility of texture features and therefore their diagnostic 

performance [17]. In literature, the Intraclass Correlation Coefficient (ICC) is commonly 

employed to assess radiomic feature reproducibility [17–21]. 

The aim of this study is to investigate the influence of interobserver manual 

segmentation variability on the reproducibility of bidimensional (2D) and volumetric (3D) 



 

 69 

unenhanced computed tomography (CT)- and MRI-based texture analysis in cartilaginous 

bone tumors. 

 

4.2 Materials and methods 

4.2.1 Design and population 

The local Institutional Review Board approved this retrospective study and waived 

the need for informed consent. According to the ICC guidelines by Koo et al. [22], we 

designed our study to meet the numerical requirements of a reliability analysis in terms of 

both patients and observers involved, namely 30 lesions and 3 different readers [22]. A search 

of the radiology information system was performed and 30 patients with cartilaginous bone 

tumors were recruited (median age 52 [range, 28-72] years), including 10 benign 

enchondromas, 10 atypical cartilaginous tumors and 10 malignant chondrosarcomas. 

Inclusion criteria were: (i) enchondromas proven either by histology or minimum follow-up 

of 6 years without alteration in shape or size and typical imaging findings of lobulated 

morphology and T2-weighted hyperintensity on MRI; (ii) histology-proven atypical 

cartilaginous tumors; (iii) histology-proven primary conventional grade II-III or 

dedifferentiated chondrosarcomas; (iv) 1.5-T MRI including turbo spin echo T1-weighted 

and T2-weighted sequences and 64-slice CT performed within one month before biopsy, 

intralesional curettage or surgical resection for tumors diagnosed by histology. Exclusion 

criteria were the presence of pathological fracture and ambiguous histology report.  

Enchondromas were located in the femur (n = 5), fibula (n = 2), foot phalanx (n = 

1), humerus (n = 1) and radius (n = 1), atypical cartilaginous tumors in the femur (n = 2), 

fibula (n = 2) and humerus (n = 6), chondrosarcomas in the calcaneus (n = 1), femur (n = 2), 

humerus (n = 1), pelvis (n = 2), spine (n = 3) and tibia (n = 1). 

 

4.2.2 Image segmentation 

A musculoskeletal radiologist (S.G.) and two last-year radiology residents trained 

in musculoskeletal and oncologic imaging (I.E. and L.T.) independently performed manual 

image segmentation using the open-source software ITK-SNAP (v3.6) [23]. The readers 

knew the study would deal with cartilaginous bone tumors, but they were blinded to any 

other information regarding histological grade, disease course and additional imaging 

studies. All tumors were segmented on axial CT scans and on axial MRI sequences as first 
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choice and coronal or sagittal sequences as second choice. Manual contour-focused 

segmentation was performed on unenhanced bone-window CT, T1-weighted and T2-

weighted MRI by drawing both a 2D region of interest (ROI) on the slice showing the largest 

tumor area and a 3D ROI including the whole tumor volume. The “polygon mode” ITK-

SNAP tool was used for all segmentations. While segmenting the tumors on CT, the readers 

used the MRI sequences to aid contour identification of each tumor. Thereafter, margin 

shrinkage segmentation was computed by applying a marginal erosion to both 2D and 3D 

segmentations in order to evaluate the influence of segmentation margins on feature 

reproducibility (Figure 1). In detail, ROI shrinkage was performed using the fslmaths erosion 

function of the FMRIB Software Library [24]. The default 2D and 3D kernels, which are 

3x3x1 and 3x3x3 boxes centered at the target voxel, were employed as appropriate. During 

the erosion process, each voxel in the ROI is targeted sequentially, and its value is changed 

to 0 (i.e. removed from the ROI) if a zero-value voxel is found within the kernel. Therefore, 

the shrinkage was usually more extensive for 3D ROIs compared to 2D ones. 

 

 

Fig. 1 Contour-focused and margin shrinkage segmentation of an atypical cartilaginous tumor of the humerus in 
a 45-year-old woman. a-c 2D contour-focused segmentation was performed on axial T1-weighted MRI (a), T2-
weighted MRI (b) and bone-window CT (c) on the slice showing the largest tumor extension. d 3D contour-
focused segmentation was performed slice by slice in the axial plane to include the whole tumor volume, as 
shown in the sagittal CT image. Contour-focused segmentation provided the ROI including both green and red 
areas. Margin shrinkage segmentation provided the ROI including only the green area by computing a marginal 
erosion, which is shown in red. e-f Segmented tumor volumes obtained with 3D contour-focused (e) and margin 
shrinkage (f) segmentation are shown, where the latter has smoother margins as a result of marginal erosion. 
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4.2.3 Texture analysis 

Image pre-processing consisted in resampling to a 2x2 isotropic pixel or 2x2x2 

isotropic voxel, whole image intensity normalization (mean value of 300 and standard 

deviation of 100) and discretization with a fixed bin width of 5. Original CT and MRI and 

2D and 3D ROIs were used for feature extraction on PyRadiomics (v2.2.0) [25], an open-

source Python software. The extracted features were grouped according to PyRadiomics 

official documentation (https://pyradiomics.readthedocs.io/en/latest/features.html), as 

follows: 

• 18 first-order features, which describe the distribution of pixel or voxel gray-level 

values; 

• 9 shape-based 2D and 14 shape-based 3D features, which respectively describe the 

2D and 3D size and shape of the ROI; 

• 22 gray-level cooccurrence matrix (GLCM) features, which quantify how often 

pairs of pixels or voxels with certain values occur in a specified spatial range; 

• 16 gray-level size zone matrix (GLSZM) features, which quantify gray-level zones, 

i.e. the number of connected pixels or voxels sharing the same gray-level value; 

• 16 gray-level run length matrix (GLRLM) features, which quantify gray-level runs, 

i.e. the length in number of consecutive pixels or voxels having the same gray-level 

value; 

• 14 gray-level dependence matrix (GLDM) features, which quantify gray-level 

dependencies, i.e. the number of connected pixels or voxels within a set distance 

that are dependent on the center pixel and voxel. 

In addition to the original CT and MRI, Laplacian of Gaussian (LoG)-filtered (sigma = 2, 3, 

4, 5) and wavelet-transformed 2D and 3D images (all possible low and high pass filter 

combinations) were obtained for extraction of first-order and matrix features. Shape-based 

features are independent from gray-level value distribution and therefore were only 

computed on the original images. A total of 783 and 1132 features were extracted from 

original, LoG-filtered and wavelet-transformed 2D and 3D images, respectively. 

 

4.2.4 Statistical analysis 

Texture feature interobserver reliability was assessed using a two-way, random-

effects, single-rater, absolute agreement ICC. Features were considered stable when 
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achieving good (0.75 ≤ ICC < 0.9) to excellent (ICC ≥ 0.9) interobserver reliability [22]. 

Differences among variables were evaluated using Chi-square test. A 2-sided p-value < 0.05 

indicated statistical significance [26]. Data analysis was performed using the pandas and 

numpy Python software and the “irr” R package [27, 28]. 

 

4.2.5 Machine learning analysis 

To assess the potential value of CT and MRI texture features extracted from 2D and 

3D annotations, an exploratory data analysis was performed with an Extra Trees (ET) 

ensemble model. The same pipeline was employed on all available datasets, consisting of 

feature selection through cross-validated recursive feature elimination (RFE) and random 

search hyperparameter tuning nested within a leave-one-out cross-validation on the entire 

dataset. RFE was conducted using 10-fold cross-validation and an ET estimator with default 

hyperparameters. Then, in the training folds of the leave-one-out cross-validation, the 

synthetic oversampling technique was applied to balance the 3 classes (i.e., creating a 

synthetic instance to substitute the lesion in the test fold), followed by 100 iterations of ET 

hyperparameter random search. Given the presence of 3 classes with balanced cases, 

accuracy was used as the reference score for both RFE and ET tuning. The hyperparameter 

search space was as follows: 

1. Number of trees = 100-1000 

2. Criterion = entropy or Gini 

3. Max depth = 1-10 

4. Bootstrap = True or False 

5. Max samples = 0-100% 

 

4.3 Results 

In 2D contour-focused vs. margin shrinkage segmentation, the stable feature rates 

were 74.71% (n = 585) vs. 71.65% (n = 561), 77.14% (n = 604) vs. 76.12% (n = 596) and 

95.66% (n = 749) vs. 96.42% (n = 755) for CT, T1-weighted and T2-weighted images, 

respectively. The number of stable features derived from 2D contour-focused segmentation 

showed no difference in comparison with 2D margin shrinkage segmentation (p = 0.343). 

Table 1 details the number and percentage of stable features that were obtained with 2D 

contour-focused segmentation, grouped according to feature class and image type. 
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In 3D contour-focused vs. margin shrinkage segmentation, the stable feature rates 

were 86.57% (n = 980) vs. 83.66% (n = 947), 80.04% (n = 906) vs. 71.47% (n = 809) and 

94.97% (n = 1075) vs. 65.72% (n = 744) for CT, T1-weighted and T2-weighted images, 

respectively. The number of stable features derived from 3D contour-focused segmentation 

was higher compared to 3D margin shrinkage segmentation (p < 0.001). Table 2 details the 

number and percentage of stable features that were obtained with 3D contour-focused 

segmentation, grouped according to feature class and image type. 

The rate of stable features derived from CT was higher for 3D compared to 2D 

contour-focused segmentation (p < 0.001), while no difference was found for features 

derived from T1-weighted and T2-weighted MRI between 3D and 2D contour-focused 

segmentation (p = 0.142 and 0.554, respectively). In Figure 2, box and whisker plots show 

the interobserver reliability of feature classes derived from 3D and 2D contour-focused 

segmentation, grouped according to image type. 

In 2D vs. 3D contour-focused segmentation, matching stable features derived from 

CT and MRI were 65.77% (n = 515) vs. 68.73% (n = 778), and those derived from T1-

weighted and T2-weighted images were 75.99% (n = 595) vs. 78.18% (n = 885), respectively 

(p = 0.191 and 0.285). Tables 3 and 4 respectively detail the number and percentage of 

matching stable features obtained with 2D and 3D contour-focused segmentation, as well as 

overall interobserver reliability across different imaging modalities and MRI sequences, 

grouped according to feature class and image type. In Figure 3, box and whisker plots show 

the overall interobserver reliability of matching feature classes derived 3D and 2D contour-

focused segmentation of CT and MRI, as well as MRI including T1-weighted and T2-

weighted sequences, grouped according to image type. Most shape-based 2D and 3D features 

were stable even across different imaging modalities and MRI sequences. 

Regarding the machine learning pipeline, the number of selected features ranged 

from 1 (from 2D annotations on T2-weighted images) to 236 (2D annotations on CT images). 

The accuracy of the ET models was fair to good, ranging between 77% (2D annotations on 

CT images) and 90% (3D annotations on T2-weighted images). Table 5 reports the results of 

each annotation and image type combination. 
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Fig. 2 3D and 2D contour-focused segmentation. Box and whisker plots show the interobserver reliability of 
feature classes grouped according to image type. 
 

 

Fig. 3 3D and 2D contour-focused segmentation. Box and whisker plots show the overall interobserver reliability 
of matching feature classes derived from CT and MRI, as well as T1-weighted and T2-weighted MRI sequences, 
grouped according to image type. 
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Table 1 2D contour-focused segmentation. Number and percentage of stable features with good (0.75≤ICC<0.9) 
and excellent (ICC≥0.9) interobserver reliability grouped according to feature class and image type. GLCM, gray-
level cooccurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, 
gray-level size zone matrix; ICC, intraclass correlation coefficient; LoG, Laplacian of Gaussian. 

2D Feature 
Class 

Image 
Type 

Total 
Features (n) 

ICC ≥ 0.75 
(n) 

ICC ≥ 0.75 
(%) 

ICC ≥ 0.90 
(n) 

ICC ≥ 0.90 
(%) 

CT  First Order LoG 72 63 87.50 29 40.28 
Original 18 16 88.89 8 44.44 
Wavelet 72 53 73.61 20 27.78 

GLCM LoG 88 78 88.64 31 35.23 
Original 22 13 59.09 5 22.73 
Wavelet 88 60 68.18 27 30.68 

GLDM LoG 56 49 87.50 18 32.14 
Original 14 10 71.43 2 14.29 
Wavelet 56 34 60.71 10 17.86 

GLRLM LoG 64 58 90.63 27 42.19 
Original 16 13 81.25 2 12.50 
Wavelet 64 43 67.19 12 18.75 

GLSZM LoG 64 46 71.88 20 31.25 
Original 16 9 56.25 3 18.75 
Wavelet 64 32 50.00 14 21.88 

Shape Original 9 8 88.89 7 77.78 
OVERALL 783 585 74.71 235 30.01 

T1
w  

First Order LoG 72 65 90.28 42 58.33 
Original 18 15 83.33 8 44.44 
Wavelet 72 52 72.22 27 37.50 

GLCM LoG 88 81 92.05 48 54.55 
Original 22 17 77.27 10 45.45 
Wavelet 88 67 76.14 50 56.82 

GLDM LoG 56 43 76.79 29 51.79 
Original 14 10 71.43 7 50.00 
Wavelet 56 38 67.86 30 53.57 

GLRLM LoG 64 51 79.69 34 53.13 
Original 16 12 75.00 9 56.25 
Wavelet 64 46 71.88 35 54.69 

GLSZM LoG 64 50 78.13 26 40.63 
Original 16 8 50.00 6 37.50 
Wavelet 64 40 62.50 19 29.69 

Shape Original 9 9 100.00 8 88.89 
OVERALL 783 604 77.14 388 49.55 

T2
w 

First Order LoG 72 68 94.44 61 84.72 
Original 18 16 88.89 15 83.33 
Wavelet 72 60 83.33 48 66.67 

GLCM LoG 88 86 97.73 79 89.77 
Original 22 22 100.00 18 81.82 
Wavelet 88 84 95.45 71 80.68 

GLDM LoG 56 56 100.00 48 85.71 
Original 14 12 85.71 10 71.43 
Wavelet 56 53 94.64 31 55.36 

GLRLM LoG 64 64 100.00 60 93.75 
Original 16 15 93.75 13 81.25 
Wavelet 64 63 98.44 45 70.31 

GLSZM LoG 64 64 100.00 47 73.44 
Original 16 15 93.75 12 75.00 
Wavelet 64 62 96.88 41 64.06 

Shape Original 9 9 100.00 8 88.89 
OVERALL 783 749 95.66 607 77.52 
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Table 2 3D contour-focused segmentation. Number and percentage of stable features with good (0.75≤ICC<0.9) 
and excellent (ICC≥0.9) interobserver reliability grouped according to feature class and image type. GLCM, gray-
level cooccurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, 
gray-level size zone matrix; ICC, intraclass correlation coefficient; LoG, Laplacian of Gaussian. 

3D Feature 
Class 

Image 
Type 

Total Features 
(n) 

ICC ≥ 0.75 
(n) 

ICC ≥ 0.75 
(%) 

ICC ≥ 0.90 
(n) 

ICC ≥ 0.90 
(%) 

CT First Order LoG 72 64 88.89 44 61.11 
Original 18 14 77.78 9 50.00 
Wavelet 144 114 79.17 93 64.58 

GLCM LoG 88 86 97.73 65 73.86 
Original 22 22 100.00 19 86.36 
Wavelet 176 169 96.02 153 86.93 

GLDM LoG 56 50 89.29 24 42.86 
Original 14 13 92.86 8 57.14 
Wavelet 112 98 87.50 71 63.39 

GLRLM LoG 64 62 96.88 30 46.88 
Original 16 14 87.50 9 56.25 
Wavelet 128 112 87.50 86 67.19 

GLSZM LoG 64 46 71.88 19 29.69 
Original 16 11 68.75 2 12.50 
Wavelet 128 93 72.66 67 52.34 

Shape Original 14 12 85.71 7 50.00 
OVERALL 1132 980 86.57 706 62.37 

T1
w 

First Order LoG 72 67 93.06 43 59.72 
Original 18 12 66.67 7 38.89 
Wavelet 144 121 84.03 89 61.81 

GLCM LoG 88 77 87.50 47 53.41 
Original 22 16 72.73 10 45.45 
Wavelet 176 151 85.80 125 71.02 

GLDM LoG 56 42 75.00 24 42.86 
Original 14 9 64.29 7 50.00 
Wavelet 112 85 75.89 60 53.57 

GLRLM LoG 64 50 78.13 31 48.44 
Original 16 9 56.25 6 37.50 
Wavelet 128 99 77.34 77 60.16 

GLSZM LoG 64 47 73.44 21 32.81 
Original 16 10 62.50 5 31.25 
Wavelet 128 97 75.78 55 42.97 

Shape Original 14 14 100.00 11 78.57 
OVERALL 1132 906 80.04 618 54.59 

T2
w 

First Order LoG 72 70 97.22 53 73.61 
Original 18 17 94.44 11 61.11 
Wavelet 144 126 87.50 94 65.28 

GLCM LoG 88 81 92.05 69 78.41 
Original 22 21 95.45 15 68.18 
Wavelet 176 169 96.02 145 82.39 

GLDM LoG 56 55 98.21 41 73.21 
Original 14 14 100.00 9 64.29 
Wavelet 112 106 94.64 73 65.18 

GLRLM LoG 64 64 100.00 53 82.81 
Original 16 16 100.00 11 68.75 
Wavelet 128 122 95.31 92 71.88 

GLSZM LoG 64 62 96.88 46 71.88 
Original 16 16 100.00 11 68.75 
Wavelet 128 122 95.31 70 54.69 

Shape Original 14 14 100.00 9 64.29 
OVERALL 1132 1075 94.97 802 70.85 
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Table 3 2D matching features. Number and percentage of matching stable features obtained with 2D contour-
focused segmentation, as well as number and percentage of matching stable features with good (ICC≥0.75) overall 
interobserver reliability across different imaging modalities and MRI sequences, grouped according to feature class 
and image type. GLCM, gray-level cooccurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-
level run length matrix; GLSZM, gray-level size zone matrix; ICC, intraclass correlation coefficient; LoG, Laplacian 
of Gaussian. 

2D Feature 
Class 

Image 
Type 

Total 
features (n) 

Matching 
features (n) 

Matching 
features (%) 

ICC ≥ 
0.75 (n) 

ICC ≥ 0.75 
(%) 

C
T

 +
 M

R
I (

T
1w

 +
 T

2w
) 

First 
Order 

LoG 72 61 84.72 4 6.56 
Original 18 15 83.33 0 0 
Wavelet 72 45 62.50 3 6.67 

GLCM LoG 88 74 84.09 2 2.70 
Original 22 11 50.00 0 0 
Wavelet 88 55 62.50 2 3.64 

GLDM LoG 56 41 73.21 4 9.76 
Original 14 7 50.00 0 0 
Wavelet 56 29 51.79 6 20.69 

GLRLM LoG 64 48 75.00 1 2.08 
Original 16 10 62.50 1 10.00 
Wavelet 64 36 56.25 7 19.44 

GLSZM LoG 64 40 62.50 1 2.50 
Original 16 7 43.75 0 0 
Wavelet 64 28 43.75 3 10.71 

Shape Original 9 8 88.89 4 50.00 
OVERALL 783 515 65.77 38 7.38 

M
R

I (
T

1w
 +

 T
2w

)  

First 
Order  

LoG 72 63 87.50 8 12.70 
Original 18 15 83.33 0 0 
Wavelet 72 50 69.44 6 12.00 

GLCM  LoG 88 80 90.91 2 2.50 
Original 22 17 77.27 1 5.88 
Wavelet 88 65 73.86 2 3.08 

GLDM  LoG 56 43 76.79 2 4.65 
Original 14 9 64.29 1 11.11 
Wavelet 56 37 66.07 6 16.22 

GLRLM  LoG 64 51 79.69 1 1.96 
Original 16 12 75.00 2 16.67 
Wavelet 64 46 71.88 2 4.35 

GLSZM  LoG 64 50 78.13 1 2.00 
Original 16 8 50.00 0 0 
Wavelet 64 40 62.50 2 5.00 

Shape Original 9 9 100.00 4 44.44 
OVERALL 783 595 75.99 40 6.72 
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Table 4 3D matching features. Number and percentage of matching stable features obtained with 3D contour-
focused segmentation, as well as number and percentage of matching stable features with good (ICC≥0.75) overall 
interobserver reliability across different imaging modalities and MRI sequences, grouped according to feature class 
and image type. GLCM, gray-level cooccurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-
level run length matrix; GLSZM, gray-level size zone matrix; ICC, intraclass correlation coefficient; LoG, Laplacian 
of Gaussian. 

3D Feature 
Class 

Image 
Type 

Total 
features (n) 

Matching 
features (n) 

Matching 
features (%) 

ICC ≥ 
0.75 (n) 

ICC ≥ 0.75 
(%) 

C
T

 +
 M

R
I (

T
1w

 +
 T

2w
) 

 

First 
Order  

LoG 72 57 79.17 0 0 
Original 18 10 55.56 0 0 
Wavelet 144 97 67.36 0 0 

GLCM  LoG 88 75 85.23 4 5.33 
Original 22 16 72.73 0 0 
Wavelet 176 147 83.52 6 4.08 

GLDM  LoG 56 37 66.07 5 13.51 
Original 14 8 57.14 0 0 
Wavelet 112 72 64.29 6 8.33 

GLRLM  LoG 64 48 75.00 1 2.08 
Original 16 7 43.75 0 0 
Wavelet 128 81 63.28 3 3.70 

GLSZM  LoG 64 34 53.13 0 0 
Original 16 5 31.25 1 20.00 
Wavelet 128 72 56.25 6 8.33 

Shape Original 14 12 85.71 11 91.67 
OVERALL 1132 778 68.73 43 5.53 

M
R

I (
T

1w
 +

 T
2w

)  
 

First 
Order  

LoG 72 65 90.28 8 12.31 
Original 18 12 66.67 0 0 
Wavelet 144 116 80.56 14 12.07 

GLCM  LoG 88 75 85.23 10 13.33 
Original 22 16 72.73 2 12.50 
Wavelet 176 149 84.66 16 10.74 

GLDM  LoG 56 42 75.00 6 14.29 
Original 14 9 64.29 1 11.11 
Wavelet 112 83 74.11 10 12.05 

GLRLM  LoG 64 50 78.13 3 6.00 
Original 16 9 56.25 1 11.11 
Wavelet 128 96 75.00 10 10.42 

GLSZM  LoG 64 47 73.44 2 4.26 
Original 16 10 62.50 0 0 
Wavelet 128 92 71.88 6 6.52 

Shape Original 14 14 100.00 12 85.71 
OVERALL 1132 885 78.18 101 11.41 

  
Table 5 Feature selection process and exploratory machine learning pipeline in the reproducible feature datasets. 
The results of each annotation and image type combination are reported. 

Annotation type Imaging modality Selected features (n) Accuracy (%) 
2D  T1w 5 83 

T2w 1 83 
CT 236 77 

3D  T1w 67 87 
T2w 14 90 
CT 108 80 
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4.4 Discussion 

The main finding of our study is that the rates of stable radiomic features extracted 

from unenhanced CT and MRI were 75% or higher for 2D and 80% or higher for 3D contour-

focused segmentation. 3D CT-based texture analysis provided more stable features than 2D 

approach, while no difference in feature stability rates was found between 2D and 3D MRI-

based texture analysis. Overall, a certain degree of segmentation variability highlighted the 

need to include a reliability analysis in future studies. 

Despite its great potential as a non-invasive biomarker to quantify several tumor 

characteristics, radiomics still faces challenges to clinical implementation, both standalone 

and paired to machine learning [13, 29]. A great variability in radiomic features has emerged 

as a major issue across studies, and segmentation is the most critical step [12]. Image 

segmentation represents the basis of radiomic image analysis pipelines and can be time-

consuming if performed manually. Therefore, methodological analyses are advisable prior 

to conducting radiomic studies in order to assess the robustness of different segmentation 

approaches and avoid biases due to non-reproducible, noisy features. These analyses have 

been previously performed in kidney [30, 31], lung and head and neck [15] lesions. With 

regard to cartilaginous bone tumors, radiomic studies to date have focused on discriminating 

among benign, atypical and malignant lesions [32–35], differentiating chondrosarcoma from 

other entities such as skull chordoma [36], or predicting recurrence of chondrosarcoma [37]. 

To our knowledge, our work is the first comprehensively addressing the influence of 

interobserver manual segmentation variability on the reproducibility of 2D and 3D CT- and 

MRI-based texture analysis in cartilaginous bone tumors. Nonetheless, Fritz et al. [33] and 

Gitto et al. [34] performed an interobserver reliability assessment as a feature-reduction 

method in their radiomic analysis, which provided a model for prediction of tumor grade. 

Particularly, Fritz et al. found that most 2D features derived from unenhanced (15 out of 19) 

and contrast-enhanced (18 out of 19) T1-weighted MRI had at least good agreement between 

two observers, using an ICC cutoff of 0.6 [33]. In this study, however, the number of 

extracted features was only 19 per sequence, the impact of different feature classes was not 

analyzed, and filtered and transformed images were not used. Despite these issues, a common 

conclusion that can be drawn from this and our studies is that most MRI radiomic features 

of cartilaginous bone tumors have good reproducibility, even though a certain degree of 

segmentation variability exists. In a more recent study by Gitto et al., stability was assessed 
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as a feature-reduction method and CT radiomic features were considered stable if ICC 95% 

confidence interval lower bound was 0.75 or higher. This resulted in a lower feature stability 

rate (30%) [34] compared to our current study. 

In our study, all imaging modalities demonstrated good reproducibility both 

employing 2D and 3D annotations, with a robust feature percentage ranging from 75 to 96% 

for the former and 80 to 95% for the latter. Stable features also proved quite informative for 

predictive modeling at our preliminary analysis, with accuracies of 77-90%. Given the 

limited sample size and presence of 3 class labels, this result is promising and supports the 

use of radiomic data in this research domain. These findings are encouraging for future 

radiomic analyses, even though they confirm the need for a preliminary assessment of feature 

stability, and in line with recent literature emphasizing the importance of reproducibility in 

artificial intelligence and radiology [38]. The higher spatial resolution of CT did not seem to 

influence feature reproducibility and was probably offset by the better contrast resolution of 

T1-weighted and T2-weighted images. Furthermore, margin shrinkage did not lead to 

improvements in terms of feature reproducibility, contrary to a previous investigation on 

renal cell carcinoma CT images [17]. It should be noted that in this investigation, however, 

the authors reported that margin shrinkage produced less informative features even with 

improved reproducibility [17]. 

We found higher rates of stable features derived from CT for 3D compared to 2D 

segmentation, but no difference in the rates of 2D and 3D MRI-derived stable features. This 

finding is in favor of a 2D approach in future radiomic studies dealing with MRI-based 

texture analysis of cartilaginous bone tumors, as this is less time-consuming and easier to be 

employed in clinical practice, particularly in large atypical cartilaginous tumors and 

chondrosarcomas. Furthermore, most 2D (66-76%) and 3D (69-78%) stable features matched 

between CT and MRI, as well as T1-weghted and T2-weighted images. Finally, shape-based 

features were stable even across different imaging modalities and MRI sequences, and were 

thus reproducible and independent descriptors of tumor size and shape. On the other hand, 

overall interobserver reliability of other feature classes was unsurprisingly low across 

different imaging modalities and MRI sequences, indicating that their quantitative values 

depend on the specific image used. 

Some limitations of our study should be acknowledged. First, it has a retrospective 

design as a prospective analysis is not strictly necessary for radiomic studies [13]. The 
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retrospective design accounts for the exclusion of contrast-enhanced images, as they were 

not performed for all enchondromas. Contrast-enhanced and dynamic contrast-enhanced 

MRI improve the accuracy of cartilaginous bone tumor assessment [39–41] and future 

radiomic studies focusing on these sequences are warranted. Finally, due to its scope, this 

was a single institution study and generalizability of our findings need to be confirmed on 

more varied datasets. 

 

4.5 Conclusions 

In conclusion, radiomic features of cartilaginous bone tumors extracted from 2D 

and 3D segmentations on CT and MRI examinations are reproducible, although some degree 

of segmentation variability highlights the need to perform a preliminary reliability analysis 

in radiomic studies. 3D and 2D MRI-based texture analysis provide similar rates of stable 

features. Thus, a 2D approach can be favored in future studies, as this is easier to implement 

in clinical practice.  
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Abstract 

Background. Clinical management ranges from surveillance or curettage to wide resection 

for atypical to higher-grade cartilaginous tumours, respectively. Our aim was to investigate 

the performance of computed tomography (CT) radiomics-based machine learning for 

classification of atypical cartilaginous tumours and higher-grade chondrosarcomas of long 

bones. 

Methods. One-hundred-twenty patients with histology-proven lesions were retrospectively 

included. The training cohort consisted of 84 CT scans from centre 1 (n=55 G1 or atypical 

cartilaginous tumours; n=29 G2-G4 chondrosarcomas). The external test cohort consisted of 

the CT component of 36 positron emission tomography-CT scans from centre 2 (n=16 G1 or 

atypical cartilaginous tumours; n=20 G2-G4 chondrosarcomas). Bidimensional 

segmentation was performed on preoperative CT. Radiomic features were extracted. After 

dimensionality reduction and class balancing in centre 1, the performance of a machine-

learning classifier (LogitBoost) was assessed on the training cohort using 10-fold cross-

validation and on the external test cohort. In centre 2, its performance was compared with 

preoperative biopsy and an experienced radiologist using McNemar’s test. 

Findings. The classifier had 81% (AUC=0.89) and 75% (AUC=0.78) accuracy in identifying 

the lesions in the training and external test cohorts, respectively. Specifically, its accuracy in 

classifying atypical cartilaginous tumours and higher-grade chondrosarcomas was 84% and 

78% in the training cohort, and 81% and 70% in the external test cohort, respectively. 

Preoperative biopsy had 64% (AUC=0.66) accuracy (p=0.29). The radiologist had 81% 

accuracy (p=0.75). 

Interpretation. Machine learning showed good accuracy in classifying atypical and higher-

grade cartilaginous tumours of long bones based on preoperative CT radiomic features. 

Funding. ESSR Young Researchers Grant.  
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Research in context 

Evidence before this study. To date, radiomic studies have dealt with MRI of cartilaginous 

bone lesions with the aim of discriminating among benign enchondroma, atypical 

cartilaginous tumour and malignant chondrosarcoma, predicting local recurrence of 

chondrosarcoma and differentiating chondrosarcoma from other entities such as skull 

chordoma. Machine learning was used in combination with radiomics to address some of 

these issues. Particularly, an adaptive boosting classifier (AdaBoostM1) was a good predictor 

of tumour grade based on MRI radiomic features derived from unenhanced T1-weighted 

sequences, showing 75% accuracy in the test cohort for classification of atypical 

cartilaginous tumours and chondrosarcomas. This previous study included 58 patients from 

the same institution and the machine-learning classifier was internally tested using a hold-

out set as a test cohort. To our knowledge, no published study has focused on machine 

learning and CT radiomics of cartilaginous bone lesions, as done in our study.  

Added value of this study. We also attempted to differentiate atypical cartilaginous tumours 

from chondrosarcomas of long bones, as this is the most relevant clinical question and 

orientates towards a conservative approach or aggressive surgery. Our CT radiomics-based 

machine-learning classifier (boosted [LogitBoost] linear logistic regression classifier) 

achieved 75% accuracy overall, 81% accuracy in identifying atypical cartilaginous tumours 

and 70% accuracy in identifying higher-grade chondrosarcomas in the external test cohort, 

respectively, with no difference in comparison with an experienced radiologist (p=0.75). 

These results agree with those previously reported for tumour grading based on MRI 

radiomics. Furthermore, our findings were obtained in a more than twice larger population 

and validated in an independent test cohort from a second institution, thus ensuring their 

generalizability in clinical practice. Finally, although statistical significance was not reached 

(p=0.29), the machine-learning classifier’s accuracy was slightly superior compared to 

preoperative biopsy. We may speculate that this difference could become significant in a 

larger population. 

Implications of all the available evidence. Radiomics-based machine learning may 

potentially aid in preoperative tumour characterization by integrating the multidisciplinary 

approach currently based on clinical, conventional imaging and histological assessment. 
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5.1 Introduction 

Chondrosarcoma accounts for 20 to 30% of primary malignant bone lesions (1).  

Clinical management primarily depends on tumour grading. Particularly, low-grade (G1) 

chondrosarcomas of long bones, recently downgraded from malignant to locally aggressive 

lesions and renamed “atypical cartilaginous tumours” (2), are managed with intralesional 

curettage or even watchful waiting. Appendicular higher-grade and axial skeleton 

chondrosarcomas require wide resection with free margins (3). The 10-year overall survival 

decreases from 88% for atypical cartilaginous tumour/G1 to 62% and 26% for G2 and G3 

chondrosarcoma, respectively (4). Both imaging and biopsy integrate clinical information 

before any treatment is started (3). Magnetic resonance imaging (MRI) is the best imaging 

modality for local staging (5). Computed tomography (CT) is used for biopsy guidance (6) 

and provides additional information, such as matrix mineralization and cortex changes (3). 

CT and positron emission tomography-CT (PET-CT) can be both employed for general 

staging (3). Biopsy is considered the reference standard for preoperative assessment but 

suffers from the disadvantages of sampling errors (7) and overlapping histological findings 

leading to discrepancies even among expert bone pathologists (8). Thus, the need for new 

imaging-based tools like radiomics is advocated to better characterize cartilaginous bone 

lesions preoperatively (9). 

Radiomics includes extraction and analysis of large numbers of quantitative 

characteristics, known as radiomic features, from imaging studies (10). This research field 

has gained much attention in oncologic imaging as a potential tool for quantification of 

tumour heterogeneity, which is hard to capture with conventional imaging assessment or 

sampling biopsies (11). Most radiomic studies to date have focused on discriminating tumour 

grades and types before treatment, monitoring response to therapy and predicting outcome 

(11). Due to its high-dimensional nature consisting of numerous radiomic features, radiomics 

benefits from powerful analytic tools and artificial intelligence with machine learning 

perfectly addresses this issue (12). Machine learning algorithms can be trained using subsets 

of radiomic features creating classification models for the diagnosis of interest (13–15). 

Machine learning has recently shown good accuracy in discriminating between 

atypical cartilaginous tumours and higher-grade bone chondrosarcomas based on 

unenhanced MRI radiomic features (16). The aim of this study is to investigate the diagnostic 
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performance of CT radiomics-based machine learning for classification of atypical 

cartilaginous tumours and higher-grade chondrosarcomas of long bones. 

 

5.2 Methods 

5.2.1 Ethics 

Our Institutional Review Board approved this retrospective study and waived the 

need for informed consent (Protocol: “AI tumori MSK”). Our database was anonymized 

according to the General Data Protection Regulation for Research Hospitals. 

 

5.2.2 Study design and inclusion criteria 

Information was retrieved through electronic records from the orthopaedic surgery 

and pathology departments. Consecutive patients with an atypical cartilaginous tumour or 

appendicular chondrosarcoma and CT or PET-CT performed over the last 10 years at one of 

two tertiary bone tumour centres (centre 1, IRCCS Orthopaedic Institute Galeazzi in Milan, 

Italy; centre 2, IRCCS Regina Elena National Cancer Institute in Rome, Italy) were 

considered for inclusion. Inclusion criteria were: (i) atypical cartilaginous tumour or 

conventional G2-G3-G4 (dedifferentiated) chondrosarcoma of long bones that was surgically 

treated with intralesional curettage or resection; (ii) definitive histological diagnosis defined 

on the basis of the surgical specimen assessment; (iii) CT (centre 1) or PET-CT (centre 2) 

scan performed before biopsy and within 1 month before surgery; and (iv) in centre 2, 

preoperative biopsy performed within 1 month before surgery. Patients with pathological 

fractures, secondary tumours arising from pre-existing cartilaginous lesions, recurrent 

tumours or metal devices resulting in beam hardening artifacts were excluded. A flowchart 

of patient selection is shown in Fig. 1.  
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Fig. 1 Flowchart of patient selection. ACT, atypical cartilaginous tumours. 
 

5.2.3 Study cohorts 

One-hundred-twenty patients were retrospectively included. The training cohort 

consisted of 84 CT scans by as many patients from centre 1 (n=55 G1 or atypical 

cartilaginous tumours; n=29 G2-G4 chondrosarcomas). The external test cohort was 

constituted by the CT component of 36 PET-CT scans by as many patients from centre 2 

(n=16 G1 or atypical cartilaginous tumours; n=20 G2-G4 chondrosarcomas). Patients’ 

demographics and data regarding lesion location, grading and surgical treatment are detailed 

in Table 1. In centre 1, all examinations were performed using a 64-slice CT unit (Siemens 

SOMATOM Emotion, Erlangen, Germany). CT specifications were: matrix, 512 x 512; field 

of view (range), 138-380 mm; slice thickness, 1 mm. In centre 2, all examinations were 

performed using a 16-slice PET-CT unit (Siemens Biograph, Erlangen, Germany). PET-CT 

specifications were: matrix, 512 x 512; field of view, 500 mm; slice thickness, 4 mm. All 

DICOM images were exported and converted to the NiFTI format prior to the analysis (17). 
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Table 1 Demographics and clinical data. Age is presented as median and interquartile (1st-3rd) range. 

 Centre 1 Centre 2 
Age 52 (45-65) years 57 (46-69) years 

Sex 
Men: n=30 
Women: n=54 

Men: n=13 
Women: n=23  

Lesion location 

Femur: n=40 
Fibula: n=9 
Humerus: n=30 
Radius: n=1 
Tibia: n=4 

Femur: n=21 
Fibula: n=6 
Humerus: n=5 
Tibia: n=4 
 

Lesion grading 

G1: n=55 
G2: n=13 
G3: n=9 
G4 (dedifferentiated): n=7 

G1: n=16 
G2: n=12 
G3: n=3 
G4 (dedifferentiated): n=5 

Surgery 

G1/Atypical cartilaginous tumours 
Curettage: n=47 
Wide resection: n=8* 

G1/Atypical cartilaginous tumours 
Wide resection: n=16* 

G2-G4 chondrosarcomas 
Curettage + wide resection: 

n=5** 
Wide resection: n=24 

G2-G4 chondrosarcomas 
Wide resection: n=20 

 

*Wide resection was performed in n=8 G1/atypical cartilaginous tumours from centre 1 in case of specific 
anatomic location (like fibular head) or to prevent the risk of biopsy sampling errors. It was performed in all 
cases from centre 2 to prevent the risk of biopsy sampling errors, as per routine procedure. 
**Curettage was initially performed in n=5 G2 chondrosarcomas from centre 2, as preoperative biopsy 
downgraded the lesions as G1. A second surgery consisting of wide resection was thus required. 

 

5.2.4 Segmentation 

A recently-boarded musculoskeletal radiologist (S.G.) manually performed 

contour-focused segmentation using a freely available, open-source software, ITK-SNAP 

(v3.6) (18). In detail, bidimensional regions of interest were annotated on the axial slice 

showing the maximum lesion extension. Unenhanced CT scan or CT scan performed as part 

of PET-CT protocol was used. According to the intraclass correlation coefficient (ICC) 

guidelines by Koo et al. (19), in a subgroup of 30 patients randomly selected from centre 1, 

segmentations were additionally performed independently by two radiology residents 

experienced in musculoskeletal and oncologic imaging (M.A. and A.C.) to meet the 

requirements of a reliability analysis in terms of patients and readers involved. All the readers 

knew the study would deal with cartilaginous bone lesions, but they were unaware of tumour 

grading and disease course, as well as the slice other readers used for segmentation. 

 

 



 

 95 

5.2.5 Feature extraction 

Image preprocessing and feature extraction were performed using PyRadiomics 

(v3.0.0) (20). Regarding preprocessing, image resampling (to an 1x1 mm in-plane resolution) 

was performed to ensure the correct calculation of texture features, following current 

guidelines (21). Grey level normalization and discretization followed. For the first, after z-

score normalization, grey level values were scaled by a factor of 100. The resulting arrays 

were shifted by a value of 300 to avoid negative-valued pixels that could cause issues with 

texture analysis. After this process, the final image grey level range is expected to fall 

between 0 and 600, excluding outliers. To select the correct bin width for discretization, an 

exploratory extraction of first order parameters (i.e., grey level range) was performed 

exclusively on the training set, to avoid any information leak from the external test cohort. 

In this step, bin widths 2, 3, 4 and 5 were used to analyse grey level range of the normalized 

images. In addition to the original images, features were also extracted from filtered ones, 

i.e. after Laplacian of Gaussian (sigma=1, 2, 3, 4, 5) filtering and wavelet decomposition (all 

combinations of high and low-pass filtering on the x and y axes). All available first-order 

(histogram analysis), 2D shape-based and texture features were extracted, described in detail 

in the PyRadiomics official documentation 

(https://pyradiomics.readthedocs.io/en/latest/features.html). 

 

5.2.6 Machine learning analysis 

Radiomic data processing and machine learning analysis were performed using the 

Weka data mining platform (v3.8.4), R and scikit-learn Python package (22–24). A 

normalization (min-max range=0-1) scaler was fitted on the training data and applied to both 

training and external test cohorts prior to the analysis. Feature selection was performed 

exclusively using the training cohort data and included stability assessment as well as 

variance and intercorrelation analyses. The first was performed by obtaining feature ICC 

with a two-way random effect, single rater, absolute agreement model. Features were 

considered stable if the ICC 95% confidence interval lower bound was ≥0.75. Next, low 

variance (0.15 threshold) or highly inter-correlated (Pearson correlation coefficient threshold 

0.80) features were removed. Finally, features with an information gain ratio >0.35 were 

selected.  
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Given the unbalanced nature of the training dataset, the synthetic minority 

oversampling technique (SMOTE) was used to balance this data by creating new instances 

from the minority class in centre 1, thus increasing the number of G2-G4 chondrosarcomas 

to 55 (25). The test set underwent no oversampling as it was not employed to build the 

classification model but only to assess its performance. Thereafter, a boosted (LogitBoost) 

linear logistic regression machine-learning classifier was trained and validated on the 

training cohort using 10-fold cross validation and tested on the external cohort. The Brier 

score was obtained, together with calibration curves, for the external test set in order to 

evaluate prediction and calibration loss. Our radiomics-based machine-learning workflow 

pipeline is shown in Fig. 2.  

 
Fig. 2 Radiomics-based machine learning workflow pipeline. 

 

5.2.7 Qualitative imaging assessment 

A musculoskeletal radiologist with 12 years of experience in bone sarcomas (V.A.) 

read all CT studies from centre 2 blinded to any information regarding tumour grading, 

disease course and radiomics-based machine learning analysis. G2-G4 chondrosarcomas 

were differentiated from atypical cartilaginous tumours based on the presence of at least one 

of the following parameters: medullary cavity expansion with thinner cortex, cortical 

breakthrough, aggressive periosteal reaction, soft-tissue mass (5,26). Additionally, 

maximum lesion diameter was measured. 
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5.2.8 Statistical analysis 

Continuous data are presented as median and interquartile (1st-3rd) range. 

Categorical data are presented as value counts and proportions. Data management was 

performed using the pandas Python software package. The “irr” and “stats” R packages were 

used for ICC assessment and remaining statistical tests, respectively. In the external test 

cohort, the classifier’s performance was compared with preoperative biopsy and the 

radiologist’s performance using McNemar’s test. Mann-Whitney and Fisher’s tests were 

used to assess age and sex differences between the two cohorts. A 2-sided p-value <0.05 

indicated statistical significance. 

Accuracy measures of the machine-learning classifier performance included, among others: 

• F-score, i.e. the harmonic average of the precision (i.e. positive predictive value) 

and recall (i.e. sensitivity), ranging from 0 to 1 (perfect accuracy) 

• Area under the precision-recall curve, i.e. an alternative to the area under the ROC 

curve, which is more informative for imbalanced classes. 

A radiologist with experience in radiomics and artificial intelligence (R.C.) assessed 

Radiomics Quality Score in the attempt to estimate the methodological rigor of our study, as 

suggested by Lambin et al. (27). 

 

5.2.9 Role of funding source 

This research was partially funded by the Young Researchers Grant awarded by the 

European Society of Musculoskeletal Radiology (S.G.). The funding source provided 

financial support without any influence on the collection, analysis, and interpretation of data; 

on the writing of the report; and on the decision to submit the paper for publication. 

 

5.3 Results 

No difference in patients’ age (p=0.25 [Mann-Whitney test]) and sex (p>0.99 

[Fisher’s test]) was found between the training and the external test cohorts. In our 

population, a bin width value of 3 presented the best results for feature extraction, with an 

average of 59 bins (± 30) in the training set. A total of 919 radiomic features were extracted 

from each segmentation. The rate of stable features was 30% (n=275), none of which had 

low variance. Removing all inter-correlated features yielded a dataset of 26 non-colinear 

features. Of these, the five with the highest gain ratio were selected and included: Major Axis 
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Length (2D shape-based) derived from the original images; Contrast (Neighbouring Gray 

Tone Difference Matrix) derived from wavelet-transformed images (Low-High pass filter); 

Short Run Low Gray Level Emphasis (Gray Level Run Length Matrix) from LoG-filtered 

images (sigma=5); Difference Entropy (Gray Level Co-occurrence Matrix) from the original 

images; Inverse Difference Moment (Gray Level Co-occurrence Matrix) derived from LoG-

filtered images (sigma=2). Feature dimensionality reduction is shown in Fig. 3. 

The machine learning classifier had 81% (89/110) and 75% (27/36) accuracy in 

identifying the cartilaginous bone lesions in the training and external test cohorts, 

respectively. Area under the ROC curve was, respectively, 0.89 and 0.78. In detail, its 

accuracy in classifying atypical cartilaginous tumours and higher-grade chondrosarcoma was 

84% (46/55) and 78% (43/55) in the training cohort, and 81% (13/16) and 70% (14/20) in 

the external test cohort, respectively. Other evaluation metrics are derived from confusion 

matrix in Table 2 and reported in Table 3. Fig. 4 shows the ROC curve illustrating the 

classifier performance in the external test cohort. Fig. 5 shows the precision-recall curve 

illustrating the classifier performance for G2-G4 chondrosarcoma identification in the 

external test cohort. The final model had a Brier score of 0.25, while Fig. 6 depicts its 

calibration curve in the external test cohort. Our Radiomics Quality Score was 47% 

(Supplementary material). 

In patients from centre 2, preoperative biopsy had 64% (23/36 correct tumour grade 

provided) accuracy in grading the cartilaginous bone lesions. Area under the ROC curve was 

0.66. Preoperative biopsy provided an inconclusive result (n=5) or downgraded the lesion 

(n=8) in the remaining patients. Biopsy accuracy was slightly lower in comparison with the 

machine-learning classifier’s accuracy, although this difference was not statistically 

significant (p=0.29 [McNemar’s test]). The experienced radiologist had 81% (29/36 correct 

diagnosis provided) accuracy in identifying the cartilaginous bone lesions with no statistical 

difference compared to the classifier (p=0.75 [McNemar’s test]). The radiologist’s accuracy 

was 75% (4/16) and 85% (17/20) in classifying atypical cartilaginous tumours and higher-

grade chondrosarcomas, respectively, as detailed in Table 4. 
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(2A) 

 

(2B) 

 
Fig. 3 Feature dimensionality reduction. A Feature selection process was performed exclusively using the 
training cohort data and included stability assessment as well as variance and intercorrelation analyses. The rate 
of stable features was 30% (n=275), none of which had low variance. Removing all inter-correlated features 
yielded a dataset of 26 non-colinear features. B The five features with the highest gain ratio were selected and 
included. 
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Fig. 4 ROC curve showing the classifier performance in the external test cohort. 
 

 
Fig. 5 Precision-recall curve illustrating the classifier performance for G2-G4 chondrosarcoma identification in 
the external test cohort. 
 

 
Fig. 6 Calibration curve in the external test cohort. The data is divided into bins, with the y-axis representing the 
distribution of positive cases in each bin while the x-axis the probability as predicted by the classifier. The closer 
the resulting calibration curve is to the reference line. the better the model’s predictions reflect the actual class 
distribution in the dataset. 
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Table 2 Confusion matrix for the training and external test cohorts. ACT, atypical cartilaginous tumour; CS, 
higher-grade chondrosarcoma. 

 
Predicted class 

ACT CS 

Actual class 

Training 
ACT 46 9 

CS 12 43 

External test 
ACT 13 3 

CS 6 14 
 
Table 3 Classifier accuracy metrics weighted average and by class in both the training and external test cohorts. 
ACT, atypical cartilaginous tumour; CS, higher-grade chondrosarcoma; FP, false positive; PRC, precision-recall 
curve; ROC, receiver operator curve; TP, true positive; WA, weighted average. 

Cohort Class TP rate FP rate Precision Recall F-score ROC PRC 

Training 
ACT 0.836 0.218 0.793 0.836 0.814 0.891 0.876 
CS 0.782 0.164 0.827 0.782 0.804 0.891 0.915 
WA 0.809 0.191 0.810 0.809 0.809 0.891 0.895 

External test 
ACT 0.813 0.300 0.684 0.813 0.743 0.784 0.661 
CS 0.700 0.188 0.824 0.700 0.757 0.784 0.857 
WA 0.750 0.238 0.762 0.750 0.751 0.784 0.770 

 
Table 4 Qualitative imaging assessment performed by the experienced radiologist. Lesion diameter is presented as 
median and interquartile (1st-3rd) range. Other variables are presented as proportions. ACT, atypical cartilaginous 
tumour; CS, higher-grade chondrosarcoma. 

Class 
Bone 

expansion 
Cortical 

breakthrough 
Aggressive 
periostitis 

Soft-tissue 
mass 

Maximum 
diameter 

Correct 
diagnosis 

ACT 1/16 3/16 1/16 0/16 45 (31-54) mm 12/16 
CS 13/20 16/20 14/20 13/20 91 (59-124) mm 17/20 
Overall 14/36 19/36 15/36 13/36 60 (42-100) mm 29/36 

 

5.4 Discussion 

The main finding of this study is that we developed a machine-learning classifier 

for discrimination between atypical cartilaginous tumours and higher-grade 

chondrosarcomas of long bones based on preoperative CT radiomic features, which achieved 

good accuracy in an independent test cohort from an external institution. Its performance did 

not differ in comparison with both an experienced bone tumour radiologist and preoperative 

biopsy. 

Atypical cartilaginous tumours are locally aggressive lesions of the extremities, 

relatively indolent as compared with higher-grade tumours, and have a very low metastatic 

rate (2). Curettage is the standard of care (3), but its effectiveness in preventing 

transformation into higher-grade chondrosarcoma has not been demonstrated. Hence, given 

the similarity to benign enchondroma on both imaging (28) and histology (8), watchful 
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waiting has been proposed as an alternative strategy to prevent overtreatment and morbidity 

associated with surgery (29–31). An accurate differentiation from higher-grade 

chondrosarcomas requiring wide resection is thus necessary for treatment planning, and 

currently based on a multidisciplinary approach combining clinical presentation with 

imaging and biopsy (3). On imaging, MRI is the method of choice for local staging, while 

CT and PET-CT are employed for general staging (3). Both MRI (5) and PET-CT based on 

standard uptake values (32) are accurate in discriminating between atypical cartilaginous 

tumours and chondrosarcomas. On the other hand, biopsy may erroneously lead to tumour 

down-grading in large heterogenous lesions, as only small areas are sampled (7). 

Additionally, low reliability in tumour grading has been reported even among specialized 

bone pathologists (8) and the risk of biopsy-tract contamination also remains a concern. 

Thus, current imaging techniques may be further equipped to safely grade cartilaginous bone 

lesions non-invasively, and radiomics looks promising in this regard (9). 

To date, radiomic studies have dealt with MRI of cartilaginous bone lesions with 

the aim of discriminating among benign enchondroma, atypical cartilaginous tumour and 

malignant chondrosarcoma (16,33,34), predicting local recurrence of chondrosarcoma (35) 

and differentiating chondrosarcoma from other entities such as skull chordoma (36). Machine 

learning was used in combination with radiomics to address some of these issues (16,35,36). 

Particularly, machine learning was a good predictor of tumour grade based on MRI radiomic 

features derived from unenhanced T1-weighted sequences, showing 75% accuracy in the test 

cohort for classification of atypical cartilaginous tumours and chondrosarcomas (16). This 

previous study included 58 patients from the same institution and the machine-learning 

classifier was internally tested using a hold-out set as a test cohort (16). To our knowledge, 

no published study has focused on machine learning and CT radiomics of cartilaginous bone 

lesions, as done in this study. We also attempted to differentiate atypical cartilaginous 

tumours from chondrosarcomas of long bones, as this is the most relevant clinical question 

and orientates towards a conservative approach or aggressive surgery. Our machine-learning 

classifier achieved 75% accuracy overall, 81% accuracy in identifying atypical cartilaginous 

tumours and 70% accuracy in identifying higher-grade chondrosarcomas in the external test 

cohort, respectively, with no difference compared to a dedicated radiologist with 12 years of 

experience in bone sarcomas (p=0.75 [McNemar’s test]). These results agree with those 

previously reported for tumour grading based on MRI radiomics (16). Furthermore, our 
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findings were obtained in a more than twice larger population and validated in an 

independent test cohort from a second institution, thus ensuring their generalizability in 

clinical practice. Finally, although statistical significance was not reached (p=0.29 

[McNemar’s test]), the machine-learning classifier’s accuracy was slightly superior 

compared to preoperative biopsy. We may speculate that this difference could become 

significant in a larger population. 

Some limitations of our study need to be taken into account. First, our study is 

retrospective, as this design allowed including relatively large numbers of patients with an 

uncommon disease, such as chondrosarcoma, and imaging data already available. 

Additionally, a prospective analysis is not strictly needed for radiomic studies [13]. Second, 

we performed bidimensional segmentation and chose the image showing the maximum 

lesion extension. This decision was taken according to a recent study emphasizing that 

bidimensional segmentation yields better performance than volumetric approach (37), which 

would also be time-consuming in clinical practice. Third, feature stability was assessed by 3 

readers only in a subgroup of 30 patients randomly selected from the training cohort, as 3 

observers and 30 samples are the minimum numerical requirements for a reliability analysis 

according to the ICC guidelines by Koo et al. (19). Fourth, atypical cartilaginous tumours 

were twice more numerous than higher-grade chondrosarcomas in the training cohort. 

However, an imbalance of 2/3 is acceptable in machine-learning studies (38) and SMOTE 

was used to artificially oversample the minority class in the training cohort (25). Fifth, the 

training and external test cohorts respectively included CT scans and the CT portion of 

combined PET-CT scans with different acquisition parameters. Nonetheless, this is a further 

point in favour of the reliability of our findings, as the classifier performed well in both 

cohorts of patients. Sixth, only non-contrast CT was used in this study. However, contrast-

enhanced CT was not available in patients from centre 2, as PET-CT was used. It was 

available only for a limited number of patients from centre 1, where preoperative assessment 

routinely included both CT and contrast-enhanced MRI; contrast was also administered 

before CT according to need, mainly to assess tumour-vessel relationships in case of high-

grade chondrosarcoma. Our findings open the possibility for future studies to shed light on 

the value of contrast-enhanced CT radiomics and machine-learning assessment of 

cartilaginous bone tumours. 
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In conclusion, our machine-learning classifier showed good accuracy in 

differentiating atypical cartilaginous tumours from higher-grade chondrosarcomas of long 

bones based on radiomic features derived from preoperative CT scans. Our large population 

of study relative to such an uncommon disease, along with the good performance achieved 

in an independent cohort of patients from an external institution, supports the generalizability 

of our findings and their transferability into clinical practice. Our method may potentially aid 

in preoperative tumour characterization by integrating the multidisciplinary approach 

currently based on clinical, conventional imaging and histological assessment. Future 

investigations with prospective design are warranted to further validate our findings. 
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Supplementary material 
  

Radiomics Quality Score 
Item 1 1 
Item 2 1 
Item 3 0 
Item 4 0 
Item 5 3 
Item 6 0 
Item 7 1 
Item 8 0 
Item 9 2 

Item 10 1 
Item 11 0 
Item 12 3 
Item 13 2 
Item 14 2 
Item 15 0 
Item 16 1 
Total 17 

Total (%) 47,22 
  
Reference: Lambin et al. Radiomics: the bridge between medical imaging and personalized medicine.  
Nat Rev Clin Oncol 2017;14:749-762. doi: 10.1038/nrclinonc.2017.141  
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Abstract 

Background. Atypical cartilaginous tumour (ACT) and grade II chondrosarcoma (CS2) of 

long bones are respectively managed with watchful waiting or curettage and wide resection. 

Preoperatively, imaging diagnosis can be challenging due to interobserver variability and 

biopsy suffers from sample errors. The aim of this study is to determine diagnostic 

performance of MRI radiomics-based machine learning in differentiating ACT from CS2 of 

long bones. 

Methods. One-hundred-fifty-eight patients with surgically treated and histology-proven 

cartilaginous bone tumours were retrospectively included at two tertiary bone tumour 

centres. The training cohort consisted of 93 MRI scans from centre 1 (n=74 ACT; n=19 CS2). 

The external test cohort consisted of 65 MRI scans from centre 2 (n=45 ACT; n=20 CS2). 

Bidimensional segmentation was performed on T1-weighted MRI. Radiomic features were 

extracted. After dimensionality reduction and class balancing in centre 1, a machine-learning 

classifier (Extra Trees Classifier) was tuned on the training cohort using 10-fold cross-

validation and tested on the external test cohort. In centre 2, its performance was compared 

with an experienced musculoskeletal oncology radiologist using McNemar’s test. 

Findings. After tuning on the training cohort (AUC=0.88), the machine-learning classifier 

had 92% accuracy (60/65, AUC=0.94) in identifying the lesions in the external test cohort. 

Its accuracies in correctly classifying ACT and CS2 were 98% (44/45) and 80% (16/20), 

respectively. The radiologist had 98% accuracy (64/65) with no difference compared to the 

classifier (p=0.134). 

Interpretation. Machine learning showed high accuracy in classifying ACT and CS2 of long 

bones based on MRI radiomic features. 

Funding. ESSR Young Researchers Grant.
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Research in context 

Evidence before this study. Radiomic studies to date have focused on the classification of 

bone chondrosarcoma, including atypical cartilaginous tumour and high-grade 

chondrosarcoma, using radiomics alone or combined with machine learning. In long bones, 

therapeutic strategies for those lesions are entirely different and mainly based on imaging. In 

a recent study, we focused on CT radiomics-based machine learning and the distinction 

between atypical cartilaginous tumour and high-grade (II and higher) chondrosarcoma of 

long bones, including 120 patients from two institutions. Machine learning had 75% accuracy 

with no difference compared to an experienced radiologist. Previously, we used machine 

learning in combination with MRI radiomics to discriminate atypical cartilaginous tumour 

from high-grade chondrosarcoma. Only 58 patients from the same centre were included and 

the machine learning classifier was internally tested using a hold-out set as a test cohort, 

achieving 75% accuracy. 

Added value of this study. In the current study, we attempted to differentiate atypical 

cartilaginous tumours from grade II chondrosarcoma of long bones using MRI radiomics-

based machine learning. Higher-grade chondrosarcomas are more easily identified on MRI 

and were thus not included. The population of our current study was larger than previous 

publications, including 158 patients from two specialized institutions, which allowed for 

model validation on independent data from the external test cohort. Our classifier had 92% 

accuracy based on T1-weighted MRI radiomics, overlapping a dedicated bone tumour 

radiologist with 35-year experience who read all available MRI sequences. Thus, compared 

to previous studies, our method showed better performance to solve the most relevant clinical 

problem of atypical cartilaginous tumour/grade II chondrosarcoma differentiation. 

Implications of all the available evidence. Radiomics-based machine learning is an objective 

method that may be used in clinical decision making by accurately differentiating atypical 

cartilaginous tumour from chondrosarcoma of long bones.  
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6.1 Introduction 

Chondrosarcoma (CS) accounts for 20-30% of primary bone tumours in adulthood 
1. Based upon pathology, conventional CS was graded into three categories, where grade I, 

also called atypical cartilaginous tumour (ACT), has an indolent biologic behaviour, whereas 

grades II-III are aggressive malignant tumours with metastatic potential and high recurrence 

rates after surgery 2. In the 2020 edition of the World Health Organization (WHO) 

classification, the term ACT is reserved for formerly named ACT/grade I CS only when 

located in long bones 3. Cartilaginous tumours with the same histology, but located in the 

axial skeleton, are classified as grade I CS 3. ACTs of long bones are indolent as compared 

to axial grade I CS and appendicular or axial grade II-III CS. Also, the increase of prevalence 

of ACT secondary to increased use of MRI over the past decades, relative to the lack of 

increase of grade II-III CS in the long bones, does not support the previous opinion that there 

is a risk of higher-grade CS developing in ACT 4. Thus, this new classification better 

connects to therapeutic options that are different between ACT and CS grades I-III. 

Intralesional curettage, or even watchful waiting has been proposed for ACT, whereas for 

CS grades I-III, wide resection remains the therapy of choice 5–8. 

As a consequence of these therapeutic options, clinical management currently 

depends on our ability  to differentiate between ACT and grade II CS (CS2) of long bones 8. 

Biopsy suffers from sample errors and is no longer standard of care in many tertiary centres 
9. MRI is the method of choice for diagnosis and differentiating between ACT and CS2 in 

long bones 10. There is, however, discussion on accuracy of the various subjective MRI 

parameters, and there is the inherent interobserver variability 11,12. New imaging-based tools 

like radiomics have recently been proposed to characterize cartilaginous bone tumours more 

objectively 13,14. Radiomics includes the analysis of quantitative features extracted from 

imaging studies, known as radiomic features, which can be combined with machine learning 

algorithms to create classification models for the diagnosis of interest 15–17. 

Machine learning has already shown good accuracy in discriminating ACT from 

all-grade CS based on computed tomography (CT) 13 and MRI 14 radiomics. However, no 

validated study to date has addressed the more relevant and specific distinction between ACT 

and CS2. Thus, the aim of this study is to determine diagnostic performance of MRI 

radiomics-based machine learning for classification of ACT and CS2 of long bones. 
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6.2 Methods 

6.2.1 Ethics 

Institutional Review Board from each involved centre approved this retrospective 

study and waived the need for informed consent (Protocols: “RETRORAD” in centre 1 and 

“G19.047” in centre 2). Patients included in this study granted written permission for 

anonymized data use for research purposes at the time of the MRI. After matching imaging, 

pathological, and surgical data, our database was completely anonymized to delete any 

connections between data and patients’ identity according to the General Data Protection 

Regulation for Research Hospitals. 

 

6.2.2 Study design and inclusion/exclusion criteria 

Consecutive patients with ACT or CS2 of long bones and MRI available at one of 

two tertiary bone tumour centres (centre 1, IRCCS Orthopaedic Institute Galeazzi, Milan, 

Italy; centre 2, Leiden University Medical Centre, Leiden, The Netherlands) were considered 

for inclusion. Information was retrieved through medical records from the orthopaedic 

surgery and pathology departments. Inclusion criteria were: (i) ACT or primary central CS2 

of long bones that was surgically treated with curettage or resection; (ii) definitive 

pathological diagnosis based on the surgical specimen assessment; (iii) MRI scan with at 

least T1-weighted and fluid-sensitive sequences in two directions performed within 3 months 

before surgery. Exclusion criteria were: (i) metacarpal, metatarsal, and phalangeal lesions; 

(ii) recurrent lesions; (iii) presence of pathological fracture. A flowchart of the patient 

selection process is shown in Fig. 1. 
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Fig. 1 Flowchart of patient selection. 

 

6.2.3 Study cohorts 

One-hundred-fifty-eight patients were retrospectively included. The training cohort 

consisted of 93 MRI scans from Centre 1 (n=74 ACT; n=19 CS2). The external test cohort 

consisted of 65 MRI scans from Centre 2 (n=45 ACT; n=20 CS2). Patients’ demographics 

and data regarding lesion location are detailed in Table 1. In Centre 1, examinations were 

performed on one of two 1.5-T MRI systems (Magnetom Avanto, Siemens Healthineers, 

Erlangen, Germany; or Magnetom Espree, Siemens Healthineers, Erlangen, Germany). In 

Centre 2, examinations were performed on a 3-T (Ingenia or Intera, Philips Medical System, 

The Netherlands) or 1.5-T (Ingenia, Philips Medical System, The Netherlands) MRI system. 

Also, externally obtained MRI scans of patients referred to centre 2 were included in this 

study as long as the minimal MRI protocol was available. MRI specifications for Centre 1 

and Centre 2 are summarized in Supplementary Table 1. All DICOM images were extracted 

and converted to the NiFTI format prior to the analysis using the dcm2niix software 18. 
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Table 1 Demographics and clinical data. Age is presented as median and interquartile (1st-3rd) range. 
 Center 1 Center 2 
Age 53 (45-62) years 62 (49-72) years 
Sex Men: n=29 

Women: n=64 
Men: n=31 
Women: n=34 

Lesion location Femur: n=41 
Fibula: n=9 
Humerus: n=37 
Radius: n=1  
Tibia: n=5  

Femur: n=46 
Humerus: n=10  
Tibia: n=9 

 

 

6.2.4 Segmentation 

A 2-year-experienced musculoskeletal radiologist (S.G.) performed contour-

focused segmentation on preoperative T1-weighted MRI using the freely available, open-

source software ITK-SNAP (v3.8) 19. The axial, as first choice, or coronal or sagittal 

sequence was used based on availability and lesion location. In detail, bidimensional regions 

of interest were manually annotated on the slice showing the maximum lesion diameter. 

Radiomic analysis was not performed on fluid-sensitive sequences based on previous 

findings that, when extracting both T2- and T1-weighted MRI features, only the latter passed 

feature selection during dimensionality reduction 14. Contrast-enhanced MRI was not 

available in all our cases, particularly ACT in centre 1, and was also not used. 

In order to meet the numerical requirements of a reliability analysis according to the 

intraclass correlation coefficient (ICC) guidelines by Koo et al. 20, namely 3 observers and 

30 observations, segmentations were additionally performed by other two radiologists in a 

subgroup of 30 patients randomly extracted from the training cohort. The additional 

segmentations performed by the second and third readers on this subset of 30 patients were 

exclusively used to assess feature reproducibility. The segmentations employed to build and 

test the classification model were all performed by the first reader. Each radiologist was 

independent and unaware of the slice other readers selected for segmentation, as well as 

blinded regarding lesion grading and disease course. 

 

6.2.5 Feature extraction 

Image pre-processing and feature extraction were performed using PyRadiomics 

(v3.0.1) 21. The suggested pre-processing steps were employed 22: image resampling, grey 

level normalization and discretization. In particular, pixels were resampled to a 1×1 mm in-

plane resolution, z-score normalized to a 0-600 grey level value range and discretized with a 
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fixed bin width. In order to determine the ideal bin width value, a preliminary extraction 

exclusively of the first order range parameter was performed on training data alone. The 

parameter file for the radiomic data extraction is available in a freely accessible online 

repository (https://github.com/rcuocolo/mri_act_cs2). 

Radiomic features were obtained from original and filtered images, including 

Laplacian of Gaussian filtering and wavelet decomposition. All available radiomic features 

for bidimensional masks were extracted 

(https://pyradiomics.readthedocs.io/en/latest/features.html), subdivided into the following 

classes: first-order (histogram analysis), 2D shape-based, Gray Level Co-occurrence Matrix, 

Gray Level Size Zone Matrix, Gray Level Run Length Matrix, Neighbouring Gray Tone 

Difference Matrix and Gray Level Dependence Matrix. 

 

6.2.6 Machine learning analysis 

Radiomic data processing and machine learning analysis were performed using the 

“irr” R package 23, “pandas” and “scikit-learn” Python packages 24. Radiomic feature 

selection was performed using the training cohort data alone and consisted of stability, 

variance and pairwise correlation analyses as well as cross-validation based least absolute 

shrinkage and selection operator (LASSO) regression and recursive feature elimination 

(RFE). Feature stability was assessed by obtaining feature ICC using a two-way random 

effect, single rater, absolute agreement model. Features were considered stable if the ICC 

95% confidence interval lower bound was ≥ 0.75. Then, low variance (threshold = 0.01) and 

highly intercorrelated (Pearson correlation coefficient threshold ≥ 0.80) were removed. 

LASSO regression coefficient analysis followed by RFE were finally used to determine the 

feature set to employ for model training. RFE used an Extra Trees model with default 

hyperparameters as its estimator and area under the ROC curve as the reference score. Both 

LASSO and RFE employed 10-fold stratified cross-validation. 

Given the unbalanced nature of the training cohort, the synthetic minority 

oversampling technique (SMOTE) was used to balance the dataset by creating new instances 

from the minority class in Centre 1, thus increasing the number of CS2 to n=74 25. No 

oversampling was performed in the external test cohort. Thus, a machine-learning classifier 

(Extra Trees Classifier) was tuned via 10-fold stratified cross-validation using a random 

hyperparameter search on the training cohort. Decision tree forests are a commonly 
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employed ensemble machine learning architecture. As decision trees alone have a tendency 

to overfit the training data, the use of random resampling through bootstrapping and a 

subsample of the available features reduces model variance by introducing a degree of 

randomness. Compared to Random Forests, Extra Trees also perform random selection of 

feature thresholds within each tree node. This leads to further reduce the variance of the final 

ensemble (https://scikit-learn.org/stable/modules/ensemble.html#forest). The random search 

hyperparameter space was defined as follows:  

1. Number of trees = 100-1000 

2. Criterion = entropy, Gini 

3. Maximum tree depth = 1-10  

4. Maximum number of features per tree = 1-All 

5. Bootstrap = true, false  

6. Maximum number of samples per tree = 0-100% 

The training process also included sigmoid model calibration via 5-fold stratified cross-

validation nested within each loop of the 10-fold stratified cross-validation. The final model 

consisted of the best performing pipeline which was then fitted on the entire training dataset 

and tested on the external test cohort. Our radiomics-based machine learning workflow is 

illustrated in Fig. 2. This workflow is similar to one recent study from our group 13, with 

differences mainly related to feature selection process and machine learning classification. 

To offer some insights on the model’s predictions, Shapley values were obtained for each 

feature using the “SHAP” Python package 26. These provide a game-theory based assessment 

of the contribution of each parameter to the final output of the classifier. 

 

6.2.7 Qualitative imaging assessment 

An expert bone tumour radiologist with 35 years of work experience in a tertiary 

sarcoma centre (J.L.B.) read all MRI studies from the external test cohort blinded to any 

information about lesion grading, disease course and radiomics-based machine learning 

analysis. All available MRI sequences were used for qualitative assessment. The following 

parameters were assessed to differentiate CS2 from ACT and give the final impression: 

peritumoral bone marrow oedema, expansion of the medullary canal with thinner cortex, 

cortical breakthrough, periosteal reaction and cortical remodelling, reactive soft-tissue 

oedema and soft-tissue extension 10. 
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Fig. 2 Radiomics-based machine learning workflow pipeline. This workflow is similar to one recent study from 
our group 13, with differences mainly related to feature selection process and machine learning classification. 

 

6.2.8 Statistical analysis 

Continuous data are presented as median and interquartile (1st-3rd) range. 

Categorical data are presented as value counts and proportions. The R “stats” package was 

used for the following statistical analyses. Chi-square test and Mann-Whitney tests were used 

to evaluate sex and age differences between the training and external test cohorts, 

respectively. In the external test cohort, McNemar’s test was used to compare the classifier 

performance with the radiologist’s one. A two-sided p-value <0.05 indicated statistical 

significance. 

Accuracy measures of the classifier performance included, among others: F-score, 

which is the harmonic average of precision (also known as positive predictive value) and 

recall (also known as sensitivity) and ranges from 0 to 1 (perfect accuracy); area under the 

precision-recall curve, which is an alternative to the area under the ROC curve and more 

informative for imbalanced classes. 

 

6.2.9 Role of funding source 

This research was partially funded by the Young Researchers Grant awarded by the 

European Society of Musculoskeletal Radiology (S.G.). The funding source provided 

financial support without any influence on the study design; on the collection, analysis, and 
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interpretation of data; and on the writing of the report. The first author had the final 

responsibility for the decision to submit the paper for publication. 

 

6.3 Results 

No statistical difference in sex (p=0.053 [Chi-square test]) was present between the 

training (64 women and 29 men) and external test (34 women and 31 men) cohorts. Age was 

younger (p=0.001 [Mann-Whitney test]) in patients from the training cohort (53 [45-62] 

years) compared to the external test cohort (62 [49-72] years). A bin width value of 3 

presented the best results for feature extraction, with a median of 34 (22-55) bins in the 

training cohort. A total of 919 radiomic features were extracted from each lesion. The rate of 

stable features was 78% (n = 720). Removing low variance (n = 2) and highly inter-correlated 

(n=633) features yielded a dataset of 87 features. Next, features with LASSO coefficients 

shrinking to zero (n=67) were removed. Of the remaining features, an optimal number of 17 

features was identified with RFE, as summarized in Table 2. 

After tuning on the training cohort (AUC=0.88), the machine-learning classifier had 

92% accuracy (60/65) in identifying the cartilaginous bone lesions in the external test cohort. 

Specifically, its accuracy in classifying ACT and CS2 was 98% (44/45) and 80% (16/20), 

respectively. Areas under the ROC (Fig. 3) and precision-recall (Fig. 4) curves were 0.94 

and 0.90, respectively. Other evaluation metrics are derived from confusion matrix in Table 

3 and detailed in Table 4. Fig. 5 depicts the calibration curve of the classifier in the external 

test cohort. The Brier score was 0.09, with lower values suggestive for better calibration. 

Shapley values for the model are presented in Fig. 6. The model, its implementation 

instructions, all required files for data extraction and processing are available in the online 

study repository (https://github.com/rcuocolo/mri_act_cs2). 

The experienced radiologist had 98% accuracy (64/65 correct diagnosis provided) 

in classifying the lesions with no statistical difference compared to the classifier (p=0.134 

[McNemar’s test]). The radiologist’s accuracy was 100% (45/45) and 95% (19/20) in 

classifying ACT and CS2, respectively. The radiologist and the classifier agreed on the final 

diagnosis in 94% (61/65) of cases, as one case was misdiagnosed by both. Fig. 7 shows 

cartilaginous lesions of long bones in three different patients from the external test cohort. 
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Table 2 List of selected features by feature class and source image, including original, Laplacian of Gaussian-
filtered (LoG) and wavelet-transformed images. 

Feature name Feature class Source image 
10th percentile First Order Original 
Minor Axis Length 2D shape Original 
Informational Measure of Correlation 2 GLCM LoG (sigma = 1) 
Inverse Difference Normalized GLCM LoG (sigma = 1) 
Run Entropy GLRLM LoG (sigma = 1) 
Informational Measure of Correlation 1 GLCM LoG (sigma = 2) 
Dependence Variance GLDM LoG (sigma = 2) 
Small Area Emphasis GLSZM LoG (sigma = 3) 
Dependence Variance GLDM LoG (sigma = 3) 
Informational Measure of Correlation 1 GLCM LoG (sigma = 4) 
Informational Measure of Correlation 1 GLCM LoG (sigma = 5) 
Small Area Emphasis GLSZM LoG (sigma = 5) 
Gray Level Non-Uniformity GLDM Wavelet (low-high pass filter) 
Informational Measure of Correlation 1 GLCM Wavelet (high-high pass filter) 
Size-Zone Non-Uniformity Normalized GLSZM Wavelet (high-high pass filter) 
Short Run Low Gray Level Emphasis GLRLM Wavelet (low-low pass filter) 
Large Area Emphasis GLSZM Wavelet (low-low pass filter) 

Abbreviations. GLCM, Gray Level Co-occurrence Matrix; GLDM, Gray Level Dependence Matrix; GLRLM, 
Gray Level Run Length Matrix; GLSZM, Gray Level Size Zone Matrix. 

 
Table 3 Confusion matrix for the external test cohort. 

 
Predicted class 

ACT CS2 

Actual class 
ACT 44 1 
CS2 4 16 

 

 
Table 4 Classifier accuracy metrics weighted average and by class in the external test cohort. 

Class Precision Recall F-score 
ACT 0.92 0.98 0.95 
CS2 0.94 0.80 0.86 

Weighted average 0.92 0.92 0.92 
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Fig. 3 ROC curve showing the classifier performance in the external test cohort. 
 

 
Fig. 4 Precision-recall curve illustrating the classifier performance in the external test cohort. 
 

 
Fig. 5 Calibration curve in the external test cohort. 
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Fig. 6 Beeswarm plot of feature Shapley values in the final model. 
 

 
Fig. 7 Native and fat-saturated post-contrast T1-weighted sequences show three different cases of cartilaginous 
bone tumors, including ACT of the femur (a-b), CS2 of the femur (c-d) and CS2 of the humerus (e-f). Cortical 
breakthrough and soft-tissue extension are highly suspicious of high-grade lesion in the femur (c-d), whereas no 
suspicious feature is qualitatively seen in the humerus (e-f). Post-contrast images were qualitatively assessed by 
the radiologists, but they were not included in the radiomics-based machine learning analysis. 

 

6.4 Discussion 

The main finding of our study was that our machine learning method was 92% 

accurate in differentiating ACT from CS2 of long bones based on T1-weighted MRI radiomic 

features. This result was achieved in an independent cohort of patients from a second 

institution (external test cohort) and did not differ compared to a dedicated bone tumour 

radiologist with 35-year experience. 
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Our findings have clinical relevance as therapeutic strategies for ACT and CS2 in 

long bones are entirely different and mainly based on MRI. The difference in treatment 

strategies between ACT and enchondroma is disappearing, as watchful waiting in ACT has 

become an increasingly favoured option over intralesional curettage 6–8. Thus, radiological 

focus has shifted from differentiating enchondroma from ACT towards identifying high 

grade CS. The exact, conservative, options for managing enchondroma and ACT are 

currently under evaluation, but there is consensus that CS2 needs wide resection 8. 

Additionally, clinical outcome strongly depends on tumor grading, as reported 5- and 10-

year overall survival rates are 87-99% and 88-95% for ACT/grade I CS, while they are 74-

99% and 58-86% for CS2, respectively 3,4. 

Radiomic studies to date have focused on the classification of cartilaginous bone 

tumours, such as enchondroma, ACT and high-grade CS, using radiomics alone 27–29 or 

combined with machine learning 13,14. Particularly, in a recent study we focused on CT 

radiomics-based machine learning and the distinction between ACT and high-grade CS of 

long bones, including CS2, grade III and dedifferentiated CS in the latter group 13. One-

hundred-twenty patients were included from two institutions (IRCCS Orthopaedic Institute 

Galeazzi in Milan and IRCCS Regina Elena National Cancer Institute in Rome, Italy) and 

split into training and external test cohorts, as done in our current study. Machine learning 

had 75% accuracy in identifying the lesions in the external test cohort with no difference 

compared to an experienced radiologist 13. Previously, we used machine learning in 

combination with non-contrast MRI radiomics to discriminate ACT from high-grade CS 14. 

Only 58 patients from the same centre were included and the machine learning classifier was 

internally tested using a hold-out set as a test cohort, achieving 75% accuracy. In this work, 

radiomic features were extracted from both T1-weighted and T2-weighted sequences, but 

only T1-weighted MRI features were selected during dimensionality reduction (i.e. feature 

selection) process 14. Based on this preliminary finding, in the current study we intentionally 

focused on T1-weighted MRI radiomics. Our current study addressed the most relevant 

clinical issue of differentiating between ACT and CS2 of long bones 8, thus excluding higher-

grade CS, that more easily identified on MRI. The population of our study was larger than 

previous publications, including 158 patients from two specialized institutions (IRCCS 

Orthopaedic Institute Galeazzi in Milan, Italy and Leiden University Medical Centre in The 

Netherlands), which allowed for model validation on independent data from the external test 
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cohort. In the present study, the workflow was similar to the above discussed CT-based study 

from our group 13, although some differences mainly related to feature selection process and 

machine learning classification existed. Particularly, the pipeline was improved by 

employing a random search hyperparameter tuning process and classifier calibration through 

nested cross-validation. Our classifier (Extra Trees classifier) had 92% accuracy overall, 

98% in identifying ACT and 80% in identifying CS2 in the external test cohort based on T1-

weighted MRI radiomics, respectively, overlapping a dedicated bone tumour radiologist with 

35-year experience who read all available MRI sequences. Thus, although the different 

outcome cannot be distinctly attributed to larger population, differences in workflow or input 

image (MRI, rather than CT as in 13), our current method showed better performance than 

previous studies 13,14 to solve the clinical problem of ACT/CS2 differentiation.  

Some limitations of our study need to be addressed. First, the design of our study is 

retrospective that, however, allowed including a large number of patients with a relatively 

uncommon disease. Also, a prospective analysis is not strictly necessary for radiomic studies 
30. Second, we performed bidimensional segmentation on the MRI slice showing the largest 

lesion diameter. This decision was taken following our recent finding that no difference in 

reproducible feature rates exists between bidimensional and volumetric MRI-based texture 

analysis 31, and the latter would also be less easily performed in clinical practice. Third, ACT 

was over-represented compared to CS2 in our population of study. However, this accurately 

reflects the incidence of ACT and CS2 in clinical practice 4, and class balancing was 

performed to artificially oversample the minority class in the training cohort 25. Fourth, 

contrast-enhanced MRI was not used for radiomics-based machine learning analysis. On one 

hand, our intention was to keep our model as simple as possible by focusing on a single 

sequence and non-contrast T1-weighted images are almost always part of MRI protocols in 

these patients. On the other hand, we favoured having a large population of study over 

including contrast-enhanced MRI, which was not available in all our cases. Our findings 

open the possibility for future studies to investigate the added value of machine learning and 

contrast-enhanced MRI radiomics for classification of cartilaginous bone tumours. Finally, 

while a clear correlation of specific radiomic features with lesion phenotypical characteristics 

remains complex to identify, the Shapley value plot offers a degree of explainability and 

insight on the inner workings of our model. 



 

 128 

In conclusion, our machine learning method was highly accurate in discriminating 

ACT from CS2 of long bones based on radiomic features obtained from T1-weighted MRI. 

Our large population of study and the excellent performance achieved using independent data 

from different institutions ensure the generalizability of our findings. Thus, radiomics-based 

machine learning is an objective MRI method that may be used in clinical decision making 

by accurately differentiating between ACT and CS2. Future studies are warranted to verify 

the transferability of our findings into clinical practice, particularly involving inexperienced 

radiologists, who may mostly benefit in using this tool. Additionally, our findings from the 

present and previous works may be compared with other studies from different groups, using 

meta-analysis, in order to deeper investigate the theoretical aspects of radiomics and machine 

learning regarding cartilaginous bone tumours.  
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Supplementary material 

Supplementary Table 1 MRI specifications for turbo spin echo T1-weighted axial sequence in both center 1 and 
center 2, expressed in millimeters. FOV, field of view. 

 Center 1 Center 2 
1.5T  1.5T  3T  1.5T 

Humerus FOV: 200 
Thickness: 4.5 
Pixel: 0.8x0.6 

FOV: 160 
Thickness: 3 
Pixel: 0.8x0.6 

FOV: 200 
Thickness: 6 
Pixel: 0.65x0.79 

FOV: 200 
Thickness: 6 
Pixel: 0.55x0.69 

Radius FOV: 160 
Thickness: 3 
Pixel: 0.7x0.5 

// // // 

Proximal femur FOV: 370 
Thickness: 3 
Pixel: 1x0.8 

// FOV: 300 
Thickness: 8 
Pixel: 0.96x0.96 

FOV: 300 
Thickness: 8 
Pixel: 0.85x0.86 

Distal femur 
 

FOV: 180 
Thickness: 3 
Pixel: 0.7x0.5 

FOV: 180 
Thickness: 3 
Pixel: 0.7x0.5 

FOV: 300 
Thickness: 8 
Pixel: 0.96x0.96 

FOV: 300 
Thickness: 8 
Pixel: 0.85x0.86 

Fibula 
Tibia 

FOV: 180 
Thickness: 3 
Pixel: 0.7x0.5 

FOV: 180 
Thickness: 3 
Pixel: 0.7x0.5 

FOV: 150 
Thickness: 7 
Pixel: 0.6x0.71 

FOV: 150 
Thickness: 7 
Pixel: 0.6x0.7 

 

  



 

 134 

 

  



 

 135 

 
Chapter 7 

 

Summary and general discussion 
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List of abbreviations (Chapter 7) 

2D, bidimensional 

3D, volumetric 

ACT, atypical cartilaginous tumor 

CT, computed tomography 

CS, chondrosarcoma 

ICC, intraclass correlation coefficient 

MRI, magnetic resonance imaging 

PET-CT, positron emission tomography-computed tomography 

ROI, region of interest 
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7.1 Summary 

Chapter 1 provided a general introduction to the doctoral thesis. The aim of this 

thesis was to determine diagnostic performance of machine learning in differentiating 

between atypical cartilaginous tumor (ACT) and high-grade chondrosarcoma (CS) based on 

radiomic features derived from cross-sectional imaging, such as magnetic resonance imaging 

(MRI) and computed tomography (CT), in comparison with experienced musculoskeletal 

oncology radiologists. 

 In chapter 2 we introduced the concept of CT and MRI radiomics of bone and soft-

tissue sarcomas by reviewing the issue of radiomic feature reproducibility and predictive 

model validation strategies. The ultimate goal of this systematic review was to promote 

achieving a consensus on these aspects in radiomic workflows and facilitate clinical 

transferability. Out of 278 identified papers, forty-nine papers published between 2008 and 

2020 were included. They dealt with radiomics of bone (N=12) or soft-tissue (N=37) tumors. 

Eighteen (37%) studies included a feature reproducibility analysis. Inter/intra-reader 

segmentation variability was the theme of reproducibility analysis in 16 (33%) 

investigations, outnumbering the analyses focused on image acquisition or post-processing 

(N=2,4%). The intraclass correlation coefficient (ICC) was the most commonly used 

statistical method to assess reproducibility, which ranged from 0.6 and 0.9. At least one 

machine learning validation technique was used for model development in 25 (51%) papers 

and K-fold cross validation was the most commonly employed. A clinical validation of the 

model was reported in 19 (39%) papers. It was performed using a separate dataset from the 

primary institution (i.e., internal validation) in 14 (29%) studies and an independent dataset 

related to different scanners or from another institution (i.e., independent validation) in 5 

(10%) studies.  In conclusion, the issues of radiomic feature reproducibility and model 

validation varied largely among the studies dealing with musculoskeletal sarcomas. This 

should be addressed in future investigations to bring the field of radiomics from a preclinical 

research area to the clinical stage. 

In chapter 3, the diagnostic performance of MRI radiomics-based machine learning 

in discriminating ACT from high-grade CS was evaluated in a preliminary single-center 

study. We retrospectively included 58 patients with histology-proven ACT (N=26) or high-

grade CS (N=32, including 16 appendicular and 16 axial CS). They were randomly divided 

into training (N=42) and test (N=16) groups for model tuning and testing, respectively. All 
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tumors were manually segmented on T1-weighted and T2-weighted MRI by drawing 

bidimensional (2D) regions of interest (ROIs), which were used for radiomic feature 

extraction. After feature selection, an ensemble classifier (AdaBoostM1) was tuned on the 

training set using 10-fold cross-validation and then tested on the previously unseen test set. 

Thereafter, an experienced musculoskeletal radiologist blinded to histology and radiomic 

data qualitatively evaluated the lesions in the test group. The dataset was reduced to 4 T1-

weighted MRI radiomic features after feature selection. The classifier correctly identified 

85.7% (AUC=0.85) and 75% (AUC=0.78) of the lesions in the training and test groups, 

respectively. The radiologist correctly identified 81.3% of the lesions, with no difference 

compared to the classifier (p=0.453). In conclusion, our machine learning approach showed 

good diagnostic performance for classification of ACT and high-grade CS. 

In chapter 4, the influence of interobserver manual segmentation variability on the 

reproducibility of 2D and volumetric (3D) CT- and MRI-based texture analysis was 

investigated. Thirty patients with cartilaginous bone tumors (N=10 enchondroma; N=10 

ACT; N=10 high-grade CS) were retrospectively included. Three radiologists independently 

performed manual contour-focused segmentation on unenhanced CT, T1-weighted and T2-

weighted MRI by drawing both a 2D ROI on the slice showing the largest tumor area and a 

3D ROI including the whole tumor volume. Additionally, a marginal erosion was applied to 

both 2D and 3D segmentations to evaluate the influence of segmentation margins. A total of 

783 and 1132 features were extracted from original and filtered 2D and 3D images, 

respectively. ICC≥0.75 defined feature stability. In 2D vs. 3D contour-focused segmentation, 

the rates of stable features for respectively CT, T1- and T2-weighted MRI were 74.71% vs. 

86.57% (p<0.001), 77.14% vs. 80.04% (p=0.142) and 95.66% vs. 94.97% (p=0.554). Margin 

shrinkage did not improve 2D (p=0.343) and performed worse than 3D (p<0.001) contour-

focused segmentation in terms of feature stability. In 2D vs. 3D contour-focused 

segmentation, matching stable features derived from CT and MRI were 65.8% vs. 68.7% 

(p=0.191), and those derived from T1-weighted and T2-weighted images were 76.0% vs. 

78.2% (p=0.285). In conclusion, 2D and 3D CT and MRI radiomic features of cartilaginous 

bone tumors were reproducible, although some degree of interobserver segmentation 

variability highlighted the need for reliability analysis in radiomic studies. 

Chapter 5 described a multicenter study that investigated the performance of CT 

radiomics-based machine learning in discriminating ACT from high-grade CS of long bones. 
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One-hundred-twenty patients with histology-proven lesions were retrospectively included. 

The training cohort consisted of 84 CT scans from center 1 (N=55 ACT; N=29 CS grade II-

IV). The external test cohort consisted of the CT component of 36 positron emission 

tomography-CT (PET-CT) scans from center 2 (N=16 ACT; N=20 CS grade II-IV). 2D 

segmentation was performed on preoperative CT. Radiomic features were extracted. After 

dimensionality reduction and class balancing in center 1, the performance of a machine-

learning classifier (LogitBoost) was assessed on the training cohort using 10-fold cross-

validation and on the external test cohort. In center 2, its performance was compared with 

preoperative biopsy and with the classification of an experienced radiologist using 

McNemar’s test. The classifier had 81% (AUC=0.89) and 75% (AUC=0.78) accuracy in 

identifying the lesions in the training and external test cohorts, respectively. Specifically, its 

accuracy in classifying ACT and high-grade CS was 84% and 78% in the training cohort, 

and 81% and 70% in the external test cohort, respectively. Preoperative biopsy had 64% 

(AUC=0.66) accuracy (p=0.29). The radiologist had 81% accuracy (p=0.75). In conclusion, 

machine learning showed good accuracy in classifying ACT and high-grade CS of long 

bones based on preoperative CT radiomic features. 

Chapter 6 described a multicenter study that determined diagnostic performance of 

MRI radiomics-based machine learning in differentiating ACT from grade II CS of long 

bones. One-hundred-fifty-eight patients with surgically treated and histology-proven 

cartilaginous bone tumors were retrospectively included at two tertiary bone tumor centers. 

The training cohort consisted of 93 MRI scans from center 1 (N=74 ACT; N=19 CS grade 

II). The external test cohort consisted of 65 MRI scans from center 2 (N=45 ACT; N=20 CS 

grade II). 2D segmentation was manually performed on T1-weighted MRI sequences. First-

order, shape-based and texture features were extracted. Dimensionality reduction consisting 

of stability, variance and inter-correlation analyses and recursive feature elimination, after 

class balancing in center 1 (CS grade II oversampled to N=74), was performed. Thus, a 

machine learning classifier (Extra Trees Classifier) was automatically tuned on the training 

cohort using 10-fold cross-validation and tested on the external test cohort. In center 2, its 

performance was compared with an experienced musculoskeletal oncology radiologist using 

McNemar’s test. Nine-hundred-nineteen radiomic features were extracted and then reduced 

to 17 through dimensionality reduction. After tuning on the training cohort (AUC=0.88), the 

machine learning classifier had 92% accuracy (60/65, AUC=0.94) in identifying the lesions 
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in the external test cohort. Specifically, its accuracies in correctly classifying ACT and grade 

II CS were 98% (44/45) and 80% (16/20), respectively. The experienced radiologist had 98% 

accuracy (64/65) with no significant difference compared to the classifier (p=0.134). In 

conclusion, machine learning showed high accuracy in classifying ACT and grade II CS of 

long bones based on MRI radiomic features. 

 

7.2 General discussion, limitations and future perspectives 

This thesis focuses on the concept of ACT, which has been defined in 2013 and 

2020 World Health Organization classifications [1,2]. This relatively new definition reflects 

the indolent biological behavior of ACT, which is now considered an intermediate 

cartilaginous tumor of long bones rather than a malignancy [2]. This concept connects better 

to therapeutic options that are entirely different for ACT compared to high-grade (II or 

higher) appendicular CS and all-grade axial CS [3]. Particularly, wide resection with negative 

margins is the therapy of choice for the latter group. The treatment of ACT has remarkably 

changed over the last three decades. Wide resection was performed until the nineties, then 

therapy changed towards intralesional curettage and nowadays watchful waiting with 

imaging follow-up is an increasingly favored option [4]. 

Because of the risk of sample errors that makes biopsy no longer standard of care in 

many tertiary centers [5] and given the increasing incidence of ACT due to an increase in 

incidental findings on MRI [6], there is a need for clear imaging criteria to differentiate 

between ACT and high-grade CS. Imaging assessment suffers, however, from interobserver 

variability [7,8]. Thus, in this thesis, radiomics has been proposed as an imaging method to 

differentiate ACT from high-grade CS more objectively, in combination with machine 

learning algorithms. Other radiomic studies to date have addressed the issue of 

discriminating enchondroma from ACT/high-grade CS [9–11]. However, the 

enchondroma/ACT differentiation has progressively become less relevant, due to the above 

mentioned,  new concept of ACT and the ensuing new treatment options in which watchful 

waiting is an alternative to curettage [4,12,13]. Resection of ACT is no longer indicated. 

Because enchondroma and high-grade CS are easily differentiated  on conventional imaging,  

diagnostic focus has moved from differentiating enchondroma from ACT to differentiating 

ACT from grade II CS [4]. 
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In chapters 3, 5 and 6 of this thesis, machine learning algorithms were used to create 

classification models based on radiomic features extracted from MRI and CT. Particularly, 

chapters 5 and 6 described large multicenter studies including a clinical validation of the 

model on independent data (external test cohort) from a different institution. They focused 

on CT and MRI radiomics, respectively, and achieved good-to-high accuracy rates in 

correctly classifying ACT and high-grade CS of long bones, with no difference compared to 

experienced musculoskeletal oncology radiologists. Undoubtedly, the most relevant finding 

was achieved in chapter 6, where T1-weighted MRI radiomics-based machine learning had 

92% accuracy in differentiating ACT from grade II CS. In addition, there was no statistical 

difference (p=0.134) in results between our approach and those of a dedicated bone tumor 

radiologist with 35 years of experience. In chapter 4 we methodologically analyzed the 

influence of interobserver segmentation variability on the reproducibility of 2D and 3D CT- 

and MRI radiomic features of cartilaginous bone tumors. All imaging modalities 

demonstrated good reproducibility both employing 2D and 3D annotations, although a 

certain degree of variability highlighted the need for a preliminary assessment of feature 

stability. This was also highlighted in the systematic review on feature reproducibility and 

validation strategies in chapter 2 and performed in our subsequent studies (chapters 5 and 6). 

Some limitations of this thesis need to be addressed. First, all performed studies 

were retrospective, as this design allowed including a larger number of patients (with a 

relatively uncommon disease). Additionally, a prospective analysis was not strictly needed 

in radiomic studies [14]. Second, the segmentation method may have an impact on results. 

In studies described in chapters 3, 5 and 6, we performed 2D segmentation and selected the 

image slice showing the largest tumor dimension. A 2D approach was preferred as it would 

be easier to implement in clinical practice. In addition, recent literature suggested that it could 

yield better performance than 3D segmentation [15]. Furthermore, our findings in chapter 4 

showed no difference in terms of feature reproducibility between 2D and 3D MRI-based 

texture analysis. Third, ACT was over-represented compared to high-grade CS in chapter 5, 

particularly in the training cohort from center 1, and in chapter 6. However, this accurately 

reflected the incidence of ACT and high-grade CS [6]. Furthermore, class balancing was 

performed in both studies to artificially oversample the minority class in the training cohort 

[16]. Fourth, contrast-enhanced CT and MRI were not used for radiomics-based machine 

learning analysis, as they were not available in all patients. Still, our good results are 



 

 142 

encouraging and open the possibility for future research to shed light on the value of machine 

learning and contrast-enhanced CT or MRI radiomics for ACT/high-grade CS classification. 

In conclusion, CT and MRI radiomics-based machine learning demonstrated good-

to-high accuracy in differentiating ACT from high-grade CS and looks promising as an 

objective imaging method that may be used in clinical decision making. This has potential, 

especially in general practice without presence of specialized expertise, in identifying the 

commonly encountered ACT. Our large population of study and the very good performance 

achieved using independent data from different institutions, as presented in chapters 5 and 6, 

ensure the generalizability of our results. Future studies will have to verify the applicability 

of our findings in clinical practice. 
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Samenvatting en algemene discussie 

 
Samenvatting  

Hoofdstuk 1 is een algemene inleiding tot het doctoraal onderzoek.  Het doel van 

dit proefschrift was het bepalen van de diagnostische waarde van kunstmatige intelligentie 

(in deze Nederlandstalige samenvatting wordt de meer algemene term kunstmatige 

intelligentie gebruikt om de specifiekere term machine learning te vertalen) bij het 

differentiëren tussen atypische cartilagineuze tumor (ACT) en hooggradig chondrosarcoom 

(CS), gebaseerd op radiomics kenmerken die zijn afgeleid van 

dwarsdoorsnedebeeldvorming, zoals magnetische resonantie beeldvorming (MRI) en 

computertomografie (CT), in vergelijking met ervaren radiologen gespecialiseerd in 

musculoskeletale oncologie.  

In hoofdstuk 2 introduceerden we het concept van CT- en MRI-radiomics van bot- 

en weke delen sarcomen door middel van een literatuurstudie van de reproduceerbaarheid 

van radiomics karakteristieken en validatiestrategieën voor voorspellende modellen.  Het 

uiteindelijke doel van deze systematische evaluatie was om een consensus te bereiken over 

deze aspecten die van belang zijn voor de translatie en toepasbaarheid van radiomics in de 

klinische praktijk. Van de 278 geïdentificeerde artikelen werden negenenveertig artikelen 

opgenomen die tussen 2008 en 2020 werden gepubliceerd.  Ze behandelden radiomics van 

bottumoren (n=12) of tumoren van de weke delen (n=37).  Achttien (37%) onderzoeken 

bevatten een analyse van de reproduceerbaarheid van de berekende radiomics 

karakteristieken. De variabiliteit van de beeldsegmentatie gedaan door dezelfde persoon 

(intra-observervariabiliteit) en tussen verschillende personen (interobserver variabiliteit) was 

het thema van de reproduceerbaarheidsanalyse in 16 (33%) onderzoeken, hetgeen meer was 

dan het aantal analyses die gericht waren op beeldacquisitie of beeldbewerking (n=2, 4%).  

De intraclass correlatiecoëfficiënt (ICC) was de meest gebruikte statistische methode om de 

reproduceerbaarheid te beoordelen. Deze varieerde van 0.6 tot 0.9. In 25 (51%) artikelen 

werd ten minste één validatietechniek voor kunstmatige intelligentie gebruikt ten behoeve 

van modelontwikkeling. K-voudige kruisvalidatie werd het meest gebruikt.  Een klinische 

validatie van het model werd gerapporteerd in 19 (39%) artikelen.  Dit werd uitgevoerd met 

behulp van een separate dataset afkomstig van de primaire instelling (d.w.z. interne validatie) 
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in 14 (29%) studies en met een onafhankelijke dataset waarbij data werden gegenereerd met 

verschillende scanners of in een andere instelling (d.w.z externe validatie) in 5 (10%) studies.   

Concluderend bleek dat de reproduceerbaarheid van radiomics kenmerken en modelvalidatie 

tussen de studies over musculoskeletale sarcomen in hoge mate varieerden. Dit zou in 

toekomstige onderzoeken moeten worden aangepakt om het gebied van radiomics van een 

onderzoeksgebied naar het klinische domein te brengen.  

In hoofdstuk 3 werd de diagnostische waarde van op MRI-radiomics gebaseerde  

modellering met kunstmatige intelligentie (specifiek machine learning) gevalueerd in het 

onderscheiden van ACT en hooggradig CS in een eerste studie in één centrum. We hebben 

retrospectief 58 patiënten bestudeerd met een histologisch bewezen ACT (n=26) of een 

hooggradig CS (n=32, inclusief 16 gelokaliseerd in het appendiculaire en 16 in het axiale 

skelet).  Ze werden willekeurig verdeeld in trainings- (n=42) en test- (n=16) groepen voor 

respectievelijk de ontwikkeling en validatie van het model.  Alle tumoren werden handmatig 

gesegmenteerd op T1- en T2-gewogen MRI door 2D interessegebieden (Regions Of Interest: 

ROIs) te tekenen die werden gebruikt voor extractie van radiomics kenmerken.  Na het 

selecteren van een functie werd een ensemble-classificeerder (AdaBoostM1) op de training 

set afgestemd met behulp van 10-voudige kruisvalidatie en vervolgens werd getest op een 

niet eerder gebruikte testset.  Daarna heeft een ervaren musculoskeletale oncologische 

radioloog geblindeerd voor histologie en radiologische gegevens de laesies in de testgroep 

kwalitatief geëvalueerd.  De gegevensset werd na functieselectie teruggebracht tot 4 T1-

gewogen MRI-radiomics karakteristieken.  Het model identificeerde respectievelijk 85.7% 

(AUC=0.85) en 75% (AUC=0.78) van de laesies in de trainings- en testgroepen.  De 

radioloog identificeerde 81.3% van de laesies correct, zodat er geen verschil was met het 

model (p=0.453).  Concluderend toonde dat ons ontwikkelde model gebaseerd op 

kunstmatige intelligentie accuraat het onderscheid tussen ACT en hooggradig CS kon maken.  

In hoofdstuk 4 werd de invloed onderzocht van de handmatige 

segmentatievariabiliteit tussen observatoren op de reproduceerbaarheid van 2D en 3D CT- 

en MRI-gebaseerde textuuranalyse.  Dertig patiënten met kraakbeentumoren (n=10 

enchondroom; N=10 ACT; N=10 hooggradig CS) werden retrospectief opgenomen.  Drie 

radiologen voerden onafhankelijk van elkaar handmatige beeldsegmentatie uit op natieve 

CT, T1-gewogen en T2-gewogen MRI door zowel een 2D ROI op de coupe te tekenen die 

het grootste tumoroppervlak toonde als een 3D ROI te tekenen die het gehele tumorvolume 
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omlijnde.  Bovendien werd een marginale reductie van de ROI toegepast op zowel 2D- als 

3D-segmentaties om de invloed van segmentatiemarges te evalueren.  In totaal werden 783 

en 1132 radiomics kenmerken geëxtraheerd uit respectievelijk originele en gefilterde 2D- en 

3D-beelden.  Functiestabiliteit werd gedefinieerd als een ICC≥0.75.  In 2D versus 3D 

beeldsegmentatie waren de waarden van stabiele eigenschappen voor respectievelijk CT-, 

T1-gewogen en T2-gewogen beelden 74.71% versus 86.57% (p<0.001), 77.14% versus 

80.04% (p=0.142) en 95.66% versus 94.97% (p=0.554).  De reductie van de marge 

verbeterde 2D segmentatie (p=0.343) niet en presteerde slechter dan 3D (p<0.001) 

beeldsegmentatie wat betreft stabiliteit van de radiomics kenmerken. Bij 2D- versus 3D-

beeldsegmentatie bedroegen de overeenkomende stabiele kenmerken die waren afgeleid van 

CT en MRI 65.8% versus 68.7% (p=0.191), en die afgeleid van T1-gewogen en T2-gewogen 

beelden 76.0% versus 78.2% (p=0.285).  Concluderend waren 2D en 3D CT en MRI 

radiomics kenmerken van kraakbeentumoren reproduceerbaar, hoewel een zekere mate van 

segmentatievariabiliteit tussen observatoren de noodzaak van betrouwbaarheidsanalyse in 

radiomics studies aantoonde.  

In hoofdstuk 5 werd een multicentrische studie beschreven die de prestaties van CT 

op radiomics-gebaseerde kunstmatige intelligentie modellen onderzocht in het 

onderscheiden tussen ACT en hooggradig CS van lange pijpbeenderen.  Honderdtwintig 

patiënten met histologie-bewezen laesies werden retrospectief opgenomen.  Het 

trainingscohort bestond uit 84 CT-scans uit centrum 1 (n=55 ACT; N=29 CS graad II-IV). 

Het externe testcohort bestond uit de CT-beelden afkomstig van 36 PET-CT-scans uit 

centrum 2 (n=16 ACT; N=20 CS graad II-IV). 2D-segmentatie werd uitgevoerd op 

preoperatieve CT-scans. Radiomics kenmerken werden geëxtraheerd.  Na reductie van 

datadimensionaliteit en uitvoer van een klassenbalans in centrum 1 werd een kunstmatige 

intelligentie gebaseerde classificeerder (LogitBoost) gevalideerd van een intern testcohort 

(tot stand gekomen met behulp van 10-voudige kruisvalidatie) en op het externe testcohort.  

In centrum 2 werden, m.b.v. de McNemar test, de resultaten vergeleken met die van een 

preoperatieve biopsie en met de beoordeling van een ervaren radioloog.  Het model had een 

nauwkeurigheid van 81% (AUC=0.89) en 75% (AUC=0.78) bij het identificeren van de 

laesies in respectievelijk de training en de externe testcohorten.  In het bijzonder was de 

nauwkeurigheid bij het classificeren van ACT en hooggradig CS respectievelijk 84% en 78% 

in het trainingscohort, en 81% en 70% in het externe testcohort.  Preoperatieve biopsie had 
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een nauwkeurigheid van 64% (AUC=0.66) (p=0.29).  De radioloog bereikte een 

nauwkeurigheid van 81% (p=0.75).  Conclusie was dat het model een goede nauwkeurigheid 

bereikte bij het classificeren van ACT en hooggradige CS van lange pijpbeenderen op basis 

van radiomics kenmerken afkomstig van preoperatieve CT-scans.  

In hoofdstuk 6 werd een multicentrische studie beschreven die de prestaties van MR 

op radiomics-gebaseerde kunstmatige intelligentie onderzocht in het onderscheiden tussen 

ACT en hooggradig CS van lange pijpbeenderen.  Honderdachtenvijftig patiënten uit twee 

tertiaire centra voor bottumoren met chirurgisch behandelde en histologisch bewezen 

kraakbeentumoren werden retrospectief geïncludeerd.  Het trainingscohort bestond uit 93 

MRI-scans uit centrum 1 (n=74 ACT; N=19 CS graad II). Het externe testcohort bestond uit 

65 MRI-scans uit centrum 2 (n=45 ACT; N=20 CS graad II). 2D-segmentatie werd 

handmatig uitgevoerd op T1-gewogen MRI-sequenties.  Eerste orde, morfologische- en 

textuureigenschappen werden geëxtraheerd.  Reductie van datadimensionaliteit werd 

uitgevoerd op basis van stabiliteit, variatie en inter-correlatie analyses en recursieve kenmerk 

eliminatie op de data afkomstig van centrum 1 na balancering van klassen (CS graad II 

oversampling naar N=74).  Zo werd een model gebaseerd op kunstmatige intelligentie (Extra 

Trees Classifier) getraind op een cohort tot stand gekomen door 10-voudige kruis-validatie 

en getest op een extern test cohort.  In centrum 2 werden de prestaties, m.b.v. de McNemar’s 

test, vergeleken met die van een radioloog ervaren op het gebied van musculoskeletale 

oncologie.  Negenhonderdnegentien radiomics kenmerken werden geëxtraheerd en 

vervolgens teruggebracht tot 17 door middel van datadimensionaliteitsvermindering.  Na 

training had het model (AUC=0.88), een nauwkeurigheid van 92% (60/65, AUC=0.94) voor 

het identificeren van de laesies in het externe testcohort.  In het bijzonder waren de 

nauwkeurigheden voor het correct classificeren van ACT en graad II CS respectievelijk 98% 

(44/45) en 80% (16/20).  De ervaren radioloog had een nauwkeurigheid van 98% (64/65) en 

er was geen significant verschil met het getrainde model (p>0.99).  Concluderend bereikte 

het model een hoge nauwkeurigheid voor het classificeren van ACT en graad II CS van lange 

pijpbeenderen op basis van MRI-radiomics kenmerken.  

 

Algemene discussie, beperkingen en toekomstperspectieven  

Dit proefschrift richt zich op het concept ACT, dat is gedefinieerd volgens de 2013 

en 2020 classificatie van de Wereldgezondheidsorganisatie [1,2].  Deze relatief nieuwe 
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definitie weerspiegelt het indolente biologische gedrag van ACT, dat nu wordt beschouwd 

als een intermediaire kraakbeentumor van lange pijpbeenderen in plaats van een maligne 

tumor  [2]. Dit concept sluit beter aan bij therapeutische opties die voor ACT volledig 

verschillen met die van hooggradig (II of hoger) appendiculair CS en axiaal CS van elke 

graad [3]. Wijde resectie met tumorvrije grenzen is de therapie van keuze voor de laatste 

groep.  De behandeling van ACT is de afgelopen drie decennia opmerkelijk veranderd.  Tot 

in de jaren negentig werd er een wijde resectie uitgevoerd, waarna de therapie veranderde in 

intra-lesionale curettage en tegenwoordig is in toenemende mate waakzaam afwachten met 

beeldvorming, maar zonder chirurgisch ingrijpen een optie [4].  

Vanwege het risico van het niet verkrijgen van representatief biopsiemateriaal 

afkomstig uit het meest kwaadaardige deel van de tumor, wordt een biopsie in veel tertiaire 

centra niet langer gebruikt [5]. Gezien de toenemende incidentie van ACT als gevolg van 

een toename van incidentele bevindingen op MRI [6] is er behoefte aan duidelijke 

beeldvormingscriteria om onderscheid te maken tussen ACT enerzijds en hooggradige CS 

anderzijds. Beoordeling van beeldvorming lijdt echter aan interobserver-variabiliteit [7,8].  

In dit proefschrift worden modellen op basis van radiomics kenmerken voorgesteld om op 

basis van beeldvorming het onderscheid tussen ACT en hooggradig CS objectiever te maken.  

Andere radiomics studies tot nu toe hebben zich gericht op het differentiëren tussen 

enchondroom enerzijds en ACT/hooggradig CS anderzijds [9–11]. De differentiatie tussen 

enchondroom en ACT is echter geleidelijk minder relevant geworden, vanwege de hierboven 

genoemde herwaardering van ACT en de daarbij horende nieuwe inzichten omtrent 

behandeling waarbij het controleren van de laesie met behulp van beeldvorming een 

alternatief is voor het curetteren van de laesie [4,12,13].  Resectie van ACT is, in 

tegenstelling tot behandeling van CS graad II, niet meer geïndiceerd. Aangezien 

enchondroom en hooggradig CS eenvoudig te onderscheiden zijn met behulp van 

röntgenfoto’s, heeft het diagnostisch dilemma zich verplaatst van onderscheid tussen 

enchondroom en ACT naar onderscheid tussen ACT en CS graad II   [4].  

In de hoofdstukken 3, 5 en 6 van dit proefschrift werden kunstmatige intelligentie 

gebaseerde technieken gebruikt om classificatiemodellen te maken op basis van radiomics 

kenmerken die zijn afgeleid van MRI en CT. In de hoofdstukken 5 en 6 werden met name 

grote multicentrische studies beschreven, inclusief klinische validatie van het model op 

onafhankelijke data (externe testcohort) van een andere instelling.  Deze studies 
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concentreerden zich op respectievelijk CT- en MRI-radiomics en behaalden een hoge 

nauwkeurigheid bij het correct classificeren van ACT en hooggradig CS van lange 

pijpbeenderen, zonder verschil met ervaren radiologen op het gebied van musculoskeletale 

oncologie.  Ongetwijfeld werd de meest relevante bevinding gedaan in hoofdstuk 6, waarbij 

een getraind model op basis van radiomics kenmerken afkomstig uit T1-gewogen MRI een 

nauwkeurigheid van 92% bereikte bij het onderscheiden tussen ACT en CS graad II. 

Bovendien was er geen statistisch significant verschil (p>0.99) tussen resultaten van het 

model en die van een radioloog, gespecialiseerd in bottumoren met 35 jaar ervaring.  In 

hoofdstuk 4 hebben we de invloed van de segmentatievariabiliteit tussen observatoren op de 

reproduceerbaarheid van 2D en 3D CT- en MRI-radiomics kenmerken van 

kraakbeentumoren methodologisch geanalyseerd.  Er was een goede reproduceerbaarheid 

van radiomics kenmerken op alle beeldvormende modaliteiten, zowel van kenmerken op 

basis van 2D- als 3D-segmentaties, hoewel voorafgaande kennis m.b.t. stabiliteit van 

radiomics kenmerken een belangrijke voorwaarde is om nauwkeurige classificatie te 

bewerkstelligen. Dit werd ook benadrukt in de systematische review van hoofdstuk 2 m.b.t. 

reproduceerbaarheid van kenmerken en validatie strategieën, en dit werd ook gedaan in onze 

daaropvolgende studies (hoofdstukken 5 en 6).  

Dit proefschrift kent enkele beperkingen.  In de eerste plaats waren alle uitgevoerde 

onderzoeken retrospectief, omdat hiermee een groter aantal patiënten (met een relatief 

zeldzame aandoening) kon worden geïncludeerd.  Bovendien is een prospectieve analyse niet 

strikt nodig in radiomics studies [14].  In de tweede plaats kan de segmentatietechniek de 

resultaten beïnvloeden. In onderzoeken die in hoofdstukken 3, 5 en 6 worden beschreven 

hebben we een 2D-segmentatie uitgevoerd op de coupe geselecteerd met de grootste 

tumordimensie.  Een 2D-benadering had de voorkeur, omdat het potentieel gemakkelijker is 

om dit in de klinische praktijk te implementeren, bovendien werd in recente literatuur gemeld 

dat 2D-segmentatie betere resultaten zou opleveren dan 3D-segmentatie [15]. Onze 

bevindingen in hoofdstuk 4 toonden geen verschil tussen 2D en 3D MRI-gebaseerde 

textuuranalyse. Ten derde was ACT oververtegenwoordigd in vergelijking met hooggradig 

CS in hoofdstuk 5, vooral in het trainingscohort uit centrum 1, en in hoofdstuk 6. Dit 

weerspiegelde echter nauwkeurig de incidentie van ACT en hooggradig CS [6], bovendien 

werd  balansering uitgevoerd in beide studies om de minderheidsklasse kunstmatig te 

oversampelen in de trainingscohorten [16].  Ten vierde werden geen contrastmiddelen 
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gebruikt bij CT en MRI voor de ontwikkelde modellen, omdat deze niet bij alle patiënten 

beschikbaar waren.  Tot slot is het gebruik van de lage dosis CT-beelden van PET-CT in het 

externe testcohort zoals beschreven in hoofdstuk 5 suboptimaal. De goede resultaten 

stemmen ons echter positief en openen de mogelijkheid voor toekomstig onderzoek om licht 

te werpen op de waarde van het gebruik van kunstmatige intelligentie modellen die gebruik 

maken van radiomics kenmerken afkomstig van CT- of MRI.  

Concluderend toonden CT- en MRI-modellen die gebruik maken van radiomics 

kenmerken een hoge nauwkeurigheid aan bij het onderscheiden van ACT en hooggradig CS 

en ziet het er veelbelovend uit als een objectieve beeldvormingsmethode die kan worden 

gebruikt bij de klinische besluitvorming.  Dit kan met name belangrijk zijn in de algemene 

praktijk waar gespecialiseerde expertise niet voorhanden is, bij het correct identificeren van 

de veel voorkomende ACT. Onze grote onderzoekspopulatie en de zeer goede prestaties die 

zijn bereikt met onafhankelijke gegevens van verschillende instellingen, zoals gepresenteerd 

in de hoofdstukken 5 en 6, garanderen de generaliseerbaarheid van onze resultaten. 

Toekomstige studies zullen de toepasbaarheid van onze bevindingen in de klinische praktijk 

moeten verifiëren.  
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