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Introduction

The n-dimensional anti-de Sitter spacetime (AdS) is a maximally symmetric
solution of the vacuum Einstein equations with a negative cosmological con-
stant [Wal84]. A geometric feature of AdS spacetime is that its conformal
boundary is a timelike submanifold, a feature which in particular entails that
AdS spacetime is not globally hyperbolic in the usual boundaryless sense.
From a PDE viewpoint, the main consequence is that initial value problems
for hyperbolic partial differential equations on this background do not yield
a unique solution, unless complemented by suitable boundary conditions as-
signed on the conformal boundary [BGP07, DFM18]. A natural extension
of AdS spacetime is the class of the so-called asymptotically AdS spacetimes
(aAdS), sharing the same behavior of AdS in a neighborhood of conformal
infinity. Compared to the AdS case, on these backgrounds, the analysis of
partial differential equations is more difficult due to the lack of isometries
of the metric.

In the last two decades the Klein-Gordon equation on anti-de Sitter and
asymptotically anti-de Sitter spacetimes was studied in several works [Bac11,
DF16, DFM18, EK13, Gal10, Hol12, HS16b, HS16a, HW14, KW15, Vas12,
Wro17, GW20, War12, KY09] using different methods. As for the asymp-
totically anti-de Sitter case, the results obtained include propagation of sin-
gularities theorems [Vas12, GW20], well-posedness results under several reg-
ularity hypotheses [Vas12, Wro17, GW20, War12, EK13] – in the last cited
paper also a non-linear Klein-Gordon equation was considered – and the
study of the properties of the propagators and of the associated fundamen-
tal solutions [Wro17, GW20]. However, the analysis in the aforementioned
works is limited to the case of Dirichlet, Neumann and Robin boundary con-
ditions, but these kind of boundary conditions are not the only interesting
ones for the Klein-Gordon equation on aAdS spacetimes. Indeed, classi-
cal and quantum field theory on asymptotically anti-de Sitter spacetimes
has been the target of significant attention in mathematical and theoret-
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ical physics, mainly because of the AdS/CFT correspondence, relating a
field theory on the interior of the spacetime with a suitable dual one on
its conformal boundary. Therefore it makes sense, in general, to consider
also boundary conditions of dynamical type, like Wentzell boundary con-
ditions which have been studied in [DFJA18, Zah18] on AdS spacetime.
Dynamical boundary conditions have been considered also for other non-
globally hyperbolic spacetimes, for example in the analysis of the Casimir
effect [JAW21]. As shown in [GW20], in an asymptotically AdS spacetime
M , given u ∈ H1

loc(M), it is possible to define two trace maps γ+ and γ−
the first encoding the Neumann data and the second the Dirichlet ones, see
Sections 1.4.2 and 2.2. Robin boundary conditions can be imposed requir-
ing that γ+u = fγ−u for a suitable smooth function f on ∂M . From the
analysis carried out in [DFJA18], we also know that boundary conditions
of Wentzell type can be imposed in this way, with the function f replaced
by a suitable second order differential operator acting on the boundary. Us-
ing the notion of boundary triple, it has been shown in [DDF19] that there
exists a large class of boundary conditions relating Neumann and Dirichlet
data via pseudodifferential operators for which there exist advanced and re-
tarded fundamental solutions for the Klein-Gordon operator. However, the
approach followed in [DDF19] does not allow to establish any estimate on
the wavefront set of the propagators, since the framework employed is not
well-suited to prove a propagation of singularities theorem.

This thesis, which is based on [DM21b, DM21a], is devoted to the study
of the Klein-Gordon equation on aAdS spacetimes with boundary condi-
tions implemented by a suitable class of pseudodifferential operators. The
core idea of this work is to use techniques proper of b-calculus, as advocated
in [Vas08, War12, Wro17, GW20], in order to overcome the hurdle posed
by the singular metric of asymptotically anti-de Sitter spacetimes, along
with the ideas introduced in [DDF19]. As it will become manifest from our
analysis, we can distinguish two notable cases, namely that of pseudodiffer-
ential operators of order k ≤ 0 – which can be seen as a natural extension
of the results of [GW20] – and the case of pseudodifferential operators of
order 0 < k ≤ 2, which is a novel interesting case, including for example
the aforementioned Wentzell boundary conditions. In particular, we prove
two propagation of singularities theorems - Theorem 3.0.2 for k ≤ 0 and
Theorem 3.0.1 for 0 < k ≤ 2, with the latter taking into account the singu-
larities introduced by the boundary conditions. The other main achievement
of this work is the well-posedness result given by Proposition 4.1.2, gener-
alizing the statements obtained in [Vas08, Wro17] for Dirichlet boundary
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conditions and in [GW20] for Robin ones to a very general class of bound-
ary conditions implemented by pseudodifferential operators. In particular,
we discuss the existence of advanced and retarded fundamental solutions for
the Klein-Gordon operator with prescribed boundary conditions, see The-
orem 4.2.1 and Remark 4.2.2, and we characterize the wavefront set of the
advanced and of the retarded fundamental solutions. To obtain this result,
we need to restrict the class of pseudodifferential operators encoding the
boundary conditions, see Hypotesis 4.1.1. However, for applications, the
hypotheses we assume are mild constraints, since the most interesting cases
of boundary conditions are included. At last, as a concrete application of
the theory we developed, we build the fundamental solutions for a massless
Klein-Gordon equation on a static aAdS spacetime with admissible static
boundary conditions, as per Definition 4.2.1, a result that we can see as a
natural extension of the analysis carried out in [DDF19].

The structure of this work is the following. In the first chapter we introduce
the analytic and geometric notions we need, in particular globally hyper-
bolic, asymptotically anti-de Sitter spacetimes, b-calculus and boundary
triples. In the second chapter we give the weak formulation of the dynam-
ical problem we are interested in. The third chapter is devoted to proving
two propagation of singularities theorems, one for boundary conditions en-
coded by pseudodifferential operators of order k ≤ 0 – Theorem 3.0.2 – and
the other for the case 0 < k ≤ 2 – Theorem 3.0.1. Much of this chapter
is focused on proving suitable microlocal estimates needed to prove the two
propagation of singularities theorems. In the last chapter we establish a well-
posedness result for the Klein-Gordon equation with boundary conditions
implemented by a suitable class of pseudodifferential operators – Proposi-
tion 4.1.2 – and we study the existence and uniqueness of the propagators
and of the fundamental solutions – Theorem 4.2.1 – proceeding then to char-
acterize them and to give a concrete example of fundamental solutions for
the massless Klein-Gordon equation.
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Chapter 1

Geometric and Analytic
Preliminaries

The goal of this chapter is to fix the notation and to introduce the analytic
and geometric notions which play a pivotal rôle in the following, namely glob-
ally hyperbolic spacetimes with timelike boundary, manifolds of bounded
geometry, b-calculus and boundary triples. We assume that the reader is
acquainted with the basic notions of Lorentzian geometry, e.g. [O’N83].

1.1 Globally hyperbolic asymptotically anti-de Sit-
ter spacetimes

In this section we introduce the class of Lorentzian manifolds we use in the
following, namely globally hyperbolic asymptotically anti-de Sitter space-
times. This is the class of backgrounds for which one can expect that a
mixed initial/boundary value problem for partial differential equations ruled
by a normally hyperbolic operator is well-posed [DDF19, DM21b].

1.1.1 Globally hyperbolic spacetimes with timelike bound-
ary

We begin introducing a distinguished class of backgrounds, that of glob-
ally hyperbolic spacetimes with timelike boundary, following [HFS20] and
[DM21b].

Definition 1.1.1. Let (M, g) be a connected, oriented, time oriented, smooth
Lorentzian manifold of dimension dimM = n ≥ 2 with non-empty boundary
ι : ∂M →M . We say that (M, g)
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2 CHAPTER 1. GEOMETRIC AND ANALYTIC PRELIMINARIES

1. has a timelike boundary if (∂M, ι∗g) is a smooth, Lorentzian man-
ifold,

2. is globally hyperbolic if it does not contain any closed causal curve
and if, for every p, q ∈M , J+(p) ∩ J−(q) is either empty or compact.
Here J± stand for the causal future (+) and past (-).

If both conditions are met, we say that (M, g) is a globally hyperbolic space-
time with timelike boundary.

For the sake of simplicity, in the following we assume that ∂M is con-
nected. A key notion in globally hyperbolic spaces is that of Cauchy surface.
Prior to recalling its definition, we remember that a subset Σ ⊂ M of a
Lorentzian manifold (M, g), is called achronal if S∩I+(S) = ∅, I+(S) being
the chronological future of S.

Definition 1.1.2. Let (M, g) be a Lorentzian manifold. A Cauchy surface
Σ ⊂ M is an achronal subset of M such that every inextensible, piecewise
smooth curve intersects Σ only once.

It is well known that a Cauchy problem for the Klein-Gordon equation
is well posed on globally hyperbolic spacetimes without timelike boundary
[BGP07, CB08] . Indeed, the following theorem holds true for normally
hyperbolic operators – a class of linear second order scalar operators whose
principal symbol is constructed only out of the metric, namely P is normally
hyperbolic if σ(P )(ξ) = −g−1(ξ, ξ) for every ξ ∈ T ∗M .

Theorem 1.1.1 ([BGP07], Thm. 3.2.11). Let (M, g) be a globally hyper-
bolic spacetime with empty boundary and let Σ ⊂M be any of its spacelike
Cauchy surfaces, together with its future pointing unit normal vector n.
Consider a normally hyperbolic operator P : C∞(M) −→ C∞(M) and a
covariant derivative 5 on M such that �5 + A = P , with A ∈ C∞(M).
Then, for all f ∈ C∞(M) and u0, u1 ∈ C∞(Σ), the problem

Pu = f on M

u = u0 on Σ

5nu = u1 on Σ

(1.1)

admits a unique solution u ∈ C∞(M). Furthermore, if we set Ω = supp(u0)∪
supp(u1) ∪ supp(f), then supp(u) ⊂ JM (Ω), with J(Ω) := J+(Ω) ∪ J (Ω).

As a byproduct of this theorem, the Green functions and the fundamental
solutions exist and are unique [BGP07, Thm. 3.3.1, Prop. 3.4.2].
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However, there are other interesting cases in which the underlying man-
ifold has a timelike boundary, one example being the conformal compactifi-
cation of anti-de Sitter spacetime. A complete characterization of globally
hyperbolic spacetimes with timelike boundary is given by the following the-
orem.

Theorem 1.1.1. [[HFS20], Thm. 1.1] Let (M, g) be a globally hyperbolic
spacetime with timelike boundary of dimension dimM = n ≥ 2. Then it is
isometric to a Cartesian product R× Σ where Σ is an (n− 1)-dimensional
Riemannian manifold. The associated line element reads

ds2 = −βdτ2 + κτ ,

where β ∈ C∞(R× Σ; (0,∞)) while τ : R× Σ→ R plays the rôle of a time
coordinate. In addition R 3 τ 7→ κτ is a family of Riemmannian metrics,
smoothly dependent on τ and such that, calling Στ

.
= {τ}×Σ, each (Στ , κτ )

is a Cauchy surface with non-empty boundary.

Remark 1.1.1. An important consequence of this theorem is that, calling
ι∂M : ∂M →M the natural embedding map, then (∂M, h) where h = ι∗∂Mg
is a globally hyperbolic spacetime. In particular the associated line element
reads

ds2|∂M= −β|∂Mdτ2 + κτ |∂M .

On globally hyperbolic spacetime with timelike boundary, one can prove
that the fundamental solutions and the Green’s operators of a Cauchy prob-
lem exist – but in general they are not unique. This holds true if the
manifold M can be embedded in a suitable way as an open subset of an-
other globally hyperbolic spacetime without timelike boundary on which
the Klein-Gordon operator can be extended [BGP07]. We shall see an
example in the next section, in which we introduce the prototype of a
globally hyperbolic spacetime with timelike boundary, namely AdS space-
time. In general, to obtain a well-posed Cauchy problem for the wave
equation on a globally hyperbolic spacetime with timelike boundary, we
need to complement the Cauchy data with suitable boundary conditions
[DDF19, DFM18, DFJA18, GM21]. For example, in quantum field theory,
the Casimir effect between uncharged conductive plates in vacuum can be
studied introducing timelike boundaries in correspondence of the plates, on
which we assign the boundary conditions [JAW21]. The well posedness of
mixed Cauchy/boundary value problems for the wave equation on generic
globally hyperbolic spacetimes with timelike boundary was investigated re-
cently in [DDF19] – for the case of static spacetimes – and in [GM21]. Both



4 CHAPTER 1. GEOMETRIC AND ANALYTIC PRELIMINARIES

papers consider the cases of Dirichlet, Neumann and Robin boundary con-
ditions. The former also investigates the case of boundary conditions of
Wentzell type, which are also known as dynamical boundary conditions,
whereby the boundary data solves a non-homogeneous, boundary Klein-
Gordon equation, with the source term fixed by the normal derivative of the
scalar field at the boundary [Uen73, DFJA18]. The same class of problems
for the Klein-Gordon equation on asymptotically anti-de Sitter spacetimes
– see Section 1.1.3 – was studied in [Vas12, Hol12, War12, Wro17] – for
Dirichlet and Neumann boundary conditions – and in [GW20] for the case
of Robin boundary conditions.

1.1.2 Anti-de Sitter spacetime

The prototype of a globally hyperbolic spacetime with timelike boundary
is the conformal compactification of PAdS, the Poicarè patch of anti-de
Sitter (AdS) spacetime, considered as a manifold of its own. AdS is a
maximally symmetric solution to the vacuum Einstein’s equations with a
negative cosmological constant [CB08]. Anti-de Sitter space is well known
for its rôle in the AdS/CFT correspondence [Wit98, Mal98].

The n-dimensional anti-de Sitter spacetime AdS can be realized as an
isometric embedding in Rn+1 endowed with the Lorentzian metric

η̃ = dX2
0 + dX2

1 −
n−1∑
j=2

dX2
j (1.2)

where (X0, · · · , Xn+1) are the standard Cartesian coordinates in Rn+1.
AdSn is the set of points X ∈ Rn+1 such that

η̃µνXµXν = l2. (1.3)

where l 6= 0 is a real number related to the dimension n and to the cosmo-
logical constant Λ by

l2 = −n(n+ 1)

Λ
(1.4)

Equation (1.3) identifies a hyperboloid in Rn+1. The symmetry group of
AdS is the Lorentz group SO(2, n− 1), the group of linear transformations
of Rn+1 preserving the quadratic form (1.3). A commonly employed global
chart of AdS is given by the following parametrization of the hyperboloid
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in Equation (1.3) [DFM18]
X0 = l cosh(ρ) cos(τ)

X1 = l cosh(ρ) sin(τ)

Xi = l sinh(ρ) ei , i = 2, · · · , n
(1.5)

where τ ∈ (0, 2π), ρ ∈ R+ and ei = ei(θ, φ1, · · · , φn−3) parametrizes a point
on Sn−2 in terms of the angular coordinates. In this global chart, the metric
of AdS reads

g = l2[cosh2(τ)dτ2 − dρ2 − sinh2(ρ)dΩn−2] (1.6)

where dΩn−2 is the metric of Sn−2. Now we show that a Cauchy problem
in AdS is not well posed, following [BGP07]. AdS is conformally related to
the Einstein static universe (ESU) which is a globally hyperbolic spacetime
with empty boundary. The n-dimensional ESU can be realized as the n-
dimensional cylinder

(x0)2 + (x1)2 + · · ·+ (xn)2 = K, K ∈ R+

in Rn1 equipped with the metric ds2 = −(dx0)2 + (dx1)2 + · · ·+ (dxn)2. AdS
admits closed timelike curves, therefore it is not globally hyperbolic. Let
R×Sn−1

+ and R×Sn−1
− be the two subsets of ESU with xn > 0 and xn < 0

respectively. One can prove that the conformal compactification of AdS is
diffeomorphic to R×Sn−1

+ [BGP07]. The non-uniqueness of the fundamental
solutions is better seen using the notion of fundamental solution at a point.

Definition 1.1.3. Let M be a time-oriented Lorentzian manifold. A fun-
damental solution of a normally hyperbolic operator P : C∞(M)→ C∞(M)
at a point p ∈M is a distribution F ∈ D′(M) such that PF = δp. In other
words, for all φ ∈ D(M) it holds F [P ∗φ] = φ(p). If supp(F ) ⊂ J±(p), then
we call F an advanced (+) or retarded (−) fundamental solution at p.

Consider a point p in the conformal embedding of AdS into ESU – the
upper half of the cylinder in Figure 1.1 – and another point q in ESU \AdS
– the lower half of the cylinder.
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R× Sn−1
+

R× Sn−1
−

p

q

Figure 1.1: Einstein cylinder. AdS can be conformally embedded in the
upper half of the cylinder.

Let F+(p) and F+(q) be the advanced fundamental solutions at p and
q respectively. Then both F+(p) and F+(p) + F+(q) are advanced funda-
mental solutions in p. Indeed, for every test function φ in C∞(AdS) it holds
F+(p)[P ∗φ] + F+(q)[P ∗φ] = φ(p) + φ(q). Since supp(φ) ⊆ AdS, we have
φ(q) = 0 and thus F+(p) + F+(q) is still an advanced fundamental solution
at p ∈ AdS.

Often in the literature, instead of using a global chart of AdS, it is em-
ployed a local chart covering half of anti-de Sitter spacetime called Poincaré
patch of AdS, PAdS for short, which sometimes is considered as a manifold
of its own. PAdS coordinates x ∈ R+, yi ∈ R are defined as [DFJA18]

X0 =
l

x
y0

X1 =
x

2

[
1 +

1

x2

(
−y2

0 +
n−1∑
i=1

y2
i + l2

)]

Xi =
l

x
yi−1 , i = 2, · · · , n

Xd+1 =
x

2

[
1 +

1

x2

(
−y2

0 +

n−1∑
i=1

y2
i − l2

)]
(1.7)

with X0, · · · , Xn+1 the Cartesian coordinates of the embedding space Rn+1.
In this chart, the metric reads

gPAdS =
l2

x2

(
−dy2

0 + dx2 +
n−1∑
i=i

dy2
i

)
(1.8)

showing that PAdS is conformal to the interior of the n-dimensional half-
Minkowski spacetime (H̊n, ηn) with ηn = x2gPAdS and that the conformal
(time-like) boundary of PAdS can be attached at x = 0.
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1.1.3 Asymptotically anti-de Sitter spacetimes

We end this section introducing a class of spacetimes sharing with AdS
their behavior at the conformal boundary and already considered in [GW20,
Vas12]. The following definition of asymptotically anti-de Sitter spacetime,
whose constraints on the metric are reminiscent of the metric of PAdS, was
first given in [GW20].

Definition 1.1.4. Let M be an n-dimensional manifold with non-empty
boundary ∂M . Suppose that M̊ = M \ ∂M is equipped with a smooth
Lorentzian metric g and that

a) If x ∈ C∞(M) is a boundary function, then ĝ = x2g extends smoothly
to a Lorentzian metric on M .

b) The pullback h = ι∗∂M ĝ via the natural embedding map ι∂M : ∂M →
M individuates a smooth Lorentzian metric.

c) ĝ−1(dx, dx) = 1 on ∂M .

Then (M, g) is called an n-dimensional asymptotically anti-de Sitter (AdS)
spacetime. In addition, if (M, ĝ) is a globally hyperbolic spacetime with
timelike boundary, cf. Definition 1.1.1, then we call (M, g) a n-dimensional
globally hyperbolic asymptotically AdS spacetime.

Conditions a), b) and c) are determined up to a conformal multiple, since
we have the freedom to multiply the boundary function x by any nowhere
vanishing Ω ∈ C∞(M). Such freedom plays no rôle in our investigation and
we do not consider it further.

Remark 1.1.2. The class of asymptotically AdS spacetimes we introduced in
Definition 1.1.4 is more general than the one commonly employed in theoret-
ical physics, given in [AD00]. The differences are that hx in Equation (1.9)
is not required to be an Einstein metric and ∂M does not need to be diffeo-
morphic to R× Sn−2.

Given a point p ∈ ∂M , applying the collar neighbourhood theorem and
with a convenient choice of the boundary function x – remember that in Def-
inition 1.1.4 there is the freedom to multiply the original boundary function
by a smooth nowhere vanishing one – we can find a neighbourhood U ⊂ ∂M
containing p and ε > 0 such that on U × [0, ε) the metric reads

g =
−dx2 + hx

x2
(1.9)
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with hx a family of Lorentzian metrics depending smoothly on x and such
that h0 ≡ h [GW20].

Remark 1.1.3. From now on, with a slight abuse of notation, we denote with
x both the boundary function of an asymptotically AdS spacetime (M, g)
and the coordinate normal to ∂M .

1.2 Manifolds of bounded geometry

In this section we briefly introduce the notion of manifold of bounded geome-
try, needed to define Sobolev spaces in the case of a manifold with non-empty
boundary. For simplicity we give an extrinsic definition using an embedding
in another manifold without boundary, as in [DDF19]. One can also give an
intrinsic definition not requiring any extrinsic data, see for example [Sch01].
We begin giving the definition of manifold of bounded geometry in the case
of a manifold without boundary.

Definition 1.2.1. A Riemannian manifold (N,h) with empty boundary is
of bounded geometry if

a) The injectivity radius rinj(N) is strictly positive,

b) N is of totally bounded curvature, namely for all k ∈ N ∪ {0} there
exists a constant Ck > 0 such that ‖5kR‖L∞(M)< Ck.

In order to extend the definition of manifold of bounded geometry to
manifolds with boundary, we need a preliminary notion.

Definition 1.2.2. Let (N,h) be a Riemannian manifold of bounded ge-
ometry and let (Y, ιY ) be a codimension k = 1, closed, embedded smooth
submanifold with an inward pointing, unit normal vector field νY . The
submanifold (Y, ι∗Y g) is of bounded geometry if

a) The second fundamental form II of Y in N and all its covariant deriva-
tives along Y are bounded,

b) There exists εY > 0 such that the map φνY : Y × (−εY , εY ) → N
defined as (x, z) 7→ φνY (x, z)

.
= expx(zνY,x) is injective.

The map φνY introduced in Definition 1.2.2 is called normal exponential
map and sometimes it is denoted exp⊥. Now we are ready to introduce the
class of Riemannian manifolds with boundary and of bounded geometry.
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Definition 1.2.3. Let (N,h) be a Riemannian manifold with ∂N 6= ∅. We
say that (N,h) is of bounded geometry if there exists a Riemannian manifold
of bounded geometry (N ′, h′) of the same dimension as N such that

a) N ⊂ N ′ and h = h′|N

b) (∂N, ι∗h′) is a bounded geometry submanifold of N ′, where ι : ∂N →
N ′ is the embedding map.

Remark 1.2.1. One can prove that Definition 1.2.3 is independent from the
choice of N ′. An equivalent intrinsic definition which does not require to
introduce the manifold N ′ is given in [Sch01].

Before introducing Sobolev spaces on a Riemannian manifold (N,h) with
boundary and of bounded geometry, we need to recall the main results of
[ANN19, Sec. 2.4]. In the following, we denote with rinj(N) and rinj(∂N),
the injectivity radius of N and ∂N respectively while δ > 0 is such that the
normal exponential map exp⊥ : ∂N × [0, δ) → N is injective. With these
data let 

kp : Bn−1
r (0)× [0, r)→ N if p ∈ ∂N

(x, t) 7→ exp⊥(exp∂Np (x), t)

kp : Bn
r (0)→ N if p ∈ N̊

v 7→ expNp (v)

, (1.10)

where we are implicitly identifying Tp∂N with Rn−1, whenever p ∈ ∂N . In
addition we introduce the sets

Up(r)
.
=

{
kp(B

n−1
r (0)× [0, r)) ⊂ N if p ∈ ∂N

kp(B
n
r (0)) if p ∈ N̊

(1.11)

where r < min
{

1
2rinj(N), 1

4rinj(∂N), 1
2rδ
}

.

Definition 1.2.4. Let (N,h) be a Riemannian manifold with boundary and
of bounded geometry of dimension dimN = n. Let

r < min

{
1

2
rinj(N),

1

4
rinj(∂N),

δ

2

}
For each p ∈ ∂N , we call Fermi coordinate chart the map kp : Bn−1

r (0) ×
[0, r)→Wp(r) with associated coordinates (x, z) : Up(r)→ Rn−1 × [0,∞).
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Bn−1
r (0)× [0, r)

(x, z)

0 x

z

∂N

p y

y = exp∂Np (x)

νy

N
Up(r)

κp

Figure 1.2: Fermi coordinates introduced in Definition 1.2.4

In view of Equations (1.10) and (1.11), if p ∈ N̊ , we can always consider
geodesic neighborhoods not intersecting ∂N and endowed with normal co-
ordinates. This allows us to introduce a distinguished covering, defined as
follows.

Definition 1.2.5. Let (N,h) be a Riemannian manifold with boundary and
of bounded geometry. Let 0 < r < min

{
1
2rinj(N), 1

4rinj(∂N), δ2
}

. A subset
{pγ}γ∈I , i ⊆ N, is an r-covering subset of N if

a) For each R > 0, there exists KR ∈ N such that, for each p ∈ N , the
set {γ ∈ I | dist(pγ , p) < R} has at most KR elements.

b) For each γ ∈ I, we have either pγ ∈ ∂N or dist(pγ , ∂N) ≥ r.

c) N ⊂
⋃
γ∈I Upγ (r), cf. Equation (1.11).

To define Sobolev spaces over manifolds of bounded geometry, we make
use of Sobolev spaces over r-covering subsets. In order to obtain a global
definition, we glue together these local Sobolev spaces using a partition of
unity which is compatible with a given r-covering set.

Definition 1.2.6. Under the same assumptions as in Definition 1.2.5, a
partition of unity {φγ}γ∈I of N is called an r-uniform partition of unity
associated with the r-covering set {pγ} if

a) The support of each φγ is contained in Upγ , cf. Equation (1.11),

b) For each multi-index α, there exists Cα > 0 such that |∂αφγ |≤ Cα for
all γ ∈ I. Here the derivatives ∂α are computed either in the normal
geodesic or in the Fermi coordinates on Upγ depending on whether p

lies in N̊ = N \ ∂N or in ∂N .

Now we have all ingredients we need to define Sobolev spaces on a Rie-
mannian manifold (N,h) with boundary and of bounded geometry. Let {φγ}
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be a uniform partition of unity associated with the r-covering set pγ as per
Definition 1.2.6. For every k ∈ N we call k-th Sobolev space, Hk(N), the
collection of all distributions u ∈ D′(N) such that

‖u‖2Hk(N)
.
=
∑
γ

‖(φpγu) ◦ kpγ‖2Hk<∞ (1.12)

where ‖·‖Hk is the standard Sobolev space norm either on Rn or Rn+.

Remark 1.2.2. As in the case of a manifold without boundary [GS13], it
turns out that, regardless of the chosen r-covering and of the associated
r-uniform partition of unity, Hk(N) is equivalent to W 2,k(N) which is the
completion of

Ek(N)
.
= {f ∈ C∞(N) | f,∇f, . . . , (∇)kf ∈ L2(N)},

with respect to the norm

‖f‖W 2,k(N)=

(
k∑
i=0

‖(∇)if‖L2(N)

) 1
2

.

Here ∇ is the covariant derivative built out of the Riemannian metric h,
while (∇)i indicates the i-th covariant derivative. This notation is employed
to disambiguate with ∇i = hij∇j .

The previous analysis can be extended to the case of Lorentzian mani-
folds as well. For the sake of simplicity we focus on the case without bound-
ary. Following [GOW17] we start from (N,h) a Riemannian manifold of
bounded geometry such that dimN = n.

In addition we call BTmm′(Bn(0,
rinj(N)

2 ), δE), the space of all bounded ten-

sors on the ball Bn(0,
rinj(N)

2 ) centered at the origin of the Euclidean space
(Rn, δE) where δE stands for the flat metric. For every m,m′ ∈ N∪ {0}, we
denote with BTmm′(N) the space of all rank (m,m′) tensors T on N such that,
for any p ∈M , calling Tp

.
= (expp ◦ep)∗T where ep : (Rn, δ)→ (TpN,hp) is a

linear isometry, the family {Tp}p∈M is bounded on BTmm′(Bn(0,
rinj(N)

2 ), δE).

Definition 1.2.7. A smooth Lorentzian manifold (M, g) is of bounded ge-
ometry if there exists a Riemannian metric ĝ on M such that:

a) (M, ĝ) is of bounded geometry.

b) g ∈ BT 0
2 (M, ĝ) and g−1 ∈ BT 2

0 (M, ĝ).
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From now on all manifolds we will consider shall be of bounded geometry.
This hypothesis is vital every time we need to invoke a partition of unity
argument.

Remark 1.2.3. A spacetime whose underlying manifold is of bounded geom-
etry cannot contain singularities, due to the regularity assumptions on the
metric and on the scalar curvature.

The reader interested in manifolds of bounded geometry can find more
details in [Sch01, ANN19, GS13, GOW17, DDF19].

1.3 b-calculus

To prove the well-posedness of a mixed boundary value/Cauchy problem on
asymptotically anti-de Sitter spacetimes for a very general class of bound-
ary conditions implemented by pseudodifferential operators, we make use of
boundary calculus, following the road first paved by [Vas12]. In this section
we define b-pseudodifferential operators using a Schwartz kernel approach,
following [Gri01] and [Mel93]. Before discussing together b-pseudodifferential
operators, we need to introduce some basic notions of b-geometry.

1.3.1 Introduction to b-geometry

b-geometry was fist introduced by R. Melrose and P. Piazza in [Mel93, MP92]
as a framework to study differential calculus and differential operators on
manifolds with boundary and it has been used by many authors in different
context, e.g. [Vas08, VGP14, APG17, GW20]. In this section we focus on
the construction of b-geometry in the case of a manifold with non-empty
boundary. The readers interested in the general case, in which the under-
lying manifold is a manifold with corners, can refer to [MP92]. In this
section M denotes a connected, orientable, smooth manifold of dimension
dimM = n ≥ 2, with boundary ∂M and we call ι : ∂M ↪→ M the natural
embedding map. The main object in b-geometry is the space of vectors of
M tangent to the boundary ∂M , defined as

Vb(M)
.
= {X ∈ Γ(TM) | X|∂M∈ Γ(T∂M)} (1.13)

This space can be characterized as the collection of the sections of a vector
bundle as follows. First, we note that for any open set U ⊂ M such that
U ∩ ∂M = ∅, then Vb(M) coincides with Γ(TM). Consider now an open
subset U whose intersection with the boundary is non-empty. By the tubular
neighborhood theorem there is an open neighborhood Uε of ι(∂M∩U) which
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is diffeomorphic to [0, ε) × ι(∂M ∩ U). Calling x the coordinate of the
projection on the first factor, then any element X of Vb(U) can be written
as

X|Uε= f
∂

∂x
+ Yx

where f is a smooth real-valued function over U such that f |∂M∩Uε= 0
and Yx ∈ Γ(TUε) is a family of vector fields depending smoothly on x such
that Y0 ∈ Γ(T (∂M ∩ Uε)). Since f is a smooth function vanishing at the
boundary, we can write f = xα with α ∈ C∞(Uε). Therefore the vector field
X takes the form

X|Uε= α

(
x
∂

∂x

)
+ Yx

from which we can see that it is convenient to consider, in addition to the
usual basis of T (M ∩ Uε), also x ∂

∂x |p as a basis vector at a point p ∈ Uε.
These observations suggest to introduce a new bundle, called the b-tangent
bundle bTM , whose base space is M and whose fiber over a point p is defined
as follows

bTpM :=

{
TpM if p 6∈ Uε
, spanR

{
x ∂
∂x , TpU∂M

}
if p ∈ Uε.

(1.14)

Remark 1.3.1. The definition of bTpM given above does not depend on the
choice of ε. Indeed, if a point p does not lie in ι(∂M), then we can find an
open neighborhood Up not intersecting the boundary such that bTpM |Up is
diffeomorphic to TM |Up .

Note that the restriction map

π : Vb(M)→ Γ(T∂M) X 7→ X|∂M

is not injective, as on the boundary it associates any b-vector of the form
ax∂x, a ∈ C∞(∂M), to the zero section of TM . The dual of bTM is bT ∗M ,
the b-cotangent bundle. Proceeding as before, making use of the tubular
neighborhood theorem, one can show that for every p ∈ M̊ , bT ∗pM coincides

with T ∗pM , while for a point p ∈ ∂M , we have bT ∗pM = spanR
{
T ∗p ∂M, dxx

}
.

We also observe that there is a natural non injective map π : T ∗M → bT ∗M ,
built as follows. Consider a tubular neighbourhood of ∂M and a chart U
centered at point p ∈ ∂M , inducing the local trivializations of T ∗M and
bT ∗pM whose local coordinates are (x, yi, ξ, ηi) and (x, yi, ζ, ηi) respectively.
In these coordinates the action of the map π is:

π(x, yi, ξ, ηi) = (x, yi, xξ, ηi)



14 CHAPTER 1. GEOMETRIC AND ANALYTIC PRELIMINARIES

In particular, since p ∈ ∂M , we have x = 0 and therefore π(0, yi, ξ, ηi) =
(0, yi, 0, ηi) for every ξ ∈ R. If we consider, instead, a chart U ′ centered
at a point q ∈ M̊ , the map π is a diffeomorphism. We call compressed
b-cotangent bundle

bṪ ∗M
.
= π[T ∗M ], (1.15)

which is a subset of bT ∗M . This space will play a pivotal rôle in the following,
when we shall define the b-geometry analogue of characteristic set of a PDE.
Further details can be found in [Mel81, Vas12]. The last geometric structure
that we shall need in this work is the b-cosphere bundle which is realized
as the quotient manifold obtained via the action of the dilation group on
T ∗bM \ {0}, namely

bS∗M
.
=

bT ∗M \ {0} /R+ . (1.16)

We remark that, if we consider a local chart U ⊂ M such that U ∩ ∂M 6=
∅ and the local coordinates (x, yi, ζ, ηi), i = 1, . . . , n − 1 = dim ∂M , on
bT ∗UM

.
= bT ∗M |U , we can build a natural counterpart on bS∗UM , namely

(x, yi, ζ̂, η̂i) where ζ̂ = ζ
ρ and η̂i = ηi

ρ with ρ = |ηn−1|. The b-cosphere bundle
is useful to prove some estimates we need in order to obtain a propagation of
singularities theorem for the Klein-Gordon operator with general boundary
conditions.

1.3.2 b-differential operators

Using b-vector fields in Vb(M), we can build b-differential operators in the
same way we build differential operators using ordinary vector fields. The
space Diffkb (M) is the space of b-differential operators of order k ∈ N, namely
the space of the linear maps P : C∞(M)→ C∞(M) given by a finite sum up
to k-fold products of elements of Vb(M) and C∞(M). In local coordinates
(x, y) of M , with y = y1, · · · , yn, we can write a b-differential operator P as

P =
∑
|α|≤k

aα(x, y)

(
x
∂

∂x

)α0
(

∂

∂y1

)α1

· · ·
(

∂

∂yn−1

)αn−1

(1.17)

where α = (α0, · · · , αn−1) is a multi-index and {aα}|α|≤k are smooth func-
tions up to the boundary. The b-principal symbol is the polynomial

bσk(P ) =
∑
|α|=k

aα(x, y)ζ̃α0ηα1
1 · · · η

αn−1

n−1 (1.18)

with (x, y, ζ̃, η) local coordinates on bT ∗M . As we will see, the microlo-
calization of Diffkb (M) is Ψk

b (M), the algebra of the properly supported
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b-pseudo differential operators of order k. A classical pseudodifferential
operator on a manifold M without boundary is an operator whose integral
kernel over M ×M conormal with respect to the diagonal ∆ = {(p, p) ∈
M ×M | p ∈ M} and such that the principal symbol is determined by the
singular behavior at ∆. However, we cannot slavishly extend this definition
to b-pseudodifferential operators on manifolds with boundary, because in
addition to the singularities on the interior of the diagonal diag(M̊ × M̊),
we may encounter also singularities in the corners of M ×M . For simplicity
in the following we focus on the case M = R+, which will be enough for
our purposes, since the corner of R+ × R+ is the only one we encounter in
integral kernels over aAdS spacetimes. We need to give a precise description
of the singular behaviour approaching the interior of the diagonal ∆, at the
boundary ∂(R+ × R+) \ (0, 0) and at the corner (0, 0). To overcome this
hurdle, we introduce the notion of blow-up, which allows to deal with the
singularities of integral kernels at the boundaries and at the corners.

1.3.3 Polyhomogeneous conormal functions and blow-ups

In this section we introduce the notion of blow-up of a manifold M with
boundary. As a motivation for the need of b-geometry and blow-ups we
begin with the study of polyhomogeneous conormal functions, a class of
functions which can diverge at the boundary of M as a monomial or as a
logarithm. To give a precise description of the singularities, it is convenient
to introduce the notion of index set.

Definition 1.3.1. An index set is a discrete subset F ⊂ C× N0 such that:

a) F ∩ {(z, p) ∈ C× N0 | Re(z) < N , N ∈ R} is a finite set.

b) If (z, p) ∈ F and p ≤ q, then (z, q) ∈ F .

Now we can give a precise definition of a polyhomogeneous conormal
function.

Definition 1.3.2. Let M be a smooth manifold with boundary ∂M and let
F be an index set. A smooth function u ∈ M̊ is called polyhomogeneous
conormal function with respect to F if, on a tubular neighborhood [0, ε) ×
∂M , u satisfies the following asymptotic expansion:

u(x, y) ∼
∑

(z,p)∈F

az,p(y)xzlogp(x) as x→ 0+

with az,p ∈ C∞(∂M).
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We followed the same notation of the previous section denoting with
x the boundary coordinate. We have written y = y1, . . . , yn to denote the
other coordinates collectively. We are interested in studying the singularities
of the integral kernel of an operator, namely we are dealing with a function
defined on M×M , which is a manifold with corners. We extend the previous
definitions as follows:

Definition 1.3.3. An index family F for a manifold with corners is an
assignment of an index set to each boundary.

For the sake of simplicity we treat only the case of M = R+, which is
sufficient to introduce b-calculus on manifolds with boundary. In this case,
denoting with x1, x2 the coordinates of the two factors of M ×M , we write
the index family over M ×M = R2

+ as F = (E,F ), with E the index set
associated to the x1 axis and F the one associated with the x2 axis. In this
case the underlying manifold is R2

+, hence the definition of polyhomogeneous
conormal function can be extended as follows.

Definition 1.3.4. Let (E,F ) be an index family for R2
+. A function u over

R2
+ is polyhomogeneous conormal with respect to (E,F ) if for every x2 ∈ R

it admits an asymptotic expansion in x1 ∈ R as in Definition 1.3.2 with
index set F such that the coefficients az,p are polyhomogeneous conormal
functions on R+ with index set E.

The last requirement in this definition entails that for each x1 the co-
efficients az,p have the same singular behavior. A function which does not
satifsfies this definition is u(x1, x2) =

√
x2

1 + x2
2, defined over R2

+, as its
asymptotic expansion as x1 → 0+ is√

x2
1 + x2

2 ∼
∞∑
i=0

ai(y)xi = x2 +
1

2

x2
1

x2
− 1

8

x4
1

x3
2

+ · · ·

whose coefficients ai(x2) are more singular as we increase the order in x1 of
the expansion. However, if we see u as a function of x1 and x1/x2, then we
have√

x2
1 + x2

2 ∼ x2 +
1

2
x2

(
x1

x2

)2

− 1

8
x2

(
x1

x2

)4

+ · · · = x2

∞∑
i=0

ci

(
x1

x2

)2i

Now the coefficients of the expansion are the real values ci. Therefore in
these new variables u is a polyhomogeneous conormal function. This ex-
ample suggests that, to understand the singular behavior, we may need to
find a suitable set of coordinates. We formalize this fact with the notion of
asymptotic type.
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Definition 1.3.5. Let M be any smooth manifold and let N be a compact,
connected manifold with corners. Let u be a function over M and consider
a diffeomorphism β : N̊ → M such that β∗u = u ◦ β is polyhomogeneous
conormal on N . Then we say that u is of asymptotic type β and we call β
a singular coordinate change, which resolves the function β.

The simplest example of singular coordinate change for the function
u(x1, x2) : R2

+, (x1, x2) 7→
√
x2

1 + x2
2 considered before is obtained con-

sidering polar coordinates (r, θ) restricted to N = [0,+∞) × [0, π/2], with
β(r, θ) = (rsinθ, rcosθ). We have u ◦ β(r, θ) = r, which is a conormal poly-
homogenous function as per Definition 1.3.4.

The reason polar coordinates allow us to describe the asymptotic behav-
ior of u is actually the fact that polar coordinates over N are blowing up
the origin of R2

+. Indeed, since β is a diffeomorphism on the interior of R2
+,

β−1(p) is a point if p ∈ N̊ , but this is not true for p = (0, 0), which is mapped
to the interval {0} × [0, π/2]. Considering β∗u we spread out the values of
u near the origin to the interval {0} × [0, π/2], with the asymptotic expan-
sion depending only on the first factor. We say that M2

b = R+ × [0, π/2] is
obtained from M ×M = R2

+ by ‘blowing up’ the point (0, 0). Sometimes,
to denote that in this case the origin blowed-up we employ the notation
M2
b = [M ×M, (0, 0)] used in [Gri01]. β is called the blow-down map. The

boundary hypersurfaces of M2
b are the left boundary lb = {θ = π

2 }, the right
boundary rb = {θ = 0} and the front face ff = {r = 0}. The blow-up of the
diagonal ∆ = {θ = π

4 } is the space ∆b = β−1(∆◦), called the lifted diagonal
or b-diagonal.

0
π
2

rblb

ff

∆b

(a) Picture of M2
b . ∆b = {θ = π

4 }
is the b-diagonal.

x

y ∆

(b) M2 = β(M2
b ). ∆ = {θ = π

4 } is the
diagonal.

Figure 1.3
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In general this procedure of blowing up a point – the origin in the case
of polar coordinates – goes under the name of blow-up. On [R2

+, (0, 0)]
there are two distinguished coordinate systems which are usually employed:
projective coordinates and rational polar coordinates [Gri01].

Rational polar coordinates

Let x, x′ ∈ R+ ∪ {0} be the Cartesian coordinates over R2
+. The rational

polar coordinates ρ, τ are defined as
ρ = x+ x′

τ =
x− x′

x+ x′

(1.19)

The boundary functions for ff , lb and rb are ρ, 1 + τ and 1− τ respectively.
The blow-down map is given by β(ρ, τ) =

(
1
2ρ(1 + τ), 1

2ρ(1− τ)
)
. When

representing a blow-up as in Figure 1.4a we are using these coordinates.
These are the coordinates we shall employ in the following.

Projective coordinates

Another distinguished set of coordinates is the one given by the following
two local charts. Let θ be the angular variable of standard polar coordinates
over R2

+. If θ 6= π
2 we define the coordinates (ξ1, η1) as:ξ1 = x

η1 =
y

x

Instead, if θ 6= 0, we can use the coordinates (ξ2, η2) given byξ2 =
x

y

η2 = y

In these charts, the blow-down maps β takes the form β1(ξ1, η1) = (ξ1, ξ1, η1)
and β2(ξ2, η2) = (ξ2η2, η2).

As we shall see later, the space of b-pseudodifferential operators is the
space of distributions whose singularities are located on the b-diagonal and
satisfy certain constraints. In order to give a precise definition, we need to
introduce the notion of conormal distribution on a manifold, beginning from
the particular case of a polyhomogeneous conormal distribution.
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-1 1

rblb

ff

∆b

τ

ρ

(a) Rational polar coordinates.

rb

lb

ff

∆b

ξ1

η1
ξ2

η2

(b) Projective coordinates.

Figure 1.4

Definition 1.3.6 (Polyhomogeneous conormal distribution of order m on a
manifold). Let Z be a manifold and T ⊂ Z a submanifold. A distribution
u ∈ D(Z) is one-step conormal or polyhomogeneous conormal with respect
to T if ∃m ∈ R such that:

1) u is smooth on Z \ T .

2) In any local coordinate system φ : U ⊂ Z → Rn mapping T ∩ U to
Rk × {0}n−k ⊂ Rn there is a representation

u(t, z) =

∫
Rn−k

eizζa(t, ζ)dζ (1.20)

where t = (φ1, · · · , φk), z = (φk+1, · · · , φn) and a is a smooth function
on (T ∩ U)× Rn−k with asymptotics1

a(t, ζ) ∼
∞∑
j=0

am−j(t, ζ) (1.21)

as |ζ|→ ∞, where al is homogeneous of degree l in ζ, for each l.

3) If T is a (sub)manifold with corners, u(t, z) is smooth up to ∂T in the
variable t.

Remark 1.3.2. Condition (1.23) is the Fourier transform in the directions
transveral to T .

1Here the meaning of the asymptotic expansion is the following: For any N , if a(N) is
the sum up to the term a−N , then |a(y, ζ)−a(N)(y, ζ)|≤ |ζ|−N−1. Similar estimates must
hold true also for the derivatives in y and ζ.
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Weakening the second condition of the definition above we obtain the
larger class of non-polyhomogeneous conormal distributions. Before giving
the precise definition, we need to recall the notion of symbol, as introduced
by Hörmander [H0̈0].

Definition 1.3.7. Let (z, ξ) be coordinates over bT ∗M . A symbol a is a
smooth function over bT ∗M such that, given a compact exhaustion {Ki} of
M , satisfies

|∂αz ∂
β
ξ a(z, ξ)|≤ CKi,α,β(1 + |ξ|)m−|β| (1.22)

on Ki × Rn.

In the following we denote with Sm(bT ∗M) the space of symbols of order
m over the b-cotangent bundle of M . We are ready to give the general
definition of conormal distribution.

Definition 1.3.8 (Conormal distribution of order m on a manifold). Let
Z be a manifold and T ⊂ Z a submanifold. A distribution u ∈ D(Z) is
conormal with respect to T if ∃m ∈ R such that:

1) u is smooth on Z \ T .

2) In any local coordinate system φ : U ⊂ Z → Rn mapping T ∩ U to
Rk × {0}n−k ⊂ Rn there is a representation

u(t, z) =

∫
Rn−k

eizζa(t, ζ)dζ (1.23)

where t = (φ1, · · · , φk), z = (φk+1, · · · , φn) while a is a symbol as per
Definition 1.3.7.

3) If T is a (sub)manifold with corners, u(t, z) is smooth up to ∂T in the
variable t.

With these data a ΨDO on a manifold M without corners is a distribu-
tion on M ×M which is conormal with respect to

∆ = {(p, p) | p ∈M} ⊂M ×M (1.24)

In the case of a manifold with corner, in addition to the singularities on
the diagonal, we must take care of the boundary behavior. In particular,
b-pseudodifferential operators are characterized by their behavior at ff, lf,
rf and ∆b.
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1.3.4 Half b-densities

To build the small calculus of b-pseudodifferential operators, it is convenient
to introduce the notion of half b-density. The reason is that it is simpler
to introduce the space of b-pseudodifferential operators seeing their integral
kernels as half-b-densities over M2

b instead than as distributions over M2

[Gri01, Mel93]. In general, given a vector space V of dimension n, the space

of s-densities over V , with s ∈ R, is

ΩsV = {µ ∈ ΛnV ∗ \ {0} → R | µ(tλ) = |t|sµ(λ) ∀λ ∈ ΛnV ∗, t 6= 0}

Here ΛnV ∗ is the space of the n-differential forms over V . Note that, since
dim(ΛnV ∗) = 1, an element µ ∈ ΩsV is fixed by its value when evaluated
against an n-differential form λ 6= 0. This entails that the space of s-
densities is of dimension one. The definition of s-density immediately yields
the following canonical isomorphisms

ΩsV ⊗ ΩtV ' Ωs+tV, ∀ s, t ∈ R
Ω0V ' R

Ω−sV ' (ΩsV )∗

Ωs(V ⊕W ) ' ΩsV ⊗ ΩsW ∀s ∈ R

(1.25)

where V and W are finite dimensional vector spaces.

Let M be a smooth compact manifold of dimension n, with or without
boundary. Consider a point p ∈ M and let Ωs

p := Ωs(T ∗pM) and bΩs
p :=

Ωs(bT ∗pM) denote the spaces of s-densities and s-b-densities over M at the
point p. Then:

� ΩsM = tp∈MΩ(T ∗pM) is the bundle of s-densities over M .

�
bΩsM = tp∈MΩ(bT ∗pM) is the bundle of s-b-densities over M .

These two bundles are related as follows

µ ∈ C∞(M ; bΩsM)⇔ xsµ ∈ C∞(M ; ΩsM) (1.26)

In particular, calling

Ċ∞(M, bΩsM) = {u ∈ C∞(M, bΩsM) | u vanishes to all orders at ∂M}
(1.27)

equation (1.26) yields that Ċ∞(M, bΩsM) ' Ċ∞(M,ΩsM).
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In local coordinates x, y1, · · · , yn−1 near the boundary of M , a local basis
element of the bundle ΩsM is of the form(

a∂x ∧ ∂y1 ∧ · · · ∧ ∂yn−1

)
|dxdy1 · · · dyn−1 |s

while an element of bΩsM is of the form(
ax∂x ∧ ∂y1 ∧ · · · ∧ ∂yn−1

) ∣∣∣∣dxx dy1 · · · dyn−1

∣∣∣∣s
with a ∈ C∞(M).

Now let us focus on half-densities. Equation (1.25) entails that there
exists a well-defined product bewteen half-densities, namely a map:

C∞(M ; Ω
1
2M)× C∞(M ; Ω

1
2M)→ C∞(M ; Ω1M) (1.28)

Furthermore, this product can be extended to smooth sections of the com-
plexified 1/2-densties bundles, yielding the sesquilinear pairing

〈µ, ν〉 =

∫
M
µν for every µ, ν ∈ C∞(M ; Ω

1
2M) (1.29)

The completion of C∞(M,Ω
1
2M) with respect to this inner product yields

the space of the square-integrable half-densities L2(M,Ω
1
2M). The pair-

ing (1.29) also allows us to define the space of distributional half densities

C−∞(M,Ω
1
2M), namely the space of the the continuous linear maps from

C∞(M,Ω
1
2M) to C. Making use of the relation (1.26), we can extend the

product map in Equation (1.28) to

C∞(M, bΩ
1
2M)× Ċ∞(M, bΩ

1
2M)→ C∞(M, bΩM)

and the pairing (1.29) as a map

C∞(M, bΩ
1
2M)× Ċ∞(M, bΩ

1
2M)→ C.

The Schwartz kernel theorem can be formulated for half-b-densities over
manifolds with boundary as follows [Mel93].

Proposition 1.3.1. Let M be a compact manifold with boundary ∂M and
consider the blow-up M2

b = [M2, (0, 0)]. The continuous linear operators

Ċ∞(M, bΩ
1
2M)→ C−∞(M, bΩ

1
2M)
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are in one-to-one correspondence with the elements of the space of distribu-
tional sections C−∞(M2

b ,
bΩ

1
2M2

b ). In particular, operators on distributional
densities can be identified with the lifts of their kernels to M2

b :{
AK : Ċ∞(M, bΩ

1
2M)→ C−∞(M, bΩ

1
2M)

}
↔
{
K ∈ C−∞(M2

b ; 2Ω
1
2M2

b )
}

〈AKφ, ψ〉 = 〈K, (β2)∗(ψ � φ)〉
(1.30)

where (β2)∗K is the pullback of K in both entries with respect to the blow-
down map β. The interested reader can find more about s-b-densities in
[Mel93, Chapter 4].

1.3.5 Kernels of b-differential operators as b-half-densities

Before defining b-pseudodifferential operators, let us focus on b-differential
operators. We start by studying the identity I as a b-differential opera-
tor on half-b-densities over a manifold with boundary M . Given a half-b-

density α

∣∣∣∣dxx dy
∣∣∣∣ 1

2

over M , the action of the identity – in local coordinates

x, x′, y1, · · · , y′n−1 of M ×M , with x, x′ the boundary functions of the two
factors – can be expressed as the formal integral

I

(
α

∣∣∣∣dxx dy
∣∣∣∣ 1

2

)
=

∫
M
δ(x− x′)δ(y − y′)φ(x′, y′)dx′dy′

∣∣∣∣dxx dy
∣∣∣∣ 1

2

(1.31)

From this expression we can read the kernel of the identity in the sense of
Equation (1.30):

KI = x′δ(x− x′)δ(y − y′)
∣∣∣∣dx′x′ dy′dxx dy′

∣∣∣∣ 1
2

(1.32)

This kernel is degenerate on the boundary of M×M , since x′δ(x−x′)δ(y−y′)
vanishes for x′ = 0. Lifting this kernel to M2

b making use of the projective
coordinates s = x/x′ and t = x′, yields

KI = δ(s− 1)δ(y − y′)
∣∣∣∣dss dy′dtt dy′

∣∣∣∣ 1
2

(1.33)

which is no longer degenerate at the boundary of M2
b . In general, the lift-

ing of the kernels of b-differential operators removes the degeneracy of the
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kernels on the boundary. Before stating the main proposition concerning
b-differential operators as b-half-densities, we need to introduce the notion
of smooth Dirac section bΩ

1
2M2

b .

Definition 1.3.9. A smooth Dirac section of order k of bΩ
1
2M2

b , with respect

to 4b, is a distribution in C−∞(M2
b ; bΩ

1
2M2

b ) which has support contained
in 4b and such that in local coordinates it admits the form∑

0≤p+|α|≤k

ap,α(x′, y)Dp
sδ(s− 1)Dα

y δ(y − y′) (1.34)

with ap,α ∈ C∞(M) for every p ∈ N and α ∈ Nn−1, where n = dim M .

Proposition 1.3.2 ([Mel93], Lemma 4.21). Under the isomorphism given

by Proposition 1.3.1 the space Diffkb (M ; bΩ
1
2M) is mapped isomorphically

onto the space of all smooth Dirac sections of order k, as per Definition 1.3.9,
with respect to 4b.

1.3.6 The small calculus of b-pseudodifferential operators

Now we are ready to microlocalize the space of b-differential operators, seen
as operators over half-b-densities.

Definition 1.3.10 (Small b-calculus). The (small) space Ψm
b (M ; bΩ

1
2M) of

b-pseudodifferential operators of order m ∈ R, acting on half-b-densities,
is the space of continuous linear operators which, by means of Equation
(1.3.1), correspond to conormal sections of order m associated to the lifted
diagonal and vanishing to all orders at lb ∪ rb.

The meaning of this definition is that the kernel κ associated to a b-
pseudodifferential operator of order m must satisfy the following properties:

a) κ|M2
b \4b
∈ C∞(M2

b \ 4b;
bΩ

1
2M2

b )

b) In a neighborhood of 4b \ ff

κ(z, z′) = (2π)−n−1

∫
ei(z−z

′)ζa(z′, ζ)dζ|dzdz′|
1
2 (1.35)

with (z, z′) coordinates of M2
b .
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c) In a neighborhood of 4b ∩ ff, using rational polar coordinates instead
of the boundary functions x, x′, it holds

κ(ρ, τ, y, y′) = (2π)−n−1

∫
eiτλ+i(y−y′)ηb(ρ, y′, λ, η)dλdη

∣∣∣∣dρρ dτdydy′
∣∣∣∣ 1

2

(1.36)

d) The Taylor series of κ vanishes at every order at lb ∪ rb.

The amplitudes a and b in the Fourier integral above are symbols of the
same order m of the b-pseudodifferential operators. If the symbols satisfy
the full asymptotic Equation (1.21) we obtain the smaller space of one-step
polyhomogeneous b-pseudodifferential operators.

Remark 1.3.3. One can prove that the expressions in Equations (1.35), (1.36)
are actually coordinate invariant [Mel93].

As in the case of pseudodifferential operators, also b-differential opera-
tors admit a principal symbol map.

Proposition 1.3.3 ([Mel93], Proposition 4.23). The local symbols in Equa-
tions (1.35) and (1.36) fix the symbol map, giving the short exact sequence

0 Ψm−1
b (M ; bΩ

1
2M) Ψm

b (M ; bΩ
1
2M) Sm(bT ∗M) 0

bσm

In particular the short exact of this proposition entails that there exits
an isomorphism

Ψm
b (M)/Ψm−1

b (M) ∼= Sm(bT ∗M)/Sm−1(bT ∗M).

Remark 1.3.4. This isomorphism and the definition of classical symbol over
bT ∗M yield that Ψm

b (M) ⊂ Ψn
b (M) if m < n.

The kernel approach over half-b-densities presented above is a way to
define b-pseudodifferential operators which is well-suited to study the prop-
erties of this space. In the following we revert to reading b-pseudodifferential
operators as operators acting on smooth functions. In the following, as in
[Vas12] and [GW20], we work with properly supported b-pseudodifferential
operators and with Ψb(M) we shall denote this space. Since we are dealing
with properly supported distributions, we can view an element of Ψm

b (M)
as a map Ċ∞(M)→ Ċ∞(M), which can be extended to a continuous endo-
morphism over C∞(M) [GW20]. Here, with Ċ∞(M) we denote the space of
smooth functions vanishing at the boundary ∂M with all their derivatives.
The pairing between Ċ∞(M) and C−∞(M), which we denote with 〈u, v〉,
allows us to extend a pseudodifferential operator to an endomorphism on
C−∞(M).
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Remark 1.3.5. Fixed a positive C∞ density µ over M , u ∈ L2
loc(M,µ) deter-

mines an element of C−∞(M) via

〈u, φ〉 =

∫
M
u · φdµ

where φ ∈ Ċ∞(M) has compact support. Sometimes, in concrete applica-
tions, it may be more convenient to define locally the small b-calculus using
local quantization maps [Vas12] – namely using Fourier integral operators
defined over local charts of M – and then to define a global quantization map
using a partition of unity. The result is a map Op : Sm(bT ∗M) → Ψm

b (M)
which associates a b-pseudodifferential operator to a symbol. We can see
the map Op as a non-canonical inverse of the symbol map, whose form is
fixed case by case as it is more convenient. For example, a local quantiza-
tion map can be defined as follows. Let U be a local chart with coordinates
(x, y) and let a ∈ Sm(bT ∗M) be a classical symbol as per Definition 1.3.7
with support in K ⊂ bT ∗KM , K ⊂ U compact. We can define the quantiza-
tion map Op, associating to a ∈ Sm(M) the b-pseudodifferential operator
Op(a) ∈ Ψm

b (M), as the following oscillatory integral

Op(a)u(x, y) =

=
1

(2π)n

∫
U
ei[(x−x

′)σ+(y−y′)·η]Φ

(
x− x′

x

)
a(x, y, xσ, η)u(x′, y′)dx′dy′dσdη

(1.37)

with u ∈ C∞(M). The integral in x′ is over the interval [0,∞), while those
in the other variables are over the real line. In addition Φ ∈ C∞0 (Ω), where
0 ∈ Ω ⊂ R, Φ is identically 1 near 0 and it localizes to a neighborhood of
the diagonal {x = x′}. Symbolically we can write Op(a) = a(x, y, xDx, Dy).
In order to reflect the form of a coordinate system on bT ∗M , we can make
the change of variable ξ = xσ, which leads to the following expression of the
quantization map:

Op(a)u(x, y) =

=
1

(2π)n

∫
ei[

(x−x′)
x

ξ+(y−y′)·η]Φ

(
x− x′

x

)
a(x, y, ξ, η)u(x′, y′)

dx′

x
dy′dξdη

(1.38)

1.3.7 Properties of b-pseudodifferential operators

In this section we recall some useful properties of b-differential operators that
we use in the following and we introduce the notion of operatorial wavefront
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set, following [Vas12], [GW20] and [DM21a]. We begin reviewing some
properties of the principal symbol of a b-pseudodifferential operator. Given
two pseudodifferential operators A ∈ Ψm

b (M) and B ∈ Ψn
b (M), the principal

symbol of the composition AB is σb,m+n(AB) = σb,m(A)·σb,n(B), while their
commutator [A,B] ∈ Ψm+n−1

b (M) has principal symbol σb,m+n−1([A,B]) =
{σb,m(A), σb,n(B)}. The adjoint of a pseudodifferential operator of order m
with respect to a measure µ over the manifoldM is again a pseudodifferential
operators of order m. In particular the adjoint with respect to the volume
form of a Lorentzian manifold is such that [MS11]

σ(A∗)(z, ζ) ∼
∞∑
α=0

(−i)|α|

α!
∂αζ 5α

z a(z, ζ) (1.39)

At the level of principal symbol, the equality σm(A∗) = σm(A) holds true.
The principal symbol of a b-pseudodifferential operator is invariant under
conjugation by a power of the boundary function, namely given A ∈ Ψm

b (M),
then x−sAxs ∈ Ψm

b (M) s ∈ R, while σb,m(x−sAxs) = σb,m(A).
Through the notion of symbol we can endow the space of b-pseudodifferential
operators with the structure of metric space as follows. First, for m ∈ R,
we equip the space of symbols Sm(bT ∗M) with the structure of a Fréchet
space defining the following family of seminorms

‖a‖N = sup
(z,ζ)∈Ki×Rn

max
|α|+|β|≤N

|∂αz ∂
β
ζ a(z, ζ)|
〈ζ〉m−|β|

where {Ki} is a compact exhaustion of M – that is an increasing sequence
{Ki} with each Ki b M such that ∪∞i=0Ki = M – and 〈ζ〉 = 1 + |ζ|.
A metric over Sm(bT ∗M) can be defined in the following way: Given two
symbols a, b ∈ Sm(bT ∗M), their distance is

d(a, b) =
∑
N∈N

2−N
‖a− b‖N

1 + ‖a− b‖N
(1.40)

The distance d between two elements A,B ∈ Ψm
b (M) is defined as the one

between their symbols a, b ∈ Sm(M), namely d : Ψm
b (M) × Ψm

b (M) →
[0,+∞) is such that d(A,B) = d(a, b), the right hand side being as per
Equation (1.40). In particular, we say that a family of b-pseudodifferential
operators in Ψb(M) is bounded if the subset of the symbols associated with
the family of ΨDOs is bounded.

To study the behavior of b-pseudodifferential operators at the boundary
∂M , it is useful to introduce an object describing the mapping properties of a
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b-ΨDO in terms of the decay at the boundary. This information is captured
by the indicial family associated to a b-pseudodifferential operator.

Definition 1.3.11. Let A ∈ Ψm
b (M). For a fixed boundary function x and

v ∈ C∞(∂M) the indicial family N̂(A)(s) is defined as:

N̂(A)(s) = x−isA
(
xisu

)
|∂M

where u ∈ C∞(M) is any function restricting to v at the boundary.

The indicial family is an algebra homomorphism, hence it satisfies

N̂(AB)(s) = N̂(A)(s) ◦ N̂(B)(s). (1.41)

At last we discuss the microlocal properties of b-pseudodifferential op-
erators. The starting point is the notion of elliptic b-pseudodifferential op-
erator.

Definition 1.3.12. A b-pseudodifferential operator A ∈ Ψm
b (M) is elliptic

at a point q0 ∈ bT ∗M \ 0 if there exists b ∈ S−m(bT ∗M) such that

σb,m(A) · b− 1 ∈ S−1(bT ∗M)

in a conic neighborhood of q0. We call ellb(A) the conic subset of bT ∗M \ 0
in which A is elliptic.

Remark 1.3.6. Using the coordinates (z, ζ) of bT ∗M , the condition above is
equivalent to |σb,m(A)|≥ ε|ζ|m for |ζ|≥ Cε for every ε > 0.

As in the case of pseudodifferential operators, also the wavefront set of
b-pseudodifferential operators is defined in terms of its symbol [Jos]:

Definition 1.3.13. If P ∈ Ψm
b (M), then (z0, ζ0) 6∈ WF ′b(P ) if its symbol

p(z, ζ) is such that

|∂αz ∂
β
ζ p(z, ζ)|≤ Cm,α,β〈ζ〉−N ∀ N

for z in a neighborhood of z0 and ζ in a conic neighborhood of ζ0. Here
〈ζ〉 = (1 + |ζ|).

Remark 1.3.7. From this definition the following fact follows immediately:
If WF ′b(P ) = ∅, then P ∈ Ψ−∞b (M). Also the converse holds true.

The notion of wavefront set can be extended also to a family of b-
pseudodifferential operators [GW20].
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Definition 1.3.14. Suppose that A is a bounded subset of Ψm
b (M) and

q ∈ bT ∗M . We say that q 6∈ WF ′b(A) if there exists B ∈ Ψb(M) which is
elliptic at q such that {BA : A ∈ A} is a bounded subset of Ψ−∞b (M).

Remark 1.3.8. This definition reduces to the one given before in the case
the set of b-ΨDOs consists of a single operator.

The usual properties of the operator wavefront set also hold true for
a family of ΨDOs. Given two bounded families A and B the following
relations, true in the case in which A = {A} and B = {B}, are still valid:

WF ′b(A+ B) ⊂WF ′b(A) ∪WF ′b(A) WF ′b(AB) ⊂WF ′b(A) ∩WF ′b(A)

Another important property of bounded families of pseudodifferential oper-
ators is the following: If B ∈ Ψb(M) with WF ′b(B) ∩WF ′b(A) = ∅, then
{AB : A ∈ B} is bounded in Ψ−∞(M).

Definition 1.3.15. Let S ⊂ Ψm
b (M) be a closed subspace. We say that

a bounded linear map M : S → Ψk
b (M) is microlocal if WF ′b(M(A)) ⊂

WF ′b(A) for all A ∈ S.

We also can microlocalize the notion of parametrix [Vas08].

Definition 1.3.16 (microlocal parametrix). Let A ∈ Ψm
b (M) be elliptic

in an open cone centered at a point q ∈ bT ∗M \ {0}. Then there exists a
microlocal parametrix G ∈ Ψ−mb (M) for A at q, so that GA and AG are
microlocally the identity operator near q, namely q 6∈ WF ′b(GA − I) and
q 6∈WF ′b(AG− I).

A useful consequence of this definition is that, given a compact sub-
set K ⊂ bT ∗M and an operator A ∈ Ψm

b (M) which is elliptic in K, then
there exists a b-pseudodifferential operator G ∈ Ψ−mb (M) such that K ∩
WB′b(GA − I) = K ∩ WB′b(AG − I) = ∅. In pacticular, the operators
E1 = GA− I and E2 = AG− I are in Ψ−∞b (K), namely they are smoothing
b-pseudodifferential operators.

1.4 b-calculus and twisted Sobolev spaces

1.4.1 Twisted Sobolev spaces

A key ingredient of our analysis will be the Dirichlet form, following the
strategy employed in [GW20]. To this end it is necessary to introduce a
twisted version of the standard Sobolev spaces to account for the behaviour
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of the fields at the boundary, as acknowledged in [War12]. To motivate
the necessity of introducing twisting Sobolev spaces, we start with a short
motivational example, considering the simplest case of globally hyperbolic
asymptotically AdS spacetime: PAdS2, the Poincaré patch of the two di-
mensional anti-deSitter spacetime. As a manifold on its own PAdS2 is
diffeomorphic to R× [0,∞) and the metric reads g = x−2η2 where η is the
two-dimensional Minkowski metric, see Section 1.1.2. Let φ : PAdS2 → R
be a scalar field obeying the Klein-Gordon equation(

�g −m2
)
φ = 0 =⇒ x2

(
�η −

m2

x2

)
φ = 0. (1.42)

Equation (1.42) can be solved by separation of variables using the ansatz
φ(t, x) = F (t)H(x), which leads to the following systems of ordinary differ-
ential equations 

d2F

dt2
= λF(

d2

dx2
+
m2

x2

)
H = λH

(1.43)

where λ ∈ C is the spectral parameter of the problem. For future conve-
nience, we introduce the parameter ν = 1

2

√
1 + 4m2 > 0, which is related to

the indicial roots of the operators. In the theoretical physics literature this
constraint is known as the Breitenlohner-Freedman bound [BF82]. Solving
the two ODEs above yields

F (t) = C1e
λt + C2e

−λt

H(x) = C3

√
xJν(−i

√
λx) + C4

√
xYν(−i

√
λx)

with Jν , Yν the standard Bessel functions of first and second kind and
C1, C2, C3, C4 ∈ R to be determined imposing boundary conditions at x = 0
and at x → +∞. Imposing a Dirichlet boundary condition, we obtain
C4 = 0 and therefore we call H1(x) =

√
xJν(−i

√
λx) the Dirichlet solution.

Instead, imposing a boundary condition of Neumann type yields C3 = 0,
thus we call H2(x) =

√
xYν(−i

√
λx) the Neumann solution. The behavior

of the solutions near the boundary is described by the indicial roots ν± of
Equation (1.42), which are given by ν± = 1

2 ± ν. Consider a relatively com-
pact subset U ⊂ PAdS2 such that U ∩ ∂PAdS2 6= ∅ and let us introduce
the Dirichlet form

ED(φ1, φ2) = −
∫
U
g(dφ1, dφ2)dµg = −

∫
U
η(dφ1, dφ2)dxdt, (1.44)
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with φ1, φ2 arbitrary solutions of Equation (1.42) and g(·, ·) the metric in-
duced pairing between 1-forms. A direct inspection unveils that, choosing
as φ1 the solution of Equation (1.42) with Dirichlet boundary conditions,
then η(dφ1, dφ1) ∼ x1+2ν close to the boundary x = 0. Hence the x-integral
in Equation (1.44) is always convergent. Consider now as φ2 the solution
of Equation (1.42) with Neumann boundary conditions. The x-integral is
always divergent since η(dφ2, dφ2) ∼ x−1−2ν as x→ 0+. For this reason the
Dirichlet form in Equation (1.44) is not the right choice to study bound-
ary conditions other than Dirichlet one. In order to bypass this hurdle, we
introduce the twisted derivatives

Q̃0φ = x
1
2
−ν ∂

∂t

(
x−

1
2

+νφ
)

= xν−
∂

∂t

(
x−ν−φ

)
(1.45)

Q̃1φ = x
1
2
−ν ∂

∂x

(
x−

1
2

+νφ
)

= xν−
∂

∂x

(
x−ν−φ

)
(1.46)

with φ a generic solution of Equation (1.42). Note that twisting by x raised
to a power of the indicial root ν− only affects the derivative in the x direction,
but not that in the time direction. Now we define a new energy form making
use of the twisted differentials associated with Q̃0 and Q̃1.

E0(φ1, φ2) = −
∫
U
g(d

Q̃
φ1, dQ̃φ2)dµg = −

∫
U
η(d

Q̃
φ1, dQ̃φ2)dxdt. (1.47)

Here d
Q̃

is the twisted differential defined as

d
Q̃
φ = xν−d

(
x−ν−φ

)
. (1.48)

After a short computation, we find that for x→ 0+ η(d
Q̃
φ1, dQ̃φ1) ∼ x2ν−1

while η(d
Q̃
φ1, dQ̃φ1) ∼ x3−2ν . Hence for 0 < ν < 1 the integral is convergent

in both cases. Motivated by this example we introduce the space of twisted
differential operators on a generic globally hyperbolic asymptotically AdS
spacetime (M, g)

Diff1
ν(M) = {xν−Dx−ν− | D ∈ Diff1(M)}

where ν− = n−1
2 − ν, ν > 0 and Diff1(M) is the set of first order differential

operators on (M, g). In the next chapter we shall see that ν− corresponds
to the lowest indicial root of the Klein-Gordon operator on the spacetime
(M, g).

Remark 1.4.1. Since Diff1
ν(M) ⊂ x−1Diff1

b(M) [GW20, Lemma 3.1], it fol-
lows that Diff1

ν(M) is finitely generated.
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Following [GW20] we introduce the following L2 space

L2(M)
.
= L2(M,x2dµg) (1.49)

and the corresponding twisted Sobolev space

H1(M)
.
=
{
u ∈ L2(M) | Qu ∈ L2(M) ∀Q ∈ Diff1

ν(M)
}
, (1.50)

whose norm is

‖u‖2H1(M)= ‖u‖
2
L2(M)+

n∑
i=1

‖Qiu‖2L2(M) (1.51)

where {Qi}i=1...n is a generating set of Diff1
ν(M). In addition we also define

L2
loc(M), the space of locally square integrable functions over M with respect

to the measure x2dµg, the corresponding local first order Sobolev space being
H1
loc(M). With Ḣ1

loc(M) we denote the closure of Ċloc(M) in H1
loc(M). The

topological duals of the last two Sobolev spaces we introduced are Ḣ−1
loc(M)

and H−1
loc(M) respectively. In addition we define

H1
0(M) = H1

loc(M) ∩ E ′(M), (1.52)

where we denote with E ′(M) the topological dual space of Ċ∞(M). Similarly
one can define H−1

0 (M).
On twisted Sobolev spaces on asymptotically anti-de Sitter spacetimes,

there is a distinguished trace map γ− : H1
loc(M)→ L2

loc(∂M), which can be
built using an asymptotic expansion.

Theorem 1.4.1 ([GW20], Lemma 3.3). Let ν > 0, 2r = n − 2 and let
Rn+

.
= Rn−1×[0,∞). If u ∈ H1(Rn+), then the restriction of u to Rn−1×[0, ε)

for any ε > 0 admits an asymptotic expansion

u = xν−u− + xr+1H1
b ([0, ε);L2(Rn−1)) (1.53)

where u− ∈ Hν(Rn−1) while x is the coordinate along [0,∞). Further-
more, the application u 7→ γ−u

.
= u− is a continuous map from H1(Rn+) →

Hν(Rn−1).

We can extend this result to a generic globally hyperbolic, asymptotically
AdS spacetime using a partition of unity argument, obtaining a continuous
map

γ− : H1
0(M)→ Hν(∂M) (1.54)
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Similarly, we can extend γ− on H1
loc(M). The definition of γ− depends on

the choice of the boundary function x, therefore we assume that, chosen a
boundary function, we continue to use the same. A useful property of the
trace map γ− is the following, see [Gan18].

Lemma 1.4.1. Let u ∈ H1
loc(M) be compactly supported. Then for any

ε > 0 there exists Cε > 0 such that

‖γ−u‖2L2(∂M)≤ ε‖u‖
2
H1
loc(M)+Cε‖u‖

2
L2
loc(M)

To conclude this section, we observe that we can generalize the notion of
twisted derivatives and the definition of twisted Dirichlet form using different
twisting factors. The starting point consists of defining a convenient class
of twisting function to use instead of the boundary function.

Definition 1.4.1. We call smooth twisting function any F ∈ xν−C∞(M),
such that x−ν−F > 0 is strictly positive on M .

For any B ∈ Diff1(M), it holds that FBF−1 ∈ Diff1
ν(M) and, con-

versely, any Q ∈ Diff1
ν(M) is of the form Q = FBF−1 for some B ∈

Diff1(M) with F a twisting function [GW20].

1.4.2 Interaction with b-calculus and wavefront sets

In this section we recall some results from [GW20], [Vas08] and [Vas10]
concerning the interplay between properly supported b-ΨDOs and twisted
differential operators. Thanks to Theorem 1.1.1, M is isometric to R × Σ
and therefore we can introduce a time coordinate t ∈ R. Let F be any
twisting function as per Definition 1.4.1. In the following we denote with
Q0 the operator Q0 := F∂xF

−1 ∈ Diff1
ν(M). We begin to study the interac-

tion between b-pseudodifferential operators and Diffν(M) with the following
lemma, concerning the interplay between Q0 and Ψm

b (M).

Lemma 1.4.2 (Lemma 3.7 of [GW20]). Let A ∈ Ψm
b (M) have compact sup-

port in U ⊂M . There exist two pseudodifferential operators A1 ∈ Ψm−1
b (M)

and A0 ∈ Ψm
b (M) such that

[Q0, A] = A1Q0 +A0

where σb,m−1(A1) = −i∂ζσb,m(A) and σb,m(A0) = −i∂xσb,m(A), σb,m being
the principal symbol map, while (x, ζ) are the local coordinates on bT ∗M
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introduced in Section 1.3.1. Also, the maps A 7→ A0 and A 7→ A1 are
microlocal in the sense of Definition 1.3.15. Furthermore,

Q0A = A′Q0 +A′′

for some A′, A′′ ∈ Ψm
b (M). The maps A 7→ A′ and A 7→ A′′ are microlocal.

In Chapters 2 and 3 the space Ψ0
b(M) plays a pivotal rôle, since we shall

employ bounded families of b-pseudodifferential operators in some proofs.
For this reason, it is convenient to know how b-pseudodifferential operators
of order zero act on twisted Sobolev spaces. The following two results answer
to this question.

Lemma 1.4.3 (Lemma 3.8 of [GW20], Lemma 3.2 of [Vas08]). Let A ∈
Ψ0
b(M). Then A is a continuous linear map

H1
loc/0(M)→ H1

loc/0(M), Ḣ1
loc/0(M)→ Ḣ1

loc/0(M),

which extends per duality to a continuous map

Ḣ−1
0/loc(M)→ Ḣ−1

0/loc(M), H−1
0/loc(M)→ H−1

0/loc(M).

Remark 1.4.2. We recall that the spaces Hm0 (M) and Ḣm0 (M), m = ±1, are
defined in Equation (1.52).

An interesting consequence of this lemma is the following bound.

Proposition 1.4.1. Let A ∈ Ψ0
b(M) have compact support in U ⊂ M .

Then there exists χ ∈ C∞0 (U) such that

‖Au‖Hk(M)≤ C‖χu‖Hk(M)

for every u ∈ Hkloc(M) with k = ±1.

Remark 1.4.3. A similar bound holds true if u ∈ Ḣkloc(M).

Now we introduce a family of subspaces of Hk(M), for k = −1, 0, 1,
enjoying additional regularity properties with respect to the action of b-
pseudodifferential operators of fixed order. These spaces allow us to get a
better control on estimates like that of Proposition 1.4.1.

Definition 1.4.2. Let k = −1, 0, 1 and let m ≥ 0. Given u ∈ Hkloc(M), we

say that u ∈ Hk,mloc (M) if Au ∈ Hkloc(M) for all A ∈ Ψm
b (M). Furthermore,

we define Hk,∞(M) as:

Hk,∞(M)
.
=

∞⋂
m=0

Hk,m(M) (1.55)
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Remark 1.4.4. The spaces Ḣk,mloc (M), Hk,m(M) and Hk,m0 (M) are defined in
a similar way. Furthermore, as observed in [Vas08], whenever m is finite, it
is enough to check that both u and Au lie in Hkloc(M) for a single elliptic

operator A ∈ Ψm
b (M). As a consequence, for u ∈ Hk,m0 (M) with m ≥ 0, we

can define the following norm:

‖u‖Hk,m(M)= ‖u‖Hk(M)+‖Au‖Hk(M) (1.56)

where A is any elliptic b-pseudodifferential operator in Ψm
b (M).

Definition 1.4.3. Let k = ±1 and m < 0. Let A ∈ Ψ−mb (M) be a fixed

pseudo-differential operator of positive order. We call Hk,mloc (M) the set of
distributions u ∈ D′(M) of the form

u = u1 +Au2

where u1, u2 ∈ Ḣkloc(M).

Remark 1.4.5. In the same spirit of Remark 1.4.4, we can define Ḣk,mloc (M)
and Hk,m(M) in a similar way. Furthermore, when m < 0 is finite, it is
enough to check that both u and Au lie in Hkloc(M) for a single elliptic
operator A ∈ Ψ−mb (M).

We can extend the trace γ− defined in Equation (1.54) to these spaces
as stated by the following lemma, whose proof can be found in [Vas08, Rem.
3.16], see also [GW20, Sec. 3.4].

Lemma 1.4.4. Let m < 0 and let Hk,m(M) be as in Definition 1.4.3. Then
γ− as per Equation (1.54) extends to a continuous map

γ− : H1,m
loc (M)→ Hν+m

loc (∂M).

The notion of wavefront set can be refined for elements in Hk,mloc (M) as

follows, the definition for the other spaces such as Ḣk,mloc (M) and Hk,m(M)
being analogous.

Definition 1.4.4. Let k = 0,±1 and let u ∈ Hk,mloc (M), m ∈ R. Given

q ∈ bT ∗M \ {0}, we say that q 6∈WF k,mb (u) if there exists A ∈ Ψm
b (M) such

that q ∈ ellb(A) and Au ∈ Hkloc(M), where ellb stands for the elliptic set as

per Definition 1.3.12. When m = +∞, we say that q 6∈WF k,∞b (M) if there

exists A ∈ Ψ0
b(M) such that q ∈ ellb(A) and Au ∈ Hk,∞loc (M).
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Definition 1.4.4 is microlocal in the following sense:

WF k,mb (Au) ⊂WF k,m−sb (u) ∪WF ′b(A)

for each A ∈ Ψs
b(M), s ≥ 0. In energy estimates it is useful to have at our

disposal a quantitative version of this property, in the form of a bound. The
following lemmas, collecting some results in [GW20] and [Vas08], answer to
this need.

Lemma 1.4.5. Let A be a bounded family in Ψs
b(M) and let G ∈ Ψs

b(M) be
such that WF ′b(A) ⊂ ellb(G). Suppose that A and G have compact support
in U ⊂ M . Let m ∈ R and k = ±1. Then there exist χ ∈ C∞0 (U) and a
constant C > 0 such that

‖Au‖Hk(M)≤ C
(
‖Gu‖Hk(M)+‖χu‖Hk,m(M)

)
for every u ∈ Hk,mloc (M) with WF k,sb (u)∩WF ′b(G) = ∅ and for every A ∈ A.

Lemma 1.4.6 (Lemma 3.13 [GW20]). Let A be a bounded family of pseu-
dodifferential operators in Ψs

b(M) and let G ∈ Ψs−1
b (M) be such that

WF ′b(A) ⊂ ellb(G).

Suppose that A and G have compact support in U ⊂M . Let m ∈ R and let
k = ±1. Then there exist χ ∈ C∞0 (U) and a constant C > 0 such that

‖Au‖L2(M)≤ C
(
‖Gu‖Hk(M)+‖χu‖Hk,m(M)

)
for every u ∈ Hk,mloc (M) with WF k,s−1

b (u) ∩ WF ′b(G) = ∅ and for every
A ∈ A.

These two lemmas play a pivotal rôle in the following, when we employ
energy estimates to prove the propagation of singularity theorem.

1.5 Boundary triples

The notion of boundary triple is a useful tool to parametrize the self-adjoint
extensions of second order differential operators. In this section we dis-
cuss some basics facts on boundary triples following [DDF19, DM21b] and
references therein.
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Definition 1.5.1. Let H be a separable Hilbert space over C and let P :
D(P ) ⊂ H → H be a closed, linear and symmetric operator. A boundary
triple for the adjoint operator P ∗ is a triple (h, γ0, γ1), where h is a separable
Hilbert space over C and γ0, γ1 : D(P ∗)→ h are two linear maps satisfying

1) For every f, f ′ ∈ D(P ∗) it holds

(P ∗f |f ′)H − (f |P ∗f ′)H = (γ1f |γ0f
′)h − (γ0f |γ1f

′)h (1.57)

2) The map γ : D(P ∗)→ h×h defined by γ(f) = (γ0f, γ1f) is surjective.

Remark 1.5.1. The notion of boundary triple is inspired by the theory of
Sturm-Liouville operators on a half-line [BL12] and we can view Equa-
tion (1.57) as a generalization of Lagrange’s identity for a boundary value
problem. Therefore we can identify h as the space of boundary data. In the
case at hand, we set h = L2(∂M, dg∗), where dg∗ = ι∗Mg is the pullback of
the metric on the boundary.

One of the advantages of this framework is the fact that boundary triples
allow to characterize the self-adjoint extensions of a linear, closed and sym-
metric operator on a Hilbert space in terms of boundary conditions on h as
stated by the following proposition from [Mal92].

Proposition 1.5.1. Let P be a linear, closed and symmetric operator on
H. Then an associated boundary triple (h, γ0, γ1) exists if and only if P ∗

has equal deficiency indices. In addition, if Θ : D(Θ) ⊆ h → h is a closed
and densely defined linear operator, then PΘ

.
= P ∗|ker(γ1−Θγ0) is a closed

extension of P with domain

D(PΘ)
.
= {f ∈ D(P ∗)|γ0(f) ∈ D(Θ), γ1(f) = Θγ0(f)}.

The map Θ 7→ PΘ, associating a self-adjoint operators Θ over the boundary
space h to a self-adjoint extension of P is one-to-one.

Boundary triples also allow to characterize the spectral properties of the
self-adjoint extensions of an Hermitian operator. First, we need to introduce
the notions of γ-field and Weyl function.

Definition 1.5.2. Let P : D(S) ⊆ H → H be a closed, symmetric operator
and let (h, γ0, γ1) be an associated boundary triple. Moreover, consider the
self-adjoint extension P0 of P defined by P0

.
= P ∗|kerγ0 . We call γ-field and

Weyl function respectively the maps Γ : ρ(S0)→ D(P ∗) and M : ρ(S0)→ h
such that

Γ(λ)
.
= [γ0|Nλ(P ∗)]

−1, M(λ)
.
= γ1 ◦ Γ(λ)

where ρ(S0) is the resolvent of P0.



38 CHAPTER 1. GEOMETRIC AND ANALYTIC PRELIMINARIES

The following theorem allows us to study the spectrum of PΘ, through
the knowledge of those of P0, Θ and M(λ).

Theorem 1.5.1. Let P : D(S) ⊆ H → H be a closed, symmetric operator
and let (h, γ0, γ1) be an associated boundary triple. Let PΘ be a self-adjoint
extension of P individuated by means of a self-adjoint operator Θ : D(Θ) ⊂
h → h. Let ρ, σp and σc indicate respectively resolvent, point spectrum and
continuous spectrum of an operator. Then, for every λ ∈ ρ(P0), P0 =
D(P ∗)|kerγ0, it holds:

1) λ ∈ ρ(PΘ) if and only if 0 ∈ ρ(Θ − M(λ)), where M is the Weyl
function.

2) λ ∈ σi(PΘ), i = p, c if and only if 0 ∈ σi(Θ−M(λ)).

Remark 1.5.2. The main consequence of this proposition is that the compu-
tation of the spectrum of PΘ, a self-adjoint extension of P , is tantamount
to the evaluation of the spectra of P0 and of Θ−M(λ).



Chapter 2

The wave equation on aAdS
spacetimes

2.1 The wave equation on aAdS spacetimes

Let us consider a set of special coordinates (x, y0, · · · , yn−1) on a coordi-
nate patch of the form [0, ε) × U , with x a boundary function. In these
coordinates, the Klein-Gordon equation for a scalar field u can be written
as [

(−x∂x)2 + (n− 1)(x∂x) + xE(x∂x) + x2�hx +

(
n− 1

2

)2

− ν2

]
u = 0

(2.1)
with hx as Equation (1.9). In this expression E := −∂x ln|ĝ| is a smooth
function. For future convenience, it is useful to rewrite Equation (2.1) also
in terms of twisted derivatives. A short computation yields

x2
(
Q∗0Q0 +Qαĝ

αβQβ

)
u+ SFu+ µ2u = 0 (2.2)

with µ :=
(
n−1

2

)2 − ν2 and SF := x−ν−P (xν−) with P the Klein-Gordon
operator as in eq. (2.1). We note that in the case of a massless scalar
field, ν = n−1

2 , the singular potential in the equation above vanishes. In
this case Q0 = ∂x and the Sobolev space H1(M) coincides with H1(M)
defined in terms of ordinary derivatives ∂x, ∂y1 , · · ·. Furthermore, the trace
γ− becomes the usual Lions trace, see [GW20, DDF19]. As we shall see,
these observations simplify the analysis, allowing to prove also the support
properties of the propagators, see Theorem 4.3.1.

39
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2.2 Asymptotic expansion and traces

To employ the formalism of boundary triples, in addition to the trace map
γ− individuated in Equation (1.54), we need another trace map γ+. To this
end, following [GW20], we introduce a family of functional spaces enjoying
additional regularity with respect to the Klein-Gordon operator.

Definition 2.2.1. Let (M, g) be a globally hyperbolic, asymptotically anti-
de Sitter spacetime and let P be the Klein-Gordon operator as in Equation
(2.1). For all m ∈ R, we define the Fréchet spaces

Xm(M) = {u ∈ H1,m
loc (M) | Pu ∈ x2H0,m

loc (M)}, (2.3)

with respect to the seminorms

‖u‖Xm(M) = ‖φu‖H1,m(M) +
∥∥x−2φPu

∥∥
H0,m(M)

, (2.4)

where φ is a suitable smooth and compactly supported function.

Remark 2.2.1. We observe that when K is a relatively compact subset of
M we can introduce the space Hk,m(K), with k = 0, 1 and m > 0, see
Remark 1.4.4, and can define

Xm(K) = {u ∈ H1,m(K) | x−2Pu ∈ H0,m(K)},

endowed with the norm

‖u‖Xm(K) = ‖u‖H1,m(K) +
∥∥x−2Pu

∥∥
H0,m(K)

(2.5)

The reason we introduced these spaces is that, for every m ∈ R ∪ {∞},
given a function in Xm(M), we can improve the expansion of Theorem 1.4.1
as follows.

Lemma 2.2.1 (Lemma 4.6 in [GW20]). Let (Rn+, g) be an asymptotically
AdS spacetime such that, with respect to the standard Cartesian coordinates,
the line elements reads

g =
−dx2 + habdy

adyb

x2
. (2.6)

Consider an admissible twisting function F , as per Definition 1.4.1 such that
at x = 0 x−ν−F = 1, where ν− = 1

2 − ν is the indicial root. If u ∈ H1,k
0 (Rn+)

and Pu ∈ x2H0,k
0 (Rn+) for k ≥ 0, then, for any ε > 0 the restriction of u to

Rn−1 × [0, ε) admits an asymptotic expansion

u = Fu− + xν+u+ + xr+2Hk+2
b ([0, ε);Hk−3(Rn−1)) (2.7)

where 2r = n− 2, u− ∈ Hν+k(Rn−1) and u+ ∈ H−1−2ν+k(Rn−1).
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This lemma allows us to define the trace map γ+ on X∞(M) as

γ+u = x1−2ν∂x(F−1u)|∂X (2.8)

Since in a special coordinate patch, the restriction of u to the boundary can
be written as

u = xν−Fu− + xν+u+ + u2, u2 ∈ x2H2,∞
loc ([0, ε)× Rn−1). (2.9)

a direct inspection shows that in these coordinates γ+u = 2νu+. In the next
section, we shall extend the trace γ+ to X k(M) for any k ∈ R.

Remark 2.2.2. The second term of the expansion, of the form xν+u+ is the
leading term of the asymptotic behavior of a solution of the Klein-Gordon
equation with Dirichlet boundary conditions on an anti-de Sitter spacetime.
For this reason, we call γ+ the Dirichlet trace map, see [DFM18] as well as
the example concerning the Klein-Gordon equation in AdS2 we discussed at
the beginning of Section 1.4.

2.3 Weak formulation of the problem

In this section we use the analytic tools introduced in Chapter 1 to give
a weak formulation for the Klein-Gordon equation (2.1) on asymptotically
anti-de Sitter spacetimes with a boundary condition implemented by pseu-
dodifferential operators. We consider only the case ν ∈ (0, 1). We do not
study the case ν = 0 because it requires each time a separate analysis. The
values of the mass for which ν ≥ 1 do not require a boundary condition
[DDF19, DFM18, GW20].

2.3.1 The twisted Dirichlet energy form

Consider a twisting function F as per Definition 1.4.1. Motivated by the
study of the Klein-Gordon equation in PAdS2, see Section 1.4, we define
the twisted differential

dF
.
= F ◦ d ◦ F−1,

whose action on smooth functions vanishing at ∂M together with all its
derivatives is

dF : Ċ∞(M)→ Ċ∞(M ;T ∗M), v 7→ dF v = Fd(F−1v) = dv + vF−1dF
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Given u, v ∈ L2
loc(M), we define the twisted Dirichlet form by:

E0(u, v) = −
∫
M

g(dFu, dF v)dµg, (2.10)

where dµg is the metric induced volume form. Note that, if u, v ∈ H1
loc(M)

with supp(u) ∩ supp(v) compact, then E0(u, v) is finite. Using the twisted
differential, we can rewrite the Klein-Gordon operator as follows

P = −(dF )†dF + F−1P (F ), (2.11)

where (dF )† is the formal adjoint of dF with respect to the inner product
on L2(M ; dµg). As observed in [War12], twisted differentials can be used to
regularize the energy form in the case in which the multiplication by SF =
F−1P (F ) ∈ C∞(M̊) is a bounded operator from L2(M) to x2L2(M), where
x is the boundary function. For this reason we consider only a particular
class of twisting functions:

Definition 2.3.1. A twisting function F as in Definition 1.4.1 is called ad-
missible if SF

.
= F−1PF ∈ x2L∞(M) where P is the Klein-Gordon operator.

Suppose that ν ∈ (0, 1) and let u, v ∈ X∞(M). Then, if F is an admis-
sible twisting function, the following Green formula holds true:∫

M
Pu · v dµg = E0(u, v) +

∫
M
SFu · v̄ dµg +

∫
∂M

γ+u · γ−v̄ dµh, (2.12)

with dµh the volume form induced by h – the pull-back of g to ∂M . As a
matter of fact we can extend the domain of the trace map γ+, and therefore
that of Equation (2.12), as discussed in [GW20, Lemma 4.8]:

Lemma 2.3.1. The map γ+ as per Equation (2.8) can be extended to a
bounded map

γ+ : X k(M)→ Hk−νloc (∂M), ∀k ∈ R

and, if u ∈ X k(M), the Green’s formula in Equation (2.12) holds true for

every v ∈ H1,−k
0 (M).

2.3.2 Boundary conditions and the associated Dirichlet form

In this section we illustrate the weak formulation of the Klein-Gordon equa-
tion with boundary conditions implemented by pseudodifferential operators.
Formally, we look for u ∈ H1

loc(M) such that

Pu = f, and γ+u = Θγ−u, (2.13)
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where P is the Klein-Gordon operator, f ∈ H−1
loc(M) and Θ ∈ Ψk(∂M).

In order for this problem to be defined in a strong sense, we also need that
Pu ∈ x2L2

loc(M). To avoid focusing on this issue we give a weak formulation.
Let Θ ∈ Ψk(∂M) and define the energy form

EΘ(u, v) = E0(u, v) +

∫
M
SFu · vdµg +

∫
∂M

Θγ−u · γ−vdµh, (2.14)

where u ∈ H1,m+k
loc (M), v ∈ H1,m+k

0 (M) while F is an admissible twist-
ing function, whose existence is assumed a priori. Then, we introduce the
operator PΘ : H1,m+k

loc (M)→ Ḣ−1,m+k
loc (M), m ∈ R defined as

〈PΘu, v〉 = EΘ(u, v) (2.15)

The weak formulation of the problem in Equation (2.13) is given by:

〈PΘu, v〉 = 〈f, v〉 (2.16)

Remark 2.3.1. In this work, for simplicity, we denote with 〈, 〉 different pair-
ings, since the exact meaning can be understood from the context without
risk of confusion. For example, in Equation (2.15), the brackets 〈, 〉 denote
the pairing between H1(M) and Ḣ−1(M).

We end this chapter establishing three microlocal estimates for the Dirich-
let form introduced above. The first one is the following bound, which does
not depend on the boundary conditions.

Lemma 2.3.2 ([GW20], Lemma 5.2). Let U ⊂ M be a coordinate patch
such that U ∩ ∂M 6= ∅ and let m ≤ 0. Let A = {Ar | r ∈ (0, 1)} be a
bounded subset of Ψs

b(M), s ∈ R with compact support in U , such that

Ar ∈ Ψm
b (M) for each r ∈ (0, 1)

Let G1 ∈ Ψ
s−1/2
b (M) be elliptic on WF ′b(A) ⊂ bT ∗M \ {0}, with compact

support in U . Then there exist C0 > 0 and χ ∈ C∞0 (U) such that

E0(Aru,Aru) ≤ E0(u,A∗rAru) + C0

(
‖G1u‖2H1(M)+‖χu‖

2
H1,m(M)

)
for every r ∈ (0, 1) and every u ∈ H1,m(M), provided that

WF
1,s−1/2
b (u) ∩WF ′b(G1) = ∅
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Now we prove an estimate for the boundary value problem associated
with a pseudodifferential operator Θ ∈ Ψk(∂M). We can control two differ-
ent classes:

� Θ ∈ Ψk(∂M) with k ≤ 0,

� Θ ∈ Ψk(∂M) with 0 < k ≤ 2.

The two cases must be analyzed separately, therefore most of the microlocal
estimates in this chapter and in the next one are given in two versions, one
for k ≤ 0 and the other for 0 < k ≤ 2. In the following two lemmas we
bound the difference between a generic positive-definite sesquilinear pairing
form Q and the Dirichlet energy form E0 introduced in Equation (2.10). We
shall employ these estimates in the next chapter, to prove a propagation of
singularities theorem.

Remark 2.3.2. In the next two lemmas – and in the remainder of this work
– we need to consider an extension of Θ to a b-pseudodifferential operator
Ψk
b (M). To this end, we consider a collar neighbourhood of ∂M , with x

the local coordinate subordinated to the normal direction to the boundary,
so that ∂M = {x = 0}. Let χ ≡ χ(x) ∈ C∞0 (M) such that χ = 1 in a
neighbourhood of x = 0 a function playing the rôle of microlocal cutoff.
Given a pseudodifferential operator Θ ∈ Ψk(∂M), the map Θ→ Θχ

.
= χΘ,

identifies an element of Ψk
b (M) which we call an extension of Θ to Ψk

b (M).
Since all our results are independent of the choice of χ, with a slight abuse
of notation, we denote the extension of Θ with the same symbol.

Lemma 2.3.3. Let U ⊂ M be a coordinate patch such that U ∩ ∂M 6= ∅
and let m ≤ 0. Suppose Θ ∈ Ψk

b (∂M) with k ≤ 0. Let A = {Ar | r ∈ (0, 1)}
be a bounded subset of Ψs

b(M), s ∈ R, with compact support in U , such that

Ar ∈ Ψm
b (M) for each r ∈ (0, 1)

Let G0 ∈ Ψs
b(M) be elliptic on WF ′b(A) and let G1 ∈ Ψ

s−1/2
b (M) be ellip-

tic on WF ′b(A), both with compact support in U . In addition let E0 and
Q be respectively the twisted Dirichlet form and a generic positive-definite
sesquilinear pairing both defined on H1

loc(M). Then there exists C0 > 0 and
χ ∈ C∞0 (U) such that

E0(Aru,Aru)− εQ(Aru,Aru) ≤

C0

(
‖χu‖2H1,m(M)+‖χPΘu‖2Ḣ−1,m(M)

+‖G0PΘu‖2Ḣ−1(M)
+‖G1u‖2H1(M)

)
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for every r ∈ (0, 1) and every u ∈ H1,m(M), provided that the following
conditions are met:

WF−1,s
b (PΘu) ∩WF ′b(G0) = ∅

WF
1,s−1/2
b (u) ∩WF ′b(G1) = ∅

Proof. We start by considering an extension of Θ ∈ Ψk(∂M) to the whole
M as per Remark 2.3.2. With a slight abuse of notation, we use the symbol
Θ in both cases.

In order to bound

E0(Aru,Aru)− εQ(Aru,Aru), (2.17)

it is convenient to rewrite this expression as

E0(Aru,Aru)− E0(u,A∗rAru)+

+E0(u,A∗rAru)− EΘ(u,A∗rAru)+

+EΘ(u,A∗rAru)− εQ(Aru,Aru)

(2.17)

Applying Lemma 2.3.2, we can bound the first line of Equation (2.17) as

E0(Aru,Aru)− E0(u,A∗rAru) ≤ C0

(
‖G1u‖2H1(M)+‖χu‖

2
H1,m(M)

)
The third line can be controlled as follows: Calling f = PΘu, we can
write EΘ(u,A∗rAru) = 〈Arf,Aru〉. Using the pairing between H1(M) and
Ḣ−1(M),

〈Arf,Aru〉 ≤ ‖Arf‖Ḣ−1(M)‖Aru‖H1(M).

Since for C ≥ 1/2, ab ≤ C(a2 + b2) for any a, b ∈ R, then it holds that

‖Arf‖Ḣ−1(M)‖Aru‖H1(M)≤ C
(
‖Arf‖2Ḣ−1(M)

+‖Aru‖2H1(M)

)
(2.18)

Using Lemma 1.4.6 one obtains

‖Aru‖2H1(M)−εQ(Aru,Aru) ≤

≤ C1

(
‖G0u‖H1(M)+‖χu‖H1,m(M)

)2 − εQ(Aru,Aru)

where G0 ∈ Ψs
b(M). Applying again the inequality ab ≤ C(a2 + b2), the

second term in Equation (2.18) is bounded by

‖Aru‖2H1(M)≤ C
(
‖G0u‖2H1(M)+‖χu‖

2
H1,m(M)

)
− εQ(Aru,Aru), (2.19)
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where G0 ∈ Ψs
b(M). We estimate the first term of (2.18) using an analogue

procedure, this time with the help of Lemma 1.4.5:

‖Arf‖Ḣ−1(M)≤ C2

(
‖χf‖Ḣ−1(M)+‖G0u‖Ḣ−1,m(M)

)
, (2.20)

where G0 ∈ Ψs
b(M). Combining Equations (2.19) and (2.20), we obtain the

bound

|〈Arf,Aru〉|≤ εQ(Aru,Aru)+

+ C
(
‖G0u‖2H1(M)+‖χu‖

2
H1,m(M)+‖χf‖Ḣ−1(M)+‖G0u‖Ḣ−1,m(M)

) (2.21)

At last, we control the second line in Equation (2.17).

EΘ(u,A∗rAru)− E0(u,A∗rAru) =

= 〈x−2SFu,A
∗
rAru〉+ 〈Θγ−u, γ−(A∗rAru)〉∂M (2.22)

Using that SF ∈ x2C∞(M), cf. Definition 2.3.1, it holds

〈x−2SFu,A
∗
rAru〉 =

∫
U
x−2SFuA∗rAru x

2dµg ≤

≤ max
x∈π1◦supp(Ar)

∣∣∣x−2SF

∣∣∣ · |〈u,A∗rAru〉|.
In order to control 〈u,A∗rAru〉 = ‖Aru‖2L2(M), we use the same algebraic
trick as above. On account of Lemma 1.4.6, it holds

|〈x−2SFu,A
∗
rAru〉|≤ C0

(
‖χu‖2H1,m(M)+‖G1u‖2H1(M)

)
.

At last, we focus on the boundary term 〈Θγ−u, γ−(A∗rAru)〉|∂M . We recall
that for every B ∈ Ψm

b (M), it holds

γ−(Bu) =
(
x−ν−Bu

)∣∣
∂M

= N̂(B)(−iν−)(γ−u),

where N̂(B) is the indicial family of B. Extending Θ as explained at the
beginning of the proof, we can write Θf = N̂(Θ)(−iν−)f for every f ∈
Dom(Θ) ∩ L2(∂M). We also note that, using Equation (1.41), it holds

N̂(A∗rAr)(−iν−) = N̂(Ãr)(−iν−)∗N̂(Ar)(−iν−)

where Ãr = x2ν−Arx
−2ν− and where the adjoint is computed with respect

to the L2-paring induced by the metric h on ∂M . Using these data, we can
rewrite the boundary term as

〈Θγ−u, γ−(A∗rAru)〉∂M = 〈N̂∗(ÃrΘ)(−iν−)γ−u, N̂(Ar)(−iν−)γ−u〉∂M =

= 〈γ−(ÃrΘ)u, γ−(Aru)〉∂M = 〈γ−(ΘÃru+ [Ãr,Θ]u), γ−Aru〉∂M
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Using Cauchy-Schwartz inequality and Lemma 1.4.1 it holds

|〈γ−ΘÃru, γ−Aru〉∂M |≤ C1‖ΘÃru‖L2(M)+C2‖Aru‖2L2(M),

where C1 and C2 are suitable constants. If Θ ∈ Ψk(∂M) with k ≤ 0 it holds

‖ΘÃru‖2L2(M)≤ ‖ΘÃru‖
2
H1(M)≤ ‖χÃru‖

2
H1(M)

Thus, proceeding as in the previous case, using Lemma 1.4.1 we arrive at
the same estimate for |〈Θγ−u, γ−(A∗rAru)〉|∂M |. Combining all the bounds
together with Equation (2.17), we obtain the sought thesis.

We conclude this chapter formulating a counterpart of Lemma 2.3.3 for
the case in which Θ ∈ Ψk(∂M) with 0 < k ≤ 2. As in the previous case, we
extend Θ to an operator over M as per Remark 2.3.2. We also observe that
each Θ identifies per duality a map from H1

loc(M) to Ḣ−1
loc(M).

Lemma 2.3.4. Let U ⊂M be a coordinate patch such that U ∩∂M 6= ∅ and
let m ≤ 0. Let Θ ∈ Ψk

b (∂M) with 0 < k ≤ 2 and let A = {Ar | r ∈ (0, 1)}
be a bounded subset of Ψs

b(M), s ∈ R, with compact support in U , such that

Ar ∈ Ψm
b (M) for each r ∈ (0, 1).

Let G0 ∈ Ψs
b(M) and G1 ∈ Ψ

s−1/2
b (M) be elliptic on WF ′b(A), both with

compact support in U . Then there exist C0 > 0 and χ ∈ C∞0 (U) such that

E0(Aru,Aru)− εQ(Aru,Aru) ≤ C0

(
‖χu‖2H1,m(M)+‖χPΘu‖2Ḣ−1,m(M)

+

+ ‖G0PΘu‖2Ḣ−1(M)
+‖G0Θu‖2Ḣ−1(M)

+‖χΘu‖2Ḣ−1,m(M)
+‖G1u‖2H1(M)

)
for every r ∈ (0, 1) and every u ∈ H1,m+k

loc (M), provided that the following
conditions are met:

WF−1,s
b (PΘu) ∩WF ′b(G0) = ∅,

WF−1,s
b (Θu) ∩WF ′b(G0) = ∅,

WF
1,s−1/2
b (u) ∩WF ′b(G1) = ∅.

Proof. The proof is analogous to that of Lemma (2.3.3), hence we do not
enter into the details. We point out that the only key difference is the
estimate of the boundary term 〈Θγ−u, γ−(A∗rAru)〉|∂M . Thanks to [Vas08,
Lemma 3.18], which holds true also for Ḣ−1 – see the discussion below
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Definition 3.14 and the proof of Lemma 3.14 in [Vas08], we can control the
boundary terms as

〈γ−(ÃrΘ)u, γ−(Aru)〉|∂M≤ C0

(
‖ÃrΘu‖2Ḣ−1(M)

+‖Aru‖2H1(M)

)
≤ C

(
‖χu‖2H1,m(M)+‖G1u‖2H1(M)+‖G0Θu‖2Ḣ−1(M)

+‖χΘu‖2Ḣ−1,m(M)

)
(2.23)

Observe that in this chain of inequalities, we also employed that Ψm+k
b (M) ⊆

Ψm
b (M) if k ≥ 0.

Remark 2.3.3. Using that, for ε > 0, Ψm
b (M) ⊂ Ψm+ε

b (M), the previous

results hold true also for G1 ∈ Ψ
s−1/2
b (M), similarly to what happens in

[GW20].

Remark 2.3.4. In the previous lemmas we considered only k ≤ 2, because if
we would have allowed k to be larger than 2, we would have not been able to
prove in general a result similar to Lemma 2.3.4. At the level of applications,
this is a mild constraint, since interesting examples of boundary conditions,
such as the Robin ones discussed in [GW20] or those of Wentzell type, see
[DFJA18, Zah18], satisfy the constraint k ≤ 2.



Chapter 3

Propagation of singularities
theorems

This chapter is devoted to proving a propagation of singularities theorem for
the Klein-Gordon operator subject to boundary conditions implemented by
a b-pseudodifferential operator Θ ∈ Ψk(∂M), with k ≤ 2. Prior to proving
the microlocal estimates needed to establish the sought result, we need to
introduce the notion of compressed characteristic set of the Klein-Gordon
operator over the compressed b-cotangent bundle bṪ ∗M .

3.0.1 The compressed characteristic set

We begin studying the characteristic set of the principal symbol of the Klein-
Gordon operator. Recall that the principal symbol of x−2P is p̂

.
= ĝ(X,X),

with X ∈ Γ(T ∗M). The associated characteristic set is

N =
{

(q, kq) ∈ T ∗M \ {0} | ĝij(kq)i(kq)j = 0
}
, (3.1)

while the compressed characteristic set is

Ṅ = π[N ] ⊂ bṪ (M), (3.2)

where π is the projection map from T ∗M to the compressed cotangent bun-
dle, cf. Equation (1.15). We equip Ṅ with the subspace topology inherited
from bT ∗M . To prove the propagation of singularities theorem, it is con-
venient to individuate in the compressed b-cotangent bundle the following
three conic subsets:

� The elliptic region

E(M) = {q ∈ bṪ ∗M \ {0} : π−1(q) ∩N = ∅}, (3.3)

49
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where π : T ∗M → bṪ ∗M .

� The glancing region

G(M) = {q ∈ bṪ ∗M \ {0} : Card(π−1(q) ∩N ) = 1}, (3.4)

where Card refers to the cardinality of a set.

� The hyperbolic region

H(M) = {q ∈ bṪ ∗M \ {0} : Card(π−1(q) ∩N ) = 2}. (3.5)

We observe that we can characterize the three regions E(M),G(M) and
H(M) also using local coordinates. Let q̃ ∈ bT ∗∂M be such that q̃ =
(0, yi, 0, ηi), i = 1, . . . , n−1, where we used the same coordinates introduced
in Section 1.1.3. Then π−1(q̃) = (0, yi, ξ, ηi), with (ξ, ηi) ∈ T ∗(0,yi)M and

therefore π−1(q̃) ' R. Equations (3.1) and (1.9) yield that π−1(q̃) ∩ N
corresponds to the points whose coordinates solve the equation ξ2+hijηiηj =
0. This entails that a point q̃ ∈ bT ∗M lies in H(M) when hijηiηj < 0, in
G(M) when hijηiηj = 0 and in E(M) when hijηiηj > 0.

Definition 3.0.1. Let I ⊂ R be an interval. A continuous map γ : I → Ṅ
is called a generalized broken bicharacteristic (GBB) if for every s0 ∈ I the
following conditions hold true:

a) If q0 = γ(s0) ∈ G, then for every ω ∈ Γ∞(bT ∗M),

d

ds
(ω ◦ γ) = {p̂, π∗ω}(η0), (3.6)

where η0 ∈ N is the unique point for which π(η0) = q0, with π :
T ∗M → bT ∗M the projection map introduced in Equation (1.15), and
{, } are the Poisson brackets on T ∗M .

b) If q0 = γ(s0) ∈ H, then there exists ε > 0 such that 0 < |s − s0|< ε
implies x(γ(s)) 6= 0, where x is the global boundary function.

Remark 3.0.1. The first condition is basically telling us that in the glancing
region generalized broken bicharacteristics are integral curves of the Hamil-
ton vector field associated with the principal symbol p̂. The second condition
entails that, at hyperbolic points, GBBs reflect instantaneously. In particu-
lar a GBB coming from M̊ propagates along the boundary only at glancing
points. Also note that, since γ ∈ C0(I; Ṅ ), the component of the co-vector
tangent to the boundary is conserved.
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The space of GBBs enjoys some notable properties that we need in the
proof of the propagation of singularities theorem. We collect them in the
following lemma, which summarizes the results from [Leb97] and [Vas08].

Lemma 3.0.1. Let RK [a, b] be the space of the generalized broken bichar-
acteristics γ : [a, b] → K where K ⊂ Ṅ is compact. Let γn be a sequence
in RK [a, b] converging uniformly to a curve γ. Then γ : [a, b] → K is a
generalized broken bicharacteristic. In addition, if RK [a, b] is not empty,
then it is compact in the uniform topology.

In the following we focus on the boundary ∂M . Let us consider a chart
U ⊂ M such that U ∩ ∂M 6= ∅. Following the conventions introduced
in Section 1.1.3, we consider on T ∗UM the local coordinates (x, yi, ξ, ηi),
i = 1, . . . , n − 1. We identify the time coordinate with yn−1, while ηn−1 is
the associated dual coordinate. In these coordinates the following lemma
holds true.

Lemma 3.0.2. If q0 ∈ bT ∗UM \ {0}, there exists a conic neighborhood V of
q0 in which one of the following facts is true:

1) If q0 ∈ bṪ ∗M , there exists ε > 0 such that σ2 < ε2(βη2
n−1 + κijηiηj)

and κijηiηj > βη2
n−1.

2) If q0 6∈ bṪ ∗M , there exists C > 0 such that |ηn−1|< C|σ|

The proof is identical to that of [GW20, Lemma 6.2], except that we
have to take into account the specific form of the metric on ∂M , see the
discussion in Remark 1.1.1.

Remark 3.0.2. For simplicity, in the following we work with pseudodiffer-
ential operators whose compact support is contained in a fixed local chart.
However, using a partition of unity argument, our results are also valid in
the general case in which the support of the ΨDO is not contained in one
coordinate patch.

In order to prove a propagation of singularities theorem, we need some
preliminary microlocal estimates. Each one of the three regions of bṪ ∗M
individuated at the beginning of this section requires a separate analysis.
In each case the two scenarios in which Θ ∈ Ψk(∂M) with 0 < k ≤ 2 or
with k ≤ 0 are to be discussed individually. At last we remember that we
denote an extension of Θ ∈ Ψk(∂M) to the whole manifold M with the same
symbol, see Remark 2.3.2.
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3.0.2 Estimates in the elliptic region

We start with the elliptic region, proving a microlocal regularity result.
We consider a coordinate neighbourhood U ⊂ M and we indicate with
T ∗UM

.
= T ∗M |U and bT ∗UM

.
= bT ∗M |U . In addition, using the coordinates

introduced in Section 1.1.3, in analogy to the twisted derivatives as per
Equations (1.45) and (1.46), we introduce the operators

Q0 = F∇xF−1, Qi = F∇iF−1, i = 1, . . . , n− 1 (3.7)

where F is an admissible twisting function, as per Definition 2.3.1. The
main result of this section is the following regularity result, concerning the
case of boundary conditions implemented by pseudodifferential operators of
order 0 ≤ k ≤ 2.

Proposition 3.0.1 (microlocal elliptic regularity). Let Θ ∈ Ψk(∂M) with

0 < k ≤ 2 and let u ∈ H1,m+k
loc (M) for m ≤ 0 and consider a point q0 ∈

bT ∗UM . If s ∈ R ∪ {+∞}, then

q0 ∈WF 1,s
b (u) \

(
WF−1,s

b (PΘu) ∪WF−1,s
b (Θu)

)
entails q0 ∈ Ṅ , where is the compressed characteristic set defined in Equa-
tion (3.2).

Proof. We follow the strategy of [GW20, Th. 3] with the due difference that
we need to control the contribution due to Θ. Hence we proceed by induction

with respect to s, proving that q 6∈ WF
1,s+1/2
b (u) and q 6∈ WF−1,s

b (PΘu) ∪
WF−1,s

b (Θu) entails q 6∈WF 1,s
b (u).

The statement holds true for s ≤ m + k + 1/2 since u ∈ Hk,m+k(M).
To proceed in the inductive procedure, observe that, since we want to study
properties of the wavefront set at a point q0 ∈ bT ∗UM it is convenient to
evaluate the energy form, cf. Equation (2.10) with the arguments replaced
by Au, with A ∈ Ψs

b(M) elliptic at q0 and with compact support in U ∩{x <
δ} where δ > 0. To control such energy form we consider a family {Jr ∈
Ψm−s−1
b (M) | r ∈ (0, 1)}, bounded in Ψ0

b(M) converging to the identity in
Ψ1
b(M) as r → 0. We approximate A using the family A = {Ar = JrA}. As

shown in [Vas10], it holds

E0(Aru,Aru) ≥ ‖Q0Aru‖2+

+(1− Cδ)〈κijQiAru,QjAru〉 − (1 + Cδ)‖β
1
2Qn−1Aru‖2,

(3.8)
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where κij and β are the components of the metric as in Theorem 1.1.1, while
C is a positive constant. In addition we have adopted the convention that
yn−1 corresponds to the time coordinate τ on the boundary, see Remark
1.1.1 while ηn−1 is the associated momenta on the b-cotangent bundle. It is
convenient to distinguish two cases, corresponding to those of Lemma 3.0.2
First, let us assume that q ∈ bṪ ∗M . We can rewrite the last two terms of
Equation (3.8) as

〈
[
(1− Cδ)κijQ∗iQj − (1 + Cδ)βQ∗n−1Qn−1

]
Aru,Aru〉+

+〈
(
(1− Cδ)

(
Q∗jκ

ij
)
Qi − (1 + Cδ)

(
Q∗n−1β

)
Qn−1

)
Aru,Aru〉 (3.9)

Now we focus on the operator (1−Cδ)κijQ∗iQj−(1+Cδ)βQ∗n−1Qn−1, whose
symbol (1 − Cδ)κijηiηj − (1 + Cδ)βη2

n−1 is of order 2. Since, whenever

q ∈ bṪ ∗M , it holds κijηiηj > (1 + ε)βη2
n−1, cf. Lemma 3.0.2,

(1− Cδ)κijηiηj − (1 + Cδ)βη2
n−1 =

(1− Cδ)(κijηiηj − βη2
n−1)− 2Cδβη2

n−1 >
(
ε(1− Cδ)− 2Cδ

)
βη2

n−1

Then, for C and δ small enough, it holds:

(1− Cδ)κijηiηj − (1 + Cδ)βη2
n−1 >

ε

2
βη2

n−1

This inequality yields that (1−Cδ)κijηiηj− (1 +Cδ)βη2
n−1 is a positive and

elliptic symbol at q. Therefore, we can take an approximate square root
R ∈ Ψ1

b(M) of the operator (1−Cδ)κijQ∗iQj− (1+Cδ)βQ∗n−1Qn−1, namely
a pseudodifferential operator with principal symbol given by σb,1(R) = (1−
Cδ)κijηiηj − (1 + Cδ)βη2

n−1 and such that

R2 = (1− Cδ)κijQ∗iQj − (1 + Cδ)βQ∗n−1Qn−1 + S,

with S ∈ Ψ−∞b (M). To summarize, we can recast

(1− Cδ)〈κijQiAru,QjAru〉 − (1 + Cδ)‖β
1
2Qn−1Aru‖2

as

〈RAru,RAru〉+ 〈TAru,Aru〉 (3.10)

with T = S + (1 − Cδ)
(
Q∗iκ

ij
)
Qj − (1 + Cδ)

(
Q∗n−1β

)
Qn−1 ∈ Ψ1

b(M).
Since T ∈ Ψ1

b(M) it descends that |〈TAru,Aru〉| is uniformly bounded for

r ∈ (0, 1). Let Λ+ ∈ Ψ
1/2
b (M) be an elliptic pseudodifferential operator
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and let Λ− ∈ Ψ
−1/2
b (M) be a parametrix. Then I = Λ−Λ+ + E, with

E ∈ Ψ−∞b (M) and we can write:

〈TAru, IAru〉 = 〈Λ∗−TAru,Λ+Aru〉+ 〈TAru,EAru〉 (3.11)

By Cauchy-Schwartz and triangular inequalities, it descends

|〈TAru, IAru〉|2≤ ‖Λ∗−TAru‖·‖Λ+Aru‖+‖TAru‖·‖EAru‖ (3.12)

Thanks to Lemma 1.4.6 and to the hypotheses on u and on the family {Ar},
all norms on the right hand side are uniformly bounded for r ∈ (0, 1). In
particular it holds

|〈TAru, IAru〉|2≤ C
(
‖G1u‖2H1(M)+‖G2u‖2H1(M)+‖χu‖

2
H1,m(M)

)
(3.13)

where G1 ∈ Ψ
s−1/2
b (M) is such that WF ′(Λ∗−TAr)∪WF ′(Λ+Ar) ⊂ ellb(G1)

and G2 ∈ Ψs−1
b (M) is such that WF ′(TAr) ⊂ ellb(G2). Therefore from

Equation (3.8) one obtains

0 ≤ (1− Cδ)‖Q0Aru‖2L2(M)+‖RA‖
2
L2(M)≤ E0(Aru,Aru)− 〈TAru,Aru〉

(3.14)
Note that the Dirichlet form E0(Aru,Aru) is uniformly bounded for r → 0
thanks to Lemma 2.3.4, which can be applied thanks to our hypotheses on
u and Θ.

Thus, we draw the same conclusion for (1−Cδ)‖Q0Aru‖2L2(M)+‖RA‖
2
L2(M).

Hence one can find subsequences Arku, Q0Arku and RArku, weakly conver-
gent in L2(M) and such that rk → 0 as k →∞. Since they converge to Au,
Q0Au and RAu in D′(M), in particular the weak limits lie in L2(K) with
K a compact subset of M such that K ∩ (U ∩ {x < δ}) 6= ∅. This entails
that Au ∈ H1(K), and hence that q 6∈WF 1,s

b (u).

As for the second case of Lemma 3.0.2, first we note that for u supported
in {x < δ}, the following relation holds true

‖Q0u‖2L2(M)≥ δ
−2‖xQ0u‖2L2(M)

Hence it holds

E0(Aru,Aru) ≥ δ−2〈xQ0Aru, xQ0Aru〉+
〈[(1− Cδ)κijQiQj − (1 + Cδ)βQ2

n−1]Aru,Aru〉+ 〈TAru,Aru〉,
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where T accounts for lower order terms. We can rewrite the right hand side
as

〈[δ−2(xQ0)∗(xQ0)− (1 + Cδβ)Q2
yn−1

]Aru,Aru〉+
〈(1− Cδ)(κ)ijQ

iQjAru,Aru〉+ 〈TAru,Aru〉
(3.15)

The operator δ−2(xQ0)∗(xQ0)− (1 +Cδ)βQ2
n−1 has symbol ζ2/(2δ2)− (1 +

Cδ)βη2
n−1, that is elliptic near V since, on account of Lemma 3.0.2, there

must exist a constant c such that

ζ2

2δ2
− (1 + Cδ)βη2

n−1 > cβη2
n−1

Hence, we can define, modulo lower order terms, its square root as a pseu-
dodifferential operator and then we proceed exactly like in the previous case.
We conclude by stressing that the underlying boundary conditions come into
play in the proof through the application of Lemma 2.3.4.

The counterpart of the previous proposition in the case Θ ∈ Ψk(∂M),
k ≤ 0, is the following.

Proposition 3.0.2 (microlocal elliptic regularity). Let u ∈ H1,m
loc (M) for

m ≤ 0 and let q0 ∈ bT ∗UM . If s ∈ R∪{+∞} and if Θ ∈ Ψk(∂M) with k ≤ 0,

then WF 1,s
b (u) \ Ṅ ⊆WF−1,s

b (PΘu).

The proof is identical to that of Proposition 3.0.1, barring the fact that
we must use Lemma 2.3.3 instead of Lemma 2.3.4. For this reason we omit
the proof of this statement.

3.0.3 Estimates in the hyperbolic region

Now we focus on the hyperbolic regionH(M). In comparison to the previous
case, we must adopt a different strategy based on a positive commutator
argument. In this section, we still use the coordinates introduced in Section
1.1.3 with the convention that yn−1 coincides with τ , cf. Theorem 1.1.1 and
Remark 1.1.1, while ηn−1 is the associated momentum on the b-cotangent
bundle.

In the microlocal estimates of this section, a key rôle will be played by
a multiple of ImE0(u,A∗Au), with u ∈ H1,m

loc (M) and A ∈ Ψ0
b(M) with

principal symbol σb,0(A) = a of compact support. For this reason, we begin
by studying this term. A direct computation yields

2iImE0(u,A∗Au) = 〈ĝijQju, [Qi, A∗A]u〉 − 〈[ĝijQj , A∗A]u,Qiu〉+
+〈Q0u, [Q0, A

∗A]u〉 − 〈[Q0, A
∗A]u,Q0u〉+ 〈[QiĝijQj , A∗A]u, u〉, (3.16)
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where the operators Qi, i = 0, . . . , n − 1 are defined as in Equation (3.7).
For future convenience, it is useful to compute explicitly the commutators
in the first two terms in the second line, getting

〈Q0u, [Q0, A
∗A]u〉 − 〈[Q0, A

∗A]u,Q0u〉 =

= 〈Q0u,Q0A1u〉 − 〈Q0A1u, u〉+ 〈Q0u,A0u〉 − 〈A0u,Q0u〉, (3.17)

where A0 ∈ Ψ0
b(M), A1 ∈ Ψ−1

b (M) have principal symbol respectively a0 =
−i∂xa2 and a1 = −i∂ζa2.

We now study the relevant wavefront sets in the hyperbolic regions. As
in the previous section, we divide the analysis in two parts depending on
whether Θ ∈ Ψk(∂M) with k ≤ 0 or with 0 < k ≤ 2. We recall that
Θ denotes both the pseudodifferential operator implementing the boundary
conditions and its extension to M , see Remark 2.3.2.

Proposition 3.0.3. Let Θ ∈ Ψk
b (M), 0 < k ≤ 2. Let u ∈ H1,m+k

loc (M)

with m ≤ 0 and suppose that q0 6∈ WF−1,s+1
b (PΘu) ∪WF−1,s+1

b (Θu). If
there exists a conic neighborhood W ⊂ T ∗M \ {0} of q0 such that W ∩{ζ <
0} ∩WF 1,s

b (u) = ∅ then q0 6∈WF 1,s
b (u).

Proposition 3.0.4. Let Θ ∈ Ψk
b (M) for some k ≤ 0. Let u ∈ H1,m

loc (M) for

some m ≤ 0 and suppose that q0 6∈ WF−1,s+1
b (PΘu) ∪WF−1,s+1

b (Θu). If
there exists a conic neighborhood W ⊂ bT ∗M \{0} of q0 such that W ∩{ζ <
0} ∩WF 1,s

b (u) = ∅ then q0 6∈WF 1,s
b (u).

The proof of both Proposition 3.0.3 and 3.0.4 is similar to that of Propo-
sition 3.0.1 and 3.0.2 respectively, the main difference consisting in replacing
Lemma 2.3.3 and 2.3.4 with suitable counterparts valid in the hyperbolic re-
gion. For this reason, we postpone the proofs of Propositions 3.0.3 and 3.0.4
to the end of the section, discussing first the hyperbolic estimates we need.

Remark 3.0.3. Let Θ ∈ Ψk
b (M) for 0 < k ≤ 2 and let Z ⊂ W with q0 ∈ Z.

Since q0 6∈ WF−1,s+1
b (PΘu) ∪WF−1,s+1

b (Θu), if Z is small enough then, by
the elliptic regularity theorem, see Proposition 3.0.1,(

WF−1,s+1
b (PΘu) ∪WF−1,s+1

b (Θu)
)
∩ Z = ∅.

Hence we can conclude that Z ∩ WF 1,s
b (u) ⊂ Ṅ . In particular, this fact

means that on the set Z ∩ {ζ < 0} ∩WF 1,s
b (u) it holds x 6= 0 and a point

q0 ∈WF 1,s
b (u) can be seen as a limit of points in the wavefront set, each of

which does not lie on the boundary. An analogous statement holds true for
the case in which k ≤ 0.
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Let U be a coordinate patch such that U ∩∂M 6= ∅ and let q0 ∈ H(M)∩
bT ∗UM . Following [Vas08] we introduce the smooth scalar function µ on
bT ∗M , defined as µ = −ζ = −xξ. This function is homogeneous of degree
0 and it has the notable property that in a neighborhood of q0 the sign of
Hp̂ (π∗µ) does not change. With Hp̂ we denote the Hamiltonian vector field
associated to the principal symbol p̂ of x−2P .

If we consider the b-cosphere bundle bS∗M as per Equation (1.16) to-
gether with the associated coordinates on bS∗UM

.
= bS∗M |U , we can intro-

duce the function ω̂ : bS∗UM → R

ω̂(q) = |x(q)|2+

n−2∑
i=1

|yi(q)− yi(q0)|2+|ζ̂(q)− ζ̂(q0)|2+

n−2∑
i=1

|η̂i(q)− η̂i(q0)
∣∣∣2,

(3.18)
which induces in turn a function ω : bT ∗UM \ {0} → R defined as ω = ω̂ ◦ πS
where πS : bT ∗M \{0} → bS∗M is the natural projection map implementing
the quotient in Equation (1.16). For the sake of simplicity of the notation,
we have refrained from indicating that ω̂ depends explicitly on the choice of
q0. In addition, on a conic neighborhood of q0, consider the homogeneous
smooth function φ

φ = µ+
1

λ2δ
ω (3.19)

where λ and δ are positive parameters. By construction φ can be read as
a π-invariant function on T ∗M \ {0} and, to localize it near q0, consider
χ0, χ1 ∈ C∞(R) such that

χ1(s) =

{
0 if s ∈ (−∞, 0)
1 if s ∈ [1,∞)

,

while the derivative χ′1 is positive on (0, 1). At the same time we set

χ0(s) =

{
0 if s ≤ 0,

exp
(
−s−1

)
if s > 0.

(3.20)

Consider now

a
.
= χ0(2− φ/δ)χ1(ζ̂/δ + 2), (3.21)

which is a smooth homogeneous function of degree zero in a conic neighbor-
hood of q0. On account of the properties of χ0 and of χ1 it holds that

ω ≤ λ2δ(2δ − η) ≤ 4δ2λ2 and |ζ̂|≤ 2δ.
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This entails that, for any λ > 0 and for δ > 0 small enough, a has
support inside a conic neighborhood of q0. At last, we also localize in a
conic neighborhood of q0 with compact closure and such that ĝabkakb > 0
where ka = (ζ, ηi), i = 1, . . . , n − 1 are coordinates on the fiber of the b-
cotangent bundle . Let V0 be a set satisfying these properties and consider
a function ψ0 ∈ C∞0 (bS∗M) such that ψ0 = 1 on V0 and whose support lies
in a small neighborhood of V0.

We can now choose a family of pseudodifferential operators for regular-

ization purposes. Let {Jr|r ∈ (0, 1)} be a family of ΨDOs in Ψ
s+k+1/2
b (M)

such that Jr ∈ Ψm
b (M) for r ∈ (0, 1) and whose principal symbol is jr =

ψ0ρ
s+1/2(1 + rρ)m−s−1/2. By construction Jr is elliptic in V0. We build a

family of regulators

Ar = AJr (3.22)

with A ∈ Ψ0
b(M) with principal symbol a as in Equation (3.21). Note that

since A ∈ Ψ0
b(M), Ar is bounded in Ψ

s+1/2
b (M). We report now a notable

result [GW20, Lemma 6.7].

Lemma 3.0.3. Let G ∈ Ψk
b (M). Given λ > 0 there exists δ0 > 0 such that

for each δ ∈ (0, δ0)

i[A∗rAr, G] = B∗rDrBr + Fr + Tr (3.23)

where

� Br ∈ Ψs+1
b (M), r ∈ (0, 1), has principal symbol br = jrb with

b = ρ−1/2δ−1/2[χ′0(2− φ/δ)χ0(2− φ/δ)]1/2χ1(2 + ζ/δ),

� Dr ∈ Ψk−2
b (M), r ∈ (0, 1) and its principal symbol dr satisfies

ρ2−k|(dr)| ≤ C0(λδ + δ + λ−1),

for some positive real constant C0.

� Tr ∈ Ψ2s+k−1(M), r ∈ (0, 1), is such that:

WF ′b(T ) ⊂ {|ζ̂|≤ 2δ, ω1/2 ≤ 2λδ}

where T = {Tr|r ∈ (0, 1)} and WF ′b is the wavefront set of a family of
pseudodifferential operators, see Definition 1.3.14.
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� Fr ∈ Ψ2s+k(M), r ∈ (0, 1), is such that

WF ′b(F) ⊂ {−2δ ≤ ζ̂ ≤ −δ, ω1/2 ≤ 2λδ},

where F = {Fr | r ∈ (0, 1)} is bounded in Ψ2s+k
b (M).

As mentioned at the beginning of this section, we seek Q ∈ Ψs
b(M) such

that the norm of QAru is bounded in L2(M). This can be individuated as
follows. Starting from Proposition 3.0.3 we observe that ImE0(u,A∗rAru)
contains a term of the form

〈Q0u, iQ0A1,ru〉.

Focusing on a1,r = −i∂σa2
r , the principal symbol of A1,r, a straightfor-

ward computation shows that

iA1,r = B̃∗r B̃r + Fr + Tr,=⇒ a1,r = b̃2r + fr + tr,

where b̃r = ρ−1br = jrb is a symbol of order m − 1/2 which arises when
we differentiate χ0, with {Br} being a bounded family in Ψs

b(M). The
principal symbols {fr} are associated instead to the bounded family {Fr}
in Ψs

b(M) which originates from the derivatives of χ1 while tr are principal
symbols associated to the bounded family {Tr} in Ψ2s−1

b (M), that includes
the contribution by lower order terms.

We choose the sought operator Q as B̃r. In order to prove that QAru
is bounded in L2(M) we analyze separately the usual two cases. We start
from a boundary condition implemented by Θ ∈ Ψk(∂M) with k ≤ 0. In
this case we can use [GW20, Lemma 6.8] with the due exception that one
needs to replace in the proof Lemma 5.3 from [GW20] with Lemma 2.3.3.

Lemma 3.0.4. There exist C1, c, λ, δ0 > 0, a cutoff χ ∈ C∞0 (M) and a
compactly supported operator G2 ∈ Ψs

b(M) with

WF ′b(G2) ⊂W ∩ { ζ < 0} = ∅,

such that

c‖B̃ru‖2≤ −2ImE0(u,A∗rAru) + C
(
‖G0u‖2H1(M)+‖G1u‖2H1(M)+

+‖G2u‖2H1(M)+‖G0PΘu‖2Ḣ−1(M)
+‖χu‖2H1,m(M)+‖χPΘu‖2Ḣ−1,m(M)

)
.

(3.24)
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In the case where Θ ∈ Ψk(∂M), with 0 < k ≤ 2, we can exploit Lemma
2.3.4 in place of Lemma 2.3.3 to obtain the estimate

c‖B̃ru‖2≤ −2ImE0(u,A∗rAru) + C
(
‖G0u‖2H1(M)+‖G1u‖2H1(M)+

+‖G2u‖2H1(M)+‖G0PΘu‖2H−1(M)+‖χu‖
2
H1,m(M)+‖χPΘu‖2H−1,m(M)+

+‖χΘu‖2H−1,m(M)+‖G0Θu‖2H−1(M)

)
.

(3.25)

At last we give a bound for ImE0(u,A∗rAru). As above we divide the
analysis in two cases, starting from a boundary condition implemented by
Θ ∈ Ψk(∂M), with 0 < k ≤ 2. For the reader’s convenience we recall that
H1,m+k ⊆ H1,m if k ≥ 0.

Lemma 3.0.5. Given ε > 0, under the hypotheses of Lemma (2.3.4), there
exists λ > 0 and δ0 > 0 such that

ImE0(u,A∗rAru) ≤

ε‖B̃ru‖2H1(M)+C
(
‖G2u‖2H1(M)+‖G0PΘu‖2Ḣ−1(M)

+‖G0Θu‖2Ḣ−1(M)
+

+‖G1u‖2H1(M)+‖χu‖
2
H1,m(M)+‖χPΘu‖2Ḣ−1,m(M)

+‖χΘu‖2Ḣ−1,m(M)

)
,

for every δ ∈ (0, δ0).

Proof. Let Λ−1/2 ∈ Ψ
−1/2
b (M) be an elliptic pseudodifferential operator.

Then, there exists Λ1/2 ∈ Ψ
1/2
b (M) such that Λ1/2Λ−1/2 = I + R with

R ∈ Ψ−1
b (M). In order to account for the boundary conditions, we bound

EΘ(u,A∗rAru).

|EΘ(u,A∗rAru)| =|〈ArPΘu,Aru〉| = |〈ArPΘu,
(

Λ1/2Λ−1/2 +R
)
Aru〉|

≤|〈ArPΘu,Λ1/2Λ−1/2Aru〉|+ |〈ArPΘu,RAru〉|.
(3.26)

We can control the first term similarly to the proof of Lemma 2.3.3:

|〈ArPΘu,Λ1/2Λ−1/2Aru〉| ≤ C
(
‖Λ1/2A

∗
rPΘu‖2Ḣ−1(M)

+‖Λ−1/2Aru‖2H1(M)

)
≤ C

(
‖G0f‖2Ḣ−1(M)

+‖χf‖2Ḣ−1,m(M)
+‖G1u‖2H1(M)+‖χu‖

2
H1,m(M)

)
, (3.27)
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where G0 ∈ Ψs+1
b (M) while G1 ∈ Ψs

b(M). Focusing on the second term of
Equation (3.26), we get

|〈ArPΘu,RAru〉| ≤
(
‖G0f‖2Ḣ−1(M)

+‖χf‖2Ḣ−1,m(M)
+

‖G1u‖2H1(M)+‖χu‖
2
H1,m(M)

)
.

(3.28)

The next step consists of finding a bound for

|ImEΘ(u,A∗rAru)− ImE0(u,A∗rAru)|.

A direct inspection of Equation (2.14) and of Equation (2.10) unveils that
this last difference consists of two terms. The first is

〈Arx−2SFu,Aru〉 − 〈Aru,Arx−2SFu〉, (3.29)

which can be rewritten as

〈A∗r [Ar, x−2SF ]u, u〉 − 〈u,A∗r [Ar, x−2SF ]u〉. (3.30)

Observing that A∗r [Ar, x
−2SF ] is uniformly bounded in Ψ2s

b (M), we find that

|Im〈x−2SFu,A
∗
rAru〉|≤ C

(
‖G1u‖2H1(M)+‖χu‖

2
H1,m(M)

)
. (3.31)

The second term is instead

2Im〈Θγ−u, γ−(A∗rAru)〉∂M ,

which can be rewritten in the form

〈Θγ−u, γ−(A∗rAru)〉∂M − 〈γ−(A∗rAru),Θγ−u〉∂M . (3.32)

Proceeding as in the first bound of the proof and using the properties of
the indicial operator as in Lemma 2.3.3, we can write, modulo lower order
terms

|〈Θγ−u, γ−(A∗rAru)〉∂X − 〈γ−(A∗rAru),Θγ−u〉∂M |≤
≤ 2|〈Θγ−u, γ−(A∗rΛ1/2Λ−1/2Aru)〉∂M |≤

≤ ε‖B̃ru‖2H1(M)+C
(
‖G0Θu‖2Ḣ−1(M)

+‖χΘu‖2Ḣ−1,m(M)
+‖G1u‖2H1(M)

)
.

(3.33)

Collecting all estimates, we obtain the sought result.
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We focus on the case where Θ ∈ Ψk(∂M) with 0 < k ≤ 2.

Lemma 3.0.6. Given ε > 0, under the hypotheses of Lemma (2.3.4), there
exists λ > 0 and δ0 > 0 such that

ImEΘ(u,A∗rAru) ≤ ε‖B̃ru‖2H1(M)+C
(
‖G2u‖2H1(M)+‖G0PΘu‖2Ḣ−1(M)

+

+‖G1u‖2H1(M)+‖χu‖
2
H1,m(M)+‖χPΘu‖2Ḣ−1,m(M)

)
,

for every δ ∈ (0, δ0).

Proof. The first part of the proof is identical to that of Lemma 3.0.5. The
difference lies in the estimates for the boundary terms, cf. Equation (3.32).
This time, using the properties of the indicial family, we can rewrite the
relevant terms as

〈N̂(Ã∗rÃrΘ)(−iν−)γ−u, γ−u〉∂M − 〈N̂(ΘÃ∗rAr)(−iν−)γ−u, γ−u〉∂M =

= 〈N̂ [Ã∗rÃr,Θ](−iν−)γ−u, γ−u〉∂M

where Ãr = x2ν−Arx
−2ν− . Note that Ar and Ãr have the same principal

symbol, hence we can write Ã∗r = Ar +Nr, with Nr containing lower order
terms. Hence:

[Ã∗rÃr,Θ] = [A∗rAr,Θ] + [N∗rAr +A∗rNr +N∗rNr,Θ] =

= [A∗rAr,Θ] + Ã∗rÃr −A∗rAr,

which yields

〈[Ã∗rÃr,Θ]γ−u, γ−u〉∂M =

= 〈γ−([A∗rAr,Θ]u), γ−u〉∂M + 〈Θγ−(Ã∗rÃr −A∗rAr)u], γ−u〉∂M . (3.34)

We use Lemma 3.0.3 to control the first term writing [A∗rAr,Θ] = B̃∗r D̃rB̃r+
Tr with D̃r ∈ Ψk

b (M) and Tr ∈ Ψ2s+k−1
b (M). Observe that D̃r is related to

Dr ∈ Ψk−2
b (M) as in Lemma 3.0.3 since their respective principal symbols

dr and d̃r are connected via the identity d̃r = ρ2dr where ρ = |ηn−1|. Hence

〈γ−([A∗rAr,Θ]u), γ−u〉∂M =

= 〈γ−(D̃rBru), γ−(B̃ru)〉∂M + 〈γ−(Tru), γ−u〉∂M ,

where, in the second equality, we used the properties of the indicial family
to bring B̃∗r to the right hand side. Thus it descends that

〈γ−([A∗rAr,Θ]u), γ−u〉∂M = 〈γ−(D̃rB̃ru), γ−(B̃ru)〉∂M ,
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modulo lower order terms bounded by s− 1/2. Using the indicial family we
obtain

〈γ−(D̃rB̃ru), γ−(B̃ru)〉∂M =

= 〈N̂(−iν−)(D̃r)N̂(−iν−)(B̃r)γ−u, N̂(−iν−)(B̃r)γ−u〉∂M .

Using that N̂(−iν−)(D̃r) ∈ Ψ0
b(M), N̂(−iν−)(B̃r) ∈ Ψ

m−1/2
b (M) together

with Equation (1.4.1), we obtain

|〈N̂(−iν−)(D̃r)N̂(−iν−)(B̃r)γ−u, N̂(−iν−)(B̃r)γ−u〉∂M |≤

≤ ‖N̂(−iν−)(D̃r)N̂(−iν−)(B̃r)γ−u‖2L2(M)+‖(B̃r)γ−u‖
2
L2(M)≤

‖χN̂(−iν−)(B̃r)γ−u‖2L2(M)+‖N̂(−iν−)(B̃r)γ−u‖2L2(M)≤

≤ ε‖B̃ru‖2H1(M)+C(‖G1u‖H1(M)+‖χu‖2H1,m(M)).

(3.35)

Focusing on the second term in Equation (3.34), we write

〈Θγ−((Ã∗rÃr −A∗rAr)u), γ−u〉∂M =

= 〈Θγ−(x2ν− [A∗rAr, x
−2ν− ]u), γ−u〉∂M .

We can compute [A∗rAr, x
−2ν− ] thanks to Lemma (3.0.3) obtaining

[A∗rAr, x
−2ν− ] = (2iν−)B̃∗r B̃r + Er + Tr. (3.36)

Each term can be controlled as above, obtaining ultimately

|〈Θγ−((Ã∗rÃr −A∗rAr)u), γ−u〉∂X |≤ ε‖B̃ru‖2H1+

C
(
‖G1u‖2H1(M)+‖χu‖

2
H1,m(M)+‖C2u‖2H1(M)

)
,

(3.37)

which entails the sought conclusion.

Finally we can complete the proofs of Propositions 3.0.3 and 3.0.4. Here
we focus only on the first case since the second one follows suit.

Proof of Proposition 3.0.3: We sketch the main steps since we can proceed
exactly as in the elliptic case, cf. Proposition 3.0.1. Most notably we follow
an induction procedure with respect to s. Notice in particular that the
statement holds true for s < m + 1

2 since u ∈ H1,m+k
loc (M) ⊂ H1,m

loc (M). To
continue in the inductive procedure we consider once more a family Jr ∈
Ψm−s−1
b (M), r ∈ (0, 1), such that Jr → I ∈ Ψ0

b(M). Then B̃r → B̃ ∈ Ψs
b(M)
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as r → 0. Using Lemma 3.0.4 and Lemma 3.0.5 or (3.0.6) depending on the
order of Θ, one obtains that ‖B̃ru‖H1(M) is uniformly bounded. Therefore,

we can find a subsequence B̃rku, with rk → 0 for k → +∞, that is weakly

convergent in H1(M). Since B̃ru → B̃u in D′(M), the weak limit lies in
H1(K) for a suitable compact subset K ⊂ M . By uniqueness of the limit
and considering that B̃ is elliptic at q0, we obtain the thesis.

3.0.4 Estimates in the glancing region

Finally we turn our attention to the glancing region G(M). As in the hy-
perbolic region, we use a positive commutator argument and barring some
geometrical aspects we proceed similarly to Propositions 3.0.3 and 3.0.4. For
this reason, we introduce in some detail only the geometric framework, with-
out reporting the detailed proofs of the microlocal estimates. In the following
U will denote an open coordinate neighbourhood, while V = U ∩ ∂M 6= ∅.
As in the previous section we need to consider two scenarios depending on
the class of boundary conditions, namely Θ ∈ Ψk(∂M) with either k ≤ 0 or
0 < k ≤ 2. Similarly to the preceding cases, we pick an extension of Θ to M
as per Remark 2.3.2, indicating it with the same symbol. In the following
yn−1 still refers to the time coordinate corresponding to τ in Theorem 1.1.1,
while ηn−1 is the corresponding momentum on the b-cotangent bundle. In
addition q0 refers to a point lying in a compact region K where

K ⊂ (G ∩ T ∗UM) \WF−1,s+1
b (PΘu) if k ≤ 0,

or

K ⊂ (G ∩ T ∗UM) \
(
WF−1,s+1

b (PΘu) ∪WF−1,s+1
b (Θu)

)
if 0 < k ≤ 2.

In local coordinates q0 reads (0, (y0)i, 0, (η0)i), i = 1, . . . , n − 1, while it
holds ĝij(0, y0)(η0)i(η0)j = 0. Since ηn−1 6= 0, we can use the projective
coordinates on bS∗M near πS(q0), where πS : bT ∗M \ {0} → bS∗M is the
quotient map. We denote the projection to the boundary with

π̃ : T ∗UM → T ∗V,

(x, yi, ξ, ηi) 7→ (yi, ηi),

where i = 1, . . . , n − 1. As last ingredient we introduce the gliding vector
field W , describing the evolution of a point in the directions tangent to
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the boundary. Consider thus a point on π̃(T ∗UM) whose coordinates are
(η0, (y0)i), i = 1, . . . , n− 1 and define

W (η0, (y0)i) =
n−1∑
i=1

(∂ηi p̂)(0, η0, 0, (y0)i)∂yi − (∂yi p̂)(0, η0, 0, (y0)i)∂ηi , (3.38)

where p̂ is the principal symbol of x−2P , with P the Klein-Gordon operator,
see Equation (2.1). Letting ρ = |ηn−1|, we observe that, in a neighbourhood
of (η0, (y0)i), ρ

−1W is a non degenerate vector field, since ρ−1Wyn−1 =
2sgn(ηn−1). Thus we can use the straightening theorem [LGPV13] to find
2n−2 homogeneous degree zero functions ρ1, · · · , ρ2n−2 ∈ T ∗UM with linearly
independent differentials such that ρ−1Wρ1 = 1 and ρ−1Wρi = 0 for i =
2, · · · , 2n−2. We also note that p̂(0, η, 0, yi) is annihilated by W . Since dp̂ 6=
0, we can set ρ2(η0, (y0)i) = p̂(0, η0, 0, (y0)i). Then we extend ρ1, · · · , ρ2n−2

in such a way to be independent from (x, ξ), in order to obtain a local chart
whose coordinate functions are x, ζ̂, ρ1, · · · , ρ2n−2.

With these data we can introduce two homogeneous functions ω0 and ω
on K ∩ V , playing the same rôle as η and ω in the hyperbolic region:

Ω0 =
2n−2∑
i=1

(ρi − ρi(q0))2, Ω = x2 + Ω0,

where we omit to indicate the explicit dependence on q0 for the sake of
simplicity of the notation. In connection to these functions we introduce

φ0 = ρ1 +
Ω0

λ2δ
, φ = ρ1 +

Ω

λ2δ
.

Using the same cutoff functions χ0 and χ1 introduced in Section 3.0.3,
we localize near q0 using a b-pseudodifferential operator A of order zero
whose total symbol is

a = χ0(2− φ/δ)χ1(1 + (ρ+ δ)/(λδ)).

The ensuing families A, B and B̃ are defined as in Section 3.0.3. With these
data, the following generalizations of [GW20, Prop. 6.11] hold true. Observe
that, with a slight abuse of notation, we identify subsets of the b-cosphere
bundle with their pre-image on the b-cotangent bundle.

Proposition 3.0.5. Let Θ ∈ Ψk
b (M) with k ≤ 0 and let u ∈ H1,m

loc (M) with

m ≤ 0. If K ⊂ bS∗UM is compact and K ⊂ (G ∩ T ∗∂M) \WF−1,s+s
b (PΘu),
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then there exist C0, δ0 > 0 such that for each q0 ∈ K and δ ∈ (0, δ0) the
following holds true. Let α0 ∈ N be such that π(α0) = q0. If the conditions

α ∈ N , |π̃(α)− exp(−δW )(α̃0)|≤ C0δ
2, |x(α)|≤ C0δ

2,

imply π(α) 6∈WF 1,s
b (u), then q0 6∈WF 1,s

b (u).

In the case where Θ ∈ Ψk
b (M), 0 < k ≤ 2, the generalization of [GW20,

Prop. 6.11] is the following:

Proposition 3.0.6. Let Θ ∈ Ψk
b (M) with 0 < k ≤ 2 and let u ∈ H1,m+k

loc (M)
with m ≤ 0. If K ⊂ bS∗UX is compact and

K ⊂ (G ∩ T ∗∂M) \
(
WF−1,s+s

b (PΘu) ∪WF−1,s+s
b (Θu)

)
,

then there exist C0, δ0 > 0 such that for each q0 ∈ K and δ ∈ (0, δ0) the
following holds. Let α0 ∈ N be such that π(α0) = q0. If the conditions

α ∈ N , |π̃(α)− exp(−δW )(α̃0)|≤ C0δ
2, |x(α)|≤ C0δ

2,

imply π(α) 6∈WF 1,s
b (u), then q0 6∈WF 1,s

b (u).

We focus on the case 0 < k ≤ 2. The proof is based on two lemmas along
with the counterpart of Lemma 3.0.4 for the glancing region. The proofs
are similar to those of the hyperbolic case and they are adapted from those
in [GW20], hence we omit them.

The first lemma we gives a bound on the difference between the L2-norm
of Q0Aru and of a generic positive sesquilinear Q applied Aru.

Lemma 3.0.7. Let U ⊂ M be a boundary coordinate patch and m ≤ 0.
Let A = {Ar : r ∈ (0, 1)} be a bounded subset of Ψs

b(M) with compact
support in U such that Ar ∈ Ψm

b (M) for each r ∈ (0, 1). Let δ > 0 and let
Vδ = {q ∈ bT ∗UM \ {0} : ĝijηiηj ≤ δβ−1|ηn−1|2} and assume that WF ′b(A) ⊂
Vδ. Let G0 ∈ Ψs

b(M) and G1 ∈ Ψ
s−1/2
b (M) be elliptic on WF ′b(A) and on

WF ′b(ΘA) respectively, both with compact support in U . Then there exist Cε
and χ ∈ C∞0 (U) such that, for every u ∈ H1,m+k

loc (M),

‖Q0Aru‖2L2(M)−εQ(Aru,Aru) ≤

≤ 2δ‖Qn−1Aru‖2L2(M)+Cε

(
‖χu‖2H1,m(M)+‖χPΘu‖2Ḣ−1,m(M)

+

+‖G0PΘu‖2Ḣ−1(M)
+‖G1u‖2H1(M)+‖χΘu‖2Ḣ−1,m(M)

+‖G0Θu‖2Ḣ−1(M)

)
.
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The proof is the same of Lemma 6.10 in [GW20], except that we use
Lemma (2.3.4) to control the boundary terms. This result can be used to
generalize the proof of Lemma 6.12 in [GW20] to the case in hand:

Lemma 3.0.8. There exist C, c, λ, δ0 > 0, a cutoff χ ∈ C∞0 (M), G0, G1 as
above and an operator G2 ∈ Ψs

b(M) with

WF ′b(G2) ⊂W ∩ {−2δλ < ρ1 < −δ/2, ω1/2 < 3λδ},

such that

c‖B̃ru‖2H1(M)≤

≤ −2ImE0(u,A∗rAru) + C
(
‖G1u‖2H1(M)+‖G2u‖2H1(M)+‖χu‖

2
H1,m(M)+

‖G0PΘu‖2Ḣ−1(M)
+‖χPΘu‖2Ḣ−1,m(M)

+‖χΘu‖2Ḣ−1,m(M)
+‖G0Θu‖2Ḣ−1(M)

)
.

The proof follows that of Lemma 6.12 in [GW20], using Lemma 3.0.7
to take into account the boundary conditions. In particular, given the data
above, the main idea of the proof is similar to that of Proposition 3.0.3, bar-
ring some differences arising because of the geometric nature of the glancing
region.

3.0.5 Propagation of singularities theorems

At last, we combine all the microlocal estimates we obtained so far, to
establish the following propagation of singularities theorem, generalizing
that of [GW20]. Recall that Θ denotes both the pseudodifferential operator
implementing the boundary condition and its extension to M , see Remark
2.3.2.

Theorem 3.0.1. Let Θ ∈ Ψk(∂M) with 0 < k ≤ 2. If u ∈ H1,m
loc (M) for m ≤

0 and s ∈ R∪{+∞}, then WF 1,s
b (u)\

(
WF−1,s+1

b (PΘu) ∪WF−1,s+1
b (Θu)

)
is

the union of maximally extended generalized broken bicharacteristics within
the compressed characteristic set Ṅ , see Equation (3.2).

In full analogy it also holds

Theorem 3.0.2. Let Θ ∈ Ψk(M) with k ≤ 0. If u ∈ H1,m
loc (M) for m ≤ 0

and s ∈ R ∪ {+∞}, then it holds that WF 1,s
b (u) \WF−1,s+1

b (PΘu) is the
union of maximally extended GBBs within the compressed characteristic set
Ṅ , see Equation (3.2).
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The proof of both theorems is similar to that given in [Vas08], using
the estimates we derived in the previous sections. For this reason we do
not give all details, limiting ourselves to outlining the analysis of forward
propagation in the hyperbolic region for the reader’s convenience. We focus
on the case of Theorem 3.0.1, concerning Θ ∈ Ψk(∂M) of order 0 < k ≤ 2.

First, we note that in M̊ , the statement can be reduced to Duistermaat
and Hörmander’s theorem of propagation of singularities [DH72, H0̈3]. The
non-trivial part is to prove that the thesis holds true on the boundary. We
begin proving a local version of the theorem, extending a non maximal GBB
to ∂M . Namely, calling U an open chart of M such that U ∩ ∂M 6= ∅, we
show that if q0 ∈ WF 1,s

b (u) \WF−1,s+1
b (PΘu) with q0 ∈ bT ∗UM , then there

exists a GBB γ : [−ε0, 0] → Ṅ , with ε0 > 0, such that γ(0) = q0 and

γ(s) ∈WF 1,s
b (u) \

(
WF−1,s+1

b (PΘu) ∪WF−1,s+1
b (Θu)

)
for s ∈ [−ε0, 0]. We

focus on the case in which q0 ∈ H(M).

Given q0 ∈ bT ∗UM , we build a sequence of generalized broken bicharac-
teristics γj : [−ε0, 0]→ Ṅ such that

γj(s) ∈WF 1,s
b (u) \

(
WF−1,s+1

b (PΘu) ∪WF−1,s+1
b (Θu)

)
and with the endpoint γj(0)

.
= qj ∈ bT ∗M̊ converging to q0 on the bound-

ary. Thanks to Proposition 3.0.3, choosing increasingly smaller sets W ⊂
T ∗M \ {0} we can found the sought sequence of points {qj}j∈N. Since every

qj ∈ M̊ , Hörmander’s theorem on propagation of singularities [H0̈3] [DH72]
guarantees existence of the sought sequence of GBBs. The assumption of
forward propagation, that is ξ(qj) < 0, ensures that there exists ε0 > 0 such
that for s ∈ [−ε0, 0], γj(s) 6∈ bT ∗YM , where ξ = 0.

Since generalized broken bicharacteristics RK [−ε0, 0] with K compact
are themselves compact in the topology of uniform convergence, Lemma
3.0.1 allows to conclude that there exists a subsequence {γjk} uniformly
converging to γ.

At last we extend the result to maximal GBBs. Given a subset V ⊂ Ṅ
with q ∈ V and a, b ∈ R containing 0, there is a natural partial order on the
set GBBq of broken generalized bicharacteristics γ : (a, b) → V such that
γ(0) = q. Let γ1 : (a1, b1) → V and γ2 : (a2, b2) → V be two elements of
GBBq, we say that γ1 ≤ γ2 if (a1, b1) ⊂ (a2, b2) and if the two curves agree
over the common domain (a1, b1).

Since a non-empty totally ordered subset has an upper bound, we can
extend the GBBs joining the domains of those in the chain. At this point
we apply Zorn’s lemma to conclude that the maximal element of any totally
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ordered subsets being the maximal extension of a GBBs. In the glancing
region the main idea is still to build a sequence of curves approximating a
GBB, although the details are different due to some technical hurdles related
to the geometry of the glancing region. The reader can find the argument
in [Leb97] and [Vas08].
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Chapter 4

Well-posedness of the
problem and fundamental
solutions

In this chapter we focus on the well-posedness of the weak problem and we
study the associated fundamental solutions and propagators, generalizing to
the case of boundary conditions implemented by suitable pseudodifferential
operators the results of [Vas12],[War12] and [GW20].

4.1 Well-posedness of the problem

We begin studying the well-posedness of the boundary value problem as in
Equation (2.3.2). In comparison to the previous chapter, we need to restrict
the class of admissible pseudodifferential operators Θ ∈ Ψk(∂M). Prior to
stating our additional hypothesis, we need a preliminary definition. In the
following remember that with Θ we denote both the operator implementing
the boundary condition and its extension to M as per Remark (2.3.2).

Definition 4.1.1. Let Θ ∈ Ψk
M (∂M). We call it local in time if, for every

u in the domain of Θ, τ(supp(Θu)) ⊆ τ(supp(u)) where τ : R × Σ → R is
the time coordinate individuated in Theorem 1.1.1.

We assume that the operators Θ ∈ Ψk(∂M) implementing the boundary
conditions satisfy the following hypothesis.

Hypotesis 4.1.1. We consider Θ ∈ Ψk(∂M) with k ≤ 2, only if it is local
in time and if Θ = Θ∗.

71
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Remark 4.1.1. We assume k ≤ 2 because in Proposition 4.1.2 below we need
to invoke Theorem 3.0.1.

We note that, at the level of applications, this additional hypothesis is
only a mild constraint, because most cases of interest – for example boundary
conditions of Dirichlet, Neumann and Robin type – satisfy Hypotesis 4.1.1.

Following the analysis in [Vas12, GW20], we introduce a cutoff function
playing an important rôle in the following theorems. Consider once again
the function χ0 introduced in Equation (3.20) and let χ1 ∈ C∞(R) be an
increasing function such that χ1(s) = 0 for all s ∈ (−∞, 0] while χ1(s) = 1
if s ∈ [1,+∞). Given a fixed τ0, τ1 ∈ R with τ0 < τ1, we define the smooth
function χ : (τ0, τ1)→ R as

χ(s)
.
= χ0(−δ−1(s− τ1))χ1((s− τ0)/ε), (4.1)

where δ � 1 while ε ∈ (0, τ1 − τ0). Note that, calling χ′0 = dχ0

ds , it holds
that, cf. [Vas12]

χ ≤ −δ−1(τ1 − τ0)2χ′ with χ′ = −δ−1χ′0(−δ−1(s− τ1)). (4.2)

Let u ∈ H1,1
loc(M) be such that its support lies in [τ0+ε, τ1]×Σ, cf. Definition

1.1.1.

s

χ

τ1 τ2

Figure 4.1: The function χ.

Using this cutoff function, as in [GW20], one can prove a twisted version
of the Poincaré inequality obtained in [Vas12, Proposition 2.5]:

‖(−χ′)1/2u‖2L2(M)≤ C‖(−χ
′)1/2dFu‖2L2(M), (4.3)

where dF is the twisted differential, as in Section 2.3.1.
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The main step of our analysis lies in proving the following lemma, gen-
eralizing a result in [GW20] for the case of Robin boundary conditions. We
discuss in details only the case with Θ ∈ Ψk(∂M) of order k > 0, since the
scenario in which k ≤ 0, can be seen as a corollary of the well-posedness
statement of [GW20].

Proposition 4.1.1. Let Θ ∈ Ψk(∂M) be a pseudodifferential operator of
positive order k such that its canonical extension to M abides to Hypothesis
4.1.1 and let u ∈ H1,1+k

loc (M). Then there exists a compact subset K ⊂ M
and a real positive constant C such that

‖(−φ′)1/2u‖H1(K)≤ C‖PΘu‖H−1,1+k(K),

where φ = χ ◦ τ , χ being the same as in Equation (4.3).

Proof. The proof is a generalization of those in [Vas12] and [GW20] to the
case of boundary conditions encoded by pseudodifferential operators. There-
fore we shall sketch the common part of the proof, focusing on the terms in-
troduced by the boundary conditions. Adopting the same conventions as at
the beginning of the section, assume that supp(u) ⊂ [τ0 +ε, τ1]×Σ. We start
by computing a twisted version of the energy form considered in [Vas12].
Consider 〈−i[(V ′)∗PΘ − PΘV

′]u, u〉, with V ′ = FV F−1 ∈ Diff 1
b (M) and

V ∈ Vb(M) with compact support. Note that, since Θ is self-adjoint, i.e.,
Θ = Θ∗, then i[(V ′)∗PΘ−PΘV

′] is a second order formally self-adjoint oper-
ator, the purpose of V ′∗ being to remove zeroth order terms. Let V = −φW
with W = 5ĝτ . Observe that we should also localize in space, working
on a compact subset of a Cauchy surface. Hence the vector field V should
be multiplied by a smooth, compactly supported test function ψ depending
only on the spatial variables. However, to avoid burdening the notation, in
the following we do not write explicitly the test function ψ. The vector field
V belongs to Vb(M) because ĝ(dx, dt) = 0. A direct computation shows
that

〈−i[(V ′)∗PΘ − PΘV
′]u, u〉 = 2Re〈PΘu, V

′u〉 =

= 2ReE0(u, V ′u) + 2Re〈SFu, V ′u〉+ 2Re〈Θγ−u, γ−V ′u〉,
(4.4)

where E0 is the twisted Dirichlet energy form, cf. Equation (2.10), SF
.
=

F−1PF ∈ x2L∞(M) as in Section 2.3.1, while γ+ and γ− are the trace maps
introduced in Theorem 1.4.1, Lemma 2.2.1 and Lemma 2.3.1. We analyze
each term in the above sum separately. Starting form the first one and
proceeding as in [GW20], we rewrite

2ReE0(u, V ′u) = 〈BijQiu,Qju〉,
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where Qi, i = 1, . . . , n is a generating set of Diff1
ν(M), while the symmetric

tensor B is

B = −(φ · divĝW + 2FφV (F−1) + (n− 2)φx−1W (x))ĝ−1+

+φLW ĝ−1 + 2T (W,5ĝφ).
(4.5)

Here T (W,5ĝφ) is the stress-energy tensor, with respect to ĝ, of a scalar
field associated with W and 5ĝφ, that is, denoting with � the symmetric
tensor product,

T (W,5ĝφ) = (5ĝφ)�W − 1

2
ĝ(5ĝφ,W ) · ĝ−1. (4.6)

Focusing on this term and using that 5ĝφ = χ′ 5ĝ τ , a direct computation
yields:

Tĝ(W,5ĝφ) =
1

2
(χ′ ◦ τ)[2(5ĝτ)⊗ (5ĝτ)− ĝ(5ĝτ,5ĝτ) · ĝ−1]. (4.7)

Since 5ĝφ and 5ĝτ are respectively past- and future-pointing timelike vec-
tors, then Tĝ(W,5ĝφ) is negative definite. Hence we can rewrite Equation
(4.4) as

〈−T ijĝ (W,5ĝφ)Qiu,Qju〉 = 〈−i[(V ′)∗PΘ − PΘV
′]u, u〉+

+2ReE0(KijQiu,Qju) + 2Re〈SFu, V ′u〉+ 2Re〈Θγ−u, γ−V ′u〉,
(4.8)

with
K = −(FφV (F−1) + (n− 2)φx−1W (x))ĝ−1 + φLW ĝ−1.

Since −Tĝ(W,5ĝφ)ij is positive definite, then

Q(u, u)
.
= 〈−Tĝ(W,5ĝφ)ijQiu,Qju〉 ≥ 0

. This can be seen by direct inspection from the explicit form

Q(u, u) =

∫
M
φ′
(

(5ĝτ)i(5ĝτ)j − 1

2
ĝ((5ĝτ)i(5ĝτ)j)

)
Qiu Qju x

2dµg

=

∫
M
H((−φ′)2dFu, (−φ′)1/2dFu)x2dµg,

(4.9)

where H is the sesquilinear pairing between 1-forms induced by the metric.
Focusing then on the term 〈KijQiu,Qju〉, we observe that, as a consequence
of our choice for the functions f and W , we have V (x) = ĝ(5ĝτ,5ĝx) = 0
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on ∂M . In addition it holds that x−1W (x) = O(1) near ∂M , and LV ĝ−1 =
25ĝ (5ĝτ) = 2Γ̂iττ∂i. These observations allow us to establish the following
bound, cf. [Vas12] and [GW20]:

|〈KijQiu,Qju〉|≤ C‖φ1/2dFu‖L2(M)≤ Cδ−1(τ1 − τ0)2‖(−φ′)1/2dFu‖2L2(M),
(4.10)

with C a suitable, positive constant. Now we focus on establishing a bound
for the terms on the right hand side of Equation (4.8). We estimate the first
one as follows:

|〈−i[(V ′)∗PΘ − PΘV
′]u, u〉|≤ C

(
‖φ1/2FWF−1PΘu‖2Ḣ−1(M)

+‖φ1/2u‖2H1(M)

)
+C

(
‖φ1/2PΘu‖2L2(M)+‖φ

1/2FWF−1u‖2L2(M)

)
≤

≤ C(‖FWF−1PΘu‖2Ḣ−1(M)
+δ−1(τ1 − τ0)2‖(−φ′)1/2u‖2H1(M)+

+‖PΘu‖2L2(M)+δ
−1(τ1 − τ0)2‖(−φ′)1/2FWF−1u‖2L2(M)

)
, (4.11)

where in the last inequality we used Equation (4.2). As for the second term
in Equation (4.8), using that SF ∈ x2L∞(M), we establish the bound

2|Re〈SFu, V ′u〉|≤ C̃
(
‖φ1/2 u‖2L2(M)+‖φ

1/2 dFu‖2L2(M)

)
,

for a suitable constant C̃ > 0. Using Equation (4.2) and the Poincaré
inequality, this last bound becomes

2|Re〈SFu, V ′u〉|≤ Cδ−1(τ1 − τ0)2‖(−φ′)1/2dFu‖2L2(M). (4.12)

At last we give a bound for the last term in Equation (4.4), containing the
pseudodifferential operator Θ which implements the boundary conditions.
Recalling Hypothesis 4.1.1, it is convenient to consider the following three
cases separately

a) Θ ∈ Ψk(∂M) with k ≤ 1,

b) Θ ∈ Ψk(∂M) with 1 < k ≤ 2.

Now we give a bound case by case.

a) It suffices to focus on Θ ∈ Ψ1(∂M) recalling that, for k < 1, Ψk(∂M) ⊂
Ψ1(∂M). If with a slight abuse of notation we denote with Θ both
the operator on the boundary and its trivial extension to the whole
manifold, we can write

〈Θγ−u, γ−V ′u〉 = 〈N̂(Θ)(−iν−)γ−u, γ−V
′u〉 = 〈γ−Θu, γ−V

′u〉,
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where N̂(Θ)(−iν−) is the indicial family of Θ, introduced in (1.3.7).
We recall that any A ∈ Ψs(∂M), s ∈ N, can be decomposed as
n∑
i=1

QiAi + B, with Ai, B ∈ Ψs−1(∂M), while Qi, i = 2, . . . , n − 1

is a generating set of Diff1
ν(∂M). Hence we can rewrite Θ as

Θ =
∑
i

QiΘi + Θ′ =
∑
i

(ΘiQi + [Qi,Θi]) + Θ′,

where Θi,Θ
′ and [Qi,Θi] are in Ψ0(∂M). Therefore

|〈γ−Θu, γ−V
′u〉|≤ |〈γ−

(∑
i

ΘiQiu

)
, γ−V

′u〉|+

+|〈γ−
((

[Qi,Θi] + Θ′
)
u
)
, γ−V

′u〉|.

To begin with, we focus on the first term on the right hand side of
this inequality. Using Equations (1.4.1) and (4.2) together with the
Poincaré inequality (4.3) and Lemma 1.4.3,

|〈γ−

(∑
i

ΘiQiu

)
, γ−V

′u〉|≤

ε

(∑
i

‖φ1/2ΘiQiu‖2H1(M)+‖φ
1/2FWF−1u‖2H1(M)

)
+

+Cε

(∑
i

‖φ1/2 Qiu‖2L2(M)+‖φ
1/2FWF−1u‖2L2(M)

)
≤

≤ Cεδ−1(τ1 − τ0)2‖(−φ′)1/2dFu‖2L2(M),

for a suitable constant Cε > 0. As for the second term, since u ∈
H1,1
loc(M) we can proceed as above using that the operator Θ′+[Qi,Θi]

is of order 0 and we can conclude that∣∣〈γ− (([Qi,Θi] + Θ′
)
u
)
, γ−V

′u〉
∣∣ ≤ C̃ε‖φ1/2 u‖2H1(M)

≤ Cεδ−1(τ1 − τ0)2‖(−φ′)1/2dFu‖2L2(M),

for suitable positive constants Cε and C̃ε. Therefore, it holds a bound
of the form

|Re〈Θγ−u, γ−V ′u〉|≤ C ′δ−1(τ1 − τ0)2‖(−φ′)1/2dFu‖2L2(M).
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b) Since Ψk
b (∂M) ⊂ Ψk′

b (∂M) if k < k′, it is enough to consider Θ ∈
Ψ2
b(∂M) and to observe that, we can decompose Θ as

Θ =
n∑
i=1

Qi

 n∑
j=1

QjAij

+Bi,

where Bi ∈ Ψ1
b(∂M) while Aij ∈ Ψ0

b(∂M). At this point one can apply
twice consecutively the same reasoning as in item a) to draw the sought

conclusion. Here the key hypothesis it that u ∈ H1,1+k
loc (M).

Finally, considering Equation (4.8) and collecting all bounds we proved,
we obtain

〈−T ijĝ (W,5ĝφ)Qiu,Qju〉 ≤ C‖PΘu‖2Ḣ−1,1+k(M)

+Cδ−1(τ1 − τ0)2‖(−φ′)1/2dFu‖2L2(M).
(4.13)

Since the inner product H defined by the left hand side of Equation (4.9) is
positive definite, then for δ large enough

〈−T ijĝ (W,5ĝφ)Qiu,Qju〉 − Cδ−1(τ1 − τ0)2‖(−φ′)1/2dFu‖2L2(M)≥ 0,

and the associated Dirichlet form Q̃ defined as

Q̃(u, u) =

∫
M

[
H((−φ′)2dFu, (−φ′)1/2dFu)+

−Cδ−1(τ1 − τ0)2|(−φ′)1/2dFu|2
]
x2dµg,

(4.14)

bounds ‖(−φ′)1/2dFu‖2L2(M). We conclude the proof by observing that, once

we have an estimate for ‖(−φ′)1/2dFu‖2L2(M), with the Poincaré inequality

we can also bound ‖(−φ′)1/2u‖L2(M). Therefore, considering the support of
χ and u, there exists a compact subset K ⊂M such that

‖(−φ′)1/2u‖L2(M)≤ C‖(−φ′)1/2PΘu‖Ḣ−1,1+k(K), (4.15)

from which the sought thesis descends.

Remark 4.1.2. If the pseudodifferential operator Θ ∈ Ψk(∂M) implementing
the boundary condition is of non-positive order, then in the previous state-
ment u can be taken in H1,1

loc(M) instead of H1,1+k
loc (M). The same holds true

for the statements of Corollary 4.1.1.
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Making use of the previous lemma, we obtain the following statements
concerning uniqueness and existence of the solutions for the Klein-Gordon
equation associated to the operator PΘ.

Corollary 4.1.1. Let M be a globally hyperbolic, asymptotically anti-de
Sitter spacetime and let f ∈ Ḣ−1,1+k(M) – with k the order of Θ – be
vanishing whenever τ < τ0, τ0 ∈ R. Suppose in addition that Θ abides to
the Hypothesis 4.1.1. Then there exists at most one u ∈ H1

loc(M) such that
supp(u) ⊂ {q ∈M | τ(q) ≥ τ0} and it is a solution of PΘu = f .

We omit the proof of this statement, since it is identical to that of [Vas12,
Lemma 4.13].

Lemma 4.1.1. Let M be a globally hyperbolic, asymptotically anti-de Sitter
spacetime and let f ∈ Ḣ−1,1(M) be vanishing whenever τ < τ0, τ0 ∈ R.

Then there exists u ∈ H1,−1+k
loc (M) solution of the problem PΘu = f such

that τ(supp(u)) ≥ τ0.

Lemma 4.1.2. Let M be a globally hyperbolic, asymptotically anti-de Sitter
spacetime, let Θ ∈ Ψk(M) with k ≥ 0 and let f ∈ Ḣ−1,1+k(M) be vanishing

whenever τ < τ0, τ0 ∈ R. Then there exists u ∈ H1,−1+k
loc (M) solution of the

problem PΘu = f such that τ(supp(u)) ≥ τ0.

The proofs of these two lemmas follow the one given in [Vas12, Prop.
4.15]. Therefore, we sketch only the main ideas, focusing for simplicity on
the case k ≥ 0. The first step consists of proving a local version of the lemma,
namely that given a compact set I ⊂ R, there exists σ > 0 such that for every
τ0 ∈ I there exists u ∈ H1,−1(M) such that supp(u) = {p ∈ M | τ(p) ≥ 0}
and PΘu = f for τ < τ0 + σ. The main point of this part of the proof
consists of applying Lemma 4.1.1 to ensure that the adjoint of the Klein-
Gordon operator, say P ∗Θ, is invertible over the set of smooth functions
supported in suitable compact subsets of M – see [Vas12, Lem. 4.14] for
further details. With this result in hand, one divides the time direction into
sufficiently small intervals [τj , τj+1] and uses a partition of unity along the
time coordinate to build a global solution for PΘu = f .

At last we extend our results for u ∈ H1,m
loc (M) and for f ∈ Ḣ−1,m+1

loc (M).
Let us consider Θ ∈ Ψk

b (∂M), the proof for the positive cases being the
same. If m ≥ 0, Lemma 4.1.1 entails that Equation (2.13) admits a unique
solution lying in H1

loc(M). By the propagation of singularities theorem, cf.

Theorem 3.0.2 and using Hypothesis 4.1.1, the solution lies in H1,m
loc (M) and

the following generalization of the bound in Lemma 4.1.1 holds true:

‖u‖H1,m(M)≤ C‖f‖Ḣ−1,m+1(M).
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If m < 0 we can draw the same conclusion considering, as in [Vas12, Thm.
8.12],

PΘuj = fj (4.16)

where fj ∈ Ḣ−1,m+1(M) is a sequence converging to f as j → ∞. Each
of these equations has a unique solution uj ∈ H1(M). In addition the
propagation of singularities theorem, cf. Theorem (3.0.2) yields the bound

‖uk − uj‖H1,m(K)≤ C‖fk − fj‖Ḣ−1,m+1(L)

for suitable compact sets K,L ⊂ M and for every j, k ∈ N. Since fj →
f in Ḣ−1,m+1(L), we can conclude that the sequence uj is converging to
u ∈ H1,m(K). Considering {fj} such that each fj vanishes if {τ < τ0},
one obtains the desired support property of the solution. To conclude this
analysis we summarize the final result which combines Corollary 4.1.1 and
Lemmata 4.1.1 and 4.1.2.

Proposition 4.1.2. Let M be a globally hyperbolic, asymptotically anti-
de Sitter spacetime and let m, τ0 ∈ R while f ∈ Ḣ−1,m+1

loc (M). Assume in
addition that Θ abides to Hypothesis 4.1.1. If f vanishes for τ < τ0, τ0 ∈ R
being arbitrary but fixed, then there exists a unique u ∈ H1,m+k

loc (M) such
that

PΘu = f, (4.17)

where PΘ is the operator in Equation (2.15).

4.2 Fundamental solutions and propagators

In this section we focus on the study of the fundamental solutions associated
with the Klein-Gordon operator PΘ. As a preliminary step, we need to define
the following subspaces of Hk,m(M), k = 0,±1, m ∈ N ∪ {0}:

Hk,m− (M) = {u ∈ Hk,m(M) | ∃τ− ∈ R such that p /∈ supp(u), if τ(p) < τ−},
(4.18a)

Hk,m+ (M) = {u ∈ Hk,m(M) | ∃τ+ ∈ R such that p /∈ supp(u) if τ(p) > τ+},
(4.18b)

Hk,mtc (M)
.
= Hk,m+ (M) ∩Hk,m− (M), (4.18c)

where the subscript tc stands for timelike compact. To take into account the
boundary conditions, we also need to define the spaces

H1,m
±,Θ(M)

.
= {u ∈ H1,m

± (M) | γ+(u) = Θγ−(u)}, (4.19)
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where γ−, γ+ are the trace maps introduced in Theorem 1.4.1 and in Lemma
2.2.1, while Θ is a pseudodifferential satisfying Hypothesis 4.1.1.

Making use of Lemma 4.1.1 and Proposition 4.1.2 and proceeding as
in [GW20] we obtain the following result on the advanced and retarded
propagators G±Θ associated to the Klein-Gordon operator PΘ.

Theorem 4.2.1. Let PΘ be the Klein-Gordon operator as per Equation
where Θ abides to Hypothesis 4.1.1.
Then there exist unique retarded (+) and advanced (−) propagators, that is
continuous operators G±Θ : Ḣ−1,m+1

± (M)→ H1,m
± (M) such that PΘG

±
Θ = I on

Ḣ−1,m+1
± (M) and G±ΘPΘ = I on H1,m

±,Θ(M). Furthermore, G±Θ is a continuous

map from Ḣ−1,∞
0 (M) to H1,∞

loc (M) where the subscript 0 indicates that we
consider only functions of compact support.

Remark 4.2.1. We need to restrict PΘ to H1,m
±,Θ(M) because per construction

an element in the range of G±ΘPΘ abides to the boundary conditions as in
Equation (2.13).

In addition to the advanced and the retarded propagators, we can also
define the causal propagator GΘ : Ḣ−1,m+1

0 (M)→ H1,m
loc (M) as GΘ = G+

Θ −
G−Θ.

Remark 4.2.2. Since G±Θ are continuous maps, one can apply the Schwartz
kernel theorem to infer that one can associate to them a bi-distribution
G±Θ ∈ D′(M̊ × M̊).

To conclude this section we study some properties of the causal propa-
gator which are useful for applications in quantum field theory. For physical
reasons we individuate two special classes of boundary conditions. We re-
member that the spacetime M is isometric to R×Σ and ∂M to R×∂Σ, see
Theorem 1.1.1

Definition 4.2.1. Let Θ ∈ Ψk
b (M) with k ≤ 2 and let Θ = Θ∗ We call Θ

� physically admissible if WF−1,s+1
b (Θu) ⊆ WF−1,s+1

b (PΘu) for all u ∈
H1,m
loc (M) with m ≤ 0 and s ∈ R ∪ {∞}.

� a static boundary condition if Θ ≡ ΘK is the natural extension to
Ψk
b (M) of a pseudodifferential operator K = K∗ ∈ Ψk

b (∂Σ) with k ≤ 2.

Remark 4.2.3. Any static boundary condition is automatically local in time,
as per Definition 4.1.1.
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Proposition 4.2.1. Let PΘ be the Klein-Gordon operator and let GΘ be
its associated causal propagator. Then the following is an exact sequence:

0→ H1,∞
tc,Θ(M)

PΘ−→ Ḣ−1,∞
tc (M)

GΘ−→ H1,∞
Θ (M)

PΘ−→ Ḣ−1,∞(M)→ 0 . (4.20)

Proof. To prove that the sequence is exact, we start by establishing that
PΘ is injective on H1,∞

tc,Θ(M). This is a consequence of Theorem 4.2.1 which

guarantees that, if PΘ(h) = 0 for h ∈ H1,∞
tc,Θ(M), then G+PΘ(h) = h = 0.

Secondly, on account of Theorem 4.2.1 and in particular of the identity
G±ΘPΘ = I on H1

±,Θ(M), it holds that GΘPΘ(f) = 0 for all f ∈ H1,∞
tc,Θ(M).

Hence Im(PΘ) ⊆ ker(GΘ). Assume that there exists f ∈ Ḣ−1,∞
tc (M) such

that GΘ(f) = 0. It descends that G+
Θ(f) = G−Θ(f) ∈ H1,∞

tc,Θ(M). Applying

PΘ it holds that f = PΘG
+
Θ(f), that is f ∈ PΘ[H1,∞

tc,Θ(M)].

The third step consists of recalling that, per construction, PΘGΘ = 0 and
that, still on account of Theorem 4.2.1, Im(GΘ) ⊆ ker(PΘ). To prove the
opposite inclusion, suppose that u ∈ ker(PΘ). Let χ ≡ χ(τ) be a smooth
function such that there exists τ0, τ1 ∈ R such that χ = 1 if τ > τ1 and
χ = 0 if τ < τ0. Since Θ is a static boundary condition and, therefore, it
commutes with χ, it holds that χu ∈ H1,∞

+,Θ(M). Hence setting f
.
= PΘχu, a

direct calculation shows that GΘf = u

To conclude we need to show that the map PΘ on the before last arrow
is surjective. To this end, let j ∈ Ḣ−1,∞(M) and let χ ≡ χ(τ) be as above.
Let h

.
= G+

Θ (χj) + G−Θ ((1− χ)j). Per construction h ∈ H1,∞
Θ (M) and

PΘ(h) = j.

Now we focus on the study of the singularities of the advanced and of
the retarded propagators. To this end we introduce the space W−∞b (M) of

bounded operators from Ḣ−1,−∞
0 (M) to H1,∞

loc (M) and we give a definition
of wavefront set complementary to that of Definition 1.3.14.

Definition 4.2.2 (Operatorial wavefront set WFOpb (M)). Consider a con-

tinuous map Λ : Ḣ−1,−∞
0 (M)→ H1,∞

loc (M). A point (q1, q2) ∈ bS∗M× bS∗M

is not in the operatorial wavefront set WFOpb (M) if there exists two b-
pseudodifferential operators B1 and B2 in Ψ0

b(M) elliptic at q1 and q2 re-
spectively, such that B1ΛB∗2 ∈ W

−∞
b (M).

We can characterize the singularities of the advanced and of the retarded
fundamental solutions in the cosphere bundle as follows.
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Theorem 4.2.2. Let ∆ denote the b-diagonal in bS∗M × bS∗M and let Θ
be physically admissible as per Definition 4.2.1. Then

WFOpb (G±Θ) \∆ ⊂ {(q1, q2) ∈ bS∗M × bS∗M | q1∼̇q2, ±t(q1) > ±t(q2)},

where q1∼̇q2 means that q1, q2 are two points in Ṅ , cf. Equation (3.2) con-
nected by a generalized broken bicharacteristic, cf. Definition 3.0.1.

This statement follows from Theorem 3.0.1 – in the case of Θ of order
0 < k ≤ 2 or Theorem 3.0.2 – if Θ is of order k ≤ 0. We refer to [GW20] for
the details.

Remark 4.2.4. We assume that the operator Θ is physically admissible as
per Definition 4.2.1 because we do not want to alter the microlocal behavior
of the system in M̊ . Suppose not to place any restriction on the wavefront
set of Θu. Then by the propagation of singularities theorem Theorem 3.0.1,
in addition to the singularities propagating along the generalized broken
bicharacteristics of the Klein-Gordon operator we should account also for
those of Θu. However, in concrete applications, for example the construc-
tion of Hadamard two-point functions, one looks for bi-distributions with a
prescribed form of the wave front set and whose antisymmetric part coin-
cides with the difference between the advanced and retarded fundamental
solutions associated to the Klein-Gordon operator with boundary condition
implemented by Θ, see e.g. [DF16, DDF19, DW, Wro17, GW20].

4.3 Construction of fundamental solutions on static
spacetimes in the massless case

We conclude this chapter giving an example of advanced and retarded fun-
damental solutions for the Klein-Gordon operator on a static, globally hy-
perbolic, asymptotically AdS spacetime. In particular, we shall focus on a
massless scalar field, corresponding to the case ν = (n−1)/2. The construc-
tion of the fundamental solutions via functional calculus in this particular
case can be done along the lines of [DDF19]. Therefore we limit ourselves to
describing the analytic and the geometric framework, referring to [DDF19]
for the derivation and the technical details.

As a preliminary step, we specify the underlying geometric structure:

Definition 4.3.1. Let (M, g) be an n-dimensional Lorentzian manifold. We
call it a static globally hyperbolic, asymptotically AdS spacetime if it abides
to Definition 1.1.4 and, in addition,
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1) There exists an irrotational, timelike Killing field χ ∈ Γ(TM), such
that Lχ(x) = 0 where x is the global boundary function,

2) (M, ĝ) is isometric to a standard static spacetime, that is a warped
product R ×β S with line element ds2 = −α2dt2 + hS where hS is a
t-independent Riemannian metric on S, while α 6= α(t) is a smooth,
positive function not depending on t.

On account of Theorem 1.1.1 we can assume, without loss of generality,
that the timelike Killing field χ coincides with the vector field ∂τ . Under this
assumption the underlying line-element can be written as ds2 = −βdτ2 + κ
where β and κ are τ -independent while S can be identified with the Cauchy
surface Σ in Theorem 1.1.1. In view of this characterization of the metric,
the associated Klein-Gordon equation Pu = 0 with P = 2g reads(

−∂2
τ + E

)
u = 0, (4.21)

where E = β∆κ, with ∆κ the Laplace-Beltrami operator associated to
the the Riemannian metric κ. Let us consider a static boundary condi-
tion as per Definition 4.2.1, implemented by a pseudodifferential operator
K ∈ Ψk

b (∂M) and let us employ the symbol ΘK to recall that it is induced
from K. Since the underlying spacetime is static, in order to construct the
advanced and retarded fundamental solutions, we can focus our attention on
GΘK ∈ D′(M̊ × M̊) , the bi-distribution associated to the causal propagator
GΘK . It satisfies the following initial value problem, see also [DDF19]:

(PΘK ⊗ I)GΘK = (I⊗ PΘK )GΘK = 0

GΘK |τ=τ ′= 0

∂τGΘK |τ=τ ′= −∂τ ′GΘK |τ=τ ′= δΣ̇×Σ̇

(4.22)

where δ is the Dirac distribution on the diagonal of M̊ × M̊ . Starting from
GΘK one can recover the advanced and retarded fundamental solutions G±ΘK
via the identities:

G−ΘK = ϑ(τ − τ ′)GΘK and G+
ΘK

= −ϑ(τ ′ − τ)GΘK , (4.23)

where ϑ is the Heaviside function. The existence and the properties of GΘK

have been thoroughly analyzed in [DDF19] using the framework of boundary
triples, cf. [Gru68] and Section 1.5.

To construct a boundary triple associated with E∗, let n be the unit,
outward pointing, normal of ∂Σ and let

Γ0:H2(Σ) 3 f 7→ Γf ∈ H3/2(Σ), Γ1:H2(Σ) 3 f 7→ −Γ∇nf ∈ H1/2(Σ) ,
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where Hk(Σ) indicates the Sobolev space associated to the Riemannian
manifold (Σ, κ) introduced at the end of Section 1.2. Here Γ : Hs(Σ) →
Hs− 1

2 (Σ), s > 1
2 , is the continuous surjective extension of the restriction map

from C∞0 (Σ) to C∞0 (∂Σ), cf. [GS13, Th. 4.10 & Cor. 4.12]. In addition,
since the inner product ( | )L2(∂Σ) on L2(∂Σ) ≡ L2(∂Σ; ι∗Σdµg), ιΣ : ∂Σ ↪→ Σ,

extends continuously to a pairing on H−1/2(∂Σ) × H1/2(∂Σ) as well as on
H−3/2(∂Σ)×H3/2(∂Σ), there exist isomorphisms

ι±:H±1/2(∂Σ)→ L2(∂Σ), j±:H±3/2(∂Σ)→ L2(∂Σ) ,

such that, for all (ψ, φ) ∈ H1/2(∂Σ) × H−1/2(∂Σ) and for all (ψ̃, φ̃) ∈
H3/2(∂Σ)×H−3/2(∂Σ),

(ψ, φ)(1/2,−1/2) = (ι+ψ| ι−φ)L2(∂Σ) , (ψ̃, φ̃)(3/2,−3/2) = (j+ψ̃| j−φ̃)L2(∂Σ) ,

where (, )(1/2,−1/2) and (, )(3/2,−3/2) stand for the duality pairings between
the associated Sobolev spaces.

Remark 4.3.1. Note that in the massless case, the two trace operators Γ0

and Γ1 coincide respectively with the restriction to H2(M) of the traces γ−
and γ+ introduced in Theorem 1.4.1 and in Lemma 2.2.1.

Gathering all the above ingredients, we can state the following proposi-
tion, cf. [DDF19, Prop. 24 & Rmk 26]:

Proposition 4.3.1. Let E∗ be the adjoint of a second order, elliptic, partial
differential operator on a Riemannian manifold (Σ, κ) with boundary and of
bounded geometry. Let

γ0:H2(M) 3 f 7→ ι+Γ0f ∈ L2(∂M) , (4.24)

γ1:H2(M) 3 f 7→ j+Γ1f ∈ L2(∂M). (4.25)

Then (L2(∂M), γ0, γ1) is a boundary triple for E∗.

Combining all these data together, particularly Proposition 1.5.1 and Propo-
sition 4.3.1 we can state the following theorem, whose proof can be found
in [DDF19, Thm 30].

Theorem 4.3.1. Let (M, g) be a static, globally hyperbolic, asymptotically
AdS spacetime as per Definition 4.3.1. Let (γ0, γ1, L

2(∂M)) be the bound-
ary triple as in Proposition 4.3.1 associated with E∗, the adjoint of the
elliptic operator defined in Equation (4.21) and let K be a densely defined
self-adjoint operator on L2(∂Σ) which individuates a static and physically
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admissible boundary condition as per Definition 4.2.1. Let EK be the self-
adjoint extension of E defined as per Proposition 4.3.1 by EK

.
= E∗|D(EK),

where D(EK)
.
= ker(γ1 −Kγ0). Furthermore, let assume that the spectrum

of EK is bounded from below.
Then, calling ΘK the associated boundary condition, the advanced and re-
tarded Green’s operators G±ΘK associated to the wave operator ∂2

t + EK
exist and they are unique. They are completely determined in terms of
G±ΘK ∈ D

′(M̊ × M̊). These are bidistributions such that G−ΘK = ϑ(t− t′)GΘK

and G+
ΘK

= −ϑ(t′ − t)GΘK where GΘK ∈ D′(M̊ × M̊) is such that, for all

f1, f2 ∈ D(M̊)

GΘK (f1, f2)
.
=

∫
R2

dtdt′
(
f1(t)

∣∣∣∣(−EK)−
1
2 sin [(−EK)

1
2 (t− t′)]f2(t′)

)
,

(4.26)

where f1(t), f2(t) ∈ H2(Σ) denote the evaluation of f1 and f2, regarded as

elements of C∞c (R, H∞(Σ)) while E
− 1

2
K sin [E

1
2
K(t − t′)] is defined exploiting

the functional calculus for EK . Moreover it holds that

G±ΘK :D(M̊)→ C∞(R, H∞ΘK (Σ)) ,

where H∞ΘK (Σ)
.
=
⋂
k≥0D(EkΘK ). In particular,

γ1(G±ΘKf) = ΘKγ0(G±ΘKf) ∀f ∈ C∞0 (M̊) . (4.27)

Remark 4.3.2. Observe that, in Theorem 4.3.1 we have constructed the
advanced and retarded fundamental solutions G±Θ as elements of D′(M̊×M̊).
Yet we can combine this result with Theorem 4.2.1 to conclude that there
must exist unique advanced retarded propagators on the whole M whose
restriction to M̊ coincide with G±ΘK . With a slight abuse of notation we
shall refer to these extended fundamental solutions with the same symbol.

The analysis carried out in this chapter has an immediate application to
quantum field theory, in particular in the study of the propagators, which
are singular bidistributions on aAdS spacetimes. A key property that the
propagators must satisfy in order to be physically meaningful is the so called
Hadamard condition, prescribing certain constraints on their wavefront sets.
The well-posedness result Theorem 4.2.1, together with the microlocal prop-
agation of singularities theorems 3.0.2 and 3.0.1 obtained in Chapter 3, al-
lows to prove that, under certain assumptions, on aAdS spacetimes there
are unique propagators satisfying the Hadamard condition for a very general
class of boundary conditions, see [DM21b].
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[H0̈0] L. H. Hörmander. The analysis of partial differential operators
III. Springer, 2000.
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