
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 197 (2022) 751–758

1877-0509 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Sixth Information Systems International Conference.
10.1016/j.procs.2021.12.197

10.1016/j.procs.2021.12.197 1877-0509

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Sixth Information Systems International Conference.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

Sixth Information Systems International Conference (ISICO 2021)

Real-time probing of control-flow and data-flow in event logs
Paolo Ceravoloa, Ernesto Damianib, Emilio Francesco Schepisa, Gabriel Marques

Tavaresa,∗

aUniversità degli Studi di Milano (UNIMI), Milan, Italy
bKhalifa University (KUST), Abu Dhabi, UAE

Abstract

Traditional Process Mining offers batch analysis of business processes but does not transpose smoothly into online environments
due to specific design constraints. Techniques adapted to support online analysis require peculiar adjustments that inherently restrict
their focus to a single task. In this work, we extend the Concept Drift in Event Stream Framework (CDESF) tool to handle multiple
attributes simultaneously. Our extension promotes CDESF to analyze both control-flow and data-flow characteristics in online
event streams. Experiments used real and synthetic data for concept drift and anomaly detections. Results show that additional
perspectives should be considered as they contain valuable information about processes.

© 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Sixth Information Systems International Conference.

Keywords: Online process mining; concept drift detection; event stream; clustering; anomaly detection.

1. Introduction

Information systems (IS) control, support, and regulate the execution of business processes within organizations.
Process-Aware Information Systems (PAIS) are software systems that support business processes instead of only
managing isolated activities [1]. Data produced by PAIS is recorded in the form of event logs, i.e. the activities
executed and their associated attributes. Process Mining (PM) is the area that investigates business processes from a
data standpoint, leveraging the knowledge for stakeholders [2]. Traditional PM analysis relies on offline processing to
achieve an understanding of business processes. Offline techniques leverage event logs of completed processes as they
require a multi-pass analysis of event log data. Concomitantly, organizations are seeking a real-time response for their
business process executions. Fast response to environmental conditions may increase process performance and avoid
resource loss. However, a challenge arises as offline solutions cannot be directly transposed to online environments
due to specific constraints that regulate the process behavior, such as the need for bounding the memory size, and
regularly run model updates and detection of changes [3].

In Data Stream Processing, it is assumed that streams are a continuous flow of events with an unbounded size [4].
Hence, an imminent restriction imposed is the limited amount of time and memory available. Forgetting mechanisms
are required to control memory consumption and fast algorithms are needed as events must be processed faster than

∗ Corresponding author.
E-mail address: gabriel.tavares@unimi.it

1877-0509© 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Sixth Information Systems International Conference.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

Sixth Information Systems International Conference (ISICO 2021)

Real-time probing of control-flow and data-flow in event logs
Paolo Ceravoloa, Ernesto Damianib, Emilio Francesco Schepisa, Gabriel Marques

Tavaresa,∗

aUniversità degli Studi di Milano (UNIMI), Milan, Italy
bKhalifa University (KUST), Abu Dhabi, UAE

Abstract

Traditional Process Mining offers batch analysis of business processes but does not transpose smoothly into online environments
due to specific design constraints. Techniques adapted to support online analysis require peculiar adjustments that inherently restrict
their focus to a single task. In this work, we extend the Concept Drift in Event Stream Framework (CDESF) tool to handle multiple
attributes simultaneously. Our extension promotes CDESF to analyze both control-flow and data-flow characteristics in online
event streams. Experiments used real and synthetic data for concept drift and anomaly detections. Results show that additional
perspectives should be considered as they contain valuable information about processes.

© 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Sixth Information Systems International Conference.

Keywords: Online process mining; concept drift detection; event stream; clustering; anomaly detection.

1. Introduction

Information systems (IS) control, support, and regulate the execution of business processes within organizations.
Process-Aware Information Systems (PAIS) are software systems that support business processes instead of only
managing isolated activities [1]. Data produced by PAIS is recorded in the form of event logs, i.e. the activities
executed and their associated attributes. Process Mining (PM) is the area that investigates business processes from a
data standpoint, leveraging the knowledge for stakeholders [2]. Traditional PM analysis relies on offline processing to
achieve an understanding of business processes. Offline techniques leverage event logs of completed processes as they
require a multi-pass analysis of event log data. Concomitantly, organizations are seeking a real-time response for their
business process executions. Fast response to environmental conditions may increase process performance and avoid
resource loss. However, a challenge arises as offline solutions cannot be directly transposed to online environments
due to specific constraints that regulate the process behavior, such as the need for bounding the memory size, and
regularly run model updates and detection of changes [3].

In Data Stream Processing, it is assumed that streams are a continuous flow of events with an unbounded size [4].
Hence, an imminent restriction imposed is the limited amount of time and memory available. Forgetting mechanisms
are required to control memory consumption and fast algorithms are needed as events must be processed faster than

∗ Corresponding author.
E-mail address: gabriel.tavares@unimi.it

1877-0509© 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Sixth Information Systems International Conference.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.12.197&domain=pdf

752	 Paolo Ceravolo et al. / Procedia Computer Science 197 (2022) 751–758
2 Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000

the stream arrival rate. There are several approaches to treat event streams, such as event accumulation, sliding win-
dows and adaptive buckets [3]. Furthermore, online scenarios are susceptible to concept drifts, a phenomenon that
characterizes the change of the relation between a feature and its label over time. From the PM perspective, drifts
affect the validity of the process model, further harming the quality of consequent PM tasks such as conformance
checking [3]. Approaches that handle specific tasks in online PM were proposed in the past mostly for online pro-
cess discovery [5] [6], conformance checking [7] [8] and concept drift detection [9] [10] [11] [12] [13]. Other than
limiting to a single task in online PM, current solutions usually only consider the control-flow aspect of business pro-
cesses, ignoring the data-flow perspective. Control-flow refers to the sequence of executed activities within process
instances. Complementarily, the data flow regards additional attributes attached to activity executions, such as the
actor, associated costs, organizational information, among others.

In the context of drift detection in PM, Concept Drift in Event Stream Framework (CDESF) was proposed in [14]
[15] [16]. CDESF aims at detecting drifts in business processes while also supporting several PM tasks such as online
process discovery, model update, and anomaly detection. The framework ingests event streams and, using a graph
structure, computes distances between current and expected behavior. Relying on an online clustering algorithm, cases
are placed in the feature space and updated according to new events in the stream. The drift detection mechanism is
controlled by the maintained online feature space. CDESF identifies a drift in the business process given the emergence
of new behavior in the feature space. However, CDESF was limited to the control-flow and time perspectives, meaning
that it only processed the activity sequence and time spans between them.

In this work, we extend CDESF to support multiple dimensions in online processing, including all data-flow at-
tributes belonging to an event log. For that, we dynamically instantiate attribute representations in online processing.
Therefore, CDESF’s new version allows drift detection in the data-flow perspective. Moreover, anomalies affecting
data-flow attributes are now identifiable by the upgraded CDESF. We submitted the tool to a set of experiments using
real and synthetic data. The experiments aim at evaluating complementary aspects of online PM analysis, showcasing
CDESF’s capabilities for drift detection and overall support for real-time PM tasks. Results show that data-flow at-
tributes are vulnerable to drifts and anomalies, indicating the need for tools that handle multiple perspectives in online
PM.

The remainder of this paper is organized as follows. Section 2 introduces a detailed discussion about concept drift
detection in PM, highlighting the difference between offline and online tools. Section 3 presents the CDESF workflow
with special attention to the upgrades proposed in this paper. Section 4 exhibits the experiments, the employed data,
and the performance metrics for evaluation. Section 5 presents the results of the experiments and discusses how
additional dimensions influence CDESF’s performance. Finally, Section 6 concludes the paper.

2. Related work

The recent uptake in drift detection methods proposed in PM research is motivated by the need of reacting and
adapting to processes in real-time [3]. Traditionally, PM techniques rely on offline data processing, i.e., batch pro-
cessing where multiple-pass analyses are allowed. These techniques extract information from historical executions of
the business process, which may not represent the current process behavior. On the other hand, online PM refers to
techniques prepared to ingest a stream, dynamically responding to incoming data. An additional challenge posed by
streaming environments is the common non-stationarity of data. Streaming literature defines a data stream as an or-
dered pair (s,∆) where s is a sequence of tuples and ∆ is a sequence of positive real time-intervals [17]. Furthermore,
when the true relation between a feature vector and its associated class, i.e. a concept, changes in two separate points
in time, we identify a concept drift [4]. Properly detecting and adapting to changing concepts leverages the quality
of online PM approaches. In this review, we focus on concept drift detection methods for online process data. For an
in-depth analysis of online PM, we refer the reader to [3].

An early approach for online drift detection in PM was proposed in [9]. The authors extract follow and precede re-
lations from the log and, using a windowed approach, a statistical test is performed in two non-overlapping windows.
When distributions between the two windows are different, a drift alert is raised. A clustering-based approach was
proposed by Zheng et al. [10]. For that, direct succession and weak order relations are extracted from traces. Candi-
date drift points are leveraged from the analysis of the variation trends. Then, drifts are detected by the clusterization
of candidate points. Focusing on comprehensiveness, Yeshchenko et al. [11] proposed a method for drift detection
and visualization. The approach divides the log into sub-logs and extracts declarative process behavior metrics based
on temporal rules. Using a multivariate time series analysis, constraints confidences are extracted and clustered. Fi-
nally, each cluster is evaluated for change detection, producing a notion of behavior-specific drifts and overall drifts.
Brockhoff et al. [12] proposed a method that handles both control-flow and time perspectives for drift detection. The
technique is based on earth mover’s distance, a distance-based similarity measure that compares probability distri-
butions. The combination of a sliding window approach with an earth mover’s distance provides a flexible approach
that facilitates the detection of drifts in more than one perspective. The main limitation of previously mentioned ap-
proaches is that they perform in an offline setting, i.e., detecting drifts from historical data. Treating the event log
as batch analysis (transforming the log into trace streams or sub-logs) is a constraint that hinders the application of
these techniques in real scenarios, which are permeated by event streams [3]. Ostovar et al. [13] proposed a method

	 Paolo Ceravolo et al. / Procedia Computer Science 197 (2022) 751–758� 753
2 Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000

the stream arrival rate. There are several approaches to treat event streams, such as event accumulation, sliding win-
dows and adaptive buckets [3]. Furthermore, online scenarios are susceptible to concept drifts, a phenomenon that
characterizes the change of the relation between a feature and its label over time. From the PM perspective, drifts
affect the validity of the process model, further harming the quality of consequent PM tasks such as conformance
checking [3]. Approaches that handle specific tasks in online PM were proposed in the past mostly for online pro-
cess discovery [5] [6], conformance checking [7] [8] and concept drift detection [9] [10] [11] [12] [13]. Other than
limiting to a single task in online PM, current solutions usually only consider the control-flow aspect of business pro-
cesses, ignoring the data-flow perspective. Control-flow refers to the sequence of executed activities within process
instances. Complementarily, the data flow regards additional attributes attached to activity executions, such as the
actor, associated costs, organizational information, among others.

In the context of drift detection in PM, Concept Drift in Event Stream Framework (CDESF) was proposed in [14]
[15] [16]. CDESF aims at detecting drifts in business processes while also supporting several PM tasks such as online
process discovery, model update, and anomaly detection. The framework ingests event streams and, using a graph
structure, computes distances between current and expected behavior. Relying on an online clustering algorithm, cases
are placed in the feature space and updated according to new events in the stream. The drift detection mechanism is
controlled by the maintained online feature space. CDESF identifies a drift in the business process given the emergence
of new behavior in the feature space. However, CDESF was limited to the control-flow and time perspectives, meaning
that it only processed the activity sequence and time spans between them.

In this work, we extend CDESF to support multiple dimensions in online processing, including all data-flow at-
tributes belonging to an event log. For that, we dynamically instantiate attribute representations in online processing.
Therefore, CDESF’s new version allows drift detection in the data-flow perspective. Moreover, anomalies affecting
data-flow attributes are now identifiable by the upgraded CDESF. We submitted the tool to a set of experiments using
real and synthetic data. The experiments aim at evaluating complementary aspects of online PM analysis, showcasing
CDESF’s capabilities for drift detection and overall support for real-time PM tasks. Results show that data-flow at-
tributes are vulnerable to drifts and anomalies, indicating the need for tools that handle multiple perspectives in online
PM.

The remainder of this paper is organized as follows. Section 2 introduces a detailed discussion about concept drift
detection in PM, highlighting the difference between offline and online tools. Section 3 presents the CDESF workflow
with special attention to the upgrades proposed in this paper. Section 4 exhibits the experiments, the employed data,
and the performance metrics for evaluation. Section 5 presents the results of the experiments and discusses how
additional dimensions influence CDESF’s performance. Finally, Section 6 concludes the paper.

2. Related work

The recent uptake in drift detection methods proposed in PM research is motivated by the need of reacting and
adapting to processes in real-time [3]. Traditionally, PM techniques rely on offline data processing, i.e., batch pro-
cessing where multiple-pass analyses are allowed. These techniques extract information from historical executions of
the business process, which may not represent the current process behavior. On the other hand, online PM refers to
techniques prepared to ingest a stream, dynamically responding to incoming data. An additional challenge posed by
streaming environments is the common non-stationarity of data. Streaming literature defines a data stream as an or-
dered pair (s,∆) where s is a sequence of tuples and ∆ is a sequence of positive real time-intervals [17]. Furthermore,
when the true relation between a feature vector and its associated class, i.e. a concept, changes in two separate points
in time, we identify a concept drift [4]. Properly detecting and adapting to changing concepts leverages the quality
of online PM approaches. In this review, we focus on concept drift detection methods for online process data. For an
in-depth analysis of online PM, we refer the reader to [3].

An early approach for online drift detection in PM was proposed in [9]. The authors extract follow and precede re-
lations from the log and, using a windowed approach, a statistical test is performed in two non-overlapping windows.
When distributions between the two windows are different, a drift alert is raised. A clustering-based approach was
proposed by Zheng et al. [10]. For that, direct succession and weak order relations are extracted from traces. Candi-
date drift points are leveraged from the analysis of the variation trends. Then, drifts are detected by the clusterization
of candidate points. Focusing on comprehensiveness, Yeshchenko et al. [11] proposed a method for drift detection
and visualization. The approach divides the log into sub-logs and extracts declarative process behavior metrics based
on temporal rules. Using a multivariate time series analysis, constraints confidences are extracted and clustered. Fi-
nally, each cluster is evaluated for change detection, producing a notion of behavior-specific drifts and overall drifts.
Brockhoff et al. [12] proposed a method that handles both control-flow and time perspectives for drift detection. The
technique is based on earth mover’s distance, a distance-based similarity measure that compares probability distri-
butions. The combination of a sliding window approach with an earth mover’s distance provides a flexible approach
that facilitates the detection of drifts in more than one perspective. The main limitation of previously mentioned ap-
proaches is that they perform in an offline setting, i.e., detecting drifts from historical data. Treating the event log
as batch analysis (transforming the log into trace streams or sub-logs) is a constraint that hinders the application of
these techniques in real scenarios, which are permeated by event streams [3]. Ostovar et al. [13] proposed a method

Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000 3

that ingests streams of events. The approach relies on the concept of α+ relations, which captures several types of
associations between activities [18]. Statistical tests performed in two sliding windows identify the drifts. Particular
attention is given to the trade-off between accuracy and detection latency, which is a constraint in online processing
[3]. However, the approach ignore other data dimensions that could also be affected by concept drifts.

3. Multi-dimensions in Online Process Mining

CDESF is a multi-purpose tool to support the analysis of event streams. Although the main goal is drift detection,
CDESF also supports online process discovery and anomaly detection. The framework was first presented in [14],
upgraded in [15] and released as a tool in [16]. Given an event stream, CDESF ingests each event at a time, produces a
trace representation based on a graph structure, extracts distances related to a model, and clusters cases in the feature
space. These processes are regulated by four steps: Transformation, Distance Computation, Online Clustering and
Check Point. The first three steps are triggered for each new event, while the last step works as a regulator, updating
the process model and releasing older data. Internally, CDESF uses a graph representation for its process model
inspired by the directly-follows graph, where nodes represent activities and edges the connections between these
activities. This representation supports the computation of distance metrics and makes model updates feasible. We
refer to this internal representation as Process Model Graph (PMG). For more information about PMG creation and
update, please refer to [15].

At the arrival of a new event, the Transformation phase instantiates the event as a node and produces a graph repre-
sentation. When the event belongs to a case already seen, this event is added to its corresponding case representation.
Otherwise, the event is the first from its case, meaning that the graph representation for this case is a single node. In
earlier versions of CDESF, the node recorded only the activity name and the date and time tuple representing when the
activity was executed. In this work, we extend this core representation by including all the additional attributes related
to an event. Hence, the node now accumulates all the data available in the event stream. Hence, the edge represents
the directly-follow relation between activities (nodes), including their frequency. Both PMG and trace representations
follow this guideline to represent activities and their ordering.

Once the event has been transformed into a graph, case distances are computed in the Distance Computation step.
These distances are based on the difference between the case graph and the PMG. Consequently, cases closer to the
PMG behavior produce lower distances while cases containing less frequent behavior in the PMG result in higher
distance values. In [15], case distances insisted in two perspectives: trace and time, referred to as graph-distance
trace (GDtrace) and graph-distance time (GDtime). Distances are computed after normalization in the PMG. From the
trace perspective, the normalization divides each node frequency by the node with the highest frequency. From the
time perspective, the normalization acts on the edges by computing the mean time between two activities (nodes)
occurrence. For more information on GDtrace and GDtime computation, we refer the reader to [15].

In this paper, we extend the support for multiple dimensions in online processing, meaning that graph distances are
computed for the additional attributes. For numerical attributes, the distances are calculated using a similar approach
as the one used to calculate GDtime. Given a trace tr, for each activity tr[i] in the trace, we compute the difference
between the value of the numerical attribute tr[i]num attr and the average value of all previous occurrences of that
attribute for the same activity in the PMG. The sum of distances for the attribute across all activities is then compared
to the sum of the average values in the PMG. Categorical attributes follow a similar approach as the one used to
calculate GDtrace. Given a trace tr, for each activity tr[i] in the trace and its corresponding categorical attribute’s value
tr[i]cat attr, we compute the difference between the frequency of that value in the PMG and the number of occurrences
for the same attribute. The sum of these distances is then divided by the number of nodes in the trace Ttr. Each event
attribute has its respective distance computation. Hence, the set of distances has the same length as the number of event
attributes. Fig. 1 shows a PMG and a trace already modeled as a graph. We note the attributes attached to both graphs.

Considering attribute attr1 and attr2, GDattr1 =
| 10+3+8

3 −9|+| 0+6+1
3 −5|+| 2+2

2 −2|
7+2.33+2 = 0.4121 and GDattr2 =

(1− 2
3)+(1−0)+(1− 1

2)
3 =

0.6111.
We refer to the set of distances as graph distances (GD) from now on. The Online Clustering step uses the pre-

viously computed GD to formulate the online feature space. We adopted the DenStream [19] algorithm for online
clustering. Using the concept of micro-clusters [20], DenStream dynamically creates, updates, and deletes micro-
clusters from the online feature space. The density-based clustering technique incorporates the concept of three
micro-cluster types: outlier micro-cluster (anomalous behavior), potential micro-cluster (potential normal behavior),
and core micro-cluster (normal behavior). Denser regions are identified as common behavior as they concentrate more
elements, consequently associated with core micro-clusters. Regions with low density represent anomalous behavior
and are associated with outlier micro-clusters. Given new GDs, DenStream updates the current feature space by ad-
justing micro-clusters radius and positions. Regions that become denser as new points arrive are promoted to core
micro-clusters. This way, the promotion of a new core micro-cluster illustrates the new behavior that arrived in the
stream. We identify this promotion as an indicator of drift since a new behavior (previously unseen) was detected in
the feature space. Note that the number of dimensions respects a one-to-one relationship with the number of event
attributes.

754	 Paolo Ceravolo et al. / Procedia Computer Science 197 (2022) 751–758
4 Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000

Fig. 1. An example Process Model Graph and a new trace.

The last step, Check Point (CP), deals with intrinsic constraints attached to stream processing, namely, model
update and memory control. Since a stream is potentially infinite, regulators are necessary to control resource con-
sumption. Moreover, due to behavior change, updating mechanisms are required to maintain the model relevant. The
CP step is regulated by a hyperparameter defining the size of a time window. To control memory consumption, the CP
stage releases older cases from memory according to the Nyquist sampling theorem [21], which states that a minimum
threshold to the sampling rate of data ingestion is twice the highest frequency included in the signal. In our scenario,
the number of unique cases that arrived after the last CP is interpreted as the highest frequency. This way, CP compares
the number of cases in memory with the Nyquist threshold. If there are more cases than the threshold, then the excess
of cases is released from memory. Regarding the model update, cases that arrived after the last CP (newest cases in
the stream) are used to create a temporary graph, which is then merged with the PMG. Thus, the PMG incorporates
both the latest behavior ingested in the stream and the behavior that is stably observed in the log. The PMG weights
are decayed before merging with the temporary graph to control the balance between new and historical data. This
practice decreases the importance of historical data, paving the way for the model update.

Traditionally, CDESF supported online process discovery, distance computation, and clustering based on only two
dimensions (control-flow and time). In this work, we extend CDESF’s capabilities by adapting the framework to
handle multiple business process attributes, thus, increasing the tool coverage. More importantly, CDESF is now able
to identify anomalies and drifts in the data-flow perspective, an important requirement in online environments. CDESF
is available as a Python package for the community1.

4. Experimental setup

Given CDESF’s general-purpose nature, we evaluate several complimentary online tasks to leverage the under-
standing of the framework capabilities. This way, we propose a set of three experiments capturing different perspec-
tives in stream processing. Each experiment aims at evaluating a singular aspect of the tool, namely: (i) drift detection
(with and without data-flow attributes) in a real-life scenario, (ii) quantitative drift detection evaluation in synthetic
event streams with four different drift types, and (iii) data-flow anomaly detection.

In the first experiment, we evaluate concept drift detection in real-life event data, assessing the number of drifts
and their correspondent positions in the stream. A similar evaluation was performed in the literature [13] [11]. Our
main goal is to compare the detected drifts with other approaches and, going further, finding drifts in additional
dimensions. Thus, incorporating multiple event attributes other than only the control-flow perspective. For that, we
used the helpdesk2 event log as it was also used in similar works [13] [11]. The helpdesk log contains 4580 traces and
21348 events. To measure data-flow impact on drift detection, we used two attributes from the helpdesk log: resource
and service level. Both attributes are categorical, resource refers to the person executing the activity, containing 22
unique values, while service level indicates the level at which the activity was executed, containing 4 unique values.

The second experiment quantitatively evaluates drift detection capabilities. For that, we use the synthetic event
streams that are known to contain one drift and compare the results with the ProDrift tool proposed by Ostovar et
al. [13]. This technique was chosen due to its proposal of processing event streams, that is, an online algorithm for
concept drift detection in business processes. Other works that propose an offline detection do not meet the criteria
for comparison as they process event logs as batches. The adopted performance measure for this experiment is Root
Mean Squared Logarithmic Error (RMSLE) as the metric was already employed in similar works [3]. RMSLE is
robust to outliers and underestimations are more penalized than overestimations, meaning that false negatives are
more problematic than false positives. This is, in our opinion, in accordance with the drift detection task because not

1 https://github.com/gbrltv/cdesf2
2 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb

	 Paolo Ceravolo et al. / Procedia Computer Science 197 (2022) 751–758� 755
4 Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000

Fig. 1. An example Process Model Graph and a new trace.

The last step, Check Point (CP), deals with intrinsic constraints attached to stream processing, namely, model
update and memory control. Since a stream is potentially infinite, regulators are necessary to control resource con-
sumption. Moreover, due to behavior change, updating mechanisms are required to maintain the model relevant. The
CP step is regulated by a hyperparameter defining the size of a time window. To control memory consumption, the CP
stage releases older cases from memory according to the Nyquist sampling theorem [21], which states that a minimum
threshold to the sampling rate of data ingestion is twice the highest frequency included in the signal. In our scenario,
the number of unique cases that arrived after the last CP is interpreted as the highest frequency. This way, CP compares
the number of cases in memory with the Nyquist threshold. If there are more cases than the threshold, then the excess
of cases is released from memory. Regarding the model update, cases that arrived after the last CP (newest cases in
the stream) are used to create a temporary graph, which is then merged with the PMG. Thus, the PMG incorporates
both the latest behavior ingested in the stream and the behavior that is stably observed in the log. The PMG weights
are decayed before merging with the temporary graph to control the balance between new and historical data. This
practice decreases the importance of historical data, paving the way for the model update.

Traditionally, CDESF supported online process discovery, distance computation, and clustering based on only two
dimensions (control-flow and time). In this work, we extend CDESF’s capabilities by adapting the framework to
handle multiple business process attributes, thus, increasing the tool coverage. More importantly, CDESF is now able
to identify anomalies and drifts in the data-flow perspective, an important requirement in online environments. CDESF
is available as a Python package for the community1.

4. Experimental setup

Given CDESF’s general-purpose nature, we evaluate several complimentary online tasks to leverage the under-
standing of the framework capabilities. This way, we propose a set of three experiments capturing different perspec-
tives in stream processing. Each experiment aims at evaluating a singular aspect of the tool, namely: (i) drift detection
(with and without data-flow attributes) in a real-life scenario, (ii) quantitative drift detection evaluation in synthetic
event streams with four different drift types, and (iii) data-flow anomaly detection.

In the first experiment, we evaluate concept drift detection in real-life event data, assessing the number of drifts
and their correspondent positions in the stream. A similar evaluation was performed in the literature [13] [11]. Our
main goal is to compare the detected drifts with other approaches and, going further, finding drifts in additional
dimensions. Thus, incorporating multiple event attributes other than only the control-flow perspective. For that, we
used the helpdesk2 event log as it was also used in similar works [13] [11]. The helpdesk log contains 4580 traces and
21348 events. To measure data-flow impact on drift detection, we used two attributes from the helpdesk log: resource
and service level. Both attributes are categorical, resource refers to the person executing the activity, containing 22
unique values, while service level indicates the level at which the activity was executed, containing 4 unique values.

The second experiment quantitatively evaluates drift detection capabilities. For that, we use the synthetic event
streams that are known to contain one drift and compare the results with the ProDrift tool proposed by Ostovar et
al. [13]. This technique was chosen due to its proposal of processing event streams, that is, an online algorithm for
concept drift detection in business processes. Other works that propose an offline detection do not meet the criteria
for comparison as they process event logs as batches. The adopted performance measure for this experiment is Root
Mean Squared Logarithmic Error (RMSLE) as the metric was already employed in similar works [3]. RMSLE is
robust to outliers and underestimations are more penalized than overestimations, meaning that false negatives are
more problematic than false positives. This is, in our opinion, in accordance with the drift detection task because not

1 https://github.com/gbrltv/cdesf2
2 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb

Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000 5

detecting a drift may result in a significant drop of accuracy, while detecting an irrelevant drift means an unnecessary
update of the model. To evaluate the capacity of detecting concept drifts in event streams, we used the synthetic event
streams proposed in [3] and available in [22]. We selected 250 event streams containing 1000 cases each. The streams
represent four drift types (sudden, recurring, incremental, and gradual) that describe the type of change that affected
the process behavior. Sudden is an abrupt behavior change. Recurring marks seasonal behavioral changes. Incremental
refers to a set of minimal and continuous changes that characterize a unique drift. Gradual is the type of drift where the
new behavior probability increases while the older behavior probability decreases until the new behavior completely
substitutes the first [24]. Moreover, all synthetic streams contain one drift in the control-flow perspective with varying
percentages of anomalous instances.

In the last experiment, we evaluate CDESF’s capabilities of detecting anomalies in the data-flow perspective. For
that, we used one additional set of synthetic event logs containing anomalies affecting multiple perspectives proposed
in [23]. We selected a subset of event logs (20 in total) with anomalies disturbing cases in the data-flow perspective,
namely, the resource and actor attributes. Resource is an associated cost for the activity execution and actor is the
stakeholder that executes the activity. Resource anomalies are related to values outside the expected range while actor
anomalies allow forbidden users to execute an activity. For instance, given an activity A that is executed by two
actors {E1, E2}, given a case C1, an actor anomaly is injected by changing the activity executor, such as associating
A with actor E3. Similarly, the resource anomaly injects noise to the original cost of the activity. For example, given
an activity B that has a cost range between [30, 50] is associated with a cost of 10 for a given case C2. In both
examples, the cases contain anomalous attributes that should be identified by data-flow-aware techniques. We applied
the synthetic event logs with anomalies in the data-flow attributes, thus, assessing online anomaly detection supported
by CDESF.

5. Results and discussion

5.1. Real-life data

Processing the helpdesk event log, CDESF detected 4 drifts in the following positions: 9280, 9725, 11072, 15107.
Using the same event log, the authors in [25] detected drifts in positions 8757 and 17307, whereas authors in [11]
detected two drifts in the first half of the log and one in the second half. For instance, drifts in 9280 and 9725 relate
to the drift detected in 8757 by [25], while drift 15107 relates to drift 17307 detected by [25]. Depending on the drift
type, instead of a drift point, there is a drift region, e.g., gradual drifts are not instantaneous and affect a region. This
phenomenon may explain the slight differences in positions for each tool. Moreover, CDESF detects more drifts as
the other two works because it processes both control-flow and time perspectives. Thus, changes affecting the time
feature space may yield drift alerts. Fig. 2 visually depicts the drift detected at position 11072. First, we observe the
feature space before the drift at position 11071. Note the micro-cluster 10, a potential micro-cluster (blue ellipse) at
this moment. In the right, at position 11080, the same feature space appears after more events are ingested. Additional
cases were placed in this region, consequently becoming denser and promoting the micro-cluster to a core micro-
cluster (black ellipse), representing a new behavior. CDESF also outputs the cases involved in this cluster, which can
be analyzed for further inspection. We can observe that these cases are similar in the control-flow perspective as cases
belonging to micro-clusters 0, 3, and 7, but they have a different time distribution, characterizing new behavior.

Fig. 2. Feature space in the online clustering step before (left) and after (right) a drift, located at positions 11071 and 11080. Black points are normal
cases while yellow crosses represent anomalous instances. Black ellipses are core micro-clusters whereas blue ellipses are potential micro-clusters.

Furthermore, we produced a following experiment including two additional attributes: resource and service level.
CDESF detects 7 drifts when including only resource and 10 drifts when including only service level. When including
both attributes, CDESF detects 15 drifts, many of which are in the early phase of the stream. The first notable behav-
ior is that including more dimensions may increase the number of detected drifts significantly. We can observe that

756	 Paolo Ceravolo et al. / Procedia Computer Science 197 (2022) 751–758
6 Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000

dimensions impact each other as the drift positions were not the same among the sets. Therefore, feature space distri-
bution is directly controlled by the set of attributes arriving through the stream. Nevertheless, the results highlight the
importance of incorporating the processing of additional attributes in online PM. These additional dimensions capture
additional drifting behavior that, when identified, may leverage knowledge regarding a business process.

5.2. Synthetic event streams

In this experiment, we compared CDESF and ProDrift [13]. For that, 250 event logs with four drift types were
streamed to the tools. Both techniques were applied with standard hyperparameters, thus, no tuning approach was
employed. Because ProDrift only analyzes the control-flow perspective we selected event logs including anomalies
defined on the control-flow only. This intrinsically limits the potential of CDESF. Table 1 shows the performance
of both tools measured by RMSLE. When considering all the logs, ProDrift achieved 0.388 while CDESF remained
with 0.694. CDESF is more sensitive to drift detection, tending to overestimate the real number of drifts, as pointed
in [3]. On the other hand, ProDrift was more precise due to its statistical test approach, which is less sensitive for
minor changes. Moreover, CDESF analyzes both trace and time dimensions, thus increasing the number of possible
detected drifts as behavior shifts in the time feature space also triggers drift alerts. Considering each specific drift
type, we note that the sudden drift is the easiest to be detected by both tools, with CDESF and ProDrift achieving
0.671 and 0.253, respectively. Indeed, the abrupt change of distributions highly affects encoding layers that capture
the online behavior. ProDrift also performs well in detecting incremental drifts (0.353), followed by gradual (0.437)
and recurring (0.454). ProDrift approach increases its performance in sudden and incremental changes, while gradual
and recurring changes, which affect the behavior distribution probabilities, are less detectable by this tool. CDESF
presents a good performance in gradual drifts (0.676), followed by recurring (0.714) and incremental (0.751). CDESF
approach matched better behavior imposed by gradual changes as the framework slowly incorporates the drifting
behavior into the model. Instead, incremental changes are less detectable as the very small scale changes are not
perceived by the tool.

Table 1. Comparing CDESF and ProDrift performances for drift detection using RMSLE. Performance for each drift type is also exposed.

Technique RMSLEall RMSLEgradual RMSLEincremental RMSLErecurring RMSLEsudden

CDESF 0.694 0.676 0.751 0.714 0.671
ProDrift 0.388 0.437 0.353 0.454 0.253

5.3. Detecting anomalous cases based on the data-flow perspective

In this experiment, we evaluated CDESF capabilities of detecting anomalous process instances based on the data-
flow perspective. For that, we identify cases as anomalous based on the case having an anomaly in the actor attribute,
containing categorical values, the resource attribute, containing numerical values, or both. This means anomalies are
not originated by a deviation in the control-flow but relate to anomalous values in the data attributes. The performance
metrics were obtained simply by comparing the cases labeled by CDESF with the real labels from the event logs.
The average accuracy for the 20 event logs was 86.1%, with 5% as standard deviation, while the average F-score
was 0.92. The performance is better in event logs with a lower incidence of anomalous instances as the higher the
anomaly frequency, the noisier is the stream. When too much noise is added, the PMG is negatively affected and the
process representation becomes poorer. When measuring performance for each anomaly independently, we obtain an
accuracy of 90.63% and an F-score of 0.9503 for the actor anomaly, an accuracy of 90.61% and an F-score of 0.9502
for the resource anomalies. The results indicate that CDESF maintains a similar performance in data-flow anomaly
detection for both categorical and numerical attributes. This robustness increases the applicability of the tool as it
handles different attribute types with a steady performance. We highlight that anomalous instances are not identified
based on each separate dimension, instead, it considers the aggregation of all dimensions in the feature space during
the online clustering step, which explains the approach robustness.

6. Conclusion

In this work, we extended a tool for drift detection in online PM. The extension enabled CDESF to incorporate
online representations of additional business process attributes, i.e. the data-flow perspective. Additional dimensions
should not be neglected in online processing as they may contain valuable information regarding the business process.
We presented a set of three experiments capturing different necessities of online processing. In the real-life event log,

	 Paolo Ceravolo et al. / Procedia Computer Science 197 (2022) 751–758� 757
6 Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000

dimensions impact each other as the drift positions were not the same among the sets. Therefore, feature space distri-
bution is directly controlled by the set of attributes arriving through the stream. Nevertheless, the results highlight the
importance of incorporating the processing of additional attributes in online PM. These additional dimensions capture
additional drifting behavior that, when identified, may leverage knowledge regarding a business process.

5.2. Synthetic event streams

In this experiment, we compared CDESF and ProDrift [13]. For that, 250 event logs with four drift types were
streamed to the tools. Both techniques were applied with standard hyperparameters, thus, no tuning approach was
employed. Because ProDrift only analyzes the control-flow perspective we selected event logs including anomalies
defined on the control-flow only. This intrinsically limits the potential of CDESF. Table 1 shows the performance
of both tools measured by RMSLE. When considering all the logs, ProDrift achieved 0.388 while CDESF remained
with 0.694. CDESF is more sensitive to drift detection, tending to overestimate the real number of drifts, as pointed
in [3]. On the other hand, ProDrift was more precise due to its statistical test approach, which is less sensitive for
minor changes. Moreover, CDESF analyzes both trace and time dimensions, thus increasing the number of possible
detected drifts as behavior shifts in the time feature space also triggers drift alerts. Considering each specific drift
type, we note that the sudden drift is the easiest to be detected by both tools, with CDESF and ProDrift achieving
0.671 and 0.253, respectively. Indeed, the abrupt change of distributions highly affects encoding layers that capture
the online behavior. ProDrift also performs well in detecting incremental drifts (0.353), followed by gradual (0.437)
and recurring (0.454). ProDrift approach increases its performance in sudden and incremental changes, while gradual
and recurring changes, which affect the behavior distribution probabilities, are less detectable by this tool. CDESF
presents a good performance in gradual drifts (0.676), followed by recurring (0.714) and incremental (0.751). CDESF
approach matched better behavior imposed by gradual changes as the framework slowly incorporates the drifting
behavior into the model. Instead, incremental changes are less detectable as the very small scale changes are not
perceived by the tool.

Table 1. Comparing CDESF and ProDrift performances for drift detection using RMSLE. Performance for each drift type is also exposed.

Technique RMSLEall RMSLEgradual RMSLEincremental RMSLErecurring RMSLEsudden

CDESF 0.694 0.676 0.751 0.714 0.671
ProDrift 0.388 0.437 0.353 0.454 0.253

5.3. Detecting anomalous cases based on the data-flow perspective

In this experiment, we evaluated CDESF capabilities of detecting anomalous process instances based on the data-
flow perspective. For that, we identify cases as anomalous based on the case having an anomaly in the actor attribute,
containing categorical values, the resource attribute, containing numerical values, or both. This means anomalies are
not originated by a deviation in the control-flow but relate to anomalous values in the data attributes. The performance
metrics were obtained simply by comparing the cases labeled by CDESF with the real labels from the event logs.
The average accuracy for the 20 event logs was 86.1%, with 5% as standard deviation, while the average F-score
was 0.92. The performance is better in event logs with a lower incidence of anomalous instances as the higher the
anomaly frequency, the noisier is the stream. When too much noise is added, the PMG is negatively affected and the
process representation becomes poorer. When measuring performance for each anomaly independently, we obtain an
accuracy of 90.63% and an F-score of 0.9503 for the actor anomaly, an accuracy of 90.61% and an F-score of 0.9502
for the resource anomalies. The results indicate that CDESF maintains a similar performance in data-flow anomaly
detection for both categorical and numerical attributes. This robustness increases the applicability of the tool as it
handles different attribute types with a steady performance. We highlight that anomalous instances are not identified
based on each separate dimension, instead, it considers the aggregation of all dimensions in the feature space during
the online clustering step, which explains the approach robustness.

6. Conclusion

In this work, we extended a tool for drift detection in online PM. The extension enabled CDESF to incorporate
online representations of additional business process attributes, i.e. the data-flow perspective. Additional dimensions
should not be neglected in online processing as they may contain valuable information regarding the business process.
We presented a set of three experiments capturing different necessities of online processing. In the real-life event log,

Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000 7

CDESF showed its capability of detecting similar drifts as other tools. Moreover, by including two data-flow attributes,
we observed that more drifts are detected, hence, proving the impact of event log attributes in drift occurrences. Other
drift detection techniques are uniquely attached to the control-flow, thus, ignoring all data-flow attributes, hindering
their applicability. Future work should investigate the level of impact within the data attributes as different combina-
tions lead to different sets of detected drifts. Along with this, we compared CDESF with another tool in a controlled
scenario with 250 event streams containing four drift types. Finally, we investigated anomaly detection in the data-flow
perspective, an aspect that should not be ignored by online PM solutions. CDESF achieves considerable performances
in complementary needs of online environments, showing that solutions for specific tasks might be limited since they
ignore the influence of other tasks. More importantly, we highlight that handling data-flow attributes leverages the
analysis quality for online PM tools. In future work, we aim to extend the experiments, assess CDESF in different
scenarios, enlarge the set of tasks CDESF offers, and improve the visualization output provided by the tool.

Acknowledgements

This article was financially supported by the program “Piano di sostegno alla ricerca 2020” funded by Università
degli Studi di Milano.

References

[1] Dumas, Marlon, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. (2005) “Process-aware information systems: bridging people and
software through process technology.” John Wiley & Sons.

[2] Van der Aalst, Wil M. P.. (2016) “Process Mining: Data Science in Action.” Springer, Heidelberg 2ed.
[3] Ceravolo, Paolo, Gabriel M. Tavares, Sylvio. Barbon Junior, and Ernesto Damiani. (2020) “Evaluation Goals for Online Process Mining: a

Concept Drift Perspective.” IEEE Transactions on Services Computing 1–1.
[4] Gama, João. (2010) “Knowledge Discovery from Data Streams.” Web Intelligence and Security - Advances in Data and Text Mining Techniques

for Detecting and Preventing Terrorist Activities on the Web 125–138.
[5] Hassani, Marwan, Sergio Siccha, Florian Richter, and Thomas Seidl. (2015) “Efficient Process Discovery From Event Streams Using Sequential

Pattern Mining.” IEEE Symposium Series on Computational Intelligence 1366-1373.
[6] van Zelst, Sebastiaan J., Boudewijn F. van Dongen, and Wil M. P. van der Aalst. (2018) “Event stream-based process discovery using abstract

representations.” Knowledge and Information Systems 54 (2): 407–435.
[7] van Zelst, Sebastiaan J., Alfredo Bolt, Marwan Hassani, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. (2017) “Online conformance

checking: relating event streams to process models using prefix-alignments.” International Journal of Data Science and Analytics 2364–4168.
[8] Schuster, Daniel, and Sebastiaan J. van Zelst. (2020) “Online Process Monitoring Using Incremental State-Space Expansion: An Exact Algo-

rithm.” Business Process Management, Springer International Publishing 147–164.
[9] Bose, R. P. Jagadeesh Chandra, Wil M. P. van Der Aalst, Indrė Žliobaitė, and Mykola Pechenizkiy. (2014) “Dealing With Concept Drifts in

Process Mining.” IEEE Transactions on Neural Networks and Learning Systems 25 (1): 154-171.
[10] Zheng, Canbin, Lijie Wen, and Jianmin Wang. (2017) “Detecting Process Concept Drifts from Event Logs.” On the Move to Meaningful

Internet Systems. OTM 2017 Conferences 524–542.
[11] Yeshchenko, Anton, Claudio Di Ciccio, Jan Mendling, and Artem Polyvyanyy. (2019) “Comprehensive Process Drift Detection with Visual

Analytics.” Conceptual Modeling, Springer International Publishing 119–135.
[12] Brockhoff, Tobias, Merih Seran Uysal, and Wil M. P. van der Aalst. (2020) “Time-aware Concept Drift Detection Using the Earth Mover’s

Distance.” 2nd International Conference on Process Mining 33–40.
[13] Ostovar, Alireza, Abderrahmane Maaradji, Marcello La Rosa, Arthur H. M. ter Hofstede, and Boudewijn F. V. van Dongen. (2016) “Detecting

Drift from Event Streams of Unpredictable Business Processes.” Conceptual Modeling, Springer International Publishing 330–346.
[14] Barbon Junior, Sylvio, Gabriel M. Tavares, Victor G. Turrisi da Costa, Paolo Ceravolo, and Ernesto Damiani. (2018) “A Framework for

Human-in-the-Loop Monitoring of Concept-Drift Detection in Event Log Stream.” Companion Proceedings of the The Web Conference 2018
319—326.

[15] Tavares, Gabriel Marques, Paolo Ceravolo, Victor G. Turrisi Da Costa, Ernesto Damiani, and Sylvio Barbon Junior. (2019) “Overlapping
Analytic Stages in Online Process Mining.” IEEE International Conference on Services Computing (SCC) 167–175.

[16] Mora, Davide, Paolo Ceravolo, Ernesto Damiani, Gabriel M. Tavares. (2020) “The CDESF Toolkit: An Introduction.” [Online]. Available:
http://ceur-ws.org/Vol-2703/paperTD8.pdf.

[17] Krawczyk, Bartosz, Leandro L. Minku, João Gama, Jerzy Stefanowski, and Michał Woźniak. (2017) “Ensemble learning for data stream
analysis: A survey.” Information Fusion 37: 132–156.

[18] De Medeiros, AK Alves, Boudewijn F. van Dongen, Wil MP Van der Aalst, and A. J. M. M. Weijters. (2004) “Process mining: extending the
alpha-algorithm to mine short loops.” Technische Universiteit Eindhoven.

[19] Cao, Feng, Martin Estert, Weining Qian, and Aoying Zhou. (2006) “Density-based clustering over an evolving data stream with noise.” Pro-
ceedings of the International Conference on Data Mining 328–339.

[20] Aggarwal, Charu C., S. Yu Philip, Jiawei Han, and Jianyong Wang. (2003) “A framework for clustering evolving data streams” Proceedings of
the 29th International Conference on Very Large Data Bases 81–92.

758	 Paolo Ceravolo et al. / Procedia Computer Science 197 (2022) 751–758
8 Paolo Ceravolo et al. / Procedia Computer Science 00 (2021) 000–000

[21] Landau H. J. Sampling. (1967) “Sampling, data transmission, and the Nyquist rate.” Proceedings of the IEEE 55 (10): 1701–1706.
[22] Tavares, Gabriel Marques, Sylvio Barbon Junior, and Paolo Ceravolo. (2019) “Synthetic Event Streams.” IEEE Dataport [Online]. Available:

https://dx.doi.org/10.21227/2kxd-m509.
[23] Barbon Junior, Sylvio, Paolo Ceravolo, Ernesto Damiani, and Gabriel M. Tavares. (2021) “Evaluating Trace Encoding Methods in Process

Mining.” From Data to Models and Back, Springer International Publishing 174–189.
[24] Gama, João, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. (2014) “A Survey on Concept Drift Adaptation.”

ACM Comput. Surv. 46 (4): 44:1–44:37.
[25] Ostovar, Alireza, Sander JJ Leemans, and Marcello La Rosa. (2020) “Robust Drift Characterization from Event Streams of Business Processes.”

ACM Trans. Knowl. Discov. Data 14 (3): 30.

