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Abstract

We study a Cahn-Hilliard-Hele-Shaw (or Cahn-Hilliard-Darcy) system for an in-

compressible mixture of two fluids. The relative concentration difference ϕ is gov-

erned by a convective nonlocal Cahn-Hilliard equation with degenerate mobility and

logarithmic potential. The volume averaged fluid velocity u obeys a Darcy’s law

depending on the so-called Korteweg force µ∇ϕ, where µ is the nonlocal chemical

potential. In addition, the kinematic viscosity η may depend on ϕ. We establish first

the existence of a global weak solution which satisfies the energy identity. Then we

prove the existence of a strong solution. Further regularity results on the pressure

and on u are also obtained. Weak-strong uniqueness is demonstrated in the two

dimensional case. In the three-dimensional case, uniqueness of weak solutions holds

if η is constant. Otherwise, weak-strong uniqueness is shown by assuming that the

pressure of the strong solution is α-Hölder continuous in space for α ∈ (1/5, 1).

Keywords: Cahn-Hilliard equation, Darcy’s law, nonlocal free energy, logarith-

mic potential, degenerate mobility, non-constant viscosity, weak solutions, strong

solutions, regularity, uniqueness.

MSC 2020: 35Q35, 76D27, 76T06.

∗Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via C. Saldini 50, 20133
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1 Introduction

The behavior of an incompressible binary fluid flow in a Hele-Shaw cell occupying a

bounded domain Ω ⊂ R
d, d = 2, 3, can be described through a diffuse interface model

which reduces to the following system in the Boussinesq approximation (see [37, 38])

η(ϕ)u+∇π = µ∇ϕ (1.1)

div(u) = 0 (1.2)

ϕt + u · ∇ϕ = div(m(ϕ)∇µ) (1.3)

µ = −∆ϕ + F ′(ϕ)− ϑ0ϕ (1.4)

in QT := Ω× (0, T ). Here ϕ : Ω× [0, T ] → [−1, 1] is the relative concentration difference

u : Ω× [0, T ] → R
d the volume averaged fluid velocity, and η(·) is the kinematic viscosity

given by

η(s) = ν1
1 + s

2
+ ν2

1− s

2
, s ∈ [−1, 1], (1.5)

where ν1 > 0 and ν2 > 0 are the (constant) viscosities of the two fluids. The function F

is the mixing entropy density, namely

F (s) =
ϑ

2

(
(1 + s) log(1 + s) + (1− s) log(1− s)

)
, s ∈ (−1, 1), (1.6)

where ϑ > 0 is the absolute temperature and ϑ0 > ϑ is the critical temperature. Moreover,

π is the pressure and m(·) ≥ 0 is the mobility. Some other constants have been set equal

to unity and gravity has been neglected for the sake of simplicity (see [34, Sec.7]). It is

worth recalling that the original model is typically two dimensional. Nonetheless, in three

dimensions, the system can model fluid flow in a porous medium and, in particular, it is

used in solid tumor growth modeling (see [10, 27, 34] and references therein).

In this setting, i.e., without approximating (1.6) with a regular double well potential

and taking no-flux boundary conditions, the only theoretical results available so far were

proven in [34] for constant mobility. More precisely, in two spatial dimensions, the author

established the existence of a weak solution, its conditional uniqueness as well as the ex-

istence and uniqueness of strong solutions. Instead, in three spatial dimensions, existence

and uniqueness of a strong solution were proven locally in time or for small initial data.

The case η constant was formerly analyzed in [35]. Previous results for η non-constant

were only known for regular potentials, that is, smooth approximations defined on R of

the singular potential W (s) = F (s) − θ0
2
s2 (see [42, 43] and also [10]). For a detailed

analysis of contributions in the case η constant with regular potential, we refer the reader

to [34]. However, as is well known, in such cases it is not possible to ensure the physical

requirement ϕ ∈ [−1, 1]. Open issues for system (1.1)-(1.4) are the uniqueness of weak
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solutions and the existence of global strong solutions in dimension three (even in the case

of constant η).

An alternative system is based on the nonlocal Cahn-Hilliard equation. In this case,

the standard local free energy

E(ϕ) =

∫

Ω

( |∇ϕ|2
2

+W (ϕ)

)
dx,

whose functional derivative is the chemical potential µ, is replaced by the nonlocal free

energy

E(ϕ) = −1

2

∫ ∫

Ω×Ω

J(x− y)ϕ(x)ϕ(y)dxdy +

∫

Ω

F (ϕ)dx,

where J : Rd → R is a suitable interaction kernel such that

J(x) = J(−x). (1.7)

Note that the nonlocal term represents the demixing effects which compete with the

entropy mixing (see [28, 29, 30] for a macroscopic derivation from a microscopic model

in a periodic context, see also the discussion in [15]). Then, taking µ as the functional

derivative of E we obtain the nonlocal version of the Cahn-Hilliard-Hele-Shaw system

η(ϕ)u+∇π = µ∇ϕ (1.8)

div(u) = 0 (1.9)

ϕt + u · ∇ϕ = div(m(ϕ)∇µ) (1.10)

µ = −J ∗ ϕ+ F ′(ϕ) (1.11)

in QT . This system was analyzed in [11] in the case of constant viscosity and mobility. In

particular, the global well-posedness of weak solutions and the existence of global strong

solutions were established also in dimension three. An improvement with respect to what

is known for the corresponding system (1.1)-(1.4).

In the present contribution we take a step further by considering non-constant viscosity

and degenerate mobility, that is,

m(s) = 1− s2, s ∈ [−1, 1]. (1.12)

More precisely, our goal is to analyze (1.8)-(1.11) equipped with following boundary and

initial conditions

u · n = 0, m(ϕ)
∂µ

∂n
= 0, on Γ× (0, T ), (1.13)

ϕ(0) = ϕ0, in Ω, (1.14)

3



where n is the outward normal to Γ := ∂Ω and ϕ0 is a given initial condition.

We first prove the existence of a global weak solution which satisfies an energy identity

(see Section 3). The existence of a global strong solution is then analyzed in Section 4.

As we shall see, the combination of degenerate mobility and singular potential will play

a basic role (cf. [17, 18] and references therein). In order to carry out our existence

argument, we need an unexpected ingredient, that is, the spatial Hölder regularity of

the pressure. This is obtained by means of a celebrated De Giorgi’s result. Moreover,

we need an existence result on the convective nonlocal Cahn-Hilliard equation which

is a refinement of a previous one contained in [18, 19] (see Section 7). Section 5 is

devoted to establish further regularity properties for π and u. These technical results

are helpful, in particular, to prove a conditional weak-strong uniqueness in Section 6 for

the three-dimensional case. The uniqueness issue is open for weak solutions even in the

two-dimensional case (cf. [16] for the nonlocal Cahn-Hilliard-Navier-Stokes system). We

can prove weak-strong uniqueness in dimension two. In three dimensions the result is

conditional. More precisely, we need to require that the pressure of the strong solution is

α-Hölder continuous in space with α ∈ (1/5, 1). On the other hand, if η is constant then

uniqueness of weak solutions holds. Section 8 is devoted to some comments on possible

further investigations. Section 9 is an appendix containing some Gagliardo-Nirenberg

type estimates which are mostly used in Section 5.

2 Notation and useful results

Here we introduce some notation and we report some results which will be used in the

sequel. From now on Γ will be smooth enough.

We set

V := {v ∈ C∞
c (Ω)d : div(v) = 0}, (2.1)

Gdiv := VL2(Ω)d

, Lr
div(Ω)

d = Gdiv ∩ Lr(Ω)d, r > 2, (2.2)

Vdiv := Gdiv ∩H1(Ω)d, (2.3)

V0,div := Gdiv ∩H1
0 (Ω)

d, V r
0,div(Ω)

d = Lr
div(Ω)

d ∩W 1,r
0 (Ω)d, r > 2. (2.4)

For the sake of brevity, we also set H := L2(Ω), Hd := L2(Ω)d, Hd×d := L2(Ω)d×d,

denoting by ‖ · ‖ and (·, ·) the norm and the scalar product, respectively, on H , Hd or

Hd×d. Moreover, we define V := H1(Ω) and V d := H1(Ω)d.

If X is a (real) Banach space, X ′ indicates its dual and 〈·, ·〉 stands for the duality

pairing between X and X ′. For every f ∈ V ′ we denote by f the average of f over Ω, i.e.,

f := |Ω|−1〈f, 1〉. Here |Ω| is the Lebesgue measure of Ω. Let us introduce also the spaces

H0 := {v ∈ H : (v, 1) = 0}, V0 := V ∩H0 and V ′
0 := {f ∈ V ′ : 〈f, 1〉 = 0}. We note that
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the dual space (V0)
′ can be proven to be linearly isomorphic to V ′

0 . The linear operator

A : V → V ′, A ∈ L(V, V ′), is defined by

〈Au, v〉 :=
∫

Ω

∇u · ∇v, ∀u, v ∈ V.

We recall that A maps V onto V ′
0 and the restriction of A to V0 maps V0 onto V ′

0 isomor-

phically. Let us denote by N : V ′
0 → V0 the inverse map defined by

AN f = f, ∀f ∈ V ′
0 and NAu = u, ∀u ∈ V0.

As is well known, for every f ∈ V ′
0 , N f is the unique solution with zero mean value of

the Neumann problem {
−∆u = f, in Ω
∂u
∂n

= 0, on Γ.

Furthermore, the following relations hold

〈Au,N f〉 = 〈f, u〉, ∀u ∈ V, ∀f ∈ V ′
0 ,

〈f,N g〉 = 〈g,N f〉 =
∫

Ω

∇(N f) · ∇(N g), ∀f, g ∈ V ′
0 .

Recall that A can be also viewed as an unbounded operator A : D(A) ⊂ H → H where

D(A) = {φ ∈ H2(Ω) : ∂φ
∂n

= 0 on Γ}. The operator A has a non-decreasing sequence

of eigenvalues {λj}j∈N0 such that λ1 = 0 and λj > 0 for all j ≥ 2. The corresponding

eigenfunctions {wj}j∈N0 form an orthonormal basis of H and they are orthogonal in V .

Moreover, any non-zero constant is an eigenfunction associated with λ1. We can take

w1 = |Ω|−1/2 so that ‖w1‖ = 1.

Here below we report a crucial result for our analysis, namely a general result on the

Hölder regularity of solutions to the Neumann problem:

−
(
aijuxi

)
xj

= div f − f , in Ω , (2.5)

(aijuxi
+ fj)nj = ψ , on Γ , (2.6)

where Ω ⊂ R
d is a bounded smooth domain, (aij) is a d×d symmetric matrix with entries

aij ∈ L∞(Ω) satisfying the ellipticity condition

Λ∗|ξ|2 ≤ aij(x)ξiξj ≤ Λ∗|ξ|2 , ∀ξ ∈ R
d and for a.e. x ∈ Ω , (2.7)

for some 0 < Λ∗ ≤ Λ∗. Referring to the general theory of linear elliptic equations with

measurable coefficients we first recall that (see, e.g., [12, Chapter 9, Theorem 10.1])

Proposition 2.1. If f ∈ L2(Ω)d, f ∈ Lq(Ω), ψ ∈ Lq̂(Γ), where q, q̂ > 1 if d = 2 and

q = 6/5, q̂ = 4/3 if d = 3, and the compatibility condition
∫
Ω
f =

∫
Γ
ψ is satisfied, then

problem (2.5)-(2.6) admits a weak solution u ∈ H1(Ω), which is unique up to a constant.
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Moreover, we have the following Hölder continuity result, which also gives an estimate

of the Hölder norm of the solution in terms of the data of the problem (see [12, Chapter

9, Theorem 18.3])

Proposition 2.2. Let u ∈ H1(Ω) be a solution to the Neumann problem (2.5)-(2.6), with

f and f satisfying

f ∈ Ld+ε(Ω)d , f ∈ L
d+ε
2 (Ω) , for some ε > 0 , (2.8)

and ψ ∈ Ld−1+σ(Γ), for some σ ∈ (0, 1). Then u is Hölder continuous in Ω, and there exist

constants Θ > 0 and α ∈ (0, 1), depending on ‖f‖Ld+ε(Ω)d , ‖f‖
L

d+ε
2 (Ω) , ‖ψ‖Ld−1+σ(Γ),Λ∗,

Λ∗, ε, d and on the C1-smoothness of Γ, such that

‖u‖Cα(Ω) ≤ Θ
(
‖f‖Ld+ε(Ω)d , ‖f‖

L
d+ε
2 (Ω)

, ‖ψ‖Ld−1+σ(Γ),Λ∗,Λ
∗, ε,Γ, d

)
. (2.9)

We will also make use of a general W s,p(Ω)−regularity result for the elliptic problem

∆u =f , in Ω , (2.10)

∂u

∂n
=g , on Γ . (2.11)

Proposition 2.3. Assume that t, r, s ∈ R, 1 < p <∞, and either p = 2 or s− 1/p is not

an integer, and let f ∈ W r,p(Ω). If g ∈ W t,p(Γ), r+1 ≥ 1/p, and s = min{r+2, t+1+1/p},
then any solution u to (2.10)-(2.11) belongs to W s,p(Ω). Moreover, if the set of solutions

is not empty, the following estimate holds

inf ‖u‖W s,p(Ω) ≤ C(‖f‖W r,p(Ω) + ‖g‖W t,p(Γ)) ,

where the infimum is taken over all solutions u and C > 0 is independent of f and g.

Finally, the following notation will turn out to be convenient. If A is a real number,

we denote by A− any constant B arbitrarily close to A, such that B < A, and by A+ any

constant B arbitrarily close to A, such that B > A.

3 Existence of weak solutions

In this section we first introduce the basic assumptions which are needed to prove the

existence of a global weak solution. Then we define the weak formulation and we state

and prove the first existence result.

Our assumptions on η, J , m, and F read as follows. Note that the ones on η, m, and

F are slightly more general than the ones specified in the Introduction.
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(H1) η ∈ C0,1([−1, 1]) and there exists η1 > 0 such that

η(s) ≥ η1 , ∀s ∈ [−1, 1] .

(H2) J ∈ W 1,1
loc (R

d), J(x) = J(−x) for almost any x ∈ Ω, and J satisfies

a := sup
x∈Ω

∫

Ω

|J(x− y)| dy <∞ , b := sup
x∈Ω

∫

Ω

|∇J(x− y)| dy <∞ .

(H3) m ∈ C0,1([−1, 1]) is nonnegative and m(s) = 0 if and only if s = ±1. Moreover,

there exists σ0 > 0 such that m is nonincreasing in [1− σ0, 1] and nondecreasing in

[−1,−1 + σ0].

(H4) F ∈ C2((−1, 1)) and λ := mF ′ ′ ∈ C([−1, 1]).

(H5) There exists some σ0 > 0 such that F ′′ is nondecreasing in [1 − σ0, 1) and nonin-

creasing in (−1,−1 + σ0].

(H6) There exists some c0 > 0 such that

F ′′(s) ≥ c0 , ∀s ∈ (−1, 1) .

(H7) There exists some α0 > 0 such that

m(s)F ′′(s) ≥ α0 , ∀s ∈ [−1, 1] .

Remark 3.1. An interaction kernel which satisfies (H2) is the Newtonian kernel, namely

J(x) = j3|x|−1 if d = 3, and J(x) = −j2 ln |x|, if d = 2, where j2 and j3 are positive

constants. Moreover, in (H4), λ must be understood as continuously extended at the end-

points. It is worth observing that the assumptions (H3)-(H7) are satisfied, for instance,

by (1.6) and (1.12). Note that, in this case, λ is constant.

The notion of weak solution is defined by

Definition 3.1. Let ϕ0 ∈ L∞(Ω) with F (ϕ0) ∈ L1(Ω) and 0 < T <∞ be given. A triplet

[u, π, ϕ] is called weak solution to (1.8)-(1.11) and (1.13)-(1.14) on [0, T ] if

u ∈ L2(0, T ;Gdiv) ,

π ∈ L2(0, T ;V0) ,

ϕ ∈ L∞(0, T ;Lp(Ω)) ∩ L2(0, T ;V ) , ∀ p ∈ [2,∞) ,

ϕt ∈ L2(0, T ;V ′) ,
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ϕ ∈ L∞(QT ) , |ϕ(x, t)| ≤ 1 for a.e. (x, t) ∈ QT ,

and

η(ϕ)u = −∇π − (J ∗ ϕ)∇ϕ, a.e. in QT , (3.1)

〈ϕt, ψ〉V + (m(ϕ)F ′′(ϕ)∇ϕ,∇ψ)− (m(ϕ)∇J ∗ ϕ,∇ψ) = (uϕ,∇ψ),
∀ψ ∈ V and a.e. in (0, T ) , (3.2)

ϕ(0) = ϕ0, a.e. in Ω. (3.3)

Remark 3.2. Observe that the regularity properties of the weak solution entail that ϕ ∈
C([0, T ];H). Therefore the initial condition ϕ(0) = ϕ0 makes sense. Moreover, note that

any weak solution is such that the total mass is conserved, namely

ϕ(t) = ϕ0,

for any t ∈ [0, T ].

Remark 3.3. Looking at (3.2) and recalling (H7), it is clear that the combination of

degenerate mobility and singular potential helps since one deals with a non-local but non-

degenerate parabolic equation for ϕ (see also [18]). On the contrary, if the mobility is

constant the analysis requires more care (cf. [11]).

Let M ∈ C2((−1, 1)) be the solution to m(s)M ′′(s) = 1 for all s ∈ (−1, 1) with

M(0) =M ′(0) = 0. Then the existence of a weak solution is given by

Theorem 3.1. Assume that (H1)-(H7) hold. Let ϕ0 ∈ L∞(Ω) be such that F (ϕ0) ∈
L1(Ω) and M(ϕ0) ∈ L1(Ω), where M is defined as above. Then, for every T > 0, there

exists a weak solution [u, π, ϕ] to (1.8)-(1.11) and (1.13)-(1.14) on [0, T ]. This weak

solution satisfies the following energy identity

1

2

d

dt
‖ϕ‖2 + 2 ‖

√
η(ϕ)u‖2 +

∫

Ω

m(ϕ)F ′′(ϕ)|∇ϕ|2dx

=

∫

Ω

m(ϕ)∇J ∗ ϕ · ∇ϕdx+
∫

Ω

(−J ∗ ϕ)u · ∇ϕdx , (3.4)

for almost any t > 0.

The strategy to prove Theorem 3.1 is the following. We consider suitable approxima-

tions of η, m, and F . Then we formulate an approximating problem by adding a viscous

term −ν∆u to the Darcy’s law (i.e. we consider its Brinkman approximation, see [8] and

references therein) for a given ν > 0 (see Subsec. 3.1). We solve this problem by means of

a Galerkin scheme (see Subsec. 3.2). Then, in Subsection 3.3, we get first a weak solution

to the Brinkman-Cahn-Hilliard problem with the original η, m, and F . Finally, we pass

to the limit as ν goes to 0.
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3.1 Approximating problem

Let ǫ ∈ (0, 1] be fixed. Consider the following approximations of η, m, and F .

(A1) Approximating viscosity

ηǫ(s) =






η(1− ǫ), s ≥ 1− ǫ

η(s), |s| ≤ 1− ǫ

η(−1 + ǫ), s ≤ −1 + ǫ.

(A2) Approximating mobility

mǫ(s) =






m(1− ǫ), s ≥ 1− ǫ

m(s), |s| ≤ 1− ǫ

m(−1 + ǫ), s ≤ −1 + ǫ.

(A3) Approximating potential

Fǫ(s) =






F (1− ǫ) + F ′(1− ǫ)
(
s− (1− ǫ)

)
+ 1

2
F ′′(1− ǫ)

(
s− (1− ǫ)

)2

+
(
s− (1− ǫ)

)3
, s ≥ 1− ǫ ,

F (s) , |s| ≤ 1− ǫ ,

F (−1 + ǫ) + F ′(−1 + ǫ)
(
s− (−1 + ǫ)

)
+ 1

2
F ′′(−1 + ǫ)

(
s− (−1 + ǫ)

)2

+
∣∣s− (−1 + ǫ)

∣∣3, s ≤ −1 + ǫ .

It is easy to check that Fǫ ∈ C2,1
loc (R) and that, thanks also to (H6), there exist two

constants k1 > 0 and k2 ≥ 0, which do not depend on ǫ, such that

Fǫ(s) ≥ k1|s|3 − k2 , ∀s ∈ R . (3.5)

Moreover, as a consequence of (H6), we still have that

F ′′
ǫ (s) ≥ c0 , ∀s ∈ R , (3.6)

and (H5) implies that there exists ǫ0 > 0 such that

Fǫ(s) ≤ F (s) + ǫ3 , ∀s ∈ (−1, 1) , ∀ǫ ∈ (0, ǫ0] . (3.7)

Also, note that

|F ′
ǫ(s)| ≤ k3s

2 + k4 , ∀s ∈ R , (3.8)

for some positive constants k3, k4.
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Fix ν > 0 and consider the Brinkman approximation

− ν∆u+ ηǫ(ϕ)u+∇π = µ∇ϕ, in QT , (3.9)

div(u) = 0, in QT , (3.10)

ϕt + u · ∇ϕ = div(mǫ(ϕ)∇µ), in QT , (3.11)

µ = −J ∗ ϕ+ F ′
ǫ(ϕ), in QT , (3.12)

u = 0, mǫ(ϕ)
∂µ

∂n
= 0, on Γ× (0, T ), (3.13)

ϕ(0) = ϕ0, in Ω. (3.14)

Then we introduce the notion of weak solution which reads

Definition 3.2. Let ϕ0 ∈ H be such that Fǫ(ϕ0) ∈ L1(Ω) and 0 < T <∞ be given. Then

[u, π, ϕ] is a weak solution to (3.9)-(3.14) on [0, T ] if

u ∈ L2(0, T ;V0,div) ,

π ∈ L2(0, T ;H0) ,

ϕ ∈ L∞(0, T ;L3(Ω)) ∩ L2(0, T ;V ) ,

ϕt ∈ L2(0, T ;V ′) ,

µ ∈ L2(0, T ;V ) ,

and

(ν∇u,∇v) + (ηǫ(ϕ)u,v) = (π, div(v))− (ϕ∇µ,v), ∀v ∈ C∞
c (Ω)d ,

〈ϕt, ψ〉V + (mǫ(ϕ)∇µ,∇ψ) = (uϕ,∇ψ), ∀ψ ∈ V and a.a. t ∈ (0, T ) ,

µ = −J ∗ ϕ+ F ′
ǫ(ϕ) ,

almost everywhere in (0, T ) with

ϕ(0) = ϕ0, a.e. in Ω.

We now prove the following

Theorem 3.2. Assume that (A1)-(A3) hold. Let ϕ0 ∈ L∞(Ω) with Fǫ(ϕ0) ∈ L1(Ω).

Then, for every T > 0, there exists a weak solution [u, π, ϕ] to (3.9)-(3.14) on [0, T ].

Moreover, this solution satisfies the energy inequality

Eǫ(ϕ(t)) +
∫ t

0

(
‖
√
mǫ(ϕ(τ))∇µ(τ)‖2 + ν‖∇u(τ)‖2 + ‖

√
ηǫ(ψ(τ))u(τ)‖2

)
dτ ≤ Eǫ(ϕ0) ,

(3.15)

for all t ∈ [0, T ], where

Eǫ(ϕ(t)) = −1

2

∫

Ω

∫

Ω

J(x− y)ϕ(x, t)ϕ(y, t)dxdy +

∫

Ω

Fǫ(ϕ(t))dx. (3.16)

Remark 3.4. Actually, it can be proven that (3.15) is an identity (cf. [19, Proof of

Cor.2]).
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3.2 Proof of Theorem 3.2

We shall use a Galerkin approximation scheme. Let {λj}j∈N and {wj}j∈N be the eigenval-

ues and the eigenvectors of the Laplace operator with homogeneous Neumann boundary

conditions (cf. Section 2). Then, set

Wn := 〈w1, . . . , wn〉

and denote by Πn : H → Wn the usual linear bounded orthogonal projector.

Fix n ∈ N and introduce

ϕn(t) =
n∑

j=1

gnj(t)wj ,

where gn = (gn1, . . . , gnn) has to be determined. For any gn ∈ C([0, T ])n there exists a

unique w ∈ C([0, T ];V0,div) (depending on gn) which solves

(ν∇w,∇v) + (ηǫ(ϕn)w,v) = −(ϕn∇µn,v), ∀v ∈ V0,div, in (0, T ), (3.17)

where

µn = Πn(−J ∗ ϕn + F ′
ǫ(ϕn)) . (3.18)

Moreover, it is easy to prove that the mapping F : C([0, T ])n → C([0, T ];V0,div), defined

by setting F(gn) = w, is continuous with respect to the standard Lagrangian norm in

C([0, T ])n. Let us suppose

ϕ0 ∈ D(A) (3.19)

and consider the following problem: find gn solution to the Cauchy problem
∫

Ω

ϕ′
nψdx+

∫

Ω

mǫ(ϕn)∇µn · ∇ψdx =

∫

Ω

F(gn)ϕn · ∇ψdx,

∀ψ ∈ Wn, in (0, T ) , (3.20)

ϕ(0) = ϕ0n := Πnϕ0. (3.21)

Taking ψ = wj for each j ∈ {1, . . . , n} and using the orthogonality properties of the

eigenfunctions, we can write down a first-order system of ODEs in normal form for the

unknown vector-valued function g with a locally Lipschitz continuous right-hand side.

Therefore, the Cauchy-Lipschitz theorem entails the existence of a unique solution g ∈
C1([0, Tn])

n for some Tn ∈ (0, T ]. We thus have found a unique approximating pair

(wn, ϕn) ∈ C([0, Tn];V0,div)× C1([0, Tn];Wn) for each n ∈ N.

Take now v = w in (3.17) and ψ = µn in (3.20). Adding together the identities and

taking (3.18) into account, it is not difficult to obtain the energy identity

d

dt
Eǫ(ϕn(t)) + ‖

√
mǫ(ϕn(t))∇µn(t)‖2 + ν‖∇wn(t)‖2 + ‖

√
ηǫ(ψn(t))wn(t)‖2 = 0, (3.22)
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for every t ∈ [0, Tn].

Integrating (3.22) with respect to time in (0, t) and recalling (H1) and (A1)-(A3),

we get

Ee(ϕn(t)) +

∫ t

0

(
C‖∇µn(τ)‖2 + ν‖∇wn(τ)‖2 + η1‖wn(τ)‖2

)
dτ ≤ Eǫ(ϕ0n). (3.23)

Here and in the sequel of this proof C > 0 stands for a generic constant which possibly

depends on ν and ǫ but is independent of n. This constant may vary also within the same

line.

Due to the convergence ϕ0n → ϕ0 in H2(Ω) (cf. (3.19)), on account of (A3) and

(3.16), we find

Ee(ϕn(t)) +

∫ t

0

(
C‖∇µn(τ)‖2 + ν‖∇wn(τ)‖2 + η1‖wn(τ)‖2

)
dτ ≤ C. (3.24)

From the above estimate we deduce first that we can extend our approximating solution

up to T for each n ∈ N0. Indeed we have |gn(t)|2 = ‖ϕn(t)‖, | · |2 being the Euclidean

norm. Moreover, using (3.5) and arguing as in [19], we obtain the following uniform

estimates

‖wn‖L2(0,T ;V0,div) ≤ C, (3.25)

‖ϕn‖L∞(0,T ;L3(Ω)) ≤ C, (3.26)

‖Fǫ(ϕn)‖L∞(0,T ;L1(Ω)) ≤ C, (3.27)

‖∇µn‖L2(0,T ;Hd) ≤ C. (3.28)

Observe now that

µ = |Ω|−1(Πn(−J ∗ ϕn + F ′
ǫ(ϕn)), 1)

= (Πn(−J ∗ ϕn + F ′
ǫ(ϕn)), w1) = (−J ∗ ϕn + F ′

ǫ(ϕn), w1).

This gives a uniform control of ‖µ‖L∞(0,T ). Hence, using Poincaré-Wirtinger inequality

and recalling (3.8) and (3.28), we deduce

‖µn‖L2(0,T ;V ) ≤ C. (3.29)

Using the above estimates, by comparison in equation (3.20) we deduce

‖ϕ′
n‖L2(0,T ;V ′) ≤ C. (3.30)

On the other hand, multiplying (3.18) by −∆ϕn, recalling (H2) and (3.6), using (3.28),

and arguing as in [7] we find

‖ϕn‖L2(0,T ;V ) ≤ C. (3.31)
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In addition, (3.8) and (3.26) yield

‖F ′(ϕn)‖L∞(0,T ;L3/2(Ω)) ≤ C. (3.32)

The above uniform bounds and a standard compactness result in vector valued Ba-

nach spaces imply the existence of a triplet (u, ϕ, µ) and a subsequence (wn, ϕn, µn) (not

relabeled) such that

wn ⇀ u weakly in L2(0, T ;V0,div), (3.33)

ϕn ⇀ ϕ weakly∗ in L∞(0, T ;L3(Ω)), weakly in L2(0, T ;V ), (3.34)

ϕn → ϕ strongly in L2(0, T ;H), a.e. in QT , (3.35)

ϕ′
n ⇀ ϕt weakly in L2(0, T ;V ′), (3.36)

F ′
ǫ(ϕn)⇀ Φǫ weakly∗ in L∞(0, T ;L3/2(Ω)), weakly in L2(0, T ;L3(Ω)), (3.37)

µn ⇀ µ weakly in L2(0, T ;V ). (3.38)

Moreover, using a well-known result, from (3.35) and (3.37) we infer that Φǫ = F ′
e(ϕ).

Recalling (3.17), observe that wn satisfies, in particular, the following variational

identity

(ν∇wn,∇v) + (ηǫ(ϕn)wn,v) = −(ϕn∇µn,v), ∀v ∈ V, in (0, T ). (3.39)

The above convergences and (A1)-(A2) allow us to pass to the limit in equations (3.18),

(3.20)-(3.21), and (3.39). Using a density argument, this gives

(ν∇u,∇v) + (ηǫ(ϕ)u,v) = −(ϕ∇µ,v), ∀v ∈ V, a.e. in (0, T ), (3.40)

〈ϕ′, ψ〉+ (mǫ(ϕ)∇µ,∇ψ) = (uϕ,∇ψ), ∀ψ ∈ V, a.e. in (0, T ) , (3.41)

µ = −J ∗ ϕ+ F ′
ǫ(ϕ), a.e. in QT , (3.42)

ϕ(0) = ϕ0, a.e. in Ω. (3.43)

Also, using a semicontinuity argument (see [19]), we can prove that (u, ϕ) satisfies the

energy estimate (3.15).

If ϕ0 ∈ H with F (ϕ0) ∈ L1(Ω) then we can argue as in [7] (see also [19]). We first

approximate ϕ0 with ϕ0m ∈ D(A) given by ϕ0m := (I + A
m
)−1ϕ0. This sequence satisfies

ϕ0m → ϕ0 in H . The corresponding approximating solutions (um, ϕm) satisfy the energy

estimate (3.15) with ϕ0 = ϕ0m. On the other hand, on account of (3.6), we can use a

convexity argument (cf. [7]) to deduce

Eǫ(ϕ0m) ≤ Eǫ(ϕ0).

Hence the sequence {(um, ϕm)} satisfies (3.15) with ϕ0 in place of ϕ0m. Then, arguing as

above, we can find that it converges, up to a subsequence, to a pair {(u, ϕ)} satisfying
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(3.40)-(3.43). Finally, owing to De Rham’s theorem (see, e.g., [3, Chap.IV, Sec.2]), we

can find a unique π ∈ L2(0, T ;H0) such that

(ν∇u,∇v) + (ηǫ(ϕ)u,v) = −(π0, div(v))− (ϕ∇µ,v), ∀v ∈ C∞
c (Ω)d, a.e. in (0, T ).

This concludes the proof.

3.3 Proof of Theorem 3.1

Following a strategy devised in [11], we will pass to the limit first as ǫ goes to 0. Then we

will let ν → 0. Thus, let us consider first a weak solution [uǫ, ϕǫ] to (3.9)-(3.14), keeping

ν > 0 fixed and find suitable uniform estimates. We omit the dependence on ν for the

sake of simplicity.

From (3.15), recalling (A3) and (3.5), we deduce the uniform bounds

√
ν‖uǫ‖L2(0,T ;V0,div) + ‖

√
ηǫ(ϕǫ)uǫ‖L2(0,T ;Gdiv) ≤ C , (3.44)

‖ϕǫ‖L∞(0,T ;L3(Ω)) ≤ C , (3.45)

‖
√
mǫ(ϕǫ)∇µǫ‖L2(0,T ;Hd) ≤ C . (3.46)

Here and in the sequel of this proof, C > 0 indicates a generic constant which is indepen-

dent of ǫ and ν.

Arguing as in [19], we now test equation (3.41) by ψ = M ′
ǫ(ϕǫ), where Mǫ is a C2

function such that mǫ(s)M
′′
ǫ (s) = 1 and Mǫ(0) =M ′

ǫ(0) = 0. This gives

d

dt

∫

Ω

Mǫ(ϕǫ)dx+

∫

Ω

mǫ(ϕǫ)∇µǫ ·M ′′
ǫ (ϕǫ)∇ϕǫdx =

∫

Ω

uǫϕǫ · ∇M ′
ǫ(ϕǫ)dx. (3.47)

Being uǫ divergence free, we have

∫

Ω

uǫϕǫ · ∇M ′
ǫ(ϕǫ)dx = −

∫

Ω

uǫ∇ϕǫ ·M ′
ǫ(ϕǫ)dx = −

∫

Ω

uǫ∇Mǫ(ϕǫ)dx = 0 .

Therefore (3.47) yields

d

dt

∫

Ω

Mǫ(ϕǫ)dx+

∫

Ω

∇µǫ · ∇ϕǫdx = 0 ,

that is
d

dt

∫

Ω

Mǫ(ϕǫ)dx+

∫

Ω

(
F ′′
ǫ (ϕǫ)|∇ϕǫ|2 − (∇J ∗ ϕǫ) · ∇ϕǫ

)
dx = 0 .

Thus, on account of (3.6), we get

d

dt

∫

Ω

Mǫ(ϕǫ)dx+
c0
2
‖∇ϕǫ‖2 ≤ C .
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Arguing as in [19], for ǫ small enough we have a uniform control of
∫
Ω
Mǫ(ϕǫ)dx with∫

Ω
M(ϕ0)dx. Hence, recalling (3.45), we get the uniform bounds

‖ϕǫ‖L2(0,T ;V ) ≤ C , (3.48)

‖Mǫ(ϕǫ)‖L∞(0,T ;L1(Ω)) ≤ C . (3.49)

Then, on account of (3.44)-(3.46), by comparison in (3.41) we also obtain

‖(ϕǫ)t‖L2(0,T ;V ′) ≤ C . (3.50)

Bounds (3.44)-(3.50) and standard compactness results entail the existence of u ∈
L2(0, T ;Vdiv) and ϕ ∈ L∞(0, T ;H)∩ L2(0, T ;V ) such that, for some sequence ǫn → 0, we

have

uǫn ⇀ u weakly in L2(0, T ;V0,div), (3.51)

ϕǫn ⇀ ϕ weakly∗ in L∞(0, T ;L3(Ω)) weakly in L2(0, T ;V ), (3.52)

ϕǫn → ϕ strongly in L2(0, T ;Ls(Ω)), s ∈ [2, 6), and a.e. in QT , (3.53)

(ϕt)ǫn ⇀ ϕt weakly in L2(0, T ;V ′). (3.54)

In order to show that |ϕ| ≤ 1 almost everywhere in QT we can argue as in [19, Sec.7].

Observe now that the weak formulation (3.40)-(3.42) can be rewritten as follows

(ν∇uǫ,∇v) + (ηǫ(ϕǫ)uǫ,v) = (ϕ(∇J ∗ ϕ),v),
∀v ∈ V, a.e. in (0, T ), (3.55)

〈(φt)ǫ, ψ〉+ (mǫ(ϕǫ)F
′′
ǫ (ϕǫ)∇ϕǫ,∇ψ)− (mǫ(ϕǫ)(∇J ∗ ϕǫ),∇ψ) = (uǫϕǫ,∇ψ),

∀ψ ∈ V, a.e. in (0, T ) . (3.56)

Recalling (H2), (A3), and (3.53), up to a subsequence, we obtain (cf. also the essential

boundedness of ϕ)

mǫn(ϕǫn)F
′′
ǫn(ϕǫn) → m(ϕ)F ′′(ϕ), strongly in Ls(QT ), ∀ s ∈ [2,∞) . (3.57)

Using now (3.52), (3.53), and the embedding L∞(0, T ;L3(Ω))∩L2(0, T ;L6(Ω)) →֒ L4(QT ),

we deduce

ϕǫn → ϕ strongly in Lr(QT ), ∀ r ∈ [2, 4 ). (3.58)

In addition, thanks to Lebesgue’s dominated convergence theorem, we find

ηǫn(ϕǫn) → η(ϕ), mǫn(ϕǫn) → m(ϕ) strongly in Ls(QT ), ∀ s ∈ [2,∞) . (3.59)

Convergences (3.51)-(3.54) and (3.57)-(3.59) allow us to pass to the limit in (3.55)-

(3.56) for ǫ = ǫn as n goes to ∞ (cf. [19]). Also, by integrating (3.56) in time over (0, t)

15



and then taking the limit as before, we recover the initial condition ϕ(0) = ϕ0 almost

everywhere in Ω.

Summing up, for any ν > 0, there is a pair [uν , ϕν ] such that

uν ∈ L2(0, T ;V0,div) ,

ϕν ∈ L∞(0, T ;Lp(Ω)) ∩ L2(0, T ;V ) ∀ p ∈ [2,∞) ,

ϕν ∈ L∞(QT ) , |ϕν(x, t)| ≤ 1 for a.e. (x, t) ∈ QT ,

(ϕν)t ∈ L2(0, T ;V ′) ,

(ν∇uν ,∇v) + (η(ϕ)uν ,v) = (ϕν(∇J ∗ ϕν),v),

∀v ∈ V0,div, a.e. in (0, T ), (3.60)

〈(ϕν)t, ψ〉+ (m(ϕν)F
′′(ϕν)∇ϕν ,∇ψ)− (m(ϕν)(∇J ∗ ϕν),∇ψ) = (uνϕν ,∇ψ),

∀ψ ∈ V, a.e. in (0, T ) , (3.61)

ϕν(0) = ϕ0, a.e. in Ω.

From (3.44), using a semicontinuity argument, we get the uniform (with respect to ν)

bound √
ν‖uν‖L2(0,T ;V0,div) + ‖uν‖L2(0,T ;Gdiv) ≤ C . (3.62)

Recalling [25, Rem.3.3], we have that t 7→ ‖ϕν(t)‖L∞(Ω) is measurable, essentially

bounded, and such that

|(ϕν(t), f)| ≤ ‖f(t)‖L1(Ω), for a.a. t ∈ (0, T ),

for any f ∈ L1(0, T ;L1(Ω)). Therefore, we have

|(uν(t)ϕν(t),∇ψ)| = |(ϕν(t),uν(t) · ∇ψ)| ≤ ‖uν(t) · ∇ψ‖L1(Ω) ≤ ‖uν(t)‖‖∇ψ‖,

for almost any t ∈ (0, T ). This entails that uνϕν ∈ L2(0, T ; (V d)′) and

‖uνϕν‖L2(0,T ;(V d)′) ≤ C . (3.63)

We can now take ψ = ϕ(t) in (3.61). Thanks to (3.63) and (H7), we can easily find a

bound

‖ϕν‖L2(0,T ;V ) ≤ C . (3.64)

Then, by comparison, we also get

‖(ϕν)t‖L2(0,T ;V ′) ≤ C . (3.65)

In addition, we have

‖ϕν‖L∞(0,T ;Lp(Ω)) ≤ |Ω|1/p, ∀ p ∈ [2,∞) . (3.66)
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On account of(3.62)-(3.66) and well-known compactness results, we can find a pair [u, ϕ]

and a sequence νn → 0 as n goes to ∞ such that

νnuνn → 0 strongly in L2(0, T ;V0,div), (3.67)

uνn ⇀ u weakly in L2(0, T ;Gdiv), (3.68)

φνn ⇀ ϕ weakly∗ in L∞(0, T ;Lp(Ω)) ∩ L∞(QT ), weakly in L2(0, T ;V ), (3.69)

ϕνn → ϕ strongly in L3(QT ), and a.e. in QT , (3.70)

(ϕt)νn ⇀ ϕt weakly in L2(0, T ;V ′). (3.71)

Arguing as above (cf. (3.59)) and using (3.67)-(3.68), by means of standard techniques,

we can pass to the limit in (3.60) and find

(η(ϕ)u,v) = (ϕ(∇J ∗ ϕ),v), ∀v ∈ V0,div, a.e. in (0, T ) , (3.72)

which can be rewritten as

(η(ϕ)u,v) = −((J ∗ ϕ)∇ϕ,v), ∀v ∈ V0,div, a.e. in (0, T ) . (3.73)

Then, using density and De Rham’s theorem, we find a unique π ∈ L2(0, T ;V0) such that

(3.1) holds.

In order to pass to the limit in equation (3.61), observe first that (cf. (3.68) and (3.70))

∫ T

0

(uνn(τ), ϕνn(τ)∇ψ)dτ →
∫ T

0

(u(τ), ϕ(τ)∇ψ)dτ, ∀ψ ∈ D(A). (3.74)

On account of (3.69)-(3.74) and recalling (3.57), (3.59) (which now hold with respect to

νn), standard techniques give

〈ϕt, ψ〉+ (m(ϕ)F ′′(ϕ)∇ϕ,∇ψ)− (m(ϕ)(∇J ∗ ϕ),∇ψ) = (uϕ,∇ψ), (3.75)

for all ψ ∈ D(A) and almost everywhere in (0, T ). Thus equation (3.2) holds thanks to

the density of D(A) in V . Initial condition (3.3) can be recovered as usual. Summing up,

we have proven that problem (1.8)-(1.11) and (1.13)-(1.14) has a weak solution [u, π, ϕ]

in the sense of Definition 3.1.

4 Existence of strong solutions

In this section we state and prove the existence of strong solutions to (1.8)-(1.11), (1.13)-

(1.14). However equations (1.10)-(1.11) need to be suitably rewritten in the form

ϕt + u · ∇ϕ = ∆B(ϕ)− div
(
m(ϕ)(∇J ∗ ϕ)

)
, (4.1)
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where we have set

B(s) =

∫ s

0

λ(σ)dσ , ∀s ∈ [−1, 1] . (4.2)

Notice that we have ∇B(ϕ) = λ(ϕ)∇ϕ . Hence, the boundary condition m(ϕ)∇µ ·n = 0

becomes [
∇B(ϕ)−m(ϕ)(∇J ∗ ϕ)

]
· n = 0 . (4.3)

Thus, the equivalent weak formulation (3.2) of equations (1.10)-(1.11) is

〈ϕt, ψ〉V +
(
∇B(ϕ),∇ψ

)
−

(
m(ϕ)(∇J ∗ ϕ),∇ψ

)
= (uϕ,∇ψ) , (4.4)

for every ψ ∈ V and for almost any t ∈ (0, T ). Moreover, we rewrite the Darcy’s law (3.1)

in the form

η(ϕ)u+∇π = (∇J ∗ ϕ)ϕ . (4.5)

Therefore, we can give our definition of strong solution

Definition 4.1. Let ϕ0 ∈ V ∩L∞(Ω) and 0 < T <∞ be given. A weak solution [u, π, ϕ]

to (1.8)-(1.11), (1.13), (1.14) on [0, T ] corresponding to ϕ0 is called strong solution if

u ∈ L2(0, T ;Vdiv) , (4.6)

π ∈ L2(0, T ;H2(Ω) ∩ V0) , (4.7)

ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;H) , (4.8)

and if (1.9), (4.1), (4.5) hold almost everywhere in QT , and (1.13)1, (4.3) hold almost

everywhere on Γ× (0, T ).

In order to establish regularity results, we shall need the kernel J to be more regular.

For instance, we could suppose J ∈ W 2,1
loc (R

d). However, this assumption excludes, for

instance, Newtonian and Bessel potential kernels which are physically relevant. Thus, in

order to include them, we recall the definition of admissibile kernel (see [2, Definition 1]).

Definition 4.2. A kernel J ∈ W 1,1
loc (R

d) is admissible if the following conditions are

satisfied:

(J1) J ∈ C3(Rd\{0});

(J2) J is radially symmetric, J(x) = J̃(|x|) and J̃ is non-increasing;

(J3) J̃ ′′(r) and J̃ ′(r)/r are monotone on (0, r0) for some r0 > 0;

(J4) |D3J(x)| ≤ Cd|x|−d−1 for some Cd > 0.

18



The advantage of this assumption is related to the following lemma which allows,

in particular, to control the W 2,p(Ω)−norm of the convolution operator term without

assuming J ∈ W 2,1
loc (R

d).

Lemma 4.1. [2, Lemma 2] Let J be admissible. Then, for every p ∈ (1,∞), there exists

Cp > 0 such that

‖∇v‖Lp(Ω)d×d ≤ Cp‖ψ‖Lp(Ω) , ∀ψ ∈ Lp(Ω) ,

where v = ∇J ∗ ψ. Here, Cp = C∗p for p ∈ [2,∞) and Cp = C∗p/ (p− 1) for p ∈ (1, 2),

for some constant C∗ > 0 independent of p.

Moreover, we also need the following lemma to handle the boundary condition (4.3) .

Its proof immediately follows from the definition of the seminorm in the space W s,p(Γ),

with s ∈ (0, 1), and 1 < p <∞ (cf. [13, Chapter IX, Section 18]), namely,

[u]pW s,p(Γ) =

∫

Γ

∫

Γ

|u(x)− u(y)|p
|x− y|d−1+sp

dΓ(x) dΓ(y) ,

where dΓ is the surface measure on Γ.

Lemma 4.2. Let ϕ, ψ ∈ W s,p(Γ) ∩ L∞(Γ), where s ∈ (0, 1), 1 < p < ∞, and d = 2, 3.

Then ϕψ ∈ W s,p(Γ) ∩ L∞(Γ) and

‖ϕψ‖W s,p(Γ) ≤ ‖ϕ‖L∞(Γ)‖ψ‖W s,p(Γ) + ‖ψ‖L∞(Γ)‖ϕ‖W s,p(Γ) .

We also need to strengthen assumption (H4) by replacing it with

(H8) F ∈ C3(−1, 1) and λ := mF ′ ′ ∈ C1([−1, 1]).

Note that this assumption is certainly satisfied in the case (1.12) and (1.6).

The main result of this section is

Theorem 4.1. Suppose that d = 2, 3, that assumptions (H1)-(H3) and (H5)-(H8)

are satisfied, and that J ∈ W 2,1
loc (R

d) or that J is admissible. Let ϕ0 ∈ V ∩ L∞(Ω) with

M(ϕ0) ∈ L1(Ω). Then, for every T > 0, problem (1.8)-(1.11), (1.13)-(1.14) admits a

strong solution [u, π, ϕ] on [0, T ] such that

u ∈ L4(1−θ)(0, T ;Vdiv) ∩ L4(1−θ)/θ(0, T ;L4(Ω)d) ∩ L∞(0, T ;Gdiv) , (4.9)

π ∈ L4(1−θ)(0, T ;H2(Ω)) ∩ L4(1−θ)/θ(0, T ;W 1,4(Ω)) ∩ L∞(0, T ;V0) , (4.10)

ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;H) , (4.11)

for some θ ∈ (0, 1/2). In addition π ∈ L∞(0, T ;Cα(Ω))) for some α ∈ (0, 1).

Remark 4.1. We also have ϕ ∈ C([0, T ];V ) because of (4.11) (see, e.g., [14, Section

5.9, Theorem 4]).
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In two dimensions a stronger regularity result can be proven, namely,

Theorem 4.2. Suppose that d = 2 and let the assumptions of Theorem 4.1 hold. If, in

addition, ϕ0 ∈ H2(Ω) and the following compatibility condition is satisfied

∇B(ϕ0) · n = m(ϕ0)(∇J ∗ ϕ0) · n , a.e. on Γ , (4.12)

then, for every T > 0, problem (1.8)-(1.11), (1.13)-(1.14) admits a strong solution [u, π, ϕ]

on [0, T ] satisfying, besides (4.9) and (4.10), the further regularity properties

ut ∈ L2(0, T ;Gdiv) , (4.13)

ϕ ∈ L∞(0, T ;H2(Ω)) ∩H1(0, T ;V ) ∩W 1,∞(0, T ;H). (4.14)

Remark 4.2. The strong solution given by Theorem 4.1 can be viewed as a strong solution

to the equations (1.8), (1.10)-(1.11) and boundary condition (1.13)2 if, for instance, ϕ

satisfies the so-called strong separation property, namely ϕ is uniformly away from the

pure states ±1 (see [18, Rem.4.3], see also [17] and references therein).

4.1 Proof of Theorem 4.1

The proof is carried out by first providing existence of a strong solution on a sufficiently

small time interval. This is achieved by means of a fixed point argument based on the

Schauder’s theorem. Then, by relying on suitable higher order estimates, the local in

time solution will be extended to an arbitrary time interval [0, T ], T > 0. A key tool for

this proof is a regularity result for the convective nonlocal Cahn-Hilliard equation with a

given divergence-free velocity field (see Theorem 7.1 in Section 7).

Let us outline our Schauder’s fixed point argument. We first introduce the functional

spaces XT and YT given by

XT := L∞(0, T ;H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′) ,

YT := L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;H) , (4.15)

where T > 0 will be fixed later on.

For every given ϕ ∈ YT , with |ϕ| ≤ 1, we consider the following (formal) problem

η(ϕ)u+∇π = (∇J ∗ ϕ)ϕ, in QT , (4.16)

div(u) = 0, in QT , (4.17)

ϕ̃t + u · ∇ϕ̃ = ∆B(ϕ̃)− div(m(ϕ̃)(∇J ∗ ϕ̃)), in QT , (4.18)

u · n = 0 ,
[
∇B(ϕ̃)−m(ϕ̃)(∇J ∗ ϕ̃)

]
· n = 0 on Γ× (0, T ), (4.19)

ϕ̃(0) = ϕ0, in Ω . (4.20)
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We then divide the argument into four steps. These steps are carried out for d = 2

or λ constant. In the case d = 3 and non-constant λ we shall also need to regularize

(4.16)-(4.20) (see the end of the proof).

In Step 1 we study problem (4.16), (4.17), (4.19)1, proving that, for every ϕ ∈ YT ,

with |ϕ| ≤ 1, it admits a unique solution [π,u]. We also establish some crucial higher

order estimates for π and u in terms of ϕ. The estimates in Step 1 are purely elliptic and

time is tacitly omitted.

In Step 2 we address the nonlocal convective Cahn-Hilliard system (4.18), (4.19)2,

(4.20), with the velocity u given by the solution to (4.16), (4.17), (4.19)1. We exploit

Theorem 7.1 to get a unique strong solution ϕ̃ to this problem. By virtue of the estimates

derived in Step 1, we shall then conclude that, for every given ϕ ∈ YT , with |ϕ| ≤ 1,

(4.16)-(4.20) admits a unique solution [u, ϕ̃] ∈
(
L∞(0, T ;Gdiv)∩L2(0, T ;Vdiv)

)
×YT , with

|ϕ̃| ≤ 1. This allows us to introduce the map F : ϕ 7→ ϕ̃, which is well defined from the

set {ϕ ∈ YT : |ϕ| ≤ 1} into itself. The goal of Step 2 is to identify a suitable convex set of

YT , which is compact in XT , such that F is also a map from this set into itself. However,

F cannot be defined if d = 3 and λ non-constant. In this case we need to regularize u in

(4.18) and then pass to the limit in the regularization parameter to conclude (see below).

Step 3 will be devoted to prove that F is continuous on XT . The existence of a local

in time strong solution will then follow from Schauder’s theorem.

In the final Step 4, we shall show that the local in time solution constructed in the

previous steps is indeed global.

We point out that all the estimates in the first three steps will be derived for both

cases d = 2, 3. We also remind once more that F cannot be defined if d = 3 and λ is not

constant. In this case we shall use a regularization argument.

In the sequel of this section we will indicate by C a generic positive constant which

only depends on main constants of the problem (see (H1)-(H8)) and on Ω at most. This

constant may vary also within the same line. Any other dependency will be explicitly

pointed out.

Step 1. We first study the elliptic system (4.16), (4.17), (4.19)1, with ϕ given in

H2(Ω) (or in V ) such that |ϕ| ≤ 1. First, we observe that problem (4.16), (4.17), (4.19)1

is equivalent to the following

div
( 1

η(ϕ)
∇π

)
= div

((∇J ∗ ϕ)ϕ
η(ϕ)

)
, in QT , (4.21)

∂π

∂n
= (∇J ∗ ϕ)ϕ · n, on Γ× (0, T ), (4.22)

u = − 1

η(ϕ)
∇π +

1

η(ϕ)
(∇J ∗ ϕ)ϕ, in QT . (4.23)
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More precisely, for ϕ ∈ V fixed, with |ϕ| ≤ 1, we can easily check that [π,u] ∈ V0 ×Gdiv

is a solution to (4.16), (4.17), (4.19)1 if and only if π ∈ V0 is a weak solution to (4.21),

(4.22), namely π satisfies

∫

Ω

1

η(ϕ)
∇π · ∇ψ =

∫

Ω

(∇J ∗ ϕ)ϕ
η(ϕ)

· ∇ψ , ∀ψ ∈ V , (4.24)

and u ∈ Gdiv is given by (4.23). Indeed, let π ∈ V0 satisfy (4.24) and let u ∈ Hd

be given by (4.23). Then, (4.16) trivially holds almost everywhere in QT , and we have

that
∫
Ω
u · ∇ψ = 0, for all ψ ∈ C∞

0 (Ω). This entails that (4.17) holds in the sense of

distributions. Hence, recalling that the trace operator γn (which satisfies γn(v) = v · n
on Γ, for all v ∈ C∞

0 (R2)d) is a well defined linear and continuous operator from the

space {v ∈ L2(Ω)d : div(v) ∈ L2(Ω)} into H−1/2(Γ), by applying the generalized Stokes

formula (see, e.g., [41, Chapter I, Theorem 1.2]) we get 〈γn(u), ψ|Γ〉H1/2(Γ) = 0, for all

ψ ∈ V , which means that (4.19)1 holds (in the generalized sense), and also that u ∈ Gdiv.

Therefore, the equivalence of problem (4.16), (4.17), (4.19)1 with problem (4.21)-(4.23) is

proven.

A straightforward application of the Lax-Milgram theorem yields that, for every ϕ ∈
V , with |ϕ| ≤ 1, problem (4.21)-(4.23) (and hence also problem (4.16), (4.17), (4.19)1)

admits a unique solution [π,u] ∈ V0 ×Gdiv. Moreover, the following estimates hold

‖∇π‖ ≤ η∞
η1

‖(∇J ∗ ϕ)ϕ‖ ≤ η∞
η1

b ‖ϕ‖ ≤ η∞
η1

b |Ω|1/2 ≤ C , (4.25)

‖u‖ ≤ 1

η1
‖∇π‖+ b

η1
‖ϕ‖ ≤ b

η1

(
1 +

η∞
η1

)
‖ϕ‖ ≤ b

η1

(
1 +

η∞
η1

)
|Ω|1/2 ≤ C , (4.26)

where η∞ := ‖η‖L∞(−1,1) (see (H1)).

Assume now that ϕ ∈ H2(Ω), with |ϕ| ≤ 1. Then, problem (4.21)-(4.22) is equivalent

to the elliptic problem given by

∆π =
η′(ϕ)

η(ϕ)
∇ϕ · ∇π + η(ϕ) div

((∇J ∗ ϕ)ϕ
η(ϕ)

)
, (4.27)

together with the boundary condition (4.22). Indeed, it is easy to check that the weak

formulation of (4.27) subject to (4.22) is satisfied if and only if (4.24) is satisfied. To this

aim it is enough to observe that, being ϕ ∈ H2(Ω) with |ϕ| ≤ 1, recalling (H1), we have

that ψ = η(ϕ)χ ∈ V if and only if χ ∈ V . Hence, by taking ψ = η(ϕ)χ in (4.24) we can

deduce the weak formulation of (4.27) subject to (4.22) (with χ ∈ V as test function)

from (4.24), and conversely.

Thus we consider problem (4.21)-(4.22), written as (4.27) with (4.22), and we apply

classical elliptic regularity theory, together with a bootstrap argument, to deduce that

π ∈ H2(Ω). Indeed, we begin by noting that the right hand side of (4.22) belongs to
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H1/2(Γ), and the right hand side of (4.27) belongs to L2−(Ω), if d = 2, and to L3/2(Ω),

if d = 3. Hence, by a classical elliptic regularity result (remember that Γ is smooth

enough), we have that π ∈ W 2,2−(Ω), if d = 2, and π ∈ W 2,3/2(Ω), if d = 3. Thus

∇π ∈ W 1,2−(Ω)2 →֒ L4(Ω)2, if d = 2, and ∇π ∈ W 1,3/2(Ω)3 →֒ L3(Ω)3, if d = 3. This

entails that the right hand side of (4.27) is in H , and hence that π ∈ H2(Ω), for both

cases d = 2, 3. From (4.23) we also get u ∈ Vdiv.

Let us now derive the estimates for the H2(Ω)−norm of π and for the V d−norm of u in

terms of the H2(Ω)−norm of ϕ. To this aim we first derive an estimate that controls the

L4(Ω)d−norm of u in terms of the H2(Ω)−norm of ϕ. This estimate, which is obtained

by relying on the Hölder continuity property of the pressure π, will turn out to be a key

ingredient in our fixed point argument. First, observe that, by applying Proposition 9.1

for d = 2, 3, the following interpolation inequality holds

‖π‖W 1,4(Ω) ≤ C‖π‖θH2(Ω)‖π‖1−θ
W 4/ρ,ρ(Ω)

, (4.28)

where 4 < ρ < ∞ and θ ∈ (0, 1) is given by θ = θρ := 1
2
ρ−4
ρ−2

. Indeed, by taking r = 1,

q = 4, s1 = 4/ρ, p1 = ρ, s2 = 2, p2 = 2 in Proposition 9.1 (and replacing θ by 1− θ), from

(9.1) we get θ = θρ, and s = r = 1. Since (9.3) is not satisfied, then we obtain (4.28).

We point out that θ = θρ < 1/2, for every 4 < ρ < ∞ (notice that θ does not depend on

d). Next, we fix ρ such that 4/ρ < α, where α ∈ (0, 1), and this ensures the embedding

Cα(Ω) →֒ W 4/ρ,ρ(Ω) for both cases d = 2, 3. Hence, from (4.28) we deduce the following

inequality

‖π‖W 1,4(Ω) ≤ C‖π‖θH2(Ω)‖π‖1−θ
Cα(Ω)

, with θ < 1/2 . (4.29)

With this interpolation inequality at our disposal, we now turn back to the elliptic problem

(4.21)-(4.22), which is a special case of (2.5)-(2.6) with

aij =
1

η(ϕ)
δij , f = −(∇J ∗ ϕ)ϕ

η(ϕ)
, f = 0 , ψ = 0 .

The ellipticity condition (2.7) is satisfied with Λ∗ = η∞ (here we use |ϕ| ≤ 1), and

Λ∗ = η1. Moreover, we can immediately check that condition (2.8) holds (taking, for

simplicity, ε = 1)

‖f‖Ld+1(Ω)d =

∥∥∥∥
(∇J ∗ ϕ)ϕ
η(ϕ)

∥∥∥∥
Ld+1(Ω)d

≤ b|Ω|1/(d+1)

η1
.

Hence, from Proposition 2.2 we infer that π is Hölder continuous in Ω, and that there exist

constants Θ and α ∈ (0, 1) depending only on η1, η∞, b, |Ω|, d, and on the C1 structure

of Γ, such that

‖π‖Cα(Ω) ≤ Θ(η1, η∞, b, |Ω|, d,Γ) . (4.30)
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By exploiting this estimate, we can now apply (4.29) (with the same exponent α as given

by Proposition 2.2) to obtain the bound

‖π‖W 1,4(Ω) ≤ C‖π‖θH2(Ω) , with θ < 1/2 . (4.31)

Therefore, from (4.23), by means of (4.31), we get the following estimate for the L4(Ω)d−norm

of u in terms of the H2(Ω)−norm of π

‖u‖L4(Ω)d ≤ 1

η1
‖π‖W 1,4(Ω) +

b

η1
|Ω|1/4 ≤ C(‖π‖θH2(Ω) + 1) . (4.32)

In order to get an estimate for the L4(Ω)d−norm of u in terms of the H2(Ω)−norm of

ϕ, we employ a classical elliptic regularity estimate, the following well-known Gagliardo-

Nirenberg inequality (see, e.g., (9.5) for p = 4)

‖∇ϕ‖L4(Ω)d ≤ C‖ϕ‖1/2L∞(Ω)‖ϕ‖
1/2

H2(Ω) ,

the control (4.31), and Lemma 4.1, to get, from (4.27) with (4.22),

‖π‖H2(Ω) ≤ C
(
‖η

′(ϕ)

η(ϕ)
∇ϕ · ∇π‖+ ‖div(∇J ∗ ϕ)‖+ ‖η(ϕ)(∇J ∗ ϕ) · ∇

( ϕ

η(ϕ)

)
‖

+ ‖(∇J ∗ ϕ)ϕ · n‖H1/2(Γ)

)

≤ C
(
‖ϕ‖1/2H2(Ω)‖π‖θH2(Ω) + ‖ϕ‖V + ‖(∇J ∗ ϕ)ϕ · n‖H1/2(Γ)

)
. (4.33)

As far as the boundary term in (4.33) is concerned, invoking Lemma 4.2, we have that

‖(∇J ∗ ϕ)ϕ · n‖H1/2(Γ) = ‖ϕ ∂

∂n
(J ∗ ϕ)‖H1/2(Γ) ≤ ‖ϕ‖L∞(Γ)‖

∂

∂n
(J ∗ ϕ)‖H1/2(Γ)

+ ‖ ∂
∂n

(J ∗ ϕ)‖L∞(Γ)‖ϕ‖H1/2(Γ) ≤ C‖J ∗ ϕ‖H2(Ω) + C‖∇J ∗ ϕ‖W 1,4(Ω)d‖ϕ‖V
≤ C(‖ϕ‖+ ‖ϕ‖L4(Ω)‖ϕ‖V ) ≤ C(1 + ‖ϕ‖V ) , (4.34)

where Lemma 4.1 has been used again, as well as the embedding W 1,4(Ω) →֒ C(Ω), for

d = 2, 3. Therefore, collecting (4.33) and (4.34), we get

‖π‖H2(Ω) ≤ C
(
‖ϕ‖

1
2(1−θ)

H2(Ω) + ‖ϕ‖V + 1
)
. (4.35)

The desired estimate of the L4(Ω)d−norm of u in terms of the H2(Ω)−norm of ϕ then

follows from (4.32) and (4.35), namely

‖u‖L4(Ω)d ≤ C
(
‖ϕ‖

θ
2(1−θ)

H2(Ω) + ‖ϕ‖θV + 1
)
. (4.36)
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We can also deduce an estimate for the V d−norm of u. Indeed, from (4.23), and again

using (4.31), we have that

‖u‖V d ≤ C(‖∇π‖+ ‖π‖H2(Ω) + ‖∇ϕ‖L4(Ω)d‖∇π‖L4(Ω)d + ‖(∇J ∗ ϕ)ϕ‖V d)

≤ C(‖π‖H2(Ω) + ‖ϕ‖1/2H2(Ω)‖π‖θH2(Ω) + ‖ϕ‖V + 1) ,

and hence, on account of (4.35), we obtain

‖u‖V d ≤ C
(
‖ϕ‖

1
2(1−θ)

H2(Ω) + ‖ϕ‖V + 1
)
. (4.37)

Summing up, from the analysis of the problem (4.21)-(4.23) we know that, for every

ϕ ∈ H2(Ω), with |ϕ| ≤ 1, system (4.16), (4.17), (4.19)1 admits a unique solution [π,u] ∈(
H2(Ω) ∩ V0

)
× Vdiv such that estimates (4.35)-(4.37) hold.

Step 2. We now consider problem (4.18), (4.19)2, (4.20), where u is the second

component of the unique solution to (4.16), (4.17), (4.19)1 with ϕ given in YT satisfying

|ϕ| ≤ 1. Thanks to Theorem 7.1 we know that if d = 2 or λ is constant then (4.18),

(4.19)2, (4.20) admits a unique strong solution ϕ̃ ∈ YT with |ϕ̃| ≤ 1 (see (7.2) and (7.4)).

Indeed, from (4.32) (or also from (4.37)) and from ϕ ∈ YT , it is immediate to check that

condition (7.3) holds with r = 4. Therefore, the map F : ϕ 7→ ϕ̃, that associates to every

ϕ, given in (4.16), the unique solution ϕ̃ to (4.18), (4.19)2, (4.20), is well defined from the

set {ψ ∈ YT : |ψ| ≤ 1} into itself.

Our goal is now to show that, provided that T > 0 and R > 0 are suitably chosen, the

map F satisfies F : BYT
(R) → BYT

(R), namely it is also a map from BYT
(R) into itself,

where BYT
(R) is the closed convex set given by

BYT
(R) := {ψ ∈ YT : ‖ψ‖YT

≤ R , |ψ| ≤ 1} .

Fix ϕ ∈ BYT
(R). From (4.36) we first obtain an estimate for u in L4(0, T ;L4

div(Ω)
d).

More precisely, we find

‖u‖L4(0,T ;L4(Ω)d) ≤ C
(
‖ϕ‖

θ
2(1−θ)

L2(0,T ;H2(Ω))T
1−2θ
4(1−θ) + ‖ϕ‖θL∞(0,T ;V )T

1/4 + T 1/4
)

≤ C
(
R

θ
2(1−θ) T

1−2θ
4(1−θ) +Rθ T 1/4 + T 1/4

)
. (4.38)

On the other hand, we know that ϕ̃ satisfies the differential identity (7.6). Therefore, on

account of (H7), we get

1

2

dΦ

dt
+ α0‖ϕ̃t‖2 ≤ ‖u‖L4(Ω)d‖∇B(ϕ̃)‖L4(Ω)d‖ϕ̃t‖+ (m∞ +m′

∞) b ‖ϕ̃t‖‖∇B(ϕ̃)‖

≤ α0

4
‖ϕ̃t‖2 + C‖u‖2L4(Ω)d‖B(ϕ̃)‖H2(Ω) + C‖∇ϕ̃‖2 , (4.39)
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where Φ := ‖∇B(ϕ̃)‖2 − 2
(
m(ϕ̃)(∇J ∗ ϕ̃), λ(ϕ̃)∇ϕ̃

)
satisfies, for all t ∈ [0, T ],

K1(‖∇ϕ̃(t)‖2 − 1) ≤ Φ(t) ≤ K2(‖∇ϕ̃(t)‖2 + 1) , (4.40)

with two positive constants K1, K2 depending on m, λ, and J . Let us estimate the

H2(Ω)−norm of B(ϕ̃) in terms of the H−norm of ϕ̃t and of the L4(Ω)d−norm of u. To

this aim, by relying on the elliptic estimate

‖B(ϕ̃)‖H2(Ω) ≤ C
(
‖∆B(ϕ̃)‖+ ‖B(ϕ̃)‖V + ‖∇B(ϕ̃) · n‖H1/2(Γ)

)
,

and on (4.18), we have that

‖B(ϕ̃)‖H2(Ω) ≤ C
(
‖ϕ̃t‖+ ‖u‖L4(Ω)d‖∇B(ϕ̃)‖L4(Ω)d + ‖∇B(ϕ̃)‖+ 1

)

≤ C
(
‖ϕ̃t‖+ ‖u‖L4(Ω)d‖B(ϕ̃)‖1/2H2(Ω) + ‖∇B(ϕ̃)‖+ 1

)
.

Hence we find that

‖B(ϕ̃)‖H2(Ω) ≤ C
(
‖ϕ̃t‖+ ‖u‖2L4(Ω)d + ‖∇B(ϕ̃)‖+ 1

)
. (4.41)

By inserting (4.41) into (4.39) and taking Young’s inequality and (4.40) into account, we

easily get

dΦ

dt
+ α0‖ϕ̃t‖2 ≤ C

(
1 + ‖u‖2L4(Ω)d

)
‖∇B(ϕ̃)‖+ C

(
1 + ‖u‖4L4(Ω)d

)

≤ C1

(
1 + ‖u‖4L4(Ω)d

)
Φ + C2

(
1 + ‖u‖4L4(Ω)d

)
. (4.42)

We shall henceforth denote by Ci, i ∈ N, some positive constants that depend on the

structural parameters of the problem, namely on J,m, λ, η,Ω,Γ, but are independent of

T , R, and ϕ0. By applying Gronwall’s lemma to (4.42) and using (4.38) and (4.40), we

obtain

‖ϕ̃(t)‖2V ≤ C3 e
C1(T+‖u‖4

L4(0,T ;L4(Ω)d)
)(
1 + ‖∇ϕ0‖2 + C1(T + ‖u‖4L4(0,T ;L4(Ω)d))

)
+ C3

≤ C3 e
Λ(R,T )

(
1 + ‖∇ϕ0‖2 + Λ(R, T )

)
+ C3 ,

where we have set

Λ(R, T ) := C4 (R
2θ
1−θ T

1−2θ
1−θ +R4θT + T ) . (4.43)

Therefore, we get

‖ϕ̃‖L∞(0,T ;V ) ≤ Γ1

(
Λ(R, T ), ‖∇ϕ0‖

)
, (4.44)

where

Γ2
1(Λ, ξ) := C3 e

Λ (1 + ξ2 + Λ) + C3 .
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By integrating in time (4.42) and using (4.44), we deduce

‖ϕ̃‖2H1(0,T ;H) ≤ C5 (1 + ‖∇ϕ0‖2) + C6 Λ(R, T ) Γ
2
1

(
Λ(R, T ), ‖∇ϕ0‖

)
.

Thus we have

‖ϕ̃‖H1(0,T ;H) ≤ Γ2

(
Λ(R, T ), ‖∇ϕ0‖

)
, (4.45)

where

Γ2
2(Λ, ξ) := C5 (1 + ξ2) + C6 ΛΓ2

1(Λ, ξ) .

In order to estimate the norm of ϕ̃ in L2(0, T ;H2(Ω)), we first consider the identity

∂2ijϕ̃ =
1

λ(ϕ̃)
∂2ijB(ϕ̃)− 1

λ2(ϕ̃)
∂iλ(ϕ̃)∂jB(ϕ̃) , i, j = 1, 2 , (4.46)

from which we deduce

‖∂2ijϕ̃‖ ≤ 1

α0

‖B(ϕ̃)‖H2(Ω) +
λ′∞
α2
0

‖∇ϕ̃‖L4(Ω)d‖∇B(ϕ̃)‖L4(Ω)d

≤ 1

α0

‖B(ϕ̃)‖H2(Ω) + C
λ
1/2
∞ λ′∞
α2
0

‖ϕ̃‖1/2H2(Ω)‖B(ϕ̃)‖1/2H2(Ω)

≤ δ ‖ϕ̃‖H2(Ω) + Cδ

( 1

α0
+
λ∞λ

′ 2

∞

α4
0

)
‖B(ϕ̃)‖H2(Ω) .

Hence, taking δ > 0 small enough, we find

‖ϕ̃‖H2(Ω) ≤ Cα0,λ∞,λ′
∞
‖B(ϕ̃)‖H2(Ω)

≤ Cα0,λ∞,λ′
∞

(
‖ϕ̃t‖+ ‖u‖2L4(Ω)d + ‖∇B(ϕ̃)‖+ 1

)
, (4.47)

where, in the last inequality, (4.41) has been used. Therefore, on account of (4.45), (4.44),

from (4.47) we infer

‖ϕ̃‖2L2(0,T ;H2(Ω)) ≤ Cα0,λ∞,λ′
∞

(
Γ2
2 + ‖u‖4L4(0,T ;L4(Ω)d) + Γ2

1 + T
)

≤ C7

(
Γ2
2 + Γ2

1 + Λ(R, T )
)
.

Thus we find

‖ϕ̃‖L2(0,T ;H2(Ω)) ≤ Γ3

(
Λ(R, T ), ‖∇ϕ0‖

)
, (4.48)

where we have set

Γ2
3(Λ, ξ) := C7

(
Γ2
2(Λ, ξ) + Γ2

1(Λ, ξ) + Λ
)
.

Let us now choose R in the following way

R := 3 max
1≤i≤3

Γi

(
1, ‖∇ϕ0‖

)
,
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and observe that R only depends on the V−norm of ϕ0. With this choice of R, we fix

T > 0 such that Λ(R, T ) ≤ 1. This is possible thanks to the fact that θ < 1/2 (cf. (4.43)).

Therefore, (4.44), (4.48), and (4.45) yield

‖ϕ̃‖YT
= ‖ϕ̃‖L∞(0,T ;V ) + ‖ϕ̃‖L2(0,T ;H2(Ω)) + ‖ϕ̃‖H1(0,T ;H)

≤
3∑

i=1

Γi

(
Λ(R, T ), ‖∇ϕ0‖

)
≤

3∑

i=1

Γi

(
1, ‖∇ϕ0‖

)
≤ R .

Therefore F takes BYT
(R) into itself.

Step 3. In this step we shall prove that F : BYT
(R) → BYT

(R) is continuous with

respect to the strong topology of XT . Take a sequence {ϕn} ⊂ BYT
(R) such that ϕn → ϕ

in XT . We have (up to a subsequence) that ϕn ⇀ ϕ weakly star in YT and ϕ ∈ BYT
(R).

Let us denote by Q1 and Q2 the maps defined by π = Q1(ϕ) and u = Q2(ϕ), respec-

tively, where [π,u] ∈ (H2(Ω) ∩ V0) × Vdiv is the unique weak solution to (4.21), (4.22),

(4.23). Set then πn := Q1(ϕn) and un := Q2(ϕn). Thanks to (4.25), (4.35) and to (4.26).

(4.37), we have that (up to a subsequence)

πn ⇀ π∗ , weakly star in L∞(0, T ;V0) ∩ L2(0, T ;H2(Ω)) ,

un ⇀ u∗ , weakly star in L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv) . (4.49)

Writing the weak formulation (4.24) with πn and ϕn, multiplying it by a test function

ω ∈ C∞
0 (0, T ), and passing to the limit as n → ∞, we can easily deduce that π∗ again

satisfies (4.24), and hence (thanks to uniqueness) that π∗ = π := Q1(ϕ). Moreover, by

passing to the limit in (4.23), written for [un, πn, ϕn], we get also u∗ = u := Q2(ϕ).

Let us now denote by G the map that to each u ∈ L4(0, T ;L4
div(Ω)

d) associates ϕ̃ =

G(u), where ϕ̃ ∈ YT is the unique strong solution to (4.18), (4.19)2, (4.20) given by

Lemma 7.1. Then set ϕ̃n := G(un) = (G ◦ Q2)(ϕn) = F(ϕn). From Step 2 we know

that {ϕ̃n} ⊂ BYT
(R). Hence we have that (up to a subsequence) ϕ̃n ⇀ ϕ∗ weakly star in

YT . Writing the weak formulation of (4.18), (4.19)2, (4.20) for ϕ̃n, with un given in the

convective term, we obtain

〈ϕ̃n,t, ψ〉V + (∇B(ϕ̃n),∇ψ) = (unϕ̃n,∇ψ) + (m(ϕ̃n)(∇J ∗ ϕ̃n),∇ψ) , ∀ψ ∈ V .

Multiplying the above identity by a test function ω ∈ C∞
0 (0, T ) and passing to the limit,

on account of the weak and strong convergences for {ϕ̃n} and for {un}, it is not difficult to

see that the same weak formulation is satisfied also for ϕ∗, with u in the convective term.

Therefore, thanks to the uniqueness of the strong solution to problem (4.18), (4.19)2,

(4.20) (with u = u given), we have that ϕ∗ = G(u) = (G ◦ Q2)(ϕ) = F(ϕ).
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We thus conclude that, up to a subsequence, F(ϕn) ⇀ F(ϕ), weakly star in YT and

strongly in XT , due to the compact injection YT →֒→֒ XT . The uniqueness of the limit

F(ϕ) entails the strong convergence for the whole sequence {F(ϕn)}. This concludes the
proof of the continuity of F .

Using the fact that the closed convex set BYT
(R) is compact in XT , we can now apply

Schauder’s fixed point theorem to the map F : BYT
(R) → BYT

(R) and obtain a fixed point

ϕ ∈ BYT
(R). Thus, recalling also estimates (4.35) and (4.37), we deduce that there exists

a strong solution [u, π, ϕ] on [0, T ], for some T > 0 small enough such that (4.9)-(4.11)

hold.

Step 4. Our goal is now to prove that the local in time solution can be extended to

an arbitrary time interval [0, T ], for any T > 0. Let Tm ∈ (0,∞] be the maximal time of

existence and let [u, π, ϕ] be a maximal strong solution to (1.8)-(1.11), (1.13), (1.14) on

[0, Tm). By maximal strong solution we mean, by definition, that:

• [u, π, ϕ] is a local in time strong solution on [0, Tm), namely

(i) [u, π, ϕ] satisfies

u ∈ L2
loc([0, Tm);Vdiv) ,

π ∈ L2
loc([0, Tm);H

2(Ω) ∩ V0) ,
ϕ ∈ L∞

loc([0, Tm);V ) ∩ L2
loc([0, Tm);H

2(Ω)) ∩H1
loc([0, Tm);H) ,

(ii) [u, π, ϕ] is a strong solution to (1.8)-(1.11), (1.13), (1.14) on [0, t], for all t ∈
(0, Tm) ;

• there is no strict extension [û, π̂, ϕ̂] : [0, T ′
m] → Vdiv × (H2(Ω) ∩ V0) ×H2(Ω), with

T ′
m > Tm, such that [û, π̂, ϕ̂] is a local in time strong solution on [0, T ′

m), i.e., such

that [û, π̂, ϕ̂] satisfies (i)-(ii) with T ′
m in place of Tm.

We recall that we are in the case d = 2 or λ constant (so that the mapping F is well

defined).

We shall prove that Tm = ∞. By exploiting Step 1 and Step 2, we need to derive some

estimates for the norm of the maximal strong solution (similar to (4.44), (4.45), (4.48))

containing constants on the right hand side which depend only on t ∈ (0, Tm) (and on

‖ϕ0‖V ), and which are bounded for t ∈ (0, Tm). Notice that (4.44), (4.45), (4.48), cannot

be used since the constants on the right hand sides depend on R, i.e., they depend on the

norm of the solution itself.

Let us first consider estimate (4.36), which it can be also written as

‖u‖L4(Ω)d ≤ C
(
‖B(ϕ)‖

θ
2(1−θ)

H2(Ω) + ‖B(ϕ)‖θV + 1
)
. (4.50)
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To get (4.50) it is enough to write ∇ϕ = ∇B(ϕ)/λ(ϕ) in the first term on the right hand

side of the first inequality of (4.33), and then proceed as for (4.34)-(4.36). By combining

(4.50) with (4.41), and exploiting the fact that now ϕ̃ = ϕ, we get

‖B(ϕ)‖H2(Ω) ≤ C
(
‖ϕt‖+ ‖B(ϕ)‖

θ
1−θ

H2(Ω) + ‖B(ϕ)‖2θV + ‖∇B(ϕ)‖+ 1
)
,

which yields (recall that θ < 1/2)

‖B(ϕ)‖H2(Ω) ≤ C
(
‖ϕt‖+ ‖∇B(ϕ)‖+ 1

)
. (4.51)

From (4.50) and (4.51) we then get

‖u‖L4(Ω)d ≤ C
(
‖ϕt‖

θ
2(1−θ) + ‖∇B(ϕ)‖ θ

2(1−θ) + ‖B(ϕ)‖θV + 1
)

≤ C
(
‖ϕt‖θ + ‖∇B(ϕ)‖θ + 1

)
,

and inserting the above estimate into (4.42) (where ϕ̃ = ϕ) we obtain

dΦ

dt
+ α0‖ϕt‖2 ≤ C

(
‖ϕt‖2θ + ‖∇B(ϕ)‖2θ + 1

)
‖∇B(ϕ)‖+ C

(
‖ϕt‖4θ + ‖∇B(ϕ)‖4θ + 1

)

≤ α0

2
‖ϕt‖2 + C

(
‖∇B(ϕ)‖ 1

1−θ + ‖∇B(ϕ)‖2θ+1 + ‖∇B(ϕ)‖4θ + ‖∇B(ϕ)‖+ 1
)

≤ α0

2
‖ϕt‖2 + C

(
‖∇B(ϕ)‖2 + 1

)
.

Hence, in view also of (4.40), we deduce that

dΦ

dt
+
α0

2
‖ϕt‖2 ≤ C (1 + Φ) . (4.52)

From this differential inequality, by Gronwall’s lemma, and arguing in the same fashion

as for (4.44)-(4.48), we can obtain the desired estimate for the (ϕ component of the)

maximal strong solution, namely

‖ϕ‖L∞(0,t;V ) + ‖ϕ‖L2(0,t;H2(Ω)) + ‖ϕ‖H1(0,t;H) ≤ C
(
t, ‖ϕ0‖V

)
. (4.53)

This inequality holds for all 0 < t < Tm, with a constant C on the right hand side which

depends only on t and on ‖ϕ0‖V , and which is locally bounded with respect to t on [0,∞).

Let us suppose now that Tm < ∞ and consider, for simplicity, just the ϕ component

of the maximal strong solution. Observe that the constant C on the right hand side of

(4.53) can be bounded by C
(
Tm, ‖ϕ0‖V ), and (4.53) holds for all 0 < t < Tm. Thus we

deduce that ϕ ∈ C([0, Tm];V ) (cf. Remark 4.1). This allows us to restart the system

by taking ϕ(Tm) as new initial datum, in place of ϕ0 in (1.14). By applying again the

Schauder’s fixed point argument (see Steps 1, 2, and 3), we can then construct a new

local in time strong solution which is defined on an interval of the form (Tm, Tm + δ), for
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some δ > 0. By means of the local in time solution on (Tm, Tm + δ) we can then define a

strict extension of ϕ on [0, Tm + δ), which is still a strong solution to (1.8)-(1.11), (1.13),

(1.14). This contradicts the maximality of ϕ, and concludes the proof for the case d = 2

or λ constant.

We are left to prove the theorem in the case d = 3 and λ non-constant.

We know that, in this case, uniqueness of the strong solution ϕ̃ ∈ YT (with |ϕ̃| ≤ 1)

to problem (4.18), (4.19)2, (4.20), with u given in L4(0, T ;L4(Ω)3) is not known (see

Theorem 7.1). However, Theorem 7.1 entails uniqueness of ϕ̃ provided that the velocity

field in the convective term of the nonlocal Cahn-Hilliard is divergence-free and has an

L2(0, T ;L∞(Ω)3)−regularity . We thus replace u in (4.18) by a suitable regularization v.

A convenient choice turns out to be a Leray-α type regularization (see, for instance, [6]).

More precisely, in place of problem (4.16)-(4.20) we now address the following system

η(ϕ)u+∇π = (∇J ∗ ϕ)ϕ, in QT , (4.54)

div(u) = 0, in QT , (4.55)

ϕ̃t + v · ∇ϕ̃ = ∆B(ϕ̃)− div(m(ϕ̃)(∇J ∗ ϕ̃)), in QT , (4.56)

(I + αS)v = u, in QT (4.57)

u · n = 0 ,
[
∇B(ϕ̃)−m(ϕ̃)(∇J ∗ ϕ̃)

]
· n = 0 on Γ× (0, T ), (4.58)

ϕ̃(0) = ϕ0 in Ω , (4.59)

where S is the Stokes operator with no-slip boundary condition (see, for instance, [3,

Chap.5]) and α > 0 is a fixed regularization parameter. In order to reproduce the Schauder

fixed point argument also for system (4.54)-(4.59), we need to control the L4(Ω)3−norm

of v by the L4(Ω)3−norm of u, uniformly with respect to α. This crucial control can be

achieved by applying a well-known result on the resolvent estimates in Lp for the Stokes

operator (with no-slip boundary condition) in sufficiently smooth domains (e.g., of class

C2) which, for the reader’s convenience, we report here below in the form suitable for our

purposes (see [31, 32, Theorem 1]).

Lemma 4.3. Let Ω be a bounded and smooth domain in R
d, d ≥ 2. If h ∈ Lp

div(Ω)
d is

given for some p > 2 then there exists a constant Cp > 0 such that the unique solution

v ∈ D(S) = V p
0,div(Ω) ∩W 2,p(Ω)d to (I + αS)v = h satisfies the estimate

‖v‖Lp(Ω)d ≤ Cp ‖h‖Lp(Ω)d (4.60)

and Cp is independent of h and α > 0.

We are now ready to adapt the argument developed in Steps 1-4 to (4.54)-(4.59) in

order to establish existence of a strong solution to this system for every fixed α > 0. First,
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we point out that all estimates deduced in the previous steps also hold in the present case.

We thus consider problem (4.56), (4.57), (4.58)2, (4.59) where u is the (second component

of the) unique solution ϕ ∈ YT to (4.54), (4.55), (4.58)1 such that |ϕ| ≤ 1. Thanks to

the fact that ‖v‖D(S) ≤ Cα‖u‖, which yields that v ∈ L2(0, T ;L∞(Ω)3 ∩ V0,div) (actually,
we have also a better time regularity for v, e.g., v ∈ L4(1−θ)/θ(0, T ;L∞(Ω)3 ∩ V0,div), cf.
(4.36)), and thanks to Theorem 7.1, we know that there exists a unique solution ϕ̃ ∈ YT

to (4.56), (4.57), (4.58)2, (4.59) such that |ϕ̃| ≤ 1. Therefore, the map Fα : ϕ 7→ ϕ̃ is still

well defined from the set {ψ ∈ YT : |ψ| ≤ 1} into itself.

To proceed as in Step 2, we need a uniform (with respect to α) control for the

L4(0, T ;L4(Ω)3)− norm of v in terms of the same norm of u. This control can be achieved

by applying Lemma 4.3 to (4.57) with p = 4, namely

‖v‖L4(0,T ;L4(Ω)3) ≤ C4‖u‖L4(0,T ;L4(Ω)3) .

By combining this estimate with (4.36), we get

‖v‖L4(0,T ;L4(Ω)3) ≤ C
(
R

θ
2(1−θ) T

1−2θ
4(1−θ) +Rθ T 1/4 + T 1/4

)
, (4.61)

where C > 0 is independent of α.

Observe now that the differential inequality (4.39), with v in place of u, still holds true

and, by employing (4.61) into this inequality, we can argue exactly in the same fashion

as in Step 2. Hence, we can still conclude that the map Fα takes BYT
(R) into itself, with

R > 0 and T > 0 chosen as in Step 2 (independently of α).

Concerning the continuity of the map Fα in the strong topology of XT (cf. Step 3),

the only modification is related to the map G = Gα, which is now defined as the map

that to each u ∈ L4(0, T ;L4
div(Ω)

3) associates ϕ̃ = Gα(u), where ϕ̃ ∈ YT is the unique

strong solution to (4.56), (4.57), (4.58)2, (4.59) given by Theorem 7.1. Keeping the same

notation used in Step 3 and setting ϕ̃n := Gα(un) = (Gα ◦ Q2)(ϕn) = F(ϕn), from Step

2 we deduce again that {ϕ̃n} ⊂ BYT
(R). Hence, we have (up to a subsequence) that

ϕ̃n ⇀ ϕ∗, weakly star in YT . Let us now write the weak formulation of (4.56), (4.57),

(4.58)2, (4.59) for ϕ̃n, with ϕ̃n, vn, un in place of ϕ̃, v, u, respectively. We have

〈ϕ̃n,t, ψ〉V + (∇B(ϕ̃n),∇ψ) = (vnϕ̃n,∇ψ) + (m(ϕ̃n)(∇J ∗ ϕ̃n),∇ψ) , ∀ψ ∈ V , (4.62)

vn = (I + αS)−1un . (4.63)

Lemma 4.3 yields that (I + αS)−1 ∈ L(L10/3(0, T ;L10/3(Ω)3)), L10/3(0, T ;L10/3(Ω)3)).

Hence, from (4.49) we deduce that

vn ⇀ v , weakly in L10/3(0, T ;L10/3(Ω)3) ,
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where v = (I + αS)−1u. By means of this weak convergence and on account of the

weak/strong convergences for ϕ̃n (see Step 3), we can then pass to the limit in (4.62),

(4.63) and deduce that the weak formulation of (4.56), (4.57), (4.58)2, (4.59) is satisfied

also for ϕ∗, with v and u in place of v and u, respectively. By again invoking the

uniqueness of the strong solution to problem (4.56), (4.57), (4.58)2, (4.59) (with u = u

given), ensured by Theorem 7.1, we have that ϕ∗ = Gα(u) = (Gα ◦ Q2)(ϕ) = F(ϕ). The

continuity of Fα in the strong topology of XT then follows as in Step 3.

Schauder’s fixed point theorem can be again applied to the map Fα : BYT
(R) →

BYT
(R), as well as estimates (4.35) and (4.37). This yields the existence of a local in time

strong solution [u,v, π, ϕ] to (4.54)-(4.59) such that (4.9)-(4.11) hold. This local in time

strong solution can then be extended to an arbitrary time interval [0, T ], for all T > 0,

by arguing exactly as in Step 4.

We have thus shown that, for every fixed α > 0, system (4.54)-(4.59) admits a global

in time strong solution [uα,vα, πα, ϕα] satisfying (4.9)-(4.11).

We now need to recover suitable bounds for [uα,vα, πα, ϕα] which are uniform with

respect to α in order to pass to the limit in (4.54)-(4.59) as α → 0. These bounds can

be obtained by observing that all constants in the estimates derived in the former Steps

1 to 4 are independent of α. In particular, (4.53) is satisfied also for ϕα yielding (up to a

subsequence)

ϕα ⇀ ϕ̂ , weakly star in L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;H) , (4.64)

strongly in C([0, T ];L6−(Ω)) , and pointwise a.e. in QT . (4.65)

On the other hand, from (4.36), (4.37), and (4.53) we also have that

uα ⇀ û , weakly in L4(1−θ)/θ(0, T ;L4
div(Ω)

3) ∩ L4(1−θ)(0, T ;Vdiv) , (4.66)

and, thanks to Lemma 4.3 applied to (I + αS)−1uα = vα, we get

vα ⇀ v̂ , weakly in L4(1−θ)/θ(0, T ;L4
div(Ω)

3) . (4.67)

Moreover, from (4.35), and (4.53) there follows that

πα ⇀ π̂ , weakly in L4(1−θ)(0, T ;H2(Ω) ∩ V0) . (4.68)

It is easy to see that v̂ = û. Indeed, setting Jα := (I + αS)−1, and observing that Jα is

self-adjoint, then, for every w ∈ L2(QT )
3, we have that

∫ T

0

(vα,w) dt =

∫ T

0

(Jαu
α,w) dt =

∫ T

0

(uα,Jαw) dt→
∫ T

0

(û,w) dt , (4.69)
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where we have used (4.66) and the fact that Jαw → w, strongly in L2(0, T ;L2(Ω)3).

This strong convergence follows from the general properties of the resolvent operator Jα

of the maximal monotone (linear) map S, namely, Jαw(t) → w(t), strongly in L2(Ω)3,

for almost any t ∈ (0, T ) and ‖Jαw(t)‖ ≤ ‖w(t)‖, for all α > 0 (using also Lebesgue’s

theorem). Therefore, (4.69) gives vα ⇀ û in L2(0, T ;L2(Ω)3). Thus we deduce (see

(4.67)) v̂ = û.

By means of (4.64)-(4.68) (with v̂ = û), a standard argument allows us to pass to

the limit in system (4.54)-(4.59) as α → 0 (up to a subsequence) and find that [û, π̂, ϕ̂]

is a strong solution to (1.8)-(1.11), (1.13), (1.14) satisfying (4.9)-(4.11). Once we have a

strong solution, then it is easy to show that π ∈ L∞(0, T ;Cα(Ω)) for some α ∈ (0, 1) (see

(4.30)). This concludes the proof of Theorem 4.1.

4.2 Proof of Theorem 4.2

We proceed formally, for the sake of brevity. The argument below can be made rigorous

by means of a Faedo-Galerkin scheme. Indeed, only the time derivative of u and of ϕ will

be used as test functions. Alternatively, a time discretization procedure can be used (see

[18, Proof of Theorem 3.6]).

To begin with, we take the time derivative of the Darcy’s law (4.5) and multiply the

resulting identity by ut. We get

(
η(ϕ)ut,ut

)
+
(
η′(ϕ)ϕt u,ut

)
=

(
(∇J ∗ ϕt)ϕ,ut

)
+
(
(∇J ∗ ϕ)ϕt,ut

)
. (4.70)

Setting η′∞ := ‖η′‖L∞(−1,1), the second term on the left hand side of (4.70) can be estimated

as follows

∣∣(η′(ϕ)ϕt u,ut

)∣∣ ≤ η′∞‖ϕt‖L4(Ω)‖u‖L4(Ω)2‖ut‖
≤ Cη′∞ (‖ϕt‖+ ‖ϕt‖1/2‖∇ϕt‖1/2)‖u‖L4(Ω)2‖ut‖
≤ δ‖ut‖2 + Cδ η

′
∞
2
(‖ϕt‖2 + ‖ϕt‖‖∇ϕt‖) ‖u‖2L4(Ω)2

≤ δ‖ut‖2 + δ′‖∇ϕt‖2 + Cδ,δ′
(
η′∞

2‖u‖2L4(Ω)2 + η′∞
4‖u‖4L4(Ω)2

)
‖ϕt‖2 . (4.71)

The estimates of the two terms on the right hand side of (4.70) being straightforward,

we can then insert (4.71) into (4.70), use assumptions (H1), (H2), and take δ suitably

small to obtain

η1
2
‖ut‖2 ≤ δ′‖∇ϕt‖2 + Cδ

(
1 + η′∞

2‖u‖2L4(Ω)2 + η′∞
4‖u‖4L4(Ω)2

)
‖ϕt‖2 . (4.72)

Next, we take the time derivative of (4.1) and test the resulting equation by ϕt to get

1

2

d

dt
‖ϕt‖2 + (∇B(ϕ)t,∇ϕt)
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= − (ut · ∇ϕ, ϕt) + (m ′(ϕ)ϕt (∇J ∗ ϕ) ,∇ϕt) + (m(ϕ) (∇J ∗ ϕt) ,∇ϕt) . (4.73)

In order to estimate the second term on the left side and the first one on the right (the

estimate of the last two terms on the right being straightforward), we can argue exactly

as in the proof of [18, Proposition 5.1]. Indeed, on account of (4.51), of the L∞(0, T ;V )

bound for ϕ (cf. (4.11)), and of the Gagliardo-Nirenberg inequality in two dimensions,

we deduce the following differential inequality

d

dt
‖ϕt‖2 +

α0

4
‖∇ϕt‖2 ≤ C

(
‖ϕt‖4 + ‖ϕt‖2 + ‖ut‖2 + 1

)
. (4.74)

By means of (4.72), taking δ′ small enough (i.e., δ′ ≤ α0η1/16C), from (4.74) we infer

d

dt
‖ϕt‖2 +

α0

8
‖∇ϕt‖2 ≤ C

(
‖ϕt‖4 + 1

)
+ C

(
1 + η′∞

2‖u‖2L4(Ω)2 + η′∞
4‖u‖4L4(Ω)2

)
‖ϕt‖2 .

From this differential inequality, Gronwall’s lemma and (4.9) entail that ϕ ∈ H1(0, T ;V )∩
W 1,∞(0, T ;H). The L∞(0, T ;H2(Ω))−regularity for ϕ follows as in the proof of [18,

Proposition 5.1], by using (4.51), the fact that ϕt ∈ L∞(0, T ;H), implying B(ϕ) ∈
L∞(0, T ;H2(Ω)), and identity (4.46).

Once (4.14) is established, (4.13) follows from (4.72), by taking (4.9) into account.

The proof is finished.

5 Further regularity properties for π and u

The goal of this section is to develop a detailed analysis of the regularity properties of

the pressure and velocity fields of the strong solution derived in Theorem 4.1. While

in Theorem 4.1 our main objective was just to rigorously establish existence of a strong

solution in some suitable regularity class, our main focus here is to address more closely

the regularity of π and u that stems from the elliptic system satisfied by the pressure

field, as a consequence of the validity of the Darcy’s law (the regularity for ϕ is essentially

determined by the nonlocal Cahn-Hilliard structure, and it will always be taken as given

by (4.11) in all this section). This goal is achieved by applying elliptic regularity results

to problem (4.27), (4.22) with ϕ satisfying (4.11), and making a careful use of suitable

Gagliardo-Nirenberg-Sobolev interpolation inequalities (cf. Proposition 9.1) to gain, in

particular, aW 2,p(Ω)−regularity for π, for all 1 < p <∞. Concerning the time regularity,

the delicate point and our main effort are to obtain “optimal” time integrability exponent

for π with values, e.g., in W 2,p(Ω). Indeed, to the best of our knowledge, there are no

results in the literature that allow us to obtain such an optimal value for this exponent,

once the space-time regularity (4.11) for ϕ is assumed in equation (4.27).

By comparing with other arguments and with other ways to estimate in Lp(Ω) the

principal term in the elliptic equation for π (see F1 below) by means of Hölder and
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Gagliardo-Nirenberg inequalities, it turns out that the best exponents seem to be reached

by suitably exploiting the Hölder continuity property for π (the question whether the

exponents thus obtained are optimal or not is, however, still open). Therefore, the Hölder

continuity of π, which revealed itself to be helpful to prove existence of a strong solution in

Theorem 4.1, here plays a major role, meaning that, differently from the proof of Theorem

4.1, the value of the Hölder continuity exponent α ∈ (0, 1) of π is now crucial. Indeed,

the time integrability exponents for π will be expressed in terms of α. In the sequel the

time dependence will be generally omitted for the sake of simplicity.

We point out that, recalling that π satisfies the elliptic system

div
( 1

η(ϕ)
∇π

)
= div

((∇J ∗ ϕ)ϕ
η(ϕ)

)
, (5.1)

∂π

∂n
= (∇J ∗ ϕ)ϕ · n , (5.2)

with ϕ satisfying (4.11), the well known De Giorgi’s result (see, e.g., [13]) ensures that

π ∈ Cα(Ω), with some α ∈ (0, 1) and some ‖π‖Cα(Ω), which only depend on η1, η∞, b, d,Ω,

and on the geometrical properties of Γ (cf. (4.30)). Therefore, the exponent α and

the norm ‖π‖Cα(Ω) depend (or can be bounded by constants that depend) on structural

parameters only (which are a priori known), and may be considered independent of the

form of the ϕ-component of the strong solution (which is not a priori known).

We also observe that, in addition to providing a rather complete picture of the regu-

larity properties of π and u for the strong solution of Theorem 4.1, the analysis of this

section (especially in the case d = 3) and the effort in achieving the best time integrability

exponents have another important motivation. Indeed, these properties will be used in

Section 6 to prove weak-strong uniqueness results for the case of non-constant viscosity

η. In particular, for d = 3 a conditional type result will be proven and the condition

will depend on α (hence, on an essentially structural constant, see the discussion above).

This condition will allow us to guarantee a required regularity for the velocity field of one

of the two solutions. Therefore, the higher the time integrability exponent for π (with

α given), the weaker the assumption on α, namely, the smaller the lower bound for α

ensuring weak-strong uniqueness with non-constant η in dimension three will be.

We can now state the main result of this section.

Theorem 5.1. Let all assumptions of Theorem 4.1 be satisfied. Then, for every T > 0, the

π and u components of the strong solution [u, π, ϕ] to problem (1.8)-(1.11), (1.13), (1.14),

in addition to (4.9)-(4.11), satisfy the following regularity properties, where α ∈ (0, 1) is

the Hölder continuity exponent of π.
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• If d = 2 then we have that

π ∈ Lσp(0, T ;W 2,p(Ω)) ∩ Lσ̂p(0, T ;W 1,q(Ω)) , (5.3)

u ∈ Lσp(0, T ;W 1,p(Ω)2) ∩ Lσ̂p(0, T ;Lq(Ω)2) , (5.4)

with σp, σ̂p and q given according with the following cases

(i) if 2 ≤ p <∞ then

σp :=
( 2p

(2− α)p− 2

)−

, σ̂p :=
( 2q

(1− α)q − 2

)−

, p
2− α

1− α
≤ q <∞ ;

(5.5)

(ii) if 1 < p < 2 then

σp =





(
p′

(1−α)2

)−

, 1 < p ≤ pα := 2(2−α)
3−2α

,

(
2p

(2−α)p−2

)−

, pα ≤ p < 2 ,

(5.6)

σ̂p :=
1

(1− α)2

( 2q

q − 2

)−

, 2 < q ≤ 2
2− α

1− α
. (5.7)

If, in addition, J ∈ W 3,1
loc (R

2) then

π ∈ Lσ∞(0, T ;H3(Ω)) , u ∈ Lσ∞(0, T ;H2(Ω)2) , σ∞ :=
( 2

2− α

)−

. (5.8)

• If d = 3 then we have that

π ∈ Lµp(0, T ;W 2,p(Ω)) ∩ Lµ̂p(0, T ;W 1,q(Ω)) , (5.9)

u ∈ Lµp(0, T ;W 1,p(Ω)3) ∩ Lµ̂p(0, T ;Lq(Ω)3) , (5.10)

with µp, µ̂p and q given according with the following cases

(i) if 2 ≤ p < 3 then

µp =






(
p

(2−α)p−3

)−

, 0 < α ≤ 2p−4
p
,

(
2p

(2−α)p−2

)−

, 2p−4
p

≤ α ≤ 2p−3
p
,

(
6

2−α

)−

, 2p−3
p

< α < 1 ,

(5.11)

µ̂p =






(
q

(1−α)q−3

)−

, p 2−α
1−α

≤ q ≤ 4p
4−p

, 0 < α ≤ 2p−4
p
,

(
(2−α)p−3
(2−α)p−2

)−
2q

(1−α)q−3
, p 2−α

1−α
≤ q ≤ 3p

3−p
, 2p−4

p
≤ α ≤ 2p−3

p
,

(
6

1−α

)−

, q = 3p
3−p

, 2p−3
p

< α < 1 ;

(5.12)

37



(ii) if 3 ≤ p < 4 then

µp =





(
p

(2−α)p−3

)−

, p−3
p
< α ≤ 2p−4

p
,

(
2p

(2−α)p−2

)−

, 2p−4
p

≤ α < 1 ,
(5.13)

µ̂p =





(
q

(1−α)q−3

)−

, p 2−α
1−α

≤ q <∞ , p−3
p
< α ≤ 2p−4

p
,

(
(2−α)p−3
(2−α)p−2

)−
2q

(1−α)q−3
, p 2−α

1−α
≤ q <∞ , 2p−4

p
≤ α < 1 ;

(5.14)

(iii) if 4 ≤ p < 6, then

µp =
( p

(2− α)p− 3

)−

,
p− 3

p
< α < 1 , (5.15)

µ̂p =






q
(1−α)q−3

, 6p
6−p

≤ q <∞ , p−3
p
< α ≤ 2(p−3)

p

q
(1−α)q−3

, p 2−α
1−α

≤ q <∞ , 2(p−3)
p

≤ α < 1 ;
(5.16)

(iv) if p = 6, then

µ6 =
( 2

3− 2α

)−

, µ̂6 =
( 1

1− α

)−

, q = ∞ ,
1

2
< α < 1 . (5.17)

Finally, if η is a positive constant and J ∈ W 2,1
loc (R

d) or J is admissible, we have that

(5.3), (5.4), (5.9), (5.10) hold with σp, σ̂p, µp, µ̂p, and q given according with the following

cases.

• If d = 2 then

σp =
2p

p− 2
, 2 ≤ p <∞ , (5.18)

σ̂p = ∞ , 2 ≤ q <∞ , if p = 2 ; 2 ≤ σ̂p <∞ , q = ∞ , if 3 ≤ p <∞ .

(5.19)

• If d = 3 then

µp = µ̂p =





2p
p−2

, 2 ≤ p ≤ 4 ,

p
p−3

, 4 ≤ p ≤ 6
, q





= 3p
3−p

, 2 ≤ p < 3 ,

∈ [2,∞) , p = 3 ,

= ∞ , 2 < p ≤ 6 .

(5.20)

Remark 5.1. For the sake of simplicity we have not reported the cases 1 < p < 2 and

J ∈ W 3,1
loc (R

3) when d = 3.
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Proof. It is convenient to rewrite (4.27) and (4.22) in the following form

∆π = F(ϕ,∇ϕ,∇π), a.e. in QT , (5.21)

∂π

∂n
= G(ϕ), a.e. in Γ× (0, T ), (5.22)

where

F(ϕ,∇ϕ,∇π) := F1(ϕ,∇ϕ,∇π) + F2(ϕ,∇ϕ) , (5.23)

F1 := ζ(ϕ)∇ϕ · ∇π , F2 := ϕ div(∇J ∗ ϕ) + (1− ϕ ζ(ϕ))(∇ϕ · (∇J ∗ ϕ)) , (5.24)

G := (∇J ∗ ϕ)ϕ · n , (5.25)

with ζ(ϕ) := η′(ϕ)/η(ϕ). We recall that, as above, the explicit time dependence is

omitted. We start with dimension two.

◮ d = 2, J admissible.

From (4.10)-(4.11), we have that ∇π,∇ϕ ∈ Lr(Ω)2, for all r ∈ (1,∞). Thus F ∈
Lp(Ω), for all p ∈ (1,∞). As far as the boundary term G is concerned, we deduce

that ϕ ∈ W 1,p(Ω) for all 1 < p < ∞, as a consequence of ϕ ∈ H2(Ω). Thus we have

ϕ ∈ W 1−1/p,p(Γ). Moreover, by relying only on the condition that J is admissible and

by applying Lemma 4.1, we get J ∗ ϕ ∈ W 2,p(Ω), for all 1 < p < ∞, and this implies

that (∇J ∗ ϕ) · n = ∂n(J ∗ ϕ) ∈ W 1−1/p,p(Γ), for all 1 < p < ∞. Hence, we have that

ϕ, ∂n(J ∗ ϕ) ∈ W 1−1/p,p(Γ) ∩ L∞(Γ), and this also entails that G ∈ W 1−1/p,p(Γ) ∩ L∞(Γ),

for 1 < p <∞. Using now Proposition 2.3 with r = 0, t = 1−1/p, so that we have s = 2,

and s− 1/p = 2 − 1/p is not an integer, we find π ∈ W 2,p(Ω) and the following estimate

holds (see also (5.23))

‖π‖W 2,p(Ω) ≤ C(‖F1‖Lp(Ω) + ‖F2‖Lp(Ω) + ‖G‖W 1−1/p,p(Γ)) , 1 < p <∞ . (5.26)

As above, in the sequel of this proof we will indicate by C a generic positive constant

which only depends on the main constants of the problem (see (H1)-(H8)) and on Ω at

most. This constant may also vary within the same line. Any other dependency will be

explicitly pointed out.

We now proceed to estimate the three norms on the right hand side of (5.26). To this

aim it is convenient to distinguish the two cases 2 ≤ p <∞, and 1 < p < 2.

(i) Case 2 ≤ p <∞. We have (see 5.24)

‖F1‖Lp(Ω) ≤ ζ∞‖∇ϕ‖Lp+ǫ(Ω)2‖∇π‖Lq(Ω)2 , q := p
(
1 +

p

ǫ

)
, (5.27)
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where ǫ > 0 will be conveniently chosen later. Moreover, we take advantage of the

α−Hölder continuity property of π and of Proposition 9.1 to estimate the Lq(Ω)2-norm

of ∇π, namely,

‖∇π‖Lq(Ω)2 ≤ C‖π‖1−β

W
k
ρ ,ρ

(Ω)
‖π‖βW 2,p(Ω) ≤ C‖π‖1−β

Cα(Ω)
‖π‖βW 2,p(Ω) , (5.28)

for some β ∈ (0, 1), k ≥ 0 and ρ ≥ 1, with ρ > k/α, so that the injection Cα(Ω) →֒
W

k
ρ
,ρ(Ω) holds true and allows us to control the W

k
ρ
,ρ(Ω)−norm of π by a constant

(see (4.30)) which only depends on structural parameters. By combining (5.27) with

(5.28), and by employing the classical two-dimensional Gagliardo-Nirenberg inequality to

estimate the Lp+ǫ(Ω)2-norm of ∇ϕ, we obtain

‖F1‖Lp(Ω) ≤ C‖∇ϕ‖Lp+ǫ(Ω)2‖π‖βW 2,p(Ω) ≤ δ‖π‖W 2,p(Ω) + Cδ‖∇ϕ‖
1

1−β

Lp+ǫ(Ω)2

≤ δ‖π‖W 2,p(Ω) + Cδ‖ϕ‖
1

1−β
(1− 2

p+ǫ
)

H2(Ω) , (5.29)

where we have also used the L∞(0, T ;V )−regularity of ϕ. Using now Proposition 9.1, the

interpolation inequality (5.28) holds, provided that β ∈ (0, 1) is given by

1

q
=

(1− β

ρ
+
β

p

)
− s− 1

2
, s := (1− β)

k

ρ
+ 2β , (5.30)

with k ≥ 0 and ρ ≥ 1, and with ρ > k/α satisfying the following condition

(1− β)
k

ρ
+ 2β ≥ 1 . (5.31)

Noting that q > p ≥ 2, that q/(q− 2) > p/2(p− 1) = p′/2, and assuming in addition that

k > 2 (we can easily see that we can restrict to k > 2 in all our analysis)1, we can then

check that (5.30) admits a solution β ∈ (0, 1) if and only if

ρ >
q

q − 2
(k − 2) , (5.32)

with β given by

β = β(k, ρ) :=
p

q

(q − 2) ρ− q (k − 2)

2 (p− 1) ρ− p (k − 2)
. (5.33)

Moreover, by taking in addition ǫ such that 0 < ǫ < p (which ensures that q > 2p), and

since we are assuming (5.33), we can check that condition (5.31) is satisfied if and only if

ρ ≥ q − p

q − 2p
(k − 2) − pq − 2(q − p)

q − 2p
=

p

p− ǫ
(k − 2)− p

p+ ǫ− 2

p− ǫ
. (5.34)

1Indeed, if 0 ≤ k ≤ 2, on account of (5.33), then we have β ≥ p(q − 2)/2q(p− 1) > β∗, for β∗ given

by (5.36) below. Moreover, we have also that p(q − 2)/2q(p− 1) > 1/2 > β∗, for the β∗ given by (5.39),

since ǫ < p implies q > 2p.
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By comparing the slopes of the affine in k functions on the right hand sides of (5.32)

and of (5.34), we see that (q − p)/(q − 2p) = p/(p − ǫ) ≥ q/(q − 2), since we are taking

0 < ǫ < p. We now compare the slope p/(p− ǫ) with 1/α (always for 0 < ǫ < p), namely

with the slope of k 7→ k/α. Let us choose ǫ such that 0 < ǫ ≤ p(1 − α), which ensures

that p/(p− ǫ) ≤ 1/α. Hence, the admissible region R for k, ρ (namely, the set of all [k, ρ]

such that (5.32) and (5.34), together with conditions ρ > k/α and k > 2, are satisfied)

turns out to be

R =
{
[k, ρ] ∈ [0,∞)× [1,∞) : k > 2 , ρ >

k

α

}
. (5.35)

Computing the infimum of β over R, it is not difficult to find that2

β∗ = β∗(ǫ) := inf
[k,ρ]∈R

β(k, ρ) =
p

q

(1− α)q − 2

(2− α)p− 2
=

1

p+ ǫ

(1− α) p (p+ ǫ)− 2ǫ

(2− α) p− 2
, (5.36)

for 0 < ǫ ≤ p(1 − α) (this infimum is not attained). Now, owing to (4.11), and writing

β = β+
∗ , we infer that the time integrability exponent of the second term on the right

hand side of (5.29) is given by

σp := 2(1− β)
p+ ǫ

p + ǫ− 2
=

( 2p

(2− α)p− 2

)−

. (5.37)

Note that σp does not depend on ǫ, if 0 < ǫ ≤ p(1 − α). Let us consider also the case

p(1− α) < ǫ < p. For this case, the admissible region R for k, ρ becomes

R =
{
[k, ρ] ∈ [0,∞)× [1,∞) : k > 2 , ρ >

k

α
, ρ ≥ p

p− ǫ
(k − 2)− p

p+ ǫ− 2

p− ǫ

}
.

(5.38)

Let us now compute the infimum of β over this new regionR. Denoting the affine function

on the right hand side of (5.34), for simplicity, by g(k), we have that g(k) = k/α for

k = k∗ :=
α p (p+ ǫ)

ǫ− (1− α)p
,

and we can check that

β(k, g(k)) =
p

q

k − q

k − 2p
, ∀k ≥ k∗ ,

2This infimum can be computed by observing that

inf
R

β = lim
R→∞

min
R∩{ρ≤R}

β .

The minimum of β on the compact set R∩ {ρ ≤ R}, with R > 2/α, is attained in only one point at the

boundary, namely in [αR,R], which does not belong to R.
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with k 7→ β(k, g(k)) (strictly) increasing on [k∗,∞). By taking the geometry of R into

account we can thus see that

β∗ := inf
R
β = β(k∗, g(k∗)) = β(k∗, k∗/α) =

1− α

2− α
(5.39)

and this infimum is not attained; notice that, in this case, β∗ does not depend on ǫ ∈
(p(1−α), p). Therefore, still writing β = β+

∗ , we infer that the time integrability exponent

of the second term on the right hand side of (5.29) is now given by

2(1− β)
p+ ǫ

p+ ǫ− 2
=

( 2

2− α

)− p+ ǫ

p− 2 + ǫ
, (5.40)

and since the right hand side is decreasing with respect to ǫ, we choose ǫ = (p(1−α))+ to

get the best time integrability exponent. In doing so we obtain the same σp as in (5.37).

We thus conclude that the analysis of the case p(1− α) < ǫ < p does not improve σp.

Let us now estimate the second term on the right hand side of (5.26), still assuming

that 2 ≤ p <∞. By relying on Lemma 4.1, we obtain (see (5.24))

‖F2‖Lp(Ω) ≤ Cp + (1 + ζ∞) b ‖∇ϕ‖Lp(Ω)2 ≤ C + C‖∇ϕ‖ 2
p‖ϕ‖1−

2
p

H2(Ω) , (5.41)

where ζ∞ := ‖ζ‖L∞(−1,1). By taking the L∞(0, T ;V ) regularity of ϕ into account (cf.

(4.11)), this leads to

F2 ∈ Lp̂(0, T ;Lp(Ω)) , (5.42)

where p̂ := 2p/(p− 2), if 2 < p < ∞, and p̂ := ∞, if p = 2. Notice that p̂ > σp, with σp

given by (5.37). As far as the third term on the right hand side of (5.26) is concerned, by

means of Lemma (4.2) we have that (see (5.25))

‖G‖W 1−1/p,p(Γ) ≤ ‖ϕ‖L∞(Γ)

∥∥∥
∂

∂n
(J ∗ ϕ)

∥∥∥
W 1−1/p,p(Γ)

+
∥∥∥
∂

∂n
(J ∗ ϕ)

∥∥∥
L∞(Γ)

‖ϕ‖W 1−1/p,p(Γ)

≤ C‖J ∗ ϕ‖W 2,p(Ω) + C‖∇J ∗ ϕ‖W 1,3(Ω)2‖ϕ‖W 1,p(Ω)

≤ Cp(1 + ‖∇ϕ‖Lp(Ω)2) , (5.43)

where also Lemma 4.1 has been employed. Therefore, arguing in the same fashion as in

(5.41), we get

G ∈ Lp̂(0, T ;W 1−1/p,p(Γ)) . (5.44)

By collecting (5.29), (5.42), (5.43), from (5.26) it follows that

π ∈ Lσp(0, T ;W 2,p(Ω)) , σp :=
( 2p

(2− α)p− 2

)−

. (5.45)
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Moreover, from (5.28), setting σ̂p := σp/β∗, with β∗ given by (5.36) and depending on q,

with p(2 − α)/(1 − α) ≤ q < ∞ (recall that 0 < ǫ ≤ p(1 − α) in (5.36)), we also deduce

the following regularity

π ∈ Lσ̂p(0, T ;W 1,q(Ω)) , σ̂p :=
( 2q

(1− α)q − 2

)−

, p
2− α

1− α
≤ q <∞ . (5.46)

(ii) Case 1 < p < 2. We handle this case by exploiting the regularity (5.46) obtained

above. Namely, we employ (5.46) with p = 2 and with q = 2(2 − α)/(1 − α), together

with the following interpolation inequality

‖∇π‖Lq(Ω)2 ≤ ‖∇π‖
2(2−α)

q
−(1−α)‖∇π‖(2−α) q−2

q

L
2(2−α)
1−α (Ω)2

, 2 ≤ q ≤ 2
2− α

1− α
,

and with the L∞(V0)−regularity for π (cf. (4.10)), to get

π ∈ Lσ̂p(0, T ;W 1,q(Ω)) , σ̂p :=
1

(1− α)2

( 2q

q − 2

)−

, 2 ≤ q ≤ 2
2− α

1− α
. (5.47)

This completes the regularity (5.46). Next, we go back to (5.27), which we can write

equivalently as (see (5.24))

‖F1‖Lp(Ω) ≤ ζ∞‖∇ϕ‖
L

pq
q−p (Ω)2

‖∇π‖Lq(Ω)2 , q > p . (5.48)

Observe that pq/(q − p) ≤ 2 if and only if q ≥ 2p/(2 − p). Since q is now taken in the

interval [2, 2(2−α)/(1−α)] (see (5.47)), we can then distinguish two cases. Assume first

that 2p/(2− p) ≤ 2(2− α)/(1− α), namely that p ≤ pα, where pα := 2(2− α)/(3− 2α).

Then, supposing 2p/(2 − p) ≤ q ≤ 2(2 − α)/(1 − α), from (5.47), (5.48), accounting for

the L∞(0, T ;V0)−regularity for π, we get

F1 ∈ Lσ̂p(0, T ;Lp(Ω)) , (5.49)

with σ̂p the same as in (5.47). Since σ̂p is decreasing with respect to q, we take q =

2p/(2− p) in (5.49) (i.e. the left endpoint of the admissible interval for q) to get the best

time integrability exponent. This yields

F1 ∈ Lσp(0, T ;Lp(Ω)) , σp :=
( p′

(1− α)2

)−

, 1 < p ≤ pα :=
2(2− α)

3− 2α
. (5.50)

On the other hand, if pα < p < 2 (which means that 2p/(2 − p) ≥ 2(2 − α)/(1 − α)),

then we have q ≤ 2p/(2− p) for all 2 ≤ q ≤ 2(2− α)/(1− α), and hence pq/(q − p) ≥ 2.

The norm in ∇ϕ on the right hand side of (5.48) will then be estimated through the

Gagliardo-Nirenberg inequality and this gives

‖F1‖Lp(Ω) ≤ C ‖ϕ‖
pq−2(q−p)

pq

H2(Ω) ‖∇π‖Lq(Ω)2 . (5.51)
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Using (5.47) once more, we can easily see that the best time integrability exponent for F1

with values in Lp is reached by taking q = 2(2− α)/(1− α) in the admissible interval for

q. Therefore we find

F1 ∈ Lσp(0, T ;Lp(Ω)) , σp :=
( 2p

(2− α)p− 2

)−

, pα ≤ p < 2 . (5.52)

As far as the second and the third norm on the right hand side of (5.26) are concerned,

from (5.41) and (5.43), on account of (4.11), we get

F2 ∈ L∞(0, T ;Lp(Ω)) , G ∈ L∞(0, T ;W 1−1/p,p(Γ)) .

From (5.26) we then deduce that

π ∈ Lσp(0, T ;W 2,p(Ω)) , (5.53)

with σp given by (5.50), or by (5.52), according with the value of p in the interval (1, 2).

Let us now analyze the regularity of u for both cases (i) and (ii).

By taking the spatial derivatives ∂j of (4.23) , we get

∂juk = − 1

η(ϕ)
∂2jkπ +

ζ(ϕ)

η(ϕ)
∂jϕ∂kπ +

1− ϕ ζ(ϕ)

η(ϕ)
(∂kJ ∗ ϕ) ∂jϕ+

1

η(ϕ)
∂j(∂kJ ∗ ϕ)ϕ ,

(5.54)

and the term to be estimated in Lp(Ω) in a less straightforward way is the second one on

the right hand side of (5.54).

Let us consider the case (i), namely, 2 ≤ p <∞. It is immediate to see that the term

(ζ(ϕ)/η(ϕ)) ∂jϕ∂kπ can be estimated as in (5.51), for all q such that p(2− α)/(1− α) ≤
q < ∞. Therefore, by means of (4.11) and (5.46), we can easily check that the time

integrability exponent of the right hand side of (5.51) (and hence of the second term in

(5.54)) is σp given by (5.45). Consider now the last two terms on the right hand side of

(5.54). It is easy to realize that

1

η(ϕ)
∂j(∂kJ ∗ ϕ)ϕ ∈ L∞(0, T ;Lp(Ω)) ,

1− ϕ ζ(ϕ)

η(ϕ)
(∂kJ ∗ ϕ) ∂jϕ ∈ Lp̂(0, T ;Lp(Ω)) ,

(5.55)

where p̂ = 2p/(p − 2), if 2 < p < ∞, and p̂ = ∞, if p = 2. Therefore, from (5.54) we

deduce that (note that p̂ > σp)

u ∈ Lσp(0, T ;W 1,p(Ω)2) ∩ Lσ̂p(0, T ;Lq(Ω)2) . (5.56)

The case 1 < p < 2 can be handled similarly. Therefore, for both cases (i) and (ii) we

find that (5.56) holds with σp, σ̂p and q given by (5.45) and by (5.46), respectively, if

2 ≤ p <∞, or by (5.50)-(5.52) and (5.47), respectively, if 1 < p < 2.
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◮ d = 2 , J ∈ W 3,1
loc (R

2).

This stronger assumption on the kernel J allows to deduce an H1(Ω)−regularity for

F(ϕ,∇ϕ,∇π) (see (5.21)). Indeed we have

∂iF1(ϕ,∇ϕ,∇π) = ∂i(ζ(ϕ) ∂kϕ∂kπ)

= ζ(ϕ) ∂2ik ϕ∂kπ + ζ(ϕ) ∂kϕ∂
2
ikπ + ζ ′(ϕ) ∂iϕ∂kϕ∂kπ . (5.57)

Recall first the Gagliardo-Nirenberg inequality (see Proposition 9.1)

‖π‖W 1,∞(Ω) ≤ Cq‖π‖
q

q+2

W 1,q(Ω)‖π‖
2

q+2

H3(Ω) , 2 < q <∞ . (5.58)

Then we get

‖ζ(ϕ) ∂2ik ϕ∂kπ‖ ≤ ζ∞‖∇2ϕ‖‖∇π‖L∞(Ω)2 ≤ Cq‖ϕ‖H2(Ω)‖π‖
q

q+2

W 1,q(Ω)‖π‖
2

q+2

H3(Ω)

≤ δ‖π‖H3(Ω) + Cq,δ ‖ϕ‖
q+2
q

H2(Ω)‖π‖W 1,q(Ω) , (5.59)

with 2 < q < ∞ arbitrarily large, and δ > 0 to be fixed later. Using (4.11), (5.3) with

p = 2 and with 2(2− α)/(1− α) ≤ q < ∞ (cf. (5.5)) so that q can be chosen arbitrarily

large, we can easily see that the time integrability exponent of the second term in the

right hand side of the last inequality of (5.59) is given by σ∞ := (2/(2−α))−. Moreover,

the L2-norm of the second term on the right hand side of (5.57) can be estimated as

follows

‖ζ(ϕ) ∂kϕ∂2ikπ‖ ≤ ζ∞‖∇ϕ‖
L

2p
p−2 (Ω)2

‖∇2π‖Lp(Ω)2×2 ≤ C‖ϕ‖
2
p

H2(Ω)‖π‖W 2,p(Ω) ,

with 2 < p <∞. Thus, using (5.3) and (5.5), we can easily get

ζ(ϕ) ∂kϕ∂
2
ikπ ∈ Lσ∞(0, T ;H) . (5.60)

As far as the third term on the right hand side of (5.57) is concerned, we have that

‖ζ ′(ϕ) ∂iϕ∂kϕ∂kπ‖ ≤ ζ ′∞ ‖∇ϕ‖2L4(Ω)2‖∇π‖L∞(Ω)2 ≤ C‖ϕ‖H2(Ω)‖∇π‖L∞(Ω)2 . (5.61)

Hence this term can be handled as in (5.59). We also need an estimate for the L2-norm

of F1. To this aim, we observe that

‖ζ(ϕ) ∂kϕ∂kπ‖ ≤ ζ∞‖∇ϕ‖‖∇π‖L∞(Ω)2 ≤ C‖∇ϕ‖‖π‖W 2,p(Ω) , (5.62)

with p = 2+. Then, on account of (5.3), (5.5), this yields ζ(ϕ) ∂kϕ∂kπ ∈ Lσ2(0, T ;H)

(note that σ2 = (2/(1− α))− > σ∞).
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Let us now consider the term F2(ϕ,∇ϕ). We have that (see (5.24))

∂iF2(ϕ,∇ϕ) = ∂iϕ∂k(∂kJ ∗ ϕ) + ϕ∂i(∂k(∂kJ ∗ ϕ)) + (1− ϕ ζ(ϕ)) ∂2ikϕ (∂kJ ∗ ϕ)
+ (1− ϕ ζ(ϕ)) ∂kϕ∂i(∂kJ ∗ ϕ)− (ζ(ϕ) + ϕ ζ ′(ϕ)) ∂iϕ (∂kJ ∗ ϕ) ∂kϕ . (5.63)

By estimating the L2-norms of the terms on the right hand side one by one, we then get

‖∇F2(ϕ,∇ϕ)‖ ≤ ‖div(∇J ∗ ϕ)‖L∞(Ω)‖∇ϕ‖+ ‖∇div(∇J ∗ ϕ)‖
+ b (1 + ζ∞) ‖∇2ϕ‖+ (1 + ζ∞) ‖∇(∇J ∗ ϕ)‖L∞(Ω)2×2‖∇ϕ‖
≤ C(1 + ‖ϕ‖H2(Ω)) . (5.64)

As far as the first, second and fourth terms on the right hand side of the first inequality

in (5.64) are concerned, these have been estimated by relying on the assumption that

J ∈ W 3,1
loc (R

2). Moreover, b is the constant appearing in (H2) and (9.5) with p = 4 has

been used. We thus immediately deduce

F2(ϕ,∇ϕ) ∈ L2(0, T ;V ) . (5.65)

There now remains to address the boundary term G(ϕ) (see (5.22)). Notice first

that J ∗ ϕ ∈ H3(Ω). Thus we have that ∂n(J ∗ ϕ) = (∇J ∗ ϕ) · n ∈ H3/2(Γ) so that

G(ϕ) ∈ H3/2(Γ). Invoking now Lemma 4.2 (which can be easily generalized to the case

s ≥ 1), the H3/2(Γ)-norm of G can be estimated in the following way (see also (4.34))

‖G(ϕ)‖H3/2(Γ) = ‖(∇J ∗ ϕ)ϕ · n‖H3/2(Γ)

≤ ‖ϕ‖L∞(Γ)

∥∥∥
∂

∂n
(J ∗ ϕ)

∥∥∥
H3/2(Γ)

+ ‖ϕ‖H3/2(Γ)

∥∥∥
∂

∂n
(J ∗ ϕ)

∥∥∥
L∞(Γ)

≤ C‖J ∗ ϕ‖H3(Ω) + C‖ϕ‖H2(Ω)‖∇J ∗ ϕ‖W 1,4(Ω)2

≤ C ‖ϕ‖+ C‖ϕ‖H2(Ω)‖ϕ‖L4(Ω) ≤ C
(
1 + ‖ϕ‖H2(Ω)

)
.

Hence we infer that

G(ϕ) ∈ L2(0, T ;H3/2(Γ)) . (5.66)

We now recall the well-known elliptic estimate (see (5.21)-(5.22))

‖π‖H3(Ω) ≤ C
(
‖F1‖V + ‖F2‖V + ‖G‖H3/2(Γ)

)
, (5.67)

and, by collecting (5.59)-(5.62), (5.65), (5.66) we can conclude that

π ∈ Lσ∞(0, T ;H3(Ω)) , σ∞ :=
( 2

2− α

)−

. (5.68)
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Let us complete this case by analyzing the corresponding regularity of u. We first take

the spatial derivative ∂i of (5.54) and get

∂2ijuk = − 1

η(ϕ)
∂3ijkπ +

ζ(ϕ)

η(ϕ)

(
∂iϕ∂

2
jkπ + ∂jϕ∂

2
ikπ

)
+
ζ(ϕ)

η(ϕ)
∂2ijϕ∂kπ

+
(ζ
η

)′

(ϕ) ∂iϕ∂jϕ∂kπ +
1− ϕ ζ(ϕ)

η(ϕ)
(∂kJ ∗ ϕ) ∂2ijϕ+

1− ϕ ζ(ϕ)

η(ϕ)
∂i(∂kJ ∗ ϕ) ∂jϕ

− 2
ζ(ϕ)

η(ϕ)
∂iϕ (∂kJ ∗ ϕ) ∂jϕ+

1− ϕ ζ(ϕ)

η(ϕ)
∂j(∂kJ ∗ ϕ) ∂iϕ+

1

η(ϕ)
∂i∂j(∂kJ ∗ ϕ)ϕ

−
(ζ
η

)′

(ϕ) ∂iϕ∂jϕ (∂kJ ∗ ϕ)ϕ . (5.69)

We now proceed to estimate the H-norms of the ten terms on the right hand side of

(5.69). For the sake of simplicity, we denote these norms by I1, . . .I10 (preserving the

same order as in (5.69)). We have that

I2 ≤ 2
ζ∞
η1

‖∇ϕ‖
L

2p
p−2 (Ω)2

‖∇2π‖Lp(Ω)2×2 ≤ Cq ‖ϕ‖
2
p

H2(Ω)‖π‖W 2,p(Ω) ,

with 2 < p < ∞. By means of (5.3) and (5.5) (see also (4.11)), we infer that the time

integrability exponent for I2 is still given by σ∞, namely we get I2 ∈ Lσ∞(0, T ). Next,

on account of (5.58), we have that

I3 ≤
ζ∞
η1

‖∇2ϕ‖‖∇π‖L∞(Ω)2 ≤ Cq ‖ϕ‖H2(Ω)‖π‖
q

q+2

W 1,q(Ω)‖π‖
2

q+2

H3(Ω) ,

with 2 < q <∞. From (5.3) and (5.5) we then get σ∞ as time integrability exponent for

I3. Next, observe that

I4 ≤
(ζ
η

)′

∞
‖∇ϕ‖2L4(Ω)2‖∇π‖L∞(Ω)2 ≤ C ‖ϕ‖H2(Ω)‖∇π‖L∞(Ω)2 ,

where (ζ/η)′∞ := ‖(ζ/η)′‖L∞(−1,1). Then, arguing as for I3, we again get I4 ∈ Lσ∞(0, T ).

The estimates of the terms from I5 to I10 are straightforward recalling that J ∈ W 3,1
loc (R

2).

The details are left to the reader. In particular, we can easily find that
∑10

l=5 Il ∈ L2(0, T ).

Summing up, employing (5.68) to estimate I1, we conclude that

u ∈ Lσ∞(0, T ;H2(Ω)2) . (5.70)

◮ d = 3, J admissible.

From (4.10)-(4.11), we have that ∇π,∇ϕ ∈ Lr(Ω)3, for all 2 < r ≤ 6 which entails

that F ∈ Lp(Ω), for all 1 < p ≤ 3. As far as the boundary term G is concerned, by

arguing as at the beginning of the discussion of the case d = 2, we can deduce that
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G ∈ W 1−1/p,p(Γ) ∩ L∞(Γ), for 1 < p ≤ 6. Thanks to elliptic regularity, a two step

bootstrap argument allows us to deduce that ∇π ∈ L∞(Ω)3 (while ∇ϕ has a spatial

integrability exponent at most equal to 6). As a consequence, for 1 < p ≤ 6, we have that

π ∈ W 2,p(Ω), and that estimate (5.26) holds true.

Before addressing the terms in estimate (5.26), let us first point out how to control

the Lp(Ω)3-norm of ∇ϕ, for 2 ≤ p ≤ 6, by the H2(Ω)-norm of ϕ in a convenient way, i.e.,

keeping the exponent in the H2(Ω)-norm as low as possible. If 4 ≤ p ≤ 6, we can use

(9.5) by relying on the boundedness of ϕ, and find

‖∇ϕ‖Lp(Ω)3 ≤ C‖ϕ‖2(1−
3
p
)

H2(Ω) , 4 ≤ p ≤ 6 . (5.71)

If 2 ≤ p < 4, the interpolation inequality (9.5) cannot be directly applied. However, we

can first proceed by means of an elementary interpolation inequality and then apply (9.5),

namely,

‖∇ϕ‖Lp(Ω)3 ≤ ‖∇ϕ‖ 4
p
−1‖∇ϕ‖2−

4
p

L4(Ω)3 ≤ C‖∇ϕ‖ 4
p
−1‖ϕ‖1−

2
p

L∞(Ω)‖ϕ‖
1− 2

p

H2(Ω) , (5.72)

which, on account of the boundedness of ϕ and of its L∞(0, T ;V )−regularity, gives

‖∇ϕ‖Lp(Ω)3 ≤ C‖ϕ‖1−
2
p

H2(Ω) , 2 ≤ p ≤ 4 . (5.73)

We can now proceed to estimate the three norms on the right hand side of (5.26). As

far as the first norm is concerned, we have (see (5.24))

‖F1‖Lp(Ω) ≤ ζ∞ ‖∇ϕ‖Lp+ǫ(Ω)3‖∇π‖Lq(Ω)3 , q := p
(
1 +

p

ǫ

)
, (5.74)

where ǫ > 0 is such that p + ǫ ≤ 6 and will be conveniently chosen later. We then take

advantage of the α−Hölder continuity property of π and of Proposition 9.1 to estimate

the Lq-norm of ∇π as follows

‖∇π‖Lq(Ω)3 ≤ C‖π‖1−β

W
k
ρ ,ρ

(Ω)
‖π‖βW 2,p(Ω) , (5.75)

for some β ∈ (0, 1), k > 0 and ρ ≥ 1, with ρ > k/α, so that the injection Cα(Ω) →֒
W

k
ρ
,ρ(Ω) holds true and allows to control the W

k
ρ
,ρ(Ω)−norm of π by a constant which

only depends on structural parameters (cf. (4.30)).

By combining (5.74) with (5.75), and by taking (5.71), (5.73) into account, we have

that

‖F1‖Lp(Ω) ≤ C‖∇ϕ‖Lp+ǫ(Ω)3‖π‖βW 2,p(Ω) ≤ δ‖π‖W 2,p(Ω) + Cδ‖∇ϕ‖
1

1−β

Lp+ǫ(Ω)3

≤






δ‖π‖W 2,p(Ω) + Cδ‖ϕ‖
1

1−β
(1− 2

p+ǫ
)

H2(Ω) , if 2 ≤ p+ ǫ ≤ 4,

δ‖π‖W 2,p(Ω) + Cδ‖ϕ‖
2

1−β
(1− 3

p+ǫ
)

H2(Ω) , if 4 ≤ p+ ǫ ≤ 6.

(5.76)
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On account of (9.1), the interpolation inequality (5.75) holds, provided that β ∈ (0, 1)

is given by

1

q
=

(1− β

ρ
+
β

p

)
− s− 1

3
, s := (1− β)

k

ρ
+ 2β , (5.77)

where k > 0 and ρ ≥ 1, with ρ > k/α satisfying the following condition

(1− β)
k

ρ
+ 2β ≥ 1 . (5.78)

It is now convenient to distinguish the following cases in the analysis, according to the

values of p ∈ [2, 6].

(i) Case 2 ≤ p < 3.

Let us take 3 − p ≤ ǫ < p2/(3 − p). This ensures that 3 < q ≤ 3p/(3 − p) so that

q/(q − 3) ≥ p/(2p − 3). Assuming then k > 3 (this is not restrictive)3, we can then see

that (5.77) admits a solution β ∈ (0, 1) if and only if

ρ >
q

q − 3
(k − 3) , (5.79)

with β given by

β = β(k, ρ) :=
p

q

(q − 3)ρ− q(k − 3)

(2p− 3)ρ− p(k − 3)
. (5.80)

Moreover, by taking in addition ǫ such that 3 − p ≤ ǫ < p (note that ǫ < p ensures that

q > 2p), since we are assuming that (5.79) is satisfied, we can check that condition (5.78)

is satisfied if and only if

ρ ≥ q − p

q − 2p
(k − 3) − pq − 3(q − p)

q − 2p
=

p

p− ǫ
(k − 3)− p

p+ ǫ− 3

p− ǫ
. (5.81)

By comparing the slopes of the affine functions on the right hand sides of (5.79) and

(5.81) we see that q/(q− 3) ≤ p/(p− ǫ) since 3− p ≤ ǫ < p. The slope p/(p− ǫ) has now

to be compared with 1/α, namely with the slope of k 7→ ρ > k/α. Let us assume that

0 < α ≤ (2p− 3)/p, that is, 3 − p ≤ p(1 − α). If α satisfies this condition, then we can

choose ǫ such that 3 − p ≤ ǫ ≤ p(1 − α), and this ensures that p/(p− ǫ) ≤ 1/α. Hence,

the admissible region turns out to be

R =
{
[k, ρ] ∈ [0,∞)× [1,∞) : k > 3 , ρ >

k

α

}
. (5.82)

3Indeed, if 0 ≤ k ≤ 3, we have that β ≥ p(q − 3)/q(2p − 3) (cf. (5.80)), and we can see that

p(q−3)/q(2p−3) > β∗, for β∗ given by (5.83) below (and for the admissible ǫ and α considered in (5.83),

namely ǫ ∈ [3− p, p(1− α)], and α ∈ (0, (2p− 3)/p]). Moreover, we have also that p(q − 3)/q(2p− 3) >

1/2 > β∗, for β∗ given by (5.90) below, since the condition ǫ < p implies q > 2p. We argue similarly also

for the cases 3 ≤ p < 4, and 4 ≤ p ≤ 6.
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Computing the infimum of β over R, it is not difficult to find that

β∗ = β∗(ǫ) := inf
[k,ρ]∈R

β(k, ρ) =
p

q

(1− α)q − 3

(2− α)p− 3
=

1

p+ ǫ

(1− α) p (p+ ǫ)− 3ǫ

(2− α) p− 3
. (5.83)

Also this infimum is not attained. If p+ ǫ ≤ 4, namely if 3−p ≤ ǫ ≤ min(4−p, p(1−α)),

owing to (4.11), and writing β = β+
∗ , we infer that the time integrability exponent of the

second term on the right hand side of (5.76) is given by

µp := 2(1− β)
p+ ǫ

p+ ǫ− 2
=

( 2p

(2− α)p− 3

)− ǫ+ p− 3

ǫ+ p− 2
. (5.84)

Observe that the right hand side in (5.84) is (strictly) increasing in ǫ. Then it is convenient

to choose the greatest admissible value for ǫ to get the best time integrability exponent

µp. Hence, if α ≥ (2p− 4)/p (i.e., 4− p ≥ p(1− α)), we take ǫ = p(1− α) getting

µp =
( 2p

(2− α)p− 2

)−

,
2p− 4

p
≤ α ≤ 2p− 3

p
. (5.85)

Moreover, since 3− p ≤ ǫ ≤ p(1− α), then q satisfies p(2− α)/(1− α) ≤ q ≤ 3p/(3− p),

and, setting µ̂p := µp/β∗, from (5.83) we have that

µ̂p =
((2− α)p− 3

(2− α)p− 2

)− 2q

(1− α)q − 3
, p

2− α

1− α
≤ q ≤ 3p

3− p
,

2p− 4

p
≤ α ≤ 2p− 3

p
.

(5.86)

If p + ǫ ≥ 4, still with ǫ ≤ p(1 − α), namely if 4 − p ≤ ǫ ≤ p(1 − α) (so that 0 < α <

(2p− 4)/p), then, still invoking (4.11) we deduce that the time integrability exponent of

the second term on the right hand side of (5.76) is now given by

µp := (1− β)
p+ ǫ

p + ǫ− 3
=

( p

(2− α)p− 3

)−

, 0 < α ≤ 2p− 4

p
. (5.87)

Thus we find that µp does not depend on the choice of ǫ, if 4 − p ≤ ǫ ≤ p(1 − α). With

4 − p ≤ ǫ ≤ p(1 − α) we have that q satisfies p(2 − α)/(1 − α) ≤ q ≤ 4p/(4 − p), and,

from (5.83), for µ̂p := µp/β∗ we obtain

µ̂p =
( q

(1− α)q − 3

)−

, p
2− α

1− α
≤ q ≤ 4p

4− p
, 0 < α ≤ 2p− 4

p
. (5.88)

We are left to discuss the case (2p− 3)/p < α < 1, that is, p(1−α) < 3− p. We have

that p/(p− ǫ) > 1/α (namely, ǫ > p(1− α)) for all ǫ such that 3− p ≤ ǫ < p. Then it is

not difficult to see that the admissible region becomes

R =
{
[k, ρ] ∈ [0,∞)× [1,∞) : k > 3 , ρ >

k

α
, ρ ≥ p

p− ǫ
(k − 3)− p

p+ ǫ− 3

p− ǫ

}
.

(5.89)
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Let us compute the infimum of β on R. Denoting the affine function on the right hand

side of (5.81) by g(k), we have that g(k) = k/α for

k = k∗ :=
α p (p+ ǫ)

ǫ− (1− α)p
,

and we can check that

β(k, g(k)) =
p

q

k − q

k − 2p
, ∀k ≥ k∗ ,

with k 7→ β(k, g(k)) (strictly) increasing on [k∗,∞). By carefully addressing the geometry

of R (notice, in particular, that β(3, ρ) > 1/2, since ǫ < p implies q > 2p) we find

β∗ := inf
R
β = β(k∗, g(k∗)) =

1− α

2− α
,

2p− 3

p
< α < 1 , (5.90)

and this infimum is not attained. Notice that, in this case, β∗ does not depend on

ǫ ∈ [3− p, p). Moreover, since the exponent q is decreasing with respect to ǫ, we can take

ǫ = 3− p to get the best q, i.e., q = 3p/(3− p). Now, if 3− p ≤ ǫ ≤ 4− p, owing to (4.11)

and setting β = β+
∗ , we infer that the time integrability exponent of the second term on

the right hand side of (5.76) is given by

2(1− β)
p+ ǫ

p+ ǫ− 2
=

( 2

2− α

)− p+ ǫ

p− 2 + ǫ
, (5.91)

while, if 4 − p ≤ ǫ ≤ p, then the time integrability exponent of the second term on the

right hand side of (5.76) is

(1− β)
p + ǫ

p+ ǫ− 3
=

( 1

2− α

)− p + ǫ

p− 3 + ǫ
. (5.92)

Observe that the right hand sides of both (5.91) and (5.92) are decreasing in ǫ on the

intervals [3 − p, 4 − p] and [4 − p, p], respectively. Hence, in order to get the best time

integrability exponent for the second term on the right hand side of (5.76) in both cases,

it is convenient to take ǫ = 3− p in (5.91) and ǫ = 4− p in (5.92). By comparing the two

values thus obtained, we get

µp =
( 6

2− α

)−

,
2p− 3

p
< α < 1 , (5.93)

while, for µ̂p := µp/β∗, and q we have

µ̂p =
( 6

1− α

)−

, q =
3p

3− p
,

2p− 3

p
< α < 1 . (5.94)

Regarding the second term on the right hand side of (5.26), on account of Lemma 4.1,

and taking (5.73) into account, we have that (see (5.24))

‖F2‖Lp(Ω) ≤ Cp + (1 + ζ∞) b ‖∇ϕ‖Lp(Ω)3 ≤ C + C‖ϕ‖1−
2
p

H2(Ω) .
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Invoking (4.11), this yields

F2 ∈ L
2p
p−2 (0, T ;Lp(Ω)) , (5.95)

and we can check that 2p/(p − 2) > µp, in all the three cases where µp is defined (see

(5.85), (5.87), and (5.93)), according with the value of α.

The boundary term (5.25) can be handled similarly as for the case d = 2, by again

obtaining (5.43), whence we have now that

G ∈ L
2p
p−2 (0, T ;W 1−1/p,p(Γ)) . (5.96)

By means of (5.76), (5.95), (5.96), and by fixing δ > 0 small enough, estimate (5.26) then

yields

π ∈ Lµp(0, T ;W 2,p(Ω)) , (5.97)

with µp given by (5.85) (or (5.87) or (5.93)), according with the value of α. Moreover,

from (5.75) we deduce that

π ∈ Lµ̂p(0, T ;W 1,q(Ω)) , (5.98)

where µ̂p := µp/β, and q are given by (5.86) (or (5.88) or (5.94)) according with the value

of α ∈ (0, 1).

(ii) Case 3 ≤ p < 4.

We argue as at the beginning of the case 2 ≤ p < 3, taking now 0 < ǫ < 6 − p.

Notice that q > 3, and q/(q − 3) > p/(2p − 3), since p ≥ 3, and ǫ > 0. We can thus

again see that (5.77) admits a solution β ∈ (0, 1) if and only if (5.79) is satisfied with

β given by (5.80) (we can again assume that k > 3). Since 0 < ǫ < 6 − p ≤ p (so that

2q > p, being ǫ < p), we obtain once more that (5.81) ensures (5.78). Thus we observe

that the slopes of the affine functions on the right hand sides of (5.79) and of (5.81) still

satisfy q/(q − 3) < p/(p − ǫ). Let us now take ǫ satisfying, in addition, the condition

0 < ǫ ≤ p(1 − α) (hence, p/(p − ǫ) ≤ 1/α). Then the admissible region is still given

by (5.82), with the (not attained) infimum of β over R still given by (5.83). We now

distinguish two cases. If (2p − 4)/p ≤ α < 1, then p(1 − α) ≤ 4 − p, and, on account of

0 < ǫ ≤ p(1− α) ≤ 4− p, we get that the time integrability exponent of the second term

on the right hand side of (5.76) is given by (5.84). We again choose ǫ = p(1 − α) to get

the best µp, which is given by

µp =
( 2p

(2− α)p− 2

)−

,
2p− 4

p
≤ α < 1 . (5.99)
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Moreover, since 0 < ǫ ≤ p(1 − α), then p(2 − α)/(1 − α) ≤ q < ∞, and µ̂p = µp/β∗ is

given by

µ̂p =
((2− α)p− 3

(2− α)p− 2

)− 2q

(1− α)q − 3
, p

2− α

1− α
≤ q <∞ ,

2p− 4

p
≤ α < 1 .

(5.100)

If, on the other hand, 0 < α ≤ (2p − 4)/p (i.e. p(1 − α) ≥ 4 − p), then the time

integrability exponent of the second term on the right hand side of (5.76) is given by

(5.84), if 0 < ǫ ≤ 4 − p, or by (5.87), if 4 − p ≤ ǫ ≤ p(1 − α). We hence infer that

the best µp we get for this case is given by (5.87). However, differently from the case

2 ≤ p < 3, we now need an additional condition which guarantees that µp > 1, namely

that p/((2− α)p− 3) > 1 or α > (p− 3)/p. Therefore, we have

µp =
( p

(2− α)p− 3

)−

,
p− 3

p
< α ≤ 2p− 4

p
. (5.101)

Moreover, for µ̂p = µp/β∗ and q, we get

µ̂p =
( q

(1− α)q − 3

)−

, p
2− α

1− α
≤ q <∞ ,

p− 3

p
< α ≤ 2p− 4

p
. (5.102)

In conclusion, for 3 ≤ p < 4, the interval (0, 1) is not entirely admissible for α (unless

p = 3), and we distinguish two cases instead of three, namely (5.97) and (5.98) hold

with µp given by4 (5.99) or by (5.101), and µ̂p = µp/β∗, q given by (5.100) or by (5.102),

according with α ∈ ((p− 3)/p, 1).

(iii) Case 4 ≤ p < 6.

We again argue as at the beginning of the previous cases 2 ≤ p < 3 and 3 ≤ p < 4,

taking now 0 < ǫ ≤ 6 − p < p. Notice that, since p ≥ 4, then p + ǫ > 4 and hence

only the second line on the right hand side of (5.76) can be employed to estimate the Lp-

norm of F1 to get the time integrability exponent µp in (5.97). Let us begin to take also

0 < ǫ ≤ p(1 − α), namely 0 < ǫ ≤ min(6 − p, p(1 − α)). As we saw in the discussion

for the case 2 ≤ p < 3, with this choice of ǫ we have that the admissible region R is

given by (5.82), with the (not attained) infimum β∗ of β over R again given by (5.83).

By combining (5.83) with the exponent in the second term in the second line on the right

hand side of (5.76), we thus get (see (5.87))

µp := (1− β)
p+ ǫ

p+ ǫ− 3
=

( p

(2− α)p− 3

)−

. (5.103)

Then µp is independent of ǫ. We have that µp > 1 for (p − 3)/p < α < 1. We now

distinguish the following cases. If 0 < α ≤ 2(p − 3)/p, then 6 − p ≤ p(1 − α). So that

4We can check that µp < 2p/(p−2) >, for both cases of µp given by (5.99), (5.101) (see (5.95)-(5.96)).
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0 < ǫ ≤ 6− p implies 6p/(6− p) ≤ q <∞, with β∗ given by (5.83) as a function of q. We

then obtain that µ̂p := µp/β∗ is given by

µ̂p =
q

(1− α)q − 3
,

6p

6− p
≤ q <∞ ,

p− 3

p
< α ≤ 2(p− 3)

p
. (5.104)

If, on the other hand, 2(p − 3)/p ≤ α < 1 then p(1 − α) ≤ 6 − p. In this case, if

0 < ǫ ≤ p(1−α) then β∗ is still given by (5.83) yielding µp as given by (5.103). Moreover,

we have p(2− α)/(1− α) ≤ q <∞ and µ̂p := µp/β∗ again given by5

µ̂p =
q

(1− α)q − 3
, p

2− α

1− α
≤ q <∞ ,

2(p− 3)

p
≤ α < 1 . (5.105)

Summing up, in the case 4 ≤ p < 6, for µp, µ̂p, q in (5.97), (5.98) we have obtained

the corresponding values6

µp =
( p

(2− α)p− 3

)−

, if
p− 3

p
< α < 1 , (5.106)

and µ̂p, q given by (5.104), (5.105), according with the value of α ∈ ((p− 3)/p, 1). As for

the case 3 ≤ p < 4, we observe that the interval (0, 1) is again not entirely admissible for

α.

(iv) Case p = 6.

In this case we can only take ǫ = 0 and q = ∞ in estimates (5.74) and (5.75), since

the maximum spatial integrability exponent for ∇ϕ is 6. Doing so (and arguing as for

the case (i)) we get β(k, ρ) = (2ρ− 2(k − 3))/(3ρ− 2(k − 3)), with conditions (5.79) and

(5.81) that are now equivalent to ρ > k− 3 (still taking k > 3). The admissible region R
is still (5.82) and the infimum β∗ of β over R is now

β∗ =
2(1− α)

3− 2α
.

5Still under the condition 2(p− 3)/p ≤ α < 1, if we also consider the case p(1− α) < ǫ ≤ 6− p, then,

recalling the discussion carried out for the case 2 ≤ p < 3, the admissible region R now becomes (5.89),

with the (not attained) infimum β∗ of β over R given by β∗ = (1 − α)/(2 − α) (cf. (5.90)). Hence, for

µp we get the same as in (5.92) (which is decreasing in ǫ), and we choose ǫ = (p(1− α))+ to get the best

µp, getting the same µp as in (5.103). Moreover, for µ̂p := µp/β∗ we get

µ̂p =
2− α

1− α

( p

(2− α)p− 3

)−

,

and for q we can take the best exponent for p(1−α) < ǫ ≤ 6−p, namely q = (p(2−α)/(1−α))−. Comparing

with (5.105) (take q = p(2−α)/(1−α)), we thus conclude that addressing the case p(1−α) < ǫ ≤ 6− p

does not improve µp.
6We can check that µp < 2p/(p− 2),(see (5.95)-(5.96))
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The time integrability exponent of the second term on the right hand side of (5.76)

(written for p = 6 and ǫ = 0) is then given by7

µ6 =
( 2

3− 2α

)−

, (5.107)

and µ6 > 1 provided that 1/2 < α < 1. For µ̂6 := µ6/β∗ we have

µ̂6 =
( 1

1− α

)−

,
1

2
< α < 1 . (5.108)

Hence, (5.97) and (5.98) hold with p = 6, with µ6, µ̂6 given by (5.107) and (5.108),

respectively, and with q = ∞. Notice that the case p = 6 can be considered as the limit

case of (iii) for p→ 6− and q → ∞.

Regarding the regularity of u in all cases (i)-(iv) considered above, we use (5.54) and

we focus on the second term on the right hand side which is the less obvious. This term

can be estimated similarly as F1 (cf. (5.76)), namely
∥∥∥
ζ(ϕ)

η(ϕ)
∂jϕ∂kπ

∥∥∥
Lp(Ω)

≤ ζ∞
η1

‖∇ϕ‖Lp+ǫ(Ω)3‖∇π‖Lq(Ω)3 ≤ C‖∇ϕ‖Lp+ǫ(Ω)3‖π‖βW 2.p(Ω) . (5.109)

Invoking (5.76), where δ is supposed to be fixed small enough, we see that the time

integrability exponent of the right hand side of (5.109) coincides with the time integrability

exponent of the second term on the right hand side of (5.76), which is µp for all choices of

p ∈ [2, 6] and α considered in the above cases (i)-(iv). The estimates in Lp of the last two

terms on the right hand side of (5.54) is straightforward (see (5.55)) Therefore, noting

that we always have p̂ > µp, from (5.54) we deduce that

u ∈ Lµp(0, T ;W 1,p(Ω)3) ∩ Lµ̂p(0, T ;Lq(Ω)3) , 2 ≤ p ≤ 6 , (5.110)

where µp, µ̂p, and q are given in terms of p and α by the relations and constraints deduced

in the discussion carried out in the above cases (i)-(iv).

Finally, if η is a positive constant, for both cases d = 2, 3, the regularity analysis of

the elliptic system (5.21)-(5.22), as well as of equation (5.54) for ∇u, gets much simpler.

Indeed, we have that F1 = 0 (see (5.23) and (5.24)) so the only terms which survive in

the elliptic estimate (5.26) are the norms of F2 and of G. If d = 2, (5.41)-(5.44), and

(5.54) immediately yield that

π ∈ Lp̂(0, T ;W 2,p(Ω)) , u ∈ Lp̂(0, T ;W 1,p(Ω)2) , 2 ≤ p <∞ , (5.111)

where p̂ := 2p/(p − 2), if 2 < p < ∞, and p̂ = ∞, if p = 2. Assume now that d = 3.

Since the Lp(Ω)-norm of F2 and the W 1−1/p,p(Γ)-norm of G can be both controlled by

‖∇ϕ‖Lp(Ω)3 (cf. (5.41) and (5.43)), then, by employing (5.71) and (5.73), we obtain

π ∈ Lp̂(0, T ;W 2,p(Ω)) , u ∈ Lp̂(0, T ;W 1,p(Ω)3) , (5.112)

7We can check that µ6 < 3 (see (5.95)-(5.96) for p = 6 so that 2p/(p− 2) = 3).
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if 2 ≤ p ≤ 4, and

π ∈ L
p

p−3 (0, T ;W 2,p(Ω)) , u ∈ L
p

p−3 (0, T ;W 1,p(Ω)3) , (5.113)

if 4 ≤ p ≤ 6. Observe that, for both d = 2, 3, we have π ∈ L∞(0, T ;H2(Ω)). Therefore

(5.18)-(5.20) hold. The values of σ̂p, µ̂p and q are obtained in a straightforward fashion

from (5.111)-(5.113) by using classical Sobolev embeddings. The proof is finished.

Remark 5.2. If η is a positive constant, the regularity properties for π and u derived in

Theorem 5.1 hold true also for weak solutions. This is a direct consequence of Darcy’s

law and of the properties of the Helmholtz projector operator Pr from Lr(Ω)d to Lr
div(Ω)

d

associated with the decomposition Lr(Ω)d = Lr
div(Ω)

d ⊕ Gr, where Gr := {w ∈ Lr(Ω)d :

w = ∇π for some π ∈ W 1,r(Ω)}. We recall that this decomposition is valid for Ω with

locally Lipschitz boundary, if r 6= 2, and for all domains Ω, if r = 2 (see [23], see also

[26, Theorem III 1.2]). If u ∈ Wm,r(Ω)d (m ≥ 0), then Pru ∈ Wm,r(Ω)d ∩ Lr
div(Ω)

d, and

‖Pru‖Wm,r(Ω)d ≤ Cm,r‖u‖Wm,r(Ω)d , (5.114)

with Cm,r > 0 independent of u (cf. [33, Lemma 3.3]). Indeed, by applying Helmholtz

projector operator Pr to Darcy’s law (4.5) with η constant, and by taking (5.114) into

account, we get

‖u‖Wm,r(Ω)d ≤ C‖(∇J ∗ ϕ)ϕ‖Wm,r(Ω)d , m ≥ 0 , 1 < r <∞ . (5.115)

Hence, (5.3), (5.4), (5.9), (5.10), together with (5.18)-(5.20) follow from (5.115) also for

a weak solution.

6 Weak-strong uniqueness

In two dimensions we can prove a continuous weak-strong dependence estimate which

entails weak-strong uniqueness.

Theorem 6.1. Let d = 2. Suppose that (H1)-(H8) are satisfied and that J ∈ W 2,1
loc (R

2)

or J is admissible. Let ϕ01 ∈ L∞(Ω) and ϕ02 ∈ V ∩L∞(Ω), withM(ϕ01),M(ϕ02) ∈ L1(Ω),

where M is defined as in Theorem 3.1. For any given T > 0, denote by [u1, π1, ϕ1] be a

weak solution and by [u2, π2, ϕ2] be a strong solution to problem (1.8)-(1.11), (1.13), (1.14)

on [0, T ], corresponding to ϕ01 and to ϕ02, and given by Theorem 3.1 and by Theorem 4.1,

respectively. Then, the following estimate holds

‖u2 − u1‖L2(0,t;Gdiv) + ‖ϕ2 − ϕ1‖L∞(0,t;H)∩L2(0,t;V ) + ‖π2 − π1‖L2(0,t;V0)

≤ Λ̃(t)‖ϕ02 − ϕ01‖ , (6.1)

for all t ∈ [0, T ], where Λ̃ is a continuous function which depends on some norms of the

strong solution.
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Proof. Let us first take the difference between the two identities (4.5) written for the weak

and the strong solutions, multiply it by u := u2 −u1 and integrate over Ω. Then, setting

ϕ := ϕ2 − ϕ1, we get

(
(η(ϕ2)− η(ϕ1))u2,u

)
+ (η(ϕ1)u,u) =

(
(∇J ∗ ϕ)ϕ2,u

)
+
(
(∇J ∗ ϕ1)ϕ,u

)
. (6.2)

From this identity, on account of (H1), we have that

η1‖u‖2 ≤ C‖ϕ‖L4(Ω)‖u2‖L4(Ω)2‖u‖+ C‖ϕ‖‖u‖
≤ C(‖ϕ‖+ ‖ϕ‖1/2‖∇ϕ‖1/2)‖u2‖L4(Ω)2‖u‖+ C‖ϕ‖‖u‖

≤ η1
2
‖u‖2 + δ‖∇ϕ‖2 + Cδ(1 + ‖u2‖4L4(Ω)2)‖ϕ‖2 , (6.3)

which gives

η1‖u‖2 ≤ 2δ‖∇ϕ‖2 + Cδ(1 + ‖u2‖4L4(Ω)2)‖ϕ‖2 , (6.4)

with δ > 0 to be fixed later. We recall that, here and in the sequel of this section, C stands

for a generic positive constant which only depends on main constants of the problem (see

(H1)-(H8)) and on Ω at most. Any other dependency will be explicitly pointed out.

We now take the difference of (3.2) written for the weak and the strong solutions (see

also (4.2)). Taking then ϕ as test function, we obtain

1

2

d

dt
‖ϕ‖2 +

(
∇(B(ϕ2)−B(ϕ1)),∇ϕ

)
+ (u · ∇ϕ2, ϕ)

=
(
(m(ϕ2)−m(ϕ1))(∇J ∗ ϕ2),∇ϕ

)
+
(
m(ϕ1)(∇J ∗ ϕ),∇ϕ

)
. (6.5)

Thanks to (H7), we have that

(
∇(B(ϕ2)− B(ϕ1)),∇ϕ

)
≥ α0‖∇ϕ‖2 +

(
(λ(ϕ2)− λ(ϕ1))∇ϕ2,∇ϕ

)
, (6.6)

and, in view of the regularity (4.11) for ϕ2, the second term on the right hand side of (6.6)

can be estimated as in [18, Proof of Theorem 6.1, Part (c)] by means of the Gagliardo-

Nirenberg inequality, namely as

∣∣((λ(ϕ2)− λ(ϕ1))∇ϕ2,∇ϕ
)∣∣ ≤ C‖ϕ‖L4(Ω)‖∇ϕ2‖L4(Ω)2‖∇ϕ‖

≤ C(‖ϕ‖+ ‖ϕ‖1/2‖∇ϕ‖1/2)‖ϕ2‖1/2H2(Ω)‖∇ϕ‖

≤ δ′‖∇ϕ‖2 + Cδ′(1 + ‖ϕ2‖2H2(Ω))‖ϕ‖2 , (6.7)

with δ′ > 0 to be fixed later.

As far as the third term on the left hand side of (6.5) is concerned, we have

|(u · ∇ϕ2, ϕ)| ≤ ‖u‖‖∇ϕ2‖L4(Ω)2‖ϕ‖L4(Ω) ≤ (‖ϕ‖+ ‖ϕ‖1/2‖∇ϕ‖1/2)‖ϕ2‖1/2H2(Ω)‖u‖
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≤ δ‖u‖2 + δ′‖∇ϕ‖2 + Cδ,δ′(1 + ‖ϕ2‖2H2(Ω))‖ϕ‖2 . (6.8)

On the other hands, the two terms on the right hand side of (6.5) can be controlled as

follows

∣∣((m(ϕ2)−m(ϕ1))(∇J ∗ ϕ2),∇ϕ
)∣∣ +

∣∣(m(ϕ1)(∇J ∗ ϕ),∇ϕ
)∣∣ ≤ δ′‖∇ϕ‖2 + Cδ′‖ϕ‖2 .

(6.9)

Hence, adding together (6.4) with (6.5), taking (6.6)-(6.9) into account, and choosing δ, δ′

suitably small, we find

d

dt
‖ϕ‖2 + η1‖u‖2 + α0‖∇ϕ‖2 ≤ C

(
1 + ‖u2‖4L4(Ω)2 + ‖ϕ2‖2H2(Ω)

)
‖ϕ‖2 .

Thus an application of the Gronwall lemma and an integration in time yield

‖ϕ(t)‖2 + η1

∫ t

0

‖u(τ)‖2 dτ + α0

∫ t

0

‖∇ϕ(τ)‖2 dτ ≤ Λ(t)‖ϕ02 − ϕ01‖2 , (6.10)

where the continuous function Λ depends on norms of the strong solution. More precisely,

we can take Λ(t) = 1+
∫ t

0
α(τ)e

∫ τ
0 α(s)ds dτ , with α(t) := C

(
1+‖u2(t)‖4L4(Ω)2+‖ϕ2(t)‖2H2(Ω)

)
.

Concerning the pressure, setting π := π2 − π1, from (4.5) we have that

∇π = −
(
η(ϕ2)− η(ϕ1)

)
u2 − η(ϕ1)u+ (∇J ∗ ϕ)ϕ2 + (∇J ∗ ϕ1)ϕ . (6.11)

Therefore we get

‖∇π‖L2(0,t;L2(Ω)2) ≤ C‖u2‖L4(0,t;L4(Ω)2)‖ϕ‖L4(0,t;L4(Ω)) + C‖u‖L2(0,t;Gdiv) + C‖ϕ‖L2(0,t;H)

≤ C
(
‖u2‖L4(0,t;L4(Ω)2)‖ϕ‖L∞(0,t;H)∩L2(0,t;V ) + ‖u‖L2(0,t;Gdiv) + ‖ϕ‖L2(0,t;H)

)
.

(6.12)

Estimate (6.1) follows from (6.10) and (6.12).

The above result can be extended to the case d = 3 provided that λ is constant which

is nonetheless the reference case (see Remark 3.1). This extension is conditional since we

need to require that the pressure of the strong solution has a spatial Hölder continuity

exponent α ∈ (1/5, 1). Recall that π2 satisfies the elliptic problem (5.1)-(5.2) (with ϕ2 in

place of ϕ). Notice that, since |ϕ2| ≤ 1, and η(ϕ2) is bounded from below and above by

positive constants, Proposition 2.2 only ensures that α depends on η1, η∞, b, d,Ω, and on

the geometrical properties of Γ, but it does not depend on the (unknown) form of ϕ2 (this

motivates the notation α, instead of α2). Therefore, although the result we are going to

prove is conditional, α depends on structural constants of the problem only. In this case

the key tool for the proof is Theorem 5.1. However, if η is constant then uniqueness of

weak solutions holds.

We have
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Theorem 6.2. Let d = 3. Suppose that [u1, π1, ϕ1] and [u2, π2, ϕ2] are solutions corre-

sponding, respectively, to initial data ϕ01 and ϕ02 as in Theorem 6.1. In addition assume

that λ is constant and that the spatial Hölder continuity exponent α of π2 is such that

α ∈ (1/5, 1). Then (6.1) still holds.

Suppose now that λ satisfies (H4) and η is constant. If [u1, π1, ϕ1] and [u2, π2, ϕ2] are

weak solutions corresponding, respectively, to initial data ϕ01 and ϕ02 as in Theorem 3.1,

then the following stability estimate holds

‖u2 − u1‖L2(0,t;Gdiv) + ‖ϕ2 − ϕ1‖L∞(0,t;V ′)∩L2(0,t;H) + ‖π2 − π1‖L2(0,t;V0)

≤ Λ̂(t)‖ϕ02 − ϕ01‖V ′ , (6.13)

for all t ∈ [0, T ], where Λ̂ is a continuous function which depends on the norms of one of

the weak solutions.

Proof. Suppose η not constant first. Consider (6.2) and observe that η(ϕ2) − η(ϕ1) will

be estimated differently. Namely, instead of (6.3), now, by employing (9.7), we have that

η1‖u‖2 ≤ C‖ϕ‖L2r′(Ω)‖u2‖L2r(Ω)3‖u‖+ C‖ϕ‖‖u‖

≤ C
(
‖ϕ‖+ ‖ϕ‖ 2r−3

2r ‖∇ϕ‖ 3
2r

)
‖u2‖L2r(Ω)3‖u‖+ C‖ϕ‖‖u‖

≤ η1
2
‖u‖2 + C(1 + ‖u2‖2L2r(Ω)3)‖ϕ‖2 + C‖u2‖2L2r(Ω)3‖ϕ‖

2r−3
r ‖∇ϕ‖ 3

r

≤ η1
2
‖u‖2 + δ‖∇ϕ‖2 + Cδ(1 + ‖u2‖

4r
2r−3

L2r(Ω)3)‖ϕ‖2 , (6.14)

where 3/2 < r ≤ 3, and δ > 0 to be fixed later.

Consider now (6.5). On account of the fact that λ is now constant, using (6.9) and

noting that (u · ∇ϕ2, ϕ) = −(ϕ2u,∇ϕ), we get

1

2

d

dt
‖ϕ‖2 + α0

2
‖∇ϕ‖2 ≤ |(ϕ2u,∇ϕ)|+ C‖ϕ‖2 . (6.15)

Let us multiply (6.15) by a positive coefficient γ to be fixed later, and sum the resulting

inequality with (6.14), where δ = γ2/η1. This gives

γ

2

d

dt
‖ϕ‖2 + η1

2
‖u‖2 + α0γ

2
‖∇ϕ‖2

≤ γ|(ϕ2u,∇ϕ)|+ γC‖ϕ‖2 + δ‖∇ϕ‖2 + Cδ(1 + ‖u2‖
4r

2r−3

L2r(Ω)3)‖ϕ‖2

≤ η1
4
‖u‖2 + 2γ2

η1
‖∇ϕ‖2 + Cγ (1 + ‖u2‖

4r
2r−3

L2r(Ω)3)‖ϕ‖2 . (6.16)

Fixing now γ > 0 such that γ < α0η1/4 (e.g., choosing γ = α0η1/8), we then find

d

dt
‖ϕ‖2 + 8

α0
‖u‖2 + α0

2
‖∇ϕ‖2 ≤ C (1 + ‖u2‖

4r
2r−3

L2r(Ω)3)‖ϕ‖2 . (6.17)
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Therefore, in order to apply the Gronwall lemma we need

u2 ∈ L
4r

2r−3 (0, T ;L2r(Ω)3) , (6.18)

for some r ∈ (3/2, 3]. We now exploit the regularity properties for u established in

Theorem 5.1. If η is a positive constant then condition (6.18) is immediately satisfied.

Indeed, take, e.g., p = 2 in (5.20) and get u2 ∈ L∞(0, T ;L6(Ω)3), which fulfills (6.18) with

r = 3. If η is not constant, then we employ the regularity properties for u2 expressed by

Theorem 5.1 in terms of the Hölder continuity exponent α ∈ (0, 1) of π2. Namely, we aim

to find a condition on α ensuring that (6.18) holds for some r ∈ (3/2, 3]. Let us take r

such that 4r/(2r− 3) = 2r, which means r = 5/2, and let us look for a lower bound on α

ensuring that u2 ∈ L5(0, T ;L5(Ω)3). To this purpose, we consider the case 2 ≤ p < 3 in

Theorem 5.1 and look for p ∈ [2, 3) and α such that (see (5.10))

µ̂p = q ≥ 5 ,
2p− 4

p
≤ α ≤ 2p− 3

p
. (6.19)

By means of the second line in (5.12), taking q = p(2 − α)/(1− α), we have that µ̂p = q

if and only if ( 2

(2− α)p− 2

)−

= 1 ,

which holds if and only if (2−α)p = 4−, that is, if and only if α = ((2p−4)/p)+, which is

acceptable (see (6.19)). For this value of α we find that q = (4p/(4− p))+. Thus the first

condition in (6.19) is satisfied by taking p = 20/9. This gives α = (1/5)+. Therefore, we

conclude that8 if α > 1/5 then u2 ∈ L5(0, T ;L5(Ω)3). We can now apply the Gronwall

lemma to (6.17) and we find (6.10) with Λ suitably modified.

We are left to estimate π. Arguing as for the case d = 2 and writing (6.11) for ∇π,
the only term which is handled differently is the first one on the right hand side, which is

now estimated in L2 as follows

∥∥(η(ϕ2)− η(ϕ1)
)
u2

∥∥
L2(0,t;H3)

≤ C‖ϕ‖L10/3(0,t;L10/3(Ω))‖u2‖L5(0,t;L5(Ω)3)

≤ C‖u2‖L5(0,t;L5(Ω)3)‖ϕ‖L∞(0,t;H)∩L2(0,t;V ) , (6.20)

where we have used the embedding L∞(0, t;H)∩L2(0, t;V ) →֒ L10/3(0, t;L10/3(Ω)), which

is a consequence of Gagliardo-Nirenberg inequality. By means of this estimate, recalling

that u2 ∈ L5(0, T ;L5(Ω)3), we recover the L2(0, t;V0)−control of π (similarly to (6.12)).

Hence we again get (6.1).

8Addressing the other intervals for p considered in Theorem 5.1, to require that u2 ∈ L5(0, T ;L5(Ω)3),

does not improve the lower bound 1/5. The details are left to the reader.
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If η is a positive constant, we can argue in a simpler fashion. Indeed, we first observe

that (6.2) immediately yields that

η1‖u‖2 ≤ C‖ϕ‖2 . (6.21)

On the other hand, the difference of (3.2) is now tested by Nϕ (rather than by ϕ) to give

(cf. also [16, Proof of Thm.4])

1

2

d

dt
‖N 1/2ϕ‖2 +

(
B(ϕ2)−B(ϕ1), ϕ

)
+ (u2 · ∇ϕ,Nϕ) + (u · ∇ϕ1,Nϕ)

=
(
(m(ϕ2)−m(ϕ1))(∇J ∗ ϕ2),∇Nϕ

)
+
(
m(ϕ1)(∇J ∗ ϕ),∇Nϕ

)
. (6.22)

Thanks to (H7) and to the Gagliardo-Nirenberg inequality (9.7), we have that

(
B(ϕ2)− B(ϕ1), ϕ

)
≥ α0‖ϕ‖2 , (6.23)

|(u · ∇ϕ1,Nϕ)| = |(uϕ1,∇Nϕ)| ≤ ‖u‖‖∇Nϕ‖ ≤ δ‖u‖2 + Cδ‖∇Nϕ‖2 , (6.24)

|(u2 · ∇ϕ,Nϕ)| = |(u2 ϕ,∇Nϕ)| ≤ ‖u2‖L6(Ω)3‖ϕ‖‖∇Nϕ‖L3(Ω)3

≤ C‖u2‖L6(Ω)3‖ϕ‖3/2‖∇Nϕ‖1/2

≤ δ‖ϕ‖2 + Cδ‖u2‖4L6(Ω)3‖∇Nϕ‖2 . (6.25)

The estimates for the two terms on the right hand side of (6.22) are straightforward.

Adding now (6.21), multiplied by some δ′ > 0, together with (6.22) and taking (6.23)-

(6.25) into account, we get, for δ, δ′ > 0 small enough,

d

dt
‖N 1/2ϕ‖2 + η1‖u‖2 + α0‖ϕ‖2 ≤ C(1 + ‖u2‖4L6(Ω)3)‖N 1/2ϕ‖2 . (6.26)

We now observe that u2 ∈ L4(0, T ;L6(Ω)3) holds, when η is constant, also for weak

solutions (cf. Remark 5.2). Therefore, from (6.26), by means of Gronwall lemma, we

immediately get (6.13) (the estimate for π follows directly from Darcy’s law). The proof

is now complete.

Remark 6.1. A further relaxation of the lower threshold for the Hölder exponent of the

pressure appears to be a major task. One idea could be to start from (5.3) and (5.9),

then use the classical embeddings of W 2,p(Ω) into Hölder spaces (e.g., H2(Ω) →֒ Cγ(Ω),

for all γ ∈ (0, 1), if d = 2) in order to improve the spatial Hölder exponent of π (e.g.,

from some fixed α ∈ (0, 1) to some γ arbitrarily close to 1). Then one can argue as in

the proof of Theorem 5.1 with the goal of obtaining the same exponents σp and µp of the

case η constant. However, it seems hard to increase the time integrability exponent of the

pressure at each step of this bootstrap procedure. Recall indeed that at the beginning of the

proof of Theorem 5.1, the regularity π ∈ L∞(0, T ;Cα(Ω)) is taken into account.
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7 The convective nonlocal Cahn-Hilliard equation

Here we report some improvements of former results contained in [18, 19]. These results

are concerned with the existence of weak/strong solutions to the convective nonlocal Cahn-

Hilliard equation with a prescribed divergence-free velocity field and their uniqueness.

These results are used in Section 4.

Theorem 7.1. Suppose that d = 2 or d = 3. Let assumptions (H2)-(H6) be satisfied

and suppose ϕ0 ∈ L∞(Ω) such that M(ϕ0) ∈ L1(Ω), where M is defined as in Theorem

3.1. If u ∈ L2(0, T ;Gdiv), for a given T > 0, then there exists a (weak) solution ϕ to

(3.2)-(3.3) such that

ϕ ∈ L∞(0, T ;Lp(Ω)) ∩H1(0, T ;V ′) , ϕ ∈ L2(0, T ;V ) , ∀ p ∈ [2,∞) , (7.1)

ϕ ∈ L∞(QT ) , |ϕ(x, t)| ≤ 1 for a.e. (x, t) ∈ QT . (7.2)

In addition to (H2)-(H6), assume that (H7)-(H8) hold and suppose that J ∈ W 2,1
loc (R

d)

or that J is admissible. Let ϕ0 ∈ V ∩ L∞(Ω) with M(ϕ0) ∈ L1(Ω). If u satisfies

u ∈ Lβr(0, T ;Lr
div(Ω)

d) , whereβr =





2r
r−2

, with 2 < r ≤ ∞ , if d = 2 ,

r
r−3

, with 3 < r ≤ 4 , if d = 3 ,

2r
r−2

, with 4 < r ≤ ∞ , if d = 3 ,

(7.3)

for some given T > 0, then there exists a strong solution ϕ to (4.1), (4.3), (3.3) which

fulfils (7.2) and

ϕ ∈ L∞(0, T ;V ) ∩H1(0, T ;H) , ϕ ∈ L2(0, T ;H2(Ω)) . (7.4)

Let (H2)-(H4), and (H7) hold. If λ is a positive constant or if u satisfies

u ∈ Lγr(0, T ;Lr
div(Ω)

d) , where γr =
2r

r − d
, d < r ≤ ∞ , (7.5)

then weak solutions are unique. Moreover, if ϕ is a strong solution then the following

differential identity holds

1

2

dΦ

dt
+ ‖

√
λ(ϕ)ϕt‖2 +

(
u · ∇ϕ, λ(ϕ)ϕt

)

= −
(
m′(ϕ)ϕt(∇J ∗ ϕ), λ(ϕ)∇ϕ

)
−
(
m(ϕ)(∇J ∗ ϕt), λ(ϕ)∇ϕ

)
, (7.6)

where

Φ := ‖∇B(ϕ)‖2 − 2
(
m(ϕ)(∇J ∗ ϕ), λ(ϕ)∇ϕ

)
.
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Proof. We use the arguments of [18, 19]. Therefore we will focus on the points where the

results of [18, 19] are improved. To prove existence of weak solutions, the approximation

scheme follows the lines of the proofs of [19, Thms.1, 2, 4], using a regularization of the

degenerate mobility and singular potential combined with a Galerkin scheme (see also

Section 3). The assumption on u is more general than in [19, Theorem 4] and can be

handled by means of a suitable divergence-free regularization of u then passing to the

limit with respect to the regularization parameter.

The existence of a strong solution can be proven in the same fashion as in the proof

of [18, Theorem 6.1]. However, the assumption on u (see [18, (6.1)]) can be relaxed

for the case d = 3 by performing estimate [18, (6.6)] in a slightly different way. The

difference is the handling of the contribution coming from the convective term in the

time-discretization scheme. Indeed, using the same notation as in [18], instead of the

Gagliardo-Nirenberg inequality, inequality (9.5) can be used to estimate the norm of

∇B(ϕk+1). We distinguish two cases. If 4 ≤ 2r/(r− 2) < 6, namely, if 3 < r ≤ 4, we can

write (use (5.73) with p = 2r/(r − 2))

τ
n∑

k=0

‖U k · ∇B(ϕk+1)‖2 ≤ τ
n∑

k=0

‖U k‖2Lr(Ω)3‖∇B(ϕk+1)‖2L2r/(r−2)(Ω)3

≤ τ

n∑

k=0

‖U k‖2Lr(Ω)3‖B(ϕk+1)‖
4(r−3)

r

L∞(Ω)‖B(ϕk+1)‖
2(6−r)

r

H2(Ω)

≤ δτ
n∑

k=0

‖B(ϕk+1)‖2H2(Ω) + Cδ τ
n∑

k=0

‖U k‖
r

r−3

Lr(Ω)3 , (7.7)

while, if 2 ≤ 2r/(r − 2) < 4, namely, if 4 < r ≤ ∞, we can write (use (5.72) with

p = 2r/(r − 2))

τ

n∑

k=0

‖U k · ∇B(ϕk+1)‖2 ≤ τ

n∑

k=0

‖U k‖2Lr(Ω)3‖∇B(ϕk+1)‖2L2r/(r−2)(Ω)3

≤ τ

n∑

k=0

‖U k‖2Lr(Ω)3‖∇B(ϕk+1)‖2(1−
4
r
)‖B(ϕk+1)‖

4
r

L∞(Ω)‖B(ϕk+1)‖
4
r

H2(Ω)

≤ δτ
n∑

k=0

‖B(ϕk+1)‖2H2(Ω) + Cδ τ
n∑

k=0

‖U k‖
2r
r−2

Lr(Ω)3‖∇B(ϕk+1)‖2
r−4
r−2

≤ δτ
n∑

k=0

‖B(ϕk+1)‖2H2(Ω) + Cδ τ
n∑

k=0

‖U k‖
2r
r−2

Lr(Ω)3

(
‖∇B(ϕk+1)‖2 + 1

)
. (7.8)

Note that this last estimate also holds for d = 2. In both cases we have taken advantage

of the uniform bound in L∞(Ω) for the time discrete solutions ϕk+1 (see the proof of [18,
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Theorem 6.1]). Then we employ the estimate

τ

n∑

k=0

‖U k‖βr

Lr(Ω)3 ≤ ‖u‖βr

Lβr (0,T ;Lr(Ω)3)
, (7.9)

where βr = r/(r − 3), or βr = 2r/(r − 2), in (7.7) or (7.8), respectively. Thus we can

conclude as in the proof of [18, Theorem 6.1] by means of the discrete Gronwall lemma.

The uniqueness argument follows the lines of the proof of [19, Proposition 4], for weak

solutions, and of Part (c) of the proof of [18, Theorem 6.1], for strong solutions in two

dimensions. We point out that, in order to prove uniqueness, the available techniques are

essentially two. The first one consists in testing the identity resulting from the difference

of the convective nonlocal Cahn-Hilliard equation (written for each solution ϕ1, ϕ2) by

ϕ := ϕ1 − ϕ2. Alternatively, we can test by Nϕ. The former choice has the advantage

that we get rid of the contribution of the convective term since u is divergence-free,

but it leads us to deal with the term λ(ϕ1) − λ(ϕ2) (unless λ is constant). For this

reason, we need to work with strong solutions and we can expect to prove only a weak-

strong uniqueness result in dimension two. On the other hand, testing by Nϕ has the

advantage that we do not have to deal with the above term. Therefore the argument also

works for weak solutions as well as for non-constant λ. The drawback is the convective

term, namely (u · ∇ϕ,Nϕ), has to be handled. This forces us to make some stronger

integrability assumption on the given velocity field u. In particular, we can suppose

u ∈ L2(0, T ;L∞(Ω)d), with div(u) = 0 (see [19, Theorem 4]). This condition can be

relaxed by estimating the term (u · ∇ϕ,Nϕ) in a different fashion (compare with [19,

(6.9)]), namely,

|(u · ∇ϕ,Nϕ)| ≤ |(uϕ,∇Nϕ)| ≤ ‖u‖Lr(Ω)3‖ϕ‖‖∇Nϕ‖L2r/(r−2)(Ω)3

≤ C‖u‖Lr(Ω)3‖ϕ‖‖∇Nϕ‖ r−3
r ‖∇Nϕ‖

3
r

V 3 ≤ C‖u‖Lr(Ω)3‖ϕ‖
r+3
r ‖∇Nϕ‖ r−3

r

≤ δ‖ϕ‖2 + Cδ‖u‖
2r
r−3

Lr(Ω)3‖∇Nϕ‖2 , (7.10)

where 3 < r ≤ ∞. Here the Gagliardo-Nirenberg inequality in dimension three has been

used (in dimension two one can argue in a similar way). On account of (7.10), we can

proceed as in the proof of [19, Proposition 4] and deduce that uniqueness of weak solutions

holds under the assumption (7.5). Observe that, if d = 2 then we have that γr = βr (for

all 2 < r ≤ ∞). Thus the condition ensuring existence of a strong solution also guarantees

its uniqueness. Instead, if d = 3, we have that γr > βr (unless r = ∞). Therefore, in

order to ensure uniqueness of the strong solution we need a stronger assumption on u

than the one which only guarantees its existence. We recall that u ∈ L2(0, T ;L∞(Ω)3) is

the only assumption which ensures both existence and uniqueness of the strong solution.
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If λ is a positive constant, we can test the difference of the nonlocal Cahn-Hilliard

equation by ϕ. Hence we do not have to consider the contribution of the convective term

so that assumption (7.5) is no longer needed. For this reason (H2)-(H4), (H7) are

enough for establishing uniqueness of weak solutions.

Finally, the differential identity (7.6) for strong solutions can be formally deduced

by taking ψ = B(ϕ)t in the variational formulation (4.4). This choice of test function

is just formal but it can be made rigorous, for instance, by means of a regularization

procedure which employs time convolutions and by passing to the limit (using strong

convergences) with respect to the convolution regularization parameter (see [40, Chap.II,

Lemma 4.1].

8 Concluding remarks

It would be nice to remove (or improve) the condition α > 1/5 on the Hölder exponent of

the pressure in the weak-strong uniqueness in dimension three with η variable, but this

does not seem easy (see Remark 6.1).

Our results suggest that optimal control problems like the one studied in [20] can also

be analyzed in three dimensions if η is constant and in two dimensions if η is variable. In

this spirit, one can try to extend the present analysis to a system with sources (see [27, 36]

and their references) and to formulate and study appropriate optimal control problems

also in this case (see [39]).

In the context of tumor growth models, another challenging issue could be the analysis

of multi-species non-local systems (see, for instance, [9] and references therein for the local

Cahn-Hilliard-Darcy system). More precisely, the goal is to formulate and study multi-

component nonlocal Cahn-Hilliard equations with sources governed by suitable reaction-

diffusion equations. We believe that, on account of the results obtained in this paper, we

could go beyond the mere existence of a weak solution. It is worth observing that nonlocal

models for tumor growth have been recently considered in [21, 22] from a theoretical and

numerical viewpoint.

9 Appendix: Gagliardo-Nirenberg inequalities

For the reader’s convenience, we report here below a generalization of the Gagliardo-

Nirenberg inequality for fractional Sobolev spaces given by [4, Theorem 1] and by [5,

Theorem 1] which is used in the previous sections.
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Proposition 9.1. Let Ω ⊂ R
d be a Lipschitz bounded domain. Let s1, p1, s2, p2, r, q, θ and

d satisfy

0 ≤ s1 ≤ s2 , r ≥ 0 , 1 ≤ p1, p2, q ≤ ∞ , (s1, p1) 6= (s2, p2) , θ ∈ (0, 1) ,

1

q
=

( θ
p1

+
1− θ

p2

)
− s− r

d
, s := θs1 + (1− θ)s2 , r < s .

(9.1)

Then the following Gagliardo-Nirenberg-Sobolev inequality holds

‖u‖W r,q(Ω) ≤ C‖u‖θW s1,p1 (Ω)‖u‖1−θ
W s2,p2 (Ω) , ∀u ∈ W s1,p1(Ω) ∩W s2,p2(Ω) , (9.2)

with the following exceptions, when it fails,

1. d = 1, s2 is an integer ≥ 1, 1 < p1 ≤ ∞, p2 = 1, s1 = s2 − 1 + 1
p1
,

[1 < p1 <∞ , r = s2 − 1] or
[
s2 +

θ
p1

− 1 < r < s2 +
θ
p1

− θ
]
;

2. d ≥ 1, s1 < s2, s1 − d
p1

= s2 − d
p2

= r is an integer, q = ∞, (p1, p2) 6= (∞, 1) (for

every θ ∈ (0, 1)).

Moreover, if in (9.1) we have r = s, then (9.2) still holds if and only if the following

condition fails

s2 is an integer ≥ 1, p2 = 1 and 0 < s2 − s1 ≤ 1− 1

p1
. (9.3)

Remark 9.1. If (s1, p1) = (s2, p2) and 0 ≤ r < s = s1 = s2 in (9.1), then estimate (9.2)

is equivalent to the embedding (see [5, Theorem B])

W s,p(Ω) →֒ W r,q(Ω) , (9.4)

which holds provided that 1 ≤ p < q ≤ ∞ and

r − d

q
= s− d

p
,

with the following exceptions, when (9.4) fails,

1. d = 1, s is an integer ≥ 1, p = 1, 1 < q <∞ and r = s− 1 + 1
q
;

2. d ≥ 1, 1 < p <∞, q = ∞ and s− d
p
= r ≥ 0 is an integer.

Remark 9.2. The following special case of the Gagliardo-Nirenberg-Sobolev inequality

(9.2), that holds true for a bounded smooth domain Ω ⊂ R
d, d = 2, 3, is useful as well

‖∇u‖Lp(Ω)d ≤ C‖u‖1−α̂
L∞(Ω)‖u‖α̂H2(Ω) , ∀u ∈ H2(Ω) , (9.5)
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where

α̂ =
2

p

p− d

4− d
and

{
4 ≤ p <∞ , if d = 2 ,

4 ≤ p ≤ 6 , if d = 3 .

Finally, we also recall other special cases of (9.2)

‖u‖Lp(Ω) ≤ C‖u‖ 2
p‖u‖1−

2
p

V , ∀u ∈ V , 2 ≤ p <∞ , d = 2 , (9.6)

‖u‖Lp(Ω) ≤ C‖u‖ 6−p
2p ‖u‖

3(p−2)
2p

V , ∀u ∈ V , 2 ≤ p ≤ 6 , d = 3 . (9.7)
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2010.

[13] E. DiBenedetto, Real Analysis, Birkhäuser, Boston, 2002.

[14] L.C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Math-

ematical Society, Providence (RI), 1998.

[15] S. Frigeri, On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobil-

ity and singular potential for incompressible fluids with different densities, Ann. Inst.
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