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Table of Notations

Symbol Description

x,y, z Points in Rd, with d ¥ 3.
x1 First d� 1 components of the point x that is x1 � px1, � � � , xd�1q.rx Given a point x P Rd

�, rx represents the reflected point px1,�xdq.
Rd
� Denotes the half-space tx � px1, � � � , xdq P Rd : xd   0u.

Rd�1 Boundary of the half-space Rd
�.

Brpxq Denotes the d-dimensional ball with centre x and radius r ¡ 0.
B�
r pxq It is the half ball B�

r pxq � ty : |y � x|   r, yd � xd   0u.
Ω Bounded Lipschitz domain in Rd.
ωd Area of the pd� 1q-dimensional unit sphere.
u,v,w, . . . Vectors in Rd.
n Unit outer normal vector to a surface.
u � v Inner product between vectors u and v.
u� v Cross vector between u and v.
ub v Tensor product between vectors u and v.
A,B, . . . Matrices and secon-order tensors.
I Identity matrix.
AT Transpose of the matrix A.pA Symmetric part of the matrix A, that is pA � 1

2

�
A�AT

�
.

A : B Inner product between the two matrices A and B
that is A : B � °

i,j aijbij.
|A| Norm induced by the matrix inner product, that is |A| � ?

A : A.
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Symbol Description

I In Chapter 2 it represents the identity map.
Γ pxq Fundamental solution of the Laplace operator.
SΩϕpxq Single layer potential for the Laplace operator relative to the function ϕ.
DΩϕpxq Double layer potential for the Laplace operator relative to the function ϕ.
Npx,yq Neumann function of the half-space for the Laplace operator.
κd Constant in the definition of Γ function, κd :� 1{ωdp2� dq.
A,B, . . . Fourth-order tensors.
C Fourth-order elasticity tensor.
I Fourth-order identity tensor such that IA � pA.
µ, λ Lamé parameters of the linear elasticy theory.
ν Poisson ratio. The identity ν � λ{2pλ� µq holds.
L Elastostatic Lamé operator, that is Lu :� µ∆u� pλ� µq∇divu.
Bu
Bν Conormal derivative, that is Bu

Bν :� pCp∇uqn � λpdivuqn� 2µpp∇uqn.
Γpxq Fundamental solution of the lamé operator (Kelvin-Somigliana matrix).
Npx,yq Neumann function of the half-space related to the Lamé operator.

Npx,yq � Γpx,yq �Rpx,yq, with R regular part.
N pkqpx,yq k-th column vector of the Neumann function N.
SΓϕpxq Single layer potential related to the Lamé operator with kernel Γ.
DΓϕpxq Double layer potential related to the Lamé operator with kernel Γ.
SRϕpxq Single layer potential with kernel R.
DRϕpxq Double layer potential with kernel R.
cν Constant cν :� 4p1� νqp1� 2νq.
c1ν Constant c1ν :� p1� 2νq{p8πp1� νqq.
Cµ,ν Constant Cµ,ν :� 1{p16πµp1� νqq.
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Preface

This monograph focuses on a rigorous mathematical study of a linear elas-
tic model applied in geophysics to explain deformation effects generated by
inflating or deflating magma chambers. The modeling assumptions translate,
from a mathematical view point, into a Neumann boundary value problem
for the Lamé system in a half-space (representing the earth’s crust) and
an embedded pressurized cavity (depicting the magma chamber), where the
pressure is supposed to be constant. This boundary value problem is well
known in the geophysics literature. For instance, one can consult [111] and
[125] where the case of a small spherical magma chamber is analysed. In par-
ticular, McTigue in [111] provides an asymptotic expansion at second order
of the solution of the problem when the radius of the sphere goes to zero.
Here, we present the results which are obtained generalizing the spherical
geometry of the cavity to the case of a generic bounded Lipschitz domain,
contained in a half-space. In a rigorous mathematical framework, we study
the well-posedness of the elastic model (the direct problem) utilizing two dif-
ferent analytical techniques: One is based on a variational formulation which
uses weighted Sobolev spaces. The other one uses single and double layer
potentials which corresponds to rewrite the differential problem in terms of
integral equations. Employing two different paths to prove the well-posedness
of the elastic model is due to the tasks which we have in mind: On one hand,
assuming the cavity to be small, we prove an asymptotic expansion at first
order, of the analytical solution, as the diameter of the cavity goes to zero.
To deal with this problem, we use the approach of Ammari and Kang, see for
example [23, 19], based on layer potential techniques. On the other hand, we
analyse the following inverse problem: Are we able to detect uniquely and in
a stable way the finite pressurized cavity from partial measurements of the
displacement field on the boundary of the half space when the pressure on
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the boundary of the cavity is known? For this second task the variational
approach based on weighted Sobolev spaces is more powerful than the inte-
gral one. For the uniqueness issue and to determine stability estimates for
the inverse problem, we follow the approach of [115, 116].

We mention that the analysis of the elastic boundary value problem is
preceded by that of a simplified scalar problem, based on the Laplace equa-
tion. As far as we know, this scalar version doesn’t have a real physical
application but it serves for the non-expert reader to clarify the phylosophy
behind the use of the some mathematical tools, before coming across the
technicalities of the elastic theory.

Essentially this monograph originates from my Ph.D. thesis which I wrote
during my Ph.D. program in Mathematics, from 2013 to 2017, at “Sapienza”,
University of Rome. This book would have not been possible without the
support of my two advisors (and now friends) Corrado Mascia and Elena
Beretta and without the outstanding collaboration with Edi Rosset. I feel
indebted to all of them for their help and encouragement. I would also like
to thank Maurizio Battaglia for bringing my attention to this geophysical
problem. Moreover I want to thank Cherif Amrouche and Habib Ammari for
providing me with some useful papers and helpful advices. Finally, a special
thanks goes to Otmar Scherzer which read my Ph.D. thesis and encouraged
me to write this book.
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CHAPTER 1

From the physical to the mathematical
model

Nowadays, collection of precise measurements of ground deformations is
required to characterize the type of physical processes taking place inside
the earth’s crust and constrain the size and location of the source of unrest.
This is, in fact, based on the assumption that tectonic and volcanic processes
at depth are transmitted to the surface through the mechanical properties
of the crust [40, 72, 125]. For this purpose, several geodetic techniques are
employed such as leveling, tilt, GPS and InSAR, see [41, 38, 44, 39, 125, 126].
All these measurements need to be interpreted by simplified mathematical
models which play a key role in the explanation of how the crust responds to
different physical phenomena and in distinguishing among possible sources
of deformation [40, 39]. For instance, in monitoring active volcanoes, most
of these models share the assumption that the crust can be thought, at least
in a first approximation, as a homogeneous, isotropic elastic (flat) half-space,
which contains the sources of unrest described by geometries of simple shape:
a point dilatation ([34, 114]), a pressurized spherical source ([111]), a pro-
late spheroid ([137]), a horizontal penny-shaped source ([82]) or a tensile
dislocation ([121]). The use of these geometries represents certainly a great
simplification but in the geological literature it is assumed that these mod-
els may reproduce the strain field created by storage areas and transport
pathways, see [67]. Due to the complexity of Earth’s crust, it is difficult to
constrain the source of unrest by only considering measurements of ground
deformations. In fact, monitoring of volcanoes activity is usually performed
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by combining different types of geophysical measurements: ground deforma-
tions, seismic swarms and gravity changes. For more details see for example
[42, 125, 38, 40, 73, 128] and references therein. Modeling of the pattern and
rate of displacement before and during eruptions can reveal much about the
physics of active volcanoes [73]. This is especially true in studying stratovol-
canoes or basaltic shield volcanoes, since their fast, short-term deformation
is well associated with magma accumulation and eruptions, see [38, 44] and
references therein. Specifically, the monitoring of ground deformation has
showed a cyclical volcanic activity of inflation and deflation period [125],[126].
When magma accumulates in crustal reservoirs, volcanoes inflate (see Figure
1.1(a) and Figure 1.1(b)). The observations indicate relatively long period of
volcanic uplift. After that, rapid periods of subsidence follow. These defla-
tion episodes are accompanied either by eruptions or by dike intrusion into
the flanks of the volcano (see Figure 1.1(c)).

Without being exaustive, we can briefly explain and simplify the physi-
cal phenomenon in this way: as magma migrates toward the earth’s surface,
it forces aside and exerts stresses on the surrounding crust causing ground
deformations and in some cases, since the crust is brittle, earthquakes. Con-
sequently, the redistribution of the mass at depth generates changes in the
material density producing as an effect small anomalies in the gravity field.
All these signals can be measured. However, since the subsurface structures
beneath active volcanoes are extremely complex, the identification of the
source of unrest is not straightforward. In fact, caldera unrest may be also
caused by aqueous fluid intrusions, or interaction between the hydrothermal
system and magma intrusions [52, 74, 134]. We highlight that the deforma-
tion measurements are sensitive only to changes in volume and pressure of
the source hence they cannot provide information on the material density.
Gravity measurements, however, can constrain the mass of the intrusion.
Given the significant density difference between silicate melts (2500 kg/m3)
and hydrothermal fluids (1000 kg/m3), it is reasonable to use density esti-
mates from gravity measurements to distinguish between these two possible
sources of caldera unrest [38].

In light of this, the main challenge is to interpret geodesy and gravity
measurements jointly (see [38, 50, 122, 128]) in order to reach the following
goals

1. determine the geometry of subsurface magma bodies i.e., whether the
source of deformation is a dike, a roughly equidimensional chamber, or a
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(a) Magma comes from the mantle
into the magma reservoir

(b) The inflation produces deforma-
tions

(c) Deflation period after an eruption

Figure 1.1. Inflation-deflation cycle. Courtesy of USGS - Hawaiian Volcano
Observatory
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hybrid source (mixture of different mantle sources);

2. to quantify parameters of the source, for example its depth, dimensions,
volume, density and internal magma pressure [125, 73, 128].

To achieve these objectives a simplified/conceptual model has been con-
ceived with a central magma chamber that is supplied with melt from the
mantle. The pressure increases, hence the ground is deformed producing
gravity anomalies and deformation of the surface of the crust. After some
time, the increasing pressure causes the fracture of the walls and a dike prop-
agates carrying magma either to the surface or into the volcano flanks [125].

This is an extremely difficult inverse problem because modeling of surface
deformations and gravities anomalies does not provide a unique description
of the source of unrest ([107]) even in the ideal case of data without noise.
Based on the elastic behaviour of the Earth’s crust, the ground deformations
are interpreted in the framework of linear elasticity theory, see [41, 73, 126].
The gravity anomalies using potential theory, see [38] and reference therein.

In this book we will focus the attention on the mathematical analysis of
the bestknown and widely applied model in geology, i.e, the so-called Mogi
model ([114]). We first mention that the mathematical formulation of this
model and its solution come back to Anderson ([34]) and later to Yamakawa
([136]). Mogi was the first one to apply it to the study of ground deformation
in a volcanic region due to inflating or deflating magma chambers. See for
example description in [71, 107, 125]. Mogi model is based on many simplifi-
cations related to the geometry of the Earth’s crust, of the magma chamber
and its depth. Specifically, the magma chamber is described by a spherical
cavity, with radius r0 and depth d0 such that r0 ! d0, and it is assumed
to be filled with an ideal incompressible fluid at equilibrium, so that the
pressure p exterted on its boundary to the external medium is uniform. In
addition, the surrounding crust is represented by an infinite, homogeneous
and isotropic elastic half-space, characterized by the Lamé parameters µ, λ.
The crust boundary, which we can assume located on the plane x3 � 0, is
considered traction-free.

Under these assumptions, explicit expressions for the displacement vector
fields on the boundary of the half-space can be provided. Explicitly, assuming
that the center of the sphere is located at z � pz1, z2, z3q with z3   0, the
solution of the Mogi model, i.e., the displacement u � pu1, u2, u3q at a surface
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point y � py1, y2, 0q, is given by

uαpyq � p1� νq
µ

ε3ppzα � yαq
|z � y|3 , u3pyq � �p1� νq

µ

ε3p d0

|z � y|3 (1.1)

as ε :� r0{d0 Ñ 0, for α � 1, 2, where d0 � �z3. We observe that the
displacement field is rescaled by the product ε3p. This means that we can
only determine this product and not either the volume or the pressure. In
[111] McTigue proposed a formal second-order approximation of the solution
in order to cover the case of a spherical cavity, with finite and small posi-
tive radius, and to potentially separate the contribution of the pressure and
volume. He found that the second term in the asymptotic expansion of the
analytical solution is of the 6th-order. One can consult [111, 40, 73] for all
the details. McTigue solution, from a practical point of view, doesn’t help
to identify the pressure and volume separately [127].

Thanks to their simplicity, the Mogi and Mctigue models allow easily
and quickly to compare their solutions with real deformation data in terms
of physical parameters related to the cavity, i.e. depth and the product
volume times pressure. These are the reasons for which these models have
been and are widely applied in the forecasting of volcanic eruptions [73].

For completeness of information, we mention that the Mogi model is also
called point dilatation model sometimes. This is due to the fact that since
the ratio ε :� r0{d0 is small, the magma chamber is well-approximated by a
single point producing a uniform pressure in the radial direction. We notice
that the asymptotic expansion of the solution of the Mogi model still contains
the memory of the spherical shape of the cavity. Therefore if we take different
geometrical shapes we get different deformation effects ([73, 51, 36, 35]). This
aspect will be clearer in Chapter 3, once an asymptotic expansion for a cavity
of generic shape will be provided.

With no claim of completeness, we conclude this short introduction pro-
viding briefly a summary of other models which have been proposed in the
last few decades to overcome some of the limitations and simplifications of
the Mogi and McTigue models.

Models based on ellipsoidal cavities or dislocations have been considered
in order to explain deviation of the displacements field (measurements) from
radial symmetries. In fact, a more accurate modeling of a volcanic system has
also to consider the presence of a conduit through which the magma reach the
surface. Bonaccorso and Davis [51] formulated a model based on a prolate
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spheroid to describe surface deformation due to the presence of a closed
conduit, and a dislocation one for magma rising in a conduit that is open
at the top. Moreover, we mention solutions on prolate ellipsoids provided
by Yang, Davis and Dieterich in [137] and on sill-like magma intrusions or
chambers which are represented by a finite rectangular dislocations [69, 121],
oblate ellipsoids [70] or horizontal cracks [82].

One limitation of the Mogi model (and consequentely of the McTigue
model) is the idealization of the Earth as a flat half-space. In fact, in [135, 65]
the authors consider a non-flat half-space in order to describe the topography
of the Earth’s crust. In addition, other limitations of the models above are
the description of the Earth crust as a homogeneous medium and the uniform
pressure on the boundary of the cavity. From the structural point of view, the
crust has stratifications with different mechanical properties which influence
ground’s deformations. Moreover, due to the high temperatures, the solid
crust adjacent to a magma chamber cannot be described by a purely elastic
medium. Therefore, models with layers, with a nonuniform pressure distri-
bution acting on the boundary of the cavity and with a viscoelastic manner
around the magma chamber could be more appropriate. See discussion in
[71, 92, 94, 108, 127, 129].

We finally mention the attempts of combining elastic properties with
gravitational effects through elasto-dynamic equations [80, 81] or viscoelastic
rheologies (after [38] and [64]).

All these last models share the idea to describe the physical reality as
refined as possible. This is an important target but they require a detailed
knowledge of the mechanical properties of Earth’s crust which are sometimes
missing. This is the reason for which Mogi, McTigue and other models
described above, such as the case of prolate and oblate cavities, continue to
be applied in geological literature.

In the following section we summarize the principal aim of this book,
showing the mathematical generalization of the Mogi model to the case of a
cavity with an arbitrary shape.

1.1 The mathematical model
In this section we introduce the boundary value problem behind the Mogi

model. We first recall the definition of Ck,α regularity for a bounded domain.
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Definition 1.1.1 (Ck,α domain regularity).
Let Ω be a bounded domain in Rd. Given k, α, with k P N and 0   α ¤ 1,
we say that a portion Σ of BΩ is of class Ck,α with constant r0, L0, if for
any P P S, there exists a rigid transformation of coordinates under which we
have P � 0 and

ΩXBr0p0q � tx P Br0p0q : x3 ¡ ψpx1qu,
where ψ is a Ck,α function on B1

r0p0q � Rd�1 such that

ψp0q � 0,
∇ψp0q � 0, for k ¥ 1

}ψ}Ck,αpBr0 p0qq ¤ L0.

We say that Σ is of Lipschitz class with constants r0, L0 in the case k �
0, α � 1.

Most of the results of this book are valid for Lipschitz domains. We will
always indicate when more regularity on the domain is needed.

One of our aim is to generalize Mogi model to the case of a magma
chamber, i.e. the cavity, of a generic shape. We denote by

R3
� � tx P R3, x3   0u

the half-space and by C � R3
� an open set, which has a connected and

bounded Lipschitz boundary, describing the magma chamber. In this way,
Earth’s crust is represented by R3

�zC. By R2 :� ty � py1, y2, y3q P R3 :
y3 � 0u, we denote the free air/crust border, and by BC the corresponding
crust/chamber border. We consider an homogeneous and isotropic medium
subjected to small elastic deformations. Given a matrix A P R3�3, we denote
by pA its symmetric part, that is pA � 1

2pA � AT q. We study the following
elastostatic problem$'''''&'''''%

divpCp∇uq � 0 in R3
�zC

pCp∇uqn � pn on BC
pCp∇uqe3 � 0 on R2

u � op1q, ∇u � op|x|�1q |x| Ñ 8,

(1.2)
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where u is the displacement field, C :� λI b I � 2µI is the fourth-order
isotropic elasticity tensor with I the identity matrix and I the fourth-order
tensor defined by IA :� pA; p is a constant representing the pressure.

In this book we primarily collect some of the results in [37, 35], regarding
the well-posedness of problem (1.2) which can be obtained in two different
ways: one way is to prescribe the decay conditions at infinity for u, as in (1.2),
and then to provide an integral representation formula for u by means of sin-
gle and double layer potentials of linear elasticity. Then, the well-posedness
derives from the study of some integral equations. Another way is to set
the analysis of (1.2) in suitable weighted Sobolev spaces where the decay
conditions are expressed by weights. In this way we do not have to prescribe
explicit decay conditions in (1.2). In last decades the approach of weighted
Sobolev spaces has been deeply investigated by Amrouche and collaborators
for solving many mathematical problems in unbounded domains. For more
details, see for example [28, 29, 30, 33, 31, 32] and references therein. For a
related approach, see also Volpert’s monograph [133].

Once the well-posedness of the forward problem has been provided, we
mainly present and study two different problems:

Problem A: Analyze uniqueness and find stability estimates for the inverse
problem of determining the pressurized cavity C from measurements
on the boundary of the half-space.

Problem B: Deduce a corresponding point source model, in the same spirit
as the Mogi spherical model.

The two different ways of studying the well-posedness of the direct problem
are employed to solve Problem A and B. In particular, the first way (based
on an integral approach) is useful to solve Problem B. We take inspiration
from the works of Ammari and Kang [23, 19]. The second way (based on
weighted functional spaces) is utilized to get quantitative stability estimates
of the weak solution of (1.2), which are then employed for the analysis of
Problem A. Here we follow the approach of Morassi and Rosset [115, 116].
In the following we give some ideas of the two problems introduced above.

The inverse problem (Problem A) can be stated precisely in this way: is
it possible to detect uniquely and in a stable way the cavity C from partial
measurements on R2 of the displacement field u? To solve this problem,
we assume that the pressure p in (1.2) is known. We briefly explain what
we mean by stability estimates for the inverse problem that we are treating.
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We presume to have data in B1
s0p0q � tx P R2 : x2

1 � x2
2   s2

0u, where
s0 ¡ 0, which is a subset of R2. Moreover, let us assume that there exist two
domains C1 and C2, satisfying some suitable regularity assumptions (which
will be specified in Chapter 3, Section 3.3), and u1, u2 solutions to (1.2) with
C � Ci for i � 1, 2. If

}u1 � u2}L2pB1
s0 p0qq ¤ ε,

where ε ¡ 0, then we want to prove that

dHpBC1, BC2q ¤ cfpεq, (1.3)

where dHpBC1, BC2q is the Hausdorff distance between the two sets BC1, BC2,
c is a quantitative constant and f is a function that goes to zero as ε goes to
zero.

In Problem B, we assume that the cavity C is of the form

C � d0z � r0Ω,

where d0, r0 ¡ 0. In particular, d0z P R3
� and Ω (a bounded Lipschitz

domain containing the origin) are the center and the shape of the cavity,
respectively. By assuming that d0 ¡¡ r0, hence rescaling variables of (1.2)
in an appropriate manner, i.e., px,uq ÞÑ px{d0,u{r0q and, denoting the new
variables again by x and u, we rewrite (1.2) in the form$'''''&'''''%

divpCp∇uq � 0 in R3
�zCε

pCp∇uqn � pn on BCε
pCp∇uqe3 � 0 in R2

u � op1q, ∇u � op|x|�1q |x| Ñ 8,

(1.4)

where ε � r0{d0, Cε :� z � εΩ and p is a “rescaled” pressure, ratio of the
original pressure p and ε. Following the approach of point source model (1.1),
we determine an asymptotic expansion, valid for y P R2, of the form

uεpyq � εαpUpz,yq � opεαq as εÑ 0�

for some appropriate exponent α ¡ 0 and principal term U . We mention
that the explicit solution of Mogi’s model, i.e. (1.1), corresponds to the
asymptotic expansion of solution of (1.4) with Cε � z � εB1p0q, that is
Ω � B1p0q is the ball of center 0 and radius 1.

Before going into details in studying of the previous problems, we provide,
in next section, an overview of the mathematical literature on these topics.
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1.2 A brief overview of the mathematical lit-
erature

One obstacle in studying inverse problems is that the solution is very
sensitive to variations in data. Otherwise stated, the solution of the inverse
problem does not depend on the measured data in a Lipschitz continuous
way. To clarify this point we need a notion of well-posedness. The con-
cept of well-posedness of a mathematical problem is usually attributed to
Hadamard [89, 90]. He proposed that a well-posed problem needs to have
three properties: it has to have a solution (existence), which has to be unique
(uniqueness) and has to depend continuosly on the data (stability). We say
that a problem is ill-posed if one of these requisites is not fulfilled. Calderón
and Zygmund [57, 58, 55] and John [96, 97], see also references therein,
pointed out that many mathematical problems, arising from applications,
are ill-posed. For instance, the inverse boundary value problem considered in
this book, on detection and reconstruction of unknown cavities from bound-
ary measurements, is non-linear and severely ill-posed. This consideration
comes from the important results obtained by Morassi and Rosset in [115]
and [116] where, in the context of the isotropic linear elasticity in bounded
domains, the problems of detecting cavities and rigid inclusion, respectively,
from a single pair of Cauchy data have been investigated. In particular, in
these papers the authors proved that with some a priori assumptions on the
regularity of the domain to be detected (C1,α regularity, with 0   α ¤ 1),
the continuous depedence (stability) of the domain from the measured data
is of log-log type (i.e. the function f in (1.3) has the form 1{pln | ln ε|qη, for a
suitable 0   η ¤ 1). Their outcomes are based on some previous results due
to [4, 49] on detection of cavities or of an inaccessible part of the boundary of
the domain, in the framework of the scalar elliptic equation (electric conduc-
tors). The authors were able to prove stability estimates of log type. This
kind of estimates turn out to be the best possible as proved in Alessandrini
[3] and Alessandrini-Rondi [13] in space dimension 2, independently from
the number of measurements. Indeed the authors showed through explicit
examples that assuming up to any infinite order of differentiability of the
boundary of the domain to be detected, the continuous dependence (stabil-
ity) of the domain from the measured data is at the best logarithmic. An
inverse problem is said to be exponentially ill-posed, or severely ill-posed, if
the optimal stability estimates are at most of logarithmic type. For scalar
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elliptic equations and stability estimates for the Cauchy problem we refer to
the fundamental review paper [14].

The main tools utilized both in [4] (scalar case) and in [115] (elastic case)
in determining stability estimates consist in suitable quantitative estimates of
unique continuation in the interior and at the boundary. The main difference
between the two works is that for solutions to the Lamé system a doubling
inequality at the boundary is missing. This is the reason for which in [115]
only log-log estimates have been found. However, to overcome the lack of
a doubling inequality at the boundary, the authors in [115] had to prove
a refined version of a stability estimate of continuation from the interior,
which had proved to be extremely useful in the treatment of various inverse
boundary value problems associated with a scalar elliptic equation, see [14].

The list of the results introduced above are only partial. It is difficult
and impossible to list all the outcomes in this line of research and related
topics. With no ambition of completeness, for recent results on detection of
rigid inclusions see [117, 5], for inverse problems for thin elastic plates see
[12, 118, 119, 120]. For detection of cracks in the electrostatic case see [16],
in the isotropic and homogeneous elastic case [46]. See references therein.

We highlight that the ill-posedness constitutes a severe difficulty for the
numerical treatment of inverse problems. This means that without adding
other information on the problem, reconstruction algorithms cannot pro-
vide good quality results. On the other hand, if we add more structural
information about the medium and/or the problem, we may restore the
well-posedness, i.e., Lipschitz continuous dependence from boundary mea-
surements. For instance, as pointed out by Friedman and Vogelius in [85],
for the problem of detecting inhomogeneities inside a domain, one can re-
trieve the well-posedness of the inverse problem if well separated inhomo-
geneities of small size are considered. In [85] the authors analysed the elec-
trostatic problem for a conductor with many small regular inhomogeneities
of extreme conductivities (infinite or zero conductivity) providing the lead-
ing term of the asymptotic formula for the perturbed potential. Then, they
were able to prove that locations and relative sizes of the inhomogeneities
depend Lipschitz-continuously on the potential measurement on any open
subset of the boundary. This paper can be considered the pioneering work
on the asymptotic expansions in inverse problems. Subsequently, many ef-
forts have been made to improve and generalize these results. For instance,
in [61] the authors derived the leading order term of an asymptotic formula
for the steady-state voltage potential for a conductor with a finite number
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of small inhomogeneities with (finite) conductivity different from the back-
ground conductivity. In addition, they have also provided a reconstruction
procedure based on the asymptotic formula employing a fairly straightfor-
ward least-squares approach (see [61] for a more in-depth discussion). For
other algorithms that makes use of an asymptotic expansion of the voltage
potentials see for instance [26, 54]. The case of a finite set of inhomogeneities
of small thickness, in the two-dimensional space, has been considered in [48].
In [59, 47] the authors, in a most natural way, generalized and unified the
specific formulas already derived for a finite set of inhomogeneities of small
diameter, see [61], and for a finite set of inhomogeneities of small thickness,
see [48], to the case of inhomogeneities of low volume fraction. See also [60]
for the case of multiple boundary measurements.

Analogously to [61], the case of the time-harmonic Maxwell’s equations
with “transverse electric” and “transverse magnetic” symmetries has been
studied in [132]. The authors provided the leading term of an asymptotic
formulas for the electric and magnetic fields on the boundary of the domain
due to the presence of small objects with different material chracteristics
(supposed constants) with respect to the medium. These results have been
generalized to the time-harmonic Maxwell’s equation in [27].

Isotropic elastic media were considered in [17]. The authors found an
asymptotic formula for the displacement vector field in terms of the refer-
ence Lamé coefficients, the location of the imperfections, and their geometry.
Then, they used this asymptotic expansion to establish continuous depen-
dence estimates for certain characteristics of the imperfections in terms of
the boundary data and to derive integral boundary formulae for a reconstruc-
tion procedure. For thin elastic inhomogeneities and crack see [45] and [46],
respectively.

Using a different mathematical approach, based on layer potential tech-
niques, Ammari and Kang were able to derive higher-order terms in the
asymptotic expansions, of most problems above, in the more general frame-
work of Lipschitz domains. For the results on the conductivity equation
see [21], on the Helmholtz equation [22] and on the Lamé system [25]. All
the works above share the philosophy that by means of partial or complete
asymptotic formulas of solutions to boundary value problems and some ef-
ficient algorithms, information about the location and size of the inclusions
can be reconstructed, see [19, 23, 88].

The literature of the two last decades on this field is really vast so we
cannot cover all the results. For this reason, we refer the reader to [18, 19,
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23, 24] and the works therein for a more extensive literature.
The approach introduced by Ammari and Kang proved to be a very pow-

erful and elegant method to obtain asymptotic expansion of any order for
solutions to the transmission problems and, as a particular case, to cavities
and perfectly conducting inclusions’ problem. This is the reason for which
in [35, 36] the authors follow the same approach. The mathematical prob-
lems contained in these two papers are an intriguing novelty because it is
treated the case of a pressurized cavity, i.e., a hole with nonzero tractions
on its boundary, buried in an unbounded domain with unbounded boundary.
Some of the results contained in [35, 36] are collected in this book.

Guided by the historical approach summarized above for which the elec-
trostatic problem was the first one considered in the field of the asymptotic
analysis, in Chapter 2 we analyse a simplified scalar version of the elastic
model introduced in Section 1.1. This toy model is based on harmonic func-
tions in a half-space. As far as we know it doesn’t have a physical application
but the mathematical result has an interest on its own. Most of the results
contained in this chapter come from [35]. In Chapter 3, we analyse the elastic
model of Section 1.1 and in particular we give solutions to Problem A and
B. The results of this chapter are essentially contained in [36] and [37].
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CHAPTER 2

A scalar model in the half-space

The aim of this chapter is to provide a detailed mathematical study of a
simplified scalar version of the elastic problem presented in Chapter 1. Since
this problem is easier than the elastic case it will be studied in the generic
framework of a d-dimensional space, with d ¥ 3. In particular, we indicate
with Rd

� the d-dimensional half-space and with Rd�1 its boundary. Then we
consider the following boundary value problem$''''''''&''''''''%

∆u � 0 in Rd
�zC

Bu
Bn � g on BC
Bu
Bxd � 0 on Rd�1

upxq Ñ 0 as |x| Ñ �8,

(2.1)

where C is a cavity (analogous to the pressurized one for the elastic case), g is
a function defined on BC. After proving the well-posedness of this boundary
value problem, we will consider the case of a cavity of the form C � z � εΩ,
where z P Rd

� and Ω is a Lipschitz bounded domain containing the origin.
Our aim is to establish an asymptotic expansion of the solution of the problem
as ε Ñ 0 in the same spirit as the point dilatation model presented in the
previous chapter.

As far as we know, this model does not have a real physical application,
however the mathematical result has an interest on its own. In fact, as
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explained in Chapter 1, it belongs to the same stream of the asymptotic
analysis of the conductivity equation in bounded domains.

The results we are going to present comes from [35]. The main novelty
concerns the analysis of the asymptotic expansion of a pressurized cavity
buried in an unbounded domain. This kind of theme was not covered by the
mathematical literature, despite the presence of a lot of works on asymptotic
expansion techniques [18, 20, 23, 24, 26, 47, 48, 59, 85].

The main mathematical tools that we apply for the analysis of this prob-
lem are the single and double layer potentials, which result in studying in-
tegral equations. This approach is not new but it has been proposed by
Ammari and Kang, see, for instance, [23, 24, 19].

This chapter is organized as follows: In Section (2.1) we provide a short
presentation of the classic Sobolev spaces, weighted Sobolev spaces and prop-
erties of single and double layer potentials for harmonic functions. Readers
who are familiar with topics can skip this part and go directly to Section (2.3)
where the boundary value problem (2.1) is analysed. We provide its well-
posedness both using integral equations and a variational approach based on
weighted Sobolev spaces. In Section 2.4, we state and prove a spectral result
on the integral potentials involved in the integral representation formula of
the solution of (2.1). This result can be used for the derivation of the asymp-
totic expansion when the cavity C is more regular than Lipschitz. In the last
Section (2.5) we provide the asymptotic expansion of the solution of (2.1).

2.1 Sobolev spaces - classic and weighted
Sobolev spaces are the proper setting where to study partial differential

equations. In this section we give a brief survey of the main results on
this topic. In the first part we recall the classic Sobolev spaces defined in
a bounded domain while in the second part we present weighted Sobolev
spaces in the setting of a half-space. For more in depth discussion on these
topics we propose the reading of [30, 76, 101].

Given Ω a bounded domain, we first recall the definition of Lp Banach
spaces.

Definition 2.1.1. Let p P R such that p ¥ 1. We define

LppΩq �
!

“class of functions2 ϕ : Ω Ñ R s. t.
»

Ω
|ϕpxq|p dx   �8

)
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with the norm given by

}ϕ}LppΩq �
�»

Ω
|ϕpxq|p dx


1{p

and

L8pΩq �
!

“class of functions2 ϕ : Ω Ñ R : Dc s.t. |ϕpxq| ¤ c, a.e. x P Ω
)
,

with the norm given by

}ϕ}L8pΩq � inf
!
c s.t. |ϕpxq| ¤ c a.e.x P Ω

)
In addition we denote by LplocpΩq the set of functions ψ which are defined

in Ω and such that ψ P LppDq for any bounded domain D �� Ω, i.e. for any
bounded domain D such that D � Ω.
The first step to define Sobolev spaces is to weaken the notion of derivative.
To this aim, we define

DpΩq � C8
0 pΩq, (2.2)

that is the space of infinitely differentiable functions ϕ : Ω Ñ R, with com-
pact support in Ω and D1pΩq the dual space of DpΩq. Sometimes we will refer
to this space as the space of test functions. Using the multi-index notation,
α � pα1, � � � , αdq, with αi ¥ 0, integers, we define Dαϕ as

Dα � B|α|
Bxα1

1 � � � Bxαdd
, d ¥ 1.

In the next, we use the most common notation ∇� to represent the gradient
of a function.
Definition 2.1.2. Assume that v, w P L1

locpΩq, and α is a multi-index. We
say that w is the α-weak derivative of v if»

Ω
vpxqDαϕpxq dx � p�1q|α|

»
Ω
wpxqϕpxq dx.

With this definition at hand, we can define the classic Sobolev spaces
Definition 2.1.3. Let m ¡ 0 be an integer and 1 ¤ p ¤ �8. The Sobolev
space Wm,ppΩq is defined as the space of function v P LppΩq such that for
every multi-index α with |α| ¤ m, the weak derivative Dαv exists and Dαv P
LppΩq, i.e.

Wm,ppΩq �
!
v P LppΩq : |α| ¤ m, Dαv P LppΩq

)
.
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These function spaces are Banach spaces equipped with their natural
norm

}v}pWm,ppΩq �
m̧

|α|�0
}Dαv}pLppΩq, for 1 ¤ p   8

}v}Wm,8pΩq �
m̧

|α|�0
}Dαv}L8pΩq.

Moreover, we denote by Wm,p
0 pΩq the space

Wm,p
0 pΩq � DpΩq}�}Wm,ppΩq

.

In the particular case where p � 2, that is in the Hilbert setting which we
consider in this book, we use the following notation

HmpΩq � Wm,2pΩq and Hm
0 pΩq � Wm,2

0 pΩq, for k ¥ 0.

We conclude recalling the trace theorem which defines the traces of functions
in HmpΩq on BΩ, as its name indicates.

Theorem 2.1.1 (Theorem 2.7.4 [101]). Let Ω be a bounded domain of class
Cm�1. Then there exists a trace map γ � pγ0, γ1, � � � , γm�1q from HmpΩq
into L2pBΩqm such that

(i) if v P C8pΩq then

γ0pvq � v|BΩ , γ1pvq � Bv
Bn

���
BΩ

. . . , γm�1pvq � Bm�1v

Bnm�1
���
BΩ

where n is the outward unit normal vector.

(ii) The range of γ is
m�1¹
k�0

Hm�k� 1
2 pBΩq.

(iii) The kernel of γ is Hm
0 pΩq.
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2.1.1 Weighted Sobolev spaces
We recall here the definition of weighted Sobolev spaces, restricting our

attention to Rd
�zΩ (for d � 3 we have the unbounded set used in this book),

and we deal only with L2-based spaces to avoid unnecessary technicalities.
Moreover, we mention that we do not consider the case of logarithmic weights
so to maintain the presentation of the topics as readable as possible and since
for our purposes are not necessary. For the readers interested in general
results on weighted Sobolev spaces with polynomial and logarithmic weights
we suggest to consult [28, 29, 30, 33, 31, 32] and references therein. Again, we
denote the space of indefinitely differentiable functions with compact support
in Rd

�zΩ by DpRd
�zΩq and its dual space by D1pRd

�zΩq, i.e. the space of
distributions.

Definition 2.1.4 (Weighted Sobolev space). Let

ρ � p1� |x|2q1{2. (2.3)

For m P Z�, ι P R, we define

Hm
ι pRd

�zΩq �
!
v P D1pRd

�zΩq; 0 ¤ |κ| ¤ m, ρι�m�|κ|Dκv P L2pRd
�zΩq

)
.

These functional spaces are Banach spaces equipped with their natural
norm

}v}2
Hm
ι pRd�zΩq �

m̧

|κ|�0
}ρι�m�|κ|Dκf}2

L2pRd�zΩq.

Remark 2.1.2. We recall that the weights are chosen so that the space
DpRd

�zΩq is dense in Hm
ι pRd

�zΩq, see [28, 91].

Remark 2.1.3. If we consider D � pRd
�zΩq then the spaces Hm

ι pDq reduce
to the usual Sobolev spaces HmpDq. Hence the usual trace theorems hold.

Remark 2.1.4. To avoid confusion between the classic Sobolev spaces Hm
0

and the weighted Sobolev spaces Hm
ι with ι � 0, we use for the latter the

notation Hm
w where w stands for the word “weight”. Therefore

Hm
w pRdzΩq �

!
v P D1pRd

�zΩq; 0 ¤ |κ| ¤ m, ρ�m�|κ|Dκv P L2pRd
�zΩq

)
.
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In addition, we define

H̊m
ι pRd

�zΩq � DpRd�zΩq
}�}
Hmι pRd

�
zΩq , (2.4)

which is a proper subset of Hm
ι pRd

�zΩq.
Then, we define H�m

�ι pRd
�zΩq as the dual space to H̊m

ι pRd
�zΩq. Both are

spaces of distributions.
Before defining fractional spaces and stating the trace theorem, we recall

some basic properties of the spaces Hm
ι . For simplicity, we state most of

these properties, such as Poincaré’s and Korn’s inequality only for the space
H1
wpR3

�zΩq, which is the only weighted Sobolev space utilized in this book.
The following weighted Poincaré-type inequality holds (see for example [31,
91]):

}f}H1
wpR3

�zΩq ¤ C1}∇f}L2pR3
�zΩq. (2.5)

Similarly, if a vector field u has square-integrable deformation tensor p∇u
and belongs to the space H0

�1pR3
�zΩq, then u P H1

wpR3
�zΩq and a Korn-type

inequality holds, see [29] and [102], i.e., there exists a positive constant C
such that:

}∇u}L2pR3
�zΩq ¤ C }p∇u}L2pR3

�zΩq. (2.6)

In Chapter 3 we will provide a quantitative version of these two inequalities
in R3zΩ useful to solve the inverse problem presented in Chapter 1.

To define the trace operator we need to introduce the fractional spaces
on Rd. For the trace on BΩ, see the trace theorem for bounded domain
introduced in the previous section.
We only deal with the case d � 2, 3 and, in particular, we give the definition
in R3 for 0   s   2. The same definition applies in R2 for 0   s   1. In
both cases, we assume ι ¥ �1 and d{2� ι � s, d � 2, 3.

For 0   s   1, we define the weighted fractional space Hs
ι pR3q as:

Hs
ι pR3q �

#
v P D1pR3q; %ι�s v P L2pR3q, |v|s   8

+
, (2.7)

where | � |s denotes a weighted seminorm:

|v|s :�
x

R3�R3

|%ιpxq vpxq � %ιpyq vpyq|2
|x� y|3�2s dx dy.
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For 1   s   2, we define Hs
ι pR3q as:

Hs
ι pR3q �

#
v P D1pR3q; 0 ¤ |κ| ¤ rss � 1, %ι�s�|κ|Dκv P L2pR3q,

Drssv P Hs�rss
ι pR3q

+
,

(2.8)

with rss the greatest integer less than or equal to s. From this space, we can
immediately define by restriction the fractional spaces on R3

�, i.e.,

Hs
ι pR3

�q :�
!
v P D1pR3�q : Dw P Hs

ι pR3q, v � w|R3
�

)
equipped with the norm

}v}Hs
ι pR3

�q :� inft}w}Hs
ι
; w P Hs

ι pR3q, v � w|R3
�

u.

We conclude this section with the trace theorem for weighted Sobolev spaces
Proposition 2.1.5 ([29], Lemma 1.1). Let m ¥ 1 and ι P R. Then, there
exists a continuous linear mapping

γ � pγ0, � � � , γm�1q : Hm
ι pR3

�q ÝÑ
m�1¹
j�0

Hm�j�1{2
ι pR2q. (2.9)

In addition, γ is surjective and

Kerγ � H̊m
ι pR3

�q.

2.2 Harmonic functions and layer potentials
We recall some important properties about the decay rate of harmonic

functions in unbounded domains and single and double layer potentials for
the Laplace operator on Lipschitz domains. As already explained at the
beginning of this chapter, we focus the attention only to dimension d ¥ 3;
however we remark that most of the results recalled in this section are true
also for d � 2.

We skip the proofs of the basic concepts while we give them for some
theorems that may be unfamiliar. Results about harmonic functions in un-
bounded domains are contained, for instance, in [76, 84, 124]; those on prop-
erties of single and double layer potentials can be found in [23, 75, 103, 131].
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2.2.1 Some decay properties
To show the well-posedness of the boundary value problem (2.1) by means

of single and double layer potentials, we can use the symmetry of the half-
space in order to extend the problem to an exterior domain in the full space.
Therefore, we first need to recall some classical results on the behaviour of
harmonic functions in Rd. These properties can be found for instance in
[76, 84, 103].

In the following statements, again we assume that Ω is a bounded domain
in Rd, with d ¥ 3.

Theorem 2.2.1. If v is harmonic in RdzΩ, with d ¥ 3, the following state-
ments are equivalent

1. v is harmonic at infinity.

2. vpxq Ñ 0 as |x| Ñ 8.

3. |vpxq| � O
�|x|2�d� as |x| Ñ 8.

In addition, from the behaviour of the gradient of harmonic functions on
the boundary of the d � dimensional balls, i.e., if v is a harmonic function
in BRpxq, it follows that

|∇v| ¤ d

R
max
BBRpxq

|v|, (2.10)

which through the Kelvin transform ṽpxq � |x|2�dvp|x|�2xq implies the be-
haviour of the gradient of harmonic functions at infinity. For an in-depth
discussion see [84]. Then, we have

Theorem 2.2.2. If v is harmonic in RdzΩ, d ¥ 3, and vpxq Ñ 0 as |x| Ñ 8,
then there exist r and a constant M , depending on r, such that if |x| ¥ r,
we have

|v| ¤ M

|x|d�2 , |∇v| ¤ M

|x|d�1 (2.11)

In conclusion, we recall the Green’s second identity which plays a crucial
role to convert differential problems into integral ones, i.e., in terms of single
and double layer potentials.
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Proposition 2.2.3. Let Ω be a Lipschitz domain in Rd. Given the pair of
functions pu, vq defined in Ω it holds»

Ω
p∆upxqvpxq � upxq∆vpxqq dx �

»
BΩ

� Bu
Bnpxqvpxq � upxq BvBnpxq



dσpxq
(2.12)

2.2.2 Single and double layer potentials
Denoting with ωd the area of the pd�1q-dimensional unit sphere, we recall

the fundamental solution of the Laplace operator, that is the solution to

∆Γ pxq � δ0pxq,

where δ0pxq represents the delta function centered at 0. It is well known
that Γ is radially symmetric and has this expression

Γ pxq � 1
ωdp2� dq|x|d�2 , (2.13)

for d ¥ 3, see for example [76, 84]. Given a bounded Lipschitz domain
Ω � Rd, a function ϕpyq P L2pBΩq and using the fundamental solution (2.13),
we introduce the single and double layer potentials (for harmonic functions),
i.e., the integral operators

SΩϕpxq :�
»
BΩ
Γ px� yqϕpyq dσpyq, x P Rd

DΩϕpxq :�
»
BΩ

BΓ px� yq
Bny ϕpyq dσpyq, x P RdzBΩ.

(2.14)

Here, we summarize some of their properties (for details see [23, 84, 103, 110])
for d ¥ 3:

i. By definition, SΩϕpxq and DΩϕpxq are harmonic in RdzBΩ.

ii. SΩϕpxq � Op|x|2�dq as |x| Ñ �8.

iii. If
³
BΩ ϕpxq dσpxq � 0 then SΩϕpxq � Op|x|1�dq as |x| Ñ �8.

iv. DΩϕpxq � Op|x|1�dq as |x| Ñ �8.
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Next, we introduce the Neumann-Poincaré boundary operatorKΩ : L2pBΩq Ñ
L2pBΩq

KΩϕpxq � 1
ωd
p.v.

»
BΩ

py � xq � ny
|x� y|d ϕpyq dσpyq (2.15)

and its L2�adjoint

K�
Ωϕpxq �

1
ωd
p.v.

»
BΩ

px� yq � nx
|x� y|d ϕpyq dσpyq (2.16)

where p.v. denotes the Cauchy principal value. The operators KΩ and K�
Ω

are singular integral operators, bounded on L2pBΩq.
Given a function v defined in a neighbourhood of BΩ, we set

vpxq
���
�

:� lim
hÑ0�

vpx� hnxq, x P BΩ,

Bv
Bnx pxq

���
�

:� lim
hÑ0�

∇vpx� hnxq � nx, x P BΩ.
(2.17)

The following theorem about the jump relations of the single and double po-
tentials for Lipschitz domains is a consequence of Coifman-McIntosh-Meyer
results on the boundedness of the Cauchy integral on Lipschitz curves, see
[63], and the method of rotations of Calderón, see [56].
In the sequel, t1, � � � , td�1 represent an orthonormal basis for the tangent
plane to BΩ at a point x and B{Bt � °d�1

k�1 B{Btk tk the tangential derivative
on BΩ.

Theorem 2.2.4. Let Ω � Rd be a bounded Lipschitz domain. For ϕ P L2pBΩq
the following relations hold, a.e. in BΩ,

SΩϕpxq
���
�
� SΩϕpxq

���
�

BSΩϕ

Bt pxq
���
�
� BSΩϕ

Bt pxq
���
�

BSΩϕ

Bnx pxq
���
�
�
�
�1

2I �K�
Ω



ϕpxq

DΩϕpxq
���
�
�
�
	1

2I �KΩ



ϕpxq

(2.18)

Using Green’s identity it follows that DΩp1q � 1 hence, by the jump
relations for the double layer potential, we have KΩp1q � 1{2.
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In the sequel, to determine the well-posedness of the scalar model (2.1),
we will need to generalize the result about the invertibility of the operators
1{2I � K�

Ω and 1{2I � KΩ, when a regular compact operator is added. To
this aim, we recall here what is known about the eigenvalues of K�

Ω and KΩ
in L2pBΩq and then the invertibility of the operators λI �K�

Ω and λI �KΩ,
for suitable λ P R. These results, for the case of Lipschitz domains, are
contained in [75]. We define

L2
0pBΩq :�

!
ϕ P L2pBΩq,

»
BΩ

ϕ dσ � 0
)

Theorem 2.2.5 ([23]). Let λ be a real number. The operator λI � K�
Ω is

injective on

(a) L2
0pBΩq if |λ| ¥ 1{2;

(b) L2pBΩq if λ P p�8,�1
2s Y p1

2 ,�8q.
Proof. By contradiction, let λ P p�8,�1{2s Y p1{2,�8q and assume there
exists ϕ P L2pBΩq, not identically zero, satisfying pλI � K�

Ωqϕ � 0. Since
KΩp1q � 1{2, it follows by duality that ϕ has mean value zero on BΩ, in fact

0 � x1, pλI �K�
ΩqϕyL2pBΩq � xλ�KΩp1q, ϕyL2pBΩq

� xλ� 1{2, ϕyL2pBΩq.

Thus, from the properties of single layer potential, it follows that SΩϕpxq �
Op|x|1�dq and ∇SΩϕpxq � Op|x|�dq for |x| Ñ 8. Since ϕ is assumed to be
not identically zero, the two numbers

A �
»
Ω

|∇SΩϕ|2 dx, B �
»

RdzΩ

|∇SΩϕ|2 dx

are not zero. Applying the divergence theorem and the jump relations of the
single layer potentials in Theorem 2.2.4 to A and B, we get

A �
»
BΩ

�� 1
2I �K�

Ω
�
ϕSΩϕdσpxq, B � �

»
BΩ

�1
2I �K�

Ω
�
ϕSΩϕdσpxq.

Since pλI �K�
Ωqϕ � 0, it follows that

λ � 1
2
B � A

B � A
,

31



hence |λ|   1{2, which is a contradiction. This implies that the operator
λI �K�

Ω is injective in L2pBΩq for λ P p�8,�1{2s Y p1{2,8q.
On the other hand, in the case λ � 1{2, we suppose by contradiction that
there exists ϕ P L2

0pBΩq, not identically zero, such that p1{2I � K�
Ωqϕ � 0.

Then, we define A and B as before, but in this case we find

A �
»
BΩ

�� 1
2I �K�

Ω
�
ϕSΩϕdσpxq � 0,

hence SΩϕ � cost in Ω. By the continuity property of single layer potential
on BΩ (see Theorem 2.2.4) we have that SΩϕ is constant on BΩ. Moreover,
SΩϕ is harmonic in RdzBΩ and behaves like Op|x|1�dq as |x| Ñ 8 because
ϕ P L2

0pBΩq. Therefore, by the decay rate at infinity we find that SΩϕ � 0 in
Rd, hence ϕ � 0 on BΩ. This contradicts the hypothesis, hence 1{2I �K�

Ω is
injective in L2

0pBΩq.

The invertibility results of λI�K�
Ω and λI�KΩ are not straightforward.

If the domain Ω is regular, at least C1, it can be proven that the boundary
operators KΩ and K�

Ω are compact, hence the invertibility of λI � K�
Ω and

λI �KΩ can be obtained by the Fredholm theory. Instead, in the Lipschitz
domains, KΩ and K�

Ω lose the compactness property, see the example pro-
posed by Fabes, Jodeit and Lewis in [77], hence we cannot use the Fredholm
theory to infer the invertibility. For a résumé on these topics one can consult
[23]. Verchota in [131] solved this problem showing the fundamental idea
that the Rellich identities are the appropriate substitutes of compactness in
the case of Lipschitz domains. Here, we recall the Rellich identity for the
Laplace equation.

Proposition 2.2.6 ([23]). Let Ω be a bounded Lipschitz domain in Rd. Let
u be a function such that either

(i) u is Lipschitz in Ω and ∆u � 0 in Ω,
or

(ii) u is Lipschitz in RdzΩ and ∆u � 0 in RdzΩ with |u| � Op|x|2�dq
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Let α be a C1-vector field in Rd with compact support. Then»
BΩ

pα � nq
��� BuBn ���2 �

»
BΩ

pα � nq
���BuBt ���2 � 2

»
BΩ

�
α � BuBt

� Bu
Bn

�

$''''&''''%

»
Ω

2p∇α∇u �∇uq � divα|∇u|2 if u satisfies (i)»
RdzΩ

2p∇α∇u �∇uq � divα|∇u|2 if u satisfies (ii)

(2.19)

We have that there exists, as a consequence of the previous Rellich for-
mula, a positive constant C depending only on the Lipschitz character of Ω
such that

1
C

���BuBt ���L2pBΩq
¤
��� BuBn���L2pBΩq

¤ C
���BuBt ���L2pBΩq

. (2.20)

For more details see [23].
In the proof of the invertibility of the operators λI �K�

Ω a crucial role is
played by the following theorem.

Theorem 2.2.7. For 0 ¤ h ¤ 1 suppose that the family of operators Ah :
L2pRd�1q Ñ L2pRd�1q satisfy
(i) }Ahϕ}L2pRd�1q ¥ C}ϕ}L2pRd�1q, where C is independent of h;

(ii) hÑ Ah is continuous in norm;

(iii) A0 : L2pRd�1q Ñ L2pRd�1q is invertible.
Then, A1 : L2pRd�1q Ñ L2pRd�1q is invertible.

All these ingredients allow to prove the invertibility of the operators λI�
K�

Ω, where λ belongs to the range expressed by Proposition 2.2.5. These
results are due to Verchota [131] (for λ � �1{2) and Escauriaza, Fabes and
Verchota [75]. For invertibility results in regular domains see [78] (for C1-
domains) and [84] (for C2-domains).

Theorem 2.2.8 ([75]). Let Ω be a Lipschitz domain. The operator λI �K�
Ω

is invertible on

(i) L2
0pBΩq if |λ| ¥ 1

2 ;
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(ii) L2pBΩq if λ P p�8,�1
2s Y p1

2 ,8q.
Proof. This proof is contained in [23]. We just recall it for reader’s con-
venience. We first prove the invertibility of the operators �1{2I � K�

Ω :
L2

0pBΩq Ñ L2
0pBΩq because it is essentially based on inequalities (2.20) and

Theorem 2.2.7. Then we prove the general case which is more involved.
Case �1{2I �K�

Ω.
Since KΩp1q � 1{2 we have that, for all f P L2pBΩq,»

BΩ

K�
Ωfpxq dσpxq �

1
2

»
BΩ

fpxq dσpxq

hence �1{2I � K�
Ω maps L2

0pBΩq into L2
0pBΩq. We define upxq � SΩfpxq,

where f P L2
0pBΩq, which satisfies conditions piq and piiq in Proposition 2.2.6.

Moreover by the properties of single layer potentials on the boundary of Ω,
we have that Bu{Bt is continuous across the boundary and the jump relation
holds Bu

Bn
���
�
�
�
� 1

2I �K�
Ω

	
f.

Applying (2.20) in Ω and RdzΩ we obtain that

1
C

���1
2I �K�

Ω
�
f
��
L2pBΩq ¤

���1
2I �K�

Ω
�
f
��
L2pBΩq���1

2I �K�
Ω
�
f
��
L2pBΩq ¤ C

���1
2I �K�

Ω
�
f
��
L2pBΩq.

(2.21)

Since
f �

�
1
2I �K�

Ω



f �

�
1
2I �K�

Ω



f,

from (2.21) we have that���1
2I �K�

Ω



f
��
L2pBΩq ¥ C}f}L2pBΩq. (2.22)

Localizing the situation, we can assume that BΩ is the graph of a Lipschitz
function in order to simplify as much as possible the proof. Therefore BΩ �
tpx1, xdq : xd � ψpx1qu where ψ : Rd�1 Ñ R is a Lipschitz function, see
Definition 1.1.1.
We consider the Lipschitz graph corresponding to hψ that is

BΩh �
 px1, xdq : xd � hψpx1q(, 0 ¤ h ¤ 1
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to prove that the operator A � p1{2qI � K�
Ω is invertible. In particular,

we indicate with K�
Ωh and Ah the operator associated to the boundary BΩh.

Therefore, from the definition, it follows that A0 � p1{2qI and A1 � A.
The operators Ah are continuous in norm as a function of h. Hence, from
the inequality in (2.22) we have that }Ahf}L2pBΩhq ¥ C}f}L2pBΩhq, since the
constant C is independent of h but depends only on the Lipschitz character of
Ω. Applying the continuity method of Theorem 2.2.7 we find that 1{2I�K�

Ω
is invertible on L2

0pBΩq. Next, we prove that 1{2I � K�
Ω is invertible on

L2pBΩq showing that the operator is onto on L2pBΩq. By duality argument,
since KΩp1q � 1{2, for all f P L2pBΩq we get»

BΩ

�
1
2I �K�

Ω



f dσpxq �

»
BΩ

f dσpxq

hence 1{2I �K�
Ω maps L2pBΩq into L2pBΩq. For g P L2pBΩq we consider

g � g � c

�
1
2I �K�

Ω



p1q � c

�
1
2I �K�

Ω



p1q,

where
c � 1

|BΩ|
»
BΩ

g dσpxq.

Defining g0 :� g � cp1{2I �K�
Ωqp1q, since»

BΩ

p12I �K�
Ωqp1q dσpxq � |BΩ|,

we have that g0 P L2
0pBΩq. Let f0 P L2

0pBΩq be such that�
1
2I �K�

Ω



f0 � g0.

Then, defining f :� f0 � c we find that�
1
2I �K�

Ω



f � g0 � c

�
1
2I �K�

Ω



p1q � g.

This means that 1{2I �K�
Ω is onto in L2pBΩq.

For the operator �1{2I �K�
Ω we can follow the same argument both for the

case L2
0pBΩq and L2pBΩq.
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Next, we assume that |λ| ¡ 1{2. To prove the invertibility of the operators
in the general case we use the Rellich identity. Let f P L2pBΩq, c0 a fixed
positive number and set upxq � SΩfpxq. Let α be a vector field with support
in the set dist(x,BΩ)  2c0, @x P BΩ, such that α � n ¥ δ, for some δ ¡ 0.
Therefore, from the Rellich identity (2.2.6), we have»

BΩ

pα � nq
��� BuBn ���2 �

»
BΩ

pα � nq
���BuBt ���2 � 2

»
BΩ

�
α � BuBt

� Bu
Bn

�
»
Ω

2p∇α∇u �∇uq � divα |∇u|2.
(2.23)

Observe that on BΩ

Bu
Bn

���
�
�
�
�1

2I �K�
Ω



f �

�
λ� 1

2



f � pλI �K�

Ωqf.

Since α � pα � nqn�°d�1
k�1pα � tkqtk and ∇Sfpxq|� � 1{2nf �Kf where

Kfpxq � 1
ωd

p.v.

»
BΩ

x� y
|x� y|dfpyq dσpyq,

we find that
p∇u �αq � Bu

Bnpα � nq � pα � BuBt q

� �1
2pα � nqf �Kαf,

(2.24)

where
Kαfpxq � 1

ωd
p.v.

»
BΩ

ppx� yq �αpxqq
|x� y|d fpyq dσpyq.

We also have»
Ω

|∇u|2 dx �
»
BΩ

u
Bu
Bn

���
�
dσpxq

�
»
BΩ

SΩf

��
λ� 1

2



f � pλI �K�

Ωqf
�
dσpxq.
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By using the following integral identity obtained by multiplying (2.24) for
Bu{Bn, that is

�2
»
BΩ

�
α � BuBt

	 Bu
Bn dσpxq � � 2

»
BΩ

Bu
Bn

�
�1

2pα � nqf �Kαf

�
dσpxq

� 2
»
BΩ

pα � nq
��� BuBn ���2 dσpxq,

we get from the Rellich formula (2.23) that

1
2

»
BΩ

pα � nq
��� BuBn ���2 dσpxq � � 1

2

»
BΩ

pα � nq
���BuBt ���2 dσpxq

�
»
BΩ

Bu
Bn

�
�1

2pα � nqf �Kαf

�
dσpxq

�
»
Ω

�
p∇α∇u,∇uq � 1

2divα |∇u|
2
�
dσpxq.

Thus it holds

1
2

�
λ� 1

2


2 »
BΩ

pα � nqf 2 dσpxq

¤
»
BΩ

�
�1

2pα � nqf �Kαf

� ��
λ� 1

2



f � pλI �K�

Ωqf
�
dσpxq

� C}f}L2pBΩq
�}SΩf}L2pBΩq � }pλI �K�

Ωqf}L2pBΩq
�

� C}SΩf}L2pBΩq}pλI �K�
Ωqf}L2pBΩq � C}pλI �K�

Ωqf}2
L2pBΩq,

where the constant C depends on the Lipschitz character of Ω and λ. By the
multiplication of the terms in the right-hand side integral, we get

1
2

�
λ2 � 1

4


 »
BΩ

pα � nqf 2 dσpxq ¤
�
λ� 1

2


 »
BΩ

fKαf dσpxq

� C}f}L2pBΩq
�}SΩf}L2pBΩq � }pλI �K�

Ωqf}L2pBΩq
�

� C}SΩf}L2pBΩq}pλI �K�
Ωqf}L2pBΩq � C}pλI �K�

Ωqf}2
L2pBΩq.
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Denoting with K�
α the adjoint operator in L2pBΩq of Kα we find

K�
α �Kα � Rαf � 1

ωd
p.v.

»
BΩ

rpx� yq � pαpxq �αpyqqs
|x� y|d fpyq dσpyq.

By duality, we have »
BΩ

fKαf dσpxq � 1
2

»
BΩ

fRαf dσpxq.

Since |λ| ¡ 1{2 and α � n ¥ δ ¡ 0, the norm }f}L2pBΩq in the left-hand side
can be estimated by

}f}L2pBΩq ¤ C
�}pλI �K�

Ωqf}L2pBΩq � }SΩf} � }Rαf}L2pBΩq
�
. (2.25)

Since SΩ and Rα are compact in L2pBΩq, we conclude from the above estimate
that λI �K�

Ω has a closed range.
Next, we have to prove the surjectivity of the operator λI �K�

BΩ in L2pBΩq.
From this result and the injectivity proved in Theorem 2.2.5 the invertibility
follows. Indeed, by contradiction, suppose that for some λ real, |λ| ¡ 1{2,
the operator λI � K�

Ω is not invertible in L2pBΩq. Then, the intersection
of the spectrum of K�

Ω and the set tλ P R : |λ| ¡ 1{2u is not empty and
so there exists a real number λ0 that belongs to this intersection and it is
a boundary point of the set. To get a contradiction we have to show that
λ0I�K�

Ω is invertible. We know that λ0I�K�
Ω is injective and by (2.25) has

a closed range. This means that there exists a constant C such that for all
f P L2pBΩq,

}f}L2pBΩq ¤ C}pλ0I �K�
Ωqf}L2pBΩq. (2.26)

Since λ0 is a boundary point of the intersection of the spectrum ofK�
Ω and the

real line there exists a real sequence λk with |λk| ¡ 1{2, λk Ñ λ0, as k Ñ 8,
such that λkI�K�

Ω is invertible on L2pBΩq. Therefore, given g P L2pBΩq there
exists a unique fk P L2pBΩq such that pλkI�K�

Ωqfk � g. If t}fk}L2pBΩqu has a
bounded subsequence then there exists another subsequence that converges
weakly to some f0 P L2pBΩq and it holds»

BΩ

hpλ0I �K�
Ωqf0 dσpxq � lim

kÑ�8

»
BΩ

fkpλ0I �KΩqh dσpxq

� lim
kÑ�8

»
BΩ

hpλ0I �K�
Ωqfk dσpxq �

»
BΩ

gh dσpxq.
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Therefore pλ0I � K�
Ωqf0 � g. On the other hand, we may assume that

}fk}L2pBΩq � 1 and pλ0I �K�
Ωqfk converges to zero in L2pBΩq. However, from

(2.26), we have that

1 � }fk}L2pBΩq ¤ C}pλ0I �K�
Ωqfk}L2pBΩq

¤ C |λ� λk| � C}pλkI �K�
Ωqfk}L2pBΩq.

Since the right-hand side converges to zero as k Ñ 8, we get a contradiction.
This means that, for each λ real with |λ| ¡ 1{2, λI �K�

Ω is invertible.

Remark 2.2.9. The invertibility of the operator 1{2I�KΩ follows exploiting
the Banach’s closed range theorem starting from the result for 1{2I � K�

Ω.
In particular, the result follows from the fact that 1{2I �K�

Ω has closed and
dense range in L2pBΩq. For more details see [131].

2.3 The scalar problem
Thanks to the instruments introduced in the preliminary section, we are

now ready to analyse the boundary value problem$''''''''&''''''''%

∆u � 0 in Rd
�zC

Bu
Bn � g on BC
Bu
Bxd � 0 on Rd�1

uÑ 0 as |x| Ñ �8

(2.27)

where C is the cavity, g is a function defined on BC and d ¥ 3.
In particular, we establish the well-posedness of the problem and provide

an integral representation formula for any bounded Lipschitz domain C con-
tained in the half-space. Only in the last section of this chapter, making the
smallness assumption on the cavity, we find the asymptotic expansion of the
solution of (2.27).

In this chapter we also prove that the well-posedness of the boundary
value problem (2.27) can be obtained by weighted Sobolev spaces. Here, this
different approach serves to become familiar with the weak formulation in the
half-space through weighted functional spaces since the same procedure will
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be applied in Chapter 3 in the more difficult contenxt of linear elasticity. The
choice to work with the weak formulation of (2.27) lies in the fact that the
application of Lax-Milgram theorem allows to provide quantitative estimates
of the solution.

Most of the results of this chapter comes from [35].

2.3.1 Well-posedness

The setting of a half-space and, in general, of an unbounded domain
with unbounded boundary is more complicated than the case of exterior or
bounded domains to get the well-posedness of the boundary value problem.
Indeed, it is necessary to know the behaviour of both solution decay at infinity
and its integrability on the boundary.

From the particular symmetry of the half-space and the Laplace operator,
the well-posedness of (2.27) follows extending the problem to the whole space,
specifically to an exterior domain in Rd. We present two different way to solve
this problem: firstly using single layer potentials. Secondly by means of a
weak formulation in the functional setting of weighted Sobolev spaces, see
for example [28, 29, 30, 31].

Given a bounded Lipschitz domain C � Rd
� and the function g : BC Ñ R,

we define rC :� tpx1, xdq : px1,�xdq P Cu,

Figure 2.1. Reflection of the geometry
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see Figure 2.1, and G : BC Y B rC Ñ R as

Gpxq :�
#
gpxq if x P BC
gprxq if x P B rC. (2.28)

Then, we consider the following exterior problem$''''&''''%
∆U � 0 in Rdz

�
C Y rC	

BU
Bn � G on BC Y B rC
U Ñ 0 as |x| Ñ �8.

(2.29)

We first show the well-posedness of this problem.

Lemma 2.3.1. There exists a unique solution for (2.29).

Proof. For Λ :� C Y rC, let R ¡ 0 be such that Λ � BRp0q and set ΩR :�
BRp0qzΛ.

Uniqueness. Given two solutions, U1 and U2, to problem (2.29), the
difference W :� U1 �U2 solves the corresponding homogeneous problem, i.e.$''''&''''%

∆W � 0 in RdzΛ
BW
Bn � 0 on BΛ

W Ñ 0 as |x| Ñ �8.

(2.30)

Multiplying equation ∆W � 0 by W and integrating over the domain ΩR �
BRp0qzΛ, we get

0 �
»

ΩR
W pxq∆W pxqdx

�
»
BΩR

W pxq BBnW pxqdσpxq �
»

ΩR

��∇W pxq��2dx
�
»
BBRp0q

W pxq BBnW pxqdσpxq �
»

ΩR

��∇W pxq��2dx,
using integration by parts and boundary conditions on BΛ. Next, utilizing
the explicit behaviour of the harmonic functions on exterior domains, as
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described in (2.2.2), we find��� »
BBRp0q

W pxq BBnW pxq dσpxq
��� ¤ C

Rd�2 .

Thefore, as RÑ 8, it follows that»
RdzΛ

��∇W pxq��2dx � 0

which implies W � 0.
Existence. We represent U in (2.29) as a single layer potential with a

potential ψ P L2pBΛq which has to be determined, i.e.,

SΛψpxq �
»
BΛ
Γ px� yqψpyqdσpyq, x P RdzΛ. (2.31)

By the properties of single layer potentials, i.e., SΛψ is harmonic in RdzBΛ
and SΛψpxq=Op|x|2�dq as |x| Ñ 8, see Section 2.2.2, we have that the layer
potential in (2.31) satisfies the Laplace equation and the decay conditions at
infinity in (2.29). Moreover, we recall that on BΛ holds

BSΛψ
Bn pxq

����
�
� 1

2ψ �K�
Λψ, x P BΛ.

Observe that G P L2pBΛq, hence, from the injectivity result on L2pBΛq of the
operator 1{2I �K�

Λ, see Theorem 2.2.5, there exists a function ψ P L2pBΛq
such that �

1
2I �K�

Λ



ψpxq � Gpxq, x P BΛ. (2.32)

This proves the existence. Hence the statement of the theorem follows.

Next, we are able to prove the well-posedness of (2.27).

Theorem 2.3.2. There exists a unique solution for problem (2.27). This
solution coincides with the restriction to the half-space Rd

� of the solution to
(2.29).

Proof. We need to prove the equivalence between (2.27) and (2.29).
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At this aim, we define upx1, xdq :� Upx1, xdq
��
xd 0, where U is the unique

solution of (2.29). From the boundary value problem (2.29) for U and the
definition (2.28) of the function G, we have$''''&''''%

∆u � 0 in Rd
�zC

Bu
Bn � g on BC

uÑ 0 as |x| Ñ �8

We only need to verify that the normal derivative is null on the boundary of
the half-space. The key point is to show that U is even with respect to the
xd-plane. We define

ūpx1, xdq :� Upx1,�xdq (2.33)

for x P Rdz
�
C Y rC	. Then ū solves the following problem

$''''&''''%
∆ū � 0 in Rdz

�
C Y rC	

Bū
Bn � G on BC Y B rC
ūÑ 0 as |x| Ñ �8

(2.34)

since G is even with respect to xd. Moreover, on BC X B rC, we have

Bū
Bnpx

1, xdq � BU
Bn px

1,�xdq.

Problem (2.34) admits a unique solution ūpxq as a consequence of Lemma
2.3.1, hence

Upx1,�xdq � ūpx1, xdq � Upx1, xdq.
From this last result, we obtain

Bū
Bxd px

1, xdq � BU
Bxd px

1, xdq � � BU
Bxd px

1,�xdq,

from which it follows that the derivative of U with respect to xd on txd � 0u
is zero.
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Well-posedness via weighted Sobolev spaces

Another way to prove the well-posedness of problem (2.27) is to set the
analysis in weighted Sobolev spaces. As pointed out in [28], these spaces have
some advantages. Indeed in these spaces an optimal weighted Poincaré in-
equality holds and a description of both the behaviour at infinity of functions
and their gradients is possible.

The study of the well-posedness of$''''''&''''''%

∆u � 0 in Rd
�zC

Bu
Bn � g on BC
Bu
Bxd � 0 on Rd�1

(2.35)

where we assume g P L2pBCq, will be accomplished by Lax-Milgram theorem
in H1

wpRd
�zCq. For more general problems (Dirichlet, Neumann and mixed

problems) and results for Poisson equation in an exterior domain of a half-
space via weighted Sobolev spaces, see [28].

Theorem 2.3.3. For any g P L2pBCq, there exists a unique solution u P
H1
wpRd

�zCq to (2.35). Moreover, there exists a positive constant c such that

}u}H1
wpRd�zCq ¤ cg.

Proof. We assume, for the moment, u regular and the test functions v in
DpRd

�zCq. Then multiplying ∆u in (2.35) for v, integrating in Rd
�zC and

using the boundary conditions, we obtain»
Rd�zC

∇u �∇v dx � �
»
BC

gv dσpxq, @v P DpRd

�zCq.

The extention of this formulation toH1
wpRd

�zCq comes from the density result
in Remark 2.1.2. Therefore the boundary value problem (2.35) becomes:
find u P H1

wpRd
�zCq such that

apu, vq � lpvq, @v P H1
wpRd

�zCq, (2.36)
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where a : H1
wpRd

�zCq �H1
wpRd

�zCq Ñ R is the bilinear form given by

apu, vq �
»

Rd�zC

∇u �∇v dx, (2.37)

and l : H1
wpRd

�zCq Ñ R is the linear functional given by

lpvq � �
»
BC

gv dσpxq. (2.38)

The assertion of the theorem then follows by applying the Lax-Milgram
theorem, once the continuity and coercivity of the bilinear form a and the
continuity of the functional l are established. These are straightforward
calculations but we add them for completeness.
Continuity and coercivity of (2.36): from the Cauchy-Schwarz inequality we
have

|apu, vq| �
�����
»

Rd�zC

∇u �∇v dx
����� ¤ c }∇u}L2pRd�zCq}∇v}L2pRd�zCq

¤ c }u}H1
wpRd�zCq}v}H1

wpRd�zCq,

hence the continuity. Coercivity follows from the Poincaré-type inequality
(2.5):

apu, uq �
»

Rd�zC

|∇u|2 dx � }∇u}2
L2pRd�zCq ¥ c}u}2

H1
wpRd�zCq.

Continuity of (2.38): Let us take B�
r p0q � tx P Rd : }x}2   r2, xd   0u,

with r sufficiently large such that to contain the cavity C. Then applying
the trace theorem for bounded domains, we find������

»
BC

gv dσpxq
����� ¤ c}g}L2pBCq}v}L2pBCq

¤ c

�����vρ
����
L2ppB�

r p0qqzCq
� }∇v}L2ppB�

r p0qqzCq

�
¤ c }v}H1

wpRd�zCq.

The conclusion now follows from the Lax-Milgram theorem.
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2.3.2 Representation formula
After proving the well-posedness of the boundary value problem (2.27), in

this paragraph we derive an integral representation formula for the solution u
to problem (2.27). It is based on the layer potentials defined in (2.14) where
BΩ � BC. Moreover, we define the layer potentials on the image cavity rC as

rSCϕpxq :�
»
BC
Γ prx� yqϕpyqdσpyq, x P Rd,

rDCϕpxq :�
»
BC

B
BnyΓ prx� yqϕpyqdσpyq x P RdzB rC, (2.39)

They come from the reflection of the function ϕ with respect to the xd-
coordinate. For simplicity we refer to them as image layer potentials.

The following integral representation formula for the solution of (2.27)
holds.

Theorem 2.3.4. The solution u to problem (2.27) is such that

upxq � SCgpxq �DCfpxq � rSCgpxq � rDCfpxq, x P Rd
�zC, (2.40)

where SC , DC are defined in (2.14), rSC , rDC in (2.39), g is the Neumann
boundary condition in (2.27) and f is the trace of u on BC, which satisfies�

1
2I �KC � rDC



f � SCg � rSCg. (2.41)

Before proving Theorem 2.3.4, we first recall the definition of the Neu-
mann function for the Laplace operator, see for example [93], in order to
rewrite (2.40) in a compact form. The Neumann function N � Npx,yq is
the solution to $'&'%

∆yNpx,yq � δxpyq in Rd
�

BN
Byd px,yq � 0 on Rd�1,

where δxpyq is the delta function with the center in x P Rd. The solution of
this problem has an explicit expression which can be inferred applying the
classical method of images (see [76])

Npx,yq � 1
ωdp2� dq

�
1

|x� y|d�2 �
1

|rx� y|d�2



.
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For simplicity of notation, we define κd :� 1{ωdp2�dq. Utilizing the Neumann
function N , the representation formula (2.40) can be equivalently written as

upxq � N pf, gqpxq
:�

»
BC

�
Npx,yqgpyq � B

BnyNpx,yqfpyq
�
dσpyq, x P Rd

�zC,
(2.42)

which we now prove.

Proof of Theorem 2.3.4. Given R, ε ¡ 0 such that C � BRp0q and Bεpxq �
Rd
�zC, let

ΩR,ε :�
�
Rd
� XBRp0q

	
z
�
C YBεpxq

	
.

We also define BBh
Rp0q as the intersection of the half ball B�

Rp0q � tx P
Rd, |x|2   R2, xd   0u with the boundary of the half-space, and with BBb

Rp0q
the spherical cap (see Figure 2.2). Applying second Green’s identity to

Figure 2.2. Domain ΩR,ε used to obtain the integral representation formula
(2.40). Courtesy of Aspri et al. [35].
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Npx, �q and u in ΩR,ε, we get

0 �
»

ΩR,ε
rNpx,yq∆upyq � upyq∆yNpx,yqs dy

�
»
BBhRp0q

�
Npx,yq BuByd pyq �

B
BydNpx,yqupyq

�
dσpyq

�
»
BBbRp0q

�
Npx,yq BuBny pyq �

B
BnyNpx,yqupyq

�
dσpyq

�
»
BBεpxq

� B
BnyNpx,yqupyq �Npx,yq BuBny pyq

�
dσpyq

�
»
BC

�
Npx,yq BuBny pyq �

B
BnyNpx,yqupyq

�
dσpyq

�I1 � I2 � I3 �N pf, gqpxq.
We first note that the term I1 is zero since both the normal derivative of the
function N and u are zero above the boundary of the half-space.

Next, taking into account the behaviour of harmonic functions in exterior
domains, see (2.11), we find that��� »

BBbRp0q

B
BnyNpx,yqupyq dσpyq

��� ¤ C

R2d�3

»
BBbRp0q

dσpyq � C

Rd�2 ,��� »
BBbRp0q

Npx,yq BuBny pyq dσpyq
��� ¤ C

R2d�3

»
BBbRp0q

dσpyq � C

Rd�2 ,

where C denotes a generic positive constant. Therefore I2 tends to zero as
RÑ �8.

Finally, we decompose I3 as

I3 � I31�I32 �
»
BBεpxq

B
BnyNpx,yqupyq dσpyq�

»
BBεpxq

Npx,yq BuBny pyqdσpyq.

Using the expression of N , we derive

I31 �
»
BBεpxq

B
BnyNpx,yqupyqdσpyq

� upxq
»
BBεpxq

B
BnyNpx,yqdσpyq

�
»
BBεpxq

rupyq � upxqs B
BnyNpx,yqdσpyq,
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which tends to upxq as εÑ 0. In addition, it holds that��I32
�� ¤ C sup

yPBBεpxq

��� BuBny
��� »

BBεpxq

���Npx,yq���dσpyq
¤ C 1 sup

yPBBεpxq

��� BuBny
��� �»

BBεpxq

1
εd�2dσpyq �

»
BBεpxq

1
|rx� y|d�2 dσpyq

�
.

It is straightforward to see that I32 Ñ 0 as εÑ 0. Indeed, both the integrals
tend to zero when ε goes to zero because the second one has a continuous
kernel while the first one behaves as Opεq. Putting together all the results,
we obtain (2.42).

Finally, using the jump properties of the layer potentials, from equation
(2.42) or in its more explicit form (2.40), we find that

fpxq � SCgpxq �
��1

2I �KC

�
fpxq � rDCfpxq � rSCgpxq, x P BC,

whereKC is defined in (2.15). Thus, the trace f satisfies the integral equation�
1
2I �KC � rDC



f � SCg � rSCg,

which gives the assertion of the theorem.

2.4 Spectral analysis
In this section, for completeness, we want to study the invertibility of the

operator 1
2 I�KC � rDC in (2.41). We stress that in this way one would have

another way to infer the well-posedness of (2.27). Indeed, rewriting (2.27)
directly in terms of the integral equations (2.40) and (2.41), the existence of a
unique solution would follow by the invertibility of the operator 1

2 I�KC� rDC .
This argument will be used in the next chapter to prove the well-posedness
of the elastic problem presented in the introduction.

To prove the invertibility of the operator 1
2 I � KC � rDC we show that

the following inclusion holds under suitable assumptions

σpKC � rDCq � p�1{2, 1{2s .
In particular, noticing that the spectra ofKC� rDC andK�

C� rD�
C are conjugate

in L2pBCq, we accomplish this task by finding the spectrum of K�
C � rD�

C in
L2pBCq.
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The explicit expression of K�
C is in (2.16). To find the L2-adjoint of rDC

is straightforward: indeed, given ψ P L2pBCq, we have»
BC
ψpxq rDCϕpxqdσpxq �

»
BC
ψpxq

�
1
ωd

»
BC

py � rxq � ny
|rx� y|d ϕpyqdσpyq



dσpxq

�
»
BC
ϕpyq

�
1
ωd

»
BC

py � rxq � ny
|rx� y|d ψpxq dσpxq



dσpyq

and thus rD�
Cϕpxq �

1
ωd

»
BC

px� ryq � nx
|ry � x|d ϕpyqdσpyq. (2.43)

Note that the kernel of the integral operator rD�
C is smooth on BC.

In addition, we observe that rD�
C , for x P BC, can be seen as the normal

derivative of an appropriate single layer potential.

Lemma 2.4.1. Given ϕ P L2pBCq we have that

rD�
Cϕpxq �

B
Bnx

�
S

rC rϕpxq� , x P BC,

where rϕ P L2pB rCq is defined by rϕpxq :� ϕprxq.
Proof. Using the expression (2.43) of rD�

C and the identity

∇x

�
1

p2� dq|x� y|d�2



� x� y
|x� y|d ,

we find that

rD�
Cϕpxq � ∇x

�»
BC

κd ϕpyq
|ry � x|d�2 dσpyq



� nx,

where κd � 1{ωdp2 � dq. Given ϕ P L2pBCq and rϕ P L2pB rCq as previously
defined, we have»

BC

ϕpyq
|ry � x|d�2 , dσpyq �

»
B rC

ϕprzq
|rrz � x|d�2

dσpzq

�
»
B rC

ϕprzq
|z � x|d�2 dσpzq �

»
B rC

rϕpzq
|z � x|d�2 dσpzq,

which gives the conclusion.
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As recalled in Theorem 2.2.5 and Theorem 2.2.8 the eigenvalues of K�
C

on L2pBCq lie in p�1{2, 1{2s. With the same approach, we now show that
the same property is true for K�

C � rD�
C .

Theorem 2.4.2. Let C be an open bounded domain with Lipschitz boundary.
Then

σpK�
C � rD�

Cq � p�1{2, 1{2s .
Proof of Theorem (2.4.2). Given ϕ P L2pBCq, let ψ be defined by ψ :� SCϕ�
S

rC rϕ. By the jump properties of single layer potentials, see (2.2.4), we find
that Bψ

Bn
���
�
�
�
�1

2I �K�
C � rD�

C

	
ϕ, on BC

and, as a consequence,

Bψ
Bn

����
�
� Bψ
Bn

����
�
� 2

�
K�
C � rD�

C

	
ϕ,

Bψ
Bn

����
�
� Bψ
Bn

����
�
� ϕ. (2.44)

From these relations, we deduce that�
λI �K�

C � rD�
C

	
ϕ � λ

�Bψ
Bn

����
�
� Bψ
Bn

����
�



� 1

2

�Bψ
Bn

����
�
� Bψ
Bn

����
�



�
�
λ� 1

2


 Bψ
Bn

����
�
�
�
λ� 1

2


 Bψ
Bn

����
�
.

If λ is an eigenvalue of K�
C � rD�

C with eigenfunction ϕ, then�
λ� 1

2


 Bψ
Bn

����
�
�
�
λ� 1

2


 Bψ
Bn

����
�
� 0, on BC.

Multiplying such relation by the function ψ and integrating over BC, we get�
λ� 1

2


»
BC
ψpxqBψBnpxq

����
�
dσpxq �

�
λ� 1

2


»
BC
ψpxqBψBnpxq

����
�
dσpxq � 0.

(2.45)
From the integration by parts, it follows that»

BC
ψpxqBψBnpxq

����
�
dσpxq �

»
C

ψpxq∆ψpxq dx�
»
C

��∇ψpxq��2 dx
�
»
C

��∇ψpxq��2 dx. (2.46)
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For the first integral in (2.45) we can follow the argument in the proof of
Theorem 2.3.4. Precisely, given large R ¡ 0, applying the Green’s formula
in ΩR :� �

Rd
� XB�

Rp0q
� zC, we get»

BC
ψpxqBψBnpxq

����
�
dσpxq

�
»
BBhRp0q

ψpxq BψBxd pxq dσpxq �
»
BBbRp0q

ψpxqBψBnpxq
����
�
dσpxq

�
»

ΩR
ψpxq∆ψpxq dx�

»
ΩR

��∇ψpxq��2 dx,
where BBh

Rp0q is the intersection of the half ball with the half-space and
BBb

Rp0q is the spherical cap. The quantity Bψ{Bxd is identically zero on the
boundary of the half-space since the kernel of the operator is the normal
derivative of the Neumann function which, by hypothesis, is null on Rd�1.
Moreover, ψ is harmonic in ΩR, so we infer»

BC
ψpxqBψBnpxq

����
�
dσpxq �

»
BBbRp0q

ψpxqBψBnpxq
����
�
dσpxq �

»
ΩR

��∇ψpxq��2 dx.
From the asymptotic behaviour of simple layer potentials (Section 2.2.2) i.e.��SCϕ��� ��S

rCϕ
�� � Op|x|2�dq, ��∇SCϕ��� ��∇S

rCϕ
�� � Op|x|1�dq as |x| Ñ 8,

we obtain, for some C ¡ 0,���� »BBbRp0q ψpxqBψBnpxq
����
�
dσpxq

���� ¤ »
BBbRp0q

���ψpxq������BψBnpxq
����
�

��� dσpxq
¤ C

R2d�3

»
BBbRp0q

dσpxq � 1
Rd�2 .

Therefore, as RÑ �8, we find»
BC
ψpxqBψBn

����
�
dσpxq � �

»
Rd�zC

��∇ψpxq��2 dx. (2.47)

Plugging (2.46) and (2.47) into (2.45), we get the identity�
λ� 1

2


»
Rd�zC

��∇ψpxq��2 dx� �
λ� 1

2


»
C

��∇ψpxq��2 dx � 0. (2.48)
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Defining the two numbers

A :�
»
Rd�zC

��∇ψpxq��2 dx and B :�
»
C

��∇ψpxq��2 dx,
we have that (2.48) can be rewritten as

pA�Bqλ � 1
2pA�Bq

The coefficient of λ is non-zero. On the contrary, if A�B � 0 then ∇ψ � 0
in Rd

� which means that ψ � 0, hence, from the second equation in (2.44),
we get ϕ � 0 in BC.

Therefore, solving with respect to λ, we finally get

λ � 1
2 �

A�B

A�B
P
�
�1

2 ,
1
2

�
. (2.49)

The value λ � �1{2 is not an eigenvalue for the operator K�
C � rD�

C . Indeed,
in such a case, we would have

A �
»
Rd�zC

��∇ψpxq��2 dx � 0,

and thus ψ � 0 in Rd
�zC. By definition of ψ, we deduce that ψ � 0 on BC

and since ψ is harmonic in C, we get that ψ � 0 also in C. As before, by
(2.44), this would imply that ϕ � 0 in BC.

For completeness, let us observe that the value λ � 1{2 is an eigenvalue.
Indeed, identity (2.49) implies that, for such value of λ,

B �
»
C

��∇ψpxq��2 dx � 0,

hence ψ is constant in C. Normalizing ψ � 1 in C and following the same
approach of the Section 2.3.1, the function ψ in Rd

�zC is given by the re-
striction of the solution U to the Dirichlet problem in the exterior domain
Rdz

�
C Y rC	 with boundary data equal to 1. Then, by the second equation

in (2.44), the function ϕ is the normal derivative of U at BC.
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2.5 Asymptotic expansion
In this section we obtain an asymptotic expansion of the solution of (2.27)

on the boundary of the half-space when the diameter of the cavity C goes to
zero. We employ the approach of Ammari and Kang, see for example [23],
based on integral equations, i.e. we utilize the representation formula which
we proved in the previous section, precisely in Theorem 2.3.4. We assume
that the cavity C is given by

Cε :� C � z � εΩ

where z is the center of the cavity (z P R3
�), ε is the parameters that goes to

zero and Ω is a bounded Lipschitz domain containing the origin. Moreover,
we assume that the cavity is not touching the boundary, i.e.

distpz,Rd�1q ¥ δ0 ¡ 0 (2.50)

otherwise some constants which will appear in the asymptotic expansion
could go to infinity. See for example discussions in Chapter 4 of [23]. In
any case, thinking to problem (2.27) as a simplified mathematical model of
the Mogi elastic model presented in the introduction, we stress that (2.50)
is a reasonable request. The solution to the direct problem depending on
the parameter ε is denoted by uε. At the same time, we also use the same
notation for the layer potentials appearing in Theorem 2.3.4, i.e.

Sε � SCε , Dε � DCε , rSε � rSCε , rDε � rDCε , Kε � KCε

and for the trace of the solution uε on BCε, i.e. fε. Therefore, equation (2.40)
can be rewritten as

uε � Sεg �Dεfε � rDεfε � rSεg. (2.51)

Since x � rx, it follows that for x P Rd�1

Sεgpxq �
»
BCε

Γ px� yqgpyq dσpyq �
»
BCε

Γ prx� yqgpyq dσpyq � rSεgpxq
and

Dεfεpxq �
»
BCε

B
BnyΓ px� yqfεpyq dσpyq �

»
BCε

B
BnyΓ prx� yqfεpyq dσpyq

� rDεfεpxq.
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Hence, the equation (2.51) becomes

1
2 uεpxq � Sεgpxq �Dεfεpxq, x P Rd�1. (2.52)

Recalling that fε on BCε satisfies (2.41), i.e.�
1
2I �Kε � rDε

	
fεpxq � Sεgpxq � rSεgpxq, x P BCε, (2.53)

and putting together (2.52) and (2.53) we get the identity

1
2uεpxq � J1pxq � J2pxq, x P Rd�1, (2.54)

where

J1pxq :�
»
BCε

Γ px� yqgpyq dσpyq,

J2pxq :� �
»
BCε

B
BnyΓ px� yq

�
1
2I �Kε � rDε

	�1 �
Sεg � rSεg	 pyq dσpyq.

To get the asymptotic expansion at first order of (2.54) on Rd�1, we analyse
in details the dependence with respect to ε of such relation.

In the sequel, for any fixed value of ε ¡ 0, given h : BCε Ñ R, we use
the notation h: to represent a function h: : BΩ Ñ R which is defined by

h:pζ; εq :� hpz � ε ζq, ζ P BΩ.

Let us now state one of the main result contained in [35].

Theorem 2.5.1. Let us assume (2.50). There exists ε0 such that for all
ε P p0, ε0q and g P L2pBCεq such that g: is independent on ε, at any x P Rd�1

the following expansion holds

uεpxq � 2εd�1Γ px� zq
»
BΩ
g:pζq dσpζq

� 2εd∇Γ px� zq �
»
BΩ

!
nζ

�1
2I �KΩ

��1
SΩg

:pζq � ζg:pζq
)
dσpζq �Opεd�1q,

(2.55)
where Opεd�1q denotes a quantity uniformly bounded by Cεd�1 with C �
Cpδ0q which tends to infinity when δ0 goes to zero.
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To prove this theorem we first show the following expansion for the op-
erator

�
1
2I �Kε � rDε

	�1
.

Lemma 2.5.2. We have�
1
2I �Kε � rDε

	�1 �
Sεg � rSεg	 pz�εζq � ε

�1
2I �KΩ

��1
SΩg

:pζq�Opεd�1q
(2.56)

for ε sufficiently small.

Proof. To get the statement of this Lemma, we need to analyse, separetely,
the terms

�
1
2I �Kε � rDε

	
and Sε � rSε.

At the point z � εζ, where ζ P BΩ, we obtain

Kεϕpz � εζq � 1
ωd

p.v.
»
BCε

py � z � εζq � ny
|z � εζ � y|d ϕpyq dσpyq

� 1
ωd

p.v.
»
BΩ

pη � ζq � nη
|ζ � η|d ϕ:pηq dσpηq � KΩϕ

:pζq,

and

rDεϕpz � εζq �
»
BCε

B
BnyΓ prz � εrζ � yqϕpyq dσpyq

� εd�1
»
BΩ

B
BnηΓ prz � εrζ � z � εηqϕ:pηq dσpηq

� εd�1Rεϕ
:pζq

where

Rεϕ
:pζq :�

»
BΩ

B
BnηΓ

�rz � z � εprζ � ηq	ϕ:pηq dσpηq (2.57)

is uniformly bounded in ε.
Let us evaluate the term Sε � rSε. We have

Sεgpz � εζq �
»
BCε

Γ pz � εζ � yqgpyqdσpyq

� ε

»
BΩ
Γ pζ � θqg:pθqdσpθq � εSΩg

:pζq
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and rSεgpz � εζq �
»
BCε

Γ
�rz � εrζ � y	 gpyqdσpyq

� εd�1
»
BΩ
Γ
�rz � z � εprζ � θq	 g:pθqdσpθq

� εd�1Γ prz � zq »
BΩ
g:pθqdσpθq �Opεdq

where we have used the zero order expansion for Γ . Therefore, from these
two last results we get that�

Sεg � rSεg	 pz � εζq � εSΩg
:pζq �Opεd�1q.

To conclude, from (2.53) we have�1
2I �KΩ

	�
I � εd�1

�1
2I �KΩ

	�1
Rε

	
f : � εSΩg

:pζq �Opεd�1q.

From the continuous property ofRε and the invertibility result of the operator
1{2I �KΩ as explained in Remark 2.2.9, we have����1

2I �KΩ

	�1
Rε

��� ¤ C,

where C ¡ 0 is independent from ε. On the other hand, choosing εd�1
0 �

1{2C, it follows that for all ε P p0, ε0q we have that I � εd�1
�

1
2I �KΩ

	�1
Rε

is invertible and�
I � εd�1

�1
2I �KΩ

	�1
Rε

	�1
� I �Opεd�1q.

Therefore
f : � ε

�1
2I �KΩ

	�1
SΩg

:pζq �Opεd�1q.

Remark 2.5.3. If the domain Cε is more regular, at least a C1-domain, we
have compactness of the operators Kε and K�

ε . Thefore we can prove the
asymptotic expansion of the operator

�
1
2I �Kε � rDε

	�1
in an alternative
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way. In fact, since Kε � rDε is compact and its spectrum is contained in
p�1{2, 1{2s, there exists δ ¡ 0 such that

σ
�
Kε � rDε

	
� p�1{2� δ, 1{2s.

Therefore it follows that the operator

Aε :� 1
2I �Kε � rDε

has σ pAεq � r0, 1 � δq, i.e. it has spectral radius strictly smaller than 1. As
a consequence, taking the powers of the operator Aε one finds

}Ahε } ¤ 1 @h and }Ah0
ε }   1 for some h0. (2.58)

Using the Neumann series, the inverse operator of I � Aε � 1
2I � Kε � rDε

can be represented by

pI � Aεq�1 �
�8̧

h�0
Ahε �

�8̧

h�0

�
1
2I �Kε � rDε


h

.

Taking Rε of the proof of Lemma (2.5.2), see (2.57), we highlight the terms
in Ahε which do not contain ε and that one of order d� 1, that is

Ahε �
�

1
2I �KΩ


h

� εd�1Eh,ε

where

Eh,ε �
ḩ

j�1
Aε � � �Aε Rεloomoon

j�th

Aε � � �Aε.

For h0 as in (2.58) and h ¡ h0 we have

}Eh,ε} ¤ }Rε}}Aε}2h0}Ah0
ε }th{h0u�1 ¤ }Rε}}Aε}2h0}Ah0

ε }h{h0�1,

where t � u denotes the integer part, and thus
�8̧

h�0
}Eh,ε} ¤ C

�8̧

h�0
}Ah0

ε }h{h0

giving the absolute convergence of
°
Eh,ε. Summarizing we conclude that

pI � Aεq�1 �
�

1
2I �KΩ


�1

�Opεd�1q. (2.59)
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We lastly provide the proof the Theorem 2.5.1.

Proof of Theorem 2.5.1. To get (2.55), we need to analyse the two integrals
J1 and J2 in (2.54).

For x, ζ P Rd with x � 0 and ε sufficiently small, we consider the asymp-
totic expansion at first order of the fundamental solution i.e.

Γ px� εζq � Γ pxq � ε∇Γ pxq � ζ �Opε2q.
Hence, for x P Rd�1, we get

J1 � εd�1
»
BΩ
Γ px� z � εζq g:pζq dσpζq

� εd�1Γ px� zq
»
BΩ
g:pζq dσpζq

� εd∇Γ px� zq �
»
BΩ
ζ g:pζq dσpζq �Opεd�1q.

(2.60)
For the second integral in (2.54), we find

J2 � �εd�1
»
BΩ

B
BnζΓ px� z � εζqh:pζ, εq dσpζq,

where the function h: is given by

h:pζ, εq �
�

1
2I �Kε � rDε


�1 �
Sεg � rSεg	 pz � εζq (2.61)

For x, ζ P Rd with x � 0 and ε sufficiently small, it holds

∇xΓ px� εζq � ∇xΓ pxq �Opεq, (2.62)

therefore, taking advantage of the expansion (2.56),

J2 � εd�1
»
BΩ

B
BnζΓ px� zqh

:
εpζq dσpζq �Opεdq

� εd
»
BΩ

B
BnζΓ px� zq

�1
2I �KΩ

��1
SΩg

:pζq dσpζq �Opεd�1q.

The statement of the theorem follows putting together the results for J1 and
J2.
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To close this section we want to show that the term
�1

2I �KΩ
��1

SΩgpxq,
for x P BΩ, which appears in the second integral in (2.55), can be interpreted
as the solution of an exterior problem in the whole space. Specifically, this
term is the trace of the solution on BΩ of this boundary value problem$''''&''''%

∆U � 0 in RdzΩ
BU
Bn � g on BΩ

U Ñ 0 as |x| Ñ �8,

(2.63)

where the cavity Ω is such that 0 P Ω.

Proposition 2.5.4. Let us define hpxq :� Upxq��
xPBΩ, then�

1
2I �KΩ


�1

SΩgpxq � hpxq.

Proof. The thesis comes from, as done in the proof of Theorem 2.3.4, by
the application of the second Green’s identity to the fundamental solution Γ
and U in the domain BRp0qzΩ, with R sufficiently large. We define DR,ε :�
BRp0qzpΩ Y Bεpxqq, with x P pBRp0qzΩq (see Figure 2.3). By the second
Green’s identity, we get

0 �
»
BDR,ε

�
Upyq B

BnyΓ px� yq � Γ px� yq B
BnyUpyq

�
dσpyq

�
»
BBRp0q

�
Upyq B

BnyΓ px� yq � Γ px� yq B
BnyUpyq

�
dσpyq

�
»
BBεpxq

�
Upyq B

BnyΓ px� yq � Γ px� yq B
BnyUpyq

�
dσpyq

�
»
BC

�
Upyq B

BnyΓ px� yq � Γ px� yq B
BnyUpyq

�
dσpyq

:� I1 � I2 � Iph, gqpxq
Using the decay rate of harmonic functions in unbounded domains, see The-
orem 2.2.2, the integral I1 gives

|I1| ¤
�

C1

R2d�3 �
C2

R2d�3


»
BBRp0q

dσpyq � C

Rd�2
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Figure 2.3. Domain used to get the representation formula for U .

where C is a positive constant. As RÑ �8, I1 tends to zero.
Finally, we decompose I2 as

I2 � I21 � I22

�
»
BBεpxq

Upyq B
BnyΓ px� yq dσpyq �

»
BBεpxq

Γ px� yq B
BnyUpyq dσpyq.

Using the expression of Γ and the continuity of u, we derive

I21 �
»
BBεpxq

Upyq B
BnyΓ px� yq dσpyq � Upxq

»
BBεpxq

B
BnyΓ px� yq dσpyq

�
»
BBεpxq

pUpyq � Upxqq B
BnyΓ px� yqdσpyq,

which tends to Upxq as εÑ 0. Moreover, it holds

|I22| ¤ C 1 sup
yPBBεpxq

���BUpyqBny
��� 1
εd�2

»
BBεpxq

dσpyq � Opεq

which goes to zero as ε goes to zero.
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In conclusion we have the following integral representation formula
Upxq � �Iph, gqpxq

�
»
BΩ

�
Γ px� yqgpyq � hpyq B

BnyΓ px� yq
�
dσpyq

� SΩgpxq �DΩhpxq, x P RdzΩ
(2.64)

where h is the trace of U on the boundary of the cavity Ω. Therefore, on BΩ
from single and double layer potentials properties

hpxq � SΩgpxq �
�
�1

2I �KΩ



hpxq, x P BΩ,

hence
hpxq �

�
1
2I �KΩ


�1

SΩgpxq, x P BΩ,

that is the assertion.

2.5.1 A particular Neumann condition
For the analogy with the elastic problem, in this section we consider

a specific case of the Neumann boundary condition on the cavity Cε. In
particular, we get an explicit expression of the asymptotic expansion in terms
of the polarization tensor and the fundamental solution.
Corollary 2.5.5. Given p P Rd, let the boundary datum in (2.27) given by

g � �p � n.
Then, the following expansion holds

uεpxq � 2 εd|Ω|∇Γ px� zq �Mp�Opεd�1q, x P Rd�1, (2.65)
where M is the symmetric positive definite tensor given by

M :� I� 1
|Ω|

»
BΩ

�
nζ bΨpζq� dσpζq (2.66)

and the auxiliary function Ψ has components Ψi, i � 1, . . . , d, which solve$''''&''''%
∆Ψi � 0 in RdzΩ
BΨi

Bn � �ni on BΩ

Ψi Ñ 0 as |x| Ñ �8.

(2.67)
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Proof. We define

I1 :� ∇Γ px� zq �
»
BΩ
nζ

�
1
2I �KΩ


�1

SΩr�p � nspζq dσpζq,

I2 :� ∇Γ px� zq �
»
BΩ
ζ p � nζ dσpζq.

Then, the expansion (2.55) with g � �p � n gives
1
2uεpxq � �εd�1Γ px� zq

»
BΩ
p � nζ dσpζq � I1 � I2 �Opεd�1q

� I1 � I2 �Opεd�1q
(2.68)

where the first term in the asymptotic expansion is null thanks to the diver-
gence theorem. From the equation (2.63), with g � �p �n, since the problem
for U is linear, we can decompose U as U � °

i Ui where the functions Ui,
for i � 1, � � � , d, solve $''''&''''%

∆Ui � 0 inRdzΩ
BUi
Bn � �pini on BΩ

Ui Ñ 0 as |x| Ñ �8.
According to the definition of the functions Ψi, we have that U � p � Ψ.
Therefore, utilizing the result of Proposition 2.5.4, the term I1 is also equal
to

I1 � ∇Γ px� zq �
»
BΩ
pΨpζq � pqnζ dσpζq

� ∇Γ px� zq �
»
BΩ
pnζ bΨpζqqp dσpζq.

To deal with the term I2, we first observe that»
BΩ
pnζ b ζq dσpζq � |Ω|I.

Indeed, for nζ � pnζ,1, . . . , nζ,dq, for any i, j P t1, . . . , du, it follows»
BΩ
ζi nζ,j dσpζq �

»
BΩ
nζ � ζiej dσpζq

�
»

Ω
div pζiejq dζ �

»
Ω
ej � ei dζ � |Ω|δij
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where ej is the j-th unit vector of Rd. Hence, it follows

I2 � ∇Γ px� zq �
»
BΩ
pζ b nζqp dσpζq � |Ω|∇Γ px� zq � p.

Gathering the expressions of I1 and I2, we obtain formula (2.65).
Next we show the properties of the tensor M defined in (2.66). Indeed,

the symmetry follows from»
BΩ

Ψipζqnζ,j dσpζq � �
»
BΩ

ΨipζqBΨj

Bn pζq dσpζq

�
»
RdzΩ

div pΨipζq∇Ψjpζqq dζ

�
»
RdzΩ

∇Ψipζq �∇Ψjpζq dζ

where the last term is obviously symmetric. Taking η P Rd, we consider

η �Mη � |η|2 � 1
|Ω|

»
BΩ
pnζ � ηqpΨpζq � ηq dσpζq.

The positivity of the tensor follows from the divergence theorem, integration
by parts and the definition of the function Ψ, in fact»

BΩ
pnζ � ηqpΨpζq � ηq dσpζq � �

»
BΩ

B
BnpΨpζq � ηqpΨpζq � ηq dσpζq

�
»
RdzΩ

div ppΨpζq � ηq∇pΨpζq � ηqq dσpζq

�
»
RdzΩ

��∇pΨpζq � ηq��2 dζ,
hence η �Mη ¡ 0.

We close this chapter showing that in the case of a spherical cavity, i.e.
when Ω is a sphere, the auxiliary function Ψ can be determined explicitly.
From this, it follows that we also have an explicit formula for the polarization
tensor M. If Ω � tx P R3 : |x|   1u, then a direct calculation through
spherical coordinates shows that, for i � 1, 2, 3, it holds Ψipxq � xi{p2|x|3q,
and thus

Ψipζq � 1
2 ζi, ζ P BΩ.

64



As a consequence, the polarization tensor is a multiple of the identity and,
precisely,

M � 3
2 |Ω|I � 2πI.

Then, the asymptotic expansion (2.65) becomes

uεpxq � 4πε3∇Γ px� zq � p�Opε4q, x P R2.

Explicit formulas can be provided also in the case of ellipsoidal cavities (see
[18, 23, 24]).
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CHAPTER 3

Analysis of the elastic model

In this chapter we study the linear elastic model presented in the intro-
duction. We recall that it is applied in volcanology to describe the surface
deformation effects caused by a magma chamber embedded into Earth’s in-
terior and exerting on it a uniform hydrostatic pressure. From a mathe-
matical point of view, the modelling assumptions translates into a Neumann
boundary value problem for the classic Lamé system in a half-space with an
embedded pressurized cavity. To be more precise, the boundary conditions
are traction-free for the air/crust boundary and uniformly hydrostatic for
the chamber boundary.

Therefore, representing with u the displacement vector field, we need to
study the following boundary value problem$''''&''''%

divpCp∇uq � 0 in R3
�zC

Bu
Bν � pn on BC
Bu
Bν � 0 on R2

(3.1)

where C is the elasticity tensor, C is the cavity, p is a constant representing
the pressure and p∇u � 1

2

�
∇u � ∇uT

�
the strain tensor. With Bu{Bν we

depict the conormal derivative on the boundary of a domain, that is the
traction vector Bu{Bν :� pCp∇uqn.

As done in the previous chapter for the scalar model, we provide two
different ways to prove the well-posedness of the problem: one is to add to
(3.1) the behaviour at infinity of u and its gradient, i.e. u � op1q and ∇u �
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op|x|�1q as |x| Ñ 8. Then, we utilize an appropriate integral formulation of
(3.1) so to reduce the well-posedness to the study of the invertibility of some
integral operators.

Another way is to prove the well-posedness of (3.1) through a weak for-
mulation based on weighted Sobolev spaces, as explained in the previous
chpater. Then, the well-posedness follows by the application of the Lax-
Milgram theorem. Using this approach we naturally get stability estimates
of the solution in the specific weighted Sobolev space.

After the well-posedness, we first analyse the inverse problem of deter-
mining the pressurized cavity from partial measurements of the displacement
field on the boundary of the half-space proving uniqueness and stability esti-
mates. To this end, we have to prove a quantitative weighted Poincaré-type
inequality and a Korn-type inequality in R3

�zC since, from the Lax-Milgram
theorem, we need quantitative stability estimates of the solution of the di-
rect problem. Then, using the integral representation formula utilized to
prove the well-posedness, we provide an asymptotic expansion of the solu-
tion of (3.1) when the cavity C is small compared with the distance from
the boundary of the half-space R2. Specifically, assuming that the chamber
is centred at some fixed point z and has diameter r ¡ 0 and depth d, we
derive rigorously the principal term in the asymptotic expansion for the sur-
face deformation as ε � r{d Ñ 0�. Such formula provides a rigorous proof
of the Mogi point source model in the case of spherical cavities, presented
in Chapter 1, generalizing it to the case of cavities of arbitrary shape. For
the application that we have in mind, we focus the attention only to the
dimensional case d � 3.

This chapter is organized as follows: In Section 3.1 we recall some argu-
ments about linear elasticity, layer potentials techniques and the Neumann
function for the Lamé operator in the half-space. In Section 3.2 we analyze
the well-posedness of the direct problem both via an integral representation
formula and via a weak formulation. Core of the chapter are the last two
sections where in Section (3.3) we analyse the inverse problem of detecting
the cavity through boundary measurements while in Section 3.4 we derive
the asymptotic formula for the boundary diplacement field when the cavity
C is small compared to the distance from the boundary of the domain. As
a consequence of the asymptotic expansion, we retrieve the classical Mogi’s
formula.
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3.1 Lamé operator and layer potentials

Let Ω be a bounded Lipschitz domain in R3 representing the region oc-
cupied by a homogeneous and isotropic elastic medium. Let λ and µ be the
Lamé parameters, i.e. the compression modulus and the shear modulus, we
define the fourth-order elasticity tensor

C :� λIb I� 2µI,

where I is the identity matrix and I is the identity fourth-order tensor such
that IA � pA. We assume that C satisfies the minor and major simmetry
conditions, i.e.

Cijkh � Ckhij � Cjikh,

for all i, j, k, h � 1, 2, 3. If λ and µ satisfies the physical range

3λ� 2µ ¡ 0, and µ ¡ 0 (3.2)

the elasticity tensor C is said to be strongly convex, i.e.

CpA : pA ¥ η0|pA|2, (3.3)

where η0 � mint2µ, 2µ� 3λu. For a more in-depth discussion see [62, 87].
In linear elasticity, it is also common to use the Poisson ratio ν which is
related to λ and µ by the identity ν � λ{2pλ� µq.

3.1.1 Some preliminary notions
In a homogeneous and isotropic elastic medium, the elastostatic Lamé

operator L is defined by

Lu :� divpCp∇uq � µ∆u� pλ� µq∇divu,

where u represents the vector of the displacements. In terms of the Poisson
ratio it becomes Lu � µp∆u� 1{p1� 2νq∇divuq.

The explicit expression of the conormal derivative is given by

Bu
Bν :� pCp∇uqn � λpdivuqn� 2µpp∇uqn
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or, equivalently,

Bu
Bν � 2µBuBn � λpdivuqn� µpn� rotuq.

In this chapter we use both the notation Bu
Bν and pCp∇uqn to indicate the

conormal derivative. In particular, we use the first one to simplify the nota-
tion in some cases.
For the sequel, we recall that the strong convexity of the tensor C implies
the strong ellipticity of the Lamé operator which corresponds to the request
µ ¡ 0 and λ� 2µ ¡ 0, see [87].

We recall the Green’s formulas for the Lamé system which are called
Betti’s formulas. They can be obtained by integration by parts, see for
example [19, 104]. Given a bounded Lipschitz domain D � R3 and two
vectors u,v P R3, the first Betti formula is»

BD

u � BvBν dσpxq �
»
D

u � Lv dx�
»
D

Cp∇u : p∇v dx, (3.4)

where the quadratic form Q :� Cp∇u : p∇v is also equal to

Qpu,vq � λpdivuqpdivvq � 2µp∇u : p∇v.
From (3.4) it is straightforward to find the second Betti formula»

D

pu � Lv � v � Luq dx �
»
BD

�
u � BvBν � v �

Bu
Bν



dσpxq. (3.5)

These formulas will be used to prove the well-posedness of the (3.1), both
using an integral and a weighted Sobolev space approach, and to get an
integral representation formula for it. For this purpose, we need to introduce
the fundamental solution of the Lamé operator: the Kelvin matrix Γ (or
Kelvin-Somigliana matrix), i.e. the solution to the system

divpCp∇Γq � δ0I, x P R3zt0u,
where δ0 is the Dirac function centred at 0. Setting Cµ,ν :� 1{t16πµp1�νqu,
the explicit expression of Γ � pΓijq is

Γijpxq � �Cµ,ν
"p3� 4νqδij

|x| � xixj
|x|3

*
, i, j � 1, 2, 3, (3.6)
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where δij is the Kronecker symbol and Γij stands for the i-th component of
the displacement when a force is applied in the j-th direction at the point 0.
We recall that the gradient of Γ is given by

BΓij
Bxk pxq � Cµ,ν

"p3� 4νqδijxk � δikxj � δjkxi
|x|3 �3xixjxk

|x|5
*
, i, j, k � 1, 2, 3.

(3.7)
Therefore from (3.6) and (3.7) it is straightforward to infer the following
behaviour at infinity, i.e.

|Γpxq| � Op|x|�1q and |∇Γpxq| � Op|x|�2q as |x| Ñ 8. (3.8)

3.1.2 Layer potentials for the Lamé operator
In this section, we recall the main properties of the single and double

layer potentials connected to the Lamé system L. Given ϕ P L2pBΩq (see
[19, 23, 104]), the single and double layer potentials are defined by

SΓϕpxq :�
»
BΩ

Γpx� yqϕpyq dσpyq, x P R3,

ΩΓϕpxq :�
»
BΩ

BΓ
Bνpyqpx� yqϕpyq dσpyq, x P R3zBΩ,

(3.9)

where BΓ{Bν denotes the conormal derivative applied to each column of the
matrix Γ.

We summarize here some properties of these operators

i. By definition, SΓϕpxq and DΓϕpxq satisfy the Lamé system in R3zBΩ.

ii. SΓϕpxq � Op|x|�1q and DΓϕpxq � Op|x|�2q as |x| Ñ �8.

Next, we introduce K and K� that is the L2-adjoint Neumann-Poincaré
boundary integral operators defined, in the sense of Cauchy principal value,
by

Kϕpxq :� p.v.
»
BΩ

BΓ
Bνpyqpx� yqϕpyq dσpyq,

K�ϕpxq :� p.v.
»
BΩ

BΓ
Bνpxqpx� yqϕpyq dσpyq.
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As in the previous chapter, in the sequel the subscripts � and � indicate the
limits from outside and inside of the set Ω, respectively (see (2.17) for the
definition). We recall that t1, � � � , td�1 represent an orthonormal basis for the
tangent plane to BΩ and B{Bt � °d�1

k�1 B{Btk tk is the tangential derivative on
BΩ.

The following theorem about the jump relations of single and double
potentials for Lipschitz domains is due to Dahlberg, Kenig and Verchota
[68].
Theorem 3.1.1 ([68]). Let Ω be a bounded Lipschitz domain in R3. For
ϕ P L2pBΩq, the following relations hold, a.e on BΩ,

DΓϕ
���
�
pxq � �	1

2I�K
�
ϕpxq,

BSΓϕ

Bν
���
�
pxq � ��1

2I�K��ϕpxq,
BSΓϕ

Bt
���
�
pxq � BSΓϕ

Bt
���
�
pxq

(3.10)

It is worth noticing that the two operators K and K� are not compact
even on smooth domains, in contrast with the analogous operators for the
Laplace equation (see [23] and the considerations in the previous chapter),
due to the presence in their kernels of the terms

nipxj � yjq
|x� y|3 � njpxi � yiq

|x� y|3 , i � j, (3.11)

which make the kernel not integrable. Indeed, even in the case of smooth
domains, we cannot approximate locally the terms n�px�yq with a smooth
function, that is in terms of powers of |x � y| via Taylor expansion, in or-
der to obtain an integrable kernel on BΩ. Therefore, the analysis to prove
invertibility of the operators in (3.10) is complicated and usually based on
a regularization procedure (see [104]) in the case of smooth domains. For
Lipschitz domains the analysis is much more involved and, as for the Laplace
operator, based on Rellich formulas. These results are contained in [68] and
its companion article [79]. We recall here only the main aspects for the
three-dimensional case.

Let Ψ be the vector space of all linear solutions of the equations$&%divpCp∇ψq � 0, inΩ
Bψ
Bν � 0 on BΩ
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or, alternatively
Ψ :�  

ψ : ∇ψ � p∇ψqT � 0
(
.

This space is independent from the Lamé paramters and its dimension is 6.
A function ψ P Ψ is called infinitesimal rigid motion. We recall that ψ can be
expressed as

ψ � a�Ax, (3.12)

where A is a skew-symmetric matrix and a P R3. We define

L2
ΨpBΩq :�

!
f P L2pBΩq :

»
BΩ

f �w dσ � 0, @w P Ψ
)

We have

Proposition 3.1.2 ([68]). The operators

�1
2I�K� : L2

ΨpBΩq Ñ L2
ΨpBΩq

1
2I�K� : L2pBΩq Ñ L2pBΩq

are injective.

We omit the proof since is similar to that one of the scalar case.
The range of �1{2I�K� as an operator on all L2pBΩq is contained in L2

ΨpBΩq
since »

BΩ

BSΓϕ

Bν
���
�
pxqψpxq dσ �

»
BΩ

SΓϕ
Bψ
Bν dσpxq � 0

for all ψ P Ψ. This is because ψ is a solution to the elastostatic systems
satisfying Bψ{Bν � 0.

In addition, it holds

Proposition 3.1.3 ([68]). The operators

�1
2I�K� : L2

ΨpBΩq Ñ L2
ΨpBΩq

1
2I�K� : L2pBΩq Ñ L2pBΩq

have closed range.
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The key point to show that these two boundary operators have closed
range, as in the case of the Laplace operator, is the following inequality

C�1
����� 1

2I�K�
	
ϕ
���
L2pBΩq

¤
����1

2I�K�
	
ϕ
���
L2pBΩq

¤ C
����� 1

2I�K�
	
ϕ
���
L2pBΩq

where C is a constant independent of ϕ P L2pBΩq. However, we stress that
the analysis to get the equivalence of the norms in the elastic case is really
complicated since it is based on the twine of Rellich formulas for the Lamé
operators, estimates derived from them, Korn’s inequalities and results on
the biharmonic equations.

In order to prove the invertibility of the operators, it remains to show
dense range. To do that one can make use of the result on the invertibility for
the same operators in the case of smooth domains. The minimum regularity
we request on the domain is, at least, C1 but here, without loss of generality,
we consider C8 domains. As stated before, even if we use smooth domains
we cannot apply the Fredholm’s theory because K and K� are not compact
operators. However, the difference K � K� yields a compact operator, see
[68] for details.

The following proposition is needed

Proposition 3.1.4. Let H be a Hilbert space. If T : H Ñ H is a bounded
linear operator with closed range, with null space of dimension l   8, and
such that T � T � is compact, then the range of T has codimension l also.

Now, we state the invertibility result for smooth domains.

Lemma 3.1.5 ([68]). Let Ω be a bounded smooth domain with connected
boundary in R3. Let us consider the operators �1{2I�K� on BΩ. Then

(i) �1
2I�K� : L2

ΨpBΩq Ñ L2
ΨpBΩq

(ii) 1
2I�K� : L2pBΩq Ñ L2pBΩq

are invertible operators.

Proof. Let us prove piq (the same argument yield for piiq also). From the
previous two propositions we know that the operator �1{2I�K� is one-to-
one and has closed range. Moreover, the dimension of the null space is less
than or equal to 6 and the codimension is greater than or equal to 6. Since
p�1{2I�K�q � p�1{2I�Kq is compact, applying the Proposition 3.1.4, we
have the assertion.
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Now, we briefly explain the sequence of steps to deduce the invertibility
of the operators �1{2I � K� in the case of Lipschitz domains, giving only
the main ideas.

The starting point is to consider a sequence of C8 domains, which we call
Ωj, that converge to the Lipschitz domain Ω (for all the details see Theorem
1.12 in [131]). In such a scheme the BΩj can be projected homeomorphically
to BΩ so that the boundaries converge uniformly and so that the Lipschitz
characters of the Ωj are controlled by that of Ω. In fact, the unit normal
vectors to the Ωj will converge pointwise a.e. to those for Ω and in LppBΩq
for all 1 ¤ p ¤ 8. If Kj denotes the singular operatos defined on BΩj we
may project it onto BΩ and prove that

lim
jÑ�8

���K�
jf �K�f

���
L2pBΩjq

� 0

and a result analogous for the adjoint operator K. Then, since

dim
�
Ker

�
� 1

2I�K�
		

¤ dim
�
Ker

�
� 1

2I�K�
j

		
� dim

�
Coker

�
� 1

2I�K�
j

		
� l

¤ dim
�
Coker

�
� 1

2I�K�
		

where l   8 is independent of j, under other suitable assumptions, it can be
proven that

dim
�
Coker

�
� 1

2I�K�
		

� dim
�
Ker

�
� 1

2I�K�
		

� l.

Finally, using the invertibility Lemma 3.1.5 about smooth domains we find

Theorem 3.1.6. Let Ω be a bounded Lipschitz domain with connected bound-
ary in R3. Then

(i) �1
2I�K� :: L2

ΨpBΩq Ñ L2
ΨpBΩq

(ii) 1
2I�K� : L2pBΩq Ñ L2pBΩq

are invertible operators.
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3.1.3 Neumann function in the half-space
In this section we find the retrieve expression of the Neumann function

for the half-space which will be of help to find the integral representation
formula of a solution of (3.1). It was presented by Mindlin in [112] for the
first time and secondly in [113]. He used two different techniques to find its
explicit expression. In [112] he used Galerkin vectors and nuclei of strains
of the theory of linear elasticity; in [113] he utilized the Papkovich-Neuber
representations of a displacement vector field and the potential theory. Here,
we recall this second approach since it based on mathematical techniques.
These results are contained in [36].

Let us consider the boundary value problem$''''&''''%
divpCp∇vq � b inR3

�
Bv
Bν � 0 onR2

v � op1q, ∇v � op|x|�1q as |x| Ñ �8.
(3.13)

The Neumann function of (3.13) is the kernel N of the integral operator

vpxq �
»
R3
�

Npx,yqbpyq dy, (3.14)

which gives the solution to (3.13).
Given y � py1, y2, y3q, we recall that ry :� py1, y2,�y3q.

Theorem 3.1.7. The Neumann function N of problem (3.13) can be decom-
posed as

Npx,yq � Γpx� yq �R1px� ryq � y3R2px� ryq � y2
3 R3px� ryq,

where Γ is the Kelvin matrix, see (3.6), and Rk, k � 1, 2, 3, have components
Rk
ij given by

R1
ijpηq :� Cµ,ν

 �pf̃ � cν g̃qδij � p3� 4νqηiηj f̃ 3 � cν
�
δi3ηj � δj3p1� δi3qηi

�
f̃ g̃

� cνp1� δi3qp1� δj3qηiηj f̃ g̃2(
R2
ijpηq :� 2Cµ,ν

 p3� 4νq�δi3p1� δj3qηj � δj3p1� δi3qηi
�
f̃ 3

� p1� 2δ3jqδijη3f̃
3 � 3p1� 2δ3jqηiηjη3f̃

5(
R3
ijpηq :� 2Cµ,νp1� 2δj3q

 
δij f̃

3 � 3ηiηj f̃ 5(.
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for i, j � 1, 2, 3, where cν :� 4p1� νqp1� 2νq, Cµ,ν � 1
16πµp1�νq and

f̃pηq :� 1
|η| , g̃pηq :� 1

|η| � η3
.

Moreover, for any Mx,My ¡ 0, such that Mx ¡My, there exists C ¡ 0 such
that

|Npx,yq| ¤ C |x|�1 and |∇Npx,yq| ¤ C |x|�2 (3.15)

for any x,y P R3
� with |x| ¥Mx and |y| ¤My.

We define

Rpη, y3q :� R1pηq � y3 R2pηq � y2
3 R3pηq. (3.16)

We notice that R is the regular part of the Neumann function since the
singular point belongs to R3

�.
In order to prove this theorem, we recall the basic steps to deduce (3.14)

using the potential approach in [113].

Papkovich-Neuber potentials

The starting point is the Helmholtz decomposition of the vector field v
in (3.13) as

v � ∇φ�∇�ψ, (3.17)

where φ is a scalar potential and ψ a vector potential. Since the divergence
of ψ is arbitrary, ψ can be chosen in such a way that divψ � 0. From
the Lamé operator with volume forces b and the Helmholtz representation
(3.17), we find that

∆
�
v � 1

p1� 2νq∇φ
�
� b

µ
.

We define
h :� 4πµ

�
v � 1

p1� 2νq∇φ
�
, (3.18)

where the constant 4πµ has been added to simplify the calculations in the
sequel, hence

∆h � 4πb, divh � 8πµp1� νq
1� 2ν ∆φ. (3.19)
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By the identity ∆px � hq � x � ∆h � 2divh and the relation ∆h � 4πb, we
find that

divh � 1
2

�
∆px � hq � 4πx � b�. (3.20)

Combining this expression with the second one in (3.19) we get

∆
�

8πµp1� νq
1� 2ν φ� x � h2

�
� �2πx � b.

We define the scalar quantity β as

β :� 16πµp1� νq
1� 2ν φ� x � h, (3.21)

hence
∆β � �4πx � b.

Using the definition (3.21) of β, we can avoid the dependence from φ into
the relation (3.18), that is

v � Cµ,νt4p1� νqh�∇ pβ � x � hqu, (3.22)

where h and β are the Papkovich-Neuber potentials.
Let us introduce the functions

φ0pxq :� 1
|x| and ψ0pxq :� φ0pxq

1� x3φ0pxq �
1

|x| � x3
,

observing that, apart from Biφ0 � �xiφ3
0, i � 1, 2, 3, the following identities

hold, for α � 1, 2,

φ0 � ψ0 � �x3φ0 ψ0, Bαψ0 � �xαφ0 ψ
2
0,

B3ψ0 � φ0 ψ0, B3pφ0 ψ0q � φ3.

We denote by φ and rφ the values φ0px � e3q and φ0px � e3q, respectively,
with analogous notation for ψ0, i.e. ψ and rψ are the values ψ0px � e3q and
ψ0px� e3q, respectively.
Proposition 3.1.8. Let I be the identity matrix and δ the Dirac delta con-
centrated at �e3. Then, the matrix-valued function N � N pxq solution to

Lv :� div
�
Cp∇v� � δI in R3

�,
�
Cp∇v�e3 � 0 in R2,
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is given by

Nαα � �Cµ,ν
 p3� 4νqφ� x2

αφ
3 � rφ� rp3� 4νqx2

α � 2x3srφ3 � 6x2
αx3rφ5

� cν
� rψ � x2

α
rφ rψ2�(

Nαβ � �Cµ,νxαxβ
 
φ3 � p3� 4νqrφ3 � 6x3rφ5 � cν rφ rψ2(

N3α � �Cµ,νxα
 px3 � 1qφ3 � p3� 4νqpx3 � 1qrφ3 � 6x3px3 � 1qrφ5 � cν rφ rψ(

Nα3 � �Cµ,ν xα
 px3 � 1qφ3 � p3� 4νqpx3 � 1qrφ3 � 6x3px3 � 1qrφ5 � cν rφ rψ(

N33 � �Cµ,ν
 p3� 4νqφ� px3 � 1q2φ3 � p1� cνqrφ

� �p3� 4νqpx3 � 1q2 � 2x3
�rφ3 � 6x3px3 � 1q2rφ5(

(3.23)
where Cµ,ν � 1{t16πµp1� νqu, cν � 4p1� νqp1� 2νq and α � 1, 2.

To prove the previous proposition and in particular (3.23), we observe
that the columns N piq of N are determined by solving the equation Lv � eiδ
for i � 1, 2, 3. To solve this problem it is useful the Papkovich–Neuber
representation (3.22) of v, i.e.

v � Cµ,ν
 
4p1� νqh�∇

�
x � h� β

�(
with

#
∆h � 4πeiδ
∆β � 4πδi3δ.

(3.24)

where δij is the Kronecker symbol. The coupling between h and β is de-
termined by the boundary conditions on the plane tx3 � 0u, which are, for
α � 1, 2,

p1� 2νqpB3hα � Bαh3q � x � B2
α3h� B2

α3β � 0,
2ν divh� 2p1� 2νq B3h3 � x � B2

33h� B2
33β � 0.

(3.25)

Set
Gpx,yq :� �φ0

�
x� y�� φ0

�
x� ry�.

We denote with xf, gy the duality pairing between f and the function g.
Functions h and β can be determined by taking advantage of the relation
(which descends from the second Green identity)

F pxq � 1
4π x∆F,Gpx, �qy, (3.26)

applied to different choices of F , which will be specified step by step in the
next proof.
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Proof of Proposition 3.1.8. To determine N , we consider separately the case
of horizontal and vertical forcing. Due to the symmetry of the half-space,
the role of x1 and x2 can be interchanged. Therefore we only prove the case
of Lv � e1δ.

Horizontal force: Lv � e1δ. We choose h2 � 0, so that boundary
conditions become$'&'%

p1� 2νqpB3h1 � B1h3q � x1B2
13h1 � B2

13β � 0,
p1� 2νqB2h3 � x1B2

23h1 � B2
23β � 0,

2ν B1h1 � 2p1� νq B3h3 � x1B2
33h1 � B2

33β � 0,
for x3 � 0,

Differentiating the first equation with respect to x1, the second with respect
to x2 and taking the difference, we obtain

0 � p1� 2νqB2
23h1 � B2

23h1 � 2p1� νqB2
23h1 for x3 � 0,

which suggests, after integration with respect to x2, the choice F :� B3h1.
Applying (3.26),

B3h1 � �By3G
��
y��e3

� �B3pφ� rφq, for x3   0,

and thus h1 � �pφ� rφq.
Being B3h1 null for x3 � 0, integration of the second boundary condition

encourages the choice F :� p1� 2νqh3�B3β which is zero for x3 � 0. Hence,
since ∆F � 0, we deduce

p1� 2νqh3 � B3β � 0, for x3   0. (3.27)

Concerning the third boundary condition, for x3 � 0 we observe that

B1h1 � x1pφ3 � rφ3q � 2x1rφ3 � �2B1rφ
x1B2

33h1 � x1pφ3 � rφ3 � 3φ5 � 3rφ5q � 2x1prφ3 � 3rφ5q � �2
�B1rφ� B2

13
rφ�,

since φ and rφ coincide when x3 � 0. Substituting in the third boundary
condition, we obtain

F :� 2p1� νqB3h3 � B2
33β � 2p1� 2νqB1rφ� 2B2

13
rφ � 0 for x3 � 0.

Since ∆F � 0, we infer

2p1� νqB3h3 � B2
33β � 2p1� 2νqB1rφ� 2B2

13
rφ � 0 for x3   0,

79



and thus, being B1rφ � �x1rφ3 � �B3px1rφ rψq,
2p1� νqh3 � B3β � �2x1rφ3 � 2p1� 2νqx1rφ rψ for x3   0,

Coupling with (3.27), we deduce#
h3 � �2x1rφ3 � 2p1� 2νqx1rφ rψ
B3β � �2p1� 2νqx1rφ3 � 2p1� 2νq2x1rφ rψ for x3   0.

Recalling that rφ3 � B3prφ rψq and rφ rψ � B3 rψ, by integration,

β � �2p1� 2νqx1rφ rψ � 2p1� 2νq2x1 rψ for x3   0.

Using the identity px3 � 1qrφ rψ � rψ � rφ, we infer

x3h3 � β � x1
 �2p1� 2νqrφ� 2x3rφ3 � cν rψ(.

Substituting in (3.24), we get the expressions for Ni1 given in (3.23).

Vertical force: Lv � e3δ. Choosing h1 � h2 � 0, conditions (3.25)
become #

p1� 2νqBαh3 � B2
α3β � 0 pα � 1, 2q,

2p1� νqB3h3 � B2
33β � 0,

for x3 � 0.

Integrating the first relation with respect to xα, we obtain#
p1� 2νqh3 � B3β � 0,

2p1� νqB3h3 � B2
33β � 0,

for x3 � 0.

Since ∆h3 � ∆β � δ, identity (3.26) with F :� p1� 2νqh3 � B3β gives

p1� 2νqh3 � B3β �
 p1� 2νqG� By3G

(��
y��e3

� p1� 2νqp�φ� rφq � px3 � 1qφ3 � px3 � 1qrφ3,
(3.28)

for x3   0. Applying (3.26) to F :� 2p1� νqB3h3 � B2
33β, we deduce

2p1� νqB3h3 � B2
33β �

 �2p1� νqBy3G� B2
y3y3G

(��
y��e3

� B3
 �2p1� νqpφ� rφq � B3pφ� rφq(, for x3   0.
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Integrating with respect to x3, we infer
2p1� νqh3 �B3β � �2p1� νqpφ� rφq � px3 � 1qφ3 � px3 � 1qrφ3, for x3   0.
Coupling with (3.28), we get explicit expressions for h3 and B3β, namely#

h3 � �φ� p3� 4νqrφ� 2px3 � 1qφ̃3,

B3β � px3 � 1qφ3 � cν rφ� p3� 4νqpx3 � 1qrφ3
for x3   0.

Differentiation of B3β with respect to xα gives

B2
3αβ � �3xαpx3 � 1qφ5 � cνxαrφ3 � 3p3� 4νqxαpx3 � 1qrφ5

� B3
 
xαφ

3 � cνxαrφ rψ � p3� 4νqxαrφ3(
and thus

Bαβ � xα
 
φ3 � cν rφ rψ � p3� 4νqrφ3(, for x3   0.

Recalling identity (3.24), we deduce the corresponding expressions for Ni3 in
(3.23).

With the explicit expression of function N pxq at hand we can now prove
the Theorem 3.1.7.

Proof of Theorem 3.1.7. This proof is divided into three steps: Find the ex-
plicit expression of the Neumann function; prove its decay behaviour at in-
finity; prove the uniqueness of (3.13).
Expression of the Neumann function.
The Neumann function N � Npx,yq in the half-space tx3   0u is such that
its columns N1,N2 and N3 solve LNi � δyei, for i � 1, 2, 3, where δy is the
Dirac delta concentrated at y � py1, y2, y3q with y3   0. Thus, the Neumann
function N is given by

Npx,yq � 1
|y3|N

�
x1 � y1

|y3| ,
x2 � y2

|y3| ,
x3

|y3|


, (3.29)

as a result of the homogeneity of δ and the second order degree of L.
Taking the definitions of φ, rφ, rψ and computing them at px1 � y1, x2 �

y2, x3q{|y3|, we obtain the identities

f :� � φ

y3
� 1
|x� y| , f̃ :� �

rφ
y3

� 1
|x� ry| ,

g̃ :� �
rψ
y3

� 1
|x� ry| � x3 � y3

,
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where ry � py1, y2,�y3q. Hence, the components of C�1
µ,νN are given by

C�1
µ,νNαα � �p3� 4νqf � pxα � yαq2f 3 � f̃ � p3� 4νqpxα � yαq2f̃ 3 � cν g̃

� cνpxα � yαq2f̃ g̃2 � 2x3y3f̃
3 � 6pxα � yαq2x3y3f̃

5

C�1
µ,νNαβ � pxα � yαqpxβ � yβq

 �f 3 � p3� 4νqf̃ 3 � cν f̃ g̃
2 � 6x3y3f̃

5(
C�1
µ,νN3α � pxα � yαq

 �px3 � y3qf 3 � p3� 4νqpx3 � y3qf̃ 3 � cν f̃ g̃

� 6x3y3px3 � y3qf̃ 5(
C�1
µ,νNα3 � pxα � yαq

!
�px3 � y3qf 3 � p3� 4νqpx3 � y3qf̃ 3 � cν f̃ g̃

� 6x3y3px3 � y3qf̃ 5
)

C�1
µ,νN33 � �p3� 4νqf � px3 � y3q2f 3 � p1� cνqf̃ � p3� 4νqpx3 � y3q2f̃ 3

� 2x3y3f̃
3 � 6x3y3px3 � y3q2f̃ 5.

Using the expression of fundamental solution Γ for the Lamé operator, see
(3.6), and the relation f̃ � g̃� px3 � y3qf̃ g̃, the above formulas are rewritten
as N � Γ � R where Γ is computed at x � y and the component Rij, for
i, j � 1, 2, 3, of R are given by

Rαα � Cµ,ν
 �pf̃ � cν g̃q � p3� 4νqη2

αf̃
3 � cνη

2
αf̃ g̃

2 � 2x3y3
�
f̃ 3 � 3η2

αf̃
5�(

Rβα � Cµ,νηαηβ
 �p3� 4νqf̃ 3 � cν f̃ g̃

2 � 6x3y3f̃
5(

R3α � Cµ,νηα
 �p3� 4νqpη3 � 2y3qf̃ 3 � cν f̃ g̃ � 6x3y3η3f̃

5(
Rα3 � Cµ,νηα

!
�p3� 4νqpη3 � 2y3qf̃ 3 � cν f̃ g̃ � 6x3y3η3f̃

5
)

R33 � Cµ,ν
 �pf̃ � cν g̃q � p3� 4νqη2

3 f̃
3 � cνη3f̃ g̃ � 2x3y3

�
f̃ 3 � 3η2

3 f̃
5�(,

where ηα � xα � yα for α � 1, 2 and η3 � x3 � y3, which can be recombined
as

Rij � Cµ,ν
 �pf̃ � cν g̃qδij � p3� 4νqηiηj f̃ 3

� 2p3� 4νqy3
�
δ3ip1� δ3jqηj � δ3jp1� δ3iqηi

�
f̃ 3

� cν
�
δi3ηj � δ3jp1� δ3iqηi

�
f̃ g̃ � cνp1� δ3jqp1� δ3iqηiηj f̃ g̃2

� 2p1� 2δ3jqx3y3
�
δij f̃

3 � 3ηiηj f̃ 5�(
for i, j � 1, 2, 3. Since x3 � η3 � y3, we obtain the decomposition Rij :�
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R1
ij �R2

ij �R3
ij where

R1
ij :� Cµ,ν

 �pf̃ � cν g̃qδij � p3� 4νqηiηj f̃ 3 � cν
�
δ3iηj � δ3jp1� δ3iqηi

�
f̃ g̃

� cνp1� δ3jqp1� δ3iqηiηj f̃ g̃2(
R2
ij :� 2Cµ,νy3

 p3� 4νq�δ3ip1� δ3jqηj � δ3jp1� δ3iqηi
�
f̃ 3 � p1� 2δ3jqδijη3f̃

3

� 3p1� 2δ3jqηiηjη3f̃
5(

R3
ij :� 2Cµ,νp1� 2δ3jqy2

3
 
δij f̃

3 � 3ηiηj f̃ 5(,
that is the assertion.
Behaviour at infinity.
For the proof of the decay behaviour at infinity we note that if ς is a ho-
mogeneous function of degree α which is defined and continuous in R3

�zt0u,
then there exists a constant C such that

|ςpxq| ¤ C|x|α, x P R3
�zt0u.

Thus, since Rk are homogeneous of degree �k, for k � 1, 2, 3, and

|η| � η3 ¥ |η| � |x� ry| ¥ |x| �My

for |x| sufficiently large, the term R is bounded by

|R| ¤ |R1| � |y3||R2| � |y3|2|R3| ¤ C

�
1
|x| �

|y3|
|x|2 �

|y3|2
|x|3



¤ C

|x| .

Joining this bound with (3.8), we deduce the bound for N.
The estimates on |∇N| is consequence of the homogeneity of derivatives

of homogeneous functions together with the observation that f̃ and g̃ are C1

in R3
�zt0u.

Uniqueness for (3.13).
The uniqueness of the solution of (3.13) can be proven by the energy method.
Indeed, let v1 and v2 two solutions of (3.13). Their difference v :� v1 � v2

solves the homogeneous problem, i.e.$''''&''''%
divpCp∇vq � 0 inR3

�
Bv
Bν � 0 onR2

v � Op|x|�1q, ∇v � op|x|�1q as |x| Ñ �8,
(3.30)
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where the behaviour at infinity of v is given by the explicit decay condition
of N. Next we apply Betti’s formula (3.4) to v in B�

r p0q, with r ¡ 0, i.e.»
BB�

r p0q
v � BvBν dσpxq �

»
B�
r p0q

Cp∇v : p∇v dx.
On the boundary of the half-space Bv{Bν � 0 hence, utilizing the decay
conditions at infinity for v and ∇v, we find that��� »

BBbrp0q
v � BvBν dσpxq

���Ñ 0, as r Ñ �8.

Therefore »
R3
�

Cp∇v : p∇v dx � 0,

so thanks to (3.3) we find that p∇v � 0 which implies that v � a � Ax,
where a P R3 and A P R3�3 is a skew-matrix. On the other hand, by the
decay conditions at infinity for v and ∇v we find that a � 0 and A � 0.
This concludes the proof since v � 0.

Now, we have all the instruments to analyse the elastic boundary value
problem.

3.2 The elastic problem - well-posedness
In this section we analyse the bounday value problem presented at the

beginning of this chapter, that is$''''''''&''''''''%

divpCp∇uq � 0 in R3
�zC

Bu
Bν � pn on BC
Bu
Bν � 0 on R2

u � op1q, ∇u � op|x|�1q |x| Ñ 8,

(3.31)

where C is the cavity and p the pressure.
As did in the previous chapter, we show two ways of proving the well-

posedness of this problem: one way is to study the well-posedness through
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integral equations, i.e. to provide an integral representation formula for
solutions to (3.31) and then establishing the invertibility of some specific
integral operators.
Another pathway is to employ the weighted Sobolev spaces and the weak
formulation of (3.31). We stress that for the integral approach we adopt
a different strategy with respect to the scalar case presented in Chapter 2.
In fact, here, the integral representation formula needs to prove the well-
posedness. To get the integral representation formula we need to use the
expression of the Neumann function N provided in Theorem 3.1.7.

Both these methods have their own advantages: The integral represen-
tation formula is of help to find the asymptotic expansion of the solution of
(3.31) (using the approach of Ammari and Kang, see [23]); the variational
formulation of the problem is of help to solve the inverse problem of iden-
tifying the cavity from one measurement of the displacement provided on a
portion of the boundary of the half-space. We will in detail discuss these two
points next.

3.2.1 Well-posedness via integral equations
In this section we derive an integral representation formula for u which

satisfies problem (3.31). For this purpose, we utilize single and double layer
potentials defined in (3.9), with the kernel given by the fundamental solution
and, in addition, integral operators with the kernel given by the regular part
R of the Neumann function, i.e.

SRϕpxq :�
»
BC

pRpx,yqqTϕpyq dσpyq, x P R3
�,

DRϕpxq :�
»
BC

� BR
Bνpyqpx,yq


T

ϕpyq dσpyq, x P R3
�,

(3.32)

where ϕ P L2pBCq.
Theorem 3.2.1. The solution u to (3.31) is such that

u � pSΓn�DΓf � pSRn�DRf , in R3
�zC (3.33)

where SΓ, DΓ are defined in (3.9), SR, DR in (3.32), pn is the boundary
condition in (3.31) and f is the trace of u on BC, solution to�1

2I�K�DR
�
f � p

�
SΓn� SRn

�
, on BC. (3.34)
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Proof of Theorem 3.2.1. Given r, ε ¡ 0 such that C � B�
r p0q and Bεpyq �

R3
�zC, let

Ωr,ε �
�
R3
� XB�

r p0q
� z pC YBεpyqq

with r sufficiently large such that to contain the cavity C; additionally, we
recall that BBh

r p0q is the intersection of the half ball B�
r p0q with the boundary

of the half-space, and BBb
rp0q is the spherical cap (see Figure 2.2, where now

d � 3). In this domain, we apply Betti’s formula (3.5) to u and the k-th
column vector of N, indicated by N pkq, for k � 1, 2, 3, in Ωr,ε, hence

0 �
»

Ωr,ε

�
upxq � LN pkqpx,yq �N pkqpx,yq � Lupxq� dx

�
»

BBbrp0q

�BN pkq

Bνx px,yq � upxq �N pkqpx,yq � BuBνx pxq
�
dσpxq

�
»

BBεpyq

�BN pkq

Bνx px,yq � upxq �N pkqpx,yq � BuBνx pxq
�
dσpxq

�
»
BC

�BN pkq

Bνx px,yq � upxq �N pkqpx,yq � BuBνx pxq
�
dσpxq

:� I1 � I2 � I3,

since, from (3.31) and the boundary condition in (3.13),»
BBhr p0q

�BN pkq

Bνx px,yq � upxq �N pkqpx,yq � BuBνx pxq
�
dσpxq � 0.

The first step is to show that the term I1 goes to zero. This follows by the
behaviour at infinity of u given in (3.31) and of the Neumann function given
in (3.15). Indeed, we have�����

»
BBbrp0q

BN pkq

Bνx px,yq � upxq dσpxq
����� ¤

»
BBbrp0q

|u|
�����BN pkq

Bνx

����� dσpxq
¤ C

r2

»
BBbrp0q

|upxq|dσpxq.
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This last integral can be estimated by means of the spherical coordinates
x1 � r sinϕ cos θ, x2 � r sinϕ sin θ, x3 � r cosϕ where ϕ P rπ{2, πs, since
BBb

rp0q is a spherical cap in R3
�, and θ P r0, 2πq, indeed

C

r2

»
BBbrp0q

|u| dσpxq � C

π»
π
2

2π»
0

|upr, θ, ϕq| sinϕdθ dϕ

¤ C sup
θPr0,2πq,ϕPrπ2 ,πs

|upr, θ, ϕq| Ñ 0,

as r Ñ �8, since u � op1q. Similarly�����
»

BBbrp0q

N pkqpx,yq � BuBνx pxq dσpxq
����� ¤

»
BBbrp0q

|N pkq|
��� BuBνx

��� dσpxq
¤ C

r

»
BBbr

��� BuBνx
��� dσpxq.

By utilizing spherical coordinates again, we get
C

r

»
BBbrp0q

��� BuBνx
��� dσpxq ¤ C sup

θPr0,2πq,ϕPrπ2 ,πs
r
���BuBν pr, θ, ϕq���Ñ 0, (3.35)

as r Ñ �8, since |∇u| � opr�1q.
Integral I2 gives the value of the function u in y as ε goes to zero. Indeed,
we have�����

»
BBεpyq

N pkqpx,yq � BuBνx pxq dσpxq
����� ¤

»
BBεpyq

|N pkq|
��� BuBνx

��� dσpxq
¤ sup
xPBBεpyq

��� BuBνx
��� »
BBεpyq

�|Γpkq| � |Rpkq|� dσpxq � Opεq,

since the second integral has a continuous kernel. On the other hand

�
»

BBεpyq

BN pkq

Bνx px,yq � upxq dσpxq � �upyq �
»

BBεpyq

BN pkq

Bνx px,yq dσpxq

�
»

BBεpyq

rupyq � upxqs � BN
pkq

Bνx px,yq dσpxq.
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The latter integral tends to zero when ε goes to zero because�����
»

BBεpyq

rupyq � upxqs � BN
pkq

Bνx px,yq dσpxq
�����

¤ sup
xPBBεpyq

|upyq � upxq|
»

BBεpyq

�����BN pkq

Bνx

����� dσpxq
and this last integral is bounded when ε goes to zero. We finally observe that

�upyq �
»

BBεpyq

BN pkq

Bνx px,yq dσpxq � �upyq �
»

BBεpyq

BpΓpkq �Rpkqq
Bνx px,yq dσpxq

� �upyq �
»

BBεpyq

BΓpkq

Bνx px� yq dσpxq � upyq �
»

BBεpyq

BRpkq

Bνx px,yq dσpxq,

(3.36)
where the latter integral tends to zero as εÑ 0, since Rpkq, for k � 1, 2, 3, is
the regular part of the Neumann function. For the first integral, we prelimi-
narly observe that direct differentiation gives�BΓpkq

Bνx



h

px� yq � �c1ν
#
nkpxq B

Bxh
1

|x� y| � nhpxq B
Bxk

1
|x� y|

�
�
δhk � 3

p1� 2νq
B|x� y|
Bxk

B|x� y|
Bxh

�
B

Bnpxq
1

|x� y|

+
,

(3.37)
where c1ν :� p1� 2νq{p8πp1� νqq.
We substitute this expression into the integral (3.36) and we take into account
that

nhpxq � xh � yh
|x� y| ,

B
Bxk

1
|x� y| � � xk � yk

|x� y|3 ,
hence »

BBεpyq

nhpxq B
Bxk

1
|x� y| dσpxq � �

»
BBεpyq

pxh � yhqpxk � ykq
|x� y|4 dσpxq.

To solve this last integral we use spherical coordinates, that is

x1 � y1 � ε sinϕ cos θ, x2 � y2 � ε sinϕ sin θ, x3 � y3 � ε cosϕ,
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where ϕ P r0, πs and θ P r0, 2πq. From a straightforward calculation it follows

�
»

BBεpyq

pxh � yhqpxk � ykq
|x� y|4 dσpxq �

#
0 ifh � k

�4
3π ifh � k.

(3.38)

Therefore, from (3.37) and (3.38), we have»
BBεpyq

�
nkpxq B

Bxh
1

|x� y| � nhpxq B
Bxk

1
|x� y|



dσpxq � 0, (3.39)

for any h and k. Hence, (3.36) becomes

� upyq �
»

BBεpyq

BN pkq

Bνx px� yq dσpxq

� c1ν
3̧

h�1
uhpyq

»
BBεpyq

�
δhk � 3

p1� 2νq
B|x� y|
Bxk

B|x� y|
Bxh


 B
Bnx

1
|x� y| dσpxq

�Opεq.
Utilizing the spherical coordinates another time and the definition of c1ν , we
find that

1� 2ν
8πp1� νq

»
BBεpyq

δhk
B
Bnx

1
|x� y| dσpxq �

#
� 1�2ν

2p1�νq ifh � k

0 ifh � k.
(3.40)

Similarly

3
8πp1� νq

»
BBεpyq

�B|x� y|
Bxk

B|x� y|
Bxh


 B
Bnx

1
|x� y| dσpxq

�
#
� 1

2p1�νq ifh � k

0 ifh � k.

(3.41)

Lastly from (3.40) and (3.41), we find that

lim
εÑ0

����upyq � »
BBεpyq

BN pkq

Bνx px� yq dσpxq

��� �ukpyq.

89



Using the definition of single and double layer potentials (3.9), (3.32) and
splitting N as Γ�R formula (3.33) holds.

To find the integral equation satisfied by f is sufficient to apply the trace
properties of the double layer potentials (3.10) in formula (3.33).

By means of the integral representation formula (3.33) and the behaviour
of the Neumann function at infinity, see (3.15), it immediately follows

Corollary 3.2.2. If u is a solution to (3.31), then

upyq � Op|y|�1q as |y| Ñ 8. (3.42)

The well-posedness of the boundary value problem (3.31) is reduced to
prove the invertibility of

1
2I�K�DR : L2pBCq Ñ L2pBCq, (3.43)

which corresponds to show the injectivity and surjectivity of the above op-
erator. Specifically, the injectivity follows by proving the uniqueness of u
which can be obtained by the classical energy method, see [83, 104]. Once
we have the injectivity, the proof of the surjectivity of (3.43) follows by the
application of the index theorem regarding bounded and linear operators.

For this purpose, we here recall three important theorems of the functional
analysis for reader’s convenience: the Ascoli-Arzelà theorem, the closed range
theorem and the bounded inverse theorem (see [53, 99, 103, 138]). They are
useful to collect some information on the integral operators 1{2I � K and
DR.

Theorem 3.2.3 ([103]). Let Ω � Rd be a compact set and CpΩq the space of
continuous functions defined on Ω. A set S � CpΩq is relatively compact if
and only if it is bounded and equicontinuous, i.e., if there exists for all x P Ω
and all ψ P S a constant c such that

|ψpxq| ¤ c, (3.44)

and for all ε ¡ 0 there exists δ ¡ 0 such that

|ψpxq � ψpyq|   ε

for all x,y P Ω such that |x� y|   δ, and all ψ P S.
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Theorem 3.2.4 ([99, 138]). Let X and Y be Banach spaces, and T a closed
linear operator defined in X into Y such that DpT q � X. Then the following
propositions are all equivalent:

a. ImpT q is closed in Y ; b. ImpT �q is closed in X�;
c. ImpT q � pKerpT �qqK; d. ImpT �q � pKerpT qqK.
The next theorem, i.e., the bounded inverse theorem is a consequence of

the open mapping theorem.

Theorem 3.2.5 ([53]). Let X and Y be two Banach spaces and T a con-
tinuous linear operator from X into Y which is bijective. Then T�1 is also
bounded.

From the previous theorems, the next result follows

Lemma 3.2.6. The operator 1
2I � K : L2pBCq Ñ L2pBCq is invertible with

bounded inverse.

Proof. In [68] the authors proved that

1
2I�K� : L2pBCq Ñ L2pBCq

is a bounded linear operator, injective and with dense and closed range, i.e.
is invertible. Therefore, from Theorem 3.2.4 we have

Ker
�1

2I�K
� � t0u, Im

�1
2I�K

�K � t0u

and Imp1{2I � Kq is closed. From this considerations, we have that the
operator 1

2I � K : L2pBCq Ñ L2pBCq is bijective. The assertion of the
theorem follows utilizing Theorem 3.2.5.

It is straightforward to show that the operator DR is compact since it has
a continuous kernel. For this purpose we adapt the arguments contained in
[103].

Lemma 3.2.7. The operator DR : L2pBCq Ñ L2pBCq is compact.

Proof. For simplicity, we denote

Hpx,yq :� BR
Bν px,yq, x,y P BC.
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To show the compactness property we work columnwise with H, i.e. we
consider Hpkq, for k � 1, 2, 3.

Let S be a bounded set such that S � L2pBCq, that is }ϕ}L2pBCq ¤ K,
for any ϕ P S. From the Cauchy-Schwarz inequality we get

|pDRϕpyqqk|2 ¤ }Hpkqp�,yq}2
L2pBCq}ϕ}2

L2pBCq ¤ K|BC| max
x,yPBC

|Hpkq|,

with k � 1, 2, 3, for all y P BC and ϕ P S. Hence }DRpϕq} ¤ K 1, with
K 1 ¡ 0, which implies that DRpSq is bounded. Moreover, for all ε ¡ 0
there exist ϕ,ϕ1 P S and δ ¡ 0 such that if }ϕpyq � ϕ1pyq}L2pBCq   δ then,
applying again the Cauchy-Schwarz inequality

|DRpϕ�ϕ1qpyq|   ε.

From this last result it follows that DRpSq is an element of the space of
continuous function on BC. Moreover, each component of the matrix H is
uniformly continuous on the compact set BC � BC, so for every ε ¡ 0 there
exists δ ¡ 0 such that

}Hpkqpz,xq �Hpkqpz,yq} ¤ ε?
3K|BC|1{2 ,

for all x,y, z P BC with }x� y}   δ. Since

|pDRϕqkpxq � pDRϕqkpyq| ¤
»
BC

}Hpkqpz,xq �Hpkqpz,yq}}ϕpzq} dσpzq

¤ ε?
3
,

for k � 1, 2, 3, hence

}pDRϕqpxq � pDRϕqpyq} ¤ ε,

for all x,y P BC and ϕ P S, that is DRpSq is equicontinuous. Since CpBCq
is dense in L2pBCq, the assertion follows from the Ascoli-Arzelà Theorem
3.2.3.

As stated in the introduction of this section, the injectivity of the operator
1{2I�K�DR follows proving the uniqueness of (3.31). This is the topic of
the next theorem.
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Theorem 3.2.8 (uniqueness). The boundary valure problem (3.31) admits
a unique solution.
Proof. The proof is really similar to that one of Theorem 3.1.7. We only
insert it for the reader’s convenience.

Let u1 and u2 be solutions to (3.31). Then the difference v :� u1 � u2

solves the homogeneous version of (3.31), i.e.,$''''''''&''''''''%

divpCp∇vq � 0 in R3
�zC

Bv
Bν � 0 on BC
Bv
Bν � 0 on R2

v � Op|x|�1q, ∇v � op|x|�1q |x| Ñ 8,

(3.45)

where the decay condition on v comes from Corollary 3.2.2.
Applying Betti’s formula (3.4) to v in Ωr � pR3

� XB�
r p0qqzC, we find»

BΩr

v � BvBν dσpxq �
»
Ωr

Cp∇v : p∇v dx
Note that BΩr � BC Y BBb

rp0q Y BBh
r p0q, where we recall that BBb

rp0q is the
spherical cap and BBh

r p0q is the intersection of the half ball with tx3 � 0u.
From the boundary conditions in (3.45) we have that»

BC

v � BvBν dσpxq � 0,
»

BBhr p0q

v � BvBν dσpxq � 0.

Instead, from the decay conditions, we infer that on the spherical cap�����
»

BBbrp0q

v � BvBν dσpxq
����� ¤

»
BBbrp0q

|v|
���BvBν ��� dσpxq ¤ C

r

»
BBbrp0q

���BvBν ��� dσpxq.
Observe that using the decay conditions at infinity for the gradient of the
function v the last integral in formula above tends to zero as r Ñ �8. For
the proof, one can follow the same argument of (3.35) in which the spherical
coordinates were applied. Therefore»

R3
�zC

Cp∇v : p∇v dx � 0.

93



From the strong convexity of the tensor C, see (3.3), we find that p∇v � 0
in R3

�zC, which implies that v � a � Ax, where a P R3 and A P R3�3 is a
skew matrix (see (3.12). However, we find that a and A must be identically
null thanks to the behaviour of the function v and its gradient at infinity,
see (3.45). Therefore v � 0.

Remark 3.2.9. From this uniqueness result, the injectivity of the operator
(3.43) follows.

We recall, for the reader’s convenience, the definition of the index of an
operator (see [1, 99]), in order to prove the surjectivity.

Definition 3.2.1 ([1, 99]). Given a bounded operator T : X Ñ Y between
two Banach spaces, we call dimpKerpT qq and dimpY {ImpT qq the nullity and
the defect of T respectively. If the nullity or the defect of T is finite, then
we define the index of the operator T as the extended real number given by

ipT q � dimpKerpT qq � dimpY {ImpT qq.

In addition, the operator T is said to be

1. Semi-Fredholm if it has a closed range and either its nullity or its
defect is finite;

2. Fredholm if the nullity and the defect are both finite.

For our purposes we need to recall that if a bounded operator T : X Ñ Y
between Banach spaces has a finite defect then it has a closed range, see,
for example, Lemma 4.38 in [1]. In addition, we also recall the following
theorem on the index of a compact perbutation of a Fredholm operator which
is a consequence of the theorem of F.V. Atkinson on the characterization of
Fredholm operators, see [1].

Theorem 3.2.10 ([1]). Let T : X Ñ Y be a bounded linear operator of
Fredholm type and K : X Ñ Y a compact operator between the two Banach
spaces X and Y . Then T �K is Fredholm with index ipT �Kq � ipT q.

Finally we prove the surjectivity theorem.

Theorem 3.2.11. The operator 1
2I�K�DR is onto in L2pBCq.
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Proof. As a consequence of Lemma 3.2.6, the operator 1
2I � K : L2pBCq Ñ

L2pBCq is Fredholm with index i
�1

2I�K
� � 0. Indeed, it is injective and sur-

jective hence its nullity and defect are null. In addition, since DR : L2pBCq Ñ
L2pBCq is a compact operator, see Lemma 3.2.7, it follows, by the application
of Theorem 3.2.10, that

i
�1

2I�K�DR
� � 0.

By using the definition of the index of an operator we find that

dim
�
Ker

�1
2I�K�DR

�� � dim
�
L2pBCq{Im �1

2I�K�DR
��
.

Therefore,by Remark 3.2.9, it follows that dimpKerp1
2I � K � DRqq � 0

which implies that dimpL2pBCq{Imp1
2I�K�DRqq � 0. This means that the

operator 1
2I�K�DR has a closed range (since its defect is null), hence

Im
�1

2I�K�DR
� � L2pBCq.

Remark 3.2.12. The existence of a solution of (3.31) follows from this
surjectivity result.

The well-posedness of (3.31) finally follows collecting all previous results.

Corollary 3.2.13. There exists a unique solution to (3.31).

Proof. Uniqueness follows from Theorem 3.2.8 and the existence from Re-
mark 3.2.12.

3.2.2 Well-posedness via weighted Sobolev spaces
As stated in the introduction of this chapter, we now present the well-

posedness using a variational approach in weighted Sobolev spaces. Their
definition can be found in Section 2.3.1, precisely in Definition 2.1.4, choos-
ing d � 3. We always use the hypothesis (3.2) on the Lamé parameters.
This approach is more suitable to get quantitative stability estimates of the
solution to $'&'%

divpCp∇uq � 0 inR3
�zC

pCp∇uqn � pn on BC
pCp∇uqe3 � 0 onR2,

(3.46)
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since they are consequences of the Lax-Milgram theorem. The adjective
“quantitative” means that we are able to explicit the dependence of the
constants, which appear in the estimate of the solution, in terms of some a
priori information on the cavity. As we will see later, stability estimates of
the direct problem are used to find stability estimates for the inverse problem.
For this reason, we need to list here the assumptions which we make on the
cavity C.

Assumption - direct problem. We assume Lipschitz regularity, that is

BC is Lipschitz with constants r0 andE0 (3.47)

and, denoting with diampAq the diameter of a set A, we require

B�
2D0p0q � C, (3.48)

dpC,R2q ¥ D0, (3.49)
diampCq   D0, (3.50)

where the constant D0 ¡ 1 without loss of generality.

For the definition of the constants r0 and E0 see Definition 1.1.1. In the
estimates that will follow the constants will depend on the Lamé parameters
λ and µ, on r0, E0 and D0.

We recall the definition of the weighted Sobolev space of our interest (see
also Remark 2.1.4 for the general case)

H1
wpR3

�zCq �
!
u P D1pR3

�zCq,
u

ρ
P L2pR3

�zCq,∇u P L2pR3
�zCq

)
, (3.51)

where ρ � p1 � |x|2q�1{2, see Equation (2.3) in Section 2.1, with the norm
given by

}u}2
H1
wpR3

�zCq �
�
}ρ�1u}2

L2pR3
�zCq � }∇u}2

L2pR3
�zCq



. (3.52)

Our goal is to prove well-posedness and find quantitative stability estimates of
the solution in H1

wpR3
�zCq, which will be used in the treatment of the inverse

problem. To prove the existence and uniqueness of the solution to (3.46),
essentially we need to study the continuity and coercivity of the bilinear
form associated to the problem in (3.46). As we will see, coercivity comes
from weighted Poincaré and Korn-type inequalities. Since we want to find
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quantitative estimates for the solution, we need to utilize quantitative form
of these two inequalities. In [37] the authors proved a quantitative version of
these two inequalities in H1

wpR3
�zCq. For completeness, in the next lines we

recall how to prove these results.
One way to proceed to prove a weighted Poincaré and Korn-type inequality
in H1

wpR3
�zCq is to use a suitable partition of the unity. For this reason, we

consider two half balls, which we call B�
r p0q and B�

Rp0q, with r   R, such
that

C � B�
r p0q � B�

Rp0q.
Using the a priori information (3.49) and (3.50) on the cavity C, we can, for
instance, fix

r � 3D0 and R � 4D0.

We are now in the position to construct a specific partition of the unity of
R3
�. In particular, we take ϕ1, ϕ2 P C8pR3

�q such that

0 ¤ ϕ1, ϕ2 ¤ 1 and ϕ1 � ϕ2 � 1 inR3
�, (3.53)

with

ϕ2 � 0, ϕ1 � 1, inB�
r p0q, (3.54)

ϕ1 � 0, ϕ2 � 1, in t|x| ¥ Ru X R3
�, (3.55)

|∇ϕ1| ¤ c

ρ
, |∇ϕ2| ¤ c

ρ
, inB�

Rp0qzB�
r p0q. (3.56)

It is straightforward to see that, for the choice made for r and R, the constant
c is an absolute positive constant, i.e., does not depend on D0.
For the following proof, it is useful to recall and adapt a generalization of
Hardy’s inequality which is contained in [102], see Lemma 3 p. 83.

Proposition 3.2.14. Let ζ ¡ 0. For any u P H1
wpR3

� X t|x| ¥ ζuq it holds»
R3
�Xt|x|¥ζu

���u
ρ

���2 dx ¤ C

»
R3
�Xt|x|¥ζu

|∇u|2 dx,

where the constant C does not depend on u.

Proof. The proof is a small variation of that one contained in [102] of Lemma
2 p. 82 and Lemma 3 p. 83. For this reason we only put in evidence
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changes to do. We note that the statement of the theorem can be proved
componentwise for the displacement vector, i.e.,»

R3
�Xt|x|¥ζu

u2
i

ρ2 dx ¤ C

»
R3
�Xt|x|¥ζu

|∇ui|2 dx, for i � 1, 2, 3.

For our purposes, it is sufficient to take a � 0, n � 3 and p � 2, from the
statement of Lemma 2 in [102]. We define the function ψiprq :� ³

K1
uipr,θq dS1,

where pr,θq are the polar coordinates with r ¥ ζ and K1 � R3
� X t|x| � 1u.

By the application of the Hölder inequality, we get» �8

ζ

r2pψ1
iq2 dr �

» �8

ζ

r2
�»

K1

Bui
Br dS1


2

dr ¤ C1

»
R3
�Xt|x|¥ζu

|∇ui|2 dx.
(3.57)

This inequality implies that there exists a constantM ¥ 0 such that ψiprq Ñ
M , as r Ñ �8. Since ui P H1

wpR3
� X t|x| ¥ ζuq, this implies that M � 0. In

fact,

|ψipr2q � ψipr1q| �
�����
» r2

r1

ψ1
i dr

����� ¤
�����
» r2

r1

pψ1
iq2r2 dr

�����
1{2�����

» r2

r1

1
r2 dr

�����
1{2

(3.58)

Observing that the second integral on the righthand side tends to zero as
r1, r2 Ñ �8 and the first one is bounded thanks to (3.57), we get that the
lefthand side of (3.58) tends to zero as r1, r2 Ñ �8. Now, using a weighted
Hardy’s inequality, see for example [102, 109], we find that» �8

ζ

pψiq2 dr ¤ C

» �8

ζ

r2pψ1
iq2 dr ¤ C

»
R3
�zt|x|¥ζu

|∇ui|2 dx (3.59)

where the constant C does not depend on ui. Thanks to the Poincaré in-
equality, see [102], we have»

K1

|ui � ψi|2 dS1 ¤ C

»
K1

r2|∇ui|2 dS1,

where C does not depend on r and ui. Hence it follows that»
K1

|ui|2dS1 ¤ C

�»
K1

r2|∇ui|2 dS1 �
»
K1

|ψi|2 dS1



.
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Integrating with respect to r and then passing to Cartesian coordinates, we
find»
R3
�zt|x|¥ζu

�
ui
ρ


2

dx ¤
»
R3
�zt|x|¥ζu

puiq2|x|�2 dx

¤ C

�»
R3
�zt|x|¥ζu

|∇ui|2 dx�
»
R3
�zt|x|¥ζu

|x|�2pψiq2 dx
�
.

Through (3.59) the assertion of the proposition follows.

We are now in the position to prove the following theorem.

Theorem 3.2.15 ( Weighted Poincaré Inequality). Given ρ in (2.3) and
for any function u P H1

wpR3
�zCq, there exists a positive constant c, with

c � cpr0, E0, D0q, such that»
R3
�zC

����uρ
����2 dx ¤ c

»
R3
�zC

|∇u|2 dx. (3.60)

Proof. From the property of ϕ, see (3.53), we first observe that����uρ
����2

L2pR3
�zCq

¤ 2
�����ϕ1

u

ρ

����2

L2pR3
�zCq

�
����ϕ2

u

ρ

����2

L2pR3
�zCq



:� 2pP1 � P2q.

We need to find estimates of P1 and P2.
Since ρ�1 ¤ 1, from the property (3.55) we find

P1 �
����ϕ1

u

ρ

����2

L2pB�
Rp0qzCq

¤ }ϕ1u}2
L2pB�

Rp0qzCq
. (3.61)

Observing that ϕ1 � 0 on BBb
Rp0q, we can estimate the right-hand side of

(3.61) by using a quantitative Poincaré inequality for functions vanishing on
a portion of the boundary of a bounded domain. This result has been proved,
for instance, in [10] (Theorem 3.3 and Example 3.6). Then

}ϕ1u}2
L2pB�

Rp0qzCq
¤ c }∇pϕ1uq}2

L2pB�
Rp0qzCq

, (3.62)
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where c is a positive constant such that c � cpr0, E0, D0q. Therefore, the
right-hand side of the previous inequality gives

}∇pϕ1uq}2
L2pB�

Rp0qzCq
¤ 2

�
}ub∇ϕ1}2

L2pB�
Rp0qzCq

� }ϕ1∇u}2
L2pB�

Rp0qzCq

	
.

(3.63)
Now, utilizing the property (3.56) on the gradient of ϕ1, we find

}ub∇ϕ1}2
L2pB�

Rp0qzCq
�

»
B�
Rp0qzC

|u|2|∇ϕ1|2 dx ¤ c

»
B�
Rp0qzB�

r p0q

|u|2
ρ2 dx. (3.64)

Inserting (3.64) in (3.63) and then (3.63) in (3.62) and recalling (3.53), we
have

}ϕ1u}2
L2pB�

Rp0qzCq
¤ c

�����uρ
����2

L2pt|x|¡ruXR3
�q
� }∇u}2

L2pB�
Rp0qzCq

�
. (3.65)

For the first term in the right-hand side of the inequality (3.65), we apply
Hardy’s inequality, see Proposition 3.2.14, that is����uρ

����2

L2pt|x|¡ruXR3
�q
¤ c }∇u}2

L2pt|x|¡ruXR3
�q, (3.66)

where the constant c is independent from u. Inserting (3.66) in (3.65) and
then going back to (3.61), we have

P1 �
����ϕ1

u

ρ

����2

L2pB�
Rp0qzCq

¤ c
�
}∇u}2

L2pB�
Rp0qzCq

� }∇u}2
L2pt|x|¡ruXR3

�q
	

¤ c }∇u}2
L2pR3

�zCq.

(3.67)

For the term P2, we use the properties (3.53) and (3.54) and apply again
Hardy’s inequality, see Proposition 3.2.14, i.e.,

P2 �
����ϕ2

u

ρ

����2

L2pR3
�zCq

¤
����uρ

����2

L2pt|x|¡ruXR3
�q
¤ c}∇u}2

L2pt|x|¡ruXR3
�q

¤ c }∇u}2
L2pR3

�zCq.

(3.68)

Putting together the inequalities (3.67) and (3.68) we have the assertion.
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To prove a Korn-type inequality in the exterior domain of a half-space, we
need a preliminary result about the bound of the gradient of a function u P
H1
wpR3

�zCq with its symmetric part. It is an adaptation of a lemma proved
by Kondrat’ev and Oleinik in [102] (see Lemma 5. p. 85) in full generality to
the case of functions u P H1

wpR3
�zCq. The only difference between our and

Kondrat’ev and Oleinik result is the fact that our estimate does not contain
rigid motions because they do not belong to H1

wpR3
�zCq.

Lemma 3.2.16. Let u P H1
wpR3

�zCq. For every r1   r there exists a positive
constant c such that

}∇u}L2pt|x|¡ruXR3
�q ¤ c}p∇u}L2pt|x|¡r1uXR3

�q,

where c � cpr, r1q.
Now, it follows this quantitative version of the Korn inequality.

Theorem 3.2.17 (Korn-type Inequality). For any function u P H1
wpR3

�zCq
there exists a positive constant c, with c � cpr0, E0, D0q, such that»

R3
�zC

|∇u|2 dx ¤ c

»
R3
�zC

|p∇u|2 dx. (3.69)

Proof. Using the definition of the functions ϕ1 and ϕ2, see (3.53), we can
estimate the gradient of the function u in the following way:

}∇u}2
L2pR3

�zCq ¤ 2
�
}∇pϕ1uq}2

L2pR3
�zCq � }∇pϕ2uq}2

L2pR3
�zCq



:� 2pK1

1 �K1
2q.

We estimate, separately, the two terms K1
1 and K1

2.
By (3.55) we find

K1
1 � }∇pϕ1uq}2

L2pR3
�zCq � }∇pϕ1uq}2

L2pB�
Rp0qzCq

. (3.70)

Since ϕ1 � 0 on BBb
Rp0q and we are working in a bounded domain, we apply

the quantitative Korn inequality for functions vanishing on a portion of the
boundary of a bounded domain, see for instance [10] (Theorem 5.7), from
which it follows, for c � cpr0, E0, D0q,

}∇pϕ1uq}2
L2pB�

Rp0qzCq
¤ c }p∇pϕ1uq}2

L2pB�
Rp0qzCq

¤ c

�
}ub∇ϕ1}2

L2pB�
Rp0qzCq

� }ϕ1 p∇u}2
L2pB�

Rp0qzCq



,
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where for the first term in the righthand side of the previous inequality we
have used

}{ub∇ϕ1}2
L2pB�

Rp0qzCq
¤ }ub∇ϕ1}2

L2pB�
Rp0qzCq

.

Now, utilizing (3.64), the properties (3.53) and Hardy’s inequality (3.66), we
have
}ub∇ϕ1}2

L2pB�
Rp0qzCq

�}ϕ1 p∇u}2
L2pB�

Rp0qzCq

¤ c

�����uρ
����2

L2pt|x|¡ruXR3
�q
� }p∇u}2

L2pB�
Rp0qzCq

�
¤ c

�
}∇u}2

L2pt|x|¡ruXR3
�q � }p∇u}2

L2pB�
Rp0qzCq

	
.

Applying Lemma 3.2.16 to the first term in the righthand side of the previous
formula, we find

}∇u}2
L2pt|x|¡ruXR3

�q ¤ c}p∇u}2
L2pt|x|¡r1uXR3

�q,

where we choose r1 � 2D0   r so that C � B�
r1 p0q (see the a priori informa-

tion (3.48)). From all these results and going back to (3.70), we find

K1
1 ¤ c

�
}p∇u}2

L2pB�
Rp0qzCq

� }p∇u}2
L2pt|x|¡r1uXR3

�q



¤ c }p∇u}2

L2pR3
�zCq. (3.71)

In a similar way, using the properties (3.53) and (3.54), we find
K1

2 � }∇pϕ2uq}2
L2pR3

�zCq � }∇pϕ2uq}2
L2pt|x|¡ruXR3

�q

¤ c

�
}ub∇ϕ2}2

L2pt|x|¡ruXR3
�q � }ϕ2∇u}2

L2pt|x|¡ruXR3
�q



.

Utilizing properties (3.53) and (3.56) of ϕ2, we get
}ub∇ϕ2}2

L2pt|x|¡ruXR3
�q�}ϕ2∇u}2

L2pt|x|¡ruXR3
�q

¤ c

�����uρ
����2

L2pt|x|¡ruXR3
�q
� }∇u}2

L2pt|x|¡ruXR3
�q

�
.

Finally, for the last two terms of the previous formula, we apply the Hardy’s
inequality (3.66) and the result in Lemma 3.2.16 from which

K1
2 ¤ c }p∇u}2

L2pt|x|¡r1uXR3
�q ¤ c }p∇u}2

L2pR3
�zCq. (3.72)

The assertion of the statement follows by collecting the results in (3.71) and
(3.72).
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Well-posedness

We are now in position to prove that there exists a unique weak solution
of the elastic problem (3.46) in H1

wpR3
�zCq.

We first write a weak formulation of the problem. To do that we assume,
for the moment, u regular and the test functions v in DpR3

�zCq. We first
multiply the equation divpCp∇uq in (3.46) for v. Then we integrate in R3

�zC
by parts using boundary conditions, hence it follows that»

R3
�zC

Cp∇u : p∇v dx � �p
»
BC

n � v dσpxq, @v P DpR3
�zCq.

This formulation continues to be true inH1
wpR3

�zCq since the functional space
DpR3

�zCq is dense onto the weighted Sobolev space H1
wpR3

�zCq, see Section
2.1.1. Therefore problem (3.46) becomes:
find u P H1

wpR3
�zCq such that

apu,vq � fpvq, @v P H1
wpR3

�zCq, (3.73)

where a : H1
wpR3

�zCq �H1
wpR3

�zCq Ñ R is the bilinear form given by

apu,vq �
»

R3
�zC

Cp∇u : p∇v dx, (3.74)

and f : H1
wpR3

�zCq Ñ R is the linear functional given by

fpvq � �p
»
BC

n � v dσpxq. (3.75)

We finally have

Theorem 3.2.18. Problem (3.46) admits a unique solution u P H1
wpR3

�zCq
satisfying

}u}H1
wpR3

�zCq ¤ cp, (3.76)

where the constant c � cpλ, µ, r0, E0, D0q.
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Proof. Well-posedness of problem (3.46) follows by the application of the
Lax-Milgram theorem to (3.73). This means that we need to prove coer-
civity and continuity of the bilinear form (3.74) and continuity of the linear
functional (3.75).
Continuity and coercivity of (3.74).
From the Cauchy-Schwarz inequality we have

|apu,vq| �
�����
»

R3
�zC

Cp∇u : p∇v dx����� ¤ c }p∇u}L2pR3
�zCq}p∇v}L2pR3

�zCq

¤ c }u}H1
wpR3

�zCq}v}H1
wpR3

�zCq,

where c � cpλ, µq. Moreover, the application of the quantitative version of
the Poincaré and Korn inequalities, proved in Theorem 3.2.15 and Theorem
3.2.17, respectively, and the strong convexity condition of C, see (3.3), give
the coercivity of the bilinear form (3.74). Indeed

apu,uq �
»

R3
�zC

Cp∇u : p∇u dx ¥ c}p∇u}2
L2pR3

�zCq

¥ c}∇u}2
L2pR3

�zCq ¥ c}u}2
H1
wpR3

�zCq,

where the constant c � cpλ, µ, r0, E0, D0q.
Continuity of (2.38).
Let us take B�

2D0p0q. The result follows by the application of the trace
theorem for bounded domains, see Theorem 2.1.1, indeed������ p

»
BC

n � v dσpxq
����� ¤ c p}v}L2pBCq

¤ c p

�����vρ
����
L2ppB�

2D0
p0qqzCq

� }∇v}L2ppB�
2D0

p0qqzCq

�
¤ c p}v}H1

wpR3
�zCq.

Thanks to the previous results, the well-posedness of (3.46) follows by Lax-
Milgram. Finally, we find quantitative stability estimates for the solution
of the direct problem employing again Poincaré and Korn inequalities, see
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Thereorem 3.2.15 and Theorem 3.2.17, and the strong convexity of C, see
(3.3). In fact,

}u}2
H1
wpR3

�zCq ¤
�����
»

R3
�zC

Cp∇u : p∇u dx����� ¤
�����p
»
BC

n � u dσpxq
����� ¤ cp}u}H1

wpR3
�zCq,

where the constant c � cpλ, µ, r0, E0, D0q, hence the assertion of the theorem
follows.

3.3 The inverse problem: stability estimates
In this section we study in detail the inverse problem presented in Chap-

ter 1, which corresponds to answer, from a mathematical point of view, to
this question: Given the displacement vector u on a portion of the boundary
of the half-space can we detect uniquely and in a stable way the cavity C?
As explained in Chapter 1, the main tool which is utilized to finding stability
estimates for this kind of inverse problems consists, essentially, in quanti-
tative estimates of unique continuation: stability estimates of continuation
from Cauchy data (see, for instance, [90]), from the interior [15], three spheres
inequalities ([2, 105, 6, 8]) and doubling inequalities in the interior [86, 11].
One can consult [4, 115], where these techniques were employed to find sta-
bility estimates for the inverse problem of detection of cavities for scalar
elliptic equations and the Lamé system, respectively. For applications of
these techniques in other contexts arising in inverse problems see, for exam-
ple, [7, 8, 9, 13, 15].
In the next lines, we set the assumptions which are utilized to solve our in-
verse problems. Then, in the following subsections, we prove the results we
need to find the stability estimates.

In addition to the a-priori assumptions (3.2), (3.48), (3.49) and (3.50),
we require

Assumption - inverse problem. We assume that the measurements of
the displacement field are given on

B1
s0p0q � tx P R2 : x2

1 � x2
2   s2

0u (3.77)

which is contained in tx3 � 0u, with s0   D0.
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To obtain stability estimates for the inverse problem we need to require
more regularity on C than the Lipschitz one. Specifically, we assume
that

BC is of classC3 with constant r0 andE0. (3.78)
In addition, we recall that C satisfy the a priori information (3.48),
(3.49) and (3.50). We also assume that

R3
�zC is connected.

If C1 and C2 are two cavities, we define

G the unbounded connected component of R3
�zpC1 Y C2q. (3.79)

It is straightforward to note that B1
s0p0q � BG.

Finally, we assume that

the pressure p acting on BC is known. (3.80)

Utiling the hypothesis (3.80), we introduce the displacement field

u � p

3λ� 2µx (3.81)

which is helpful to reduce the direct problem (3.46) to a problem with ho-
mogeneous Neumann boundary conditions on the boundary of the cavity. It
is straightforward to check that u satisfies the Lamé system and the same
boundary condition on C satisfied by u. By means of this auxiliary displace-
ment field, we can define

w :� u� u, (3.82)
which satisfies the following boundary value problem$'''&'''%

divpCp∇wq � 0 inR3
�zC

pCp∇wqn � 0 on BC
pCp∇wqe3 � �pe3 onR2

w � u P H1
wpR3

�zCq,

(3.83)

where e3 � p0, 0, 1q. We can now state precisely our inverse problem

The inverse problem: Determine the cavity C from a single pair of the
Cauchy data on B1

s0p0q of the solution to (3.83).
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Given two cavities Ci, for i � 1, 2, we denote by wi, for i � 1, 2, the
difference

wi � ui � u, for i � 1, 2, (3.84)
where wi and ui are respectively the solutions to (3.83) and (3.46) with
C � Ci, for i � 1, 2. From the definition of the function w, it immediately
follows that

w1 �w2 � u1 � u2, in R3
�zpC1 Y C2q. (3.85)

3.3.1 A regularity result
Utilizing the a priori assumption (3.78), we can prove that the solution u

of the direct problem (3.46) is more regular. For this purpose, we adopt the
integral representation formula given in (3.33) with (3.34), and we consider
a bounded domain Q � R3

� such that

BQ P C3 with constants r0, E0, (3.86)
B�
αD0p0q �� Q �� B�

βD0p0q, (3.87)

where α ¡ 2 and β ¥ 3, with α   β, and we recall that for this choice of α
the cavity C � B�

αD0p0q, see Assumptions (3.48). It holds
Proposition 3.3.1. Under the assumptions (3.78) for C and (3.86), (3.87)
for Q, the solution of problem (3.46), satisfies

}u}C1,1{2pQzCq ¤ cp, (3.88)

where the constant c � cpλ, µ, α, β, r0, E0, D0q.
Proof of Theorem 3.3.1. Taking y P BQzBC, the kernels of the integral op-
erators in (3.33) are regular, see also the explicit expression of the Neumann
function in Theorem 3.1.7. Then we can estimate Dkupyq, for k � 0, 1, 2, 3,
that is

|Dkupyq| ¤ p|BC| sup
xPBC

yPBQzBC

|Dk
yNpx,yq|�|BC|1{2}f}L2pBCq sup

xPBC
yPBQzBC

|Dk
ypCp∇xNpx,yqq|.

Utilizing the regularity properties of N and the Theorem 3.1.7 (in particular
properties (3.15) and its generalizations), we yield

sup
xPBC

yPBQzBC

|Dk
yNpx,yq| ¤ c

Dk�1
0

, sup
xPBC

yPBQzBC

|Dk
ypCp∇xNpx,yqq| ¤ c

Dk�2
0

,

(3.89)
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where the constant c � cpλ, µ, αq. From the trace estimate applied in Q, we
have

}f}L2pBCq ¤ c}u}H1
wpR3

�zCq ¤ cp, (3.90)

hence, from (3.89) and (3.90), we get

|Dkupyq| ¤ cp,

where the constant c � cpλ, µ, α, r0, E0, D0q. Therefore
}Dku}L8pBQzBCq ¤ cp, k � 0, 1, 2, 3. (3.91)

With the estimates just obtained, we can apply global regularity estimate
for the elastostatic system with Neumann boundary conditions (see [130],
Theorem 6.6, p. 79) for u in QzC, i.e.,

}u}H3pQzCq ¤ c

�
}u}L2pQzCq � }pCp∇uqn}H3{2pBpQzCqq



, (3.92)

with c � cpλ, µ, α, β, r0, E0, D0q. We estimate the two terms in the right-hand
side of (3.92). Then, by (3.76)

}u}L2pQzCq ¤ c

����uρ
����
L2pR3

�zCq
¤ cp, (3.93)

where c � cpλ, µ, α, β, r0, E0, D0q. For the term }pCp∇uqn}H3{2pBpQzCqq we note
that

pCp∇uqn � 0, on BQX tx3 � 0u, pCp∇uqn � pn, on BC,
and since BC is of class C3, see (3.78), it follows pCp∇uqn P C2pBCq, hence,
again

}pCp∇uqn}H3{2pBCq ¤ cp. (3.94)
Analogously, from the estimate (3.91) and the regularity of the boundary of
Q, we find

}pCp∇uqn}H3{2pBQzBCq ¤ cp. (3.95)
Therefore, from (3.93), (3.94) and (3.95), the estimate (3.92) gives

}u}H3pQzCq ¤ cp.

Finally, applying the general Sobolev embedding theorem, we get thatH3pQzCq �
C1,1{2pQzCq, hence the assertion (3.88) follows.
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3.3.2 Stability estimates
In this section, for any % ¡ 0, we denote by Ω% the set

Ω% � tx P Ω : distpx, BΩq ¡ %u.

As explained at the beginning of this section, the proof of the stability es-
timates for the inverse problems is based on the use of different aspects of
quantitative estimates of unique continuation. Specifically, the scheme to
derive the stability estimates is to combine these two steps:

(a) the propagation of the smallness of the Cauchy data up to the boundary
of the cavities, leading to an integral estimate of the solutions;

(b) an estimate of continuation from the interior.

The basic tool for both steps is the three spheres inequality which is stated,
for the Lamé system, in the following proposition

Lemma 3.3.2 (Three spheres inequality). Let Ω be a bounded domain in
R3. Let w P H1pΩq be a solution to the Lamé system. There exists ϑ�,
0   ϑ� ¤ 1, only depending on λ and µ such that for every r1, r2, r3, r,
0   r1   r2   r3 ¤ ϑ�r, and for every x P Ωr we have

»
Br2 pxq

|p∇w|2 ¤ c

��� »
Br1 pxq

|p∇w|2
��
δ��� »

Br3 pxq

|p∇w|2
��

1�δ

, (3.96)

where c ¡ 0 and δ, 0   δ   1, only depend on λ, µ, r2
r3

and, increasingly, on
r1
r3
.

We do not provide the proof of this proposition which is now well-known
in the literature of the inverse problem. For readers interested in this topic,
we recommend, for instance, [6, 8].

Now, we state and prove an estimate of continuation from the interior
which is also called Lipschitz propagation of smallness.

Proposition 3.3.3 (Lipschitz propagation of smallness). Under the assump-
tions (3.2), (3.48), (3.49), (3.50) and (3.78), let w be the solution to (3.83).
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There exist R ¥ 3D0, R � Rpλ, µ, r0, E0, D0q, and s ¡ 1, s � spλ, µ,E0q,
such that for every % ¡ 0 and every x P pB�

Rp0qzCqs%, we have»
B%pxq

|p∇w|2 dx ¥ c

ea%�b

»
B�
Rp0qzC

|p∇w|2 dx, (3.97)

where a, b, c ¡ 0 depend on λ, µ, r0, E0 and D0.

Proof. For simplicity of notation, we denote Ω � B�
Rp0qzC, with R ¥ 3D0

to be chosen later. This proof is long and technical hence is divided in four
steps. The first three steps come from [115] with some changes and simplifi-
cations in steps two and three.
The main idea of the proof is to cover the set Ωsp with balls of variable radii
(and chosen in order to be internally tangent to suitables cones contained in
Ω) and then estimate the L2�norm of p∇u in these balls with

³
B%pxq |p∇u|2 dx.

This task is reached utilizing the three-spheres inequality of Lemma 3.3.2.
We note that if the half ball B�

1 p0q has Lipschitz boundary with absolute
constants r�, E�, then B�

Rp0q has Lipschitz boundary with constants r�R,E�.
Without lost of generality, we can assume E0 ¥ E� and r0 ¤ r�R (eventually
worsening the regularity parameters of C, see (3.78)) so that the boundary of
Ω is of Lipschitz class with constants r0 and E0. Again, for simplicity of nota-
tion, we can assume that r0 � 1. The thesis of the theorem follows by a rescal-
ing argument. Moreover, we assume that there exists %0 � %0pλ, µ, r0, E0, Rq,
with 0   %0   1. Taking θ� defined in Lemma 3.3.2, we define

θ0 � arctan 1
E0
, (3.98)

s � 5� θ� sin θ0 �
a
pθ�q2 sin2 θ0 � 30θ� sin θ0 � 25

2θ� sin θ0
(3.99)

χ � sθ� sin θ0

5 (3.100)

ϑ1 � arcsin 1
s
. (3.101)

We first note that the constants s ¡ 1, χ ¡ 1 and ϑ1 ¡ 0 depend on λ, µ and
E0. In addition, given z P R3, ξ P R3, with |ξ| � 1, and ϑ ¡ 0, we define

Kpz, ξ, ϑq �
!
x P R3 : px� zq � ξ

|x� z| ¡ cosϑ
)

(3.102)
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the open cone with vertex z, axis in the direction ξ and width 2ϑ.
Step 1. For every %, 0   % ¤ % � ϑ�{16s, and for every x P Ω satisfying
s%   distpx, BΩq ¤ ϑ�{4, there exists x̃ P Ω such that:

(i) B 5χ%
ϑ�
pxq � Kpx̃, x�x̃|x�x̃| , ϑ0q XBϑ�

8
� Ω.

(ii) The balls B%pxq and Bχ%px2q are internally tangent to Kpx̃, x�x̃|x�x̃| , ϑ1q,
where x2 � x� pχ� 1q% x�x̃|x�x̃| .

Proof of Step 1. We denote by d � distpx, BΩq and by w P BΩ the point such
that |x�w| � d. Without loss of generality, through a rigid transformation
of coordinates, we can assume that w � 0 and

ΩXB1pwq � tz P B1p0q : z3 ¡ ψpz1qu,
where ψ is a Lipschitz function on B1p0q, which satisfies

ψp0q � 0

}ψ}C0,1pB1p0qq ¤ E0.

We define x̃ � px1, x3�s%q, hence we have that |x�x̃| � s%, |x̃�w| ¤ d�s% ¤
5{16ϑ�. Utilizing the fact that ψ is Lipschitz, we find that Kpx̃, x�x̃|x�x̃| , ϑ0q X
Bϑ�

8
px̃q � Ω. In addition, it holds

B 5χ%
ϑ�

� Kpx̃, x� x̃|x� x̃| , ϑ0q XBϑ�

8
px̃q

if and only if
5χ%
ϑ�

¤ s% sinϑ0,

�
5χ
ϑ�

� s



% ¤ ϑ�

8
Choosing χ as in (3.100) and using the fact that % ¤ % � ϑ�{p16sq, we get
the assertion. Finally, we note that from the choice of ϑ1, the ball B%pxq is
internally tangent to Kpx̃, x�x̃|x�x̃| , ϑ1q, while Bχ%px2q is internally tangent to
Kpx̃, x�x̃|x�x̃| , ϑ1q if and only if χ � ps� 1q{ps� 1q.

We set

%1 � %, %k � χ%k�1 � χk�1%, k ¥ 2,

x1 � x, xk � xk�1 � p%k�1 � %kq x� x̃|x� x̃| , k ¥ 2
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We have that B%kpxkq is tangent from the interior to the cone Kpx̃, x�x̃|x�x̃| , ϑ1q,
while B5χ%k{ϑ�pxkq to Kpx̃, x�x̃|x�x̃| , ϑ0q. Moreover, it holds that B5%k{ϑ�pxkq �
Bϑ�{8px̃q if and only if

k � 1 ¤
log

�
pχ�1qϑ�

p5�ϑ�qpχ�1q�2ϑ�

�
ϑ�

8% � s� 1� 2
χ�1

	�
lnχ .

To guarantee that B5%k{ϑ�pxkq � Bϑ�{8px̃q holds at least for k � 1, 2, we
assume that % ¤ %1 � pϑ�q2

8pχp5�ϑ�q�ϑ�p1�sqq . We define

kp%q �
[

log
�

pχ�1qϑ�
p5�ϑ�qpχ�1q�2ϑ�

�
ϑ�

8% � s� 1� 2
χ�1

	�
lnχ

_
� 1

where t�u represents the integer part of a real number. Therefore, we have
that B 5%kp%q

ϑ�

pxkp%qq � Bϑ�

8
px̃q X Ω and B5χ%i{ϑ�pxiq � Bϑ�{8px̃q X Ω, for i �

1, � � � , kp%q � 1. Since % ¤ ϑ�

16s , we get

kp%q ¥ log γ
%

logχ (3.103)

where γ � pϑ�q2pχ�1q
16pp5�ϑ�qpχ�1q�2ϑ�q . Assuming also that % ¤ %2 � ϑ�pχ�1q

16 , and
since ϑ�pχ�1q

p5�ϑ�qpχ�1q�2ϑ� ¤ 1
5 , we find that

kp%q ¤ log ϑ�

20%

logχ � 1. (3.104)

Therefore, from (3.103) and (3.104) and for % ¤ minp%, %1, %2q, we have

γ

χ
¤ %kp%q � χkp%q�1% ¤ ϑ�

20 . (3.105)

We are ready now to state and prove the second step of the proof.
Step 2. There exists %̃ ¡ 0, which depends on λ, µ and E0, such that for
every %, with 0   % ¤ %̃, and for every x P Ω, such that s%   distpx, BΩq ¤
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ϑ�

4 , it holds

³
B%kp%q pxkp%qq

|p∇w|2³
Ω |p∇w|2 ¤ C

�³
B%pxq |p∇w|2³

Ω |p∇w|2
�σ

kp%q�1
χ

, (3.106)

³
B%pxq |p∇w|2³

Ω |p∇w|2 ¤ C

��³
B%kp%q pxkp%qq

|p∇w|2³
Ω |p∇w|2

�σkp%q�1

(3.107)

where 0   σ   1 depends only on λ, µ, whereas C ¡ 1 and 0   σχ   1
depend on λ, µ and E0.

Proof of Step 2. Let %̃ � minp%, %1, %2q and choose % ¤ %̃. We apply the
three-spheres inequality, see Lemma 3.3.2, choosing balls centred at xi and
radii rpiq1 � %i, rpiq2 � 3χ%i, rpiq3 � 4χ%i, for i � 1, � � � , kp%q � 1. Since
B
r
pi�1q
1

pxi�1q � B
r
piq
2
pxiq, for i � 1, � � � , kp%q � 1, we find that

»
B%i�1 pxi�1q

|p∇w|2 ¤ C

�»
B%i pxiq

|p∇w|2�σχ �»
B4χ%i pxiq

|p∇w|2�1�σχ
(3.108)

where C ¡ 1 and 0   σχ   1 depend on λ, µ and E0. Therefore (3.106)
follows noticing that»

B4χ%i pxiq
|p∇w|2 ¤ »

B5χ%i pxiq
|p∇w|2 ¤ »

Ω
|p∇w|2.

Indeed, from (3.108), we have³
B%i�1 pxi�1q |p∇w|2³

Ω |p∇w|2 ¤
��³

B%i pxiq
|p∇w|2³

Ω |p∇w|2
�σχ

hence the assertion follows by iterating, for i � 1, � � � , kp%q � 1, the last
inequality. Equation (3.107) follows similarly applying the three-spheres in-
equality to the balls B%ipxiq, B3%ipxiq, B4%ipxiq for i � 1, � � � , kp%q � 1, notic-
ing that B%ipxi�1q � B3%ipxiq and repeating the argument above.
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Step 3. There exists %0, which depends on λ, µ, E0 and R, such that for
every % ¤ %0 and x P Ωs% it holds

»
B%pxq

|p∇w|2 dx ¥ c1

»
Ω

|p∇w|2 dx
�������
c%3

»
Ωps�1q%

|p∇w|2 dx
»
Ω

|p∇w|2 dx

������
σ
�A1�B1 logp1{%q
χ

,

(3.109)
where c1 ¡ 0 only depend on λ, µ; σχ P p0, 1q, s ¡ 1 depend on λ, µ,E0 and
c, A1, B1 ¡ 0 depend on λ, µ,E0, r0, R.

Proof of Step 3. . We prove the thesis of the Step 3. for every point x P Ωs%

satisfying distpx, BΩq ¤ ϑ�{4. We do not provide the proof for the case
distpx, BΩq ¡ ϑ�{4 since it can be proved similarly to the other case and
with less effort. The proof of this second case can be found, for instance, in
[115], see Step 4. at page 469.
Case x P Ωs% satisfying distpx, BΩq ¤ ϑ�{4. Let % be such that % ¤ %̃. From
(3.105), we have that 5%kp%q

ϑ�
  1

3 , hence it follows that Ω 5%kp%q
ϑ�

is connected.

We choose y P Ω such that s%   distpy, BΩq ¤ ϑ�

4 and let γ P Ω 5%kp%q
ϑ�

be
an arc joining xkp%q to ykp%q. Then, we define the following process: let
xi, for i � 1, � � � , L, be such that x1 � x and xi�1 � γptiq, where ti �
maxtt : |γptq�xi| � 2%kp%qu if |xi�ykp%q| ¡ 2%kp%q; otherwise let i � L and
stop the process. By construction, the balls B%kp%q are pairwise disjoint and
|xi�1�xi| � 2%kp%q, for i � 1, � � � , L� 1, and |xL�ykp%q| ¤ 2%kp%q. Therefore

L ¤ 3R
4π%3

kp%q
. (3.110)

As in the previous step, applying iteratively the three-spheres inequality to
the balls centred in xi with radii r1 � %kp%q, r2 � 3%kp%q and r3 � 4%kp%q, we
find ³

B%kp%qpykp%qq
|p∇w|2³

Ω |p∇w|2 ¤ C

��³
B%kp%qpxkp%qq

|p∇w|2³
Ω |p∇w|2

�σ
L

(3.111)

where C ¡ 1 depends on λ and µ. At the same time, choosing x � x in
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(3.106) and x � y in (3.107), we get³
B%kp%q pxkp%qq

|p∇w|2³
Ω |p∇w|2 ¤ C

�³
B%pxq |p∇w|2³

Ω |p∇w|2
�σ

kp%q�1
χ

, (3.112)

³
B%pyq |p∇w|2³

Ω |p∇w|2 ¤ C

��³
B%kp%q pykp%qq

|p∇w|2³
Ω |p∇w|2

�σkp%q�1

(3.113)

where C ¡ 1 depends on λ, µ and E0. From (3.111), (3.112) and (3.113) we
find ³

B%pyq |p∇w|2³
Ω |p∇w|2 ¤ C

�³
B%pxq |p∇w|2³

Ω |p∇w|2
�σ

kp%q�1
χ σkp%q�L�1

(3.114)

where C ¡ 1 depends on λ, µ and E0.
Next, we consider the case where y P Ω is such that distpy, BΩq ¡ ϑ�

4 . Let
r̃ � ϑ�%kp%q, then, by (3.105), we get

distpxkp%q, BΩq ¥ 5
ϑ�
%kp%q ¡ 5

ϑ�
r̃

distpy, BΩq ¡ ϑ�

4 ¥ 5%kp%q � 5
ϑ�
r̃.

Since r̃   %kp%q, the domain Ω%kp%q is connected. We can now apply a similar
argument as above, taking an arc joining xkp%q and y and applying three-
spheres inequality over a chain of rL balls centred at xi P Ω 5

ϑ�
r̃ and radii

r̃, 3r̃, 4r̃, where rL ¤ 3R
4πr̃3 . (3.115)

Let % be such that % ¤ %3 � γϑ�

χ
, such that % ¤ r̃ hence»

B4r̃pxiq
|p∇w|2 ¤ »

B5r̃pxiq
|p∇w|2 ¤ »

Ω
|p∇w|2,

therefore from the three-spheres inequality, we find

³
Br̃pyq |p∇w|2³

Ω |p∇w|2 ¤ C

��³
Br̃pxkp%qq |p∇w|2³

Ω |p∇w|2
�σ

rL

(3.116)
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Putting together (3.112) and (3.116) and recalling that % ¤ r̃   %kp%q, we
find ³

B%pyq |p∇w|2³
Ω |p∇w|2 ¤ C

�³
B%pxq |p∇w|2³

Ω |p∇w|2
�σ

kp%q�1
χ σ

rL

(3.117)

where C ¡ 1 depends on λ, µ and E0. Therefore, utilizing (3.117), (3.114),
(3.104), (3.110), (3.115), and recalling that σχ   σ, we get, for every y P Ωs%,
that ³

B%pyq |p∇w|2³
Ω |p∇w|2 ¤ C

�³
B%pxq |p∇w|2³

Ω |p∇w|2
�σ

A1�B1 logp1{%q
χ

(3.118)

where C ¡ 1 depends on λ, µ and E0, while A1, B1 depend on λ, µ,E0 and
R.
We now cover Ωps�1q% with internally nonoverlapping closed subes of side
l � 2%?

3 . Any cube is contained in a ball centred at a point of Ωs% and radius
%. Moreover the number of cubes has an upper bound given by

N ¤ R3p3{2q
8%3 (3.119)

Therefore, from (3.118) and (3.119), we find

»
B%pxq

|p∇w|2 dx ¥ c1

»
Ω

|p∇w|2 dx
�������
c%3

»
Ωps�1q%

|p∇w|2 dx
»
Ω

|p∇w|2 dx

������
σ
�A1�B1 logp1{%q
χ

,

(3.120)
where c1 ¡ 0 only depend on λ, µ; σχ P p0, 1q, s ¡ 1 depend on λ, µ,E0 and
c, A1, B1 ¡ 0 depend on λ, µ,E0, R.

It remains to prove, to get the assertion of the theorem, that
Step 4. For every % such that 0   % ¤ %0 and for every x P Ωs%, we have
that »

Ωps�1q%

|p∇w|2 dx
»
Ω

|p∇w|2 dx ¥ 1
2
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Proof of Step 4. It is straightforward to observe that»
Ωps�1q%

|p∇w|2 dx
»
Ω

|p∇w|2 dx � 1�

»
ΩzΩps�1q%

|p∇w|2 dx
»
Ω

|p∇w|2 dx :� 1� I1

I2
. (3.121)

Therefore, we estimate the ratio I1{I2. To get an estimate of I2, we make
use of the fact that w � u�u, see (3.82), the integral representation formula
(3.33) of the function u and the explicit expression of u in (3.81). Moreover,
we fix the set

S �
"
x P B�

Rp0q : x3 ¤ �3
4R

*
. (3.122)

see Figure 3.1, which has measure |S| � p7{128qπR3.

Figure 3.1. The region S. Courtesy of [37].

For any y P S and x P BC, utilizing (3.33) and Theorem 3.1.7, it follows
that

|p∇upyq| ¤ |∇upyq| ¤ cp

R2 , @y P S,
where c � cpλ, µ, r0, E0, D0q, hence

|p∇wpyq| ¥ |p∇upyq| � |p∇upyq| ¥ p

3λ� 2µ �
cp

R2 ¥
p

2p3λ� 2µq ,

where the last inequality holds choosing R � maxt3D0, p2c�1p3λ� 2µqq1{2u.
Therefore, we find that

I2 �
»
Ω

|p∇w|2 dx ¥ »
S

|p∇w|2 dx ¥ cp2R3, (3.123)
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where c � cpλ, µq.
Next, utilizing the regularity result of the Proposition 3.3.1, we get an

estimate of the integral I1. First, we consider the following decomposition
of the domain

ΩzΩps�1qp � F1 Y F2,

where

F1 � tx P Ω : dpx, Cqq ¤ ps�1q%u, F2 � tx P Ω : dpx, BB�
Rp0qq ¤ ps�1q%u,

see Figure 3.2.

Figure 3.2. The region ΩzΩps�1q%. Courtesy of [37].

From (3.78), we notice that

|F1 Y F2| ¤ cpr0, E0, D0q%R2. (3.124)

We take α � R{D0 in (3.87), where R � maxt3D0, p2c�1p3λ� 2µqq1{2u, and
β � 2α, hence

B�
Rp0q �� Q �� B�

2Rp0q,
From the regularity results (3.88), it follows that

}p∇w}L8pΩzΩps�1q%q ¤
�}p∇u}L8pΩzΩps�1q%q � }p∇u}L8pΩzΩps�1q%qq ¤ cp,

where c � cpλ, µ,E0, D0q. Therefore, from (3.124), we find

I1 �
»

ΩzΩps�1q%

|p∇w|2 dx ¤ cp2 |ΩzΩps�1q%| ¤ cp2%R2. (3.125)
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Collecting (3.123) and (3.125), we find that there exists %0 � %0pλ, µ,E0, D0q ¡
0, such that for any % ¤ %0, we have

I1

I2
�

»
ΩzΩps�1q%

|p∇w|2 dx
»
Ω

|p∇w|2 dx ¤ 1
2 .

Finally, utilizing this last result in (3.121) and then going back to (3.120),
we find the assertion of the theorem, indeed,»

B%pxq

|p∇w|2 dx ¥ �
c%3


σ�A1�B1 logp1{%q »
Ω

|p∇w|2 dx,
where c, A1, B1 depend on λ, µ,E0, D0, for all % ¤ %0. To conclude, we take
% ¤ c, hence, for every % ¤ minpc, %0q and noticing that log % ¥ �1{% for
0   %   1, we get the assertion choosing

a � 6eA1| log σ| and b � B1| log σ| � 1.

We skip the proof of the following two propositions. In fact they are
Propositions 3.5 and 3.6 in [115] in which we take as Neumann boundary
condition pe3.

Proposition 3.3.4 (Stability Estimates of Continuation from Cauchy Data).
Given the assumption (3.2), we consider two domains C1 and C2 satisfying
(3.48), (3.49), (3.50) and (3.78). Then, taking wi, for i � 1, 2, solutions to
(3.83) with C � Ci, we have, for ε   e�1p, that»

C2zC1

|p∇w1|2 dx ¤ cp2
�

log
��� log ε

p

���
�1{6
,

»
C1zC2

|p∇w2|2 dx ¤ cp2
�

log
��� log ε

p

���
�1{6
,

(3.126)

where the constant c � cpλ, µ, r0, E0, D0, s0q.
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The stability estimates in the previous theorem, i.e., (3.126) can be im-
proved when BG is of Lipschitz class, where G is defined by (3.79), as stated
in the proposition below.

Proposition 3.3.5 (Improved Stability Estimates of Continuation from
Cauchy Data). Under the assumption (3.2) let C1 and C2 be two domains
satisfying (3.48), (3.49), (3.50) and (3.78). In addition, let us assume that
there exist L ¡ 0 and rr0, with 0   rr0 ¤ r0, such that BG is of Lipschitz class
with constants rr0, L. Then, we have»

C2zC1

|p∇w1|2 dx ¤ cp2
��� log ε

p

����γ,
»

C1zC2

|p∇w2|2 dx ¤ cp2
��� log ε

p

����γ, (3.127)

where c, γ ¡ 0 depend on λ, µ, r0, E0, D0, s0, L, rr0.

Finally, we state and prove the stability theorem related to the inverse
problem.

Theorem 3.3.6 (Stability Estimate). Under the assumption (3.2) let C1 and
C2 be two domains satisfying (3.48), (3.49), (3.50) and (3.78). Moreover, let
ui, for i � 1, 2, be the solution to (3.46) with C � Ci. If, given ε ¡ 0, we
have

}u1 � u2}L2pB1
s0 p0qq ¤ ε, (3.128)

then it holds
dHpBC1, BC2q ¤ c

�
log

��� log ε
p

���
�η
, (3.129)

for every ε   e�1p, where the constants c and η, with 0   η ¤ 1, depend on
λ, µ, r0, E0, D0 and s0.

Proof. Thanks to (3.85), we can prove the assertion working with the function
wi, for i � 1, 2. In this way, we repeat the same procedure contained in [116].
In the sequel we simply denote with dH the Hausdorff distance between the
two sets BC1 and BC2, i.e.,

dHpBC1, BC2q � max
 

sup
xPBC1

inf
yPBC2

|x� y|, sup
yPBC2

inf
xPBC1

|x� y|(.
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We need to prove that if η ¡ 0 is such that»
C2zC1

|p∇w1|2 dx ¤ η,

»
C1zC2

|p∇w2|2 dx ¤ η, (3.130)

then it holds

dH ¤ c

�
log cp

2

η


�1{b
, (3.131)

where b, c depend on λ, µ, r0, E0, D0.
With no loss of generality, we can always assume that there exists x0 P BC1
such that

distpx0, BC2q � dH.

In this setting, we have to distinguish two cases:

(i) BdHpx0q � C2;

(ii) BdHpx0q X C2 � H.

Let us consider case (i). By the regularity assumption made on BC1, see
(3.78), there exists x1 P C2zC1 such that

Btdpx1q � pC2zC1q, with t � 1
1�

a
1� E2

0
.

By the first inequality in (3.130), taking % � tdH{s in Proposition 3.3.3, we
have

η ¥
»

C2zC1

|p∇w1|2 dx ¥
»

B%px1q

|p∇w1|2 dx ¥ c

ea%�b

»
B�
RzC1

|p∇w1|2 dx, (3.132)

where we recall that R � Rpλ, µ, r0, E0, D0q. By (3.123), we find that»
B�
RzC1

|p∇w1|2 dx ¥ cp2,

so that, going back to (3.132), we have

η ¥ cp2

ea%
�b �

cp2

eaptdH{sq�b . (3.133)
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From this inequality it is straightforward to find (3.131).
Case (ii) can be proved in a similar way by substituting w1 with w2 in

the previous calculations and employing the second inequality in (3.130).
Now, applying (3.126), that is taking

η � cp2
�

log
��� log ε

p

���
�1{6
,

we obtain from (3.131) that

dH ¤ c

�
log log

��� log ε
p

���
�1{b
, (3.134)

where we require ε   e�ep to have a positive quantity in right side of the
previous inequality; the positive constants b, c depend on λ, µ, r0, E0, s0 and
D0.

Next, to improve the modulus of continuity of this estimate we recall a
geometrical result, first introduced and proved in [?], ensuring that there
exists d0 ¡ 0, d0 � d0pr0, E0q such that if dHpBC1, BC2q ¤ d0, then the
boundary of G is of Lipschitz class with constants rr0, L, only depending on
r0 and E0. By (3.134), there exists ε0 ¡ 0 only depending on λ, µ, r0, E0, s0
and D0 such that if ε ¤ ε0 then dH ¤ d0. In this way G satisfies the
hypotheses of Proposition 3.3.5 hence the assertion follows.

In the next section we find the asymptotic expansion of the solution of
the direct problem (3.31) when the cavity is small compared to the distance
from the boundary of the half-space.

3.4 Asymptotic expansion

As explained in the introduction, one way to restore the well-posedness
of the inverse problem, is to add some a priori information. In particular,
in this section, we consider the hypothesis that the cavity C of the elastic
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problem $''''''''&''''''''%

divpCp∇uq � 0 in R3
�zC

Bu
Bν � pn on BC
Bu
Bν � 0 on R2

u � op1q, ∇u � op|x|�1q |x| Ñ 8,

(3.135)

is of the form
C � d0z � r0Ω

where d0, r0 ¡ 0, d0z is the center of the cavity and Ω is a bounded Lipschitz
domain containing the origin. We assume that d0 ¡¡ r0 which means that
the cavity is small compared to the distance from the boundary of the half-
space. As proved by Friedman and Vogelius in [85], with this assumption one
can retrive a Lipschitz stability estimate for the inverse problem of detecting
the cavity.

We rescale the variables px,uq Ñ px{d0,u{r0q hence defining by ε :�
r0{d0 and Cε :� z � εΩ we denote the new variables by uε and x. We find
that (3.135) can be rewritten as$''''''''&''''''''%

divpCp∇uεq � 0 in R3
�zCε

Buε
Bν � pn on BCε
Buε
Bν � 0 on R2

uε � op1q, ∇uε � op|x|�1q |x| Ñ 8,

(3.136)

where, now, the quantity p is a rescaled pressure of the original pressure p
and ε. Using the results of Section 3.2.1, i.e. the representation formula
(3.33), we represent the solution of the boundary value problem (3.136) as

ukεpyq � p

»
BCε

N pkqpx,yq � npxq dσpxq �
»
BCε

BN pkq

Bν px,yq � fpxq dσpxq

:� I
pkq
1 pyq � I

pkq
2 pyq, y P R2

(3.137)
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for k � 1, 2, 3, where ukε indicates the k-th component of the displacement
vector and f is the solution of (3.34), that is�1

2I�Kε �DR
ε

�
fεpxq � p

�
SΓ
ε pnqpxq � SRε pnqpxq

�
, x P BCε. (3.138)

Obviously the dependence from ε in all layer potentials needs in the sequel to
distinguish them from the layer potential defined over a domain independent
from ε.
For any fixed value of ε ¡ 0 and given h : BCε Ñ R3, as did in the previous
chapter, we introduce the function h7 : BΩ Ñ R3 which is defined by

h7pζq :� hpz � εζq, ζ P BΩ.

For the asymptotic result, a key role is assumed by the following auxiliary
functions θqr, for q, r � 1, 2, 3, solutions to

divpCp∇θqrq � 0 inR3zΩ, Bθqr
Bν � � 1

3λ� 2µCn on BΩ, (3.139)

with the decay conditions at infinity

|θqr| � Op|x|�1q, |∇θqr| � Op|x|�2q, as |x| Ñ 8, (3.140)

where the condition Bθqr{Bν has to be read as�Bθqr
Bν



i

� � 1
3λ� 2µCijqrnj.

Well-posedness of this boundary value problem can be proved by integral
equations or in weighted Sobolev spaces as did in the previous chapter.
With all these ingredients, we can state and prove the result related to the
asymptotic expansion at first order of (3.137).
Theorem 3.4.1 (asymptotic expansion). There exist ε0 ¡ 0 and a uniform
constant C ¡ 0 such that for all ε P p0, ε0q the following expansion holds

ukεpyq � ε3|Ω|pp∇zN
pkqpz,yq : MI�Opε4q, @y P R2 (3.141)

for k � 1, 2, 3, where Opε4q denotes a quantity bounded by Cε4, and M is the
fourth-order moment elastic tensor defined by

M :� I� 1
|Ω|

»
BΩ

Cpθqrpζq b npζqq dσpζq, (3.142)

where θqr, for q, r � 1, 2, 3, are solutions of (3.139) and (3.140).
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For the proof of this theorem, we first need to find the asymptotic be-
haviour of the integral operators in (3.138).

Lemma 3.4.2. For x � z � εζ, with ζ P BΩ, the integral equation (3.138)
is such that�1

2I�K� ε2ΛΩ,ε
�
f 7pζq � εpSΓpnqpζq �Opε2q, (3.143)

where
ΛΩ,εf

7pηq :�
»
BΩ

BR
Bνpηqpz � εη, z � εζqf 7pηq dσpηq

is uniformly bounded in ε. Moreover, when ε is sufficiently small, we have

f 7pζq � εp
�1

2I�K
��1 SΓpnqpζq �Opε2q, ζ P BΩ. (3.144)

Proof. For z � εζ, where ζ P BΩ, we yield

DR
ε fpz � εζq �

»
BCε

BR
Bνptqpt, z � εζqfptq dσptq

� ε2
»
BΩ

BR
Bνpηqpz � εη, z � εζqf 7pηq dσpηq.

Since R is the regular part of the Neumann function (see Theorem 3.1.7),
i.e. the kernel BR{Bνpηq is continuous, we get

DR
ε � ε2ΛΩ,ε (3.145)

where
}ΛΩ,ε} ¤ C, (3.146)

with C is uniform with respect to ε.
The integral

Kεfpz � εζq � p.v.
»
BCε

BΓ
Bνptqpt� z � εζqfptq dσptq

can be handled by utilizing the explicit expression of the conormal derivative
of the fundamental solution of the Lamé operator given in (3.37). In fact,
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making the substitution t � z�εη and recalling that (3.37) is a homogeneous
function of degree -2, we get�BΓpkq

Bν


h

pεpη � ζqq

� � 1
4πε2

#�
1� 2ν

2p1� νqδhk �
3

2p1� νq
ηk � ζk
|η � ζ|

ηh � ζh
|η � ζ|

� B
Bnpηq

1
|η � ζ|

� 1� 2ν
2p1� νqnhpηq

ηk � ζk
|η � ζ|3 �

1� 2ν
2p1� νqnkpηq

ηh � ζh
|η � ζ|3

+

� 1
ε2

�BΓpkq

Bν


h

pη � ζq,

for h, k � 1, 2, 3. Therefore, it is straightforward to see that

Kεfpz � εζq � p.v.
»
BΩ

BΓ
Bνpηqpη � ζqf

7pηq dσpηq � Kf 7pζq. (3.147)

Again, by choosing t � z � εη, with η P BΩ, we find

SΓ
ε pnqpz � εζq � ε2

»
BΩ

Γpεpη � ζqqnpηq dσpηq � εSΓpnqpζq, (3.148)

where the last equality follows from the fact that the fundamental solution
is homogeneous of degree -1. Similarly

SRε pnqpz � εζq � ε2
»
BΩ

Rpz � εη, z � εζqnpηq dσpηq

and since R is regular, see Theorem 3.1.7, it follows that

SRε pnqpz � εζq � Opε2q. (3.149)

The first part of the statement of the theorem, i.e. equation (3.143), follows
putting together all the previous result, that is (3.145), (3.147), (3.148) and
(3.149).

The second part of the statement of the theorem follows by noticing that
from (3.143)�1

2I�K
� �

I� ε2 �1
2I�K

��1 Λε,Ω

	
f 7 � εpSΓpnq �Opε2q, on BΩ.
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Therefore, from Lemma 3.2.6 and since the operator Λε,Ω is continuous, see
(3.146), we yield ��� �1

2I�K
��1 Λε,Ω

��� ¤ C

where C ¡ 0 is independent from ε. On the other hand, choosing ε2
0 � 1{C,

it follows that for all ε P p0, ε0q the operator

I� ε2 �1
2I�K

��1 Λε,Ω

is invertible. Therefore by utilizing the Neumann series, which we truncate
at zero order, we find�

I� ε2 �1
2I�K

��1 Λε,Ω

	�1
� I�Opε2q.

Therefore
f 7 � εp

�1
2I�K

��1 SΓpnq �Opε2q, on BΩ,
that is the second part of the assertion of the theorem.

We can interpret the term
�1

2I�K
��1 SΓpnqpζq in (3.144) as the trace

on the boundary of Ω of the solution of an exterior problem in the whole
space. To this end, we define the function w : BΩ Ñ BΩ as

wpζq :� � �1
2I�K

��1 SΓpnqpζq, ζ P BΩ. (3.150)

and we consider the problem

div
�
Cp∇v	 � 0 inR3zΩ, Bv

Bν � �n on BΩ (3.151)

with decay conditions at infinity

v � Op|x|�1q, |∇v| � Op|x|�2q as |x| Ñ �8. (3.152)

As before, utilizing the weighted Sobolev spaces (without using the explicit
decay at infinity (3.152)), introduced in Section 2.1.1, it is straightforward
to prove the well-posedness of this boundary value problem on v, see [30].
We skip this part and we prove the following result for w.

Proposition 3.4.3. The function w, defined in (3.150), is such that w �
v
��
xPBΩ where v is the solution to (3.151) and (3.152).
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Proof. We follow a similar approach used for the proof of Theorem 3.2.1. To
get an integral representation formula, we use the second Betti’s formula,
see (3.5), which is applied to the fundamental solution Γ, see (3.6), and the
function v into the domain Brp0qzpΩYBεpxqq, where ε ¡ 0 and r ¡ 0 which
is assumed to be sufficiently large such that to contain the cavity Ω. In this
way, we find

vpxq � �SΓnpxq �DΓvpxq, x P R3zΩ

Therefore, from the single and double layer potential properties for the Lamé
system, see (3.10), we find

vpxq � �SΓnpxq � ��1
2I�K

�
vpxq, x P BΩ

hence
vpxq � � �1

2I�K
��1 SΓpnqpxq, x P BΩ

that is the assertion.

Using the auxiliary functions θqr defined in (3.139) and (3.140), we rewrite
the function v, and consequentely its trace w on BΩ, as

v � θqrδqr,

where we use the convention to sum up the repeated indices. It is straight-
forward to see that the elastostatic equation and the boundary condition in
(3.151) are satisfied.

Proof of Theorem 3.4.1. We find the asymptotic expansion of the two inte-
grals Ipkq1 , I

pkq
2 defined in (3.137). Since y P R2 and x P BCε � z � εζ, with

ζ P BΩ, we consider the Taylor expansion of the Neumann function, i.e.

N pkqpz � εζ,yq �N pkqpz,yq � ε∇N pkqpz,yqζ �Opε2q, (3.153)

for k � 1, 2, 3. Utilizing this expansion and the change of variable x � z�εζ
in Ipkq1 , we yield

I
pkq
1 � ε2pN pkqpz,yq �

»
BΩ

n dσpζq � ε3p

»
BΩ

npζq �∇N pkqpz,yqζ dσpζq �Opε4q

:� p
�
ε2I

pkq
11 � ε3I

pkq
12

	
�Opε4q.
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Integral Ipkq11 is null, in fact, as a consequence of the application of the diver-
gence theorem »

BΩ

npζq dσpζq � 0.

We use the equality n �∇N pkqζ � ∇N pkq : pnpζq b ζq in Ipkq12 which gives

I
pkq
1 � ε3p∇N pkqpz,yq :

»
BΩ

�
npζqbζ� dσpζq�Opε4q, k � 1, 2, 3. (3.154)

In Ipkq2 we apply the result in Lemma 3.4.2 and we use the Taylor expansion
of the conormal derivative of Npkqpx,yq, for k � 1, 2, 3 truncated at order
zero, that is for x � z � εζ, when ζ P BΩ and y P R2,

BN pkq

Bνpxqpx,yq �
BN pkq

Bνpζq pz,yq �Opεq, k � 1, 2, 3.

Therefore
I
pkq
2 � �ε2

»
BΩ

BN pkq

Bνpxqpz � εζ,yq � f
7pζq dσpζq

� ε3p

»
BΩ

BN pkq

Bνpζq pz,yq �wpζq dσpζq �Opε4q,

for any k, where w is defined in (3.150). Since BN pkq{Bνpζq � Cp∇N pkqnpζq,
we have

Cp∇N pkqnpζq �wpζq � Cp∇N pkq : pwpζq b npζqq.
Therefore

I
pkq
2 pyq � ε3 pCp∇N pkqpz,yq :

»
BΩ

pwpζq b npζqq dσpζq �Opε4q. (3.155)

Collecting the result in (3.154) and (3.155), equation (3.137) gives

ukεpyq � I
pkq
1 pyq � I

pkq
2 pyq

� ε3p

�
∇N pkqpz,yq :

»
BΩ

pnb ζq dσ � Cp∇N pkqpz,yq :
»
BΩ

pw b nq dσ
�
�Opε4q.
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Now, handling this expression, we higlight the moment elastic tensor. We
have »

BΩ
pnpζq b ζq dσpζq � |Ω|I, (3.156)

indeed, for any i, j � 1, 2, 3, it follows»
BΩ
ζi nj dσpζq �

»
BΩ
n � ζiej dσpζq

�
»

Ω
div pζiejq dζ �

»
Ω
ej � ei dζ � |Ω|δij,

where ej is the j-th unit vector of R3. Hence, by (3.156) and taking the
symmetric part of ∇N pkq, for any k, we find

ukε � ε3p

�p∇N pkq : I|Ω| � Cp∇N pkq :
»
BΩ

w b n dσpζq
�
�Opε4q.

From the symmetries of elasticity tensor C, we have

ukε � ε3|Ω|pp∇N pkq :
�
I� 1

|Ω|
»
BΩ

Cpw b nq dσpζq
�
�Opε4q,

for k � 1, 2, 3. The assertion of the theorem follows by noticing that I � II
and w � θqrδqr.

3.4.1 Properties of the moment elastic tensor
For a complete analysis, in this section we find all the symmetries satisfied

by the fourth order tensor M and we study its positivity. We apply similar
ideas contained in [106].
For this purpose, we use the equations (3.139) and in particular their weak
formulation in H1

wpR3zΩq. Let us assume, for the moment, θkh regular. For
all ϕ P C8

0 pR3zΩq, we find

0 �
»
R3zΩ

divpCp∇θkhq �ϕ dx
� �

»
BΩ
pCp∇θkhnq �ϕ dσpxq � »

R3zΩ
Cp∇θkh : p∇ϕ dx,
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hence »
R3zΩ

Cp∇θkh : p∇ϕ dx � �
»
BΩ
pCp∇θkhnq �ϕ dσpxq

Now, utilizing the boundary conditions in (3.139), we get»
R3zΩ

Cp∇θkh : p∇ϕ dx � 1
3λ� 2µ

»
BΩ

Cpnbϕq dσpxq.

For the density result of C8
0 pR3zΩq in H1

wpR3zΩq, the previous equation is
also true in H1

wpR3zΩq, see [30]. Choosing ϕ � θrs, with r, s � 1, 2, 3, we
have »

R3zΩ

Cp∇θkh : p∇θrs dx � 1
3λ� 2µ

»
BΩ

Cpnb θrsq dσpxq (3.157)

or in components, summing up the repeated indices,»
R3zΩ

Cijlmpp∇θkhqlmpp∇θrsqij dx � 1
3λ� 2µ

»
BΩ

Cijkh niθ
rs
j dσpxq.

Positivity

Now, we prove the positivity of the tensor M, i.e. MA : A ¡ 0, for all
A P R3�3. By the definition (3.142) of M and applying (3.157) we have

MkhrsAkhArs � |A|2 � p3λ� 2µq
»

R3zΩ

Cp∇θkh : p∇θrsAkhArs dx
� |A|2 � p3λ� 2µq

»
R3zΩ

Cp∇pθkhAkhq : pp∇θrsArsq dx ¡ 0

since C is positive definite.

Symmetries

First, we notice that fromw � θkhδkh we havew � θhkδhk, hence θhk sat-
isfy the same problem (3.139) and (3.140). Again, by the definition (3.142),
the weak formulation (3.157) and the symmetries of the elastic tensor C, it
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is straightforward to obtain the following symmetries for the moment elastic
tensor

Mkhrs �Mhkrs �Mkhsr �Mrskh,

where k, h, r, s � 1, 2, 3.

3.4.2 The Mogi model
In this section we specialized the explicit asymptotic expansion (3.141)

to the case of spherical cavities which, from an application point of view,
corresponds to the Mogi model, see Chapter 1 for a more in-depth discussion.
We first recall the asymptotic expansion (3.141), i.e.,

ukεpyq � ε3|Ω|pp∇zN
pkqpz,yq : MI�Opε4q, k � 1, 2, 3, (3.158)

where M is the tensor given in (3.142). We first note that

MI �
��I� 1

|Ω|
»
BΩ

Cpθqr b nq dσpζq
�� I � I� 1

|Ω|
»
BΩ

Cpwbnq dσpζq, (3.159)

where, in the last equality, we use the connection between the functions w
and θqr on BΩ that is w � θqrδqr, q, r � 1, 2, 3. The first step is to find the
explicit expression of w, trace on BΩ of the solution v to (3.151), when the
cavity is the unit sphere. Then we calculate the gradient of the Neumann
function N.

We recall the problem for v in the case where the cavity is the unit sphere,
i.e.,

divpCp∇vq � 0 in R3zB1p0q, Bv
Bν � �n on BB1p0q,

where B1p0q � tx P R3 : |x| ¤ 1u with decay at infinity

v � Op|x|�1q, |∇v| � Op|x|�2q as |x| Ñ �8.
We look for a solution with the form

vpxq � φprqx with r :� |x|,
so that

∆vi �
"
φ2 � 4φ1

r

*
xi, divv � rφ1 � 3φ, ∇divv �

"
φ2 � 4φ1

r

*
x.
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Since n � x on BB, by direct calculations, we get

divpCp∇vq � pλ� 2µq
�
φ2 � 4φ1

r



x,

Bv
Bν �  pλ� 2µqrφ1 � p3λ� 2µqφ(x

Thefore, we need to find a function φ : r1,�8q Ñ R such that

φ2 � 4φ1
r

� 0, pλ� 2µqrφ1 � p3λ� 2µqφ��
r�1 � �1, φ

��
r��8 � 0.

By means of the decay conditions at infinity, we find that B � 0 and A �
1{4µ. Therefore, the solution is vpxq � x{4µ|x|3, which implies that

wpxq :� vpxq
���
|x|�1

� x

4µ.

Substituting this expression of w in (3.159) (where now Ω � B1p0q), we get

MI � I� 1
|B1p0q|

»
BB1p0q

Cpwpζq b npζqq dσpζq

� I� 3
16πµ

»
BB1p0q

Cpζ b ζq
|ζ|3 dσpζq.

By means of the spherical coordinates and using the ortogonality conditions
for the circular functions, it holds»

BB1p0q

ζ b ζ
|ζ|3 dσpζq � 4π

3 I,

hence the second-order tensor MI is given by

MI � 3pλ� 2µq
4µ I.

Inserting this result in (3.158), we find

ukεpyq �
πpλ� 2µq

µ
ε3pTrpp∇zN

pkqpz,yqq �Opε4q, k � 1, 2, 3. (3.160)
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We have now to evaluate the gradient of the Neumann function N at y3 � 0,
see Theorem 3.1.7 for the explicit components of the matrix N.

For y3 � 0 we have that N � Npz,yq is equal to
κ�1
µ Nαα � �f � pzα � yαq2f 3 � p1� 2νqg � p1� 2νqpzα � yαq2fg2

κ�1
µ Nβα � pzα � yαqpzβ � yβq

 �f 3 � p1� 2νqfg(
κ�1
µ N3α � pzα � yαq

 �z3f
3 � p1� 2νqfg(

κ�1
µ Nα3 � pzα � yαq

!
�z3f

3 � p1� 2νqfg
)

κ�1
µ N33 � �2p1� νqf � z2

3f
3

where α, β � 1, 2 and κµ � 1{p4πµq, with
f � 1{|z � y|, and g � 1{p|z � y| � z3q.

Let ρ2 :� pz1 � y1q2 � pz2 � y2q2. Using the identities

ρ2f 2 � 1� z2
3f

2, p1� z3fqg � f

and the differentiation formulas
Bzαf � �pzα � yαqf 3, Bz3f � �z3f

3

Bzαg � �pzα � yαqfg, Bz3g � fg,

Bzαpfgq � �pzα � yαqpf � gqf 2g, Bz3pfgq � f 3,

we derive the following formulas for some of the derivatives of κ�1
µ Nij

κ�1
µ BzαNαα � pzα � yαq

 �f 3 � 3pzα � yαq2f 5

� p1� 2νq�3f � pzα � yαq2f 2pf � 2gq�g2(
κ�1
µ BzβNβα � pzα � yαq

 �f 3 � 3pzβ � yβq2f 5

� p1� 2νq�f � pzβ � yβq2f 2pf � 2gq�g2(
κ�1
µ Bz3N3α � pzα � yαq

 �2νf 3 � 3z2
3f

5(
κ�1
µ BzαNα3 � �z3f

3 � 3pzα � yαq2z3f
5

� p1� 2νq��1� pzα � yαq2pf � gqf�fg
κ�1
µ Bz3N33 � �2νz3f

3 � 3z3
3f

5.

Therefore, we yield

Tr
�
∇̂N pαq� � 2κµp1� 2νqpzα � yαqf 3, forα � 1, 2

Tr
�
∇̂N p3q� � 2κµp1� 2νqz3f

3.
(3.161)
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Combining (3.160), (3.161) and using the explicit expression for f , we find

uαε pyq �
1� ν

µ

ε3ppzα � yαq
|z � y|3 �Opε4q, forα � 1, 2

u3
εpyq �

1� ν

µ

ε3p z3

|z � y|3 �Opε4q,

that are the components given in (1.1).
We highlight that, in general, for other shapes of the cavity Ω, the trace

on BΩ of the auxiliary functions θqr, with q, r � 1, 2, 3, can be numerically
approximated (if it can not be calculated explicitly) and, thus, the first term
in the asymptotic expansion (3.141) can be considered as known in practical
cases.
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