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Crossed extension
Hochschild cohomology

1. Introduction

Any extension (i.e. short exact sequence)

0 K
k

E
f

C 0

of groups determines an action of E on K, and in turn a homomorphism ψ0 : C →
Aut(K)
Inn(K) = Out(K), called the abstract kernel of the extension. It is a classical problem 
to establish whether, given a morphism ψ0 as above, there exists an extension having 
ψ0 as its abstract kernel. The answer to this question is provided by the Schreier–Mac 
Lane Theorem (see [27]), where it is proved that each abstract kernel determines a 
corresponding action ξ of C on the centre Z(K) of K, and an element of H3(C, Z(K), ξ)
called obstruction. The requested extension exists if and only if the obstruction vanishes. 
Moreover, if the obstruction vanishes, then the set of extensions inducing the given 
abstract kernel is a simply transitive H2(C, Z(K), ξ)-set.

Two remarkable generalisations of the Schreier–Mac Lane obstruction theory are 
known. The first one, due to Bourn (see [9]), basically shows that Schreier–Mac Lane 
Theorem still holds in a wider class of categories, such as a semi-abelian category with 
suitable properties. The second one is based on the homotopy classification of categorical 
groups established by Sinh in [34] and is stated in a more explicit way by Cegarra, García-
Calcines and Ortega in [15]. It consists in replacing extensions of groups by monoidal 
functors between categorical groups. Indeed, extensions (f, k) as above bijectively cor-
respond to monoidal functors from the categorical group associated with the crossed 
module 0 → C to the one associated with K → Aut(K).

Since these two generalisations go into quite different directions, in this paper we 
address the problem of finding a general setting which subsumes at the same time the 
semi-abelian setting and the categorical group setting.

In order to understand the solution we propose, let us look at the point of view on 
the obstruction problem for (crossed) extensions of groups adopted in [19]. The category 
XExt(Gp) of crossed extensions of groups is equipped with a functor Π: XExt(Gp) →
Mod(Gp), which sends each crossed extension

0 B G2
∂

G1 C 0

to the group module (C, B), the action of C on B being induced by the crossed module 
∂. Weak equivalences in XExt(Gp) are those morphisms of crossed extensions which 
are turned into isomorphisms by the functor Π. Therefore, Π factorises through the 
corresponding category of fractions, whose morphisms are isomorphism classes of the 
so-called butterflies (see Sections 6.1–6.4)
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XExt(Gp)
Q

Π

[BExt](Gp)

P

Mod(Gp)

An extension

0 K
k

E
f

C 0

inducing the abstract kernel ψ0 : C → Out(K) gives rise to the butterfly depicted by 
the following commutative diagram, where the left and right columns are crossed exten-
sions.

0 Z(K)

0 K

IK

k

E
f

conj

C

1

Aut(K)

C
ψ0

Out(K)

This interpretation allows us to translate the existence of the extension (f, k) into the 
existence of such a morphism in the category [BExt](Gp).

Having in mind this particular case, one can generalise the classical obstruction prob-
lem as follows: given any two crossed extensions X and X ′ and a morphism (ψ0, ψ)
between their associated modules via Π, is there a butterfly between X and X ′ whose 
image via P is (ψ0, ψ)?

Actually, the above factorisation of Π through the category of fractions [BExt](Gp)
lives in the 2-category Fib(Gp) of fibrations over Gp. It is proved in [18] that Π is a 
fibrewise opfibration in Fib(Gp) (see Definition 3.1), and this implies that in the above 
factorisation, P is a fibrewise opfibration as well, but with groupoidal fibres (see Propo-
sition 4.8 in [17]). Moreover, thanks to the existence of liftings and coliftings in the 
fibrewise opfibration P , the obstruction problem formulated above may be reduced to 
the case where (ψ0, ψ) is an identity.

This points the way to a formal context where to develop an abstract obstruction 
theory. In fact, we can formulate an obstruction problem as in 3.3:
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• Let

X P

F

M

G

B

be a fibrewise opfibration in Fib(B). Given two objects x and y of X, and a morphism 
ϕ : P (x) → P (y) of M, is there any f : x → y in X such that P (f) = ϕ? When this 
is the case, is it possible to describe the set of such morphisms?

The main result of this work is Theorem 3.5, where we show that also in such a formal 
context, if P has groupoidal fibres, the set of solutions of a given obstruction problem, 
if not empty, is still a simply transitive Γ-set, where Γ is the automorphism group of an 
object in the fibre, and the action is given by arrow composition.

Once we get such a formulation in an abstract context, we can apply directly the above 
result to concrete situations, that can be described by means of a fibrewise opfibration 
with groupoidal fibres, such as morphisms of:

• extensions of groups with abelian kernel (Theorem 4.2);
• abelian extensions in a semi-abelian context (Theorem 4.4);
• singular extensions of unital associative algebras (Theorem 4.5).

Moreover, there are interesting situations described by a fibrewise opfibration whose 
fibres are not necessarily groupoids, so that Theorem 3.5 cannot be applied directly. 
However, as explained in [17], under suitable conditions one can factorise a fibrewise 
opfibration through an appropriate category of fractions and the resulting factorisation is 
a fibrewise opfibration with groupoidal fibres (see Proposition 5.6). This way, we translate 
the original obstruction problem into a different problem, where we look for weak maps
(i.e. morphisms in the category of fractions), instead of maps, between the same objects. 
In this framework, we can apply our general result to different cases, namely:

• the already mentioned butterflies between crossed extensions of groups (Theo-
rem 6.7);

• monoidal functors between categorical groups: we recover a cohomological clas-
sification of such functors in terms of homotopy invariants of categorical groups 
(Theorem 7.1);

• crossed bimodule butterflies, introduced by Aldrovandi in [2]: we get the classification 
Theorem 7.3, where we take advantage of the description of the third Hochschild 
cohomology groups in terms of crossed biextensions provided in [4];
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• as a particular case of crossed bimodule butterflies, we obtain a variation of the 
Schreier-Mac Lane Theorem, providing a classification of unital associative algebra 
extensions with non-abelian kernel (Theorem 7.4).

2. Preliminaries

For the sake of completeness, in this section we recall the following well-known facts 
and definitions about fibrations of categories (see [5, Chapter 8] for a throughout intro-
duction).

Definition 2.1. Let P : X → B be a functor. A morphism f : x → y is called cartesian
w.r.t. P , or P -cartesian, if

• for all α : a′ → a and f ′ : x′ → y with P (f ′) = P (f) · α, there is a unique lifting 
α̂ : x′ → x with P (α̂) = α and f ′ = f · α̂.

x′

α̂

f ′

x
f

y

a′

α

P (f ′)

a
P (f)

b

X

P

B

A morphism f : x → y is called P -vertical (or just vertical) if P (f) is an identity.
For b ∈ B, we denote by Xb the fibre of P over b, i.e. the subcategory of X determined 

by all morphisms g such that P (g) = 1b.

We can extend the fibre notation: for α : P (x′) → P (x) we write Xα(x′, x) for the set 
of those morphisms h : x′ → x with P (h) = α.

Lemma 2.2. With notations as above, the morphism f : x → y is cartesian if and only if 
for all x′ in X and α : P (x′) → P (x), the map given by the composition with f yields a 
bijection:

f · − : Xα(x′, x) → XP (f)·α(x′, y) .

Definition 2.3. The functor P : X → B is a fibration, or fibration over B, if for every 
ϕ : a → b in B, and y object of Xb there is a cartesian lifting f : x → y of ϕ at y, i.e. f is 
P -cartesian and P (f) = ϕ.
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Cartesian liftings are universal: if a morphism ϕ admits two cartesian liftings f
and f ′ at the same y, then the unique comparison h with f ′ = f · h is an isomor-
phism.

Definition 2.4. Let P : X → B and Q : Y → B be fibrations over B. A functor F : X → Y
is said to be fibred (or cartesian) over B if

1. Q · F = P ,
2. if f is P -cartesian, then F (f) is Q-cartesian.

Given two fibred functors F and G from P to Q, a natural transformation

τ : F ⇒ G

is said to be vertical over B if, for every object x in X, its components τx : F (x) → G(x)
are Q-vertical.
These data define the 2-category Fib(B).

We say that P : X → B is an opfibration if P op : Xop → Bop is a fibration. The 
related notions of opcartesian morphisms and opcartesian liftings are understood. Op-
fibrations, opfibred functors and vertical natural transformations define the 2-category 
OpFib(B).

3. The obstruction problem and the classification theorem

In the present section, we start by recalling the definition of fibrewise opfibration, the 
formal setting where our obstruction problems take place. Then we state our main result 
as a classification theorem that, under suitable conditions, describes the solutions of a 
given obstruction problem.

3.1. Fibrewise opfibrations and the obstruction problem

Definition 3.1 ([18]). A morphism P : (X, F ) → (M, G) in Fib(B)

X P

F

M

G

B

(1)

is a fibrewise opfibration if for every object b in B, the restriction to the fibres

Pb : Xb Mb

is an opfibration.
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Example 3.2.

1. Any internal opfibration in Fib(B) is an example of fibrewise opfibration (see [18] for 
details).

2. Let S : S → A × B be a Yoneda regular span. Then the diagram

S S

S2=P2·S

A × B

P2

B

is a fibrewise opfibration.
3. A special case is when S is a 2-sided fibration, or a discrete 2-sided fibration, as for 

instance when it is determined by a profunctor.

The main object of our study may be formalised in the following way.

Problem 3.3. Let us suppose we are given a fibrewise opfibration P : (X, F ) → (M, G), 
two objects x and y of X, and a morphism ϕ : P (x) → P (y) of M. The obstruction problem
associated with the triple (x, y, ϕ) is to investigate whether there exists any f : x → y

such that P (f) = ϕ, and in this case, to describe the set of such morphisms.

3.2. The classification theorem

Given a fibrewise opfibration (Definition 3.1)

X P

F

M

G

B

(2)

let us consider two objects x and y of X, and a morphism ϕ : P (x) → P (y) in M.
Since F is a fibration, there exists a cartesian lifting

w : ϕ∗y y

of G(ϕ) at y. Then, since P is fibred over B, ϕk = P (w) is cartesian w.r.t. G, thus giving 
a factorisation

ϕ = ϕk · ϕv

with ϕv lying in the fibre MF (x).
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Let PF (x) : XF (x) → MF (x) be the restriction of P to the fibres over F (x). By hy-
pothesis, PF (x) is an opfibration, so that we can exhibit an opcartesian lifting u of ϕv

at x:

x
u

ϕ∗x

P (x)
ϕv

P (ϕ∗y)

XF (x)

PF (x)

MF (x)

By Lemma 2.2, and by its dual version, we obtain:

1. a bijection given by the composition with w:

w · − : XF (x)(x, ϕ∗y) XG(ϕ)(x, y)

2. a bijection given by precomposition with u:

− · u :
(
XF (x)

)
P (ϕ∗y) (ϕ∗x, ϕ

∗y)
(
XF (x)

)
ϕv

(x, ϕ∗y)

The reader will be easily convinced that no ambiguity will arise if we write the last 
bijection as follows:

− · u : XP (ϕ∗y)(ϕ∗x, ϕ∗y) Xϕv
(x, ϕ∗y)

Indeed

Xϕv
(x, ϕ∗y) =

(
XF (x)

)
ϕv

(x, ϕ∗y) ⊆ XF (x)(x, ϕ∗y) ,

so that we can restrict the first bijection to

3. a bijection

w · − : Xϕv
(x, ϕ∗y) XP (w)·ϕv

(x, y)

The previous discussion leads to the following statement.

Theorem 3.4. In the fibrewise opfibration (P, F, G), we consider two objects x and y in 
X, and a map ϕ : P (x) → P (y). Then there is a bijection

Φ = Φx,y,ϕ : XP (ϕ∗y)(ϕ∗x, ϕ
∗y) Xϕ(x, y)
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Proof. Since P (w) · ϕv = ϕk · ϕv = ϕ, we can compose the maps 2. and 3. above, and 
get the bijection Φ.

X

x

ϕ∗x

u

ϕ∗xϕ∗yϕ∗y

y

w

x

y

P
M

•

P (ϕ∗y)

ϕv

•

•

ϕ

P (ϕ∗y)

•

ϕk

G

B

•

•
G(ϕ)

F
X

Y
Z

The reader may find it useful to follow the steps of the constructions involved in the 
theorem above on the diagram provided. Here, the fibres of F are represented by XY-
square sections in X, the fibres of G by Y-line segments in M and the fibres of P by 
X -line segments in X. �

So far we have established a bijection Φ between the set of morphisms we were to 
describe and another set of morphisms. This might not be very useful, unless we have 
some information on the second set of morphisms. It turns out that this can be the 
case, when we start with a fibrewise opfibration (P, F, G) such that the fibres of P are 
groupoids. In this case, since the set XP (ϕ∗y)(ϕ∗x, ϕ∗y) lives in the fibre of P over P (ϕ∗y), 
we can use the structure of the fibres of P to classify the maps in X.
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Theorem 3.5. Let us consider a fibrewise opfibration (P, F, G) such that the fibres of P
are groupoids. Given x and y objects of X, and ϕ : P (x) → P (y), we consider the set 
Xϕ(x, y). Then

(i) Xϕ(x, y) �= ∅ if and only if ϕ∗y ∼= ϕ∗x in the P -fibre.
(ii) If this is the case, then Xϕ(x, y) is a simply transitive H-set (i.e. an H-torsor), 

where the acting group is

H = XP (ϕ∗y)(ϕ∗y, ϕ∗y).

Proof. Use Φ to transfer the simply transitive left action of H on

XP (ϕ∗y)(ϕ∗x, ϕ
∗y)

given by arrow composition. �
Remark 3.6. Of course, one can equivalently endow the set XP (ϕ∗y)(ϕ∗x, ϕ∗y) with a 
simply transitive right action of the group

XP (ϕ∗x)(ϕ∗x, ϕ∗x).

When a fibrewise opfibration (P, F, G) satisfies the hypothesis of Theorem 3.5, we 
say that it admits a categorical obstruction theory. In this case, that theorem pro-
vides a solution to the obstruction problem of Definition 3.3, for any choice of (x, y, ϕ), 
by describing explicitly the torsor structure of the sets of maps f : x → y such that 
P (f) = ϕ.

4. Applications - part I

In this section we describe three direct applications of Theorem 3.5.

4.1. Morphisms of group extensions with abelian kernel

Here we apply Theorem 3.5 to recover the classification of the morphisms of group 
extensions (i.e. short exact sequences) with abelian kernel. The same method can be 
applied to morphisms of extensions defined in any semi-abelian category: the interested 
reader can consult [16].

Consider the diagram of categories and functors:

OPEXT(Gp) P

P0

Mod(Gp)

( )0

Gp

(3)
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where OPEXT(Gp) is the category of group extensions with abelian kernel and their 
morphisms, P is the functor that assigns to any C-extension with abelian kernel B the 
induced C-module structure on B, ( )0 is the forgetful functor that sends a C-module 
to the acting group C. Diagram (3) is a fibrewise opfibration, where the ( )0-cartesian 
liftings are given by precomposition, the P0-cartesian liftings are given by pullback and 
the opcartesian liftings in the restriction to fibres are given by push forward (see [27]). 
Let us fix a C-module B, with action ξ : C × B → B; the P -fibre OPEXT(Gp)(C, B, ξ)
over the C-module B is the category of C-extensions of B that induce ξ. Let us notice 
that, by the short-five lemma, P -fibres are groupoids.

Obstruction problem. Let us consider two extensions with abelian kernel

E = (f, k) and E′ = (f ′, k′)

and a morphism between the induced modules: (ϕ0, ϕ1) : ξ → ξ′.

P :

B
k

ϕ1

E
f

?

C

ϕ0

B′
k′

E′
f ′

C ′

	→

C ×B
ξ

ϕ0×ϕ1

B

ϕ1

C ′ ×B′
ξ′

B′

(4)

The obstruction problem in this case, consists in determining whether there are mor-
phisms of extensions E → E′ which induce (ϕ0, ϕ1). According to point (i) of Theo-
rem 3.5, this is the case if and only if the extension ϕ∗

0E
′ is isomorphic to the extension 

ϕ1∗E in the P -fibre over (C, B′, ϕ∗
0ξ

′), where the C-module structure ϕ∗
0ξ

′ is given by 
pulling back the action ξ′ along ϕ0. The situation is represented by the diagram be-
low

B
k

ϕ1

E
f

C

B′ ϕ1∗E

?

C

B′ ϕ∗
0E

′ C

ϕ0

B′
k′

E′
f ′

C ′

(5)

where lower right square is a pullback, while the upper left one is a push forward (com-
pare with Corollary 6.7 in [16] for the semi-abelian case).
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Classification. According to point (ii) of Theorem 3.5, when it is not empty, the set 
of extensions related with the obstruction problem stated above is a simply transitive 
Z-set, where Z is the group of automorphisms of the extension ϕ∗

0E
′, i.e. of the group 

isomorphisms ϕ∗
0E

′ → ϕ∗
0E

′ that fix the kernel B′ and the cokernel C. One can prove that 
Z is isomorphic to the classical group Z1

ϕ∗
0ξ

′(C, B′) of crossed homomorphism C → B′

(see for instance [27, Chapter IV]).

Remark 4.1. The isomorphism Z 
 Z1
ϕ∗

0ξ
′(C, B′) can be proved directly. Otherwise, one 

can see this isomorphism as a natural consequence of a more sophisticated general ar-
gument, which will be only outlined here. As it was observed in [35] (see also Section 
6.2 of [19]), given a C-module B with action ξ, the Baer sum endows the groupoid 
OPEXT(Gp)(C, B, ξ) with a natural symmetric monoidal structure which makes it a 
categorical group ([34], see also Section 7.1), since every object is invertible up to iso-
morphism; the identity object is the canonical semi-direct product extension determined 
by ξ. In fact, one can prove that the group π0(OPEXT(Gp)(C, B, ξ)) of the connected 
components of this categorical group is isomorphic to H2(C, B, ξ), and that the abelian 
group π1(OPEXT(Gp)(C, B, ξ)) of the automorphisms of the identity object is in fact 
isomorphic to Z1(C, B, ξ). From basic categorical group theory (see for example [23]), 
the automorphism group of the identity object is naturally isomorphic to the automor-
phism group of any other object. This gives the desired isomorphism in the situation 
considered above.

To sum up, we state the following result ((i) was already present in [16] as Corollary 
5.7).

Theorem 4.2. Let us consider two group extensions with abelian kernel

E = (f, k) and E′ = (f ′, k′)

and a morphism between the induced modules: (ϕ0, ϕ1) : ξ → ξ′ (see diagram (4) above). 
Then

(i) There exist morphisms of extensions E → E′ which induce (ϕ0, ϕ1) if and only if 
ϕ∗

0E
′ ∼= ϕ1∗E.

(ii) In this case, OPEXT(ϕ0,ϕ1)(E, E′) is a simply transitive Z1(C, B′, ϕ∗
0ξ

′)-set.

Remark 4.3. If E determines an element [ε] of H2(C, B) represented by a cocycle ε : C×
C → B, then ϕ1∗E corresponds to the element [ϕ1 · ε] of H2(C, B′). On the other side, 
if E′ determines an element [ε′] of H2(C ′, B′), then ϕ0

∗E′ corresponds to the element 
[ε′ · (ϕ0 × ϕ0)] of H2(C, B′). Hence, point (i) may be rephrased as follows:
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(i’) There exist morphisms of extensions E → E′ which induce (ϕ0, ϕ1) if and only if 
[ϕ1 · ε] = [ε′ · (ϕ0 × ϕ0)], or, equivalently, if the obstruction ϕ1 · ε − ε′ · (ϕ0 × ϕ0) is 
cohomologous to zero.

4.2. A comparison with Bourn’s direction functor

The direction functor approach to cohomology introduced by Bourn in [7] (see also 
[8,9,13]) can be used to provide examples of fibrewise opfibrations and related obstruction 
theories. Here we briefly recall the notion of direction functor in low dimension, and then 
we describe the way it can be related to our theory.

Let E be a Barr-exact category, and Eg its full subcategory determined by the objects 
X with global support (i.e. such that the terminal map X → 1 is a regular epimorphism). 
Moreover, let us denote by AM(E) the category of associative Mal’tsev operations

p : X ×X ×X → X

in E, and by AutM(E) the subcategory of autonomous Mal’tsev operations in E. Bourn 
defined a direction functor dE : AM(Eg) → Gp(E), and studied several important proper-
ties of this functor. Such dE is not an opfibration, but just a pseudo-opfibration with 
groupoidal fibres, as showed in [7]. Furthermore its restriction to AutM(Eg) factors 
through Ab(E).

In fact, the functors dE are the components of a pseudo-natural transformation d:

ExCat

AM( g)

Gp( )

Catd

where ExCat is the 2-category of Barr-exact categories, regular functors, and natural 
transformations.

Now, via the Grothendieck construction (see, for example, [26, B1.3]), it is clear 
that any contravariant pseudo-functor Bop → ExCat yields, by composition with d, a 
morphism in Fib(B) whose restrictions to the fibres are the above mentioned direction 
functors. In particular, for a Barr-exact category B, we can consider the pseudo-functor 
that assigns to each object C of B, the slice category B/C, i.e. the one corresponding 
to the fundamental fibration cod: Arr(B) → B. In this way, one obtains the mor-
phism in Fib(B) represented below, whose restrictions to the fibres over B are pseudo-
opfibrations:
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∫
C

AM(B/C)g
P

P0

∫
C

Gp(B/C)

( )0

B

(6)

and the corresponding restriction to the autonomous case:

∫
C

AutM(B/C)g
P

P0

∫
C

Ab(B/C)

( )0

B

(7)

The category Ab(B/C) is known as the category of Beck C-modules, and 
∫
C

Ab(B/C) is 
also called the tangent category of B.

If the category B is not only Barr-exact, but also Mal’tsev, then groups in B/C are 
automatically abelian, and Mal’tsev operations in B/C are automatically autonomous, 
so that (6) and (7) coincide.

In many interesting cases, as for example in the context of a semi-abelian category 
B, we can represent the latter diagram (7) up to equivalences in Fib(B) by means of a 
fibrewise (genuine) opfibration. This is displayed in the following diagram:

OPEXT(B) P

P0

Mod(B)

( )0

B

(8)

where OPEXT(B) has to be considered as the category of abelian extensions (which are, 
in general, a subcategory of extensions with abelian kernel, see [11]) and Mod(B) as the 
category of abelian actions, i.e. internal actions (see [6]) associated with Beck modules 
in B. In fact, diagram (3) is nothing but the specification of diagram (8) in Gp. On the 
other hand, Theorem 4.2 admits a generalisation to the semi-abelian context (for all the 
notions involved, the reader may refer to [19]).

Theorem 4.4. In a semi-abelian category B, let us consider two abelian extensions

E = (f, k) and E′ = (f ′, k′)

and a morphism between the induced abelian actions: (ϕ0, ϕ1) : ξ → ξ′. Then

(i) There exist morphisms of extensions E → E′ which induce (ϕ0, ϕ1) if and only if 
ϕ∗

0E
′ ∼= ϕ1∗E.
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(ii) In this case, OPEXT(B)(ϕ0,ϕ1)(E, E′) is a simply transitive
π1(OPEXT(B)(C, B′, ϕ∗

0ξ
′))-set.

Thus we have made explicit the link between low dimensional Bourn cohomology 
and our approach to categorical obstruction theory. The same can be done in higher 
dimensions, starting from crossed extensions, even if the fibres of Π are not groupoids. 
This issue is dealt with in Sections 5 and 6.

4.3. Singular extensions of unital associative algebras

Diagram (8) can be still representative also outside the semi-abelian context, as in 
the case AssAlg1 of unital associative algebras over a field K, provided we interpret 
OPEXT(AssAlg1) as the category of singular extensions and Mod(AssAlg1) as the category 
Bimod of bimodules (see [27, X.3]). Recall that a bimodule B over C is a K-vector space 
endowed with left and right unital C-actions such that for c, c′ ∈ C and b ∈ B we have 
(c ∗ b) ∗ c′ = c ∗ (b ∗ c′). Morphisms of bimodules are defined in the obvious way.

As in the case of groups, given a C-bimodule B, from Corollary 9 in [7] we de-
duce that the groupoid OPEXT(AssAlg1)(C, B) is endowed with a symmetric monoidal 
closed structure which makes it a symmetric categorical group. In fact, following 
[27], we can recover the second Hochschild cohomology group H2

H
(C, B) as the group 

π0(OPEXT(AssAlg1)(C, B)) of isomorphism classes of this categorical group.
The abelian group π1(OPEXT(AssAlg1)(C, B)) of the automorphisms of the identity 

object (given by the semi-direct sum [27]) can be equivalently represented by the group 
of crossed homomorphisms (see [27, X.(3.4)]), so that it is isomorphic to the group 
Z1

H
(C, B). Since we are dealing with a categorical group, the automorphism group of the 

identity object is naturally isomorphic to the automorphism group of any other object. 
Hence we get an analogue of Theorem 4.2.

Theorem 4.5. Let us consider two singular extensions of unital associative algebras

E = (f, k) and E′ = (f ′, k′)

and a morphism (ϕ0, ϕ1) : (C, B) → (C ′, B′) between the induced bimodules. Then

(i) There exist morphisms of extensions E → E′ which induce (ϕ0, ϕ1) if and only if 
ϕ∗

0E
′ ∼= ϕ1∗E.

(ii) In this case, OPEXT(ϕ0,ϕ1)(E, E′) is a simply transitive Z1
H

(C, B′)-set (where the 
C-bimodule structure on B′ is induced by the one of C ′ via ϕ0).

5. Localisation of a fibrewise opfibration

In the first part of this section, we introduce a prototype example that concerns the 
setting described in Section 3. Since in this example the assumption that the fibres of 
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P are groupoids is not satisfied, in order to apply Theorem 3.5 we have to perform a 
suitable localisation. This is explained in the second part of this section.

5.1. Crossed modules and crossed extensions of groups

Here we only recall the basic notions, which are well established in the literature; 
we refer to [18] for some constructions and results. The whole section is based on the 
category of groups, but the notions and results therein can be adapted to many semi-
abelian categories. For this reason, we shall often replace group-theoretical terms by 
categorical ones, as for example using “regular epimorphism” instead of “surjection”.

Definition 5.1. A pre-crossed module is a group homomorphism ∂ : G2 → G1 endowed 
with an action of G1 on G2 such that, for every g1 ∈ G1 and g2 ∈ G2, the condition

(i) ∂(g1 ∗ g2) = g1∂(g2)g−1
1 ,

is satisfied. If moreover, for every g2, g′2 ∈ G2, the condition

(ii) ∂(g2) ∗ g′2 = g2 + g′2 − g2 ,

holds, then ∂ is called a crossed module.

Given two crossed modules ∂ and ∂′ : G′
2 → G′

1, a morphism (f1, f2) : ∂ → ∂′ is a pair 
of group homomorphisms f2 : G2 → G′

2 and f1 : G1 → G′
1 equivariant with respect to 

the actions and such that ∂′ · f2 = f1 · ∂. This defines the category XMod(Gp) of crossed 
modules.

Given a crossed module ∂, the action of G1 on G2 induces an action of the cokernel 
π0(∂) on the abelian kernel π1(∂) of ∂: for a ∈ π1(∂) and x = p(g1) ∈ π0(∂), one sets

x ∗ a = g1 ∗ j(a)

where j : π1(∂) → G2 and p : G1 → π0(∂) are the kernel inclusion and cokernel quotient 
respectively. This construction defines a functor π from the category XMod(Gp) to the 
category Mod(Gp) of group modules, i.e. of triples (C, B, ξ), where B is a C-module via 
the action ξ, and equivariant pairs of morphisms as arrows.

In fact, crossed modules form a 2-category: a 2-cell

α : (f1, f2) ⇒ (f ′
1, f

′
2) : ∂ → ∂′

is given by a set-theoretical map α : G1 → G′
2 satisfying suitable conditions (see, for 

instance, [3]). All 2-cells are isomorphisms. We shall denote the 2-category of crossed 
modules by XMod(Gp).
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A morphism of crossed modules (f1, f2) is called weak equivalence if π(f1, f2) is an 
isomorphism. It is possible to show that every internal equivalence in the 2-category of 
crossed modules is a weak equivalence according to the above definition. The converse 
does not hold in general.

We will need some factorisation properties of crossed module morphisms. Here we 
recall the comprehensive factorisation system; details can be found in [19, Section 3], 
where the results are stated in the more general case of a semi-abelian category.

Proposition 5.2. The category XMod(Gp) admits a factorisation system whose orthogonal 
classes are the class of final morphisms and the class of discrete fibrations. These classes 
are characterised as follows:

(i) a morphism (f1, f2) is final if and only if π0(f1, f2) is an isomorphism and π1(f1, f2)
is a regular epimorphism;

(ii) a morphism (f1, f2) is a discrete fibration if and only if f2 is an isomorphism.

Remark 5.3. It is well known that the category of crossed modules in groups is equivalent 
to the category of internal groupoids, and that such equivalence extends to a biequiva-
lence between the 2-category of internal crossed modules and the 2-category of internal 
groupoids. Under this biequivalence, 2-cells of crossed modules correspond to internal 
natural transformations (in fact, natural isomorphisms). The biequivalence holds true for 
crossed modules internal to many other algebraic settings (see [1] for the semi-abelian 
case). The construction of the groupoid associated with a given crossed module (and 
vice versa) can be easily found in the literature (see [24] for the original source, and also 
Proposition 2.5 in [1]). Given a crossed module ∂G : G2 → G1, its associated internal 
groupoid is represented by

G2 �G1

i

d

c

G1e

where d, c, e are domain, codomain and identity arrows, while i is the inverse of the 
groupoid. Notice that the object of arrows is obtained by the semi-direct product induced 
by the given action.

Going back to crossed modules, let us notice that the functor π : XMod(Gp) →
Mod(Gp) is not part of a genuine fibrewise opfibration. However we can get our pro-
totype example, replacing XMod(Gp) with the equivalent category of crossed extensions.

Definition 5.4. A crossed extension of groups is an exact sequence in Gp

X : 0 B
j

G2
∂

G1
p

C 0 (9)

such that ∂ is a crossed module.
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Recall that the homomorphism underlying a crossed module is always proper, i.e. ∂
factors as a regular epimorphism followed by a normal monomorphism, so that every 
crossed module gives rise to a crossed extension, once kernel and cokernel are chosen.

A morphism of crossed extensions (γ, f1, f2, β) : X → X ′ is a morphism of exact 
sequences

X : 0 B
j

β

G2
∂

f2

G1
p

f1

C

γ

0

X ′ : 0 B′
j′

G′
2

∂′
G′

1
p′

C ′ 0

such that (f1, f2) is a morphism of crossed modules. As a consequence, the pair (γ, β) is 
a morphism of group-modules.

The category XExt(Gp) of crossed extensions of groups is defined, and the assignment

(γ, f1, f2, β) 	→ (γ, β)

defines a forgetful functor

Π: XExt(Gp) → Mod(Gp) .

It is clear that the definition of morphism of crossed extensions is redundant, since in 
(γ, f1, f2, β) the pair (γ, β) is uniquely determined by the pair (f1, f2). We keep the 
additional data only when they make some computations and definitions more evident. 
Otherwise, we shall often write (f1, f2) for a morphism of crossed extensions, or use 
the vector notation f = (f1, f2). The comprehensive factorisation of crossed modules 
morphisms extends naturally to the category of crossed extensions.

Just like crossed modules, also crossed extensions organise in a 2-category, 2-cells of 
crossed extensions being 2-cells of the underlying crossed modules. The 2-category of 
crossed extensions is denoted by XExt(Gp).

Proposition 5.5 (Theorem 4.2 in [18]). The commutative diagram of categories and func-
tors

XExt(Gp) Π

Π0

Mod(Gp)

( )0

Gp

(10)

is a fibrewise opfibration over Gp, where ( )0 is the forgetful functor that assigns to any 
C-module, its acting group C.
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For the reader’s convenience, we sketch the construction of the cartesian liftings of Π0
and opcartesian liftings of the restrictions of Π to the fibres.

Given a crossed extension X ′, and a group homomorphism γ : C → C ′, its cartesian 
lifting γ̂ : γ∗X ′ → X ′ is given by the following construction:

γ∗X ′ :

γ̂

B′

1

j′

G′
2

〈∂′,0〉

1

G′
1 ×C′ C

pr2

pr1

C

γ

X ′ : B′
j′

G′
2

∂′
G′

1
p′

C ′

where the rightmost square is a pullback in Gp. Then the comparison 〈∂′, 0〉 inherits a 
crossed module structure and (γ, pr1, 1, 1) is a morphism of crossed extensions, cartesian 
with respect to Π0.

Now, let us consider a group C, a crossed extension

X : 0 B
j

G2
∂

G1
p

C 0

and a morphism β : Π(X) = (B, φ) → (B′, φ′) of C-modules.
The strategy to produce an opcartesian lifting of β at X is not dual to the one we 

used for cartesian liftings, as one could argue. Indeed we do not use a pushout, but a 
push forward (see [16]). Let us consider the pair (ρ, B′ ×B G2), defined by the following 
short exact sequence of groups:

0 B
〈β,−j〉

B′ ×G2
ρ

B′ ×B G2 0

where the normal monomorphism 〈β, −j〉 is given by the assignment

b 	→ (β(b),−j(b)) .

The following diagram displays the opcartesian lifting:

X :

β̂

B
j

β

G2
∂

ρ·〈0,1〉

G1
p

1

C

1

β∗X : B′
ρ·〈1,0〉

B′ ×B G2
δ

G1
p′

C

where the push forward of j along β is the normal monomorphism ρ ·〈1, 0〉, which has the 
same cokernel as j, so that we can obtain a homomorphism δ such that δ · ρ · 〈0, 1〉 = ∂. 
Moreover, δ is a crossed module, with action induced from both the C-module structure 
of B′ and the crossed module structure of ∂.
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5.2. How to get groupoidal fibres

If a fibrewise opfibration (P, F, G) is such that the fibres of P are not groupoids, 
Theorem 3.5 cannot be applied. This happens, for example, in the case of the functor 
Π: XExt(Gp) → Mod(Gp) of diagram (10). However, one may try to turn such fibres into 
groupoids. The idea is to make all the arrows in the fibres of P invertible. This problem
has been solved, under suitable conditions, as a consequence of [17, Proposition 4.8 and 
Theorem 4.12], which we adapt to our context.

Proposition 5.6. Let P : F → G be a fibrewise opfibration in Fib(B). If the category Q
of fractions of X with respect to the class of P -vertical arrows is locally small, then P
admits a universal factorisation in Fib(B)

X

F

Q

P

Q

H

S
M

G

B

through a fibrewise opfibration S whose fibres are groupoids.

Remark 5.7. Since P is a fibrewise opfibration in Fib(B), it is an isofibration in Cat/B
(see Propositions 2.5 and 2.7 in [18]). Hence, thanks to Corollary 3.3 in [17], Q gives 
also the category of fractions with respect to the class of all the arrows inverted 
by P .

By this last statement, the fibrewise opfibration (S, H, G) satisfies the hypothesis 
of Theorem 3.5, hence it admits a categorical obstruction theory. The question that 
naturally arises at this point concerns the relationship between the obstruction problems 
set in (P, F, G) and the ones set in (S, H, G). In fact, a canonical construction for the 
comparison Q is given in [22], where the (possibly large) category Q has the same objects 
as X, and arrows given by (equivalence classes of) zig-zags of arrows, such that all the 
left directed ones lay in the fibres of P . The functor Q is constant on objects, and it 
sends the morphism f : x → y to itself, seen as a zig-zag.

Then, given (x, y, ϕ) in (P, F, G), we can consider the obstruction problem associated 
with the same triple, seen in (S, H, G), and try to solve it, i.e. determine the set Qϕ(x, y)
of weak maps g : x y such that S(g) = ϕ.

6. Applications - part II

In this section we develop further the example of crossed extensions introduced in 
Section 5.1. We focus on the case of groups first, even if most of the results hold for a 



A.S. Cigoli et al. / Journal of Algebra 593 (2022) 105–141 125
wide class of semi-abelian categories, as for instance Lie algebras, associative algebras, 
rings, etc. (see Section 6.5).

6.1. Crossed extensions of groups

Let us consider the fibrewise opfibration represented in diagram (10), and fix a C-
module B. It is well known that the connected components of the fibre of Π over (C, B)
give an interpretation of the cohomology group H3(C, B), the group operation being 
defined by means of the Baer sum (see [14]).

The morphisms in the fibre of Π over (C, B) are of the kind (1, f1, f2, 1):

0 B
j

1

G2
∂

f2

G1
p

f1

C

1

0

0 B
j′

G′
2

∂′
G′

1
p′

C 0

This implies that (f1, f2) is a weak equivalence of crossed modules. Conversely, any weak 
equivalence of crossed modules extends to a weak equivalence of crossed extensions lying 
in a suitable fibre of Π.

Weak equivalences do not have inverses in general. The categorical construction that 
we need in order to make such maps invertible consists in taking the category of fractions 
with respect to weak equivalences (see Remark 5.7).

Unfortunately, the class of weak equivalences of crossed extensions does not admit 
a calculus of fractions (in the sense of [22]), which would allow us to construct the 
corresponding category of fractions in an easier way. On the other hand, the 2-category 
of crossed modules does admit a bicategorical calculus of fractions (in the sense of [32]) 
with respect to weak equivalences. This is proved in [1] (see also [3]) for the more general 
case of internal crossed modules in a semi-abelian category, where the bicategory of 
fractions of crossed modules with respect to weak equivalences has a description with 
butterflies as 1-cells (see next section). We are going to use these results in order to 
show that the classifying category [BExt](Gp) of the bicategory of butterflies (extended 
to crossed extensions) is the category of fractions of crossed extensions with respect 
to weak equivalences. Since the morphisms inverted by the functor Π in diagram (10)
are precisely the weak equivalences, thanks to Proposition 5.6 we will then obtain a 
triangle diagram which still gives a fibrewise opfibration, but with groupoidal fibres (see 
Corollary 6.6).

6.2. The bicategory of butterflies

Butterflies between crossed modules of groups have been introduced by Noohi in [31]
(see also [3]), and they have been extended to crossed extensions in [19], where the more 
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general case of a semi-abelian category is studied. We will mainly refer to the latter, 
specialising notation and results to the case of groups.

Definition 6.1. Let us consider two crossed modules ∂H and ∂G. A butterfly Ê : ∂H → ∂G
is a commutative diagram in Gp of the form

H2
κ

∂H

G2

∂G

ι

E

δ γ

H1 G1

(11)

satisfying

1. (γ, κ) is a complex, i.e. γ · κ = 0,
2. (δ, ι) is a short exact sequence, i.e. δ = coker ι and ι = ker δ,
3. The action of E on H2, induced by the one of H1 on H2 via δ, makes κ : H2 → E a 

pre-crossed module,
4. The action of E on G2, induced by the one of G1 on G2 via γ, makes ι : G2 → E a 

pre-crossed module.

A 2-cell α : Ê ⇒ Ê′ : ∂H → ∂G is a group homomorphism α : E → E′ commuting with 
the κ’s, the ι’s, the δ’s and the γ’s.

Notice that all 2-cells are necessarily isomorphisms. Compositions and identity but-
terflies are defined (see [1]) in order to form the bicategory Bfly(Gp) of crossed modules 
and butterflies.

Before we go on, let us remark that as far as crossed modules can be considered as a 
normalised version of internal groupoids, butterflies are a normalised version of fractors, 
a class of internal profunctors introduced in [28].

The 2-category of crossed modules embeds into the bicategory of butterflies:

B : XMod(Gp) → Bfly(Gp) . (12)

The homomorphism B of bicategories is the identity on objects; for a morphism of crossed 
modules (f1, f2) : ∂H → ∂G, one defines:
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B(f1, f2) =

H2

∂H

〈∂,i·g·f2〉

G2

〈0,g〉

∂GE

d c·f

H1 G1

,

where

E
f

d

G2 �G1

d

H1
f1

G1

is a pullback, d, c, e, i are the structure maps of the internal groupoids associated with 
the given crossed modules, and g is the kernel of the domain map d. Universal property 
of pullbacks determines B on 2-cells.

Indeed, d is a split epimorphism. In fact, every butterfly where (δ, ι) is a split short ex-
act sequence comes from a morphism of crossed modules. For this reason, such butterflies 
are called representable.

A special kind of butterfly is given by the class of flippable butterflies, i.e. those 
butterflies such that also the pair (γ, κ) is short exact. In [19] it is proved that these 
are indeed the internal equivalences in the bicategory Bfly(Gp). Recall from [1] that a 
butterfly representing a weak equivalence is flippable, so that B sends weak equivalences 
to internal equivalences.

6.3. Butterfly composition and spans

Every butterfly induces a span of crossed modules. The related construction is repre-
sented in the diagram below:

H2 ×G2
p1 p2

κιH2
κ

∂H

G2

∂G

ι

E

δ γ

H1 G1

(13)
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where the crossed module κ�ι is defined by means of the group operation in E (see [1]
for details), and the morphism (δ, p1) is a weak equivalence of crossed modules. As a 
consequence, the definitions of Π0 and Π1 extend canonically to butterflies:

Π0(Ê) = Π0(γ, p2) · (Π0(δ, p1))−1 , Π1(Ê) = Π1(γ, p2) · (Π1(δ, p1))−1 .

The span representation makes it easier to compute compositions of butterflies. In this 
subsection, the results are presented in a straightforward way by using the comprehensive 
factorisation of a morphism into a final one followed by a discrete fibration, as described 
in Proposition 5.2. Proofs and details can be deduced from [29], where the case of internal 
groupoids in Barr-exact categories is dealt with.

Proposition 6.2. Consider two composable butterflies Ê and Ê′ together with their span 
representation:

Ê = (s, t) : ∂H → ∂G Ê′ = (s′, t′) : ∂G → ∂K

Then, their composite Ê′ · Ê = (s′′, t′′) can be computed as follows:

∂E ×∂G
∂E′

vu

q

∂E′E

s′′

t′′∂E

t

s

∂E′

t′s′

∂H ∂G ∂K

(14)

take the pullback t · u = s′ · v, and then consider the comprehensive factorisation

〈s · u, t′ · v〉 = 〈s′′, t′′〉 · q : ∂E ×∂G
∂E′ → ∂H × ∂K .

The discrete fibration 〈s′′, t′′〉 corresponds to a butterfly which gives the required compo-
sition.

Remark 6.3. In fact, the final morphism q is not just final but it is a weak equivalence. 
Actually, the spans representing butterflies are rather special ones, with the left leg be-
longing to the pullback stable class of weak equivalences which are surjective on objects. 
This implies that s · u is a weak equivalence, as well as s′′, and also q is, by the 2 out of 
3 property.

6.4. Butterflies and crossed extensions

Given the construction in Section 6.3, we can easily extend the notion of butterfly from 
crossed modules to crossed extensions. As a result, we obtain the bicategory BExt(Gp): a 
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butterfly between two crossed extensions is nothing but a butterfly between the under-
lying crossed modules. Recall from [19] the definition of [BExt](Gp), i.e. the classifying 
category of BExt(Gp): objects are crossed extensions in Gp and arrows are isomorphism 
classes of butterflies.

The homomorphism B of bicategories (12) sends a morphism of crossed modules to a 
butterfly, and this assignment preserves associativity and identities up to 2-cells. Hence, 
a functor is defined:

Q : XExt(Gp) → [BExt](Gp)

which is the identity on objects and takes any morphism f = (f1, f2) of crossed extensions 
to the class [B(U(f))] of butterflies.

Now, given the butterfly Ê representing a morphism [Ê] in [BExt](Gp), we can asso-
ciate with it a span

(s, t) = ((δ, p1), (γ, p2))

in XExt(Gp) obtained by extending the construction of the last section to crossed exten-
sions (see diagram (13)).

Moreover, since s is a weak equivalence, B(U(s)) is invertible up to isomorphism, and, 
according to Theorem 5.6 in [1], Ê · B(U(s)) ∼= B(U(t)). Then Q(s) is invertible and 
Q(t) ·Q(s)−1 = [Ê]. Then, we get the following result.

Proposition 6.4. The functor Q defined above presents [BExt](Gp) as the category of 
fractions of XExt(Gp) with respect to weak equivalences.

Proof. Since the butterfly associated with a weak equivalence is an internal equivalence 
in BExt(Gp), it is clear that Q sends weak equivalences to isomorphisms. Moreover, it is 
universal with respect to this property.

In order to prove it, let us consider a functor F : XExt(Gp) → X that turns weak 
equivalences into isomorphisms.

XExt(Gp)
Q

F

[BExt](Gp)

F̃

X

There is just one way to define the functor F̃ which extends F . Since Q is constant on 
objects, F̃ behaves like F on objects. As for morphisms, let us consider [Ê] : ∂H → ∂G, 
together with a span representation Ê = (s, t), and define

F̃ ([Ê]) = F (t) · F (s)−1 .
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It is well-defined, since isomorphic butterflies have isomorphic span representations. For 
two composable butterflies Ê and Ê′ as in diagram (14), we have:

F̃ ([Ê′]) · F̃ ([Ê]) = F (t′) · F (s′)−1 · F (t) · F (s)−1 = F (t′) · F (v) · F (u)−1 · F (s)−1

= F (t′ · v) · F (s · u)−1 = F (t′′ · q) · F (s′′ · q)−1 = F (t′′) · F (q) · F (q)−1 · F (s′′)−1

= F (t′′) · F (s′′)−1 = F̃ ([Ê′ · Ê]) = F̃ ([Ê′] · [Ê])

where the second equality holds because t · u = s′ · v, and u is a weak equivalence, the 
fifth one holds because the final morphism q is in fact a weak equivalence as well (see 
Remark 6.3). From preservation of composition, in this case one gets the preservation of 
identities, and this shows that F̃ is a functor. Finally, given a morphism f : ∂H → ∂G, we 

are to prove that F̃ (Q(f)) = F (f). To this end, recall that the morphism f gives rise to 
a butterfly B(U(f)) whose representing span has a split epimorphic internal equivalence 
as left leg:

∂H ∂f
s t

∂G .

Recall from [1, Remark 5.7] that, given a section s′ of s, t · s′ is isomorphic to f . In 
fact, one can choose the section s′ in such a way that the isomorphism is an equality. 
Moreover, since s is a weak equivalence, F (s) is an isomorphism, and F (s)−1 = F (s′). 
Then:

F̃ (Q(f)) = F̃ ([B(U(f))]) = F (t) · F (s)−1 = F (t) · F (s′) = F (t · s′) = F (f) . �
Remark 6.5. Another point of view in dealing with the category of fractions of crossed 
modules with respect to weak equivalences is adopted in [30]. In particular, see Propo-
sition 9.9 and Proposition 9.12 therein.

From Proposition 5.6, one immediately obtains the following statement.

Theorem 6.6. The fibrewise opfibration (Π, Π0, ( )0) admits a factorisation Π = P · Q
such that the resulting fibrewise opfibration (P, P0, ( )0) has groupoidal fibres.

XExt(Gp)

Π0

Q

Π

[BExt](Gp)

P0

P
Mod(Gp)

( )0

Gp
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One can find below a diagram describing how to obtain P ([Ê]) = (ϕ0, ϕ).

B

j

B

〈j,j′ϕ〉

ϕ
B′

j′H2 ×G2
p1 p2

κιH2
κ

∂H

G2

∂G

ι

E

δ γ

pδH1

p

G1

p′

C C
ϕ0

C ′

(15)

We can now apply Theorem 3.5 to our case study.

Theorem 6.7. Given two crossed extensions X = (p, ∂, j) and X ′ = (p′, ∂′, j′), and a 
homomorphism of modules ϕ = (ϕ0, ϕ) : Π(X) → Π(X ′), then

(i) the set (of the isomorphism classes) of butterflies

[Ê] : X → X ′

with P [Ê] = ϕ is not empty if and only if ϕ∗X ′ is isomorphic to ϕ∗X in 
[BExt](Gp);

(ii) if this is the case, such a set is a simply transitive Γ-Set, where

Γ = [BExt](Gp)Π(ϕ∗X′)(ϕ∗X ′, ϕ∗X ′)

is the group of the automorphisms of the object ϕ∗X ′ in the fibre of [BExt](Gp) over 
Π(ϕ∗X ′).

The diagram below may help to understand Theorem 6.7.
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B
ϕ

ϕ

B′
1

B′
1

B′

H2

∂

H ′
2

ϕ∗∂

G2

ϕ∗∂′

1
G2

∂′?

H1 1
H1 G′

1 G1

C
1

ϕ0

C
1

C
ϕ0

C ′

(16)

First, since ( )0 is a fibration, we consider a cartesian lifting of ϕ0 at X ′. This is done 
via the pullback represented by the right lower square of the diagram. Notice that, at 
this point, since composition with a cartesian map induces an isomorphism between 
the homsets under consideration, we have reduced our problem to finding a weak map, 
represented by a butterfly, between X and ϕ∗X ′.

Now we can consider the restriction of the fibrewise opfibration Π to the fibres over 
C, which is then an opfibration. The opcartesian lifting of ϕ at X is obtained via the 
push forward in the left upper square in the diagram. Moreover, since also composition 
with an opcartesian map induces isomorphisms between the homsets under considera-
tion, we have reduced further our problem to finding a weak map between ϕ∗X and 
ϕ∗X ′. This is represented by the dashed butterfly in the diagram, that, when it ex-
ists, yields an isomorphism in [BExt](Gp), since it lays in a P -fibre. This explains point 
(i) in Theorem 6.7, which has also a cohomological interpretation. If X determines an 
element [ε] of H3(C, B) represented by a cocycle ε : C × C × C → B, then ϕ∗X cor-
responds to the element [ϕ · ε] of H3(C, B′). On the other side, if X ′ determines an 
element [ε′] of H3(C ′, B′), then ϕ∗X ′ corresponds to the element [ε′ · (ϕ0 × ϕ0 × ϕ0)] of 
H3(C, B′).

As far as point (ii) of Theorem 6.7 is concerned, Γ acts by composition on the left. 
One can prove that the group Γ is canonically isomorphic to the cohomology group 
H2(C, B′, ϕ∗

0ξ
′), where the C-module structure ϕ∗

0ξ
′ on B′ is given by pulling back along 

ϕ0 the action ξ′ of C ′ on B′. The argument of the proof follows the same lines as in the 
lower-dimensional case of OPEXT mentioned before, see Remark 4.1. Also in this case, all 
the automorphism groups of the crossed extensions lying in the same fibre turn out to be 
isomorphic to each other. Therefore, Γ is isomorphic in particular to the automorphism 
group of the 0 crossed extension:
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B′ 1
B′ 0

C
1

C

and the latter is isomorphic to H2(C, B′, ϕ∗
0ξ

′), as proved in [19] in the semi-abelian case. 
In conclusion, we can rephrase Theorem 6.7 as follows:

Theorem 6.8. Consider two crossed extensions X and X ′, with associated elements [ε]
in H3(C, B) and [ε′] in H3(C ′, B′) respectively, and a morphism ϕ = (ϕ0, ϕ) : (C, B) →
(C ′, B′) of modules. Then

(i) there exists a butterfly Ê : X X ′ with P ([Ê]) = ϕ if and only if [ϕ · ε] =
[ε′ · (ϕ0 × ϕ0 × ϕ0)];

(ii) if [BExt]ϕ(X, X ′) �= ∅, it is a simply transitive H2(C, B′, ϕ∗
0ξ

′)-set.

Specialisations of the example above give rise to well-known classification problems. 
For instance, let us be given two groups K and C, and a morphism ψ0 : C → Out(K), 
called abstract kernel. The obstruction problem associated with these data precisely cor-
responds to the classical Schreier-Mac Lane obstruction theory of non-abelian extensions, 
which means to find extensions of C via K inducing ψ0. Actually, such an extension cor-
responds to filling the diagram below with a butterfly:

0 Z(K)

0 K

IK

k

E
f

conj

C

1

Aut(K)

C
ψ0

Out(K)

(17)

where IK is the classical crossed module of inner automorphisms of K into Aut(K), its 
kernel being the centre Z(K) and its cokernel being the group of outer automorphisms 
of K; the homomorphism conj is the restriction to K of conjugation in E. In conclusion, 
applying Theorem 6.8 to this particular case, we recover the following classical result 
(more details can be found in [19]; see also [20] and [9]).

Theorem 6.9 (Schreier-Mac Lane Classification Theorem). Let ζK denote the canonical 
action of Out(K) on Z(K) and [ωK ] the element of H3(Out(K), Z(K), ζK) correspond-
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ing to IK . Let ψ0 : C → Out(K) be an abstract kernel and Ext(C, K, ψ0) the set of 
equivalence classes of extensions inducing the abstract kernel ψ0. Then

(i) Ext(C, K, ψ0) �= ∅ if and only if [ωK · (ψ0 × ψ0 × ψ0)] = 0;
(ii) if Ext(C, K, ψ0) �= ∅, it is a simply transitive H2(C, Z(K), ψ∗

0ζK)-set.

6.5. Crossed extensions in the semi-abelian context

As already mentioned, most of the concepts involved in Section 6 carry on in any 
semi-abelian category satisfying (SH) (see [19,1,18]). First of all, since the proof of Propo-
sition 6.4 is purely formal, it can be performed in any such category, hence providing the 
following result, which includes also the intrinsic version of Theorem 6.6.

Theorem 6.10. Let C be a semi-abelian category satisfying (SH). The functor Q :
XExt(C) → [BExt](C) provides a category of fractions of XExt(C) with respect to weak 
equivalences. As a consequence, the fibrewise opfibration (Π, Π0, ( )0) admits a factori-
sation Π = P ·Q such that the resulting fibrewise opfibration (P, P0, ( )0) has groupoidal 
fibres.

XExt(C)

Π0

Q

Π

[BExt](C)

P0

P
Mod(C)

( )0

C

As a consequence of Theorem 6.10, we obtain an intrinsic version of Theorem 6.7, 
where Gp is replaced by any semi-abelian category C with (SH). In order to obtain a 
semi-abelian version of Theorem 6.8, one can use the internal cohomology developed by 
Bourn and, in terms of crossed extensions, by Rodelo (see [33]). Then, a semi-abelian 
version of Theorem 6.9 follows, provided the context is action representable. Notice that 
an intrinsic version of the latter already appears in [9], in the slightly more general context 
of not necessarily pointed, Barr-exact, action representable (protomodular) categories.

7. Applications - part III

We end this work with some further applications of Theorem 3.5 to categorical groups 
and to unital associative algebras.

7.1. Categorical groups

It is well known that the category XMod(Gp) of internal crossed modules in groups 
is equivalent to the category Gpd(Gp) of internal groupoids in groups. Groupoids in 
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groups can be equivalently presented as strict categorical groups, i.e. strict monoidal 
groupoids where each object is invertible. In such terms, internal functors become strict 
monoidal functors. Actually strict categorical groups and strict monoidal functors organ-
ise in a 2-category, where 2-cells are monoidal natural transformations. This 2-category 
is equivalent to XMod(Gp), hence its bicategory of fractions MonGp is biequivalent to 
Bfly(Gp). In [36], it is proved that (not necessarily strict) monoidal functors serve as 
morphisms between strict categorical groups in MonGp and in [1] it is described in detail 
how to perform the correspondence with butterflies. Actually, MonGp is biequivalent to 
the 2-category CatGp of (not necessarily strict) categorical groups, monoidal functors 
and monoidal natural transformations. Hence [CatGp] is equivalent to [Bfly(Gp)], hence 
to [BExt(Gp)].

Thanks to the previous equivalences, we can adapt Theorem 6.7 to the present context 
in order to formulate an obstruction and classification theorem for monoidal functors be-
tween categorical groups. With each categorical group G, one can functorially associate a 
module Π(G) = (Π0(G), Π1(G), ξG), where Π0(G) and Π1(G) are the homotopy invari-
ants of the categorical group, respectively given by the group of connected components 
of G and the group of automorphisms of its identity object. Moreover, we can choose 
an equivalence Φ between [CatGp] and [BExt(Gp)] in such a way that P · Φ = Π, where 
P : [BExt(Gp)] → Mod(Gp) is as in Theorem 6.6. Via Φ, one can also associate with each 
categorical group G an element [εG] of the cohomology group H3(Π0(G), Π1(G), ξG).

Then we are ready to recover, in the following theorem, a result on the classification 
of monoidal functors between categorical groups stated by Cegarra, García-Calcines and 
Ortega in [15] and based on the homotopy classification of categorical groups established 
by Sinh in [34].

Theorem 7.1. Given two categorical groups H and G, and a homomorphism of modules 
ϕ = (ϕ0, ϕ) : Π(H) → Π(G), then

i) there exists a monoidal functor

F : H → G

with ΠF = ϕ if and only if [ϕ · εH] = [εG · (ϕ0 × ϕ0 × ϕ0)] in the group 
H3(Π0(H), Π1(G), ϕ∗

0ξG);
ii) if this is the case, isomorphism classes of such functors form a simply transitive 

H2(Π0(H), Π1(G), ϕ∗
0ξG)-set.

7.2. Crossed extensions of unital associative algebras

In this section, we start by recalling the notion of crossed biextension of unital asso-
ciative algebras over a fixed field K. Crossed biextensions were introduced in [4] to give a 
description of the Hochschild cohomology group H3 (C, B) for any given C-bimodule B.
H
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A crossed bimodule is a morphism of A1-bimodules

∂ : A2 → A1 ,

(where A1 is considered as a A1-bimodule via the multiplication in A1) satisfying

∂(a) ∗ a′ = a ∗ ∂(a′) ,

for all a, a′ ∈ A2. Notice that the product defined by aa′ = ∂(a) ∗ a′ gives A2 a structure 
of (not necessarily unital) associative algebra.

A crossed biextension is an exact sequence

X : 0 B
j

A2
∂

A1
p

C 0

in K-Vect, where p is a surjective morphism of unital associative algebras and ∂ is a 
crossed bimodule. Such data determine a C-bimodule structure on B, denoted by Π(X). 
Morphisms of crossed biextensions are defined in the obvious way and they form a 
category XBiext, with Π becoming a functor.

In [18] it is proved that the commutative triangle

XBiext Π

Π0

Bimod

( )0

AssAlg1

is a fibrewise opfibration in Fib(AssAlg1). In fact, the fibres of Π are not groupoidal, 
so that, in order to apply Theorem 3.5, we need to move to the category of fractions 
of XBiext with respect to Π-vertical arrows. We cannot follow directly the lines of the 
group theoretical case (see Section 6.4), since AssAlg1 is not semi-abelian. However, 
the category XBiext is equivalent to the category Gpd(AssAlg1) of internal groupoids in 
AssAlg1 (see [21]). Actually, the latter is naturally endowed with a 2-category structure, 
having internal natural transformations as 2-cells, and the equivalence above becomes a 
2-equivalence Gpd(AssAlg1) 
 XBiext. Under this 2-equivalence, Π-vertical arrows cor-
respond to fully faithful and essentially surjective internal functors, also called weak 
equivalences in [28]. It is proved in [28] that the bicategory Frac(E) of fractions of inter-
nal groupoids in a Barr-exact category E with respect to weak equivalences has fractors
as 1-cells. The latter are a special kind of internal profunctors (see [10,25]) whose span 
representation has a fully faithful, surjective on objects, left leg. The interested reader 
may look at [28] for a more detailed account.

Thanks to the 2-equivalence between Gpd(AssAlg1) and XBiext, we can describe the 
bicategory of fractions BXBiext of crossed biextensions with respect to weak equivalences, 
by translating fractors into crossed bimodule butterflies (introduced in [2]).
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Definition 7.2. A crossed bimodule butterfly Ê between two crossed biextensions X and 
X ′ is a diagram

B B′

A2
κ

∂

A′
2

∂′

ι

Ê : E

δ γ

A1 A′
1

C C ′

such that

1. δ is a surjective morphism in AssAlg1 and ι is its kernel in K-Vect;
2. γ is a morphism in AssAlg1, κ a morphism in K-Vect and γκ = 0;
3. for all a in A2, a′ in A′

2 and e in E, the following conditions hold:

ι(a′ ∗ γ(e)) = ι(a′)e
ι(γ(e) ∗ a′) = eι(a′)
κ(a ∗ δ(e)) = κ(a)e
κ(δ(e) ∗ a) = eκ(a)

A 2-cell α : Ê ⇒ Ê′ : X → X ′ is a morphism α : E → E′ in AssAlg1, commuting with 
the κ’s, the ι’s, the δ’s and the γ’s.

Notice that such an Ê is, in fact, a special internal butterfly in the semi-abelian 
category AssAlg of (not necessarily unital) associative algebras. It is then not surprising 
that also crossed bimodule butterflies admit a span representation like (15) as explained 
in [2]. We can then repeat the argument of Proposition 6.4 to prove that the classifying 
category [BXBiext] of the bicategory BXBiext is the category of fractions of XBiext with 
respect to weak equivalences.

Now, thanks to Proposition 5.6, we can get the following factorisation:

XBiext

Π0

Q

Π

[BXBiext]

P0

P
Bimod

( )0

AssAlg1
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with P a fibrewise opfibration with groupoidal fibres. Recall from [4] that one can asso-
ciate with each crossed biextension

X : 0 B
j

A2
∂

A1
p

C 0

a cocycle ε : C ⊗C ⊗C → B, hence obtaining an equivalent description of H3
H(C, B) in 

terms of connected components of the fibre of Π over (C, B). Then, applying Theorem 3.5
to the triangle (P, P0, ( )0), we get the next result, whose proof follows the lines of the 
group theoretical case.

Theorem 7.3. Consider two crossed biextensions X and X ′, with associated elements [ε]
in H3

H
(C, B) and [ε′] in H3

H
(C ′, B′) respectively, and a morphism ϕ = (ϕ0, ϕ) : (C, B) →

(C ′, B′) of bimodules. Then

(i) there exists a crossed bimodule butterfly Ê : X X ′ with P ([Ê]) = ϕ if and 
only if [ϕ · ε] = [ε′ · (ϕ0 ⊗ ϕ0 ⊗ ϕ0)];

(ii) if [BXBiext]ϕ(X, X ′) �= ∅, it is a simply transitive H2
H

(C, B′)-set, where the C-
bimodule structure on B′ is defined by pulling back its C ′-bimodule structure.

As a final result we are going to obtain a variation of Schreier-Mac Lane Theorem 6.9
for the case of unital associative algebras. Let us first observe that a straightforward 
translation to this context is not possible. Indeed, actions are not representable in 
AssAlg1, i.e. for a given algebra A, in general one cannot represent actions on A via 
morphisms into a special algebra, as it happens for Aut(G) in the case of a group G (see 
[6] for a detailed account on representability of actions). Nevertheless, one can rely on 
the intrinsic Schreier-Mac Lane theory developed in [12] and [20] for action accessible 
categories.

For each surjective f in AssAlg1 and each short exact sequence

0 K
k

E
f

C 0

of (not necessarily unital) associative algebras, one can construct a diagram similar 
to (17), where IK is replaced by a faithful crossed biextension and ψ0 is a regular 
epimorphism. A crossed bimodule ∂ : A2 → A1 is said to be faithful if A1 acts faithfully 
on A2, i.e. a in A1 is such that a ∗ a′ = a′ ∗ a = 0 for each a′ in A2 if and only if a = 0. 
Notice that a faithful crossed bimodule has the centre (or annihilator) Z(A2) of A2 as 
kernel.

It is easy to see that the canonical faithful crossed extension associated with (f, k)
can be constructed via the quotient q of E over the centraliser (or annihilator) Z(K, E)
of K in E. We get then the following commutative diagram
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0 Z(K)

0 K

∂

k

E
f q

C

1

E/Z(K,E)

C
ψ0

Q

which gives rise to a crossed bimodule butterfly Ê with faithful codomain, and with 
ψ0 = P0([Ê]) a regular epimorphism. As a consequence, the action ξ of Q on Z(K)
induces an action ψ∗

0ξ of C on Z(K). Notice that, given an isomorphism of crossed 
biextension as

Z(K)
j

K
∂

E/Z(K,E)

∼

p
Q

∼τ

Z(K)
j

K
∂′

A′ p′

Q′

(18)

the induced action (τψ0)∗ξ′ of C on Z(K) coincides with ψ∗
0ξ.

Therefore, the extension (f, k) we started with gives rise to what we call an abstract 
kernel. Namely, an abstract kernel Ψ is an isomorphism class of diagrams of the form

Z(K)
j

K
∂

A
p

Q C
ψ0

with (p, ∂, j) a faithful crossed biextension and ψ0 a regular epimorphism. Two such 
diagrams are isomorphic when there exist isomorphisms τ and σ making (τ, σ, 1K , 1Z(K))
a morphism of crossed extensions and the right hand square in the following diagram 
commutes:

Z(K)
j

K
∂

A

∼σ

p
Q

∼τ

C
ψ0

Z(K)
j

K
∂′

A′ p′

Q′ C
ψ′

0
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Now, fixed a representative of such an abstract kernel Ψ, as the one in the dia-
gram above, a butterfly Ê between the crossed biextensions (1C , 0, 0) and (p, ∂, j) with 
P ([Ê]) = (ψ0, 0) determines an extension (f, k) whose associated abstract kernel is ex-
actly Ψ. We can now apply Theorem 7.3 in order to get the following result.

Theorem 7.4 (Schreier-Mac Lane Classification Theorem for unital associative algebras). 
Given an abstract kernel Ψ represented by ((p, ∂, j), ψ0), let ξ denote the action of Q on 
Z(K) induced by the crossed module structure of ∂, [ω] the corresponding element of 
H3

H
(Q, Z(K), ξ), and Ext(C, K, Ψ) denote the set of isomorphism classes of extensions 

inducing the abstract kernel Ψ. Then

(i) Ext(C, K, Ψ) �= ∅ if and only if [ω · (ψ0 ⊗ ψ0 ⊗ ψ0)] = 0;
(ii) if Ext(C, K, Ψ) �= ∅, it is a simply transitive H2

H
(C, Z(K), ψ∗

0ξ)-set.

Remark 7.5. Based on the previous discussion, one can see that the set of all extensions 
can be obtained as the disjoint union of the sets Ext(C, K, Ψ) for each Ψ, hence providing 
a classification of all possible extensions of unital associative algebras with non-abelian 
kernel.
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