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Abstract
Background and rationale Histopathological studies revealed degeneration of the dorsal motor nucleus of the vagus nerve (VN)
early in the course of idiopathic Parkinson’s disease (IPD). Degeneration of VN axons should be detectable by high-resolution
ultrasound (HRUS) as a thinning of the nerve trunk. In order to establish if the VN exhibits sonographic signs of atrophy in IPD,
we examined patients with IPD compared with age-matched controls.
Material and methods We measured the caliber (cross-sectional area, CSA) and perimeter of the VN in 20 outpatients with IPD
(8 females and 12 males; mean age 73.0 + 8.6 years) and in age-matched controls using HRUS. Evaluation was performed by
blinded raters using an Esaote MyLab Gamma device in conventional B-Mode with an 8–19 MHz probe.
Results In both sides, the VNCSAwas significantly smaller in IPD outpatients than in controls (right 2.37 + 0.91, left 1.87 + 1.35
mm2 versus 6.0 + 1.33, 5.6 + 1.26 mm2; p <0.001), as well as the perimeter (right 5.06 + 0.85, left 4.78 + 1.74 mm versus 8.87 +
0.86, 8.58 + 0.97mm; p <0.001). There were no significant correlations between VNCSA and age, the Hoehn and Yahr scale, L-
dopa therapy, and disease duration.
Conclusion Our findings provide evidence of atrophy of the VNs in IPD patients by HRUS. Moreover, HRUS of the VN
represent a non-invasive easy imaging modality of screening in IPD patients independent of disease stage and duration and an
interesting possible additional index of disease.
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Introduction

Idiopathic Parkinson’s disease (IPD) is known to be patholog-
ically characterized by a progressive neuronal loss in the
substantia nigra (SN) and pars compacta and aggregation of
the α-synuclein protein that accumulates in Lewy bodies (LB)
[1]. LB are highlightable histopathologically in many parts of
the brain of IPD patients [2, 3], including the SN, locus
coeruleus, basal nucleus of Meynert, cerebral cortex, and all
cranial nerves nuclei, especially the dorsal motor vagal nucle-
us (DMVN) [1]. The accumulation of α-synuclein aggregates
in some vagus nerve (VN) nuclei can be present even at ear-
liest stages of IPD [4–6]. In addition, some authors, on the
base of studies conducted on the topographic distribution of
α-synuclein, have hypothesized that the neuropathological
process leading to IPD may start in the gastroenteric nervous
system and spread centrally via the VN to the lower brainstem
[7–9], although this gut–brain transmission scenario still re-
mains highly controversial [10, 11], even if it has opened new
horizons of research [11]. The degree of arrival at the cerebral
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cortex is responsible for damage and cognitive reserve loss
[12] and the consequent polymedication use [13] in IPD.
Furthermore, autonomic dysfunction is present in the disease
[14] and may precede the occurrence of the cardinal motor
symptoms by many years [8, 15]. It involves the gastrointes-
tinal tracts, which receive parasympathetic input via VN, and
is responsible of constipation, gastroparesis, or nausea [8, 16].
From all these considerations originates the interest for the VN
and its structural integrity in IPD.

Neurodegenerative processes involving neural cell bodies
are followed by degeneration of their axons [17]; moreover, in
IPD being involved the DMVN, it can be expected the VN to
be thinner compared with controls. However, morphological
changes related to axonal degeneration are subtle and hard to
be detected in vivo. Mild-to-moderate atrophy of the VN has
been detected in diabetic neuropathy [18, 19], and ALS [20]
and reference value are available in [19, 21–24].

Few studies usedHRUS to detect possible atrophy or not of
the VN in IPD patients, with non-unique and definitive results.
Some authors reported evident atrophy [15, 25, 26], whereas
others did not [27, 28]. Therefore, the questions remain until
now controversial and require further investigations. To un-
ravel the hypothesis and answer the question whether IPD
patients have or do not have VN atrophy and since HRUS
represent a valuable tool to investigate the nerve trunks, we
assessed sonographically VN integrity in IPD compared to
age-matched healthy controls.

Methods

Study sample

We recruited 20 outpatients with a clinical and instrumental
IPD, diagnosed according to the criteria of the UK British
Brain Bank [29] and successive revision [30]. As supportive
criteria to exclude other additional central nervous system
pathologies, all cases had undergone previously at the time
of diagnosis, CT and MRI scan, PET and SPECT examina-
tion, and eventually acute challenge test with levodopa, essen-
tial requirements for inclusion in the study.We excluded cases
with neuroimaging signs of other central nervous system pa-
thology, or systemic disease, like diabetes mellitus, vascular
disease, and peripheral neuropathy.

The sample included 8 females and 12 males, mean age
73.0 + 8.6 years, mean disease duration 10.1 + 7.8 years
(range 2–20 years); all patients were taking L-dopa therapy
alone or together with dopamine agonists.

Control data for the VN parameters were obtained from
volunteers, recruited among the staff of the department, col-
league, and people who accompanied the subjects to outpa-
tient visits, 10 females and 10 males, mean age 65.2 + 10.3
years. The demographic data of the two groups and the main

clinical features of the patients are summarized in Table 1.
There were no significant differences in age, sex, race, weight
and height, or body mass index (BMI), between the two
samples.

Clinical assessment

All participants before inclusion underwent a profound phys-
ical examination to confirm the diagnosis, encompassing on-
set, course, disease duration, and severity by two of the au-
thors (PB and BT). The Hoehn and Yahr staging [31] was
employed to assess the disease severity. Patients were charac-
terized by a moderate but clear motor impairment (mean
Hoehn and Yahr stage 2.5 + 1)

A possible polyneuropathy was preliminary ruled out by
means of nerve conduction studies and ultrasonography of
tibial and sural nerve, as elsewhere reported [19].

The study was preliminarily approved by the local ethics
committee of Azienda Ospedaliero-Universitaria in Pisa, Italy.
All participants gave a written informed consent prior to be
enrolled in the study, according to the Declaration of Helsinki
and its later amendments.

High-resolution ultrasonography

A single, study-blind sonographer (FS) performed all HRUS
studies on a separate day from that of the clinical evaluation
and enrollment of cases. The acquisition of ultrasound images
was performed using an 8–19 MHz linear array transducer
with an Esaote MyLab Gamma device (Esaote, Genova,
Italy) in conventional B-mode [19]; cross-sectional area
(CSA), perimeter, echogenicity, and fascicular structure were
considered and measured either on the right and left side. The
patients and controls were scanned by the same author at the
Neurophysiopathology Section of the Department of Clinical
and Experimental Medicine.

Participants were scanned lying in the supine position, with
slight head extension while turning his/her head to the side
opposite to the scanned nerve. The VN was scanned in the
axial view; individually optimized settings were used for each
subject with respect to gain, depth, and focus. Depth was set at
4 cm, and the probe was placed first at the level of the thyroid
lobe with the probe orientation marker directed toward the
patient’s right side. The probe was then moved laterally to
identify the nerve inside the carotid sheath. Both the carotid
artery and the internal jugular vein served as anatomical land-
marks [32]. The VN was identified as a small rounded
hypoechoic/or honeycomb structure widget deep to the carot-
id artery and jugular vein (see Fig. 1 for an example in a
control subject). Minimal pressure was applied during the ex-
amination in order to prevent nerve compression. We mea-
sured the CSA of the VN by following the contour of the
nerve just inside the hyperechoic rim with the probe exactly
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orthogonal to the nerve and with least pressure applied; in
addition, we considered the perimeter, by tracing the nerve
following the hyperechoic epineurium, and only qualitatively
echogenicity and structure of the VN trunk. In the same ses-
sion, the sural and tibialis nerves were also scanned following
the commonly used modalities [19, 33] to exclude a possible
diffuse peripheral neuropathy. (Fig. 2)

Statistical analysis

Statistical analysis was performed using SigmaPlot version
12.0 package (Systat Software Inc., 2011–2012). Data were
tabulated, calculated, and analyzed; the mean and SD of VN
CSA and perimeter were determined. The measure obtained
from the left side in controls and patients was used in the
correlation and comparison studies. Two-tailed Student’s test

or Mann–Whitney rank sum test was used to compare sono-
graphic measure between controls and patients, side-to-side
measures, and subgroups of patient findings.

Pearson correlation coefficient (Pearson product-moment
correlation) was employed to correlate VN ultrasound mea-
surements with age, weight, height, BMI, and disease
duration.

Results

The main clinical features and HRUS findings we detected in
patients, together with control demographic data, are summa-
rized in Table 2. Patients and healthy control subjects were
well balanced in terms of main features. No signs of peripheral
neuropathy were present in either sample; trunk dimension

Table 1 Summary of
demographic data and main
clinical characteristic of both
controls and patients with
idiopathic Parkinson’s disease,
enrolled in the study

Controls (n = 20) IPD patients (n = 20) p value

Sex (f/m) 10 f/10 m 8 f/12 m

Age (years) 65.2 + 10.3 73.0 + 8.6 n.s.

Height (cm) 169.89 + 7.10 170.1 + 5.01 n.s.

Weight (kg) 71 + 16.9 72.9 + 10.8 n.s.

Body mass index (BMI) 24.47 + 4.95 25.06 + 5.89 n.s.

IPD duration (years) 10.1 + 7.8

(range 2–20)
L-dopa therapy 20 (100%)

Other therapy

(dopamine agonists)

18 (90%)

IPD, idiopathic Parkinson’s disease; f, female; m, male

Fig. 1 Typical axial high-
resolution ultrasonography
(HRUS) of short-axis view of the
right VN (inside the dotted line) in
a healthy control subject (C.F., M,
62 years). mSCM,
sternocleidomastoid muscle; vji,
internal jugular vein; ac, carotid
artery; dx (destri), right side
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and the structure investigated in the sural and tibialis posterior
nerve on the lower left limbs resulted within normal limit
(CSA in IPD, sural nerve =4.9 + 1.7 mm2; tibialis posterior
nerve 12.4 + 4.3 mm2; in healthy controls, sural nerve 5.3 +
1.4; tibialis posterior 13.4 + 4.1; p value not significant).
Furthermore, no difference in BMI or other anthropometric
data was observed.

In both sides, the VN CSAwas significantly smaller in IPD
outpatients (right 2.37 + 0.91 mm2, left 1.87 + 1.35 mm2) than
in controls (6.0 + 1.33 mm2, 5.6 + 1.26 mm2; p <0.001). Also
the perimeter resulted less (right 5.06 + 0.85, left 4,78 + 1.74
mm) compared with controls (8.87 + 0.86 mm, 8.58 + 0.97
mm; p <0.001). No significant differences in the right or left
were detected in our sample. Honeycomb structure was lost or
not appreciable.

There were no significant correlations between VN CSA
and age, the Hoehn and Yahr scale, disease duration and se-
verity, and therapy.

Discussion

Our findings provide evidence that IPD is associated with
bilateral atrophy of the VNs in the absence of signs of periph-
eral neuropathy and that can be detected in vivo by HRUS. In
fact we found that both VNs are significantly thinner in IPD
compared with healthy normal controls, in agreement with
other authors [15, 25, 26]. No potentials influenced of any
comorbidity associated with VN neuropathy may be called
in question because they have been preliminarily excluded

Fig. 2 Typical high-resolution
ultrasonographic findings of VN
on both sides (arrow) in a patients
with Parkinson’s disease (case
BF, M, 75 years old, disease du-
ration 9 years, hyperkinetic–
hypertonic type). Note the sub-
stantially symmetric clearly re-
duced CSA of VN and the pres-
ence of a thin hyperechoic rim
and no appreciable internal struc-
ture. ac, carotid artery

Table 2 Features of sonographic
measurements in IPD patients
compared with controls

Controls (n = 20) IPD patients (n = 20) p value

VN CSA (mm2) R 6.0 + 1.33

L 5.6 + 1.26

2. 37 + 0.91

1.87 + 1.35

< 0.001

< 0.001

VN perimeter (mm) 8.87 + 0.86

L 8.58 + 0.97

5.06 + 0.85

4.78 + 1.74

< 0.001

< 0.001

Body mass index 24.47 + 4.95 21.06 + 3.88 n.s.

Echo structure Round hypoechoic honeycomb: 420 Round hypoechoic 40
(with rim 6)

Sural nerve CSA (mm2) 5.3 + 1.4 4.9 +1.7 n.s.

Tibial nerve CSA (mm2) 13.4 + 4.1 12.4 + 4.3 n.s.
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before patient inclusion in the study. As regards the inner
structure, the nerve was hypoechoic with or without a detect-
able rim; the fascicular pattern was lost or not evident.

A systemic peripheral neuropathy, previously reported in
IPD, which might also involve the VN [34], can be excluded
by normal electrophysiological findings and HRUS in both
the sural and tibialis posterior nerves.

No correlation of VN calibers with IPD age, disease dura-
tion, and severity, nor with levodopa dose, was observed;
moreover, VN atrophy seems unlikely related to neuropathy
associated with levodopa medication [35].

Similar or even more pronounced VN atrophy has been
reported also in patients with diabetic neuropathy [18, 19]
and ALS [20]; furthermore, HRUS are able to discriminate
involvement also in small nerves [19, 33].

The VN as has been hypothesized is involved in IPD pro-
gression, following an active retrograde transport ofα-synuclein
coming from the enteric nervous system and ascending the
nerve until reaching the DMVN in the brainstem and cortex
[4, 36]. Its role is further confirmed by the decreased risk of
disease following sub-diaphragmatic truncal vagotomy [9, 37].
The transport via the vagal trunk to the DMVN has been con-
firmed in animal in which α-synuclein, recombinant or derived
from human PD brain lysate, has been injected into the intestinal
wall and then the substance has been found in section of VN of
IPD patients [7, 38, 39]. Therefore, a some degree of VN atro-
phy is for nothing no surprising by keeping in mind the high
sensitivity of this long nerve toα-synucleinopathies even if does
not prove an ascending IPD pathology from the gut via VN [26].

Taking into account that the VN at cervical levels contain
unmyelinated visceral sensory fibers ascending mainly to the
nucleus of the tractus solitarius (NTS), unmyelinated or partially
myelinated visceromotor and cardio-inhibitory fibers stemming
in theDMVN, and thickmyelinated somatomotor fibers coming
from the nucleus ambiguous; that in IPD, neural degeneration
with Lewy bodies has been found in the DMVN and NTS but
not in the nucleus ambiguus and the somatosensory nucleis, and
that the number of unmyelinated fibers is about four times
higher than that of myelinated fibers in the VN [40–42], we
can hypothesize mainly a loss of unmyelinated fibers [26].
Further studies using very high US (70 Mz) might help to fur-
ther improve the accuracy of fascicular involvement [43].

There are a handful of studies investigating VN size and
morphology in IPD in vivo. Our results confirm VN nerve
atrophy reported by other authors [15, 25, 26]. Nevertheless,
nonsignificant asymmetry was detected, in contrast with Peltz
et al. [15]. However, they are contrary to those reported by
two other studies [27, 28]. In the first paper, the AAmeasured
the cross-sectional area and echogenicity without detecting
any significant ultrasonographic changes of the VN integrity.
Looking at their findings, we can note that the CSA mean
values in their control group are a little smaller than that pre-
viously reported in other studies [18, 19, 44] and might

partially account of their results. For the other paper, only
the diameter was measuredwithout considering the CSA com-
monly considered the most reliable measure to evaluate nerve
integrity [25, 44]. Another consideration could be that our
patients were in a more advanced stage of disease compared
with the two cited works. Moreover, despite similar sample
size of these studies with the present one, the parameters of the
VN remain to be untangled, and studies with larger sample
sizes and longer follow-up periods are necessary.

Our study has several limitations: firstly, the small sample of
patients; secondly, the lack of assessment of autonomic function
and so no correlation with the burden of autonomic symptoms
can be drawn; and lastly, not less important, the noninclusion of
patients at early disease’s stages or de novo patients. Thus, stud-
ies in larger samples of patients with IPD, including de novo
cases, and other forms of parkinsonism are necessary to further
elucidate the diagnostic value of HRUS of VN in this disease.

In conclusion, at this stage of investigation, there is a con-
vincing body of evidence that HRUS of the VN represents a
promising non-invasive in vivo imaging modality of screening
VN in IPD patients independent of disease stage and duration
and an interesting index to identify patients at risk or to confirm
the disease and to develop new disease-modifying strategies.
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