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Abstract

We consider a family of Schrödinger equations with unbounded Hamiltonian quadratic nonlinearities on 
a generic tori of dimension d ≥ 1. We study the behavior of high Sobolev norms Hs , s � 1, of solutions 
with initial conditions in Hs whose Hρ -Sobolev norm, 1 � ρ � s, is smaller than ε � 1. We provide a 
control of the Hs -norm over a time interval of order O(ε−2).

Due to the lack of conserved quantities controlling high Sobolev norms, the key ingredient of the proof 
is the construction of a modified energy equivalent to the “low norm” Hρ (when ρ is sufficiently high) 
over a nontrivial time interval O(ε−2). This is achieved by means of normal form techniques for quasi-
linear equations involving para-differential calculus. The main difficulty is to control the possible loss of 
derivatives due to the small divisors arising form three waves interactions. By performing “tame” energy 
estimates we obtain upper bounds for higher Sobolev norms Hs .
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1. Introduction

We consider the derivative Schrödinger equation (DNLS)

∂tu = i(�gu − mu −Q(u,u)) , u = u(t, x) , x ∈T d := (R/2πZ)d , d ≥ 1 , (1.1)

where m > 0 is the mass, the operator �g is defined by linearity as

�ge
ij ·x = −‖j‖2

ge
ij ·x , ‖j‖2

g := Gj · j , j ∈ Zd , (1.2)

with G = (gij )i,j=1,...,d a strictly positive definite, symmetric, matrix, i.e. Gξ · ξ ≥ c0|ξ |2 for any 
ξ ∈Zd \ {0}, and c0 > 0. The nonlinearity Q(u, u) has the form

Q(u,u) := (∂uf )(u,∇u) −
d∑

i=1

∂xi
(∂uxi

f )(u,u) , (1.3)

where we denoted ∂u := (∂Re(u) − i∂Im(u))/2 and ∂u := (∂Re(u) + i∂Im(u))/2 the Wirtinger deriva-
tives and where f (y0, y1, . . . , yd) ∈ C∞(Cd+1; R) (in the real sense, i.e. f is C∞ as function of 
Re(yi), Im(yi)) is a homogeneous polynomial of degree 3 satisfying

∂yi
∂yj

f = ∂yi
∂yj

f ≡ 0 , ∀ i, j = 1, . . . , d , ∀ (y0, y1, . . . , yd) ∈ Cd+1 . (1.4)

Thanks to (1.3) one can note that the equation is Hamiltonian, namely (1.1) can be written as

∂tu = −i∇uH(u,u) , H(u,u) :=
∫

d

(�u) · udx +
∫

d

f (u,u)dx ,
T T
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where1 � := �(D) := −�g + m is the Fourier multiplier with symbol

�(ξ) := ‖ξ‖2
g + m := Gξ · ξ + m, ξ ∈ Zd . (1.5)

The main result of the paper is the following.

Theorem 1.1. For almost every m ∈ (0, +∞) the following holds. There exists ρ � 0 large 
enough and ε ≡ ε(ρ) � 1 small enough such that for any initial datum u0 ∈ Hρ(T d ; C), 
‖u0‖Hρ ≤ ε, there exists a unique solution u ∈ C0

([−Tρ, Tρ], Hρ(T d ; C)
)

of (1.1) with 
u(0, ·) = u0, with

‖u(t)‖Hρ �ρ ε , ∀ t ∈ [−Tρ,Tρ] , Tρ := c(ρ)ε−2 (1.6)

for some c(ρ) ≤ 1. Moreover, assume in addition that u0 ∈ Hs(T d ; C), s ≥ ρ (without any 
smallness assumption of ‖u0‖Hs ). Then u ∈ C0

([−Tρ, Tρ], Hs(T d ; C)
)

of (1.1) which remains 
bounded on [−Tρ, Tρ], namely

‖u(t)‖Hs �s ‖u0‖Hs , ∀t ∈ [−Tρ,Tρ] . (1.7)

Some comments on the result above are in order.
First notice that equation (1.1) can be seen as a nonlinear Schrödinger equation posed on a 

torus T d
	 := Rd/	 with arbitrary periodicity lattice 	. In view of the assumptions in (1.3)-(1.4), 

we have that Q(u, u) is a Hamiltonian nonlinearity containing at most one spatial derivative of 
the unknown u(t, x). Hence, as far as we know, Theorem 1.1 provides the first long existence 
results of solutions for nonlinear Schrödinger equations with derivatives and on a manifold dif-
ferent from the square torus.

We also could consider nonlinearities of order m with m < 2 but we preferred to write the 
paper for nonlinearities depending on ∇u, since they are more physical (it is basically the case 
of magnetic potentials).

The bound (1.6) shows indeed that solutions evolving from sufficiently regular initial data 
of size ε � 1 remain small over a time interval of size O(ε−2). This lifespan which is strictly 
larger than the time of existence provided by local theory which is of order O(ε−1). In addition 
to this our result provide a control, on the same time interval, of the growth of high Sobolev 
norms of solutions of (1.1). The bound (1.7) actually shows that the Hs -Sobolev norm of a 
solution remains bounded by only requiring a smallness conditions on a low norm of the initial 
datum. The second part of the Theorem is a consequence of sharp tame à priori estimates on the 
solutions. Unfortunately the equation has no conserved quantities which control for every time 
the Sobolev norms Hρ with ρ > 1. Hence we are only able to obtain the bound (1.7) over a long 
(but finite) time interval, by constructing a modified energy for the Hρ-norm with normal forms 
techniques. The result we obtained is in the same spirit of [20] by Delort-Masmoudi.

We require the Hamiltonian assumption on the nonlinearity in order to guarantee the well-
posedness of the Cauchy problem associated to (1.1) at least for short time. Actually this hypoth-
esis could be weakened. For more details, we refer for instance to the introduction of [24].

1 ∇u := (∇Re(u) − i∇Im(u))/2 and ∇u := (∇Re(u) + i∇Im(u))/2, ∇ denotes the L2-gradient.
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We also remark that the mass parameter m > 0 in (1.5) will be used to provide suitable lower 
bounds on three wave interactions.

Some related literature. We now present some known results on the long time existence and 
stability for derivative Schrödinger equations.

Local well-posedness. Many authors considered equations of the type (1.1) (even without the 
assumption (1.4)) in the Euclidean case (i.e. when x ∈ Rd ). The first existence result is due to 
Poppenberg in [36] for a special model in one dimension, later extended by Colin [15] to any 
dimension. A more general class of quasilinear Schrödinger equation is studied in the pioneering 
work of Kenig-Ponce-Vega [31]. We also mention a recent paper [32] by Marzuola-Metcalfe-
Tataru (see also references therein) which optimize the result in [31] in terms of the regularity 
of the initial data. The situation drastically changes when the equation is posed on a compact 
manifold. Indeed, Christ in [16] provides examples of Schrödinger equations with derivatives 
which are ill-posed on the circle S1 and well posed on R. We mention that a local existence 
has been obtained on the circle by Baldi-Haus-Montalto in [1] and by Feola-Iandoli in [24] with 
different techniques. In [25] the authors extend the latter results to any squared d-dimensional 
tori. Our assumption in (1.3) on the nonlinearity guarantees that the local well-posedness for 
(1.1) can be obtained in the same spirit of [25].

Global well-posedness. All the aforementioned results regard the local in time well-posedness 
for quasilinear Schrödinger equations. The global well-posedness has been established on R2

and R3 by de Bouard-Hayashi-Saut [13] in dimension two and three for small data on a model 
quasilinear Schrödinger. In [13], dispersive properties of the flow are exploited in order to obtain 
a control of the Sobolev norms for long time. We also mention the paper [34] by Murphy-Pusateri 
about the almost global existence for a non-gauge-invariant cubic nonlinear Schrödinger equation 
on R.

Long time regularity and normal forms. On tori (or more in general on compact manifolds) 
there are no dispersive effects that could help in controlling the behavior of the solutions for 
long times. In order to extend the lifespan of solution we use the powerful tool of normal form 
theory. This approach has been successfully and widely used in the past starting form the study 
of semi-linear PDEs. Without trying to be exhaustive we quote Bourgain [14], Bambusi [2] and 
Bambusi-Grébert [4] where the authors considered the Klein-Gordon equation on the circle. They 
proved almost global existence in the sense that, for any N ≥ 1 and any initial datum in Hs(T )

of size ε � 1 with s � 1 large enough, the solution exist and its Hs-Sobolev norm remains small 
over a time interval of size O(ε−N). Similar results have been obtained for semilinear equations 
also in higher space dimension. We refer, for instance, to [3] by Bambusi-Delort-Grébert-Szeftel 
which considered PDEs on Zoll manifolds (see also [23,21]). Normal form theory for quasi-
linear equations has been constructed more recently. We quote Delort [18,19] for the Klein-
Gordon on Sd and Berti-Delort [7] for the gravity capillary water waves on T . For equations 
like (1.1) we mention [26,27] where it is exploited the fact that (following the ideas of [7]) quasi-
linear Schrödinger equations may be reduced to constant coefficients through a para-composition
generated by a diffeomorphism of the circle.

Normal forms on irrational tori. All the papers mentioned above have in common that the 
spectrum of the linearized problem at zero has “good separation” properties. This fact depends on 
the geometry of the eigenvalues of the Laplace-Beltrami operator. On irrational tori, for instance, 
differences of eigenvalues can accumulate to zero. In this case, one typically gets very weak 
lower bounds on “small divisors” arising from n-waves interactions (see Appendix A). The same 
problem occurs for the Klein Gordon equation posed on T d , d ≥ 2. In dealing with this problem 
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is out of reach (at the moment), but nevertheless one can obtain partial results. We refer to Delort 
[17], Fang and Zhang [22], Zhang [38] for the Klein-Gordon, Imekraz in [29] for the Beam 
equation on T 2 and Feola-Grébert-Iandoli [28]. In this last case a special class of quasi linear 
Klein Gordon equation is considered. We finally quote the remarkable work on multidimensional 
periodic water wave by Ionescu-Pusateri [30].

Growth of Sobolev norms for PDEs on tori. For linear Schrödinger equations with time depen-
dent potentials on tori, there are several results providing an upper bound tε for the high Sobolev 
norms of the solutions. On rational tori T d , we mention the results of Bourgain [9], [10] and 
Delort [12]. These results have been extended on the irrational torus by Berti and Maspero in [8]. 
In these aforementioned results, the potential is bounded and the proof basically relies on the so 
called Bourgain Lemma. For Schrödinger equations on irrational tori with unbounded potentials 
(of order strictly smaller than 2), the upper bound tε on the growth of Sobolev norms has been 
proved in [6]. The proof relies on a Pseudo-differential normal form and on a careful analysis of 
the resonant vector field, by showing that the flow generated by it is uniformly bounded in time.

For nonlinear Schrödinger equations on tori, by completely different methods, Bourgain [11]
proved an upper bound t s for the Hs -norm of the solutions of nonlinear Schrödinger equations on 
T 2. This result has been also generalized on more general manifolds in [35] (see also references 
therein).

Plan of the paper and scheme of the proof. In the remaining part of the introduction, we briefly 
explain the strategy of our proof.

In order to prove a time of existence of size O(ε−2), we need to perform one step of normal 
form, in order to remove the quadratic terms. Hence in Section 2.1 we consider symbols which 
are sums of symbols linear in u, u plus symbols which are quadratic in (u, u). Similarly we define 
classes of smoothing operators. Since one is able to impose only very weak lower bounds on the 
three wave interactions (cf. Section A), the normal form procedure requires to use paradifferential 
calculus. In Section 4, we construct a change of variables u = 
(u)[w] (u(t, x) is a smooth 
solution of (1.1) defined on a time interval [−T , T ]) which transforms the equation (1.1) into 
another one which has the form

∂tw + i(−�g + m)w + iOpbw(z(u;x, ξ))w +R(u)w = 0

where R(u) is a smoothing remainder, i.e. ‖R(u)w‖Hs+N �s,N ‖u‖Hρ ‖w‖Hs for N � 0, ρ �
N , s � N and the normal form symbol z(U ; x, ξ) is real and it has the property that its Fourier 
transform ẑ(U ; k, ξ) is non zero if

|(ξ ; k)| ≤ 〈ξ 〉δ|k|−τ and |k| ≤ 〈ξ 〉ε

cf. Definition 4.3. This normal form step is essentially a nonlinear analogue of the method de-
veloped in [5], [6] at a linear level.

At this point, in Section 5, we perform a Poincaré-Birkhoff normal form step in order to 
remove the quadratic terms from the smoothing remainder R(u)w. The loss of derivatives in the 
estimates of the three wave interactions is then compensated by the fact that the remainder is 
smoothing. In [6], it is proved that the flow associated to normal form symbols is well defined on 
Hs and uniformly bounded in time. This fact allows in Section 6 to perform an energy estimate 
which shows that ‖u(t)‖Hρ �ρ ε for t ∈ [−Tρ, Tρ] with Tρ = O(ε−2), for some ρ � 1 large 
enough, provided the initial datum ‖u0‖Hρ ≤ ε is small enough. If in addition, the initial datum 
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u0 ∈ Hs , with s > ρ (but with no smallness assumption on ‖u0‖Hs ), a bootstrap argument shows 
that ‖u(t)‖Hs �s ‖u0‖Hs for any t ∈ [−Tρ, Tρ], implying that there is no growth of high Sobolev 
norms over the time interval [−Tρ, Tρ].

We finally remark that if one considers the equation (1.1) with the standard Laplacian, there 
are no small divisors since if the mass is not an integer, the three wave interactions are bounded 
from below by a constant. On the other hand, generically (meaning for a generic choice of the 
matrix G in (1.2)), the three wave interactions accumulate to zero and one is able to prove only 
very weak non-resonance conditions, see Appendix A for more details.

2. Functional setting

We denote by Hs(T d ; C) (respectively Hs(T d ; C2)) the usual Sobolev space of functions 
T d � x �→ u(x) ∈ C (resp. C2). We expand a function u(x), x ∈T d , in Fourier series as

u(x) = 1

(2π)d/2

∑
n∈Zd

û(n)ein·x , û(n) := 1

(2π)d/2

∫
T d

u(x)e−in·x dx .

We endow Hs(T s; C) with the norm

‖u‖2
s := ‖u‖2

Hs := (〈D〉su, 〈D〉su)L2 , 〈D〉eij ·x = 〈j 〉eij ·x , ∀ j ∈ Zd ,

where 〈j 〉 :=√|j |2 + 1 and (·, ·)L2 denotes the standard complex L2-scalar product

(u, v)L2 :=
∫
T d

u · vdx , ∀u,v ∈ L2(T d ;C) . (2.1)

For U = (u1, u2) ∈ Hs(T d ; C2) we just set ‖U‖s = ‖u1‖s + ‖u2‖s .

Notation. We shall use the notation A � B to denote A ≤ CB where C is a positive constant 
depending on parameters fixed once for all, for instance d and s. We will emphasize by writing 
�q when the constant C depends on some other parameter q . To shorten the notation we shall 
write Hs = Hs(T d ; C).

2.1. Classes of symbols and operators

In this section we introduce symbols and operators we shall use along the paper. We follow 
the notation of [25] but with symbols introduced in [5].

Given a symbol a(x, ξ) of order m, and fixing δ ∈ (0, 1) (very close to one) we define for any 
s ∈N , the norm |a|m,s as

|a|m,s := sup
|α1|+|α2|≤s

sup
(x,ξ)∈T d×Rd

|∂α1
x ∂

α2
ξ a(x, ξ)〈ξ 〉−m+δ|α2|| , (2.2)

and we define Nm
s the space of the Cs functions (x, ξ) �→ a(x, ξ) such that |a|m,s < ∞. If the 

symbol a(x, ξ) is independent of x, namely it is a Fourier multiplier a(ξ), then the norm is given 
by
281
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|a|m,s := sup
|α|≤s

sup
ξ∈Rd

|∂α
ξ a(ξ)〈ξ 〉−m+δ|α|| .

The following elementary lemma holds.

Lemma 2.1. Let m ∈R, N, s ∈ N , a ∈Nm
s+N . Then for any k ∈ Zd ,

|̂a(k, ·)|m,s �N 〈k〉−N |a|m,s+N .

Proof. By a simple integration by parts, one has

kN
i â(k, ξ) = − 1

(−i)N
1

(2π)d/2

∫
T d

â(x, ξ)∂N
xi

(e−ik·x) dx

= (−1)N+1

(−i)N
1

(2π)d/2

∫
T d

∂N
xi

a(x, ξ)e−ik·x dx .

Hence

〈k〉N |̂a(k, ·)|m,s �N maxi=1,...,d |∂N
xi

a|m,s �N |a|m,s+N

and the claimed statement has been proved. �
The Bony-Weyl quantization. Let 0 < ε < 1/2 and consider a smooth function η : R → [0, 1]

η(ξ) =
{

1 if|ξ | ≤ 5/4

0 if|ξ | ≥ 8/5
and define ηε(ξ) := η(|ξ |/ε) .

For a symbol a(x, ξ) in Nm
s we define its (Weyl) quantization as

Opbw(a)h := 1

(2π)d

∑
j∈Zd

eij ·x ∑
k∈Zd

ηε

( |j − k|
〈j + k〉

)̂
a
(
j − k,

j + k

2

)̂
h(k) (2.3)

where ̂a(η, ξ) denotes the Fourier transform of a(x, ξ) in the variable x ∈T d .

Remark 2.2. Notice that the symbol �(ξ) in (1.5) belongs to N 2
s for any s ∈ R, with |�|2,s �s 1. 

Moreover (recall (1.2)) we have that −�g + m = Opbw(�(ξ)).

The following results follow by standard paradifferential calculus.

Lemma 2.3. (Action of Sobolev spaces). Let m ∈ R, s0 > d/2. Then for any s ≥ 0, the linear 
map

Nm
s0

→ L(Hs+m,Hs), a �→ Opbw(a)

is continuous, namely
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‖Opbw(a)‖L(Hs+m,Hs) �s |a|m,s0 .

In the paper we shall deal with symbols in Nm
s depending nonlinearly on a function u ∈

Hs(T d ; C). Let us now introduce the spaces

Hs :=
(
Hs(T d ;C) × Hs(T d ;C)

)
∩ U , U := {(u+, u−) ∈ L2(T d ;C2) : u+ = u−} .

(2.4)
We denote by Bs(r) the ball

Bs(r) :=
{
U = (u,u) ∈ Hs : ‖U‖s ≤ r

}
.

Definition 2.4. (Non-homogeneous symbols). Let m ∈ R, p ∈ N . We say that a map U =
(u, u) �→ a(U ; x, ξ) belongs to the class 	m

p if there exists s0 > 0 such that for any s ≥ s0, 
there exists r = r(s) ∈ (0, 1), σs � s such that the map

Bσs (r) → Nm
s , U �→ a(U ;x, ξ) ,

is C∞-smooth and vanishes at U = 0 of order p.

Remark 2.5. (Estimates on non-homogeneous symbols). Clearly by the latter definition, one 
has the following estimates.

|a(U ; ·)|m,s �s ‖U‖p
σs

If n ≤ p, H1, . . . , Hn ∈ Hσs ,

|dna(U ; ·)[H1, . . . ,Hn]|m,s � ‖U‖p−k
σs

‖H1‖σs . . .‖Hn‖σs .

If n > p, then

|dna(U ; ·)[H1, . . . ,Hn]|m,s � ‖H1‖σs . . .‖Hn‖σs .

Definition 2.6. (Linear symbols in (u, u)). Let m ∈ R. We say that a linear map U = (u, u) �→
a(U ; x, ξ) belongs to the class Om

1 if it is in the class 	m
1 and the symbol a(U ; x, ξ) is linear 

w.r.t. U , namely it has the form

a(U ;x, ξ) =
∑

k∈Zd ,σ∈{±}
mσ (k, ξ )̂uσ (k)eσ ik·x

where, for any k ∈ Zd , we denoted

ûσ (k) = û(k) , if σ = + , ûσ (k) = û(k) , if σ = − .

Remark 2.7. Notice that one has the inclusion Om ⊆ 	m.
1 1
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Definition 2.8. (Symbols). Given m ∈ R, we say that a symbol a ∈ �m
1 if a = al + aq with 

al ∈ Om
1 and aq ∈ 	m

2 .

Definition 2.9. (Classes of para-differential operators). (i) We say that a linear operator A is 
in the class OB	(m, p) if there exists a ∈ 	m

p such that A = Opbw(a).
(ii) We say that a linear operator A is in the class OBO(m), if there exists a ∈ Om

1 such that 
A = Opbw(a).

(iii) We say that a linear operator A is in the class OB�(m), if there exists a ∈ �m
1 such that 

A = Opbw(a).

We now start by defining the classes of smoothing operators that we use in our procedure.

Definition 2.10. (Non-homogeneous smoothing operators). Let N ∈ N . We say that a map 
(U, w) �→ R(U)[w] belongs to the class S2(N) if there exists ρ ≡ ρN > N such that for any 
s ≥ ρ the map

Bρ(r) → B(Hs,Hs+N), U �→ R(U)

is continuous and satisfies the tame estimate

‖R(U)‖L(Hs,Hs+N ) �s,N,ρ ‖U‖2
ρ , ∀s ≥ ρ . (2.5)

Definition 2.11. (Smoothing operators depending linearly on (u, u)). Let N ∈N . We say that 
a bilinear map (u, w) �→R(u)[w] belongs to the class OS1(N) if it is of the form

R(u)[w] =
∑

ξ,k∈Zd

r(k, ξ )̂u(k − ξ)ŵ(ξ)eix·k , (2.6)

and there exists ρ ≡ ρN > N such that the linear map Hρ → B(Hs, Hs+N), u �→ R(u) satisfies 
the tame estimate

‖R(u)‖L(Hs,Hs+N) �s,ρ,N ‖u‖ρ , ∀s ≥ ρ . (2.7)

With a slight abuse of terminology we use the same notation for the class of operators of the form 
(U, w) �→ R(U)[w] = R+(u)[w] +R−(u)[w] where R+, R− ∈ OS1(N).

Definition 2.12. (Smoothing operators). We say that R is in S(N) if R = R1 + R2 with R ∈
OS1(N) and R2 ∈ S2(N).

Definition 2.13 (Matrix valued symbols and operators). (i) Consider a matrix valued symbol

A := A(U ;x, ξ) :=
(

a(U ;x, ξ) b(U ;x, ξ)

b(U ;x,−ξ) a(U ;x,−ξ)

)
We say that A ∈ 	m

p , resp. Om
1 , resp �1

m if its entries a, b ∈ 	m
p , resp. Om

1 , resp. �1
m. We then 

denote by Opbw(A) the matrix valued operator
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Opbw(A) =
⎛⎝ Opbw

(
a(U ;x, ξ)

)
Opbw

(
b(U ;x, ξ)

)
Opbw

(
b(U ;x,−ξ)

)
Opbw

(
a(U ;x,−ξ)

)
⎞⎠ (2.8)

and we use the same notations to denote the classes given in the Definition 2.9.
(ii) Similarly if R1, R2 ∈ O where O = S2(N), OS1(N), S(N) we say that

R(U) =
(
R1(U) R2(U)

R2(U) R1(U)

)
(2.9)

belongs to the class O. Here the operators Rj (U), j = 1, 2, are defined as

Rj(U)[h] := R(U)[h] , ∀h ∈ Hs(T d ;C) . (2.10)

One can easily check that a linear operator R of the form (2.9) (or (2.8)) is real-to-real in the 
sense that it preserves the spaces Hs (see (2.4)). On the space H0 we define the scalar product

(U,V )H0 :=
∫
T

U · V dx. (2.11)

Given an operator R of the form (2.9) we denote by R∗ its adjoint with respect to the scalar 
product (2.11), i.e.

(RU,V )H0 = (U,R∗V )H0 , ∀ U, V ∈ H0.

One can check that

R∗ :=
(

R∗
1 R2

∗

R2
∗ R1

∗

)
,

where R∗
1 and R∗

2 are respectively the adjoints of the operators R1 and R2 with respect to the 
complex scalar product on L2(T ; C) defined in (2.1).

Definition 2.14. Let R be an operator as in (2.9). We say that R is self-adjoint if

R∗
1 = R1, R2 = R∗

2 . (2.12)

We say that an operator M as in (2.9) is Hamiltonian is −iEM is self-adjoint.

Consider now a symbol a = a(x, ξ) ∈ 	m
p (resp. Om

1 , resp. �1
m), and set A := Opbw(a(x, ξ)). 

Using (2.3) and (2.10) one can check that

A = Opbw(̃a(x, ξ)) , ã(x, ξ) = a(x,−ξ) ;
(Ajdoint) A∗ = Opbw

(
a(x, ξ)

)
.
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Therefore, a matrix valued paradifferential operator as in (2.8) is self-adjoint according to Defi-
nition 2.14 if and only if (recall (2.12)) one has

a(x, ξ) = a(x, ξ) , b(x,−ξ) = b(x, ξ) . (2.13)

Definition 2.15 (Symplectic map). Let Q =Q(U) be a matrix valued operator of the form (2.9)
(resp. (2.8)). We say that Q is symplectic if

Q∗(−iE)Q = −iE , E = [ 1 0
0 −1

]
. (2.14)

2.2. Symbolic calculus

In this section we provide some abstract lemmas on the classes that we defined before that we 
shall apply in our normal form procedure. We introduce the following differential operator

σ(Dx,Dξ ,Dy,Dη) := DξDy − DxDη ,

where Dx := 1
i ∂x and Dξ, Dy, Dη are similarly defined.

Definition 2.16. (Asymptotic expansion of composition symbol). Let ρ ∈ N , m1, m2 ∈ R and 
a ∈ �

m1
1 , b ∈ �

m2
1 . We define the symbol

(a#ρb)(U ;x, ξ) :=
ρ−1∑
k=0

1

k!
(

i

2
σ(Dx,Dξ ,Dy,Dη)

)k [
a(x, ξ)b(y, η)

]
|x=y,ξ=η

(2.15)

modulo symbols in �m1+m2−ρδ
1 .

Remark 2.17. Recalling (2.2) we note that the symbol

σ(Dx,Dξ ,Dy,Dη)
k
[
a(x, ξ)b(y, η)

]
|x=y,ξ=η

belongs to �m1+m2−δk
1 . In particular we have the expansion a#ρb = ab + 1

2i {a, b} + �
m1+m2−2δ
1 .

We shall prove the following result on the composition of paradifferential operator.

Proposition 2.18. Fix ρ ∈ N , m1, m2 ∈ R and s0 > d/2. There is q = q(ρ) � 1 such that, for 
a ∈Nm1

s0+q , b ∈ Nm2
s0+q , one has that

Opbw(a) ◦ Opbw(b) = Opbw(a#ρb) + R(a, b) (2.16)

where, for any s ≥ s0 > d/2, the bilinear and continuous map

Nm1
s0+q(ρ) ×Nm2

s0+q(ρ) → L(Hs,Hs−m1−m2+ρ), (a, b) �→ R(a, b)

satisfies
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‖R(a, b)h‖s−m1−m2+ρ �s |a|m1,s0+q(ρ)|b|m2,s0+q(ρ)‖h‖s , ∀h ∈ Hs . (2.17)

Proof. In order to prove the lemma above we reason as follows. First of all notice that2

F(Opbw(a) ◦ Opbw(b)h)(ξ) =
∑

η,θ∈Zd

r1(ξ, θ, ζ )̂a
(
ξ − θ,

ξ + θ

2

)̂
b
(
θ − ζ,

θ + ζ

2

)̂
h(ζ ) , (2.18)

where

r1(ξ, θ, ζ ) := ηε

( |ξ − θ |
|ξ + θ |

)
ηε

( |θ − ζ |
|θ + ζ |

)
. (2.19)

Fix L ∈N with L � ρ to be chosen later. By Taylor expanding the symbols we have

â
(
ξ − θ,

ξ + θ

2

)
=

L∑
k=0

1

2kikk!
̂(∂k

ξ a)
(
ξ − θ,

ξ + ζ

2

)
[i(θ − ζ )]k+

+ 1

2L+1iL+1L!
1∫

0

(1 − τ)L
̂

(∂L+1
ξ a)

(
ξ − θ,

ξ + ζ

2
+ τ

θ − ζ

2

)
[i(θ − ζ )]L+1dτ,

(2.20)

b̂
(
θ − ζ,

θ + ζ

2

)
=

L∑
j=0

(−1)j

2j ij j !
̂

(∂
j
ξ b)

(
θ − ζ,

ξ + ζ

2

)
[i(ξ − θ)]j+

+ (−1)L+1

2L+1iL+1L!
1∫

0

(1 − τ)L
̂

(∂L+1
ξ b)

(
θ − ζ,

ξ + ζ

2
+ τ

θ − ξ

2

)
[i(ξ − θ)]L+1dτ .

(2.21)
Therefore we deduce that

â
(
ξ − θ,

ξ + θ

2

)
b̂
(
θ − ζ,

θ + ζ

2

)
=

4∑
�=1

g�(ξ, θ, ζ ) (2.22)

where

g1(ξ, θ, ζ ) :=
L∑

p=0

1

2pipp!
p∑

k=0

(
p

k

)
(−1)p−k ̂

(∂k
ξ ∂

p−k
x a)

(
ξ − θ,

ξ + ζ

2

)
×

× ̂

(∂
p−k
ξ ∂k

x b)
(
θ − ζ,

ξ + ζ

2

)
,

(2.23)

2 We denote the Fourier transform in x ∈Td of a function f (x) by F(f )(ξ) = f̂ (ξ).
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g2(ξ, θ, ζ ) :=
2L∑

p=L+1

1

2pipp!
p∑

k=0

(
p

k

)
(−1)p−k ̂

(∂k
ξ ∂

p−k
x a)

(
ξ − θ,

ξ + ζ

2

)
×

× ̂

(∂
p−k
ξ ∂k

x b)
(
θ − ζ,

ξ + ζ

2

)
,

(2.24)

g3(ξ, θ, ζ ) :=
b̂
(
θ − ζ,

θ+ζ
2

)
2ρ+1iρ+1ρ!

1∫
0

(1 − τ)ρ
̂

(∂
ρ+1
ξ a)

(
ξ − θ,

ξ + ζ

2
+ τ

θ − ζ

2

)
[i(θ − ζ )]ρ+1dτ ,

(2.25)

g4(ξ, θ, ζ ) :=
ρ∑

k=0

(−1)ρ+1

2ρ+1iρ+1ρ!
1∫

0

(1 − τ)ρ
̂

(∂
ρ+1
ξ b)

(
θ − ζ,

ξ + ζ

2
+ τ

θ − ξ

2

)
[i(ξ − θ)]ρ+1dτ×

× 1

2kikk!
̂(∂k

ξ a)
(
ξ − θ,

ξ + ζ

2

)
[i(θ − ζ )]k .

(2.26)
We set

Opbw(a) ◦ Opbw(b) =
4∑

�=1

R� (2.27)

where the operators R� are defined by

R̂�h(ξ) =
∑

ζ,θ∈Zd

r1(ξ, θ, ζ )g�(ξ, θ, ζ )̂h(ζ ) , � = 1, . . . ,4 , (2.28)

where r1 is in (2.19) and g� are in (2.23)-(2.26).
We now study the explicit form of the symbol (a#ρb)(x, ξ) (recall (2.15)). First of all we note 

that (formally)

1

p!
[ i

2
σ(Dx,Dξ ,Dy,Dη)

]p = 1

2pipp! (∂ξ ∂y − ∂x∂η)
p

= 1

2pipp!
p∑

k=0

(
p

k

)
(−1)p−k(∂ξ ∂y)

k(∂x∂η)
p−k .

Then it is easy to note that (using (2.15) and (2.23))

F(a#ρb)(ξ − ζ,
ξ + ζ

2
) =

∑
θ∈Zd

g1(ξ, θ, ζ ) .

Hence we have that Opbw(a#ρb)h =: Qh has the form

Q̂h(ξ) :=
∑
ζ∈Zd

r2(ξ, ζ )F(a#ρb)(ξ − ζ,
ξ + ζ

2
)̂h(ζ ) =

∑
ζ,θ∈Zd

χε

( |ξ − ζ |
〈ξ + ζ 〉

)
g1(ξ, θ, ζ )̂h(ζ ) ,

(2.29)
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where

r2(ξ, ζ ) := ηε

( |ξ − ζ |
〈ξ + ζ 〉

)
. (2.30)

In conclusion, by (2.27), (2.28) and (2.29), we obtained

Opbw(a) ◦ Opbw(b) = Opbw(a#ρb) +R+
4∑

�=2

R�

where

̂(Rh)(ξ) :=F
(
(R1 − Q)h

)
(ξ) :=

∑
ζ,θ∈Zd

R(ξ, θ, ζ )̂h(ζ )

R(ξ, θ, ζ )
(2.19):=

[
ηε

( |ξ − θ |
|ξ + θ |

)
ηε

( |θ − ζ |
|θ + ζ |

)
− ηε

( |ξ − ζ |
〈ξ + ζ 〉

)]
g1(ξ, θ, ζ )

(2.31)

To obtain the (2.16) it remains to show that the terms R, R�, � = 2, 3, 4, satisfy the estimate 
(2.17).

We start by considering the remainder R in (2.31). First of all, using the explicit formula 
(2.23) for the coefficients g1(ξ, θ, ζ ) and reasoning as in Lemma 2.1, we deduce that

|g1(ξ, θ, ζ )| � 〈ξ − θ〉−p〈θ − ζ 〉−q |a|m1,p+L|b|m2,q+L〈ξ + ζ 〉m1+m2 , (2.32)

for any p, q ∈ N . We now study the properties of the cut-off function (r1 − r2)(ξ, θ, ζ ) (see 
(2.19), (2.30)) appearing in (2.31). Let us define the sets

D :=
{
(ξ, θ, ζ ) ∈Z3d : (r1 − r2)(ξ, θ, ζ ) = 0

}
,

A :=
{
(ξ, θ, ζ ) ∈Z3d : |ξ − θ |

〈ξ + θ〉 ≤ 5ε

4
,

|ξ − ζ |
〈ξ + ζ 〉 ≤ 5ε

4
,

|θ − ζ |
〈θ + ζ 〉 ≤ 5ε

4

}
,

B :=
{
(ξ, θ, ζ ) ∈Z3d : |ξ − θ |

〈ξ + θ〉 ≥ 8ε

5
,

|ξ − ζ |
〈ξ + ζ 〉 ≥ 8ε

5
,

|θ − ζ |
〈θ + ζ 〉 ≥ 8ε

5

}
.

We note that

D ⊇ A ∪ B ⇒ Dc ⊆ Ac ∩ Bc .

Let (ξ, θ, ζ ) ∈ Dc and assume in particular that (ξ, θ, ζ ) ∈ Supp(r1) := {(ξ, θ, ζ ) : r1 �= 0}. Then 
we can note that

|ξ − ζ | � 〈ξ + ζ 〉 and 〈ξ 〉 ∼ 〈ζ 〉. (2.33)

Notice also that (ξ, θ, ζ ) ∈ Supp(r2) implies the (2.33) as well. We need to estimate
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‖R0h‖2
s+ρ−m1−m2

�
∑
ξ∈Zd

( ∗∑
ζ,θ

|g1(ξ, θ, ζ )||̂h(ζ )|〈ξ 〉s+ρ
)2 = I + II + III ,

where 
∑∗

ζ,θ denotes the sum over indexes satisfying (2.33), the term I denotes the sum on 
indexes satisfying also |ξ − θ | > cε|ξ |, II denotes the sum on indexes satisfying also |ζ − θ | >
cε|ζ |, for some 0 < c � 1 and III is defined by difference. We estimate the term I . By using 
(2.33), |ξ − θ | > cε|ξ | and (2.32), we get

I �
∑
ξ∈Zd

( ∗∑
ζ,θ

|g1(ξ, θ, ζ )||̂h(ζ )|〈ζ 〉s〈ξ − θ〉ρ−m1−m2
)2

� |a|2m1,s0+ρ+L|b|2m2,s0+L‖|̂h(ξ)|〈ξ 〉s � 〈ξ 〉s0+ρ � 〈ξ 〉−s0 |‖2
�2(Zd )

� |a|2m1,s0+ρ+L|b|2m2,s0+L‖|̂h(ξ)|〈ξ 〉s‖2
�2(Zd )

� |a|2m1,s0+ρ+L|b|2m2,s0+L‖h‖2
s ,

where we used s0 > d > d/2.
Reasoning similarly one obtains II � ‖h‖2

s |a|2m1+s0+L|b|2m2,s0+ρ+L. The sum III is restricted 
to indexes satisfying (2.33) and |ξ − θ | ≤ cε|ξ |, |ζ − θ | ≤ cε|ζ |. For c � 1 small enough this 
restriction implies that (ξ, θ, ζ ) ∈ A, which is a contradiction since (ξ, θ, ζ ) ∈ Dc ⊆ Ac.

For the remainders R�, � = 2, 3, 4 in (2.28) one can reason similarly using the explicit formulæ 
(2.24)-(2.26) to show that g� are symbols of order at least L + 1 or ρ. Therefore one concludes 
the proof by choosing L large enough. �

By the Proposition above we deduce the following.

Lemma 2.19. (Compositions and commutators). (i) Let a ∈ �m
1 , b ∈ �m′

1 and let N ∈ N . Then 
the operator Opbw(a) ◦ Opbw(b) satisfies

Opbw(a) ◦ Opbw(b) = Opbw(ab + 1

2i
{a, b}) + Opbw(rab) +Rab(U) ,

where rab ∈ 	m+m′−2δ
2 and the map (U, w) �→ Rab(U)[w] belongs to the class S2(N). As a 

consequence, the commutator

[Opbw(a),Opbw(b)] = 1

i
Opbw({a, b}) + Opbw(rab − rba) +Rab(U) −Rba(U) .

(ii) Let a ∈ �m
1 and N ∈N . Then, recalling (1.5), the Poisson bracket {�, a} ∈ �m+1

1 and

Opbw(�) ◦ Opbw(a) = Opbw(�a) + 1

2i
Opbw({�,a}) + Opbw(r�a) +R�a(U) ,

[Opbw(�),Opbw(a)] = 1

i
Opbw({�,a}) + Opbw(r�a − ra�) +R�a(U) −Ra�(U) ,

where r�a ∈ �m+1−2δ and R�a(U), Ra�(U) are in S(N).
1
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Proof. It follows by Proposition 2.18, using formula (2.15). The homogeneity expansions of 
symbols and remainders can be deduced by the formulæ in the proof of the Proposition. �

We also have the following result about the composition between the smoothing operators 
introduced in Definition 2.10-2.12.

Lemma 2.20. Let N ∈N , m ∈ R, a ∈ �m
1 and R, Q ∈ S(N). Then one has

(i) R(U) ◦ Q(U) and Q(U) ◦ R(U) are smoothing operators in S2(N).
(ii) R(U) ◦ Opbw(a(U ; x, ξ)), Opbw(a(U ; x, ξ)) ◦ R(U) are in S2(N − m).

Proof. By Definition 2.12 we can write R = R1 +R2, Q = Q1 +Q2 for some R1, Q1 ∈ OS1(N)

and R2, Q2 ∈ S2(N) (see Definition 2.10-2.11). Then item (i) follows by using estimates (2.5)
and (2.7). Item (ii) follows similarly by using also Lemma 2.3 and Remark 2.5. �
3. Technical lemmata

3.1. Flows and conjugations

In this section we prove some abstract results about the conjugation of paradifferential opera-
tors and smoothing remainders under flows.

Consider a real symbol g ∈ �m
1 with m < 1 and the flow 
τ

g(U), τ ∈ [−1, 1] defined by

{
∂τ


τ
g(U) = iG(U)
τ

g(U) , G(U) := Opbw(g(U ;x, ξ)) ,


0(U) = 1 .
(3.1)

We have the following.

Lemma 3.1. (Linear flows). There are s0 > d/2 and r > 0 such that, for any U = [ u
u

]
with u ∈

Hs(T d ; C) ∩ Bs0(r), for any s > 0 the problem (3.1) admits a unique solution 
τ
g(U) satisfying

‖
τ
g(U)w‖s ≤ ‖w‖s(1 + C(s)‖u‖ρ) , ∀w ∈ Hs(T d ;C) ,

‖(
τ
g(U) − Id)v‖s �s ‖u‖ρ‖v‖s+m , ∀v ∈ Hs+m(T d ;C) ,

(3.2)

for some C(s) > 0, uniformly in τ ∈ [0, 1]. The map (see (2.4))

�τ
g(U) :=

(

τ

g(U)


τ
g(U)

)
: Hs → Hs (3.3)

is symplectic according to Definition 2.15.

Proof. The result follows by a standard energy estimate using the fact that the symbol g(U ; x, ξ)

is real valued. For more details we refer to Lemma 3.22 in [7]. The map �τ
g in (3.3) can be seen 

as the linear flow generated by the field G(U) = iE1G(U). Therefore one can check that it is 
symplectic by reasoning as in Lemma 2.1 in [24]. �
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We set 
g(U) := 
1
g(U) and its inverse 
g(U)−1 := 
τ

g(U)|τ=−1. The following lemma 
holds.

Lemma 3.2. (Conjugation of operators under paradifferential flows). Let g ∈ �n
1 with n < δ

and assume that g(U ; x, ξ) is a real symbol. Then the following holds.
(i) If a ∈ �m

1 , for any fixed N ∈N , one has


g(U)−1Opbw(a)
g(U) = Opbw(a) + Opbw(b) +R(U) ,

where b ∈ 	m+n−δ
2 , R ∈ S2(N). If the symbol a is real valued, then b is real valued as well.

(ii) For any fixed N ∈N , one has (see (1.5))


g(U)−1Opbw(�)
g(U) = Opbw(�) + Opbw({�,g}) + Opbw(b) +R(U) ,

where b is a real valued symbol in �n+1−(δ−n)
1 and R ∈ S(N).

(iii) Let R be in S(N). Then R1(U) := 
g(U)−1R(U)
g(U) is in the class S(N − n).

Proof. Item (i). Using (3.1) we get, for L ≥ 3, the Lie expansion


g(U)−1Opbw(a)
g(U) = Opbw(a) + [
Opbw(a),Opbw(ig)

]+
+

L∑
k=2

(−1)k

k! Adk
Opbw(ig)

[Opbw(a)]+ (3.4)

+ (−1)L+1

L!
1∫

0

(1 − θ)L
−θ (U)
(
AdL+1

Opbw(ig)
[Opbw(a)])
θ(U)dθ ,

where we defined AdG[A] := [G, A] and Adk
G[A] := AdG

[
Adk−1

G [A]] for k ≥ 2. By Lemma 2.19
(possibly replacing the smoothing index N by some Ñ chosen below large enough) and Re-
mark 2.17 we get

AdOpbw(ig)[Opbw(a)] = [
Opbw(ig),Opbw(a)

]= Opbw
({g,a} + r1

)
, r1 ∈ �m+n−2δ

1 ,

up to a smoothing operator in S2(Ñ − m − n). Similarly, by induction, for k ≥ 2 we have

Adk
Opbw(ig)

[Opbw(a)] = Opbw(bk), bk ∈ �
k(n−δ)+m
1 ,

up to a smoothing operator in S2(Ñ − m − kn). We choose L in such a way that (L + 1)(δ −
n) − m ≥ ρ and L + 1 ≥ 3, so that the operator Opbw(bL+1) belongs to S2(N). The integral 
Taylor remainder in (3.4) belongs to S2(N) as well by item (iii) that we proved above. Then we 
choose Ñ large enough so that Ñ − m − (L + 1)n ≥ N and the remainders are N -smoothing. 
Assume now that a ∈ �m

1 is real valued. Using formula (2.15) one can check that also the symbol 
b constructed through the expansion above is real valued.
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Item (ii) follows by reasoning as done for item by replacing a with the symbol �(ξ) :=
‖ξ‖2

g + m. Item (iii) follows by using estimates (2.5), (2.7) on the remainder R and the second 
estimate in (3.2) on the map 
g(U). This concludes the proof. �

Consider now a smooth vector field XNLS : Hs → Hs−2 (see (2.4)) satisfying, for s � 1,

‖XNLS(U)‖s−2 �s ‖u‖s(1 + ‖u‖s) , ∀U = [ u
u

] ∈ Hs ,

‖dXNLS(U)[H1]‖s−2 �s ‖H1‖s(1 + ‖u‖s) , ∀U,H1 ∈ Hs ,

‖dnXNLS(U)[H1, . . . ,Hn]‖s−2 �s ‖H1‖s . . .‖Hn‖s , ∀ ,U,H1, . . . ,Hn ∈ Hs , n ≥ 2 .

(3.5)

Lemma 3.3. Let g ∈ �m
1 and assume that U(t, x) is a solution belonging to C0([0, T ]; Hs), T >

0, s � 1 of the Schrödinger equation ∂tU = XNLS(U). Then ∂tψ(U(t); x, ξ) = aψ(U(t); x, ξ)

where the symbol aψ(U ; x, ξ) belongs to the class �m
1 with estimates uniform in t ∈ [0, T ].

Proof. One has that

∂tψ(U(t);x, ξ) = dψ(U(t);x, ξ)[∂tU ] = dψ(U(t);x, ξ)[XNLS(U(t))] .

Hence the symbol aψ is defined by aψ(U ; x, ξ) := dψ(U ; x, ξ)[XNLS(U)]. Then the result fol-
lows by using Remark 2.5 and estimates (3.5). �
Lemma 3.4. (Conjugation of ∂t under paradifferential flows). Let g ∈ �n

1 with n < δ and 
g(U ; x, ξ). Consider a vector field XNLS satisfying (3.5). Assume that ∂tU(t) = XNLS(U(t))

and U ∈ C0([0, T ]; Hs) for some T > 0, s � 1. Then for any N ∈N


g(U(t))−1 ◦ ∂t ◦ 
g(U(t)) = ∂t + Opbw(b(U(t);x, ξ))) +R(U(t)) ,

where b(U ; x, ξ) is a purely imaginary symbol in �n
1 and the map (U, w) �→ R(U)[w] is in the 

class S(N).

Proof. Fix L ≥ 3. By classical Lie expansions we obtain


g(U)−1∂t
g(U) = ∂t + Opbw(i∂tg) +
L∑

k=2

(−1)k−1

k! Adk−1
Opbw(ig)

[Opbw(i∂tg)]

+ (−1)L

L!
1∫

0

(1 − θ)L
−θ (U)
(
AdL

Opbw(ig)
[Opbw(i∂tg)])
θ(U)dθ ,

where we used that [∂t , Opbw(ig)] = Opbw(i∂tg). By Lemma 3.3 we have that ∂tg is a symbol in 
�n

1 with estimates uniform in t ∈ [0, T ]. The one concludes arguing as done in Lemma 3.2. �
In our procedure, we also need to consider the maps of the form 
ψ(U) := 
1

ψ(U), 


F (U) := 
1 (U) where 
τ (U), 
τ (U), τ ∈ [0, 1] are given by
F ψ F
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∂τ

τ
ψ(U) = iOpbw

(
0 ψ(U ;x, ξ)

−ψ(U ;x,−ξ) 0

)

τ

ψ(U) , 
0
ψ(U) = 1 , ψ ∈ �−n

1 , n ∈N

(3.6)

∂τ

τ
F (U) = F(U)
τ

F (U), 
0
F (U) = 1 , F(U) ∈OS1(N) . (3.7)

We only state the conjugacy properties with the flows 
τ
ψ(U) and 
F (U). The proofs can be 

done arguing as in Lemmata 3.1-3.4, with the obvious modifications.

Lemma 3.5. There are s0 > d/2 and r > 0 such that, for any U = [ u
u

]
with u ∈ Hs(T d ; C) ∩

Bs0(r), for any s > s0 the problems (3.6) and (3.7) admit unique solutions 
τ
ψ(U), 
τ

F (U)

satisfying

‖
τ
ψ(U)‖L(Hs) ≤ 1 + C(s)‖u‖s0 , ‖
τ

ψ(U) − Id‖L(Hs,Hs+n) �s ‖u‖s0

‖
τ
F (U)‖L(Hs) ≤ 1 + C(s)‖u‖s0 , ‖
τ

F (U) − Id‖L(Hs,Hs+N ) �s ‖u‖s0 , ∀s ≥ s0 ,

uniformly in τ ∈ [−1, 1]. Moreover the maps 
τ
ψ(U), 
τ

F (U) are symplectic according to Defi-
nition 2.15.

Proof. It follows by standard theory of ODEs in Banach space. �
We set 
ψ(U) := 
1

ψ(U) and 
F (U) := 
1
F (U). Their inverse is given by 
ψ(U)−1 =


τ
ψ(U)|τ=−1 and 
F (U)−1 = 
τ

F (U)|τ=−1. The following Lemmata can be deduced by rea-
soning exactly as done in Lemmata 3.2, 3.3 and 3.4. Hence we omit their proofs.

Lemma 3.6. (i) Let A be a matrix valued symbol in �m
1 as in the Definition 2.13 and let 
ψ(U)

as in (3.6). Then for any N ∈ N ,


ψ(U)−1Opbw(A)
ψ(U) = Opbw(A) + Opbw(B) +R(U)

where B ∈ 	m−n
2 and the R(U) belongs to the class S2(N). If the matrix of symbols A satisfies 

the conditions (2.13), then the matrix B satisfies (2.13) as well.
(ii) One has that


ψ(U)−1iEOpbw(�)
ψ(U) = iEOpbw(�)

+ Opbw

(
0 −2�(ξ)ψ(U ;x, ξ)

2�(−ξ)ψ(U ;x,−ξ) 0

)
+ Opbw(B) +R(U)

where B is a matrix in �1−n
1 satisfying (2.13) and R(U) is in the class S(N).

(iii) Assume that U ∈ C0([0, T ]; Hs) for some T > 0, s � 1, solves ∂tU(t) = XNLS(U(t))

where XNLS satisfies (3.5). Then for any N ∈N


ψ(U(t))−1 ◦ ∂t ◦ 
ψ(U(t)) = ∂t + Opbw(B(U(t);x, ξ))) +R(U(t))
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where B(U ; x, ξ) ∈ �−n
1 and the map (U, w) �→ R(U)[w] is in the class S(N). Moreover the 

matrix of symbols −iEB satisfies the conditions (2.13).
(iv) Let R(U) be in the class S(N). Then 
ψ(U)−1R(U)
ψ(U) is in the class S(N).

Lemma 3.7. Let N ∈N , F ∈OS1(N). Then the following holds
(i) Let A ∈ �m

1 be a matrix valued symbol. Then for any τ ∈ [−1, 1],


F (U)−1Opbw(A)
F (U) = Opbw(A) +R(U)

where R(U) ∈ S2(N − m).
(ii) One has that


F (U)−1iEOpbw(�)
F (U) = iEOpbw(�) + [iEOpbw(�),F(U)] +R(U)

for some R(U) in the class S2(N − 2).
(iii) Assume that U ∈ C0([0, T ], Hρ+2) ∩ C1([0, T ], Hρ) solves the equation ∂tU =

XNLS(U) for some ρ ≡ ρN ≥ N large enough where XNLS satisfies (3.5). Then


F (U)−1 ◦ ∂t ◦ 
F (U) = ∂t −F(iEOpbw(�)U(t)) +R(U(t))

where R(U) belongs to the class S2(N).
(iv) Let N ′ ∈ N , R(U) be in the class S(N ′). Then


F (U)−1R(U)
F (U) = R(U) +Q(U)

where Q(U) is in the class S2(N + N ′).

3.2. Some calculus about smoothing operators

In this section we prove some abstract results on linear smoothing operators introduced in 
Definition 2.11. These results will be used in Section 5 and they are based on the estimates on 
the small divisors proved in Appendix A.

Lemma 3.8. Let G ∈ (0, +∞) be the full Lebesgue measure set given by Lemma A.1. Then for 
any m ∈ G the following holds. Let

R(u)w =
∑

k,ξ∈Zd

r(k, ξ )̂u(k − ξ)ŵ(ξ)eik·x

be in the class OS1(N). Define for any σ, σ ′ ∈ {+1, −1}, the operator Fσ,σ ′(u) as

Fσ,σ ′(u)[w] := −
∑

k,ξ∈Zd

r(k, ξ)

i
(
�(k) + σ�(k − ξ) + σ ′�(ξ)

) û(k − ξ)ŵ(ξ)eik·x . (3.8)

Then Fσ,σ ′(u) is in the class OS1(N − τ) and solves the equation

Opbw(�)Fσ,σ ′(u) + σFσ,σ ′(Opbw(�)u) + σ ′Fσ,σ ′(u)Opbw(�) +R(u) = 0 . (3.9)
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Proof. We prove the claimed statement in the case where σ = σ ′ = −1. The other cases can be 
proved similarly. It is immediate to verify that Fσ,σ ′ defined in (3.8) solves the equation (3.9). 
Since R(u) is in the class OS1(N), one has that there exists ρ ≡ ρN > N large enough such that 
for any s ≥ ρ,

∑
k∈Zd

〈k〉2(s+N)
∣∣∣ ∑
ξ∈Zd

r(k, ξ )̂u(k − ξ)ŵ(ξ)

∣∣∣2 = ‖R(u)w‖2
s+N �s ‖u‖2

ρ‖w‖2
s .

By taking w(x) = eix·ξ , the latter estimate implies∑
k∈Zd

〈k〉2(s+N)|r(k, ξ)|2 |̂u(k − ξ)|2 �s ‖u‖2
ρ〈ξ 〉2s , ∀s ≥ ρ , ∀u ∈ Hρ . (3.10)

Let F(u) := F−1,−1(u) (see (3.8)). One has that

F(u)[w] =
∑

k,ξ∈Zd

f (k, ξ )̂u(k − ξ)ŵ(ξ)eik·ξ ,

f (k, ξ) := − r(k, ξ)

i
(
�(k) − �(k − ξ) − �(ξ)

) , k, ξ ∈ Zd .

By the bounds (A.2) given by Lemma A.1, one has that there exists τ = τ(d) � 0, large enough 
and γ ∈ (0, 1) small enough such that

|�(k) − �(k − ξ) − �(ξ)| ≥ γ

〈k − ξ 〉τ 〈ξ 〉τ , ∀k, ξ ∈ Zd ,

and therefore

|f (k, ξ)| � 〈k − ξ 〉τ 〈ξ 〉τ |r(k, ξ)| . (3.11)

We now estimate the norm ‖F(u)w‖s−τ+N . Take s − τ ≥ ρ in such a way that (3.10) holds with 
s − τ instead of s. Using the Cauchy-Schwartz inequality (using that 

∑
ξ 〈k − ξ 〉−2s0 ≤ C < ∞

for s0 > d/2), one has

‖F(u)w‖2
s−τ+N ≤

∑
k∈Zd

〈k〉2(s−τ+N)
( ∑

ξ∈Zd

|f (k, ξ)||̂u(k − ξ)||ŵ(ξ)|
)2

(3.11)
�

∑
k∈Zd

〈k〉2(s−τ+N)
( ∑

ξ∈Zd

|r(k, ξ)|〈k − ξ 〉τ |̂u(k − ξ)|〈ξ 〉τ |ŵ(ξ)|
)2

�
∑

k,ξ∈Zd

〈k〉2(s−τ+N)|r(k, ξ)|2〈k − ξ 〉2(τ+s0) |̂u(k − ξ)|2〈ξ 〉2τ |ŵ(ξ)|2

=
∑

d

〈k〉2(s−τ+N)|r(k, ξ)|2| ̂〈D〉τ+s0u(k − ξ)|2| ̂〈D〉τw(ξ)|2

k,ξ∈Z
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=
∑
ξ∈Zd

| ̂〈D〉τw(ξ)|2
( ∑

k∈Zd

〈k〉2(s−τ+N)|r(k, ξ)|2| ̂〈D〉τ+s0u(k − ξ)|2
)

(3.10)
�s ‖〈D〉τ+s0u‖2

ρ

∑
ξ∈Zd

〈ξ 〉2(s−τ)| ̂〈D〉τw(ξ)|2 �s ‖u‖2
ρ+τ+s0

‖w‖2
s .

The latter chain of inequalities implies that for any s ≥ ρ′ := ρ + τ + s0, the map

Hρ′ → L(Hs,Hs+N−τ ), u �→F(u)

is a bounded linear map. This implies that F belongs to the class OS1(N − τ). �
As a consequence of the latter lemma, one gets the following.

Lemma 3.9. Let G ∈ (0, +∞) be the full Lebesgue measure set given by Lemma A.1. Then for 
any m ∈ G the following holds. Let R ∈ OS1(N) be a matrix valued operator. Then there exists 
a matrix valued operator F ∈ OS1(N − τ) which solves the equation

−F(iEOpbw(�)U) + [iEOpbw(�),F(U)] +R(U) = 0 . (3.12)

Proof. The operator R ∈OS1(N) has the form

R(U) =
(
R1(U) R2(U)

R2(U) R1(U)

)
=
(
R+

1 (u) +R−
1 (u) R+

2 (u) +R−
2 (u)

R+
2 (u) +R−

2 (u) R+
1 (u) +R−

1 (u)

)
.

One looks for F ∈ OS1(N − τ) of the same form, namely

F(U) =
(
F+

1 (u) +F−
1 (u) F+

2 (u) +F−
2 (u)

F+
2 (u) +F−

2 (u) F+
1 (u) +F−

1 (u)

)
.

A direct calculation shows that the equation (3.12) is equivalent to

i
(

−F+
1 (Opbw(�)u) + [Opbw(�),F+

1 (u)]
)

+R+
1 (u) = 0,

i
(
F−

1 (Opbw(�)u) + [Opbw(�),F−
1 (u)]

)
+R−

1 (u) = 0 ,

i
(

−F+
2 (Opbw(�)u) + Opbw(�)F+

2 (u) +F+
2 (u)Opbw(�)

)
+R+

2 (u) = 0 ,

i
(
F−

2 (Opbw(�)u) + Opbw(�)F−
2 (u) +F−

2 (u)Opbw(�)
)

+R−
2 (u) = 0 .

The claimed statement then directly follows by Lemma 3.8. �
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4. Paradifferential normal form

4.1. Paralinearization of the Schrödinger equation

In this section we rewrite the equation (1.1) as a paradifferential system. From now on we 
shall assume the following hypothesis:

• Hypothesis on local in time solutions. There exists ρ � 0 large enough and T > 0 such 
that

u ∈ C0([−T ,T ],Hρ
)∩ C1([−T ,T ],Hρ−2) ,

sup
t∈[−T ,T ]

‖u(t)‖ρ + sup
t∈[−T ,T ]

‖∂tu(t)‖ρ−2 �ρ ε ,
(4.1)

solves the equation (1.1).

The latter hypothesis is actually guaranteed by the local existence theorem proved in [25]. The 
only small difference is that the standard Laplacian on the torus is replaced by the more general 
elliptic operator (1.5), but the proof can be done exactly in the same way, with the obvious small 
modifications.

Proposition 4.1. (Paralinearization of NLS). We have that the equation (1.1) is equivalent to 
the following system:

∂tU + iEOpbw
(
�(ξ)

)
U +A(U)U +R(U)U = 0 , U = [ u

u

]
, 1 := [ 1 0

0 1

]
, (4.2)

where E is in (2.14), �(ξ) is in (1.5), the operator A(U) is in OB�(1) (see Definition 2.9) and 
has the form

A(U) := iEOpbw

(
a(U ;x, ξ) b(U ;x, ξ)

b(U ;x,−ξ) a(U ;x,−ξ)

)
, (4.3)

where

a(U ;x, ξ) :=
d∑

j=1

[
i(∂uuxj

f − ∂uxj
uf )ξj + 1

2

(− ∂xj
(∂uxj

uf ) − ∂xj
(∂uuxj

f )
)]+ ∂uuf ,

b(U ;x, ξ) := −
d∑

j=1

∂xj
(∂uuxj

f ) + ∂uuf .

The remainder R(U) is a matrix of smoothing operators in the class OS1(N). Finally the oper-
ator A(U) is Hamiltonian according to Definition 2.14.

Proof. By paralinearizing the nonlinearity Q in (1.3), using the Bony paralinearization formula 
(see [33], [37]) and recalling the assumption (1.4), one obtains that
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Q(u,u) = Opbw(∂uuf )[u] + Opbw(∂uuf )[u]

+
d∑

j=1

(
Opbw(∂uuxj

f )[uxj
] + Opbw(∂uuxj

f )[uxj
]
)

−
d∑

j=1

∂xj

[
Opbw(∂uxj

uf )[u] + Opbw(∂uuxj
f )[u]

]
+R(u,u) ,

(4.4)

where the remainder R(u, u) is smoothing, namely it satisfies

‖R(u,u)‖s+N �s,N ‖u‖ρ‖u‖s (4.5)

for any N ≥ 1, for some ρ = ρN > N and s ≥ ρ. Recall that ∂xj
= Opbw(iξj ), j = 1, . . . , d . 

Therefore, using Proposition 2.18 and Lemma 2.19, we have

Opbw(∂uuxj
f )[uxj

] − ∂xj
Opbw(∂uxj

uf )[u] =
= Opbw(∂uuxj

f ) ◦ Opbw(iξj )[u] − Opbw(iξj ) ◦ Opbw(∂uxj
uf )[u]

= Opbw
(

i(∂uuxj
f − ∂uxj

uf )ξj

)
[u] + Opbw

( 1

2i
{∂uuxj

f, iξj } − 1

2i
{iξj , ∂uxj

uf }
)
[u]

= Opbw
(

i(∂uuxj
f − ∂uxj

uf )ξj

)
[u] + 1

2
Opbw

(
− ∂xj

(∂uxj
uf ) − ∂xj

(∂uuxj
f )

)
[u] ,

up to some smoothing remainder satisfying (4.5). Reasoning similarly we deduce

Opbw(∂uuxj
f )[uxj

] − ∂xj
Opbw(∂uuxj

f )[u] =
= Opbw(∂uuxj

f ) ◦ Opbw(iξj )[u] − Opbw(iξj ) ◦ Opbw(∂uuxj
f )[u]

= −Opbw
(
∂xj

(∂uuxj
f )

)
[u] ,

up to some smoothing remainder satisfying (4.5). Therefore, by (4.4), we obtained

Q(u,u) =
d∑

j=1

Opbw
(

i(∂uuxj
f − ∂uxj

uf )ξj

)
[u]

+ Opbw
(
∂uuf − 1

2

d∑
j=1

(
∂xj

(∂uxj
uf ) + ∂xj

(∂uuxj
f )

))[u]

+ Opbw
(
∂uuf −

d∑
j=1

∂xj
(∂uuxj

f )
)
[u] +R(u,u) ,

where R(u, u) is some remainder satisfying (4.5). By writing (1.1) as a system in U = (u, u)T , 
one gets the (4.2)-(4.3). By an explicit computation one can check that the operator A(U) is 
Hamiltonian. �
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4.2. Diagonalization up to a smoothing remainder

In this section we analyze the para-differential operator

P(U) := ∂t + iEOpbw(�(ξ)) +A(U)

where A(U) is in (4.3) and the symbol �(ξ) is in (1.5). We prove the following result.

Proposition 4.2. Let N ∈ N , s0 � d/2. Then there exists ρ = ρN > N, s0 large enough such that 
if (4.1) holds, then the following holds. There exists a linear symplectic invertible transformation 

(1)(U) : Hs → Hs such that

P(1)(U) := 
(1)(U)−1P(U)
(1)(U) = ∂t + iEOpbw(�(ξ)) +A(1)(U) +R(1)(U) (4.6)

where

A(1)(U) = iOpbw

(
a(1)(U ;x, ξ) 0

0 −a(1)(U ;x,−ξ)

)
with a(1)(U ; x, ξ) a real symbol in the class �1

1 and the remainder R(1)(U) ∈ S(ρ, N) is Hamil-
tonian. Moreover, for any s ≥ ρ, one has

‖
(1)(U)±1 − Id‖L(Hs) �s ‖u‖ρ .

Proof. The proposition is proved by means of an iterative procedure. At the step n of such a 
procedure one has an operator

Pn(U) = ∂t + iEOpbw(�(ξ)) +An(U) +Bn(U) +Rn(U) ,

where

An(U) = iOpbw

(
an(U ;x, ξ) 0

0 −an(U ;x,−ξ)

)
, (4.7)

Bn(U) := iOpbw

(
0 bn(U ;x, ξ)

−bn(U ;x,−ξ) 0

)
, (4.8)

an ∈ �1
1 and bn ∈ �−n

1 . The remainder Rn(U) is a linear Hamiltonian operator, smoothing of 
order −N in the class S(ρ, N) for some ρ ≡ ρN > N large enough. We consider


n(U) := exp(i�n(U))

where �n(U) is a para-differential operator of the form

�n(U) := iOpbw

(
0 ψn(U ;x, ξ)

−ψ (U ;x,−ξ) 0

)
,

n
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where ψn(U ; x, ξ) is a symbol of order −n −2 which has to be determined appropriately. Notice 
that, for any n, the map 
n(U) has the same form of 
ψ(U) in (3.6). Hence it is well-posed and 
symplectic by Lemma 3.5. We actually choose the symbol ψn(U ; x, ξ) in such a way that

− 2�(ξ)ψn(U ;x, ξ) + bn(U ;x, ξ) = 0 , hence we set ψn(U ;x, ξ) := bn(U ;x, ξ)

2�(ξ)
.

(4.9)
Clearly, since bn ∈ �−n

1 , then ψn ∈ �−n−2
1 . Since 
n(U) is symplectic the transformed operator

Pn+1(U) = 
n(U)−1Pn(U)
n(U)

is Hamiltonian. By Lemma 3.6, and using (4.9), one gets that

Pn+1(U) = ∂t + iEOpbw(�(ξ)) +An+1(U) +Bn+1(U) +Rn+1(U)

where An+1(U), Bn+1(U) are operators of the form (4.7), (4.8) with n � n + 1 for some sym-
bols an+1 ∈ �1

1 and bn+1 ∈ �−n−1
1 . Moreover the symbol an+1 is real valued by Lemma 3.6. 

The remainder Rn+1(U) is a linear Hamiltonian operator, smoothing of order −N in the class 
S(ρ, N) for some ρ ≡ ρN > N large enough. The proof of the lemma is then concluded. �
4.3. Normal form on the diagonal term

In this section we prove a normal form theorem on the operator P(1)(U) in (4.6) which is a 
para-differential version of the normal form procedure developed in [6]. Moreover we denote by 
(ξ ; k) the scalar product induced by the matrix G (see (1.2)), namely (ξ ; k) := Gξ · k. We start 
with the following definition.

Definition 4.3. (Normal form symbols). A symbol z(x, ξ) in Nm
s is said to be in normal form

(with parameters δ, ε, τ ) if

z(x, ξ) =
∑
k∈Zd

ẑ(k, ξ)eik·x

satisfies

ẑ(k, ξ) �= 0 =⇒ |(ξ ; k)| ≤ 〈ξ 〉δ|k|−τ and |k| ≤ 〈ξ 〉ε

for any k �= 0, ξ ∈ Rd .

We shall fix appropriately the parameters ε, δ ∈ (0, 1), τ > 0 as

2

3
< δ < 1 , τ > d − 1, 0 < ε <

δ

τ + 1
(4.10)

cf. [5]. The main result of this section is the following.
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Proposition 4.4. Let N ∈ N , s0 � d/2. Then there exists ρ = ρN > N, s0 large enough such that 
if (4.1) holds, then the following holds. There exists a linear symplectic invertible transformation 

(2)(U) : Hs → Hs such that

P(2)(U) := 
(2)(U)−1P(1)(U)
(2)(U) = ∂t + iEOpbw(�(ξ)) +Z(U) +R(2)(U)

where P1(U) is in (4.6), the operator Z(U) has the form

Z(U) = iOpbw

(
z(U ;x, ξ) 0

0 −z(U ;x,−ξ) ,

)
(4.11)

with z(U ; x, ξ) a real symbol in the class �1
1 which is in normal form, according to the Defini-

tion 4.3. The remainder R(2)(U) is Hamiltonian and it is in the class S(N). Moreover, for any 
s ≥ ρ, one has

‖
(2)(U)±1‖L(Hs) ≤ 1 + C(s)‖u‖ρ .

In order to prove the proposition stated above, we need some further symbolic calculus. First 
of all, we consider an even smooth cut-off function χ :R → [0, 1] with the property that χ(y) =
1 for all y with |y| ≤ 1

2 and χ(y) = 0 for all y with |y| ≥ 1.

Definition 4.5. Given ε, δ, τ as in (4.10), define the following functions:

χk(ξ) = χ

(
2|k|τ (ξ ; k)

〈ξ 〉δ
)

, k ∈Zd \ {0},

χ̃k(ξ) = χ

( |k|
〈ξ 〉ε

)
, k ∈Zd \ {0} .

Correspondingly, given a symbol a ∈Nm
s , we decompose it as follows:

a = 〈a〉 + a(nr) + a(res) + a(S) ,

where 〈a〉 is the x-average of the symbol of a, namely

〈a〉(ξ) = 1

μ(T d)

∫
T d

a(x, ξ) dx ,

and

a(res)(x, ξ) =
∑
k �=0

χk(ξ)χ̃k(ξ )̂a(k, ξ)eik·x ,

a(nr)(x, ξ) =
∑
k �=0

(1 − χk(ξ)) χ̃k(ξ )̂a(k, ξ)eik·x ,

a(S)(x, ξ) =
∑

(1 − χ̃k(ξ)) â(k, ξ)eik·x .

(4.12)
k �=0

302



R. Feola and R. Montalto Journal of Differential Equations 312 (2022) 276–316
We also define

ga(x, ξ) := −
∑
k �=0

1

2(ξ ; k)
(1 − χk(ξ)) χ̃k(ξ )̂a(k, ξ)eik·x . (4.13)

In [5], Lemma 5.4, we provided suitable bounds for the cut-off functions defined above.

Lemma 4.6. For any multi-index α ∈Nd , one has

|χk(ξ)| ≤ 1 , |∂α
ξ χk(ξ)| �α |k|(τ+1)|α|〈ξ 〉−δ|α| ,

|χ̃k(ξ)| ≤ 1 , |∂α
ξ χ̃k(ξ)| �α |k||α|〈ξ 〉−(ε+|α|) ,

(4.14)

and

dk(ξ) := 1

2(ξ ; k)
(1 − χk(ξ)) , |∂α

ξ dk(ξ)| �α

〈k〉(|α|+1)τ+|α|

〈ξ 〉δ(|α|+1)
. (4.15)

As a consequence, for any s ≥ 0 and k ∈Zd , one has

|χk|0,s �s 〈k〉(τ+1)s , |χ̃k|0,s �s 〈k〉s , |dk|−δ,s �s 〈k〉(s+1)τ+s . (4.16)

We now prove the following Lemma.

Lemma 4.7. Let m ∈ R. Then, for any s ≥ 0, the linear map Nm
s → Nm

s , a �→ 〈a〉 is linear 
and continuous. For any s ≥ 0, there exists σs > s large enough such that the maps (see Defini-
tion 4.5)

Nm
σs

→ Nm
s , a �→ anr , a �→ ares ,

Nm
σs

→ Nm−δ
s , a �→ ga ,

are linear and continuous. Let N ∈N . Then there exists ρ = ρN > 0 large enough, such that, for 
any s ≥ ρ, the map

Nm
ρ → B(Hs,Hs+N) , a �→ R(S)(a) := Opbw(a(S)) ,

is linear and continuous.

Proof. Since 〈a〉 is only the space average of the symbol a it is straightforward that |〈a〉|m,s �
|a|m,s . We now estimate ga in terms of a. The estimates for anr and ares can be done arguing 
similarly. By the definitions (4.13), (4.15), one has that ga can be written as

ga(x, ξ) = −
∑
k �=0

dk(ξ)χ̃k(ξ )̂a(k, ξ)eik·x .

By applying Lemma 2.1 one gets, for any s ≥ 0, N ∈N , for any k ∈ Zd , that
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|̂a(k, ·)|m,s �N 〈k〉−N |a|m,s+N . (4.17)

Fix

N := (s + 1)τ + 2s + d + 1 .

One has that

|dkχ̃kâ(k, ·)|m−δ,s �s |dk|−δ,s |χ̃k|0,s |̂a(k, ·)|m,s

(4.16),(4.17)
�s 〈k〉(s+1)τ+2s−N |a|m,s+N

�s 〈k〉−d−1|a|m,s+N .

Using that 
∑

k〈k〉−d−1 is convergent, one then gets that |ga|m−δ,s �s |a|m,s+N and the claimed 
statement follows.

We now estimate the symbol a(S). By the definition of the cut off function χ̃k in Definition 4.5, 
one has that

supp(1 − χ̃k) ⊆ {
ξ : 〈ξ 〉ε ≤ 2|k|} ,

hence, by the estimate (4.14), one has that, for any N ∈ N , α ∈Nd ,

〈ξ 〉N+m|1 − χ̃k(ξ)| � 〈k〉(N+m)/ε , 〈ξ 〉N+m+|α||∂α
ξ (1 − χ̃k(ξ))| �α 〈k〉|α|+ N+m+|α|

ε ,

implying that

|1 − χ̃ |−N−m,s �s 〈k〉s+ N+m+s
ε . (4.18)

Now fix

M := d + 1 + s + (N + m + s)ε−1 .

By Lemma 2.1, one has

|(1 − χ̃k )̂a(k, ·)|−N,s � |1 − χ̃k|−N−m,s |̂a(k, ·)|m,s

(4.18)
�s 〈k〉s+ N+m+s

ε
−M |a|m,s+M

�s 〈k〉−d−1|a|m,s+M .

Hence, using that 
∑

k〈k〉−d−1 is convergent, one gets that

|a(S)|−N,s �s |a|m,s+M . (4.19)

We now consider the operator R(S)(a) := Opbw(a(S)). Its action is given by
304



R. Feola and R. Montalto Journal of Differential Equations 312 (2022) 276–316
R(S)(a)[w] =
∑

k,ξ∈Zd

ηε

( |k − ξ |
〈k + ξ 〉

)̂
a(S)

(
k − ξ,

k + ξ

2

)
û(ξ)eik·x

(4.12)=
∑

k,ξ∈Zd

ηε

( |k − ξ |
〈k + ξ 〉

)(
1 − χ̃k

(k + ξ

2

))̂
a
(
k − ξ,

k + ξ

2

)
û(ξ)eik·x .

Clearly the map a �→ R(S)(a) is linear. By defining

ρ := s0 + M = s0 + d + 1 + s0 + N + m + s0

ε
, s0 := d

2
+ 1

the estimate (4.19) reads |a(S)|−N,s0 �N |a|m,ρ and therefore, by applying Lemma 2.3, one has 
that, for any s ≥ ρ,

‖R(S)(a)‖L(Hs,Hs+N) �s |a(S)|−N,s0 �s,N |a|m,ρ .

Hence the linear map

Nm
ρ → L(Hs,Hs+N) , a �→R(S)(a)

is bounded. The claimed statement has then been proved. �
Lemma 4.8. Let a ∈ �m

1 . Then 〈a〉, a(nr), a(res) ∈ �m
1 and ga ∈ �m−δ

1 . Moreover, for any N ∈ N , 

the remainder R(S)(U) := Opbw
(
a(S)(U ; x, ξ)

)
belongs to the class S(N).

Proof. Let a ∈ �m
1 . We show that ga ≡ ga ∈ �m−δ

1 . The proof that a, a(nr), a(res) ∈ �m
1 is analo-

gous. Since a ∈ �m
1 , then

a = al + aq, with al ∈ Om
1 and aq ∈ 	m

2 (4.20)

and according to the definitions (4.13), (4.15), one obtains a corresponding splitting g = gl + gq

where

gal
(x, ξ) = −

∑
k �=0

dk(ξ)χ̃k(ξ )̂al(U ;x, ξ)eik·x ,

gaq (x, ξ) = −
∑
k �=0

dk(ξ)χ̃k(ξ )̂aq(U ;x, ξ)eik·x .

We show that gal
∈ Om

1 and gaq ∈ 	m
2 .

Since al ∈ Om
1 , then

â(U ; k, ξ) = m+(k, ξ )̂u(k) + m−(k, ξ )̂u(−k)

for some suitable multipliers m+, m− and therefore gl is a symbol which is linear in U and of the 
same form as al . It remains only to show that gl is in 	m and gq ∈ 	m. Fix s ≥ 0 and let σs > s
1 2
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the constant provided by Lemma 4.7. Since al ∈ 	m
1 , aq ∈ 	m

2 there exists a constant σ ′
s > σs and 

a radius r = r(s) ∈ (0, 1) such that the linear map

Hσ ′
s → Nm

σs
, U �→ al(U ;x, ξ)

is continuous and the map

Bσ ′
s
(r) →Nm

σs
, U �→ aq(U ;x, ξ)

is C∞ and vanishes of order two at U = 0. Since by Lemma 4.7, the map Nm
σs

→Nm
s , a �→ ga is 

linear and continuous, then by composition one gets that the map

Bσ ′
s
(r) →Nm

s , U �→ gal
(U ;x, ξ)

is linear and continuous and the map

Bσ ′
s
(r) →Nm

s , U �→ gaq (U ;x, ξ)

is C∞ and vanishes of order two at U = 0. This shows the claimed statement.

ANALYSIS OF THE OPERATOR R(S)(U) = Opbw(a(S)(U ; x, ξ)). According to (4.20)

a(S) = a
(S)
l + a(S)

q ,

a
(S)
l =

∑
k �=0

(1 − χ̃k(ξ)) âl(k, ξ)eik·x

=
∑
k �=0

(1 − χ̃k(ξ))m+(k, ξ )̂u(k)eik·x +
∑
k �=0

(1 − χ̃k(ξ))m−(k, ξ )̂u(−k)eik·x ,

a(S)
q =

∑
k �=0

(1 − χ̃k(ξ)) âq(k, ξ)eik·x ,

(4.21)

and correspondingly

R(S)(U) = R(S)
l (U) +R(S)

q (U) , R(S)
l (U) := Opbw(a

(S)
l ) , R(S)

q (U) := Opbw(a(S)
q ) .

Fix N ∈ N and let ρ ≡ ρN be the constant appearing in Lemma 4.7. Since al ∈ Om
1 and aq ∈ 	m

2 , 
one has that for some constant σρ > ρ large enough

|al |m,ρ �ρ ‖U‖σρ , |aq |m,ρ �ρ ‖U‖2
σρ

,

implying that, for any s ≥ σρ > ρ, one has

‖R(S)
l (U)‖L(Hs,Hs+N) �s |al |m,ρ �s ‖U‖σρ ,

‖R(S)(U)‖ s s+N �s |aq |m,ρ �s ‖U‖2 ,
q L(H ,H ) σρ
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and hence R(S)
q ∈ S2(N). In order to show that R(S)

l (U) belongs to the class OS1(N) it remains 
only to show that it is sum of terms of the form (2.6). This follows since

R(S)
l (U)[w] =

∑
k,ξ∈Zd

ηε

( |k − ξ |
〈k + ξ 〉

)(
1 − χ̃k

(k + ξ

2

))̂
al

(
k − ξ,

k + ξ

2

)
ŵ(ξ)eik·x

(4.21)=
∑

k,ξ∈Zd

r+(k, ξ )̂u(k − ξ)ŵ(ξ)eik·x +
∑

k,ξ∈Zd

r−(k, ξ )̂u(ξ − k))ŵ(ξ)eik·x

where

r±(k, ξ) := ηε

( |k − ξ |
〈k + ξ 〉

)(
1 − χ̃k

(k + ξ

2

))
m±

(
k − ξ,

ξ + k

2

)
.

The claimed statement has then been proved. �
We are now in position to prove the Proposition 4.4.

Proof of Proposition 4.4. The Proposition is proved also inductively, hence we describe the in-
duction step of the procedure. In the proof it is convenient to use the following notations. If O is 
one of the classes of operators defined in Section 2.1, we write A = B +O if A − B belongs to 
the class O.

We define the gain of regularization along the reduction procedure as

e := min
{
δ,3δ − 2,2δ − 1

}
. (4.22)

At the n-th step, we deal with a Hamiltonian para-differential operator of the form

P(1)
n (U) := ∂t + iEOpbw(�(ξ)) +Zn(U) +An(U) +Rn(U) (4.23)

where

Zn(U) := iOpbw

(
zn(U ;x, ξ) 0

0 −zn(U ;x,−ξ)

)
, zn ∈ �1

1 , zn is real and in normal form ,

An(U) := iOpbw

(
an(U ;x, ξ) 0

0 −an(U ;x,−ξ)

)
, an ∈ �1−ne

1 , an is real ,

Rn ∈ S(N) .

(4.24)
By Lemma 4.8, one has that

Opbw(an) = Opbw(〈an〉 + a(nr)
n + a(res

n )) +R(S)(an) ,

〈an〉, a(nr)
n , a(res)

n ∈ �1−ne
1 , R(S)(an) ∈ S(N) .

Moreover, by defining (as in (4.13))
307



R. Feola and R. Montalto Journal of Differential Equations 312 (2022) 276–316
gn(U ;x, ξ) := −
∑
k �=0

1

2(ξ ; k)
(1 − χk(ξ)) χ̃k(ξ )̂an(U ; k, ξ)eik·x ,

one has that the symbol gn(U ; x, ξ) is in �1−ne−δ
1 and solves the equation

{�,gn} + a(nr)
n = 0 . (4.25)

We then consider the map

�n(U) :=
(


n(U) 0
0 
n(U)

)
where 
n(U) is the time one flow map of

∂τ
n(U) = iOpbw(gn)

τ
n(U) , 
0

n(U) = Id .

The map �n(U) is well-posed and symplectic by Lemma 3.1. We now compute the conjugated 
operator

P(1)
n+1(U) := �n(U)−1P(1)

n (U)�n(U) .

Note that for any n ≥ 0, 1 − ne − δ < δ < 1, hence the conjugation Lemmas of Section 2.2 can 
be applied. In particular, by applying Lemmata 3.2, 3.4 (where n is replaced by 1 − ne − δ), one 
gets


n(U)−1∂t
n(U) = ∂t +OB�(1 − ne− δ) + S(N) ,


n(U)−1iOpbw(�)
n(U) = iOpbw(� + {�,gn}) +OB�(3 − 2ne− 3δ) + S(N) ,


n(U)−1iOpbw(zn)
n(U) = iOpbw(zn) +OB�(2 − ne− 2δ) + S(N) ,


n(U)−1iOpbw(an)
n(U) = iOpbw(〈an〉 + a(nr)
n + a(res

n )) +OB�(2 − 2ne− 2δ) + S(N) ,

�n(U)−1Rn(U)�n(U) = S(N) .

By the definition of e given in (4.22), one obtains that

1 − ne− δ ,3 − 2ne− 3δ ,2 − ne− 2δ ,2 − 2ne− 2δ ≤ 1 − (n + 1)e

and using that gn solves the equation (4.25), one obtains that P(1)
n+1(U) has the form (4.23) with 

n � n + 1, for some Rn+1(U) ∈ S(N) and

Zn+1(U) := iOpbw

(
zn+1(U ;x, ξ) 0

0 −zn+1(U ;x,−ξ)

)
,

zn+1 ∈ �1
1 , zn+1 := zn + 〈an〉 + a(res)

n ,

An+1(U) := iOpbw

(
an+1(U ;x, ξ) 0

0 −a (U ;x,−ξ)

)
, an+1 ∈ �

1−(n+1)e
1 .
n+1
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Since 
n(U) is a linear symplectic map, the paradifferential operator Pn+1(U) is Hamiltonian, 
hence zn+1 and an+1 are real symbols. Furthermore, zn+1 is a symbol in normal form, since zn is 
in normal form by the induction hypothesis and 〈an〉, a(res)

n are in normal form by their definition. 
The claimed induction statement has then been proved. �
5. The Birkhoff normal form step

By Propositions 4.2, 4.4, one has that U solves the equation (4.2) if and only if U :=

(1)(U)
(2)(U)W solves

P(3)(U)[W ] = 0 , P(3)(U) := ∂t + iEOpbw(�(ξ))W +Z(U) +Q(U)

where Q ∈ S(N) and Z(U) is the normal form operator provided in Proposition 4.4. We now 
perform a step of Birkhoff normal in order to remove the quadratic terms from Q(U)W . Since 
Q ∈ S(N), then

Q = Ql +Qq , Ql ∈OS1(N) , Qq ∈ S2(N) . (5.1)

We fix the number of regularization step N as

N := τ + 3 , (5.2)

where τ is the loss of derivatives in the small divisors estimate of Lemma A.1. We prove the 
following.

Proposition 5.1. Let G ∈ (0, +∞) be the full Lebesgue measure set given by Lemma A.1. Then 
for any m ∈ G the following holds. Then there exists ρ ≡ ρ(τ) � 0 large enough such that if 
(4.1) is fulfilled, then the following holds. There exists a linear and invertible transformation 

(3)(U) : Hs → Hs such that

P(4)(U) := 
(3)(U)−1P(3)(U)
(3)(U) = ∂t + iEOpbw(�(ξ)) +Z(U) +R(4)(U) (5.3)

where Z(U) is given in Proposition 4.4 and R(4)(U)W is cubic and one-smoothing remainder, 
namely it satisfies, for any s ≥ ρ, W ∈ Hs , the estimate

‖R(4)(U)W‖s+1 �s ‖U‖2
ρ‖W‖s . (5.4)

Moreover, for any s ≥ ρ, one has

‖
(3)(U)±1‖L(Hs) ≤ 1 + C(s)‖u‖ρ .

Proof. We look for a smoothing operator F ∈ OS1(3) and we consider the flow map 
τ
F (U). 

We then set 
(3)(U) := 
1 (U). By applying Lemma 3.7, one gets that
F
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(3)(U)−1 ◦ ∂t ◦ 
(3)(U) = ∂t −F(iEOpbw(�)U) + S2(3)


(3)(U)−1iEOpbw(�)
(3)(U) = iEOpbw(�) + [iEOpbw(�),F(U)] + S2(1)


(3)(U)−1Z(U)
(3)(U) = Z(U) + S2(2)


(3)(U)−1Q(U)
(3)(U)
(5.1),(5.2)= Ql (U) + S2(τ + 3) .

(5.5)

By applying Lemma 3.9, since Ql ∈OS1(τ + 3), then there exists F ∈OS1(3) which solves

−F(iEOpbw(�)U) + [iEOpbw(�),F(U)] +Ql (U) = 0 . (5.6)

Then (5.5), (5.6) imply that P(4)(U) := 
(3)(U)−1P(3)(U)
(3)(U) has the form (5.3), with 
R(4) ∈ S2(1) and hence satisfying the claimed estimate (5.4). �
6. Energy estimates and proof of Theorem 1.1 concluded

In this section we conclude the proof of the main result of the paper, namely Theorem 1.1. 
The main point is to provide an energy estimate for the reduced equation.

∂tW + iEOpbw(�(ξ))W +Z(U)W +R(4)(U)W = 0 . (6.1)

First of all, let us consider the linear flow associated to the normal form equation

∂tW + iEOpbw(�(ξ))W +Z(U)W = 0 ,

which, by (4.11), is equivalent to the scalar equation

∂tw + iOpbw
(
�(ξ) + z(U ;x, ξ)

)
w = 0 , (6.2)

where z is a real symbol in normal form (see Definition 4.3). The following Lemma is proved in 
[6], Section 5.1.

Lemma 6.1. For any t, τ ∈ [−T , T ] (where T is the same as in (4.1)), the flow Uz(τ, t) associated 
to the equation (6.2) (with Uz(τ, τ) = Id) is well defined as a bounded linear operator Hs → Hs

and it satisfies

‖Uz(τ, t)w0‖s �s ‖w0‖s , uniformly w.r. to t, τ ∈ [−T ,T ] , (6.3)

for any w0 ∈ Hs .

Proof. The proof is exactly the same as the one made in [6], Section 5.1. Indeed the operator 
Opbw(z) is the Weil quantization of the truncated symbol

σz(U ;x, ξ) =
∑

d

ηε

( |k|
〈ξ 〉

)̂
z(U ; k, ξ)eik·x
k∈Z
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see (2.3). Since ̂σz(U ; k, ξ) = ηε

( |k|
〈ξ〉

)̂
z(U ; k, ξ), one has that also σz is a symbol in normal form 

according to the definition (4.3). Hence the arguments developed in [6] apply. �
We then denote by

UZ (τ, t) :=
(
Uz(τ, t) 0

0 Uz(τ, t)

)
.

By Duhamel formula, solutions of (6.1) satisfy

W(t) = UZ (0, t)w0 −
t∫

0

UZ (τ, t)R(U(τ))W(τ) dτ , (6.4)

and recall that, by the ansatz on U(t), we have ‖U(t)‖ρ � ε, ∀t ∈ [−T , T ], for ρ � 0 large 
enough and some T > 0. By the estimates (5.4), (6.3), one then has if w0 ∈ Hρ ,

‖W(t)‖ρ �ρ ‖W0‖ρ +
t∫

0

‖U(τ)‖2
ρ‖W(τ)‖ρ dτ �ρ ‖W0‖ρ + ε2

t∫
0

‖W(τ)‖ρ dτ .

By Gronwall inequality, one then gets that

‖W(t)‖ρ ≤ C(ρ)eC(ρ)ε2t‖W0‖ρ , ∀t ∈ [−T ,T ] ,

for some constant C(ρ) � 0 large enough. By Propositions 4.2, 4.4, 5.1 and

U(t) =
(

(1)(U(t)) ◦ 
(2)(U(t)) ◦ 
(3)(U(t))

)
[W(t)] ,

one deduces that

‖U(t)‖ρ ∼ρ ‖W(t)‖ρ , ∀t ∈ [−T ,T ]

and therefore,

‖U(t)‖ρ ≤ C1(ρ)eC(ρ)ε2t‖U0‖ρ , ∀t ∈ [−T ,T ] ,

for some constant C1(ρ) � 0 large enough. By a standard bootstrap argument, the latter estimate 
implies that T = Tρ = O(ε−2) and

‖U(t)‖ρ �ρ ‖U0‖ρ , ∀t ∈ [−Tρ,Tρ] .

Clearly, by the smallness assumption on the initial datum ‖U0‖ρ ≤ ε, one then gets that 
‖U(t)‖ρ �ρ ε, for any t ∈ [−Tρ, Tρ]. This is the estimate (1.6) in Theorem 1.1.

We now perform a boothstrap argument in order to show that if s ≥ ρ and U0 ∈ Hs (see (2.4)) 
then
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U ∈ C0
(
[−Tρ,Tρ],H s

)
with ‖U(t)‖s ≤ C∗(s)‖U0‖s , ∀t ∈ [−Tρ,Tρ] ,

for some C∗(s) � 0 large enough .

(6.5)

The latter claim implies the estimate (1.7). In order to prove the (6.5) we argue by induction 
on s ≥ ρ. If s = ρ, then the claimed statement is proved. Assume that the statement is true for 
some s > ρ and let us prove it for s + 1. Let U0 ∈ Hs+1. Then W0 ∈ Hs+1 and by the induction 

hypothesis U(t) and then W(t) is in C0
(
[−Tρ, Tρ], Hs

)
. By applying Lemma 6.1, using that the 

remainder R(U) in (6.4) is one smoothing (see (5.4)), one has that

UZ (τ, t)W0 ∈ Hs+1 , ‖UZ (τ, t)W0‖s+1 �s ‖W0‖s+1 , ∀τ, t ∈ R ,

W(τ) ∈ Hs =⇒ R(U(τ))[W(τ)] ∈ Hs+1 =⇒ UZ (τ, t)R(U(τ))[W(τ)] ∈ Hs+1 ,

∥∥∥ t∫
0

UZ (τ, t)R(U(τ))W(τ) dτ

∥∥∥
s+1

�s ε2

t∫
0

‖W(τ)‖s dτ .

(6.6)

Therefore, (6.4), (6.6) imply that

W(t) ∈ Hs+1 , ‖W(t)‖s+1 �s ‖W0‖s+1 + ε2

t∫
0

‖W(τ)‖s dτ , ∀t ∈ [−Tρ,Tρ] . (6.7)

Using that (by the boundedness of the normal form transformations)

‖U(t)‖s+1 ∼s ‖W(t)‖s+1, ‖U(t)‖s ∼s ‖W(t)‖s , ‖W0‖s+1 ∼s ‖U0‖s+1 , ‖W0‖s ∼s ‖U0‖s ,

we note that (6.7) implies

U(t) ∈ Hs+1 , ‖U(t)‖s+1 ≤ K(s)
(
‖U0‖s+1 + ε2

t∫
0

‖U(τ)‖s dτ
)

, ∀t ∈ [−Tρ,Tρ] ,

for some constant K(s) � 0 large enough. Hence, by the induction hypothesis (6.5), the latter 
inequality implies that, for any t ∈ [−Tρ, Tρ],

‖U(t)‖s+1 ≤ K(s)‖U0‖s+1 + K(s)C∗(s)Tρε2‖U0‖s ≤ C∗(s + 1)‖U0‖s+1

with C∗(s + 1) := K(s)(1 + C∗(s)) and using that Tρε−2 ≤ 1. The claimed statement (6.5) has 
then been proved for s + 1. The proof of Theorem 1.1 is then concluded.

Appendix A. Non-resonance conditions

In this section we verify the non resonance conditions appearing in the Birkhoff normal form. 
We need to provide suitable lower bounds for the three wave interactions

φσ,σ ′
(ξ, k) := �(ξ + k) + σ�(ξ) + σ ′�(k) , ξ, k ∈ Zd , σ, σ ′ ∈ {±} , (A.1)
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where �(ξ) is the symbol defined in (1.5), for “most” choices of the parameter m ∈ (0, +∞). 
This is the content of the following Lemma.

Lemma A.1. There exists a set G ⊆ (0, +∞) of Lebesgue measure 1 such that for any m ∈ G
there exist τ = τ(d) ≥ 0 and γ > 0 such that, for all ξ, k ∈ Zd , σ, σ ′ ∈ {±}, one has

|φσ,σ ′
(ξ, k)| ≥ γ

〈ξ 〉τ 〈k〉τ . (A.2)

The rest of the section is devoted to the proof of the lemma above. Let us denote by

ωg ∈Rd∗ , d∗ := d(d − 1)

2
+ d , (A.3)

the vector obtained by putting in a vector the matrix elements (upon the diagonal) of the matrix 
G in (1.2), namely

ωg := (g11, . . . , g1d , g22, . . . , g2d, . . . , g(d−1)(d−1), g(d−1)d , gdd) .

Fix τ∗ ≥ d∗. We define the set

G :=
{
m > 0 : ∃γ > 0 such that |ωg · � ± m| ≥ γ

〈�〉τ∗ , ∀� ∈Zd∗
}

. (A.4)

The following Lemma holds

Lemma A.2. The Lebesgue measure of (0, +∞) \ G is equal to zero.

Proof. A direct calculation shows that

Gc := (0,+∞) \ G = ∩γ>0 ∪�∈Zν R�(γ ),

R�(γ ) :=
{
m > 0 : |ωg · � ± m| < γ

〈�〉τ∗

}
.

Clearly |R�(γ )| � γ 〈�〉−τ∗ , implying that

| ∪�∈Zν R�(γ )|�
∑

�∈Zd∗
γ 〈�〉−τ∗ � γ .

This implies that |Gc| = 0. �
Proof of Lemma A.1. Clearly, the function φσ,σ ′

(ξ, k) in (A.1) is very easy to estimate in the 
case σ = σ ′ = +. Indeed G is positive definite and therefore

|�(ξ + k) + �(ξ) + �(k)| ≥ 3m + |ξ + k|2 + |ξ |2 + |k|2

which is bounded away from zero.
We now estimate from below φσ,σ ′

(ξ, k) in the cases σ = −σ ′ = + or σ = σ ′ = −. Let 
ξ, k ∈Zd . A direct calculation shows that
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�(ξ + k) − �(ξ) − �(k) = 2
〈
Gξ , k

〉− m = 2
( d∑

i=1

giiξiki +
d∑

i=1

i−1∑
j=1

gij (ξikj + ξj ki)
)

− m.

By the diophantine condition (A.4), one then obtains that for some γ ∈ (0, 1),

|�(ξ + k) − �(ξ) − �(k)| ≥ γ

f (k, ξ)τ∗ where

f (k, ξ) := 1 + 2
d∑

i=1

|ξiki | + 2
d∑

1=1

i−1∑
j=1

|ξikj + ξj ki | .
(A.5)

We note that

|f (k, ξ)| � 1 +
d∑

i=1

|ξi ||ki | +
d∑

i,j=1

|ξi ||kj | ≤ c(d)〈ξ 〉〈k〉

for some constant c(d) ≥ 1. Hence

|�(ξ + k) − �(ξ) − �(k)| ≥ γ1

〈ξ 〉τ∗〈k〉τ∗ for some γ1 � γ .

Similarly, one computes for any ξ, k ∈ Zd ,

�(ξ + k) + �(ξ) − �(k) = 2‖ξ‖2
g + 2

〈
Gξ,k

〉+ m

= 2
〈
Gξ , ξ + k

〉+ m

= 2
( d∑

i=1

giiξi(ξ + k)i +
d∑

i=1

i−1∑
j=1

gij (ξi(ξ + k)j + ξj (ξ + k)i)
)

+ m.

Hence, using again the diophantine condition (A.4) and recalling the definition of f in (A.5), one 
obtains that

|�(ξ + k) + �(ξ) − �(k)| ≥ γ

f (ξ + k, ξ)τ∗ .

Moreover

f (ξ + k, ξ)� 1 +
d∑

i=1

|ξi ||ξi + ki | +
d∑

i,j=1

|ξi ||ξj + kj |

� 1 +
d∑

i,j=1

|ξi ||ξj | +
d∑

i,j=1

|ξi ||kj | ≤ c(d)(〈ξ 〉〈k〉 + 〈ξ 〉2)

for some constant c(d) ≥ 1. This implies that
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|�(ξ + k) + �(ξ) − �(k)| ≥ γ1

〈ξ 〉2τ∗〈k〉τ∗ ,

and hence Lemma A.1 follows. �
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