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Abstract:  9 

Background: Proximal sensing represents a growing avenue for precision fertilization and crop 10 

growth monitoring. In the last decade, precision agriculture technology has become affordable in 11 

many countries; Global Positioning Systems for the automatic guidance instruments and proximal 12 

sensors can be now used to guide the distribution of nutrients such as nitrogen (N) fertilization 13 

using real time applications.   14 

Methods: A two-year field experiment (2017-2018) was carried out to quantify maize yield in re- 15 

sponse to variable rate (VR) N distribution, which was determined with a proximal vigour sensor, 16 

as an alternative to fixed rate (FR) in a cereal-livestock farm located in the Po valley (Northern Italy). 17 

The amount of N distributed for the FR (140 kg N ha-1) was calculated according to the crop require- 18 

ment and the regional regulation. ±30% of the FR rate was applied in the VR treatment according to 19 

the Vigour S-index calculated on-the-go from the CropSpec sensor. 20 

Results: The two treatment of N fertilization did not result in significant difference of yield in both 21 

the years. The findings suggest that the application of VR is economically profitable than at FR ap- 22 

plication rate, especially under the hypothesis of VR application on farm scale.  23 

Conclusions: The outcome of the experiment suggests that VR is a viable and profitable technique 24 

which can be easily applied at farm level by adopting proximal sensors to detect the actual crop N 25 

requirement prior to stem elongation. Besides the economic benefits, the VR approach can be re- 26 

garded as a sustainable practice that meets the current European Common Agricultural Policy.    27 
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1. Introduction 31 

Today, machinery and high technological devices used in agriculture are very heter- 32 

ogeneous throughout the world due to economic and environmental reasons. The wide 33 

range of environmental conditions, land use and suitability differences of agricultural 34 

fields make possible a wide diversification of the technical ameliorations. Precision Agri- 35 

culture (PA) is commonly defined as the process of doing the right action at the right place 36 

at the right time; therefore, PA is not just a technology, but rather a management philos- 37 

ophy which is made possible by new technologies [1,2]. Advancements in remote sensing, 38 

machinery control systems, crop modelling, weather monitoring, decision making, cloud 39 

computing and big data analysis drive PA to the new revolution in agriculture named 40 

smart farming [3]. These advancements enhanced the accuracy of PA applications and 41 
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made it available for a broader range of farmers, allowing to enhance practices through 42 

the possibility to predict the occurrence of water or nutrient stresses and take real-time 43 

supported decisions. Collaboration between public and private sectors towards research, 44 

education and innovation opportunities in precision agriculture are rising and under con- 45 

stant development [2]. Fertilization is one of the most relevant targets of this new ap- 46 

proach [4]. Indeed, adjusting N rate to the measured crop requirement increases crop N 47 

use efficiency [5,6] and reduces environmental risks [7–9]. Delgado et al. 2005 [10] re- 48 

ported that applying N using VR can reduce NO3 leaching losses by 25%. The VR appli- 49 

cation is recognized to effectively reduce the carbon footprint and the GHG emissions [11] 50 

who studied VR application in a pear orchard as case study.  51 

The interaction between N rate, soil, weather and crop response is a complex system, 52 

in which these factors vary spatially within the same field and temporally over the season 53 

[12]. Managing this variability is the key aspect that distinguishing PA to conventional 54 

management [13]. Understanding of crop nutrition needs and supply balance should be 55 

the base for definition of optimum N fertilizer application. Different factors play a role on 56 

the optimum N rate, such as N supply from other sources, fertilizer costs, quality and 57 

quantity of final product and its price [13,14]. 58 

In a review paper about proximal sensing crop monitoring [15] it was analysed the 59 

feasibility of remote and proximal optical sensors to estimate N management-linked var- 60 

iables; it was pointed out that different factors can impact the perception of crop variabil- 61 

ity (e.g., sensor type, spatial resolution, standardization of sensor measurements), though 62 

they are strongly linked to location, year, and variety. Farmers frequently adopt proximal 63 

optical sensors rather than retrieving information from remote sensing due to the easier 64 

access to this technology (REF). Proximal sensing can be classified in Unmanned Aerial 65 

Vehicles UAVs with different cameras mounted on it, or tractor mounted sensors (TMS). 66 

The UAVs [16–20] are massively used is agricultural systems [16–20]. Proximal sensing 67 

equipment also used for VR fertilization is represented by Greenseeker [21–23] and OptRx 68 

[24]. 69 

The proximal sensing equipment are typically used to manage differently field ho- 70 

mogeneous zones, also known as management zones. They represent subfield regions 71 

with same soil traits and hydrologic characteristics within which a single strategy (e.g 72 

fertilization rate) is appropriate [25–27]. Since it is now possible to map the maize yields 73 

and moisture level at the harvest with very high spatial resolution, the major challenge is 74 

modulating the amount of fertilizer equally to match the crop demand [28]. The VR ferti- 75 

lization is a key aspect of fertilization prescription in precision agriculture, which typically 76 

involves multiple criteria and objectives. Practical motivation embraces the optimization 77 

of the trajectories in the field with a consequent reduction in the use of fuel and fertilizer, 78 

waste of pesticides and labour hours [25,29]. In the present case study, located in eastern 79 

Lombardy (Italy), maize production is experiencing relevant variability, being caused 80 

mainly by the low price on the market and pests control regulations and limits, which 81 

results in increasing imports from countries outside the EU [30]. It was observed that dairy 82 

farmers hardly adhere to the organic recommended fertilizer application rates due to the 83 

high availability of manure and slurry [27,31–35]; however, to ensure high crop yields, 84 

largely use topdressing mineral N is used despite the purchase and environmental costs 85 

[36]. Even considering the current subsidized rates, mineral fertilizers still represent a sub- 86 

stantial budget item in European farms [37]. 87 

In the integrated crop and livestock farm system, which is characterized by slurry 88 

availability over the year, it is required to improve the use of organic fertilizer to enhance 89 

the production efficiency and farmer net return [38], maximize grain yield mainly with 90 

the improvement of spatial homogeneity on the field, and improve the quality by increas- 91 

ing grain protein content [39]. A way to achieve these objectives is to implement a preci- 92 

sion farming management with the adoption of proximal sensors, as supported by the 93 

rural development plan (PSR) of the Lombardy Region, which has recently partly subsi- 94 

dized the equipment purchase by farmers [40,41]. The use of organic N fertilizers from 95 
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recycled digestate waste makes the agricultural system more environmentally sustainable 96 

[7,38,42,43], and improve net farmer return [44].  97 

In this study, we compared the effect of topdressing FR derived from fertilization 98 

plan with VR nitrogen fertilization on maize yield in a 2-year field experiment in eastern 99 

Lombardy under the hypothesis that the N application at VR guided by an active optical 100 

TMS leads to: i) maintain the same productivity level, ii) allow for the reduction of mineral 101 

N supply, iii) improve intra-field spatial homogeneity of maize grain yield. The topdress- 102 

ing N rate was estimated according to the fertilization plan calculated by the current leg- 103 

islation and availability of organic fertilizer and in VR by the crop vigour status measured 104 

with an on-the-go approach. 105 

2. Materials and Methods 106 

2.1 Study area 107 

The test fields are located on a crop and livestock farm (approximately 400 ha and 108 

700 dairy cows); two maize cropping seasons (2017-2018) were monitored from sowing 109 

(in April) to harvesting (in August). The experiment was carried out in two adjacent fields 110 

over the experimental period. The fields at coordinates N 45 ° 12'43 '' 10 ° 48'27 '', E 45 ° 111 

12'29 '' 10 ° 48'42 '', the fields are around 4 ha each (figure 1). 112 

 113 

Fig.1 Map showing the location of the two adjacent fields on the experimental site. 114 

 115 

 116 

 117 

 118 

 119 

 120 
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2.2 Weather condition 121 

 122 

Figure. 2 Monthly variations in temperature (°C) and rainfall (mm) of the experimental site during 123 
the two years experiment 2017/2018.  124 

The pedoclimatic conditions were comparable between the two experimental years. At 125 

the time of maize sowing (April), the mean daily temperature was on average greater than 126 

10 °C in both years, (figure 2). Before the maize sowing (March), soil accumulated 31 mm 127 

in 2017 and 78 mm in 2018. In the first maize vegetative stages, indicatively from April to 128 

May, the rainfall was 60 mm in both 2017 and 2018. 129 

2.3 Soil Sampling 130 

During sowing and after harvesting, we carried out a sampling mesh to evaluate the soil 131 

physical and chemical soil properties in the two fields so that their background conditions 132 

were comparable. The soil analysis also allowed for mapping pedological discontinuities, 133 

which were likely to cause low production in certain areas, which were identified by the 134 

farmer in previous years. The sampling mesh was made with a density of 4 samples per 135 

hectare; soils were sampled at a depth of 0.3 m depth. Three soil cores per site were sam- 136 

pled and dried first at air conditions and subsequently sieved and homogenized [42]. The 137 

analysis highlighted poor SOC area as shown in Figure 2. 138 

The sampling scheme was implemented taking into account an experimental design that 139 

ensure at least 4 samples per hectare (USDA guidelines). The sampling was done follow- 140 

ing the soil sampling guidelines (methods of detection and computerization of pedologi- 141 

cal data, Costantini et al 2011) [45]. The examined properties were soil organic carbon 142 

(SOC), total soil Nitrogen (N), Carbonates (CaCO3), Nitrate (NO3-), Phosphorus (P2O5) and 143 

Potassium (K2O) see table 1. 144 

Table 1. Classification of the soils according to the SOC concentration. 145 

Classification based on SOC g kg-1 Medium content of particles (F-FL-FA-FSA) 

Very poor <10 

Poor 10-18 

Averagely amount 19-25 

Rich 25 

To obtain soil properties surfaces to be used for spatial modelling, the data were interpo- 146 

lated through the Inverse Distance Weighting IDW algorithm in ArcMap 10.7, ESRI. The 147 
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map of SOC in 2017 (Figure 3), displayed using 10 quantile classes, shows two spots 148 

with higher SOC % and comparable content between the two fields.  149 

 150 

Figure 3. Percentage content of soil organic carbon (SOC) map obtained with IDW. Red areas have 151 
the lowest SOC concentration.  152 

The SOC and N were determined by dry combustion using ThermoQuest NA1500 ele- 153 

mental analyzer (Carlo Erba, Milano, Italy). The instrument determines both total nitro- 154 

gen and total carbon on 0.4 g samples (two replicates for each sample). The measured 155 

values were subtracted from the C-carbonate content, which was determined by with the 156 

acid titrimetric method [46]. Phosphorus and Potassium content were obtained by a pre- 157 

vious sampling collection (2015); they were determined at field level with 4 samples per 158 

hectare. 159 

Tab. 2 Soil properties. 160 

Parameter Mean SE± 

Sand (%) 24 1.32 

Silt (%) 38 1.22 

Clay (%) 38 1.43 

pH H2O 7.8 0.41 

Salinity (dS m) 0.02 0.00 

Total CaCO3 7.3 0.08 

Active CaCO3 0.01 0.00 

Cation-Exchange Capacity (cmol/kg soil) 28.6 3.42 

C/N 10.5 0.85 

Mg/k 3.1 0.05 

Organic Carbon (g kg-1) 19 2.33 

Total Nitrogen (g kg-1) 1.8 0.09 

Assimilable P (mg kg-1) 48 3.57 

Exchangeable K (mg kg-1) 422 15.36 

Exchangeable Ca (mg kg-1) 3880 54.65 

Exchangeable Mg (mg kg-1) 343 10.22 

 161 



Sustainability 2021, 13, x FOR PEER REVIEW 6 of 17 
 

2.4 The experimental setup  162 

The dates of maize sowing were 07-04-2017 and 7-04-2018 with the use of tanned seed. 163 

Variety and seeding density at the Field 2 were DEKALB 6728, the sowing density 8 plants 164 

m-2. Figure 1 reports fields scheme. In both field 1 and field 2, dairy slurry was distributed 165 

at the beginning of Autumn at a rate of 50 Mg ha-1, with a N input of 150 kg ha-1 (Table 3).  166 

Tab. 3 Nitrogen concentration and nitrogen forms in the digestate. 167 

Compounds Units Value × 1000 Methods 

Total Nitrogen g kg-1 N 3.1 IRSACNR vol3/6 r 00/86 

NH3 g kg-1 N 2.2 IRSACNR vol3/7 r 00/87 

Organic Nitrogen g kg-1 N 0.9   

NO3- mg kg-1 N-NO3 12 IRSACNR vol3/8 r 00/86 

Dry matter at 105° C % 4.2 IRSACNR vol2/2 r 00/84 

 168 

This experimental setup aimed to compare the VR and FR application at side-dressing 169 

using urea (46%N) (Table 4).  170 

Tab. 4 Nitrogen applied as topdressing fertilization. 171 

   N application rate (kg ha-1) 

  Application of digestate 

on bare soil in Autumn 

NPK(1)  

at sowing 
Topdressing VR/FR 

2017 
FR 

  
138 1 

VR from 92 to 135 0.7 – 1 

2018 
FR 

150 50 
138 1 

VR from 90 to 147 0.7 – 1.1 

(1) N content = 24% 172 

The management of the two fields differed regarding the topdressing fertilization rate 173 

(Table 4). The application of N during Autumn and at sowing did not vary between the 174 

two treatments. Based on the last five-year grain yield data of adjacent fields, N crop up- 175 

take as well as phosphorus and potassium were calculated using a fertilization plan fol- 176 

lowing the Lombardy rules [42].  177 

2.5 Equipment and working sensors 178 

The farm equipment accounts for: satellite guidance, crop vigour sensors and precision 179 

fertilizer spreader. The yield map of the two years obtained from the harvester IoT sys- 180 

tem.  181 

2.5.1 The vigour sensor 182 

The sensor used in this experiment is an active optical sensor developed by Topcon Agri- 183 

culture that evaluates the canopy vigour for the site-specific N fertilization of the most 184 

common field crops (e.g., winter wheat, barley, oat, maize, soybean, rice). Canopy vigour 185 

was sensed through CropSpec and expressed as a synthetic vegetation index S, which is 186 

computed as follows: 187 
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𝑠 = (
𝑅2

𝑅1
− 1) ∙ 100  (1) 188 

Where R2 and R1 represent the red and infrared bands, respectively. CropSpec consisted 189 

of two sensors, i.e. the left and right sensors, which both return the S index value with a 190 

spatial resolution of less than 3m.  191 

CropSpec was used at two times per year: during the fertilization at (V3), at the pheno- 192 

logical phase of raising at the sixth leaf (V6). The sensor operated at a short distance from 193 

the crop (approximately 20 cm) and at a height which varies between 2 and 2.3 m.  194 

The rationale of the VR consisted in giving the higher amount of N (N-max) defined by 195 

the fertilization plan at the less favourable zones in terms of vegetation vigour at the mo- 196 

ment of the topdressing fertilization. In contrast the most vigorous received the smallest 197 

amount of N (N-min), and in between various conditions receiving N between (N-max 198 

and N-min) at 10kg step.  199 

2.5.2 Fertilizer spreader  200 

The fertilizer spreader which was used in the experiment was the Kverneland Exacta TL 201 

GEOSPREAD, which has two actuators on each dosing unit. An actuator controls the set- 202 

ting of the discharge point for the correct placement of the fertilizer inside the disk, while 203 

the other controls the distribution rate. The GEOSPREAD system makes it possible to set 204 

the specific fertilizer amount and distribute for both discs directly from the tractor cab. 205 

The working width (7 maize rows, 4.5 m) can be quickly and easily adjusted with the 206 

ISOBUS terminal. The correct position of the sections and the overlap is guaranteed by the 207 

satellite guide operating with differential corrections Network Real Time Kinematic 208 

(RTK). 209 

2.5.3 Harvester and yield data collection 210 

The crop was harvested using The CLAAS harvester CORIO model series specific for 211 

maize harvest. The harvester allowed for a high-precision yield and humidity mapping. 212 

The system allowed to record in each area (7x7m) the weight of the grain yield and the 213 

moisture concentration in the biomass.  214 

2.5.4 Data treatment, statistical analysis, and economic analysis  215 

Descriptive statistics for the VR and FR fields comprising the mean, standard deviation 216 

(SD), and coefficient of variation (CV) were calculated. Different fertilization rates were 217 

than separated in three different groups: "Low" with less than 100 kg N ha-1, "Medium" 218 

with nitrogen application ranged between 100 and 125 and "High" with more than 125 kg 219 

N ha-1.  220 

As a preliminary elaboration, yield data were analysed to automatically detect outliers to 221 

exclude in the subsequent analysis. The data were tested for normality using the Kolmo- 222 

gorov-Smirnoff test.  223 

Data of S index, which were measured by the sensors with a spatial resolution of 5 m x 5  224 

m, were transformed from point to raster using inverse distance weighted (IDW), the 225 

same procedure was adopted for the dry yield data, which were measured at variable 226 

spatial resolution, therefore was useful to convert the vectors to a fixed spatial resolution 227 

the one closest to the real spatial resolution of the N that can be achieved with the equip- 228 

ment (spreader).  229 
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A bootstrap ANOVA was then carried out with the aim of testing the effect of the two 230 

treatments (FR vs. VR) on maize yield, SOC, and the N fertilization rate. After this stage, 231 

the analysis of variance was carried out to assess the effect SOC and S-index on the grain 232 

yield. The samples obtained from the fertilization and used for the analysis were 201 233 

(Yield, S-index, SOC) annually.  234 

The cost savings due to VR were computed annually as follow:  235 

(1) the dataset of the 201 variable rates was split into ascendant 25 ranks, which were 236 

characterized by an increasing dose of urea equal to 5 kg ha-1;  237 

(2) the field coverage (%) for each rank (i.e., the percentage of field that has been fertilized 238 

with that specific amount of urea) was computed as: (total observations / observations 239 

rank-1)∙100; 240 

(3) the mean of each rank was utilized as a representative value to compute the urea cost 241 

(€ ha-1) as a sum of each rank cost:  242 

∑(mean rank value [kg urea ha-1] ∙ urea cost [€ kg-1] ∙ field coverage [%] 243 

  (4) the annual cost saving was then calculated as the difference between FR and VR. 244 

3. Results 245 

3.1 Descriptive statistics 246 

For each variable considered in the present study, the mean, the standard deviation and 247 

the coefficient of variation are computed (Table 5). 248 

The crop was harvested at the 18-22% of humidity (15-09-2017, 21-09-2018) respectively. 249 

Tab.5 descriptive statistic of the S-index, Topdressing N rate and yield in 2017 and 2018. 250 

Variable mean sd cv 

CropSpec S index May 2017 28.15 2.54 0.09 

CropSpec S index May 2018 26.61 3.63 0.14 

Topdressing N 2017 123.65 8.20 0.07 

Topdressing N 2018 120.10 6.33 0.05 

Yield 2017 14.19 1.64 0.11 

Yield 2018 12.34 1.91 0.15 

3.2 Differences between years and fields 251 

The pedoclimatic condition were stable during the two years. In particular, before the 252 

maize irrigation, the similar amount of rainfall did not justify differences in productivity 253 

among years since irrigation was performed to supply the water demand. 254 
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 255 

Figure. 4 Maize grain yield observed in 2017 and 2018 under the two treatments of N fertilization 256 
rate (variable and fixed). 257 

 In 2018, larger contiguous areas having homogeneous yield were observed in both FR 258 

and VR (figure 4). Conversely, in 2017 the yield observations were more scattered under 259 

the two treatments.  260 

 261 

 262 

 263 
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Table. 6 The results of the bootstrap ANOVA that was carried out to evaluate the effect of N fertili- 264 
zation rate on grain yield in 2017/2018. 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

The ANOVA showed that in 2017 the average yield production was not significant differ- 275 

ent between VR and FR (P > 0.05), with a production of 14.69 and 14.14 Mg ha-1 respec- 276 

tively. 277 

In 2018, the average yield production was lower compared to 2017 with on average 12.50 278 

and 12.19 Mg ha-1 for VR and FR, respectively. In 2018, the ANOVA test did not show 279 

significant differences between the two treatments (P > 0.05). 280 

 281 

Figure. 5 Maize grain yield observed in 2017 and 2018 and divided by fertilization rate groups. Sam- 282 
ple size (n) and the coefficient of variation (CV %) of each group is reported at the top of the graph, 283 
while "X" symbol represents the mean. Black dots indicate outliers (cases between 1.5 and 3 times 284 
the interquartile range). 285 

The fertilization rate groups division allowed to better estimate the impact of the variable 286 

fertilization rate on maize yield. In 2017, data showed higher differences between the fer- 287 

tilization rates than in 2018. Compared to the fixed rate, the variable rates had a lower CV 288 

(except for "High") with a higher yield (figure 5). In general, in the first year the coefficient 289 

of variation ranged between 9 and 13 % among different fertilization rates. The "High" 290 

fertilization rate in 2017 had a CV of 13.4%, greater than all the other rates. Conversely, in 291 

the second year, the greatest CV was found in the fixed rate (17.5%), while the different 292 

variable rate had a stable CV around 13%. The yield remained stable around 12 Mg ha-1. 293 

 SUMMARY 

 Groups Count  Average Variance 

2017 
Variable rate 201 14.69 6.32 

Fixed rate 218 14.14 8.91 

2018 
Variable rate 201 12.50 2.23 

Fixed rate 216 12.19 3.77 

     ANOVA 

 Source of Variation SS df MS F P-value F crit 

2017 

Between Groups 22.9 1 22.93 2.99 0.08 3.86 

Within Groups 3198.2 417 7.67    

Total 3221.1 418     

2018 

Between Groups 8.1 1 8.12 2.68 0.10 3.86 

Within Groups 1257.5 415 3.03    

Total 1265.7 416     
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Moreover, in 2017, data showed a higher sample size of the "High" fertilization rate (n = 294 

121) compared to the "Medium" and "Low" groups. This sample size variation was less 295 

evident in 2018 when the "Medium" and "Low" group had similar sample sizes to the 296 

"High" group.  297 

3.1 Cost estimation (Farmer Net Return) 298 

Since all VR yielded equal or greater than FR in both years, it was reasonable to investigate 299 

the savings in reducing the amount of urea with VR. Therefore, based on the local market 300 

price (http://www.borsamerci.mn.it) of urea at the time of the experiment (0.361 € kg-1 in 301 

April 2018), we estimated the possible costs-benefit which can be achieved by applying 302 

Tab. 6. On farm cost and saving with the application of VR on the farm area potentially cultivated 303 
with grain maize (400 hectares). 304 

Lower limit  

(kg urea ha-1) 

Upper limit  

(kg urea ha-1) 

Field coverage (%) UREA Cost (€ ha-1) 

2017 2018 2017 2018 

195 200 - 0.5 - 0.4 

200 205 3.0 3.5 2.2 2.6 

205 210 0.5 2.0 0.4 1.5 

210 215 - 2.5 - 1.9 

215 220 - 1.5 - 1.2 

220 225 - 3.0 - 2.4 

225 230 - 3.0 - 2.5 

230 235 1 5.5 0.8 4.6 

235 240 1.5 6.5 1.3 5.6 

240 245 3.5 3.0 3.1 2.6 

245 250 4.0 3.5 3.6 3.1 

250 255 2.0 5.0 1.8 4.6 

255 260 2.5 5.0 2.3 4.6 

260 265 12.9 8.5 12.2 8.1 

265 270 2.0 5.5 1.9 5.3 

270 275 12.4 4.5 12.2 4.4 

275 280 7.5 6.0 7.5 6.0 

280 285 46.3 6.0 47.2 6.1 

285 290 0.5 4.5 0.5 4.7 

290 295 0.5 9.0 0.5 9.5 

295 300 - 3.0 - 3.2 

300 305 - 4.0 - 4.4 

305 310 - 2.5 - 2.8 

310 315 - 0.5 - 0.6 

315 320 - 2.0 - 2.3 

Sum of variable rate cost (€ ha-1) 97 95 



Sustainability 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 305 

the VR on the 400 ha-1 available for the grain maize production, assuming similar pedocli- 306 

matic conditions. 307 

With the approximation used in the present work, and the FR set to 138 kg N ha-1, the 308 

saving reached 11 and 13 € ha-1 for 2017 and 2018 respectively. When this result was ex- 309 

tended to the entire surface potentially cultivated with grain maize, the revenue of using 310 

the variable rate is 4320 and 5320 € ha-1 in the first and second year, respectively (Table 6). 311 

When the same computation was extended to the N saving, the results suggest that VR 312 

can reduce the N supply in a range between 13 and 17 kg N ha-1 depending on the growing 313 

season. 314 

4. Discussion 315 

This field experiment allowed to test the effectiveness of proximal sensor of high and 316 

available technology in reducing N fertilizer with no negative impact on maize grain 317 

yield. The regional and EU incentives make the technology accessible thanks to a dis- 318 

counted purchase because the correct use of the sensor aims at reducing the mineral N 319 

fertilization targeting to limited N leaching and volatilization losses [37,39]. This experi- 320 

ment offered the opportunity to operate on actual field conditions being characterized by 321 

high SOC and N content due to the long-term application of on-farm available manure. 322 

Such condition is frequent in the Po plain, where crop and livestock farms need to valorise 323 

the available manure to return N and organic matter to soils [35, 46]. In such condition of 324 

high soil fertility, the VR fertilization may not express its potential of reducing the total N 325 

amount. On the contrary, this potential was observed in this study: an average of 15 kg N 326 

ha-1 was saved annually in VR compared to FR. Moreover, VR resulted in comparable 327 

yield as no significant differences were detected between the two treatments (P>0.05). This 328 

outcome suggests that VR was able to balance the differences between heterogeneous area 329 

(crop vegetation status) and result in a positive economic opportunity due to the concur- 330 

rent fertilizer reduction and yield gain. The homogenous areas where similar S-index was 331 

estimated with proximal sensor technology reflected the spatial variability of soil proper- 332 

ties and soil cover status [46, 47]. This result agrees with [25,49] in which comparable ex- 333 

periments were conducted on maize. 334 

In our study, the S-index, Topdressing N and yield in 2017 and 2018 showed different 335 

average yields between the two years. This was observed throughout the region [50] be- 336 

cause of severe biotic stress due to European corn borer (Ostrinia nubilalis) and fungal 337 

diseases causing the declining rate of crop production. In general, the FR often results in 338 

maize grain yield increase in response to increasing N rates if no water stress occurs [25]. 339 

However, unlimited N doses is recognize to cause the crop luxury consumption which is 340 

a process to avoid in sustainable farming [5,49]. Generally, in the first year the mean maize 341 

yield was consistent with the one observed by the farmer in the previous years. Con- 342 

versely, in 2018 both fixed and variable rate treatments resulted in lower yield than the 343 

one observed in previous year. In 2017, VR increased grain yield by approximately 4% 344 

compared to uniform supply of the same N amount, even if such an increase was non 345 

statistically significant. The high yield in the first year of the experiment was likely to 346 

cause a large amount of crop residue production [51], which required more N to start C 347 

decomposition processes and therefore a consistent part of the N distributed in the second 348 

Fixed rate cost (€ ha-1) 108 108 

Saving (€ ha-1) 11 13 

Farm saving (€ yr-1) 4320 5320 



Sustainability 2021, 13, x FOR PEER REVIEW 13 of 17 
 

year was sequestered by the microbial community and not directly available to maize. In 349 

2018, the VR application raised grain yield by 3%. A rational N management associated 350 

with good agronomic practices would lead to a better use of organic N and the reductions 351 

in N losses resulting in avoiding losses [27] or improvement of crop yield [52]. The soil 352 

variability (i.e., SOC content) did not significantly interact with treatments (Figure 4). This 353 

result confirms the hypothesis according to which livestock and crop farming are peculiar 354 

systems where the large availability of slurry applied at sowing masks any possible effect 355 

of SOC variability [35,38]. In this context, the N fertilization rate at topdressing is an ca be 356 

effectively reduced leading to economic and environmental sustainability.  357 

The results obtained in the two years of experiment encourage the VR application even 358 

though the economic benefit is limited when the estimation is carried out at field scale 359 

(~10 € ha-1). However, the application of the VR on the whole farm surface enhances the 360 

costs saving (~4500 € ha-1). These findings highlight that this technology is appropriate 361 

only for large scale adoption, when no external economic incentives are provided by sup- 362 

porting programs. The net saving computed in this study is consistent with data reported 363 

in other studies regarding the variable N rate application on maize [13,53]. At field scale, 364 

Jin et al. (2019) reported that VR application on fields with high spatial heterogeneity and 365 

varying yields over time could be a potentially effective approach for raising revenues.  366 

In the present study, economic savings were determined without considering any addi- 367 

tional costs. Although canopy sensing has been shown to be a potentially profitable tech- 368 

nology, it is recognized that more comprehensive approaches that include weather, soil 369 

and landscape information would improve the confidence of N recommendations.  370 

5. Conclusions 371 

The present study aimed at evaluating the effectiveness of the variable rate approach in 372 

reducing the N fertilization rate at topdressing while avoiding maize yield loss in inten- 373 

sive agricultural farming systems. The case study was a typical livestock and crop farm of 374 

the Po plain, where large amount of slurry is applied at sowing. In this context, the reduc- 375 

tion of N fertilization rate at topdressing is a goal for enhancing economic and environ- 376 

mental sustainability. The reduction is possible thanks to the application of the variable 377 

rate approach, which can be pursued with the proximal optical sensor technology. 378 

This study outcome suggests that the variable rate treatment results in an overall reduc- 379 

tion of N amount without causing decrease in maize grain yield. In addition this treatment 380 

is responsible for reducing the yield variability within the field.  381 

The study also highlights the economic profitability of the variable rate treatment under 382 

the hypothesis to adopt it at farm scale. 383 
 384 

Author Contributions: For research articles with several authors, a short paragraph specifying their 385 
individual contributions must be provided. The following statements should be used “Conceptual- 386 
ization, C.S., A.P., and M.A..; methodology, C.S., A.P., T.T, M.A.; software, C.S, T.T, A.P, M.A..; 387 
validation, C.S. and M.A.; formal analysis, C.S., A.P., T.T, M.A.; investigation, C.S, M.A.; resources, 388 
C.S., A.P., M.A; data curation, C.S., A.P., T.T, M.A.; writing—original draft preparation, C.S., A.P., 389 
T.T, M.A; writing—review and editing, C.S., A.P., T.T, M.A; visualization, C.S., T.T.; supervision, 390 
A.P., M.A.; project administration, A.P., M.A.; funding acquisition, A.P., M.A; All authors have read 391 
and agreed to the published version of the manuscript.”  392 

Funding:  393 

Landsupport H2020. grant number ID: 774234.  394 

Data Availability Statement: data available upon request at the corresponding author. 395 

Acknowledgement: Azienda agraria Lugli SNC. 396 

Conflicts of Interest: “The authors declare no conflict of interest.”  397 



Sustainability 2021, 13, x FOR PEER REVIEW 14 of 17 
 

References 398 

1.  Kitchen, N.R.; Sudduth, K.A.; Myers, D.B.; Drummond, S.T.; Hong, S.Y. Delineating productivity zones on claypan soil fields 399 

using apparent soil electrical conductivity. Comput. Electron. Agric. 2005, 46, 285–308, doi:10.1016/j.compag.2004.11.012. 400 

2.  Yost, M.A.; Sudduth, K.A.; Walthall, C.L.; Kitchen, N.R. Public–private collaboration toward research, education and 401 

innovation opportunities in precision agriculture. Precis. Agric. 2018, 1–15, doi:10.1007/s11119-018-9583-4. 402 

3.  Fastellini, G.; Schillaci, C. Precision farming and IoT case studies across the world. In Agricultural Internet of Things and 403 

Decision Support for Precision Smart Farming; Elsevier, 2020; pp. 331–415. 404 

4.  Nutini, F.; Confalonieri, R.; Paleari, L.; Pepe, M.; Criscuolo, L.; Porta, F.; Ranghetti, L.; Busetto, L.; Boschetti, M. Supporting 405 

operational site-specific fertilization in rice cropping systems with infield smartphone measurements and Sentinel-2 406 

observations. Precis. Agric. 2021, 1–20, doi:10.1007/s11119-021-09784-0. 407 

5.  Nasielski, J.; Earl, H.; Deen, B. Luxury Vegetative Nitrogen Uptake in Maize Buffers Grain Yield Under Post-silking Water 408 

and Nitrogen Stress: A Mechanistic Understanding. Front. Plant Sci. 2019, 10, 318, doi:10.3389/fpls.2019.00318. 409 

6.  Chen, Y.; Xiao, C.; Wu, D.; Xia, T.; Chen, Q.; Chen, F.; Yuan, L.; Mi, G. Effects of nitrogen application rate on grain yield and 410 

grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. Eur. J. Agron. 2015, 411 

62, 79–89, doi:10.1016/j.eja.2014.09.008. 412 

7.  Chiodini, M.E.; Perego, A.; Carozzi, M.; Acutis, M. The Nitrification Inhibitor Vizura® Reduces N2O Emissions When Added 413 

to Digestate before Injection under Irrigated Maize in the Po Valley (Northern Italy). Agronomy 2019, 9, 431, 414 

doi:10.3390/agronomy9080431. 415 

8.  Basso, B.; Ritchie, J.T.; Cammarano, D.; Sartori, L. A strategic and tactical management approach to select optimal N fertilizer 416 

rates for wheat in a spatially variable field. Eur. J. Agron. 2011, 35, 215–222, doi:10.1016/j.eja.2011.06.004. 417 

9.  Zhang, Z.; Chen, S.; Chen, P.; Liu, M.; Shang, W. Fate of Maize Topdressing Nitrogen under Different Irrigation Schemes 418 

Based on 15 N Tracer Technology. Nongye Jixie Xuebao/Transactions Chinese Soc. Agric. Mach. 2018, 49, 262–272, 419 

doi:10.6041/j.issn.1000-1298.2018.12.032. 420 

10.  Delgado, J.A.; Khosla, R.; Bausch, W.C.; Westfall, D.G.; Inman, D.J. Nitrogen fertilizer management based on site-specific 421 

management zones reduces potential for nitrate leaching. J. Soil Water Conserv. 2005, 60. 422 

11.  Angelopoulou, T.; Balafoutis, A.; Zalidis, G.; Bochtis, D. From Laboratory to Proximal Sensing Spectroscopy for Soil Organic 423 

Carbon Estimation—A Review. Sustainability 2020, 12, 443, doi:10.3390/su12020443. 424 

12.  Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Parisi, D.; Viscarra Rossel, R.A.; Terribile, F.; Langella, G.; Venezia, A. A 425 

geostatistical sensor data fusion approach for delineating homogeneous management zones in Precision Agriculture. Catena 426 

2018, 167, 293–304, doi:10.1016/j.catena.2018.05.011. 427 

13.  Colaço, A.F.; Bramley, R.G.V. Do crop sensors promote improved nitrogen management in grain crops? F. Crop. Res. 2018, 428 

218, 126–140. 429 

14.  Cordero, E.; Longchamps, L.; Khosla, R.; Sacco, D. Spatial management strategies for nitrogen in maize production based on 430 

soil and crop data. Sci. Total Environ. 2019, 697, doi:10.1016/j.scitotenv.2019.133854. 431 

15.  Corti, M.; Cavalli, D.; Cabassi, G.; Marino Gallina, P.; Bechini, L. Does remote and proximal optical sensing successfully 432 

estimate maize variables? A review. Eur. J. Agron. 2018, 99, 37–50. 433 

16.  Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 434 

219–241. 435 

17.  Tóth, G.; Kismányoky, T.; Kassai, P.; Hermann, T.; Fernandez-Ugalde, O.; Szabó, B. Farming by soil in Europe: Status and 436 

outlook of cropping systems under different pedoclimatic conditions. PeerJ 2020, 2020, e8984, doi:10.7717/peerj.8984. 437 

18.  Nawar, S.; Mouazen, A.M. Comparison between random forests, artificial neural networks and gradient boosted machines 438 

methods of on-line Vis-NIR spectroscopy measurements of soil total nitrogen and total carbon. Sensors (Switzerland) 2017, 17, 439 



Sustainability 2021, 13, x FOR PEER REVIEW 15 of 17 
 

doi:10.3390/s17102428. 440 

19.  Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices derived from 441 

consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75– 442 

92, doi:10.1016/j.eja.2015.11.026. 443 

20.  Shaddad, S.M.; Madrau, S.; Castrignanò, A.; Mouazen, A.M. Data fusion techniques for delineation of site-specific 444 

management zones in a field in UK. Precis. Agric. 2016, 17, 200–217, doi:10.1007/s11119-015-9417-6. 445 

21.  Ali, A.M. Development of an algorithm for optimizing nitrogen fertilization in wheat using GreenSeeker proximal optical 446 

sensor. Exp. Agric. 2020, 56, 688–698, doi:10.1017/S0014479720000241. 447 

22.  Kapp-Junior, C.; Guimarães, A.M.; Caires, E.F. Nitrogen fertilization for wheat following soybean and interfering factors on 448 

spectral reflectance readings. SN Appl. Sci. 2020, 2, 1–10, doi:10.1007/s42452-020-03599-w. 449 

23.  Khan, H.; Farooque, A.A.; Acharya, B.; Abbas, F.; Esau, T.J.; Zaman, Q.U. Delineation of Management Zones for Site-Specific 450 

Information about Soil Fertility Characteristics through Proximal Sensing of Potato Fields. Agronomy 2020, 10, 1854, 451 

doi:10.3390/agronomy10121854. 452 

24.  Sivarajan, S.; Maharlooei, M.; Kandel, H.; Buetow, R.R.; Nowatzki, J.; Bajwa, S.G. Evaluation of OptRxTM active optical sensor 453 

to monitor soybean response to nitrogen inputs. J. Sci. Food Agric. 2020, 100, 154–160, doi:10.1002/jsfa.10008. 454 

25.  Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring Within-Field Variability of Corn Yield using Sentinel-2 455 

and Machine Learning Techniques. Remote Sens. 2019, 11, 2873, doi:10.3390/rs11232873. 456 

26.  Scudiero, E.; Teatini, P.; Manoli, G.; Braga, F.; Skaggs, T.; Morari, F. Workflow to Establish Time-Specific Zones in Precision 457 

Agriculture by Spatiotemporal Integration of Plant and Soil Sensing Data. Agronomy 2018, 8, 253, 458 

doi:10.3390/agronomy8110253. 459 

27.  Maris, S.C.; Capra, F.; Ardenti, F.; Chiodini, M.E.; Boselli, R.; Taskin, E.; Puglisi, E.; Bertora, C.; Poggianella, L.; Amaducci, S.; 460 

et al. Reducing N Fertilization without Yield Penalties in Maize with a Commercially Available Seed Dressing. Agronomy 461 

2021, 11, 407, doi:10.3390/agronomy11030407. 462 

28.  Webster, R. (Richard); Oliver, M.A. Geostatistics for environmental scientists; Wiley, 2007; ISBN 0470517263. 463 

29.  Kayad, A.; Paraforos, D.S.; Marinello, F.; Fountas, S. Latest Advances in Sensor Applications in Agriculture. Agriculture 2020, 464 

10, 362, doi:10.3390/agriculture10080362. 465 

30.  Naegeli, H.; Bresson, J.; Dalmay, T.; Dewhurst, I.C.; Epstein, M.M.; Firbank, L.G.; Guerche, P.; Hejatko, J.; Moreno, F.J.; 466 

Mullins, E.; et al. Statement complementing the EFSA Scientific Opinion on application (EFSA-GMO-UK-2006-34) for 467 

authorisation of food and feed containing, consisting of and produced from genetically modified maize 3272. EFSA J. 2019, 468 

17, doi:10.2903/j.efsa.2019.5844. 469 

31.  Essel, B.; Abaidoo, R.C.; Opoku, A.; Ewusi-Mensah, N. Economically Optimal Rate for Nutrient Application to Maize in the 470 

Semi-deciduous Forest Zone of Ghana. J. Soil Sci. Plant Nutr. 2020, 20, 1703–1713, doi:10.1007/s42729-020-00240-y. 471 

32.  Bava, L.; Zucali, M.; Sandrucci, A.; Tamburini, A. Environmental impact of the typical heavy pig production in Italy. J. Clean. 472 

Prod. 2017, 140, 685–691, doi:10.1016/j.jclepro.2015.11.029. 473 

33.  Tamburini, E.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro- 474 

Ecosystem Services: The Case Study of Emilia Romagna Region. Sustainability 2020, 12, 8392, doi:10.3390/su12208392. 475 

34.  Delaby, L.; Dourmad, J.-Y.; Béline, F.; Lescoat, P.; Faverdin, P.; Fiorelli, J.-L.; Vertès, F.; Veysset, P.; Morvan, T.; Parnaudeau, 476 

V.; et al. Origin, quantities and fate of nitrogen flows associated with animal production. Adv. Anim. Biosci. 2014, 5, 28–48, 477 

doi:10.1017/s2040470014000272. 478 

35.  Battaglia, M.L.; Ketterings, Q.M.; Godwin, G.; Czymmek, K.J. Conservation tillage is compatible with manure injection in 479 

corn silage systems. Agron. J. 2020, doi:10.1002/agj2.20604. 480 

36.  Perego, A.; Wu, L.; Gerosa, G.; Finco, A.; Chiazzese, M.; Amaducci, S. Field evaluation combined with modelling analysis to 481 



Sustainability 2021, 13, x FOR PEER REVIEW 16 of 17 
 

study fertilizer and tillage as factors affecting N2O emissions: A case study in the Po valley (Northern Italy). Agric. Ecosyst. 482 

Environ. 2016, 225, 72–85, doi:10.1016/j.agee.2016.04.003. 483 

37.  Quemada, M.; Lassaletta, L.; Jensen, L.S.; Godinot, O.; Brentrup, F.; Buckley, C.; Foray, S.; Hvid, S.K.; Oenema, J.; Richards, 484 

K.G.; et al. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric. 485 

Syst. 2020, 177, 102689, doi:10.1016/j.agsy.2019.102689. 486 

38.  Acutis, M.; Alfieri, L.; Giussani, A.; Provolo, G.; Guardo, A. Di; Colombini, S.; Bertoncini, G.; Castelnuovo, M.; Sali, G.; 487 

Moschini, M.; et al. ValorE: An integrated and GIS-based decision support system for livestock manure management in the 488 

Lombardy region (northern Italy). Land use policy 2014, 41, 149–162, doi:10.1016/j.landusepol.2014.05.007. 489 

39.  Maucieri, C.; Barco, A.; Borin, M. Compost as a substitute for mineral N fertilization? Effects on crops, soil and N leaching. 490 

Agronomy 2019, 9, 193, doi:10.3390/agronomy9040193. 491 

40.  Kumbhakar, S.C.; Lien, G. Impact of Subsidies on Farm Productivity and Efficiency. In The Economic Impact of Public Support 492 

to Agriculture; Springer New York, 2010; pp. 109–124. 493 

41.  Kleinhanß, W.; Murillo, C.; San Juan, C.; Sperlich, S. Efficiency, subsidies, and environmental adaptation of animal farming 494 

under CAP. Agric. Econ. 2007, 36, 49–65. 495 

42.  Perego, A.; Rocca, A.; Cattivelli, V.; Tabaglio, V.; Fiorini, A.; Barbieri, S.; Schillaci, C.; Chiodini, M.E.; Brenna, S.; Acutis, M. 496 

Agro-environmental aspects of conservation agriculture compared to conventional systems: A 3-year experience on 20 farms 497 

in the Po valley (Northern Italy). Agric. Syst. 2019, 168, 73–87, doi:10.1016/j.agsy.2018.10.008. 498 

43.  Valkama, E.; Kunypiyaeva, G.; Zhapayev, R.; Karabayev, M.; Zhusupbekov, E.; Perego, A.; Schillaci, C.; Sacco, D.; Moretti, 499 

B.; Grignani, C.; et al. Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma 2020, 500 

369, 114298, doi:10.1016/j.geoderma.2020.114298. 501 

44.  Moretti, B.; Bertora, C.; Grignani, C.; Lerda, C.; Celi, L.; Sacco, D. Conversion from mineral fertilisation to MSW compost use: 502 

Nitrogen fertiliser value in continuous maize and test on crop rotation. Sci. Total Environ. 2020, 705, 135308, 503 

doi:10.1016/j.scitotenv.2019.135308. 504 

45.  Paolanti, M.; Costantini, E.; Fantappiè, M. La descrizione del suolo. 2007. 505 

46.  Salehi, M.H.; Beni, O.H.; Harchegani, H.B.; Borujeni, I.E.; Motaghian, H.R. Refining Soil Organic Matter Determination by 506 

Loss-on-Ignition. Pedosphere 2011, 21, 473–482, doi:10.1016/S1002-0160(11)60149-5. 507 

47.  Zecha, C.W.; Peteinatos, G.G.; Link, J.; Claupein, W. Utilisation of ground and airborne optical sensors for nitrogen level 508 

identification and yield prediction in wheat. Agric. 2018, 8, 79, doi:10.3390/agriculture8060079. 509 

48.  Yang, J.; Yang, G.; Xu, B.; Zhang, K.; Yang, X.; Li, Z.; Li, H.; Yang, H.; Han, L. Reliability analysis and calibration environment 510 

of field crop NDVI measuring instruments. Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng. 2019, 35, 230–236, 511 

doi:10.11975/j.issn.1002-6819.2019.08.027. 512 

49.  Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten years of corn yield dynamics at field scale under 513 

digital agriculture solutions: A case study from North Italy. Comput. Electron. Agric. 2021, 185, 106126, 514 

doi:10.1016/j.compag.2021.106126. 515 

50.  Guido, V.; Finzi, A.; Ferrari, O.; Riva, E.; Quílez, D.; Herrero, E.; Provolo, G. Fertigation of maize with digestate using drip 516 

irrigation and pivot systems. Agronomy 2020, 10, 1453, doi:10.3390/agronomy10101453. 517 

51.  Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M. Designing 518 

a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy). Sci. Total Environ. 2014, 499, 497– 519 

509, doi:10.1016/j.scitotenv.2014.05.092. 520 

52.  Fumagalli, M.; Perego, A.; Acutis, M. Modelling nitrogen leaching from sewage sludge application to arable land in the 521 

Lombardy region (northern Italy). Sci. Total Environ. 2013, 461–462, 509–518, doi:10.1016/j.scitotenv.2013.05.029. 522 

53.  Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management Zone Analyst (MZA): 523 



Sustainability 2021, 13, x FOR PEER REVIEW 17 of 17 
 

Software for Subfield Management Zone Delineation. Agron. J. 2004, 96, 100–108. 524 

 525 
 526 


