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Abstract 

Infectious diseases still represent one of the major threats for human health due to both 

their direct and indirect effects on public health and worldwide economies. Despite the 

current possibility to eradicate or control certain infections like smallpox, polio and 

measles, the increase in incidence of new infections (so called emerging diseases), or the 

increase in incidence or geographic range of ones that have existed previously (re-

emerging diseases), poses a new threat to public health. To further complicate things, 

the role of animals in the insurgence and spread of new diseases is central. Of all 

emerging diseases indeed, the 60.3% originate by, or involve into their cycles, animals 

and represent the so called zoonoses. The increase in number of emerging and re-

emerging infections and their potential to fast spread into animal and human populations 

make central the development of tools to reduce human infection risk. Epidemiological 

studies become then central to understand the relationship among events, investigate 

their causal effects and understand risk factors. Despite of that, classical epidemiology, 

centred on the study of the relationships between events, show limits in the investigation 

of mechanisms underlying infection spread, and in considering the interactions among 

populations, thus possibly leading to simplistic and spurious conclusions. Mathematical 

modelling instead, and the development of a “dynamical epidemiology”, allows the 

investigation of dynamics of infections, thus providing us a mechanistic point of view to 

understand infection spread. The strengths of mathematical modelling applied to 

epidemiological studies are several. At first, they can investigate the extent to which an 

event can mechanistically influence another consequential event. This characteristic of 
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mathematical modelling has a great application in public health, as it allows to prioritize 

interventions or studies on those events that have a major impact on disease outbreak. 

Another strength of mathematical modelling is its ability to describe the dynamics of an 

infectious disease by accounting for interactions among populations and sub-groups of 

populations within the same population. At least, mathematical modelling permits for 

theoretical investigations of mechanisms of transmission and to answer to “what if?” 

questions, allowing to explore theoretical scenarios which have not yet occurred or which 

needs to be preventively tested, like the application of an intervention strategy.  

With the present work we then provide four applications of mathematical modelling to 

infectious disease. We focused on two wildlife-originating infections: West Nile virus 

(WNV) and baylisascariasis. Both infections are emerging or re-emerging in Italy and can 

represent a threat for human beings due to their possible severe outcomes. Due to the 

potential harm they are for human beings, a thorough surveillance and a wide 

intervention and control plans are ongoing both to promptly identify the presence and 

circulation of their causative agents and to reduce human infection risk. A full 

understanding of WNV cycle is fundamental to reduce human infection risk, but several 

knowledge gaps still exist, especially on the role played by different bird species involved 

in its spread. For both infections moreover, despite several are the control strategies 

proposed a quantitative analysis of their performance has never been performed. Aimed 

at filling these gaps, we developed a mathematical model to simulate WNV spread, and 

used it to explore mechanisms driving infection spread. We found birds recovery rate and 

mosquito biting rate having the major influence on disease spread and thus being the 

most urgent mechanisms to be investigated via field and laboratory experiments. Birds’ 
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susceptibility and their competence to infection have a negligible influence on disease 

spread, thus making investigations to understand them of secondary importance. These 

results might be of aid also in defining the characteristics of a bird species to be a good 

WNV spreader, by focusing the attention on species that have a small recovery rate or 

are frequently bitten by mosquitoes. Moreover, we found a negative effect of birds’ 

abundance in affecting WNV prevalence in mosquitoes, further helping us in 

distinguishing among species that are suitable to have a role in WNV spread. We then 

exploited the built model to explore intervention strategies against WNV. We showed 

that a reduction of the vector population is more effective than a reduction of birds’ 

abundance in an area. In particular, the best efficacy is shown by the reduction of 

mosquito breeding sites, followed by the active elimination of their eggs and larvae. On 

the contrary, reducing the abundance of competent birds or their reproductive sites can 

obtain an increase in human infection risk. Similarly, we also studied the effectiveness of 

different intervention strategies to reduce the number of Baylisascaris procyonis eggs in 

the environment. The ingestion of B. procyonis eggs indeed is the cause of 

baylisascariasis, an infection that can have severe health consequences in human beings. 

With our work we explore the effects both in terms of efficacy (i.e., potential to eliminate 

eggs from environment) and efficiency (i.e. the timing needed) of three different 

intervention strategies. The interventions tested are: the active culling of raccoons, 

raccoons’ anthelmintic treatment and faeces removal. We found that raccoon culling 

might have the best and faster results, highlighting the importance of assessing the 

intervention on the base of an objective prove on its efficacy. With the proposed work 

then, we highlighted the role of mathematical modelling in epidemiological studies, by, 
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at first, exploiting their potential to investigate the extent to which an event can influence 

another consequential event. Secondly, we used them to describe the dynamics of an 

infectious disease, by accounting for interactions among populations, and focusing on 

mechanisms underlying infection spread. Moreover, we also exploited them for 

theoretical investigations, like the simulation of the application of an intervention 

strategy to reduce human infection risk is.  

In conclusion, mathematical modelling can widely help our understanding and 

management of infectious diseases through a new and different point of view from that 

provided by classical epidemiology. Mathematical modelling indeed includes the 

investigation of spreading mechanisms and non-linearity of interactions among 

individuals and subgroups of populations, thus allowing a more complete comprehension 

of diseases spread. The cooperation of diverse health professionals is fundamental to 

fully exploit both classical epidemiological studies and dynamics ones, and the effects of 

their cooperation can lead to a better knowledge of infections and a consequent 

reduction of human infection risk.  
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Introduction 

Infectious diseases as an ongoing thread 

In the nineteenth century, medicine progresses lead by antibiotics, pesticides, and 

vaccines, produced a growing of optimism about the possibility that infectious disease 

would have finally been eradicated, especially in high income countries [1]. Quite the 

opposite, in the last 80 years we have seen a reversal of the trend, with the resurgence 

of infectious disease to an extent now meriting the highest concern level [2–6]. In 

particular, one of the majors threatens for global health and economies is now 

represented by the emergence of new infections, or of ones that have existed previously, 

but are rapidly increasing in incidence or geographic range, so called respectively 

emerging, or re-emerging diseases [5,7,8]. In about 60 years (from 1940 to 2004), 335 

new emerging infectious diseases have been reported [9], among which AIDS, SARS and 

MERS, but also Malaria and Tuberculosis. AIDS alone is thought to have infected more 

than 60 million people worldwide up to 2004 [10], with the devoting of funds for HIV 

vaccine research estimated around $200-250 million/year [11]. Or also vector-borne 

diseases, that cause more than 700 000 deaths annually, and a massive earmarking of 

funds for their control and elimination (in 2019, funding for malaria alone reached US$ 3 

billion) [12], evidencing both the impact on human health and economies that can be 

caused by the emergence or re-emergence of an infectious disease. With the more recent 

COVID-19 pandemic the importance of preventing, or at least managing, new diseases 

emergence shows its full importance. With more that 211 millions of confirmed cases 

and more than 4 millions deaths from the beginning of the pandemic to the end of August 
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[13], COVID-19 kneed global health and worldwide economy, making clear the need of 

strengthening both our surveillance capability of new infections, and of developing 

effective intervention strategies to limit infection spread.  

The number of human emerging infectious diseases has found to be rising since the 

second half of the 1900s, and due to the increased frequency of human-animal contact, 

travelling and global environmental changes it is probably bound to grow further [9]. 

Consequently, the so-called spill-over events, namely the transmission of a pathogen 

from a vertebrate animal to a human, are now the cause of big concern, but are still 

poorly understood [14].  Among human emerging infectious diseases, the 60.3% are 

zoonoses (namely those infections having a non-human animal sources), of which the 

71.8% have a wildlife origin [9], highlighting the important role of not-human animal 

sources as a threat to public health. Then, the importance to safeguard animal health 

takes on now a new relevance, not only considering productive and economic losses due 

to livestock infections, but also as a potential source of infection, of increasing 

importance, for human beings [15]. Consequently, the coordination of different expertise 

becomes central in preventing spill-over events and to develop efficient surveillance and 

control strategies. Moreover, to contain the spread of new infections the cooperation of 

politics and economies worldwide is required, implying a transition from a public health 

to a more comprehensive global health [16]. But also, is important to focus, not only on 

human health, but on a so called one health inclusive of both human and animal health 

[15,17–19].  Among zoonotic disease, spreading worldwide and representing a global 

threat to human health, are vector-borne diseases. Vector-borne diseases, includes 

malaria, dengue, zika fever and West Nile disease, and account for more than 17% of all 
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infectious diseases, causing more then 700 000 deaths annually [12]. Their spread is due 

to the complex interaction between hosts and vectors, usually involving a high number 

of species, making their monitor and control very complex and demanding in terms of 

time and resources. Many of vectors are bloodsucking arthropods, but them can also be 

any living organisms that can transmit infectious pathogens between humans, between 

animals, or from animals to humans. The ubiquity and variety of vectors make vector-

borne diseases one of the main issues for public health worldwide [20]. Moreover, vector-

borne diseases are usually more spread in low-income countries, where a combination 

of climatic conditions and low economic resources, make monitor and control of vector 

spread poorly effective [20]. Malaria for example, caused by parasites of the genus 

Plasmodium and spread to people through the bites of infected mosquitoes, in 2019 

alone is estimated to have caused 229 million cases and 409’000 deaths worldwide, of 

which the 94% in African Region [12].  

Infections as a dynamic process 

The impact of diseases on global health and economies is then undeniable. Classical 

epidemiological studies are then central to extract the relationships between events to 

interpret disease spread and to individuate risk factors [21]. Their thorough 

comprehension becomes fundamental to safeguard human health and to improve 

diagnoses and tracing techniques. But infectious diseases add a level of complexity 

respect chronic conditions such as cancer or heart disease, that only depends on 

individual-level characteristics (e.g., genetics or individual health status). Infection risk 

also depends upon the state of other individuals in the population, making the spread of 
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infectious diseases strictly related on the interaction between susceptible and infectious 

individuals [21,22]. The complexity of mechanisms causing infection transmission and the 

nonlinearity of interactions among subgroups in a population, make the approach of 

classical epidemiology, although practical, simplistic, so as to lead to spurious conclusions 

[22–24]. To catch the effects of interactions within and between populations, another 

possible approach is provided by dynamical epidemiology. In dynamical epidemiology the 

focus is posed on understanding disease dynamics by accounting for interaction between 

individuals, and mathematical modelling (nonlinear transmission models) is the tool for 

excellence [21]. A dynamical approach, hence, allows the understanding of processes and 

mechanisms underlying infection spread, thus going beyond the comprehension of the 

mere statistical and geospatial relationship within events. With respect to a classical 

epidemiolocal investigation, this approach also gives us the possibility to describe the 

dynamics of an infection, exploring the and formulating hypotheses on the mechanisms 

involved. Mathematical models can thus provide a description of disease dynamics but 

can also be used to predict the future trends in disease spread or can be used to explore 

the possible intervention strategies. In particular, the use of mathematical modelling can 

be of aid in case diseases, that have complicated cycles, such most of zoonotic ones, and 

of which infection mechanisms heavily relies on interactions among populations and 

subgroups of populations. Moreover, their use is very beneficial when investigating 

emerging diseases, dealing with which we cannot rely on previous experience.  
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Mathematical modelling for infectious diseases 

Due to their potential to account for interaction among individuals, in the second half of 

18th century, mathematics bashfully began to be applied to the study of infectious 

diseases, gradually showing their ability to interpret epidemiological trends and guide 

data collection. At the end of 20th century, the number of studies concerning with 

mathematics applied to epidemiological literature increased and proved to be potentially 

crucial in our understanding of infectious diseases [25–29]. Despite of that, insights 

obtained showed to have a low effect on public health choices compared with their 

potential. The most accredited theories about the regular recurrence of measles and the 

relationship between number of mosquitoes and malaria incidence have been developed 

with the use of mathematical modelling [30,31]. But also, more recently, public health 

choices on SARS outbreak management have been influenced by mathematical modelling 

obtained results [32–34]. Their potential to describe the course of an epidemics from a 

dynamics point of view, and contemporary to explore mechanisms driving such dynamics, 

is the innovation and strength of mathematical modelling.  

Their ability to catch the complexity of diseases and interactions among population 

subgroups indeed, provides a new point of view in epidemiological studies, incorporating 

mechanisms of infections and obtaining a global overview of processes and dynamics of 

spread. Different are the available techniques and diverse can be the uses of 

mathematical modelling, depending on the aim of the study and background information 

available. Their most intuitive use relies on producing simulations and predictions of 

investigated systems, but mathematical models can also have an important role in 

investigating and exploring epidemiological theory. They can be used indeed in answering 
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the so called “What if?” questions, thus simulating hypothetic or alternative scenarios 

and exploring the consequences of actions before they are implemented. Another way 

of exploiting mathematical modelling potential is to recognise those mechanisms that 

have the greatest impact on system dynamics. Considering that those biological 

mechanisms underlying the system are represented by model parameters and knowing 

that some of these parameters have a greater influence on dynamics then others (namely 

are more sensitive), we can theoretically explore the extent in model output of a change 

in parameter estimation thus recognising those mechanisms that have the major 

influence on the system. Moreover, knowing which parameters are more sensitive than 

others, can aid in understanding which one need further attentions and studies. 

Furthermore, new and quantifiable concepts have been introduced via modelling, as it 

happens with the introduction of the concept of the basic reproduction number (R0), or 

the identification of critical threshold for epidemic development, leading to a deeper 

comprehension of phenomena and providing epidemiologists with a tool to objectively 

quantify some characteristics of the spread of a disease [35–38]. The potential of 

mathematical modelling is therefore particularly useful when dealing with new infections, 

for which it is hard to rely on precise background information, or with wildlife-borne 

infectious diseases, for whom the data collection can be hard and demanding.  

Despite its potential, the formulation of a mathematical model is a complex process, that 

requires to operate suitable choices to obtain a model as simple as possible and yet 

adequate to address the answering of the question posed. One of the main challenges 

when dealing with modelling is to find the right balance between simplicity and 

complexity in model formulation. Keeping a model as simple as possible is fundamental 
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to rely on solving strategies, moreover, the less parameters we have, the less 

approximation we need to estimate them. On the other hand, to obtain a meaningful 

model it is important not to neglect or underestimate variables determining the course 

of infection, thus also an over-simplification of the model should be avoided. The 

deviation from reality due to oversimplification is rarely testable or measurable, thus 

making results interpretation depending on experience and expertise of modellers or 

epidemiologists. Moreover, mathematical modelling is often cryptic for non-experts, thus 

relegating this tool to a niche of modellers with the risk of establishing a vicious circle in 

which models are complicated to time to time, losing touch with reality and consequently 

being excluded by public health choices.  

Seen the variety of mathematical techniques available and the extent of their potential 

uses, several diverse mathematical models have been built to be used in epidemiological 

studies, we here propose an overview of the most used.  

Predator-prey- interaction and parasitism 

Predator-prey theory is one of the most exploited theories in describing the interaction 

between two different species and assumes that the number of preys limits the number 

of predators and vice-versa. Broadening the concept of interaction beyond the active 

killing of preys by predators, the relation between parasites and their hosts can be seen 

as a particular manifestation of the general predator-prey interaction [39]. In parasitism 

indeed, parasites interact with their host by depending upon them for nutrients, and 

contemporary harming or damaging them with an extent that largely depend on 



 

 

9 

characteristics of both species. Consequently, the appropriate modification of the base 

predator-prey model can be used to describe any kind of host-parasite interaction.  

To model infectious diseases then, Anderson and May with their work [39,40], proposed 

to look at them all as a host-parasite interaction, with characteristics depending on the 

mutual relationship existing between the infective agent and its host thus proposing a 

classification of infectious diseases in micro- and macro- parasitic infections.  

- Micro-parasitic infections: 

Micro-parasitic infections, generally caused by bacteria and viruses, are characterized by 

a rapid increase in parasites number when introduced into a susceptible host. In micro-

parasitic infections, the number of parasites harbouring their host is hardly quantifiable, 

thus, to comprehend the mechanisms driving disease spread, it is crucial to explore the 

interaction between infectious and susceptible hosts, regardless to intensity infection. 

The host population is then divided in subgroups depending only on the infection status 

of individuals. The simplest subgroup division for a population is represented by the SI 

model, in which we only consider the interaction between susceptible individuals (S) and 

infectious ones (I), with rates describing the passage between subgroups depending on 

infection characteristics. The number and the characteristics of population subgroups 

depend on infection characteristics and model assumptions, and we can thus have 

diverse subdivisions. We can divide the population in susceptible (S), infectious (I) and 

recovered I individuals, resulting in an SIR model, but by considering an incubation period 

for the disease, we can also include exposed individuals (E) thus obtaining a SEIR model, 

and so on. In these models, the progression of individuals between subgroups of the 
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population depends on disease characteristics and is represented in the model by 

infection-specific rates.  

- Macro-parasitic infections: 

Macro-parasitic infections are generally caused by bigger organisms like helminths 

(worms) and arthropods, and their cycle generally includes one or more free-living stages 

that pass from one host to the next. Infection tends to be chronic, and mortality, 

morbidity, host fertility reduction, depend on the number of parasites harboured by the 

host. These characteristics make essential to measure infection in terms of parasite 

burden for each subject, and not just their infected/non-infected status. The resulting 

model then includes diverse developmental stages of both hosts and parasites as 

subgroups of the population. The effect of parasite burden on host’s chances of surviving 

or reproducing varies greatly depending on both host and parasite characteristics and 

usually depends on parasite number into hosts. Moreover, the pattern of distribution of 

parasites among hosts is usually over-dispersed, with few members of the host 

population harbouring most of the total parasite population, thus heavily affecting 

disease dynamics. 

Deterministic or stochastic models? 

Rates in mathematical modelling represent the speed of the occurrence of an event that 

causes the passage of an individual from a subgroup of population to another.  

- Deterministic models 

Deterministic models are the most traditionally used in epidemiological studies. In these 

models the role of chance in event occurrence is not included and rates at which an 
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individual moves from one population subgroup to another are certain and continuous 

on time. One of the main characteristics of deterministic models is that, given the starting 

conditions, they lead to exactly and only one solution. This trait, to the detriment of a loss 

in realism, makes them easy handling and capable of providing precise and fixed 

thresholds determining whether an epidemic will occur. On the other hand, they do not 

account for the reliability or the confidence in the results. Due to their characteristics 

deterministic models are usually considered reliable when simulating an epidemic but 

loosing reliability when simulating the very beginning or the end of an epidemics, where 

the low number of cases increases the effect of chance in the probability of spread of an 

infection.  

- Stochastic models 

On the contrary, stochastic models assume that the passage from one population 

subgroup to another include a varying chance in transition probability and is not certain 

to occur. Although starting from the same set of initial conditions then, we can obtain a 

range of predictions whom width depends on the variance of the transition probability. 

Stochastic models then incorporate chances, provide a more realistic description of 

phenomena, but is harder to get analytical results for these models. Some of them uses 

are the investigation for example of probability that an epidemic will occur and the mean 

time to extinction of a disease. 
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Compartmental or individual based? 

Another possible difference in mathematical model structure is among compartmental 

or individual based ones. 

- Compartmental models 

Compartmental models are the most common and widely used. In compartmental 

models the population is divided in subgroups of individuals that are homogeneous in 

some feature, like for example in SIR models their epidemiological status. Individuals 

move from one population status to another according with model assumptions and rates 

(e.g., infection or recovery rates). Compartmental models can be both deterministic and 

stochastic. Their main limitation is that them do not account for differences among single 

individual hosts, but their limitation is widely surpassed by their efficacy in predicting 

infection spread in populations and estimating the various meaningful epidemiological 

parameters. 

- Individual-based models 

In contrast, to account for differences among individual hosts we can rely on individual 

based models. Them investigate the infection spread in a population focusing on the 

individual organisms that compose it, with their set of state variables or attributes and 

behaviours. Several are the variables changing among individuals and can include spatial 

location, physiological or behavioural traits, but also age and growth of dispersal. In 

individual-based models, the dynamics at the population-level is investigated, but it is the 

result of the interactions among individual with their own characteristics, with each other 

and their abiotic environment. Despite their major complexity if compared with 

compartmental ones, individual-based models can be useful when specific difference at 
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individual-level is suspected to be essential for answering some population-level 

question.  
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Outline of the Thesis 

In the present work we propose four applications of mathematical modelling to solve 

epidemiological questions related to wildlife-borne infectious diseases.  

Within the first two chapters, we used the potential of mathematical modelling of 

exploring infection mechanisms of action to ameliorate our knowledge of disease spread. 

The infection investigated is West Nile Virus (WNV) for both chapters, a vector-borne 

disease currently worldwide spread. WNV is naturally maintained in an enzootic cycle 

involving birds and ornithophilic mosquitoes. It can also affect human beings and horses, 

that however are only considered to act as dead-end hosts. In human beings the infection 

is usually asymptomatic, but, when they occur, symptoms can range from a mild 

influence-like syndrome to a severe neurological disease. The possible invalidating 

consequences of neurologic disease, and its worldwide spread, make WNV a concern for 

public health of several countries, but, due to the complexity of its cycle, several 

epidemiological aspects are still unknown. Moreover, the role played by different bird 

species in spread and maintenance of infection is still debated, and only some of the 

involved species, European bird species especially, have been deeply investigated to 

estimate their epidemiological parameters. Also, considering that not all epidemiological 

parameters are equally sensitive on infection spread, a deeper comprehension of 

mechanisms having the major impact on system dynamics becomes important in giving 

a hierarchy to future studies and investigations. To meet this need, with chapter 1, we 

used and adapted a validated mathematical model by Marini (2020), to perform a 
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sensitivity analysis aimed at understanding which epidemiological parameter has the 

major effect on the infection spread. This analysis allowed us to discriminate among 

epidemiological mechanisms which of them affects, and which one instead do not, the 

infection spread. We thus, at first, provided solid and objective results to understand 

which of the possible future investigations would lead to the best improving of knowledge 

about WNV. On the other hand, exploiting model results, we can highlight which species-

specific characteristics affects more disease spread, and thus understanding which avian 

species better encounter the characteristics of a good spreader or of a reservoir for WNV.  

With chapter 2 we further investigated characteristics making an avian species a 

potentially involved in WNV spread by focusing on the specie-specific demographic 

characteristics instead of the epidemiological ones. Indeed, one of the main knowledge 

gaps about WNV is the role of both different avian species and the overall avian 

community. But field and laboratory data collection of species-specific characteristics can 

be hard and demanding. For this reason, we propose a theoretical investigation to 

understand the characteristics of a bird species that makes it suitable of being involved 

in WNV spread. In this chapter we exploited mathematical modelling to explore if 

differences in demographic species-specific characteristics could lead to differences in 

predicted WNV spread.  

In the following two chapters instead, we exploited the potential of mathematical 

modelling to answer to “what if?” questions. The common thread of chapter 3 and 4 is 

that they both provide a theoretical analysis of the effectiveness of diverse intervention 

strategies in reducing human infection risk. The strength of these last two chapters is that 

they both provide us with objective proves on intervention strategies effects, that are 



19 

 

usually only gained from experience and for which most of the time there is no scientific 

proof. 

Chapter 3 is again focused on WNV and investigate the efficacy of six different 

intervention strategy to reduce the risk for human beings to be infected. Despite its 

importance indeed, only few studies exploring the efficacy of the existing intervention 

strategies to reduce human infection risk are available, and we still cannot rely on a full 

awareness of the best strategy to apply. For this reason, we further adapted the 

mathematical model used in chapter 1, to simulate six different scenarios, in each of 

which we simulated a different intervention strategy. Then we compared the reduction 

of human infection risk obtained with each of the intervention tested to determine the 

most suitable one to be performed in the study area (Lombardy region, Italy), thus 

concluding that intervention strategies on the vector population are the most efficacy. 

In chapter 4 instead we focused on baylisascariasis. Baylisascariasys is a zoonotic 

infection caused by Baylisascaris procyonis, a roundworm parasite having as definitive 

host raccoons (Procyon lotor). The accidental ingestion of B. procyonis eggs by human 

beings can lead them to develop a severe neurological disease, and the recent expansion 

of raccoons in new areas, makes baylisascariasis a threaten for public health in diverse 

countries. Italy is one of the countries where raccoons have been recently introduced, 

and with them the risk for human beings of being infected by B. procyonis. This fact leads 

to the need of developing an efficient intervention strategy to avoid, or at list reduce, 

human infection risk. Currently available strategies are diverse, but a global analysis of 

their efficacy was lacking. We then built a mathematical compartmental model to 

describe infection spread in the raccoon population and then tested three different 
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intervention strategies to investigate which of them could obtain the best results both in 

terms of reduction of parasite infective stages dispersed in the environment and speed 

to reach it.  

 



 

CHAPTER 2 

Understanding West Nile spread: 

mathematical modelling to disclose the most 

influential mechanisms on infection dynamics 
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Introduction 

West Nile disease (WND) is an emergent vector borne disease caused by West Nile virus 

(WNV), a single-strand virus belonging to the Flavivirus genus [1]. Its cycle involves 

mosquitoes, mostly of the genus Culex, as vectors, and diverse bird species as 

maintenance vertebrate hosts [2–5]. Although acting as dead-end hosts, several mammal 

species, human beings included, can be infected via mosquito bite, and can develop 

symptoms ranging from mild fever to severe neurological disease [6,7]. Despite the low 

frequency of development of a severe illness (25% of infected persons develop 

symptoms, [6]), the recovery might take several weeks or months, and some effects to 

the central nervous system might be permanent [5,8]. In addition, WNV recent diffusion 

in several countries in Europe and North America make it one of the most spread 

flavivirus in the world [9]. Despite of that, the variety of bird species developing viraemia 

titres sufficient to infect feeding mosquitoes [10–12], and the differences in susceptibility 

and competence shown between and within families of birds [13–16], make WNV spread 

and diffusion still poorly understood, especially in the European continent [17]. Only few 

studies provide a complete analysis of different bird species viraemic responses, and the 

variety of the composition of local avian communities combined with the circulation of 

different WNV strains, makes inaccurate the extension of results to areas other than the 

ones tested [13,15,16,18,19].  

To investigate spreading mechanisms of WNV, several mathematical modelling efforts 

have been attempted (e.g. [20–25]), but the above-mentioned uncertainties might hinder 

the precision of parameter estimates, thus impairing the reliability of simulations 
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obtained and the verisimilitude of simulated mechanisms. For this reason, the 

development of specific field research to investigate the epidemiological effects of 

different parameters is fundamental to improve the reliability of model simulations and 

our comprehension of WNV spread, especially in Europe where information about 

species involved in WNV spread and their epidemiological characteristics are currently 

lacking [14,17,26]. But, when a disease involves wildlife as WND does, field studies can 

be hard and demanding and not all parameters affect the dynamic of the disease in the 

same way. Small changes in some parameter can cause a huge variation in the dynamic 

itself, whereas big changes in some other can scarcely affect it. For this reason, the 

identification of those parameters having the biggest effect on disease dynamics can aid 

the prioritization of future research. Our work thus aims at investigating the effects on 

infection spread of different estimates of four parameters related to relatively unknown 

epidemiological characteristics of bird and mosquito species (mosquito biting rate on 

birds, avian competence, recovery, and susceptibility to infection).  
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Materials and Methods 

Dataset and reference system 

Entomological data was collected in Lombardy region, in the North of Italy, where WNV 

was first detected in 2008, and now is considered endemic (see Fig.1). Mosquito 

abundance records and their WNV status come from the Regional WNV mosquito 

surveillance, performed by Regione Lombardia and Istituto Zooprofilattico Sperimentale 

della Lombardia e dell’Emilia Romagna (IZSLER). Mosquito abundance and their PCR 

positivity for WNV was determined, accordingly to national and regional guidelines for 

the entomological surveillance of WNV [27–29], by field collection of mosquitoes 

performed every two weeks by CO2 traps covering an area at most of 400 Km2 each 

(Fig.1). Temperature and precipitation data for each land unit, collected with ground 

stations, was obtained from ARPA Lombardia (Agenzia Regionale per la Protezione 

dell’Ambiente della Lombardia). We then divided Lombardy region into a northern sub-

region, a western sub-region, and an eastern sub-region (respectively red, green and blue 

coloured regions in Fig.1), further details about clustering of trap locations are reported 

in Supplementary Materials S2. Because of the absence of WND in the northern cluster, 

we only investigated WNV transmission through the eastern and the western clusters. To 

estimate the number of birds composing the whole avian community and the number of 

magpies (i.e. the competent avian species) at the beginning of the summer we referred 

to records of the avifauna census provided by Regione Lombardia. The number of 

magpies was estimated as a proportion of the total number of birds estimated by a kriging 
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method calculating the number of individuals circulating in an area 𝐴 = 𝜋 ∗ 𝑟2,where 𝑟 

is the average Cx. Pipiens flight range and was considered equal to 500m [23].  

 

Figure 1: Capture site clustering proposed for Lombardy region. Red squares for the 

northern cluster, green squares for the western cluster, and blue squares for the eastern 

cluster. Black squares, circles and triangles represent mosquito capture site respectively 

for 2016, 2017 and 2018. 

Model structure  

The modelling framework follows the one proposed in Marini et al. [25] to investigate 

WNV dynamics in Emilia Romagna region, located south of Lombardy. First, the mosquito 

population dynamics is simulated through an “entomological model”, providing a daily 

estimate of the mosquito abundance for cluster and year. Then the estimated mosquito 
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abundance was included in an “epidemiological model”, aimed at simulating the 

transmission dynamics of WNV in a competent bird population. Due to their abundance 

and competence for WNV, and in analogy with the model proposed by Marini [25], 

mosquitoes of the Cx. Pipiens species were considered as the only vector species. 

Analogously, as magpies are competent for WNV [18,30] and abundant in Lombardy 

region, the avian host population was considered to grow and die with rates estimated 

for magpies in literature [23]. The dynamics of the disease were simulated from May to 

October in 2016, 2017 and 2018 according with data provided by the entomological 

surveillance. For both the entomological and the epidemiological model, the posterior 

distributions of the unknown parameters were explored following a Markov Chain Monte 

Carlo (MCMC) approach as adopted in (Marini et al. 2020).  

The entomological model 

To estimate Cx. Pipiens abundance during summer season, we calibrated the 

temperature-dependent entomological model presented in [25] on the recorded 

captures in Lombardy region, averaged over each cluster. Mosquito abundance was 

estimated for three years (2016, 2017 and 2018), starting from April up to October. Such 

resulting mosquito abundance was then included as a known function ω(t) into the 

epidemiological model. 

The epidemiological model 

The WNV model is based on a system of eleven differential equations, representing Cx. 

Pipiens and a competent avian species (juveniles and adult ones) infectious stage. To 

account for the complexity of the avian population, the number of competent birds was 
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estimated as a fraction (ai) of the total number of birds estimated to live in the area (B0). 

Birds are considered to become infectious (𝐵𝐼𝑎 and 𝐵𝐼𝑗) after an incubation period and 

then, as a consequence of infection, recover and become immune to reinfections (𝐵𝑅𝑎 

and 𝐵𝑅𝑗). At the start of the season (May) the avian population is considered to be fully 

composed by adult birds, reproducing and giving birth to juvenile ones until mid-July. 

Because the maturity age of birds can be considered as one year [31], the newly born are 

considered as juveniles throughout the entire season. Mortality due to infection in birds 

was neglected because of the limited mortality due to WNV infection observed in 

magpies in Europe [2]. Mosquitoes are considered to become infectious after a 

temperature-dependent incubation period (𝜃𝑀), and for the rest of their life. Birds can 

acquire infection according to their susceptibility (pMB) and to a mosquito temperature-

dependent biting rate over the bird population (b), depending on the proportion of 

mosquitoes’ bites directed to the competent avian species (𝑏1 and 𝑏2) and a function of 

temperature [32]. Two different biting rates were considered in the model, one for the 

initial part of the season (𝑏1) and one for the latest part of the season (𝑏2) because of the 

observed shift in mosquito biting rate between early and late season [33]. The infection 

rate of mosquitoes was estimated by a temperature dependent function representing 

the probability of WNV transmission from infectious birds to mosquitoes per bite (pBM, 

[23]). Considering that the competence for WNV transmission of an avian species, which 

is influenced by the viraemic titres developed by birds, is often considered one of the key 

parameters to be urgently investigated, we included among varying parameters a scalar 

(𝑝), that represents the competence of the avian species (i.e. the probability for the bird 

species to allow the transmission form birds to mosquitoes). This parameter is multiplied 
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to the mosquitoes’ susceptibility (pBM) to determine the overall transmission rate from 

bird to mosquitoes. The avian recovery rate (𝜈𝐵) is represented by the inverse of the 

duration of infectious period in birds. In analogy with the entomological model, the 

posterior distributions of the unknown parameters (see below) were explored through 

an MCMC approach, applied to the binomial likelihood of observing the weekly number 

of positive pools given the predicted mosquito prevalence. 

The complete scheme of the model and the equations describing the system are reported 

in Supplementary materials S2. 

Parameter estimates 

All biological and epidemiological parameters for birds and mosquitoes refer to magpies 

and Cx. Pipiens are those reported in Marini et al 2020 for Emilia Romagna region. 10’000 

iterations of the MCMC sampling were performed, obtaining 10’000 suitable sets  of 

parameters. Simulations for WNV dynamics were then performed randomly choosing 100 

different sets of parameters from the estimated posterior distributions, obtaining 100 

different possible dynamics depending on the set of parameters chosen. 

The unknown parameters estimated by the MCMC method for the entomological model 

are: 

- K1: density dependent scaling factor driving the carrying capacity for the larval 

population at the beginning of the season 

- K2: density dependent scaling factor driving the carrying capacity for the larval 

population at the end of the season 

- M0: the number of mosquitoes at the beginning of the season 
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We considered two different carrying capacities as during summer Cx. Pipiens breeding 

sites availability might change, causing a possible increase in larval mortality, for instance 

because of competition for resources with Ae. Albopictus at the larval stage [34]. 

Whereas for the epidemiological model are: 

- 𝑎𝑖: the proportion of competent birds over the total avian population in cluster i 

- 𝑏1: the fraction of mosquitoes’ bites on the competent avian population at the 

beginning of the season (from May up to mid-July).   

- 𝑏2: the fraction of mosquitoes’ bites on the competent avian population at the 

end of the season (from mid-July up to October).   

- 𝑖𝑏: the number of immune competent birds in each cluster at the beginning of the 

first year of simulations (2016) 

- 𝑝 : the avian competence, defined as the probability for a competent infectious 

bird to transmit the infection to a mosquito  

- 𝑝𝑀𝐵: the birds’ susceptibility to infection, considered as the probability for a 

competent bird to become infected when bitten by an infectious mosquito  

- 𝜈𝐵: the bird recovery rate, considered as the reciprocal of the duration of viraemia  

Being a characteristic of the infection itself, all epidemiological parameters were 

considered constant in time and space and were thus estimated across all years and 

clusters. Only the number of immune competent birds was considered different among 

years and between clusters and was estimated by the MCMC for 2016 and then 

considered as dependent from the estimated previous year final avian immunity. The 

prior distribution of all epidemiological parameters and of the number of immune 

competent birds in 2016 was considered to follow a uniform distribution. The total initial 
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number of birds was randomly chosen in 50-70 to account for the variability in the birds’ 

number across sites and years. Mosquito WNV prevalence at the beginning of each 

season was randomly chosen into 0-0.001 [25]. 

To verify whether there is statistical relationship among unknown epidemiological 

parameters, we also check for their mutual correlation (Pearson correlation coefficient, 

with function cor in R 3.6.3 software).  

R0 estimate 

We estimated WNV basic reproduction number (𝑅0) following the formula proposed in 

[35] for vector borne diseases. In this system 𝑅0 represents the average number of 

secondary infected mosquitoes over the entire transmission cycle, following the 

introduction of an infected mosquito into fully susceptible mosquito and bird 

populations. The formula takes into consideration both the number of secondary infected 

birds following the introduction of an infectious mosquito into a fully susceptible bird 

population, and the number of secondary infected mosquitoes following the introduction 

of an infectious bird in a fully susceptible mosquito population.  

The basic reproduction number is computed according to the following formula: 

𝑅0 = 𝑅0
𝑀𝐵 ∗ 𝑅0

𝐵𝑀 

with  

𝑅0
𝑀𝐵 =

𝑏 ∗ 𝑝𝑀𝐵
𝜇𝑀

 

𝑅0
𝐵𝑀 =

𝑏 ∗ 𝑝 ∗ 𝑝𝐵𝑀
𝛿𝐵

∗
𝜃𝑀

𝜇𝑀 + 𝜃𝑀
∗
𝑁𝑀
𝑁𝐵
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𝑅0
𝑀𝐵 (𝑅0

𝐵𝑀) is the number of hosts (mosquitoes) infected by an infectious mosquito 

(host). Following the formula proposed, the 𝑅0 estimate depends on epidemiological 

parameters chosen to represent transmission rates and the vector-host ratio 
𝑁𝑀

𝑁𝐵
, where 

𝑁𝑀 represents the mosquito number and 𝑁𝐵 the number of competent birds. As 

mosquito death rate (𝜇𝑀), the probability of WNV transmission from infectious birds to 

mosquitoes (𝑝𝐵𝑀) and mosquito biting rate are a function of temperature, we estimate 

the 𝑅0 of WNV at a temperature of 24°C. We chose a temperature of 24°C to exclude 

possible limitations in spread caused by temperature. 

Rt estimate 

To estimate the potential of WNV to spread during the summer season, we adapted the 

formula proposed for 𝑅0 to estimate the effective reproduction number 𝑅𝑡, defined as 

the number of new infections caused by a single infected individual at time t in a partially 

susceptible population. 

The effective reproduction number is thus computed according to the following formula:  

𝑅𝑡 = 𝑅𝑡
𝑀𝐵 ∗ 𝑅𝑡

𝐵𝑀 

with  

𝑅𝑡
𝑀𝐵 =

𝑏 ∗ 𝑝𝑀𝐵
𝜇𝑀

∗
𝐵𝑆
𝑁𝐵

 

𝑅𝑡
𝐵𝑀 =

𝑏 ∗ 𝑝 ∗ 𝑝𝐵𝑀
𝛿𝐵

∗
𝜃𝑀

𝜇𝑀 + 𝜃𝑀
∗
𝑀𝑠

𝑁𝐵
 

Where, 𝑅𝑡
𝑀𝐵 (𝑅𝑡

𝐵𝑀) is the number of hosts (mosquitoes) infected by an infectious 

mosquito (host), 𝑀𝑆 represents the number of susceptible mosquitoes, 𝐵𝑆the number of 
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susceptible birds and 𝑁𝐵 the total number of competent birds. Consequently, the 𝑅𝑡 

estimate depends on the vector-host ratio (
𝑀𝑆

𝑁𝐵
) and on the proportion of susceptible hosts 

over the whole host population 
𝐵𝑆

𝑁𝐵
.  

Transmission spread and maintenance during summer season 

To investigate the transmission of WNV throughout the summer season, for each set of 

parameters estimated by the MCMC, a daily 𝑅𝑡 was estimated from May to October 

accounting for the daily mean temperature. Then, to investigate the probability of the 

infection to be maintained and spread during the season, we estimate the monthly 

frequency for 𝑅𝑡 to lie above 1. Hereafter, we will refer to it as spread probability.  

Sensitivity analysis of unknown epidemiological parameters  

To investigate the effect of different parameter configurations, we performed a 

sensitivity analysis by varying each epidemiological parameter estimate and evaluating 

how that change affects 𝑅𝑡. A baseline effective reproduction number (𝑅𝑡) was estimated 

according to calibrated parameters, then by varying into 10%-200% each free parameter 

estimate (with a step of 10%) the new 𝑅𝑡 was calculated. To understand the effect of the 

change in parameter estimate on the effective reproduction number, we studied the 

ratio between the baseline 𝑅𝑡 and the varied one. We can notice that, by considering this 

ratio, we obtained an effect of the change of parameter of interest that is independent 

from the values of the others.  

For a deeper comprehension of the effect of a parameter estimate change, we also 

compared the base monthly spread probability with the spread probability obtained with 

a parameter decrease of 90, 50 and 10%, and an increase of 10, 50 100%.  
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The investigated parameters are: 

- Mosquito biting rate (𝑏) 

- Competence for WNV of the bird species (𝑝)  

- Competent birds’ susceptibility (𝑝𝑀𝐵) 

- Duration of competent birds’ infectious period (recovery rate,𝜈𝐵) 

Temperature and host-vector ratio effect on R0  

To highlight the effect of temperature on WNV spread, we performed a sensitivity 

analysis by varying temperature from 10 to 30°C (with a step of 0.1°C) and estimating 𝑅0 

for each temperature for each set of parameters used for simulations. Then, the WNV 

spread probability at different temperatures was estimated as the frequency for 𝑅0 to lie 

above 1. Despite temperature affects mosquito numbers during season, to obtain more 

generalizable results we investigate temperature effect only taking into consideration 

one at a time, four different vector-host ratios (i.e., 10, 100, 1000 and 10,000 

mosquitoes/birds). 
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Results 
 

Model calibration and fit:  

Parameter estimates show a very high variability in the estimate of the percentage of 

immune birds at the beginning of the first simulated season (𝑖𝐵𝑤and 𝑖𝐵𝑒) and of 

competence (𝑝), susceptibility (𝑝𝑀𝐵) and recovery rate (𝜈𝐵) of the bird population. The 

fractions of the mosquito biting rate on competent hosts (both 𝑏1 and 𝑏2) and the 

percentage of competent birds over the whole avian population (𝑎𝑖) instead showed a 

lower variability. A full list of the parameter estimates (and their range) obtained by 

MCMC is reported in table 1. Model predictions confidence intervals include 97% of 

observed points, showing that, despite the wide confidence intervals, the model can well 

describe WNV dynamics in Lombardy region. For further details about model fit and 

obtained simulations see Supplementary materials S2.  
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Table 1: Estimated model parameters distributions (average and 95% credible intervals). 

Parameter Parameter biological meaning 
Estimate range 

(2.5%-97.5% percentile) 

𝐵0 Initial number of birds (whole avian community) 59.95 (50.53-69.57) 

𝑎𝑖 
Proportion of competent birds over the whole avian 

community 
0.0666 (0.0016-0.2228) 

𝑖𝐵𝑤 
Proportion of immune birds at the beginning of the first 

simulated season, western sub-region 
0.0445 (0.194-0.7929)1 

𝑖𝐵𝑒 
Proportion of immune birds at the beginning of the first 

simulated season, eastern sub-region 
0.0445 (0.1972-0.7897)1 

𝑏1 
Proportion of mosquitoes’ bites directed to the 

competent avian species during early season (day-1) 
0.3641 (0.1552-0.4947)1 

𝑏2 
Proportion of mosquitoes’ bites directed to the 

competent avian species during late season (day-1) 
0.2203 (0.0131-0.4834)1 

𝑝 Competence of the competent avian population (day-1) 0.6191 (0.08-0.9841)1 

𝑝𝑀𝐵 Susceptibility of the competent avian population (day-1) 0.7752 (0.3543-0.9948)1 

𝜈𝐵  Recovery rate (day-1) 0.3792 (0.0401-0.9253)1 

1 MCMC estimate 

Among unknown epidemiological parameters a correlation lower than 0.5 was observed 

between all parameters, except between bird susceptibility (𝑝𝑀𝐵) and biting rate during 

late season (𝑏2) that show a correlation of 0.71. 
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Transmission maintenance during season 

Model simulations showed that the spread probability of WNV in the mosquito 

population during summer (Rt>1) is about 0.7 in May, increases up to 1 in June and then 

decreases passing from 0.94 in July to less than 0.02 in October (Fig.2).  

 

Figure 2: Rt estimates. Spread probability of WNV into the mosquito population during 

summer season. 

 

Unknown epidemiological parameters effect on 𝑹𝒕estimate 

All the investigated epidemiological parameters affect the relative 𝑅𝑡 estimate 

consistently with the formula applied for the Rt estimate. In detail, avian recovery rate 

(𝜈𝐵, Fig.3 top-left box) is the most impacting parameter, dramatically decreasing 𝑅𝑡 at 

higher values (i.e., shorter infectious period), with 90 and 50% decreased estimate 

causing respectively a 10-fold and 100% increase in 𝜈𝐵 estimate. The effect of parameter 

increase tends to lower if we increase parameter estimate, with 50 and 100% increased 

estimates causing respectively a 33 and 50% decrease in 𝜈𝐵. Mosquito biting rate (𝑏, Fig.3 
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bottom-right box) is very influential as well, decreasing 𝑅𝑡at decreased biting rates and 

increasing it at higher ones. Indeed a 50% decreased parameter estimate cause a 75% 

decrease of 𝑅_𝑡  and 50% increased parameter estimate a 125% increase of 𝑏 Both 

recovery and biting rates have a non-linear effect on 𝑅𝑡 estimate, with an enhanced effect 

for low recovery rates and high biting rates. Bird susceptibility to infection (𝑝𝑀𝐵, Fig.3 

bottom-left) and bird competence (𝑝, Fig.3 top-right) instead show the smallest effect on 

𝑅𝑡range, moreover their effect is linear.  

Figure 3: Sensitivity analysis on Rt. Effect on the relative Rt of changes bird recovery rate 

(𝜈𝐵), mosquito biting rate (b), bird susceptibility to infection (𝑝𝑀𝐵), bird competence to 

infection (𝑝), bird recovery rate (𝜈𝐵). 

The effect of a parameter estimate change on the probability of spread and maintenance 

of WNV during summer season (Fig.4), we can observe that regardless of the change 

carried out, the month with highest probability of WNV to spread is June, followed by 

July, while October remains a less suitable period for WNV circulation. The effect of a 
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change in parameter estimate on spread probability for WNV is very low in June, whereas 

is the highest in August/September regardless of the change in parameter estimate 

applied. A change in mosquito biting rate (𝑏 ) shows to highly affect spread probability, 

with the highest effect in July and September. Recovery rate (𝜈𝐵), while highly affecting 

𝑅𝑡 estimate, less impacts spread probability, especially for enhanced estimates of the 

parameter. Birds’ competence (𝑝), and susceptibility (𝑝𝑀𝐵) show similar results when 

decreased, whereas a reduction in avian competence (𝑝) shows a greater effect if 

compared with a reduction in avian susceptibility (𝑝𝑀𝐵).  
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Figure 4: WNV spread. WNV spread probability into mosquito population during summer 
season in dependence of the increase in recovery rate (𝝂𝑩), bird competence (𝒑), bird 
susceptibility (𝒑𝑴𝑩) and biting rate (𝒃) estimate. The greyscale shows from lighter to 
darker a change of parameter estimates of −𝟗𝟎%, −𝟓𝟎%, −𝟏𝟎%, +𝟏𝟎%,+𝟓𝟎%,+𝟏𝟎𝟎%. 
Red line represents the baseline.  

 

Temperature and host-vector ratio effect on 𝑅𝑡 (Fig.5) 

As expected, 𝑅𝑡 varies accordingly to temperature. Different vector-host ratios (
𝑀𝑆

𝑁𝐵
) show 

to strongly impact 𝑅𝑡, but do not change the trend of the effect of temperature on its 

estimate. For all tested vector-host ratios, 𝑅𝑡 is always lower than one for temperatures 

below 14°C. For 
𝑀𝑆

𝑁𝐵
= 10′000, and then it fast increases from 0 to 1 at 14.4 °C (long 

dashed line). Decreasing the vector-host ratio instead, the increase is less sharp and a 

spread probability of 1 is reached at 15.4°C and 19.8 respectively for 
𝑀𝑆

𝑁𝐵
= 1′000 and 
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𝑀𝑆

𝑁𝐵
= 100 (dashed and dotted line). With a vector host ratio of 10 instead (solid line), we 

can not reach a spread probability of 1, and the maximum probability is 0.43, reached for 

temperatures ranging in 27.1 and 28.4°C.  

 

Figure 5: Effect of temperature on R0. R0 as a function of temperature (10-30°C). 

 
𝑴

𝑩
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Discussion 

With the present study we identified which of the WNV transmission mechanisms are 

those having the biggest effect on disease spread, thus highlighting our potential 

priorities in filling current knowledge gaps. We showed that the duration of infectious 

period in birds (𝜈𝐵) and the mosquito biting rate (𝑏) have the biggest effect on disease 

dynamics, whereas birds’ susceptibility to infection (𝑝𝑀𝐵) and birds’ competence (𝑝) 

showed a lower effect. Moreover, in agreement with [36], temperature is shown to highly 

affect spread probability, not allowing for any WNV spread if it is lower than 14°C. 

Lombardy region, our study area, shows all suitable characteristics to allow WNV spread 

during summer, especially in June where the environmental conditions seem to ensure 

the possibility of NWV to spread in mosquitoes.  

Despite the progresses in health cares and preventive measures, the intervention to 

control the spread of infectious communicable diseases remains one of the main goals 

for public health [37,38], but this goal is often impaired by the lack of information and 

certainties about mechanisms driving infection transmission dynamics [17,39]. 

Mathematical modelling can be an efficient tool to aid in investigating infection dynamics 

and transmission mechanisms (e.g. [40] and [41]), but the adoption of this approach 

requires robust parameter estimates to be reliable and thus has often been hampered by 

existing limitations due to inadequate or partial data availability. If on the one hand the 

development of field investigations is fundamental to enhance our comprehension of 

spreading mechanisms, on the other hand it can be very long and demanding, making 

essential a careful choice of the most useful investigations to be performed. Moreover, 
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not all epidemiological mechanisms have the same impact on disease dynamics, and, 

consequently, also a small change in some model parameter estimate can cause a big 

variation in model predictions, and vice-versa [42]. Therefore, before developing any field 

study to focus on, it can be helpful to identify those parameters that have the biggest 

impact on the dynamic of the infection.  

WNV is now considered one of the most widespread arboviruses in the world, with 

human cases identified worldwide [43]. Despite that, there are several mechanisms, that 

contribute to its spread and maintenance into wild populations, that are still unknown 

[17]. Many species are considered suitable as hosts or vectors, thus possibly giving 

different contributions to infection dynamics depending on individual and species-

specific characteristics [16,18,22,44]. Moreover, the variety of involved species, the 

regional patterns shown by virus transmission cycles, and the existing differences in avian 

communities’ composition among areas [12,19,45] further contribute to increase the 

sources of variability in infection dynamics, thus making hard and expensive the collection 

of field data required to fill knowledge gaps. Indeed, antibodies against WNV has been 

detected in a broad range of wild and domestic bird species all over the world, and virus 

isolation have been obtained from different avian species [12]. Not only, also viraemic 

titres developed by different birds have shown to strongly depend on both the host 

species and virus lineage [15,16,18,19]. Also, mosquito feeding behaviour can change 

among areas and mosquito species, depending on both host abundance and mosquito 

feeding preference [33,46,47]. All these characteristics are suitable to drive, or have an 

influence on, WNV spread. 



 

 

43 

In this context the present work aims at investigating how a change in WNV 

epidemiological parameter estimate can affect the spread of the disease. At first, we 

highlighted the importance of birds’ recovery rate in driving WNV spread, showing that a 

change in this parameter estimate, especially if we consider low recovery rates (i.e., long 

infectious period duration), widely affects the effective reproduction number of the 

infection 𝑅𝑡 (i.e. the number of secondary infected mosquitoes in a given day). A change 

in bird recovery rate estimate, despite highly affecting estimated number of infected 

mosquitoes, shows to affect the spread probability only when lowering it, evidencing the 

importance of having long durations of infectious period to allow for infection spread. 

These results on the one hand highlight the need of a careful estimate of species-specific 

recovery rates to obtain a reliable estimate of WNV probability and intensity of spreading, 

on the other hand point out the need of comparing species-specific rates to determine 

which of the investigated avian species plays the major role in spreading the infection. 

According to model simulations, also mosquito biting rate can widely affect WNV 𝑅𝑡, also 

influencing the probability of the infection to spread during summer. The interaction 

between birds and mosquitoes is known to play a central role in disease spread [48], 

moreover it is shown that mosquitoes can selectively choose where to feed on, preferring 

specific species to others [33,49]. According to our results, since the effect of biting rate 

estimate is quite substantial, and particularly high when increasing biting rate estimate, 

we can conclude that understanding which conditions and species-specific characteristics 

drive the probability of being bitten is critical to fully understand and predict the spread 

of WNV. In addition, this result again helps us to identify those avian species that are 

suitable to play an important role in WNV transmission, such as those highly bitten or 
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preferred by mosquitoes. Furthermore, by pointing out the role of mosquito biting rate 

in infection spread, this result highlights the importance of investigating the extent to 

which mosquitoes actively choose which species to feed on, and the extent to which the 

biting rate is driven by species abundance. For example, in northern Italy blackbirds are 

frequently bitten by mosquitoes, even if they are less abundant than other species [33]. 

This finding, coupled with the high number of blackbirds individuals living in the area, 

could suggest their role in the spread of WNV. Being aware of which avian species are 

primarily involved in the spread of infection would help us to fill some of the current 

knowledge gaps and improve our understanding of WND but would also allow us to 

efficiently estimate and predict the risk of infection for human beings, and consequently 

to develop appropriate intervention strategies to reduce it.  

The avian competence, despite the high species-specific differences reported [16], seems 

to have a lower impact on the spread of the infection. It is assumed that to be capable of 

infecting mosquitoes (Cx. Pipiens), birds need to develop viraemic titres greater than 105 

PFU/mL [5], but the collection of this information can be logistically demanding and hard 

to perform for wild birds. Moreover, experimental infections might not successfully 

mimic the natural infection occurring in wildlife, as mosquito inoculations can result in a 

higher viremia than needle injections [50]. Consequently, the efforts required for the 

estimate of bird competence may be greater than the benefit obtained.  

As WNV antibodies have been detected in several birds belonging to different species, a 

number of bird species may be considered susceptible to WNV infection. The bird 

surveillance, ongoing in several countries, can therefore be widely useful to help us 

recognise between susceptible and potentially not susceptible avian species. Despite of 
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that, our analysis showed that the sole susceptibility of birds to WNV infection has a small 

effect on both the number of secondary infected mosquitoes and probability of spread 

of the disease. It implicates that, despite being informative on the possible circulation of 

WNV in the avian population, the investigation of the WNV-positivity of birds cannot be 

considered one of the most influential parameters.  

Furthermore, this work supports the hypothesis that temperature and competent 

mosquito presence are limiting factors for WNV spread [36,51]. Indeed, according to 

model simulations, the 𝑅𝑡 of the infection changes following a change in temperature 

and in the vector-host ratio. Despite that, the effect of all epidemiological parameter 

estimate does not change according to temperature and vector-host ratio, making our 

findings generalizable and extendible to areas other the one under testing. It is also 

important to notice that in our study area, temperatures and recorded mosquito 

densities always allow for WNV spread, highlighting the high human infection risk in this 

area. Moreover, simulating the dynamics of WNV, our model shows that very few 

infectious mosquitoes are enough to start and maintain WNV circulation during the 

season and a low number of birds is necessary to maintain the infection at the beginning 

of the season, implying that, to be able to early detect the infection, the testing of a large 

number of mosquitoes and birds is required. It follows that the entomological 

surveillance, allowing the fast and easier collection of numerous samples, is likely to be 

more informative to early detect WNV then the surveillance on birds. Moreover, due to 

the low birds and mosquitoes’ numbers necessary to maintain the infection, and 

considering the long flying distance of birds, a surveillance plan could be beneficial also 
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in not endemic areas with suitable climatic conditions to early detect WNV introduction 

in new areas.  

It is necessary to note that one limitation of the present model is the assumption of 

having only one competent avian species. Despite of this oversimplification, which could 

be overcome by future studies, this modelling approach have a proven ability to simulate 

and investigate WNV spread in nearby regions (i.e., Veneto and Emilia Romagna), 

suggesting its reliability despite its limitations [23,25].  

In conclusion, WNV transmission and maintenance mechanisms still presents several 

knowledge gaps, thus impairing our capability of understanding and predicting its spread. 

Among them, duration of avian infectious period and mosquito biting rate are the most 

impacting on the number of secondary infected mosquitoes and on spread probability. 

These two mechanisms are thus the most urgent parameters to be fully studied, and their 

investigation could also be of aid in determining the avian species that plays the main role 

in WNV spread and maintenance. Furthermore, temperature and mosquitos’ number can 

be limiting factors for WNV spread and areas with suitable conditions require the design 

of an efficient surveillance plan to keep disease spread under control. Finally, our results, 

obtained through mathematical model simulations, highlight how a synergic interaction 

among theoretical and field research, could be beneficial for a better comprehension of 

infectious disease spreading mechanisms by allowing the formulation of hypotheses to 

identify the most appropriate data required to cover knowledge gaps. 
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Supplementary materials S2 

Clustering of trap locations 

The clustering of trap locations was performed using a K-means algorithm accounting 

for differences in temperature, precipitations, mosquito abundance and WNV 

circulation among trap locations, and it showed a wide variability among trap locations. 

For this reason, we based our clustering on a geographical division of the region by 

clustering together northern traps, eastern traps, and western traps. 

Epidemiological-model Structure 

According with the scheme reported in Fig.A we simulated WNV spread into Lombardy 

region through the following system of differential equations:  

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑀′

𝑆(𝑡) = 𝜔(𝑡) − (𝑏 ∙ 𝑝 ∙ 𝑝𝐵𝑀 ∙
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𝐵′𝐸𝑎(𝑡) = 𝑏 ∙ 𝑝𝑀𝐵∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
∙ 𝐵𝑆𝑎(𝑡) − (𝜇𝐵 + 𝜃𝐵) ∙ 𝐵𝐸𝑎

𝐵′𝐼𝑎(𝑡) = 𝜃𝐵 ∙ 𝐵𝐸𝑎 − (𝜇𝐵 + 𝜎𝐵) ∙ 𝐵𝐼𝑎
𝐵′𝑅𝑎(𝑡) = 𝜎𝐵 ∙ 𝐵𝐼𝑎 − 𝜇𝐵 ∙ 𝐵𝑅𝑎

𝐵′𝑆𝑗(𝑡) = 𝛾 ∙ 𝐵𝑎(𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
+ 𝜇𝐵𝑗) ∙ 𝐵𝑆𝑗(𝑡)

𝐵′𝐸𝑗(𝑡) = 𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
∙ 𝐵𝑆𝑗(𝑡) − (𝜇𝐵𝑗 + 𝜃𝐵) ∙ 𝐵𝐸𝑗

𝐵′𝐼𝑗(𝑡) = 𝜃𝐵 ∙ 𝐵𝐸𝑗 − (𝜇𝐵𝑗 + 𝜎𝐵) ∙ 𝐵𝐼𝑗
𝐵′𝑅𝑗(𝑡) = 𝜎𝐵 ∙ 𝐵𝐼𝑗 − 𝜇𝐵𝑗 ∙ 𝐵𝑅𝑗

 

 

In the proposed system 𝑀𝑆, 𝑀𝐸  and 𝑀𝐼 respectively represent the susceptible, exposed 

and infectious mosquito population, whereas 𝐵𝑆𝑎, 𝐵𝐸𝑎, 𝐵𝐼𝑎 and 𝐵𝑅𝑎 susceptible, 
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exposed, infectious and recovered competent adult birds and 𝐵𝑆𝑗, 𝐵𝐸𝑗, 𝐵𝐼𝑗 and 𝐵𝑅𝑗 

susceptible, exposed infectious and recovered competent juvenile birds. 𝐵𝑇 and 𝐵𝑎 

represent the total avian population and the total adult avian population respectively. 

 

Figure A: Model scheme. Model flow chart for WNV transmission in birds (squares) and 

mosquitoes (circles) in an average trapped area. Compartments: 𝑩𝑺𝒂, 𝑩𝑬𝒂, 𝑩𝑰𝒂 and (𝑩𝑺𝒋, 

𝑩𝑬𝒋, 𝑩𝑰𝒋 and 𝑩𝑹𝒋): adult (juvenile) susceptible, exposed, infectious and immune birds; Ms, 

Me, Mi: susceptible, exposed and infectious mosquitoes. Parameters: λB and λM are the 

force of infection for birds and mosquitoes respectively and are computed as 𝝀𝑩 = 𝒃 ∙

𝒑 ∙ 𝒑𝑴𝑩 ∙
𝑴𝑰

𝑩𝑻
 and 𝝀𝑴 = 𝒃 ∙ 𝒑𝑩𝑴 ∙

(𝑩𝑰𝒂+𝑩𝑰𝒋)

𝑩𝑻
 , with BT being the total avian population and Ba 

the number of adult birds.  
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Table A: Model parameters.  

Parameter Explanation Value Source 

𝜇𝑀 Mosquito death rate (day-1) 4.61

151.6−4.75∙𝑇
* [1,2] 

𝑝𝐵𝑀 Probability of WNV transmission from bird 

to mosquito per infectious bite 

𝑒(−10.917+0.365∙𝑇)

1+𝑒(−10.917+0.365∙𝑇)
* [3] 

𝜃𝑀 Extrinsic incubation period (day-1) -0.132+0.0092 [4] 

𝜃𝐵  Intrinsic incubation period (day-1) 0.5 [5] 

𝛾(𝑡) Avian fertility rate ad day t (day-1) 0.5 (t ≤ July 20) 

0 (t > July 20) 

[6] 

𝜇𝐵  Death rate of adult birds (day-1) 0.0015 [6] 

𝜇𝐵𝑗  Death rate of juvenile birds (day-1) 0.0083 [6] 

* T represents temperature expressed in Celsius degrees C° 
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Additional results 

- Model fit 

The model fit was quite satisfactory as 92% of the total (considering all years and clusters) 

number of weekly positive pools lies within the 95% CI predictions of the model (Fig.B).  

Figure B: Model predictions fit. Predicted number of WNV positive pools for the three years 

(first line for 2016, second line for 2017 and third line for 2018) and the two areas. Orange 

points: observed weekly number of WNV positive pools; grey boxplots (median, 2.5 and 

97.5% quantiles) show the predicted distributions of positive pools per week.  
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- WNV spread and prevalence  

We investigated WNV prevalence into mosquito (Fig.C) and birds (Fig.D) in Lombardy 

region, according with model assumptions. Model simulations predict a low prevalence 

of WNV for the mosquito population in all years and clusters, never exceeding a daily 

mean prevalence of 0.231%. In all years and clusters, the lowest prevalence is shown up 

to July, then we can see its increase, a peak in early/late August and a slight decrease and 

stabilization. The increase and decrease slope and the timing for prevalence peak both 

depends on the year and cluster considered. The lowest WNV circulation was predicted 

for the western cluster in 2018, with a mean prevalence 0.053%,(0 −  0.301% 𝐶𝐼), 

whereas the highest was predicted in the eastern cluster in 2018, with a mean prevalence 

of 0.231% (0.003 −  0.99% 𝐶𝐼).  

On the other hand, avian prevalence is higher, reaching a daily mean 8.38% (0.003 −

 35.5% 𝐶𝐼). It increases between June and July, reaching the maximum between July and 

August and then slowly decreasing up to October. All confidence intervals are estimates 

as the 2.5 − 97.5 quantiles. 
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Figure C: Model predictions. Predicted WNV prevalence in mosquitoes in clusters and 

years.  

 

 
Figure D: Model predictions. Predicted WNV prevalence in the competent avian 

population (magpies) in clusters and years.  

 



 

 

CHAPTER 3 

Can different population dynamics of 

competent bird species characterize West Nile 

virus spread? A mathematical modelling 

investigation.  
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Introduction 

West Nile Virus (WNV) is one of the most widespread arboviruses in the world and is the 

cause of West Nile disease (WND). It is maintained in an enzootic cycle involving 

mosquitoes (mainly of the genus Culex) and birds [1,2]. Human beings, as other 

mammals, can act as dead-end hosts and be infected via mosquito bite, developing 

symptoms that can range from influenza-like syndrome to severe neurological disease 

[3,4]. To control infection spread and avoid human infection risk, several studies have 

been carried out and a wide surveillance on mosquitoes and birds is currently ongoing in 

different countries, Italy included [5–7]. These efforts in monitoring the infection and in 

collecting information about spreading mechanisms and dynamics widely improved our 

awareness on the disease, but knowledge gaps persist [8]. As WNV involves several bird 

species, and the comprehension of multi-host systems is challenging, the role played by 

specific bird species potentially involved in the spread or maintenance of the infection 

still deserves a thorough attention [2,9–12]. In fact, WNV has been detected in more than 

200 bird species in the Americas alone. Ecological and behavioural characteristics, like 

altitude and temperature of a specific species’ ecological niche, and particular 

epidemiological characteristics, like competence and susceptibility to infection, make 

each species more or less likely to be responsible of infection spread [13,14]. Also, 

differences in birds’ reaction to WNV infection, like disease-induced mortality, have been 

pointed among different species and countries [15]. Not only birds’ reaction to infection 

changes among different species and countries, but also the composition of avian 

communities, in terms of species presence as well as their absolute and relative 
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abundance, can be very different among countries and areas [16]. All these features 

characterize the complexity of WNV dynamics, involving the overall avian community 

[12,17–19], making it hard to be investigated and comprehended. Given the complexity 

of the scenario, on the one hand it is fundamental to carry on field investigations and 

surveillance, acquiring new and more complete data to investigate the role of different 

bird species. On the other hand, a preventive identification of the main WNV reservoir 

hosts could help in circumscribing investigations. Although a different role of adult and 

juvenile birds in WNV infection dynamics has been hypothesized [20], bird population 

dynamics has not raised the principal attention as a discriminating factor in infection 

spread. Indeed, bird species present different biological features such as length of 

breeding season, survival, fecundity (i.e., number of offspring), thus having very different 

population dynamics during summer with a potential effect on WNV dynamics. For this 

reason, in the present work we investigate those demographic characteristics of the avian 

population, beyond the epidemiological ones, that might influence WNV infection. Based 

on our study area (Lombardy region in the north of Italy), we chose five different avian 

species, susceptible for WNV infection, that have different abundances and population 

dynamics during summer season (e.g., different length of breeding season, different 

number of new births per year or different life expectancies). Then, through a 

mathematical model, we investigated the influence of population dynamics traits on 

WNV mosquito prevalence, by considering each of them separately as the only WNV-

competent avian species. We assumed different demographical features between 

species but, for the sake of simplicity, identical epidemiological parameters. Moreover, 

we also simulated the dynamics of WNV for three additional hypothetical scenarios. At 
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first, by considering the same avian species abundance at the beginning of the year, we 

investigated if and how differences in the only population dynamics can affect WNV 

spread. In the two successive scenarios, while considering fixed also birth and death rates, 

we varied respectively the initial month and the length of the breeding season.  
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Materials and Methods 

The modelling framework follows the one proposed in [21], and then adapted to simulate 

WNV spread in Lombardy region (Chapter 2). In the proposed model we simulate WNV 

spread into a mosquito population, included as a Susceptible-Exposed-Infectious model, 

and a competent avian host population, included as a Susceptible-Exposed-Infectious-

Recovered model, where birds are divided in two age-class (adults and juveniles). We 

considered as the competent host species five different bird species, and simulated WNV 

spread to investigate the possible effect of the specie-specific population dynamics on 

disease spread. Avian species included in model simulations are:  

- Magpies (Pica pica) 

- House sparrows (Passer italiae) 

- Blackbird (Turdus merula) 

- Hooded crow (Corvus cornix) 

- Eurasian collared dove (Streptopelia decaocto)  

Dataset and reference system 

In analogy with ([21] and Chapter 2), to inform the proposed model we used data on 

mosquito abundance and their PCR-positivity to WNV gathered by Regione Lombardia 

(RL) and Istituto Zooprofilattico della Lombardia ed Emilia Romagna (IZSLER) under the 

entomological surveillance plan, carried out from April to October during the triennium 

2016-2018.  

The number of birds present in an averaged trapping area A was estimated for each 

species at the beginning of May by fitting the data obtained by the avifauna census 
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provided by Regione Lombardia with a kriging method (autoKrige function in package 

automap in R 3.6.3 software), with A=π∙r2, where r is the average Cx. pipiens flight range 

(500m) [22,23]. The initial number of birds in each cluster was calculated as the average 

number estimated by the kriging method for the cluster and was considered the same 

for all the three years under study.  

Following the clustering proposed in Chapter 2, the region was divided into three 

separated clusters homogeneous for temperature, precipitations, number of mosquitoes 

and WNV presence (Fig.1). Due to the absence of WNV in the northern cluster, we only 

investigated infection dynamics through the eastern and western ones (green and blue, 

Fig.1)  
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Figure 1: capture site clustering proposed for Lombardy region. Black squares, circles 

and triangles represent mosquito capture site respectively for 2016, 2017 and 2018. 
 

The epidemiological model 

An epidemiological model was built following the framework proposed in Chapter 2 to 

simulate the dynamics of WNV infection in a competent avian population in the study 

area (Chapter 2). The epidemiological model is based on a system of 11 equations 

following the scheme reported in Fig.2. Three of the compartments represent a mosquito 

population divided in susceptible (MS), exposed (ME) and infected mosquitoes (MI). Eight 

of them represents a competent adult avian population divided in adult and juvenile 
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individuals divided in turn in susceptible (BSa and BSj), exposed (BEa and BEj), infectious (BIa 

and BIj) and recovered (BRa and BRj) birds. Both birds and mosquito dynamics are included 

as a known function derived respectively by two mathematical models: i) the avian 

population model ii) and the entomological model. The mosquito population abundance 

derived from the entomological model, as well as all unknown parameters values (for 

both entomological and epidemiological model), were taken from the work proposed in 

Chapter 2. Since mosquito feeding behaviour, and thus in the biting rate (𝑏), might 

change from the early season (up to mid-July) to late season (from mid-July on) [24], two 

biting rates were considered, respectively 𝑏1 for the early season and 𝑏2 for the late 

season [25]. 

In analogy with Chapters 2 and 4 thus, and to consider the encountered differences in 

mosquito abundance among years and cluster, WNV mosquito prevalence was estimated 

for each year (2016-2018) and cluster (western and eastern).  
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Figure 2. Flowchart for WNV transmission model.  

The entomological model 

The number of mosquitoes (Cx. Pipiens) to be included in model simulations was 

estimated through a four-compartment model representing mosquito developmental 

stages following the temperature-dependent entomological model presented in [21] and 

were calibrated on the recorded captures in Lombardy region in 2016, 2017 and 2018, 

averaged over each cluster, as presented in Chapter 2. 

The avian population model 

Due to the absence of field data and longitudinal observation on the number of adult and 

juvenile birds during summer season, we simulate a population dynamics of each species 

estimating the daily number of birds of three age classes through a three-compartmental 

model following the scheme reported in Fig.3. Such obtained dynamics were then used 

to estimate the daily adult and juvenile bird abundance to include in the epidemiological 

model as a known function.  
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The four compartments represent birds’ developmental stages (pulli P, juveniles J, sub-

adults S, adults A) and were chosen due to the marked existing differences of life 

expectancy of each developmental stage found in literature. Population dynamics of each 

species were estimated by using parameter estimates found in literature (a full table of 

parameters and references is reported in Tables A in Supplementary materials S3), 

adjusted in order to choose the most suitable set of parameters that keeps constant the 

avian population between two consequent years. In the proposed model, only adult birds 

are assumed to lay eggs with a specie-specific birth rate (b) depending on the mean 

number of eggs laid during each brooding and the mean number of broodings, and only 

during their breeding period. We considered one breeding season per year, with species-

dependent length and timing. The number of pulli (P compartment) increases following 

the number of laid eggs, adjusted for the hatching probability. The number of juveniles 

and subadults was considered to vary following rates 𝑔1 and 𝑔2 respectively, which 

represent the inverse of the time spent in each age-class. All developmental stages die at 

a stage-specific death rate. We considered sub-adults as fully developed birds, but not 

sexually mature, thus they have the same death rate as adult birds, but do not participate 

in giving birth to new individuals. An environmental carrying capacity (K), depending on 

the mean number of birds reported in the area in literature, was considered to limit the 

number of juvenile birds. The complete system of equation is reported in Supplementary 

materials S3. All model parameters are considered species dependent.  
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Figure 3: Flowchart of population dynamics of birds. Compartments: adults (A), pulli (P), 

juveniles (J) and subadults (S). Parameters: µ (A, P, J, S) is the death rate; b*A is the birth 

rate multiplied by the number of adults; g (1, 2) are the growth rates for nestlings and 

juveniles respectively. For the sake of simplicity, to have no more than 11 differential 

equations, in the epidemiological model the simulated dynamics was included by 

considering as the daily number of juvenile birds the sum of the daily number of pulli, 

juveniles and sub-adult birds. The daily number of adults birds in both the epidemiological 

and the avian population coincide. 
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Simulated scenarios 

To investigate if species specific population dynamics affect WNV circulation, and which 

demographic characteristics have the highest influence, we proposed four different 

scenarios and then simulate WNV dynamics by using the five different population 

dynamics obtained with the ‘avian population model’. Epidemiological parameter values 

were obtained from the work proposed in Chapter 2. The four proposed scenarios are: 

1. “base” scenario: we considered the number of birds estimated from the bird 

census as the initial number of individuals for each species, and the species-specific 

parameters obtained by the avian population model to simulate birds, and 

consequently WNV, dynamics. Demographic parameters are reported in Table 1. 
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Table 1. Demographic daily rates used for epidemiological simulations in the base 

scenario. 

Parameters Blackbirds Magpies 
House 

sparrows 
Collared 

doves 
Hooded 
crows 

Initial number of 
birds 

7 5 16 9 15 

Breeding season 75a-165b 133a-157b 75a-213b 61a-245b 110a-161b 

Birth rate 𝑏 0.0344 0.0482 0.0522 0.0111 0.0576 

Adults’ death 
rate 𝑑𝐴 

3.1276∙ 10−6 1.8764∙ 10−6 1.2511∙ 10−6 1.8766∙ 10−6 1.8768∙ 10−6 

Sub-adults’ death 
rate 𝑑𝑆𝐴 

3.1276∙ 10−6 1.8764∙ 10−6 1.2511∙ 10−6 1.8766∙ 10−6 1.8768∙ 10−6 

Pulli death rate 
𝑑𝑃 

0.0194 0.0114 0.0146 0.0210 0.035 

Juveniles’ death 
rates 𝑑𝐽  

0. 0.0128 0.0124 0.0181 0.018 0.0144 

Growth rate pulli-
juveniles 𝑔1 

0.0654 0.0521 0.0655 0.0575 0.0594 

Growth rate 
juveniles-sub 

adults 𝑔2 
0.0244 0.0311 0.03444 0.063 0.0274 

a start of the breeding season (Julian days) 
b end of the breeding season (Julian days) 
 

2. “fixed initial number of birds” scenario: to investigate the effect of demographic 

parameters on WNV prevalence in mosquitoes, we assumed all five bird species to 

start the season with the same number of individuals (i.e., 7 birds). Birth and death 

rates for each simulation were estimated from House sparrow rates. It is important 

to notice that, analogously as for the base model, for each bird species, all 

demographic rates were adjusted in order to obtain at the end of a one-year 

simulation a number of adult birds ranging into the 10% of the number of birds used 

for starting the simulation at the beginning of the year. For this reason, demographic 

parameters may differ among species, despite them all start from the same rates used 

for simulating the dynamics of house sparrow in the base model. Demographic 

parameters are reported in Table 2. 



 

 

70 

 
Table 2. Demographic daily rates used for epidemiological simulations in the fixed initial 
number of birds scenario. 

 

Parameters Blackbirds Magpies 
House 

sparrows 
Collared 

doves 
Hooded crows 

Initial number of 
birds 

7 7 7 7 7 

Breeding season 75a-165b 133a-157b 75a-213b 61a-245b 110a-161b 

Birth rate 𝑏 0.0379 0.0587 0.0348 0.0073 0.0425 

Adults’ death rate 
𝑑𝐴 

3.1278∙10-6 1.8761∙10-6 1.2511 ∙10-6 1.8766∙10-6 1.8765∙10-6 

Sub-adults’ death 
rate 𝑑𝑆𝐴 

3.1278∙10-6 1.8761∙10-6 1.2511∙10-6 1.8766∙10-6 1.8765∙10-6 

Pulli death rate 𝑑𝑃 0.0164 0.0141 0.0113 0.02 0.0504 

Juveniles’ death 
rates 𝑑𝐽  

0.0168 0.0141 0.0221 0.0148 0.0160 

Growth rate pulli-
juveniles 𝑔1 

0.0627 0.0522 0.0573 0.0615 0.0618 

Growth rate 
juveniles- sub 

adults 𝑔2 
0.0321 0.0354 0.042 0.0519 0.0305 

a start of the breeding season (Julian days) 
b end of the breeding season (Julian days) 
 

3. “Shift of breeding season” scenario: to investigate if different breeding periods can 

affect WNV transmission, we considered only one avian species with house sparrows’ 

birth and death rates and varied only the initial month of the breeding season. Also, 

in this scenario the initial number of birds was fixed. Again, all birth and death rates 

were estimated starting from house sparrow’s parameters, adjusted for each species 

to obtain at the end of one-year simulations a bird abundance of ±10% of the number 

of birds used for starting the simulation. Demographic parameters are reported in 

Table 3.  
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Table 3. Demographic daily rates used for epidemiological simulations used in the shift of 
breeding season scenario. 

 

Parameters March April June July 

Initial number of birds 7 7 7 7 

Breeding season 60a-90b 90a-120b 120a-150b 150a-180b 

Birth rate 𝑏 0.1208 0.1244 0.1478 0.1634 

Adults’ death rate 𝑑𝐴 3.1277∙10-6 3.1279∙10-6 3.1275∙10-6 3.1270∙10-6 

Sub-adults’ death rate 𝑑𝑆𝐴 3.1277∙10-6 3.1279∙10-6 3.1275∙10-6 3.127∙10-6 

Pulli death rate 𝑑𝑃 0.0196 0.0216 0.019 0.0333 

Juveniles’ death rates 𝑑𝐽  0.0133 0.0187 0.0128 0.0129 

Growth rate pulli-juveniles 
𝑔1 

0.0575 0.0899 0.0753 0.09 

Growth rate Juveniles- sub 
adults 𝑔2 

0.0254 0.0357 0.0243 0.0247 

a start of the breeding season (Julian days) 
b end of the breeding season (Julian days) 

4. “Different lengths of breeding season” scenario: to investigate if different lengths 

of breeding periods can affect WNV spread, we considered only one avian species 

and varied only the length of the breeding season, assumed to start on March 1. 

Again, in this scenario the initial number of birds was fixed (7 individuals) and for each 

bird species, birth and death rates were based on house sparrow parameters and 

adjusted to obtain at the end of one-year simulations a number of adult birds ranging 

into ±10% of the number of birds at the beginning of the year. Demographic 

parameters are reported in Table 4.  
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Table 4. Demographic daily rates used for epidemiological simulations used in the 
Different lengths of breeding season scenario. 

 

Parameters 1 month 2 months 3 months 4 months 

Initial number of birds 7 7 7 7 

Breeding season 60a-90b 60a-120b 60a-150b 60a-180b 

Birth rate 𝑏 0.0386 0.245 0.1062 0.081 

Adults’ death rate 𝑑𝐴 3.1274∙10-6 3.1276∙10-6 3.1279∙10-6 3.1278∙10-6 

Sub-adults’ death rate 
𝑑𝑆𝐴 

3.1274∙10-6 3.1276∙10-6 3.1279∙10-6 3.1278∙10-6 

Pulli death rate 𝑑𝑃 0.0233 0.02 0.021 0.0245 

Juveniles’ death rates 𝑑𝐽  0.0155 0.016 0.0136 0.0187 

Growth rate pulli-
juveniles 𝑔1 

0.0698 0.0779 0.0818 0.0673 

Growth rate juveniles-
sub adults 𝑔2 

0.0295 0.0305 0.0259 0.0356 

a start of the breeding season (Julian days) 
b end of the breeding season (Julian days) 

Epidemiological parameter values were obtained from the work proposed in Chapter 2. 

Briefly, unknown epidemiological parameters of a competent avian species were 

estimated through a Bayesian approach considering the likelihood of observing the 

weekly number of positive pools given the predicted mosquito prevalence.  

For each of the proposed scenarios, in analogy with Chapter 2, 100 different set of 

epidemiological parameters, drawn from the estimated posterior distributions, were 

used. Thus, for the sake of simplicity, we used the same epidemiological parameters for 

all considered scenarios. The full list of epidemiological parameters (average and 2.5%-

97.5% percentile) used is reported in Table 5.  
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Table 5. Daily rates of epidemiological parameters used for simulations. T represents 

the mean daily temperature. 

Parameter Biological interpretation Value 

𝑏1 
Mosquito biting rate during early season  

(91-200 Julian calendar day) 
0.373(0.159 − 0.496) a 

𝑏2 
Mosquito biting rate during late season  

(200-271 Julian calendar day) 
0.241(0.151 − 0.485) a 

𝑝 Avian competence 0.621 a 

𝑝𝑀𝐵 
Susceptibility of the competent avian 

population 
0.791(0.358 − 0.995) a 

𝑝𝐵𝑀 Susceptibility of the mosquito population 
𝑒(−10.197+0.365∙𝑇)

1+𝑒(−10.197+0.365∙𝑇)
b 

𝜃𝑀 Extrinsic incubation period 
1

0.0092∙𝑇−0.132
 c 

𝜃𝐵 Intrinsic incubation period 2d 

𝜈𝐵 Recovery rate 0.43(0.0425 − 0.982) a 

a MCMC estimate range (average and 2.5%-97.5% percentile)  
b [25] 
c [26] 
d [9] 

 

In each scenario, we evaluated how different avian population dynamics affect WNV 

mosquito prevalence, as it can be considered as representative of human infection risk.  
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Results 
 

The base-scenario 

- Birds’ dynamics (two-age classes model) 

Investigating differences among birds dynamics, and according with the abundance 

derived on census data, we can observe that magpies (Fig.4, red line), blackbirds (Fig.4, 

blue line) and hooded crows (Fig.4, purple line) have an early breeding season resulting 

in a peak of the total number of individuals occurring between June and July, whereas 

doves (Fig.4, green line) and house sparrows (Fig.4, orange line) abundances peak later, 

respectively in August and September. Among the five species investigated, house 

sparrows are the most abundant during the whole season, followed by hooded crows and 

doves and then by blackbirds and magpies.  

 
Figure 4: Birds dynamics. Comparison of birds’ dynamics using the base scenario 

parameters (red line magpies, green line doves, purple line blackbirds, blue line hooded 

crows and orange line house sparrows).  
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- WNV prevalence in mosquitoes  

Comparing the obtained WNV mosquito prevalence, we can observe slight differences 

between clusters and years. Moreover, the overall trend results similar for all bird species 

investigated within clusters and years. Generally, we can observe a low WNV circulation 

up to July/mid-July, which subsequently increases up to August/mid-August, and then 

slight decreases and stabilizes. Only in 2016, in the western cluster, the highest 

prevalence was predicted after August, in October. Despite the similar trend shown by 

assuming different avian species as the only competent one, we can observe in all clusters 

and years a significantly higher prevalence for magpies (Fig.5 red lines), followed by 

blackbirds (Fig.5 blue line), and then doves (Fig.5 green line) and hooded crows (Fig.5 

purple line). We can observe the lowest prevalence for house sparrows (Fig.5 orange 

line).  
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Figure 5: WNV predicted prevalence. WNV prevalence in mosquitoes considering five 

different competent bird species. Solid lines: average values; shaded regions: 95% 

confidence interval. Panels: A: mosquito WNV prevalence in western cluster in 2016, B: 

mosquito WNV prevalence in eastern cluster in 2016, C: mosquito WNV prevalence in 

western cluster in 2017, D: mosquito WNV prevalence in easter cluster in 2017, E: 

mosquito WNV prevalence in western cluster in 2018, F: mosquito WNV prevalence in 

eastern cluster in 2018. 
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The fixed initial number of birds -scenario  

- Birds dynamics 

In this scenario avian abundance is more homogeneous among different species. An 

earlier demographic peak is shown by magpies, hooded crows, and blackbirds (Fig.6, red, 

purple, and blue lines respectively) while house sparrows and doves (Fig.6, orange and 

green lines respectively) abundances peak later. Magpies, blackbirds, and house sparrow 

highest abundances are similar, but they are reached at different rates because of the 

different breeding season lengths.  

 

 

Figure 6: Birds dynamics. Comparison of birds’ dynamics using the fixed initial number of 

birds scenario parameters (red line magpies, green line doves, purple line blackbirds, blue 

line hooded crows and orange line house sparrows).   
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- WNV prevalence in mosquitoes  

The predicted trend for WNV prevalence in mosquitoes in clusters and years reflects the 

one predicted by the base scenario, with a low WNV circulation up to July/mid-July, a mild 

increase up to August/mid-August followed by a decrease and successive stabilization. 

Again in 2018 in the eastern cluster the peak is more marked. Avian prevalence is 

estimated to be quite similar between different species. Considering all clusters and 

years, the highest prevalence is obtained considering hooded crows and doves (Fig.7 

purple and green lines respectively) as the competent species, while an avian population 

consisting of house sparrows only results in the lowest (Fig.7 orange line). Differences 

among species are higher between July and September and tend to decrease during the 

second part of the season.  
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Figure 7: WNV predicted prevalence. WNV prevalence in mosquitoes considering five 

different competent bird species. Solid lines: average values; shaded regions: 95% 

confidence interval. Panels: A: mosquito WNV prevalence in western cluster in 2016, B: 

mosquito WNV prevalence in eastern cluster in 2016, C: mosquito WNV prevalence in 

western cluster in 2017, D: mosquito WNV prevalence in easter cluster in 2017, E: 

mosquito WNV prevalence in western cluster in 2018, F: mosquito WNV prevalence in 

eastern cluster in 2018. 
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The shift of breeding season scenario 

- Birds’ dynamics 

In this scenario, we can observe a shift in the peak of the estimated population 

abundance depending on the starting month of the breeding season. If the breeding 

season starts in March (Fig.8, red line), then the peak occurs in April and the estimated 

number of birds between May and October is the lowest. A breeding season starting in 

April (Fig.8, blue line) delays the peak to May with a higher number of birds up to July. 

Analogously a breeding season starting in May causes a peak in June and a breeding 

season starting in June in July (Fig.8, green and purple line respectively), and their overall 

abundance is similar.  

 

Figure 8: Birds dynamics. Comparison of birds’ dynamics using in the shift of breeding 

season scenario, where the red line represents an avian species with breeding season 

starting in May, blue line in April, green line in May and purple in June.  

 

- WNV prevalence in mosquitoes  

The predicted WNV prevalence has a similar trend between clusters and years, but also 

marked differences depending on the breeding season initial month. A season starting in 
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March and April (Fig.9 red and blue line respectively) results in the highest peak, and 

globally the highest prevalence. Conversely the prevalence is markedly lower if simulating 

a starting breeding season in May or June (Fig.9 green and purple line).  

 

Figure 9: WNV predicted prevalence. WNV prevalence in mosquitoes considering four 

different breeding seasons for birds (avian breeding season beginning in March, or in April, 

or in May, or in June). Solid lines: average values; shaded regions: 95% confidence interval. 

Panels: A: mosquito WNV prevalence in western cluster in 2016, B: mosquito WNV 

prevalence in eastern cluster in 2016, C: mosquito WNV prevalence in western cluster in 

2017, D: mosquito WNV prevalence in easter cluster in 2017, E: mosquito WNV prevalence 

in western cluster in 2018, F: mosquito WNV prevalence in eastern cluster in 2018.  
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The different lengths of breeding season scenario 

- Birds’ dynamics 

By simulating different lengths for the avian breeding season, we can observe a general 

slighter variation in the number of birds at peak, but more marked difference in daily bird 

abundance. In the case of one- and two-months breeding seasons (Fig.10 red and blue 

lines respectively) the largest abundance is predicted to occur before May, whereas 

three- and four-months breeding seasons (Fig.10 green and purple lines respectively) 

make it happen later, in June and July respectively. The longer is the reproductive season 

the milder is the peak, with an exception for 1- and 2-months lengths, where the second 

one shows a higher peak. The highest number of birds at peak is estimated when 

considering a two-months reproductive season, followed by a one month-long one and 

then the three month-long one. The four-month long season showed the lowest 

predicted number of birds.  
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Figure 10: Birds dynamics. Comparison of birds’ dynamics using in the different lengths 

of breeding season scenario, where the red line represents an avian species with one-

month, blue line two months, green line three months and purple four months breeding 

season.  

- WNV prevalence in mosquitoes  

The predicted WNV mosquito prevalence seems to slightly depend on the length of the 

breeding season, although we can observe similar trends between clusters and years 

when considering the same length. One and four month-long breeding seasons (Fig.11 

red and purple lines respectively) correspond to the highest prevalence in mosquitoes, 

with more marked peaks. Conversely, two and three month-long breeding seasons 

(Fig.11 blue and green lines respectively) result in a slightly lower mosquito prevalence.  
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Figure 11: WNV predicted prevalence. WNV prevalence in mosquitoes considering four 

different lengths of birds’ breeding season (one month, two months, three month and 

four-month breeding seasons). Solid lines: average values; shaded regions: 95% 

confidence interval. Panels: A: mosquito WNV prevalence in western cluster in 2016, B: 

mosquito WNV prevalence in eastern cluster in 2016, C: mosquito WNV prevalence in 

western cluster in 2017, D: mosquito WNV prevalence in easter cluster in 2017, E: 

mosquito WNV prevalence in western cluster in 2018, F: mosquito WNV prevalence in 

eastern cluster in 2018. 
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Discussion 

The present analyses show that avian abundance during summer (June-August) widely 

affects WNV mosquito prevalence. We showed that species-specific bird demographic 

characteristics influence the magnitude of WNV infection in mosquito, whereas do not 

affect its dynamics.  

The worldwide spread and emergence of WNV, highlights the increasing need of 

investigating its causes and mechanisms of spread. To protect human beings from 

infection by mosquitos’ bites, understanding and predicting WNV presence and 

prevalence in the vector population is fundamental to define efficient intervention 

strategies and reduce human infection risk. But WNV cycle involves different vector and 

host species, and transmission outcomes might change substantially both temporally and 

spatially due to the composition of hosts communities [2,9,11,12]. So far, while the 

influence of vectors on WNV dynamics has been extensively analysed, the contribution 

of avian hosts presents greater knowledge gaps. Epidemiological characteristics of each 

avian species are clearly involved in infection spread and can drive the potential of an 

avian species to be involved in WNV cycle, but also the vector-host ratio plays a role in 

infection spread (Chapter 2), implying a possible involvement of avian demographic 

characteristics. For this reason, we here proposed an investigation to quantify how 

different demographic characteristics of different bird species can drive WNV 

transmission. This analysis can thus support the development of further studies to 

identify those avian species more involved in WNV maintenance.  
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We found that avian abundance during summer (June-August) crucially affects WNV 

mosquito prevalence. Lower abundance of the competent avian species is associated 

with a higher predicted WNV prevalence in mosquitoes. Several studies showed that 

blood meal richness (namely the number of species which mosquitoes have been found 

to feed on) is significantly different from species richness [18,27], thus implying that 

mosquito biting rate is driven primarily by an active choice of mosquitoes of where to 

feed on, and only subsequently by species abundance. Our study stresses out that large 

host abundances are not correlated with a higher WNV mosquito prevalence. On the 

contrary, it suggests that, if a species is competent for spreading WNV and is bitten by 

mosquitoes, the lower the number of individuals belonging to the species, the higher is 

infection in mosquitoes. This result is certainly driven by model assumptions stating that 

the rate at which a species is bitten is not dependant on the densities of the species 

relative to the density of other species. Mosquitoes indeed are shown to actively choose 

the species where to feed on, according to their feeding preference and not merely on 

species abundance [27]. On the other hand, is also likely that they revert to feed to other 

species, if the density of the preferred one is very low. Then, if we assume that mosquito 

biting rate is fully independent to bird species abundance, we are oversimplifying reality, 

and this must be considered when analysing results. Despite that, we showed that less 

individuals can cause a higher viral circulation under model assumptions, thus posing the 

attention on the actual existing knowledge gaps about the birds’ role in WNV spread. 

Moreover, it highlights the relevance of mosquito feeding preference in the 

comprehension of the real role of bird species in the maintenance and spread of this 

infection. Indeed, independently of the initial number of birds, the highest WNV 
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prevalence in mosquitoes was registered in all scenarios when simulating with the less 

abundant avian species. In the first two scenarios (the base-scenario and the fixed initial 

number of birds -scenario) we can note that house sparrows, that are the most abundant 

species, produce a very low prevalence in mosquitoes, whereas magpies and doves, that 

are less abundant, are associated with a higher WNV circulation. As we considered 

epidemiological parameters fixed for all bird species, we suggest that this difference in 

infection spread is mainly attributable to the bird population size. Since the basic 

reproduction number (R0) of a vector-borne disease is determined both by 

epidemiological parameters and by the ratio between hosts and vectors (Chapter 2), this 

result can be interpreted by considering that, a lower number of birds implies a larger 

vector-host ratio and consequently a higher R0 value. Consequently, also the avian 

probability of being infected increases. On the contrary, if the number of birds is high, we 

can account for a dispersion of mosquito bites on not-infectious birds, with a consequent 

lower spread of the disease.  

The role of abundance and composition of the avian community in WNV spread is still 

debated. For instance, in the United States, it was shown that host heterogeneity affects 

WNV transmission [12]. Several studies suggest mosquito biting rate to be driven only 

partially by avian species abundance, since mosquitoes actively pursue their favourite 

host species to feed on, regardless of its abundance [18,24,27]. In our model, only one 

avian species is included, thus not accounting for interaction between different species 

and neglecting any kind dilution effect on not competent species [19]. Despite that, the 

choice of including only one avian species can be supported by considering the selective 

biting of mosquitoes, that feed preferentially on certain bird species thus enhancing the 
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importance of selected species importance in WNV spread. Thus, our results can 

contribute to the interpretation of differences in WNV spread among areas and years, 

possibly linking them with fluctuations of the abundance of the competent and preferred 

avian species. Moreover, our analyses can help in determining which features 

characterize a bird species suitable to spread WNV by showing that species abundance 

could be predictive of its importance in WNV spread. On the other hand, this result 

further highlights the importance of a careful estimate of the real mosquito biting rate. 

Indeed, a quantification of the mutual relationship between feeding preferences and 

birds’ abundance can be of aid in driving our understanding of the role of different avian 

species and in evaluating the reliability of the obtained results.  

By further investigating the other two proposed scenarios (the different lengths of 

breeding season scenario and the shift of breeding season scenario), we can also observe 

that the timing with which the differences in abundance occur during season can 

influence WNV circulation. Indeed, observing the population with breeding season 

starting in April and the one with breeding season starting in May, the predicted WNV-

prevalence in mosquito population is very similar, despite a very different number of 

birds during early season. We can note that, although the abundances of birds during 

early season are very different before June, from June on they are very close, thus 

suggesting a more relevant role of species abundance from June. All results obtained with 

the four scenarios seem to confirm this assumption, with increasing birds’ abundance 

during summer negatively affecting WNV-prevalence in mosquitoes. This result gives us 

a further indication on the characteristics needed by an avian species to further amplify 
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viral circulation. Indeed, according with model results, the less abundant a competent 

bird species is in summer, the higher is its effect in driving infection spread.  

The finding that only avian abundance, and no other breeding species-specific feature, 

affects WNV spread might suggest the possibility of considering the bird population 

included in model simulation as a uniform avian community. Despite that, this choice 

neglects the important role of species-specific epidemiological characteristics of birds, 

rising the need of deeper investigations on epidemiological parameters to strengthen our 

knowledge on WNV dynamics (Chapter 2, [8]).  

Despite the existing limitations, further model-based investigations can be performed to 

better highlight the role of different avian population dynamics on WNV spread. As a 

different role of adult and juvenile birds is suggested in literature [20], a future 

development of the present work is to include different epidemiological parameters 

between adults and juveniles (especially of different biting/transmission rates), to 

investigate if age classes can influence WNV spread.  

In conclusion, with the present work we quantified how different avian demographic 

features affect WNV circulation. We found bird density to crucially drive pathogen 

transmission while reproductive and breeding characteristics seem to play and indirect 

role. Also, we here highlighted the need of a deeper understanding of factors driving 

mosquito feeding preference. Finally, the present model can be updated with different 

epidemiological parameters, to investigate which species might have a major role in WNV 

spread.  
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Supplementary materials S3 

Model Structure 

According with the scheme reported in Fig.2 and chapter 1, we simulated WNV spread 

into Lombardy region through the following system of differential equations:  

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑀′

𝑆(𝑡) = 𝜔(𝑡) − (𝑏 ∙ 𝑝 ∙ 𝑝𝐵𝑀 ∙
𝐵𝐼𝑎(𝑡) + 𝐵𝐼𝑗(𝑡)

𝐵𝑇(𝑡)
+𝜇𝑀) ∙ 𝑀𝑠(𝑡)

𝑀′
𝐸(𝑡) = 𝑏 ∙ 𝑝 ∙ 𝑝𝐵𝑀 ∙

𝐵𝐼𝑎(𝑡) + 𝐵𝐼𝑗(𝑡)

𝐵𝑇(𝑡)
∙ 𝑀𝑠(𝑡) − (𝜃𝑀+𝜇𝑀) ∙ 𝑀𝐸(𝑡)

𝑀′
𝐼(𝑡) = 𝜃𝑀 ∙ 𝑀𝐸(𝑡)−𝜇𝑀 ∙ 𝑀𝐼(𝑡)

𝐵′𝑆𝑎(𝑡) = −(𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
+ 𝜇𝐵) ∙ 𝐵𝑆𝑎(𝑡)

𝐵′𝐸𝑎(𝑡) = 𝑏 ∙ 𝑝𝑀𝐵∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
∙ 𝐵𝑆𝑎(𝑡) − (𝜇𝐵 + 𝜃𝐵) ∙ 𝐵𝐸𝑎

𝐵′𝐼𝑎(𝑡) = 𝜃𝐵 ∙ 𝐵𝐸𝑎 − (𝜇𝐵 + 𝜎𝐵) ∙ 𝐵𝐼𝑎
𝐵′𝑅𝑎(𝑡) = 𝜎𝐵 ∙ 𝐵𝐼𝑎 − 𝜇𝐵 ∙ 𝐵𝑅𝑎

𝐵′𝑆𝑗(𝑡) = 𝛾 ∙ 𝐵𝑎(𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
+ 𝜇𝐵𝑗) ∙ 𝐵𝑆𝑗(𝑡)

𝐵′𝐸𝑗(𝑡) = 𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
∙ 𝐵𝑆𝑗(𝑡) − (𝜇𝐵𝑗 + 𝜃𝐵) ∙ 𝐵𝐸𝑗

𝐵′𝐼𝑗(𝑡) = 𝜃𝐵 ∙ 𝐵𝐸𝑗 − (𝜇𝐵𝑗 + 𝜎𝐵) ∙ 𝐵𝐼𝑗
𝐵′𝑅𝑗(𝑡) = 𝜎𝐵 ∙ 𝐵𝐼𝑗 − 𝜇𝐵𝑗 ∙ 𝐵𝑅𝑗

 

In the proposed system 𝑀𝑆, 𝑀𝐸  and 𝑀𝐼 respectively represent the susceptible, exposed 

and infectious mosquito population, whereas 𝐵𝑆𝑎, 𝐵𝐸𝑎, 𝐵𝐼𝑎 and 𝐵𝑅𝑎 susceptible, 

exposed, infectious and recovered competent adult birds and 𝐵𝑆𝑗, 𝐵𝐸𝑗, 𝐵𝐼𝑗 and 𝐵𝑅𝑗 

susceptible, exposed infectious and recovered competent juvenile birds. 𝐵𝑇 and 𝐵𝑎 

instead represent the total and the adult bird populations, respectively. All model 

parameters are derived from chapter 1.  

The system of equations to simulate the dynamics of the avian population instead was 

assessed according with Fig.3 as follows: 
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{
 
 
 
 

 
 
 
 

𝑑𝐴

𝑑𝑡
= −𝑑𝐴 ∗ 𝐴

𝑑𝑃

𝑑𝑡
= 𝑏 ∗ 𝐴 − (𝑑𝑃 + 𝑔1) ∗ 𝑃

𝑑𝐽

𝑑𝑡
= 𝑔1 ∗ 𝑃 − 𝑔2 ∗ 𝐽 − (𝑑𝐽 +

(𝑔1 − 𝑑𝐽) ∗ 𝐽

𝐾𝐽
) ∗ 𝑆

𝑑𝑆

𝑑𝑡
= 𝑔2 ∗ 𝐽 − (𝑑𝐽 +

(𝑔1 − 𝑑𝐴) ∗ 𝐽

𝐾𝐽
) ∗ 𝑆

 

Where A, P J and S respectively represent adult birds, pulli, juvenile birds and subadult 

birds. The choice of using four different compartment was due to the differences in death 

rates among the age-classes, whereas the main distinction between adult and subadult 

birds was that latter were not considered sexually mature and thus did not participate to 

egg deposition. We considered an intraspecific competition, included in the model as the 

carrying capacity KJ, acting by limiting the number of juvenile and subadult birds only. 

According with the simulated scenarios, the full list of parameters used in simulations is 

reported in tables 1 to 4.  
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Table A. Demographic parameter estimates found in literature.  

Parameters Blackbirds Magpies 
Collared 

doves 
House 

sparrows  
Hooded 
crows 

Breeding season a 75-165 1,2 113-157 8 61-245 12,13 75-213 18 110-161 20 

Clutch size  2-4 1 6-7 9 1-2 12 2-8 17,18 2-9 20,21,22 

Number of 
clutches (year-1) 

2-3 3,4 1 * 3.8 12 2-3 18 1 * 

Average life 
expectancy 

(years) 
2-4 5 2-4 10 4 * 6 * 4 * 

Hatching eggs (%) 92-95 6 57 9 59-60 12,13 75.5 18 69-81 22,23 

Fledging period 
(days)  

13-18 1,3 18 * 16-17 14 14-18 19 14 * 

Stealing period 
(days) 

14 6 26-30 11 17-22 12,13,15 27 18 18 20 

Nestlings’ 
mortality rate (%) 

31-32 1,3 23 9 60 12,13 21 18 68.3 12 

Juvenile’s 
mortality rate (%) 

70 539 3512,13 70 * 7024 

a beginning and end of the breeding season in Julian days 
* no reference found in literature 
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Introduction 

Vector-borne diseases account for more than 17% of all infectious diseases and cause 

more than 700 000 deaths worldwide every year, thus being a current and actual burden 

for human being [1,2]. Mosquitoes are among the most known vectors, able to transmit 

different impacting infections like malaria, chikungunya, dengue, Zika and West Nile 

disease [3,4]. Due to climate and environmental conditions, some countries result more 

affected by mosquito-borne diseases, but the actual climatic and land use changes can 

enhance capability of several mosquito species to adapt and spread to new areas, making 

mosquito-borne disease a worldwide health issue [5–9]. Due to their impact on public 

health, to prevent vector-borne disease transmission to people, and to respond to 

current outbreaks, vector control has a central role in reducing human infection risk [2].  

Among vector borne-diseases, West Nile disease (WND) is one of the most widespread, 

with outbreaks in Europe, Asia, Africa and also in the North of America [10–12]. It is 

maintained in an enzootic cycle involving mosquitoes of the genus Culex as vectors, and 

birds as vertebrate competent hosts species [13–15]. Also, humans and other mammals 

can be infected, mainly via mosquito bite [16]. Although severe symptoms are rare in 

human beings (only the 20% of infected people develop symptoms, of which only the 1% 

can be considered severe) [17,18], the increasing spread of the disease and the increasing 

number of human cases registered, makes the development of efficient surveillance 

plans and intervention strategies of primary importance [19,20]. Thus, the importance of 

understanding year-long fluctuations in WNV spread and the identification of the most 

efficient intervention plan to reduce human infection risk are now considered public 
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health central issues [19,21], especially at light of the unexpected increased number of 

human infections that have been observed in Italy in 2018 [22]. Despite that, the 

understanding of WNV cycle has proven to be very complicated to investigate, thus 

possibly hampering the assessment of intervention strategies that effectively reduce 

human infection risk.  

Several mathematical models investigating infection dynamics have been developed to 

try to fill our knowledge gaps about WND [20,23–25]. In particular, in Veneto and Emilia 

Romagna regions (northern Italy), data coming from the entomological surveillance plan 

for arboviruses have been successfully used to investigate through mathematical 

modelling WNV spread and mechanisms of maintenance in both regions [22,26]. One of 

the advantages of investigating WND through mathematical models is that they can 

explore the dynamics of the system. Moreover, through their use we can simulate the 

potential outcome of different intervention strategies before applying them, with a small 

consumption of time and resources [20,27]. Despite their potential, their actual use in 

planning and developing future field studies and intervention strategies is still limited. For 

this reason, we here propose an analysis of the theoretical effect of different intervention 

strategies on human infection risk, to highlight their strengths and weaknesses at light of 

our interest to reduce the number of human infections. With the present work we aim to 

evidence the power of mathematical modelling in aiding public health management 

choices, but also to evaluate quantitatively the efficacy of the intervention strategies 

currently considered suitable. The present work is focused on the analysis of WNV spread 

in the Italian scenario, but the framework is easily applicable to other countries and 

vector-borne diseases. 
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 Materials and Methods 

The base model  

A deterministic model based on a system of 13 equations was used to simulate the 

dynamics of WNV infection in a competent avian population and estimate mosquito 

prevalence throughout the summer season. The computational framework, summarized 

in Fig 1, follows the one proposed in (Marini 2020) for Emilia Romagna region, 

successively modified to simulate WNV dynamics in the study area (Chapter 2). The 

framework is composed by a first model (‘entomological model’) simulating mosquito 

abundance in the investigated area which is than included in a second model 

(‘epidemiological model’), simulating WNV transmission between mosquitoes and birds. 

Further details on model scheme and equations are reported in the Supplementary 

materials S4. Following the clustering proposed in Chapter 2 Lombardy region was 

divided into three separate clusters (a northern, a western and an eastern one) including 

districts epidemiologically homogeneous for temperature, precipitations, mosquito 

abundance and their positivity for WNV. The northern cluster in following analyses is 

excluded because no circulation of WNV was found in it during the triennium 2016-2018. 

All parameters estimate follows the work proposed in Chapter 2, whereas the unknown 

ones for both the entomological and the epidemiological model are estimated by a 

Markov Chain Monte Carlo, respectively fitting the number of collected mosquitoes and 

WNV-positive mosquitoes. All data records about mosquito abundance and their 

positivity for WNV comes from the WNV entomological surveillance plan performed by 

Regione Lombardia and Istituto Zooprofilattico Sperimentale della Lombardia e 
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dell’Emilia Romagna, following the collection method and guidelines provided by Regione 

Lombardia and Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia 

Romagna [28]. In the entomological model the number of mosquitoes at the beginning 

of the mosquito activity period was considered to be the number of mosquitoes ending 

their diapause after overwintering and was estimated via Markov Chain Monte Carlo as 

a free parameter by the entomological model [22]. This choice was made because in 

temperate regions inseminated adult females of Cx. pipiens can survive the winter 

undergoing a quiescent phase termed diapause. WND spread was simulated from April 

to October, as it is the period of high activity for mosquitoes in the study area, thus we 

will refer to it as the mosquito activity period. Model scheme and equations are reported 

in Supplementary materials S4. 

Inclusion of intervention strategies 

The base model was then extended to include the following six different intervention 

strategies (Fig 1): 

i. Use of adulticide targeting overwintering adult mosquitoes (eliminating 

overwintering mosquitoes) 

ii. Use of larvicide during mosquito activity period to eliminate mosquito larvae and 

eggs (larvicide treatment)  

iii. Use of adulticide applied to eliminate adult mosquitoes during mosquito activity 

period: (adulticide treatment) 

iv. Reduction of breeding sites for the mosquito population (mosquito breeding site 

reduction) 

v. Active removal of competent birds (birds removal) 
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vi. Reduction of the breeding sites for birds (bird breeding site reduction) 

 

Figure 1: Schematic representation of computational framework and intervention 

strategies inclusion. Mathematical models (green boxes) take as input temperature and 

entomological surveillance records (grey dashed arrows) to predict mosquito abundance 

or WNV prevalence in mosquitoes in the study area (grey ovals). WNV prevalence in 

mosquitoes was then used to estimate the human infection risk (orange oval). The scheme 

also includes the six different intervention strategies (red boxes). The target population of 

each of the six intervention strategies was highlighted with a red circle and the output of 

the modified model was shown as red ovals.  

 

A yearly simulation for each intervention strategy were performed over the three years 

(2016, 2017 and 2018) and over both region’s clusters, then a mean relative daily risk of 

infection for human beings was estimated using the following formula: 

𝑅𝑅 =
𝑀𝑖

𝑀𝑖~
 

Where Mi represents the number of infected mosquitoes estimated by the “base model” 

and 𝑀𝑖
~   represents the number of infected mosquitoes estimated by the model including 

the intervention strategy. The efficiency of the intervention strategy was then considered 

as the effective reduction of the human infection relative risk. It was thus calculated as 

Eff=1-RR with Eff ranging between -100 and 100, implicating that an intervention strategy 
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that reduce the human infection risk of 100% has Eff=100, whereas an intervention 

strategy with no effect has Eff=0. Any intervention strategy that increases the human 

infection risk instead has Eff ranging between -100 and 0.  

The system of differential equations used for intervention strategies is fully reported in 

Supplementary materials S4. 

i. Eliminating overwintering mosquitoes 

The reduction of the number of mosquitoes which survive the winter was simulated only 

by reducing the number of mosquitoes starting the yearly simulation, representing the 

number of mosquitoes just before the beginning of the mosquito activity period.  

ii. Larvicide treatment 

To simulate a larvicidal treatment, we included in the ‘entomological model’ an additional 

death rate for eggs and larvae. We considered this intervention strategy to have a daily 

constant effect during the whole mosquito activity period by assuming the effect of one 

treatment lasting up to the following treatment, without any efficacy loss. 

iii. Adulticide treatment 

To simulate an insecticide treatment, we included in the ‘entomological model’ an 

additional death rate for adult mosquitoes. We considered this intervention strategy to 

be performed once every two weeks from the beginning to the end of the mosquito 

activity period, immediately killing a given fraction of the adult population.  

iv. Mosquito breeding sites reduction  

To simulate the reduction of mosquito breeding sites, we reduced the density-dependent 

scaling factor driving the carrying capacity for the larval stages of the mosquito 
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population in the ‘entomological model’, thus obtaining new mosquito abundances to 

include in the epidemiological model to simulate WNV spread. This intervention strategy 

was considered to be implemented continuously during the mosquito activity period. 

v. Birds removal 

To simulate the active removal of competent birds, we included in the epidemiological 

model an additional death rate for both adult and young birds. We considered this 

intervention strategy to be performed once every month from the beginning to the end 

of mosquito activity period, immediately killing a given fraction of the adult population.  

vi. Avian breeding sites reduction 

To simulate the reduction of birds’ breeding sites, we reduced the environmental carrying 

capacity of the bird population in the epidemiological model. This intervention strategy 

was considered to be performed constantly during the mosquito activity period. 

We considered three different intensities for each intervention strategy (20, 50 and 80%). 

For instance, an intensity of 80% for strategy iii means that 80% of adult mosquitoes are 

immediately removed when the intervention is carried out.  As mentioned above, the 

efficiency of the intervention strategy was then considered as the effective reduction of 

the human infection relative risk. 
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Results 
 

i. Eliminating overwintering mosquitoes (Fig 2, top left box) 

A reduction of the number of mosquitoes which survive winter affects the human 

infection risk mainly in the first part of the season (up to August), then the effect seems 

to wane, even potentially increasing human infection risk. To obtain a reduction of the 

risk of infection higher than 50%, it is necessary to remove more than 50% of 

overwintering mosquitoes. Despite that, regardless of intervention intensity, the effect 

lasts up to August and then decrease. Moreover, the higher is the benefit obtained before 

September, the higher and faster the effect worsens in the following part of the season.  

ii. Larvicide treatment (Fig 2, top right box) 

Using a larvicide to decrease the number of eggs and larvae efficiently reduces human 

infection risk, especially between mid-June and mid-August. The effect is almost 

negligible up to July, but then it quickly increases and maintains its efficacy up to October. 

A reduction of 20% of eggs and larvae is enough to obtain a substantial risk reduction (up 

to 52%), but by eliminating 50% of immature stages the efficacy increases up to 82%. The 

elimination of 80% of immature stages can reduce the risk up to 91%, pointing out that 

the increase in intensity of the intervention is not proportional to an increase in efficacy.  

From August on, for all tested treatments, we can observe a reduction of their efficacy. 

This reduction is particularly marked for the 50% treatment, showing the lowest efficacy 

from September on.  
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iii. Adulticide treatment (Fig 2, centre left box) 

An adulticide treatment efficiently reduces human infection risk. The risk reduction starts 

in June and ends up in September. The highest effect is reached between mid-June and 

mid-August and a peak in late July. A reduction of 20% of adult mosquitoes is enough to 

obtain a substantial risk reduction (up to 36%), but the elimination of 50% of mosquitoes 

has even larger effect (up to 64%). The increase in intensity of the intervention is not 

proportional to an increase in efficacy.  

iv. Mosquito breeding site reduction (Fig 2, centre right box) 

According to model simulations, the reduction of mosquitoes breeding sites is the 

strategy with the highest efficacy all over the season. The reduction of 80% of breeding 

sites almost nullifies human infection risk (with a risk reduction up to 99%), but also a 

20% intensity show marked results (with a risk reduction up to 55%). The elimination of 

50% of breeding sites has an intermediate effect with respect to the other two teste 

intensities, with a risk decrease up to 91%.  

v.  Birds’ removal (Fig 2, bottom left box) 

The active removal of competent birds does not seem to have a noticeable effect on 

human infection risk up to June, whereas from August on such strategy increases human 

infection risk up to the end of October.  

vi. bird breeding site reduction (Fig 2, bottom right box) 

Similarly, to strategy v, active removal of competent birds breeding sites do not show any 

substantial effect in reducing human infection risk up to June. Afterwards it seems to 

increase human infection risk, with a peak in August.  
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Figure 2: Intervention strategies effect on human infection risk. Boxes from up-left to 

bottom-right shows the risk reduction following the application of intervention i,ii,iii,iv,v, 

and vi. Red, blue and green lines respectively represent an intervention intensity of 20,50 

and 80%. Solid lines: average values; shaded regions: 95% confidence interval.  
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Discussion 

To provide a practical tool to investigate and quantitatively compare the efficacy of 

different intervention strategies, we adapted an existing and validated mathematical 

model [22], to simulate WNV spread in Lombardy region aimed at evaluating human 

infection risk. Six theoretical intervention strategies were then included in the model to 

estimate their effect on the predicted human infection risk. In accordance with previous 

findings evidencing vector control as a key method by which vector-borne diseases can 

be controlled [29–33], our findings show that interventions on the vector population have 

the best and more durable effects in lowering human infection risk. All interventions on 

the avian population instead show a moderate, if not opposite effect. In particular, the 

active removal of mosquito eggs and larvae and the reduction of breeding sites are the 

two most effective interventions, followed by the elimination of adult mosquitoes. None 

of the simulated intervention strategies shows a constant effect during all mosquito 

activity period, and all of them show a reduction in efficacy in late summer. This result 

highlights the importance of carrying treatments targeting the vector population at 

regular intervals during summer, or even to increase the effort from August on. Results 

obtained are in line with the current intervention choices performed in several areas, as 

well as in Lombardy region, primarily aimed to the elimination of larval populations and 

only occasionally and exceptionally directed against adult mosquitoes [34–36]. In 

addition, we showed that the reduction of human infection risk depends on the intensity 

of the intervention, but the obtained benefit (i.e., risk reduction) does not increase 

linearly with the effort applied. This highlights the importance of a quantitative evaluation 
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of the efficacy to set the most suitable intervention strategy even by a practical point of 

view, allowing for a careful cost-benefit evaluation [27]. The importance of a thorough 

evaluation of the effect of an intervention is double in developing a sustainable strategy. 

On the one hand, at light of pesticide resistance and environmental side effects of an 

over-abundant use of insecticides/pesticides [37–39], it is fundamental to be sure to 

minimize the effort maximising the result [34].  

Considering the worldwide threat vector-borne diseases represent for human beings, 

they are now considered one of the main issues for worldwide public health [2]. But, due 

to unpredictability of disease spread and nonlinearity of interactions among population 

subgroups, the assessment of the most suitable intervention strategy to reduce human 

infection risk and the prediction of the whole range of interventions effects can be 

complex. WNV in particular (re-) emerged in several countries worldwide, Italy included. 

Its increasing spread and the complexity of its cycle raised up the need of carrying out an 

intensive surveillance on vectors and hosts populations. Moreover, in accordance with 

regional and national guidelines, several interventions are performed to reduce the 

vector population and decrease human infection risk [36]. Despite the ongoing huge 

effort on-course, and the recognized importance of developing an efficient intervention 

plan, the complexity of WNV impairs our assessment of efficient intervention plans. 

By confirming the importance of vector control in reducing human infection risk for 

vector-borne diseases, we found the most efficient intervention strategies to be the 

reduction of mosquito breeding sites and a constant elimination of eggs and larvae during 

the mosquito activity period (April-October), followed by the elimination of adult 

mosquitoes. Conversely, simulated interventions against the avian population show to 
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have the poorest results, actually the potential to increase human risk. It is necessary to 

note that, in the present model, we only explicitly accounted for one competent avian 

species for the sake of simplicity and the mosquito biting rate is considered as a fixed 

fraction of bites directed to the competent avian species, thus possibly underestimating 

the effect in mosquito biting frequency following a change in the ratio among competent 

and not-competent hosts. On the other hand, it highlights the need of having a better 

estimate of the real mosquito biting rates to more realistically simulate WNV spread. If a 

better understanding of the relationship between mosquito bites frequency and bird 

abundance is known to play a role in the understanding of species involved in WNV 

maintenance (Chapter 1, Chapter 3, [40,41]), we here suggest that deeper studies are 

also necessary to evaluate the efficacy of interventions on the avian population. Indeed, 

model results show a negative effect of an active removal of birds of specific species on 

human infection risk, but such findings can be considered reliable only if avian abundance 

do not affect the frequency of mosquitoes’ bites on the competent species [41].  

Elimination of overwintering mosquitoes can decrease human infection risk only in the 

first part of the season. Interestingly, the higher is the benefit obtained in the first part of 

the season the lower is the risk reduction in the late season. Since human spill-over occurs 

usually during August/September [42], elimination of overwintering mosquitoes, at least 

if not supported by any other intervention during the mosquito activity period, might not 

be effective to reduce WNV spread.  

We remark that in the present work we compare interventions having a different 

frequency and duration. This choice was made to try to include plausible interventions 

but can affect model results. Analyses considering different interventions to have the 
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same period of efficacy could then be useful for a deeper comparison between 

intervention efficacies. Deeper investigations on the real efficiency of currently applied 

intervention strategies are required to improve the precision in predicting the effect of 

the simulated intervention strategy, and, despite being beyond the scope of this work, 

the investigation of the effect of combinations of intervention strategies is fundamental 

for the development of an adequate intervention plan.  

Finally, our results highlight that none of the considered strategies can eradicate WNV 

from Lombardy region. Eradicating an infection can be very complex and demanding. In 

particular WNV, involving in its cycle both vectors and wild animals, which might be 

difficult to survey and treat, is a big challenge for public institutions. Despite previous 

studies hypothesizing the feasibility of WNV eradication [20], our study suggests that to 

approach such goal, an intervention intensity lower than 80% could not be enough, thus 

implying a very high expense of resources. Moreover, since WNV might easily spread in 

new areas, after the eradication, the treatments should be carried out constantly in order 

to keep the area unsuited for WN re-emergence. Since we did not consider higher 

intensities, nor combinations of different interventions, and as the eradication of WNV is 

a very ambitious and coveted target, further investigations are certainly needed to 

evaluate the actual necessary effort.  

In conclusion, our results suggest that among available intervention strategies the 

reduction of mosquito breeding sites and larvicide treatments are those showing the best 

efficacy. Despite that, a careful assessment of intervention strategy to be performed is 

fundamental to maximise its efficacy in reducing human infection risk. Indeed, the effect 

of interventions depends on their intensity, but the obtained reduction of human 
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infection risk does not increase linearly with the effort applied. Moreover, efficacies of 

interventions are not constant in time, with a best effect in July-August and a decrease in 

efficacy in September-October. For this reason, the outlining of an efficient intervention 

plan to reduce WNV human infection risk must take into careful consideration both the 

effort needed and the objective desired.  
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Supplementary materials S4 

Entomological-model Structure 

We estimated the daily mosquito abundance following the differential reported in System 

1, represented by the chart shown in Fig. A:  

 

System 1:  

{
 
 

 
 

𝐸′(𝑡) = 𝑛𝐸 ∙ 𝑑𝐴 ∙ 𝐴(𝑡) − (𝜇𝐸 + 𝜏𝐸) ∙ 𝐸(𝑡)

𝐿′(𝑡) = 𝜏𝐸 ∙ 𝐸(𝑡) − (𝜏𝐿 + 𝜇𝐿 ∙ (1 +
𝐿(𝑡)

𝐾
)) ∙ 𝐿(𝑡)

𝑃′(𝑡) = 𝜏𝐿 ∙ 𝐿(𝑡) − (𝜏𝑃 + 𝜇𝑃) ∙ 𝑃(𝑡)

𝐴′(𝑡) = (1 − 𝛿) ∙ 0.5 ∙ 𝑃(𝑡) − 𝜇𝐴 ∙ 𝐴(𝑡)

 

In the proposed system 𝐸, 𝐿, 𝑃 and 𝐴 respectively represent eggs, larvae, pupae and 

adult non-diapausing female mosquitoes. Death rates (𝜇𝐸 , 𝜇𝐿, 𝜇𝑃 and 𝜇𝐴) and 

developmental rates (𝜏𝐸 , 𝜏𝐿, and 𝜏𝑃) specific of each age-class are all considered 

temperature dependent, in accordance with the work proposed by Marini (ref).  

Here nE represents the number of eggs laid in one oviposition, whereas 𝛿 represents the 

fraction of mosquitoes that undergo the diapause. Two different density dependant 

scaling factor driving the carrying capacity for the larval stage (K) were included, one for 

the early part of the season (up to June 30) and a different one for the late part of the 

season (from June 30) due to a possible change in Cx. pipiens breeding sites availability 

due to competition for resources with Ae. Albopictus (ref 25 Giovanni 2020). Considering 

only adult female mosquitoes, the term 0.5 in the equation for adults accounts for the 
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sex ratio. Since traps capture host seeking mosquitoes, only a fraction dA of adult 

mosquitoes is considered to lay eggs. 

 

Figure A: Entomological-model scheme. Model flow chart for mosquito dynamics. 

Compartments (circles) represent four developmental stages of mosquitoes: eggs (E), 

larvae (L), pupae (P) and not-diapausing female adults (A).  

 

Epidemiological-model Structure 

According with the scheme reported in Fig.B we simulated WNV spread into Lombardy 

region through the following system of differential equations:  
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System 2:  

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 𝑀′

𝑆(𝑡) = 𝜔(𝑡) − (𝑏 ∙ 𝑝 ∙ 𝑝𝐵𝑀 ∙
𝐵𝐼𝑎(𝑡) + 𝐵𝐼𝑗(𝑡)

𝐵𝑇(𝑡)
+𝜇𝑀) ∙ 𝑀𝑠(𝑡)

𝑀′
𝐸(𝑡) = 𝑏 ∙ 𝑝 ∙ 𝑝𝐵𝑀 ∙

𝐵𝐼𝑎(𝑡) + 𝐵𝐼𝑗(𝑡)

𝐵𝑇(𝑡)
∙ 𝑀𝑠(𝑡) − (𝜃𝑀+𝜇𝑀) ∙ 𝑀𝐸(𝑡)

𝑀′
𝐼(𝑡) = 𝜃𝑀 ∙ 𝑀𝐸(𝑡)−𝜇𝑀 ∙ 𝑀𝐼(𝑡)

𝐵′𝑆𝑎(𝑡) = −(𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
+ 𝜇𝐵) ∙ 𝐵𝑆𝑎(𝑡)

𝐵′𝐸𝑎(𝑡) = 𝑏 ∙ 𝑝𝑀𝐵∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
∙ 𝐵𝑆𝑎(𝑡) − (𝜇𝐵 + 𝜃𝐵) ∙ 𝐵𝐸𝑎(𝑡)

𝐵′𝐼𝑎(𝑡) = 𝜃𝐵 ∙ 𝐵𝐸𝑎(𝑡) − (𝜇𝐵 + 𝜎𝐵) ∙ 𝐵𝐼𝑎(𝑡)

𝐵′𝑅𝑎(𝑡) = 𝜎𝐵 ∙ 𝐵𝐼𝑎(𝑡) − 𝜇𝐵 ∙ 𝐵𝑅𝑎(𝑡)

𝐵′𝑆𝑗(𝑡) = (𝛾 − 𝑟 ∙
𝐵𝑗(𝑡)

𝐾
) ∙ 𝐵𝑎(𝑡) − (𝑏 ∙ 𝑝𝑀𝐵 ∙

𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
+ (𝜇𝐵𝑗 + 𝑟 ∙

𝐵𝑗(𝑡)

𝐾
)) ∙ 𝐵𝑆𝑗(𝑡)

𝐵′𝐸𝑗(𝑡) = 𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
∙ 𝐵𝑆𝑗(𝑡) − ((𝜇𝐵𝑗 + 𝑟 ∙

𝐵𝑗(𝑡)

𝐾
) + 𝜃𝐵) ∙ 𝐵𝐸𝑗(𝑡)

𝐵′𝐼𝑗(𝑡) = 𝜃𝐵 ∙ 𝐵𝐸𝑗(𝑡) − ((𝜇𝐵𝑗 + 𝑟 ∙
𝐵𝑗(𝑡)

𝐾
) + 𝜎𝐵) ∙ 𝐵𝐼𝑗(𝑡)

𝐵′𝑅𝑗(𝑡) = 𝜎𝐵 ∙ 𝐵𝐼𝑗 − (𝜇𝐵𝑗 + 𝑟 ∙
𝐵𝑗
𝐾
) ∙ 𝐵𝑅𝑗

 

In the proposed system 𝑀𝑆, 𝑀𝐸  and 𝑀𝐼 respectively represent the susceptible, exposed 

and infectious mosquito population, whereas 𝐵𝑆𝑎, 𝐵𝐸𝑎, 𝐵𝐼𝑎 and 𝐵𝑅𝑎 susceptible, 

exposed, infectious and recovered competent adult birds and 𝐵𝑆𝑗, 𝐵𝐸𝑗, 𝐵𝐼𝑗 and 𝐵𝑅𝑗 

susceptible, exposed infectious and recovered competent juvenile birds. 𝐵𝑇 represents 

the total competent avian community, and 𝐵𝑎 the adult, and thus sexually mature, avian 

community.  
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Figure B: Model scheme. Model flow chart for WNV transmission in birds (squares) and 

mosquitoes (circles) in an average trapped area. Compartments: 𝑩𝑺,𝒂, 𝑩𝑬,𝒂, 𝑩𝑰,𝒂 and 

(𝑩𝑺,𝒋, 𝑩𝑬,𝒋,, 𝑩𝑰,𝒋 and 𝑩𝑹,𝒋): adult (juvenile) susceptible, exposed, infectious and immune 

birds; Ms, Me, Mi: susceptible, exposed and infectious mosquitoes.  
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Intervention strategies inclusion: 

Intervention strategies on the vector population were included in model equations by 

adjusting System 1 as follows:  

System 3:  

{
 
 

 
 

𝐸′(𝑡) = 𝑛𝐸 ∙ 𝑑𝐴 ∙ 𝐴(𝑡) − (𝜇𝐸 + 𝜏𝐸) ∙ 𝐸(𝑡) − 𝑡2 ∙ 𝐸 (𝑡)

𝐿′(𝑡) = 𝜏𝐸 ∙ 𝐸(𝑡) − (𝜏𝐿 + 𝜇𝐿 ∙ (1 +
𝐿

𝐾 ∙ 𝑡4
)) ∙ 𝐿(𝑡) − 𝑡2 ∙ 𝐿(𝑡)

𝑃′ = 𝜏𝐿 ∙ 𝐿(𝑡) − (𝜏𝑃 + 𝜇𝑃) ∙ 𝑃(𝑡)

𝐴′(𝑡) = (1 − 𝛿) ∙ 0.5 ∙ 𝐿(𝑡) − 𝜇𝐴 ∙ 𝐴(𝑡) − 𝑡3 ∙ 𝐴(𝑡)

 

Where t2, t3 and t4, respectively represent the intensity of the larvicide treatment, the 

adulticide treatment and of the reduction of the mosquito breeding sites (strategies ii-

iv).  

Intervention strategies on the host population were included in model equations by 

adjusting System 2 as follows:  
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System 4:  

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝑀′

𝑆(𝑡) = 𝜔(𝑡) − (𝑏 ∙ 𝑝 ∙ 𝑝𝐵𝑀 ∙
𝐵𝐼𝑎(𝑡) + 𝐵𝐼𝑗(𝑡)

𝐵𝑇(𝑡)
+𝜇𝑀) ∙ 𝑀𝑠(𝑡)

𝑀′
𝐸(𝑡) = 𝑏 ∙ 𝑝 ∙ 𝑝𝐵𝑀 ∙

𝐵𝐼𝑎(𝑡) + 𝐵𝐼𝑗(𝑡)

𝐵𝑇(𝑡)
∙ 𝑀𝑠(𝑡) − (𝜃𝑀+𝜇𝑀) ∙ 𝑀𝐸(𝑡)

𝑀′
𝐼(𝑡) = 𝜃𝑀 ∙ 𝑀𝐸(𝑡)−𝜇𝑀 ∙ 𝑀𝐼(𝑡)

𝐵′𝑆𝑎(𝑡) = −(𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
+ 𝜇𝐵) ∙ 𝐵𝑆𝑎(𝑡) − 𝑖5 ∙ 𝐵𝑆𝑎(𝑡)

𝐵′𝐸𝑎(𝑡) = 𝑏 ∙ 𝑝𝑀𝐵∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
∙ 𝐵𝑆𝑎(𝑡) − (𝜇𝐵 + 𝜃𝐵) ∙ 𝐵𝐸𝑎(𝑡) − 𝑖5𝐵𝐸𝑎(𝑡)

𝐵′𝐼𝑎(𝑡) = 𝜃𝐵 ∙ 𝐵𝐸𝑎(𝑡) − (𝜇𝐵 + 𝜎𝐵) ∙ 𝐵𝐼𝑎(𝑡) − 𝑖5 ∙ 𝐵𝐼𝑎(𝑡)

𝐵′𝑅𝑎(𝑡) = 𝜎𝐵 ∙ 𝐵𝐼𝑎(𝑡) − 𝜇𝐵 ∙ 𝐵𝑅𝑎(𝑡) − 𝑖5 ∙ 𝐵𝑅𝑎(𝑡)

𝐵′𝑆𝑗(𝑡) = (𝛾 − 𝑟 ∙
𝐵𝑗
𝐾 ∙ 𝑖6

) ∙ 𝐵𝑎(𝑡) − (𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
+ (𝜇𝐵𝑗 + 𝑟 ∙

𝐵𝑗(𝑡)

𝐾 ∙ 𝑖6
)) ∙ 𝐵𝑆𝑗(𝑡) − 𝑖5 ∙ 𝐵𝑆𝑗(𝑡)

𝐵′𝐸𝑗(𝑡) = 𝑏 ∙ 𝑝𝑀𝐵 ∙
𝑀𝐼(𝑡)

𝐵𝑇(𝑡)
∙ 𝐵𝑆𝑗(𝑡) − ((𝜇𝐵𝑗 + 𝑟 ∙

𝐵𝑗(𝑡)

𝐾 ∙ 𝑖6
) + 𝜃𝐵) ∙ 𝐵𝐸𝑗(𝑡) − 𝑖5 ∙ 𝐵𝐸𝑗(𝑡)

𝐵′𝐼𝑗(𝑡) = 𝜃𝐵 ∙ 𝐵𝐸𝑗(𝑡) − ((𝜇𝐵𝑗 + 𝑟 ∙
𝐵𝑗(𝑡)

𝐾 ∙ 𝑖6
) + 𝜎𝐵) ∙ 𝐵𝐼𝑗(𝑡) − 𝑖5 ∙ 𝐵𝐼𝑗(𝑡)

𝐵′𝑅𝑗(𝑡) = 𝜎𝐵 ∙ 𝐵𝐼𝑗(𝑡) − (𝜇𝐵𝑗 + 𝑟 ∙
𝐵𝑗(𝑡)

𝐾 ∙ 𝑖6
) ∙ 𝐵𝑅𝑗(𝑡) − 𝑖5 ∙ 𝐵𝑅𝑗(𝑡)
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Introduction 

During the last century, the total number of infectious diseases has decreased globally, 

but an opposite trend has been observed for emerging and re-emerging diseases, which 

have increased in number and currently threaten human health [1–3]. Several diseases, 

like MERS, SARS, chikungunya and Ebola, emerged in recent years, causing severe 

epidemics and requiring a coordinated global response in terms of continued surveillance 

and research [1,4–6]. More recently, the COVID-19 pandemic dramatically and urgently 

highlighted the threat posed by emerging diseases to human health [7].  

The development of efficient and tailored intervention strategies to control such diseases 

is thus essential, but the lack of previous field data, of background information on 

neglected or unknown pathogens, and the complexity of some systems, make the choice 

of the most efficient intervention strategy challenging. Additionally, most emerging 

infectious diseases (EIDs) are zoonoses (the 60.3% of EIDs), and most of them (71.8%) 

originate in wildlife [2]. Monitoring infected wild animals and identifying their role in the 

spread and maintenance of diseases complicates things further [8,9]. The range of 

approaches to cope with wildlife-originated zoonoses is wide, and most of applied 

strategies and techniques still give controversial results, often leading to a waste of time 

and resources [8–11]. As a consequence, on the one hand it is necessary to improve the 

current knowledge on emerging infectious diseases and their dynamics, on the other 

hand it is fundamental to develop tools for a better evaluation of the efficacy of potential 

intervention strategies. 
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Mathematical models can represent an efficient tool for an a priori simulation of host-

pathogen interactions, thus improving our understanding of infectious diseases dynamics 

and helping to assess and evaluate different approaches to control diseases [12–15]. 

Mathematical models have been widely used in the investigation of disease dynamics and 

basic reproductive ratio (R0) role in disease spread and maintenance. They have been 

used also to understand the role of different sources of heterogeneities in host 

populations in affecting the transmission and maintenance of diseases [12–14,16–19]. 

However, despite their potential, the use of mathematical models in empirical 

epidemiological studies and in the planning of public health policies still has limited 

practical application [20].  

For this reason, we used a macroparasitic zoonotic disease as a model to apply and adapt 

a consolidated mathematical model [12] in order to provide a framework for the analysis 

of efficacy and efficiency of different intervention strategies. 

B. procyonis is an ascarid nematode that infects North American raccoons as natural 

definitive hosts. The infective stage of the parasite is represented by eggs shed in the 

environment with raccoons' faeces, where they become infectious and can remain viable 

for years [21,22]. Birds and other mammals, humans included, may accidentally become 

infected and act as paratenic hosts [20,23–26]. Like with most of ascarids, ingestion of 

eggs by paratenic hosts may result in larva migrans syndrome, with larvae migrating from 

the gut and encysting into various host tissues. Compared to other ascarids, larva migrans 

by B. procyonis is particularly aggressive, often causing extensive neural damage. Several 

cases of severe or fatal neural larva migrans syndrome have been reported in humans in 

the last decades, most of them in children [21,25,27], and baylisascariasis is now 
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considered an emerging zoonosis [23]. The opportunistic behaviour of raccoons, that 

often coexist with humans in urban, suburban, and rural environments, combined with 

the high number of eggs shed and with their resistance, leads to extensive opportunities 

for contact and infection of human beings [21,22,28]. 

The sanitary relevance of B. procyonis and the high exposure risk make the development 

of prevention strategies for B. procyonis infection in humans necessary. Three main 

approaches are currently taken into consideration: the active removal of raccoons 

[21,29], the treatment of raccoons with anthelmintic baits [21,30,31], and the reduction 

of environmental contamination through faeces removal [21,29]. Each one of these 

strategies presents some strengths and weaknesses [21,26,29,30], but a systematic 

comparison of the efficacy (i.e. the capacity of the treatment to reach the egg elimination 

from the environment), and efficiency (i.e. the time needed to reach the egg elimination) 

of the strategies is still lacking. For this reason, we propose the use of a pre-existent and 

already validated mathematical model to (i) investigate the dynamics of the raccoon-

B.procyonis system, and, in particular, (ii) compare both the efficacy and the efficiency of 

the three above-mentioned intervention strategies. 
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Methods 
 

Study System 

The investigated system consists of three interacting populations: the host population 

(raccoons, H), the parasite population (adult B. procyonis, P) and the free-living infective 

stage of the parasite (B. procyonis eggs, E). The simulated intervention strategies are: (i) 

raccoon depopulation, (ii) anthelmintic treatment and (iii) faeces removal.  

Firstly, we performed a preliminary sensitivity analysis of the parameters representing 

the different intervention strategies, to compare their influence on the number of 

environmental eggs [32]. Then, we analysed the system by combining the analysis of 

equilibria (S1 Text) and simulations to evaluate both the efficacy and the efficiency of 

each intervention strategy. Multiple simulations were performed using the simple Euler 

forward integration method (function euler of ”deSolve” package in R 3.6.3 software). In 

order to assess efficacy, we evaluated whether each specific intervention strategy was 

able to eliminate the egg population within 50 years. Efficacy was computed by using the 

equations for the analysis of the system equilibria reported in Supplementary materials 

S5. To assess the efficiency of each intervention strategy we evaluated the effective time 

needed to reach the new steady state. Since we focused our attention on intervention 

strategies eliminating the egg population and both adult parasite and egg populations 

consist of a discrete number of individuals, we considered that an intervention strategy 

reaches the steady state when the computed number of eggs and parasites is lower than 

one.  
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We chose to consider a 50-years time frame to clearly show and compare the effects of 

the intervention strategies on both the number of eggs and the time needed to reach the 

equilibrium. For this reason, interventions requiring more than 50 years to reach the 

equilibrium were not considered in the analysis and we only reported the number of eggs 

reached at the 50th year. 

To simplify the comparison between intervention strategies, we will focus hereafter on 

the proportion of subjects (raccoons/parasites/eggs, depending on the intervention 

strategy) treated per day, expressed as a percentage of the whole population size on that 

day and named hereafter “treatment coverage”. It must be noted that the proportion of 

subjects treated does not strictly represent a constant number of 

raccoons/parasites/eggs treated per day, because it will depend on the population size 

of that day.  

Due to the recent introduction of raccoons and B. procyonis in areas outside their natural 

North and Central American distribution range [21], two different scenarios have been 

explored: 

- The ‘native population’ scenario: represented by a raccoon population in its 

native range, where the host population is close to its environmental carrying 

capacity (K) and the system is close to its steady state.  

- The ‘introduced population’ scenario: represented by a raccoon population 

recently introduced in a new area, where neither the environmental carrying 

capacity nor the system’s steady state have been reached yet. In this scenario, we 

considered, as initial sizes of H, P and L, the values reached from the system when 

the host population reaches 50% of its environmental carrying capacity.  
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We considered these two scenarios to take into account their epidemiological and 

demographic differences, as they differently affect the feasibility and efficacy of 

management and intervention strategies.  

Dynamics of the system: mathematical model 

Following Anderson and May [12], two deterministic models based on a system of three 

coupled differential equations have been implemented. Firstly, with the base model, we 

explored the dynamics of the system without any intervention, and secondly we 

introduced into the system the intervention strategies aimed at eliminating 

environmental B. procyonis eggs.  

The dynamics of the base model, without any human intervention, can be described 

according to the following system of equations and are represented by the flow chart in 

Fig 1A: 

{
  
 

  
 

𝑑𝐻

𝑑𝑡
= (𝑏 − 𝑑)𝐻 (

𝐾 − 𝐻

𝐾
)                                                                                                                  

   
𝑑𝑃

𝑑𝑡
= 𝛽𝐸𝐻 − (𝑑 + 𝜇1)𝑃 − 𝜇2𝐻(

𝑃2

𝐻2
𝑘 + 1

𝑘
+
𝑃

𝐻
)                                                                    (1)

𝑑𝐸

𝑑𝑡
= ℎ𝑃 − 𝛽𝐸𝐻 − 𝐸                                                                                                                           
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Figure 1. Modelled interactions between raccoons (Procyon lotor) and Baylisascaris 

procyonis. (A) Schematic representation of the interaction between P. lotor, the adult 

stage of the parasite B. procyonis and its free-living stages, illustrating the biological 

processes included in the model. (B) Schematic representation of the interaction 

between P. lotor and B. procyonis, their biological processes, biological parameters 

included in the model and the simulated intervention strategies.  

 

In this model, host population size (system 1, equation 1) increases with raccoons’ birth 

rate (b) and decreases with death rate (d). Density-dependence in host population 

growth is taken into account by including in the model a fixed carrying capacity of the 

environment (K). Since B. procyonis impacts on raccoon health are rarely described and 

age resistance and/or intestinal immunity with self-cure are considered to be the main 
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limiting process on B. procyonis number in raccoons [21], we assumed that the effect of 

the parasite on host survival and reproduction at the population level is negligible, and 

thus host population size is not affected by the parasite. Parasite population (system 1 

equation 2) increases through the rate of ingestion (𝛽) of infective eggs by the hosts, and 

decreases due to the combined effects of parasite death rate (𝜇1), host death rate (d), 

and parasite density-dependent mortality (𝜇2), which depends in turn on the aggregated 

distribution of parasites within the host population [33]. The parameter k affecting 

parasite density-dependent mortality provides an inverse measure of the extent of 

parasite aggregation [34]. Under natural conditions, raccoons may acquire infections 

even through predation of paratenic infected host, such as small mammals, but because 

of the central role of raccoon latrines in the transmission dynamics of B. procyonis [35], 

here we considered infection only through ingestion of environmental eggs. Finally, egg 

population size (system 1, equation 3) increases with adult female parasites fecundity 

rate (h), and decreases through both natural egg mortality (𝛿), and host ingestion rate 

(𝛽). Because of the lack of information on the effective proportion of ingested infective 

larvae that develop to the adult stages within the host, we considered all ingestions of 

eggs resulting in a successful parasite establishment. 

Simulation of intervention strategies:  

In order to explore the effects of intervention strategies on B. procyonis eggs, the base 

model introduced above has been modified as described by the following system of 

equations and by Fig 2B: 
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{
  
 

  
 

𝑑𝐻

𝑑𝑡
= (𝑏 − 𝑑)𝐻 (

𝐾 −𝐻

𝐾
) − 𝜌𝐻                                                                                                           

   
𝑑𝑃

𝑑𝑡
= 𝛽𝐸𝐻 − (𝑑 + 𝜇1 + 𝜎 + 𝜌)𝑃 − 𝜇2𝐻 (

𝑃2

𝐻2
𝑘 + 1

𝑘
+
𝑃

𝐻
)                                                                 (2)

𝑑𝐿

𝑑𝑡
= ℎ𝑃 − 𝛽𝐸𝐻 − (+ 𝜑)𝐸                                                                                                                    

 

Raccoon depopulation affects the system by removing hosts and the parasites they 

harbour by a quantity that depends on the host removal rate (𝜌). Anthelmintic treatment, 

by killing adult parasites harboured in raccoons by a quantity that depends on the 

anthelmintic administration rate (σ), only affects the parasite population. Similarly faeces 

removal, only acts on the egg population by decreasing its size by a quantity that depends 

on faeces removal rate (𝜑). 

It is important to notice that once host population becomes extinct, the parasite 

population will die out too, reducing the model to the following equation: 

𝑑𝐸

𝑑𝑡
= −𝐸                                                                                                                                  (3) 

Parameters estimation 

Parameters used in the simulations were derived from published data. The mean lifespan 

of P. lotor is assumed as 2.3 years (839.5 days) [36], and the mean number of offspring 

as 3.8 youngs/female per year (0.01041/day) [35]. Thus, considering a sex ratio of 1:1 

[37], daily host birth rate b is 0.0052, and daily host mortality d is 0.00123/day. Population 

density of racoons is highly dependent on habitat conditions, with reported values 

ranging from 1 to 100 raccoons/km2 in the wild and exceeding 100/km2 in urban areas 

[38–40]. For this reason, for both scenarios we arbitrarily chose an environmental 

carrying capacity (K) of 1000, in order to simulate a plausible population unit of 
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intervention for both an introduced and a native raccoon population. We estimated B. 

procyonis lifespan based on data available for closely related ascarid nematodes such as 

Ascaris lumbriocoides and Baylisascaris shroederi. Both these species have a 1-2 years 

lifespan (365-730 days) [41,42], thus daily death rate of adult parasites μ1 was set at 

0.001369 individuals/day. We used 0.393 as parameter of parasite aggregation (k), in 

accordance with the measure estimated for the ascarid Toxocara cati [43]. The 

reproductive output of a single B. procyonis female in one day (h) is reported to be 

179,000 eggs/day [21,44] and incorporates egg production rate, scaled by the 

development time from egg to infecting stage. Egg mortality rate 𝛿 was chosen in order 

to allow a complete extinction of eggs within 5 years [45] when simulating with equation 

(3) and an initial egg number of 7.97x107 eggs (i.e. the number of eggs at the equilibrium 

of the system). Since the estimation of μ2 and β from literature data was unfeasible, we 

arbitrarily identified those values with successive simulations, aiming at the achievement 

of the equilibria of the system with a mean abundance for B. procyonis of 15 

parasites/host [21].  

Intervention strategy rates 

Host removal rate 𝜌, anthelmintic treatment rate 𝜎 and faeces removal rate 𝜑 represent 

the proportion of raccoons, parasites and eggs removed from the system in one day to 

the total number of raccoons, parasites or eggs present on that day. Rates can vary 

between 0 and 1, with 0 representing the removal of 0 hosts/parasites/eggs, and 1 

represents the removal of the whole raccoon/parasite/egg population (100%). In order 

to comply with practical needs, when simulating raccoon depopulation in the native 

scenario we did not consider the possibility of host extinction, whereas in case of an 
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introduced population we analysed both possibilities: the reduction of raccoon 

population without extinction, and the extinction of raccoons. Performing an analysis of 

the equilibria of the system (Supplementary materials S5) based on the actual 

parameters, the boundary of  discriminating between these two situations resulted 

3.97x103, meaning that by removing more than 0.397% hosts/day, the host population 

goes towards extinction. 

The full list of parameter values is given in Table 1, the time unit used is one day. 

Sensitivity analysis on 𝜌, 𝜎 and 𝜑:  

To evaluate the effect of intervention strategies, we performed a global sensitivity 

analysis to determine the effect of parameters 𝜌, 𝜎 and 𝜑 on the number of 

environmental eggs in the native population scenario. Since we did not investigate 

possible combinations of intervention strategies, the sensitivity analysis was carried out 

by moving one parameter at a time. Parameters 𝜎 and 𝜑 were left free to vary between 

their minimum and their maximum (i.e. simulating the elimination of 0-100% 

population/day) following a uniform distribution. The parameter 𝜌 was left free to vary 

between 0 and 0.00397, in order to avoid the extinction of hosts and the consequent shift 

from the system of three populations (system 2) to the system with only the egg 

population (equation 3). The final mean egg number (averaged over the simulation 

interval) was used to evaluate the effects of the changes in parameter values. The 

simulation interval for the sensitivity analysis was considered as 50 years, and simulations 

were performed 500 times for each intervention strategy. Global sensitivity analysis was 

carried out using the function “modCRL” of the package FME on R software [32]. 
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Table 1. Parameters included in the models.  

Parameter Interpretation Value Source 

H Total number of host population - - 

P 
Total number of parasite 

population 
- - 

E 
Total number of free-living 

infective stage population (eggs) 
- - 

K Host population carrying capacity 1000 - 

b 
Instantaneous birth rate of host 

(day-1) 
0.0052 3.8 young/female/year [35] 

d 
Instantaneous death rate of host 
due to all causes except parasites 

(day-1) 
0.00123 2.3 years lifespan [36] 

𝜇1 
Instantaneous death rate of adult 

parasite (day-1) 
0.001369 1-2 years lifespan [41,42] 

𝜇 2 
Instantaneous death rate of adult 

parasite due to density 
dependent effects (day-1) 

0.0009 - 

h 
Instantaneous rate of production 
of infective parasite eggs (worm-

1day-1) 
179 000 179000 eggs/worm/day [21,44] 

𝛽 
Instantaneous rate of ingestion 

of free-living infective eggs (host-

1day-1) 
4.25e-12 - 

k 
Aggregation parameter of the 
negative binomial distribution 

0.393 [44] 

𝛿 
Instantaneous death rate of eggs 

(day-1) 
0.015 - 

𝜌 Host removal rate (day-1) - - 

σ Anthelmintic efficacy (day-1) - - 

φ Eggs removal rate (day-1) - - 
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Results 
 

Dynamics of the system 

The base model, in the absence of human intervention and after the introduction of two 

raccoon individuals with a parasite intensity of 5 B. procyonis each, predicts a globally 

sigmoid growth curve for all the three populations (Fig 2). However, the dynamics of 

parasite and egg populations in the first four years show a slight decrease in their size 

followed by a sigmoid growth (Fig 2D and F).  

Simulations indicate that the base system reaches the equilibrium around 20 years, when 

the raccoon population counts 1000 individuals, the parasite population 14,772 parasites 

and the egg population 1.7x1011 eggs (Fig 2A, C and E). The 50% of the carrying capacity 

for the host population (500 raccoons) is reached in about 4 years from the beginning of 

the simulations, with a total number of 11 parasites and 7.97x107 eggs (Fig 2B, D and F). 



 

 

137 

 

Figure 2. Raccoons-Baylisascaris procyonis dynamics: the base model. Temporal 

dynamics of raccoon population and B. procyonis until the achievement of the steady 

state of the system (A, C and E ); and until the host population reaches 500 individuals (B, 

D and F ). 
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Sensitivity analysis.  

The sensitivity analysis showed that all the three parameters can affect the number of 

eggs. The parameter which variation has the greatest impact on the egg number is host 

removal (𝜌), followed by parasite removal (𝜎) and lastly egg removal (𝜑) (Fig 3).  

 

Figure 3. Sensitivity analysis: sensitivity analysis of parameters 𝜌, 𝜎 and 𝜑 on the mean 

egg number. 

 

Intervention strategies in the “native population scenario” 

Raccoon depopulation. Without bringing the host population to extinction (i.e. host 

removal between 0 and 0.397% hosts/day), a removal of less than 0.36% raccoons/day 

leads to a progressive reduction, but not to the elimination, of the egg population (Fig 4A 

and B). When removing more than 0.36% raccoons/day, the elimination of the egg 

population is achieved and the higher is the coverage, the faster is their elimination (Fig 

4B). Coverages between 0.39 and 0.397% raccoons/day lead to the elimination of the egg 

population in about 20-22 years (Fig 4B). 

Anthelmintic treatment. Any treatment coverage that removes more than 5.5% 

parasites/day leads to the egg population elimination in less than 50 years (Fig 4C). 

Coverages that remove more than 7.5% parasites/day lead the egg population to zero in 
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less than 20 years, and to reach the elimination of eggs in less than ten years it is 

necessary to use coverages that remove more than 10% parasites/day. The elimination 

of eggs can be achieved between 5 and 6 years with coverages higher than 30% 

parasites/day (Fig 4D). 

Environmental faeces removal. Treatment coverages that remove more than 50% 

eggs/day lead to the elimination of the egg population in less than 50 years, but the 

elimination of eggs through faeces removal can never be reached in less than 19 years 

(Fig 4F).  
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Figure 4. Performance of intervention strategies against Baylisascaris procyonis: the 

native population scenario. Efficacy (expressed as percentage of persisting eggs) and 

efficiency (expressed as time needed to reach the steady state of the system) of host 

removal (A and B), anthelminthic treatment (C and D) and faeces removal (E and F). 
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Intervention strategies in the “introduced population scenario” 

Raccoon depopulation. Without bringing the host population to extinction (i.e. by 

removing less than 0.397% hosts/day), we need to remove more than 0.36% hosts/day 

to achieve the elimination of the egg population in less than 50 years (Fig 5A), and the 

time needed to achieve it, is included between 19 years and 43 years (Fig 5B). Within this 

range of coverages (from 0 to 0.397% hosts/day), the efficiency of the treatment 

increases linearly, with a progressive reduction in the time needed to eliminate eggs up 

to a minimum of 19 years. Assuming that the complete extinction of raccoons is instead 

an allowed outcome, the more hosts/day we remove, the faster we can reach the 

equilibrium, with a minimum of 3 years needed for egg elimination when removing 100% 

hosts in one day. Removing between 0.397 and 0.5% hosts/day we need more than 10 

years to eliminate the egg population, whereas when removing more than 0.5% 

hosts/day less than 10 years are required. (Fig 5B).  

Anthelmintic treatment. By using an anthelmintic drug treatment, we can achieve the 

elimination of the egg population in less than 50 years only when applying coverages that 

remove more than 5.5% parasites/day (Fig 5C and D). At such rates, the higher are the 

drug treatment rates, the faster is the elimination of eggs (Fig 5D). To eliminate eggs in 

less than 20 years, it is necessary to use a coverage that removes more than 6% 

parasites/day, and to do it in less than 10 years, a coverage that removes more than 7.5% 

parasites/day. Rates that remove more than 30% parasites/day take 3-4 years to reach 

the elimination of eggs (Fig 5D).  

Environmental faeces removal. Using faeces removal as a control strategy, the 

elimination of the environmental egg population is achieved in less than 50 years with 
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removal coverages that remove more than 30% eggs/day, and in less than 20 years with 

coverages that remove more than 50% eggs/day (Fig 5F). 

 

Figure 5. Performance of intervention strategies against Baylisascaris procyonis: the 

introduced population scenario. Efficacy (expressed as percentage of persisting eggs) and 

efficiency (expressed as time needed to reach the steady state of the system) of host 

removal (A and B), anthelminthic treatment (C and D) and faeces removal (E and F). 
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Comparison of intervention strategies 

The sensitivity analysis shows that all the examined intervention strategies can eliminate 

the B. procyonis egg population (Fig 3). Additionally, the comparison of the efficacy of the 

three intervention strategies (Table 2) shows that all the three techniques can eliminate 

the egg population within a 50-years time frame. However, their efficiency varies largely 

depending on the simulated treatment coverage: raccoon depopulation requires the 

lowest coverage both to reach egg elimination and to allow it in the shortest time, while 

faeces removal requires the highest treatment coverage. Anthelmintic treatment has an 

intermediate efficiency.  

  



 

 

144 

Table 2. Comparison of years needed to eliminate Baylisascaris procyonis egg population 

by applying different intervention strategies (host removal, anthelminthic treatment and 

faeces removal) with different treatment coverages (i.e. percentage of 

hosts/parasites/eggs removed per day), on both native and introduced raccoon (Procyon 

lotor) host populations. 

Treatment 
coverage 

(%) 

Native population Introduced population 

Time (yrs) to reach equilibrium through: Time (yrs) to reach equilibrium through: 

host removala 
anthelmintic 

treatment 
faeces removal host removal 

anthelmintic 
treatment 

faeces removal 

0.01 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 

0.05 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 

0.1 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 

0.2 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 

0.3 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 

0.35 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 
no egg 

eliminationc 

0.36 44 
no egg 

eliminationc 
no egg 

eliminationc 
43b 

no egg 
eliminationc 

no egg 
eliminationc 

0.37 30 
no egg 

eliminationc 
no egg 

eliminationc 
31b 

no egg 
eliminationc 

no egg 
eliminationc 

0.39 22 
no egg 

eliminationc 
no egg 

eliminationc 
21 b 

no egg 
eliminationc 

no egg 
eliminationc 

0.396 20 
no egg 

eliminationc 
no egg 

eliminationc 
20 b 

no egg 
eliminationc 

no egg 
eliminationc 

0.397 20 
no egg 

eliminationc 
no egg 

eliminationc 
19 b 

no egg 
eliminationc 

no egg 
eliminationc 

0.4 - 
no egg 

eliminationc 
no egg 

eliminationc 
19 

no egg 
eliminationc 

no egg 
eliminationc 

0.5 - 
no egg 

eliminationc 
no egg 

eliminationc 
11 

no egg 
eliminationc 

no egg 
eliminationc 

0.8 - 
no egg 

eliminationc 
no egg 

eliminationc 
6 

no egg 
eliminationc 

no egg 
eliminationc 

1 - 
no egg 

eliminationc 
no egg 

eliminationc 
5 

no egg 
eliminationc 

no egg 
eliminationc 

3 - 
no egg 

eliminationc 
no egg 

eliminationc 
3 

no egg 
eliminationc 

no egg 
eliminationc 

5 - 
no egg 

eliminationc 
no egg 

eliminationc 
3 

no egg 
eliminationc 

no egg 
eliminationc 

5.5 - 41 
no egg 

eliminationc 
3 28 

no egg 
eliminationc 

7.5 - 15 
no egg 

eliminationc 
3 10 

no egg 
eliminationc 

10 - 10 
no egg 

eliminationc 
3 7 

no egg 
eliminationc 

30 - 6 49 3 4 39 

50 - 5 26 3 4 20 

80 - 5 20 3 3 16 

100 - 5 19 3 3 14 

a treatment coverages causing hosts’ extinction has not been investigated  

b no host extinction 
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c elimination of the egg population/equilibrium of the system is not reached within 50 years 
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Discussion 

In the present study, by modelling host-parasite interactions, we analysed the efficacy 

and the efficiency of alternative intervention strategies to control the environmental 

persistence of a zoonotic macroparasite infective stage. The analyses showed that both 

efficacy and efficiency of the intervention primarily depend on the treatment coverage, 

and only secondary on the chosen treatment and scenario.  

The lack of background information when dealing with neglected emerging diseases 

represents a challenge when assessing control measures, in particular for wildlife 

originated diseases, since monitoring of wildlife species is often limited [8,11]. The use of 

mathematical modelling can be helpful to understand the dynamics underlying infectious 

diseases, providing a tool for an a priori evaluation of such dynamics and interactions, 

and widely contributing to the design of control programs of diverse infections, without 

the need of demanding empirical studies [18,34,46,47]. For instance, the use of 

mathematical models in the development of control programs for measles, pertussis or 

rubella produced useful predictions concerning the level of vaccination coverage 

required to eradicate them, helping in the determination of the relative merits of 

different policies for the control of these infections [45,48]. Despite this, mathematical 

models are still largely underexploited in the planning of public health policies and 

disease control strategies [20]. 

Our work aimed at supporting the use of mathematical models as a pre-intervention 

approach to assess the effectiveness of different control strategies against emerging 

diseases. By simulating the effect of different intervention strategies on parasite 
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population dynamics, through their direct inclusion into the system, this approach 

provides results that can serve as a base for the a priori evaluation of an intervention 

strategy program.  

While we used raccoons and their zoonotic helminth B. procyonis as a model system to 

identify the most effective intervention strategy to reduce parasitic environmental 

contamination, our simulations can be easily generalized to different macroparasitic 

diseases, including most diseases caused by ascarids and other soil-transmitted 

helminths. We chose to use a pre-existing and already validated model to highlight how 

even the application of simple and existing models can provide useful information about 

systems. This holds especially true when parameters and biological processes are hard to 

estimate due to a lack of field data, and any modification of base models can be both 

challenging to perform and less informative than simpler models. Moreover, the use of a 

validated model can extend the use of mathematical modelling to a wider spectrum of 

research areas, not limited to mathematicians and field experts.  

With respect to the specific simulations performed on the raccoon-B. procyonis system, 

in both the native and introduction scenario all the treatments were potentially effective 

in reaching the elimination of the egg population within 50 years, but both their efficacy 

and efficiency varied greatly depending on the applied treatment coverage. The 

performed sensitivity analysis indicated host removal as the most effective strategy, 

while faeces removal had the lowest impact on the number of eggs. In agreement with 

this, the analysis of the intervention strategies via model simulations showed that faeces 

removal is the less efficient intervention strategy, as both host removal and anthelmintic 

treatment were faster in eliminating the egg population. However, anthelmintic 
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treatment requires a higher effort than host removal to reach an effective result. 

Ultimately, host depopulation is thus the treatment that requires the lowest treatment 

coverage to provide the elimination of eggs in both native and introduction scenarios 

and, together with anthelmintic treatment, shows also faster results. However, the time 

needed to reach the elimination of eggs depends on the simulated scenario. This result 

highlights the importance of taking into account differences between scenarios when 

choosing the intervention strategy to apply, although choosing an appropriate treatment 

coverage remains the most important step to achieve the elimination of the egg 

population. Moreover, the great difference in the efficiency of treatments resulting from 

even a slight change in coverages, as it happens between 0.37 and 0.39% hosts/day for 

host removal or between 5.5 and 7.5% parasites/day for anthelmintic treatment, 

demonstrates the importance of an a priori evaluation of the effects of intervention 

strategies.  

Currently, raccoon depopulation and anthelmintic treatment are indeed the most 

frequently applied intervention strategies to reduce B. procyonis environmental 

contamination, and many authors suggested them as the most effective techniques 

[21,26,30,31]. However, a formal framework to objectively assess their efficacy and 

efficiency was lacking. With our model, we provide a quantitative analysis of both the 

efficacy and efficiency of these strategies, providing indications about the effort needed 

to reach the desired result without wasting time and economic resources.  

However, it must be underlined that the choice of the most appropriate intervention 

strategy cannot overlook the need of an accurate analysis of its logistical feasibility under 

field conditions. A mathematical model can provide information to identify the most 
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efficient method, but its application also needs the participation of field scientists and 

technicians, to evaluate the logistical feasibility and applicability of the intervention 

strategies through a cost-benefit analysis.  

However, for a more complete outline of an intervention strategy, combinations of 

different treatments, or of discontinuous treatments (such as a monthly administration 

of anthelmintic baits) should be simulated. A continuous daily treatment, as we 

simulated, allowed for a more explicit comparison between intervention strategies, but 

when assessing an intervention strategy, it is advisable to include a realistic time frame 

between two consecutive treatments. Finally, in addition to the insights provided by the 

model on B. procyonis control, the base model simulating raccoons-B.procyonis dynamics 

without any human intervention provides interesting information about the system as 

well. For instance, the simulation of the base model in the introduction scenario shows 

that the adult parasite population growth is markedly slower than the growth of both 

host and egg populations. Indeed, based on our estimates, while both host and egg 

population sizes increase very fast soon after simulating the introduction of raccoons, the 

number of adult parasites initially decreases. This relevant difference in the dynamics of 

the three populations highlights the need of a deeper analysis of the dynamics of the 

system at the early stages of introduction. When dealing with recently established 

raccoon populations, an early detection of B. procyonis is indeed fundamental to limit 

environmental contamination and reduce the infection risk for humans. However, the 

low parasite abundance during the first stages of raccoon invasion suggested by our 

simulations could hinder B. procyonis detection and must therefore be taken into account 

when implementing surveillance plans. This unexpected dynamic of the parasite 
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population could depend on the initial low number of hosts eliminating eggs, which will 

in turn determine a small egg population and, overall, a low parasite transmission rate. 

The inclusion of a stochastic model to predict more accurately the early stages of raccoon 

introduction, and the inclusion of specific field data can represent an implementation of 

the study, allowing for a more precise estimate of biological and epidemiological 

parameters, resulting in a more detailed and realistic simulation of population dynamics 

and in the inclusion of diverse mortality or transmission rates for adult parasites and eggs. 

Finally, we focussed our study on the effects of the intervention strategies on the system, 

but a wider sensitivity analysis including rates representing parameters other than 𝜌, 𝜎 

and 𝜑 could be performed to further investigate which biological processes affect the 

base system the most. In conclusion, our simulations suggest host depopulation as the 

most efficient strategy to control environmental contamination by B. procyonis eggs, but 

they also highlight that, no matter the chosen technique, the treatment coverage is the 

most important parameter determining the effectiveness of control strategies. This work 

highlights the potential benefits of applying mathematical modelling in epidemiology and 

public health management, showing their efficiency as a tool to analyse disease dynamics 

and implement time- and cost-effective intervention strategies, even when a complete 

knowledge about the system is lacking and an empirical approach is unpractical. 
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Supplementary materials S5 

System for analytical computation of equilibria  

{
  
 

  
 𝐻̂ = 𝐾

(𝑏 − 𝑑 − 𝜌)

(𝑏 − 𝑑)
                                                            

𝑃̂ = (
𝐻̂𝛽ℎ

𝐻̂𝛽 + 𝜑𝛿
− (𝜎 + 𝜇1 + 𝑑 + 𝜌 + 𝜇2))(

𝐻̂𝑘

𝜇2(𝑘 + 1)
)

𝐸̂ =
ℎ𝑃̂

𝐻̂𝛽 + 𝜑 + 𝛿
                                                                      

                                                                             (1) 

Where Ĥ, P̂ and Ê respectively represent the number of hosts, parasites and eggs at 

equilibrium. 
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Conclusions and Perspectives 

With the present work we investigated through mathematical modelling two wildlife-

borne infections, West Nile virus (WNV) and baylisascariasis, with the double aim of 

exploring the mechanisms promoting infection spread and assessing efficacy of available 

intervention strategies to reduce human infection risk.  

Infectious diseases have always been, and still are, one of the main threat for human 

beings, having a great impact on both global health and worldwide economies. Animals 

in particular are an important source of infection for human beings, representing 60.3% 

of all emerging diseases. Several zoonoses can involve multiple species in their 

transmission cycles thus making them complex to be investigated, and consequently 

impairing our full comprehension of mechanisms underlying their spread. Thus, despite 

of the importance of preventing human infections, the interactions among populations 

involved in infection cycles and the possible obstacles in data collection, can hamper their 

survey and control. Mathematical modelling applied to epidemiological studies, in 

contrast to the classical epidemiology, allows a deeper understanding of mechanisms 

underlying infection spread and interactions among populations, thus providing us with 

tools to explore processes underlying infection dynamics. For this reason, we here 

applied mathematical modelling to explore West Nile disease (WND) and baylisascariasis, 

two emerging infectious zoonoses that still present knowledge gaps related to the lack of 

knowledge of their transmission mechanisms.  

WND is a mosquito-borne infection caused by West Nile virus (WNV), emerging and re-

emerging in several countries, Italy included. It involves a wide range of bird species as 
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hosts, thus impairing our possibility to fully comprehend, and then prevent, its spread. In 

chapter 2 and 3 we then addressed at some of the existing knowledge gaps.  

With chapter 2, we explored through a sensitivity analysis those epidemiological 

mechanisms, represented by model parameters, that have the major impact on infection 

dynamics. We showed that among them, birds recovery rate and mosquito biting rate 

have the major impact on infection spread. These results highlight the need to 

concentrate further investigations to better define among all species-specific rates, birds’ 

recovery rate and mosquito biting rate, which highly influence infection spread, while 

others as birds susceptibility and their competence to infection deserve less attention 

due to their negligible influence on infection spread. This result therefore allows us to 

prioritise investigations into the most impactful parameters and mechanism, thus 

achieving the greatest improvement in our knowledge of WNV dynamics through the 

least number of experiments and with the minimal effort.  

In chapter 3, we explored through theoretical simulations the role in WNV spread of 

different population dynamics of birds. We showed that the only variable affecting WNV 

spread is the avian abundance from June on. Moreover, this effect only affects the 

infection prevalence into the mosquito population, and not the timings of infection 

spread. With this analysis, we also posed the attention on the importance of 

understanding if mosquito biting rate is driven primarily by birds’ abundance or by 

mosquito feeding preference. Indeed, results obtained rely on the choice to include in 

model simulations only one competent avian species on which mosquitoes feed on. It 

implies the choice that mosquito biting rate depends by mosquito preference towards 

certain species and not by species relative abundance, highlighting the need for further 
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investigations. With these two chapters, we also highlighted that the involvement of 

diverse bird species in WNV spread and maintenance is crucial. Both epidemiological and 

demographic characteristics of birds can heavily influence WNV spread, thus highlighting 

the direction for deepen our knowledge about the role of different bird species to 

understand and predict it. In particular, emerged the urgence to assess new studies to 

explore the recovery rate of birds and mosquito biting rate on different avian species to 

identify the most suitable species to spread WNV in our study area. Moreover, we 

highlighted the need of investigating if mosquito biting is affected by avian species 

abundance or not. These studies stimulate the integration with further theoretical 

modelling of birds’ dynamics and statistical analyses on recorded birds abundance, in 

order to have a clearer understanding of the role of species involvement in WNV spread 

and of birds dynamics role in infection mechanisms.  

The following chapters 4 and 5 exploit the potential of mathematical modelling to answer 

to “what if?” question and explore possible intervention strategies to reduce human 

infection risk.  

In chapter 4 we investigate six different intervention strategies to reduce the risk for 

human beings to be infected by WNV. We estimated a base infection risk for human 

beings, based on the number of infectious circulating mosquitoes, and then calculated 

the reduction of that risk following the application of six intervention strategies. The 

tested strategies are: i) the elimination of the overwintering mosquito population, ii) a 

larvicide treatment, iii) adulticide treatment, iv) the reduction of mosquito breeding sites 

v) the active bird culling and vi) the reduction of birds’ breeding sites. The mathematical 

simulations showed that the most efficient interventions are those reducing vector 
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abundance if compared with intervention on the avian population, and especially are: the 

reduction of mosquitoes breeding sites and the active elimination of eggs and larvae. One 

of the strengths of this approach is to provide a quantitative analysis of the efficacy of 

interventions preventing demanding and time consuming field experiments. 

In chapter 5 we focused on interventions against baylisascariasis. Baylisascariasis is a 

zoonosis caused by the accidental ingestion of eggs of B.procyonis, an helminth that has 

raccoons (Procyon lotor) as its definitive host. Due to the recent spread of raccoons in 

several new areas, Italy included, baylisascariasis can now be considered an emerging 

disease in several countries of both Europe and Asia. Despite of that, an elective control 

strategy is not available to reduce the risk of human infection which develop into severe 

syndrome. We both assessed the efficacy (i.e. capacity of an intervention strategy to 

reduce the number of infective stage into the environment) and the efficiency (i.e. the 

time needed) of intervention strategies directed to the host population (e.g. active 

racoons culling), the parasite population (e.g. anthelmintic treatment of raccoons) and 

infective stages population (e.g. faeces removal from environment). We showed that host 

removal is the best intervention to fast reducing the risk caused by B. procyonis. 

Moreover, we showed that treatment coverage chosen highly affects obtained results, 

highlighting the importance of a careful assessment of interventions.  

With these two chapters then, we show that mathematical modelling can be of aid in 

practical assessment of intervention strategies, especially against emerging infectious 

disease, like WN and baylisascariasis are. For both these chapters, an additional 

deepening of efficacy of intervention strategy could be performed by also including 

combinations of interventions or specific intervention intensities. 
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The results obtained in these chapters, highlight the importance of including mechanistic 

relationship of systems in epidemiological investigations. Their inclusion indeed can help 

us to understand the extent to which an event can influence another consequential event 

and allow us to explore theoretical scenarios, like the use of intervention strategies, 

preventing or sustaining field or laboratory experiments. This possibility has a great 

potential in investigating emerging infectious diseases especially but can also be 

beneficial when a strategy is already available and a comparison or testing with other 

interventions is needed. With this work we then further show that mathematical 

modelling can provide us with an efficient and adaptable tool to support epidemiological 

studies, providing solid and objective results on which to base public health choices.  

However, despite their potential, the application of mathematical modelling to guide 

public health choices is still limited, and they tend to be relegated to a niche of theoretical 

works. The reason why of this relegation can be attributed to different causes. To build 

models that can be efficiently applied to epidemiological studies, a strict collaboration 

and interaction among different expertise is necessary, but models’ complexity do not 

plays in its favour. Their intrinsic complexity indeed tends to make them hard to be 

managed and understood except for insiders, thus limiting the number of people prone 

to use this tool. This can lead them to be relegated to their niche and gradually loose 

contact with concrete problems to solve. Moreover, the expectation when using 

mathematical modelling might be to have a perfect prediction, or analysis, of 

phenomena, that instead is not possible. All models are simplification of reality, and for 

this reason none of them can capture all facets of a dynamic process, but each model can 

catch some aspect of the investigated system thus helping us to deepen our knowledge 
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about that specific aspect. On the one hand then it is necessary a closest, less pretentious, 

and more aware, approach of public health institutions to mathematical modelling. On 

the other hand, the future perspective for mathematical modelling is to become more 

and more entrenched with field and laboratory experiments in order to be more 

applicable and increasingly involved in the choices of public health. 

These studies emphasize the urgence of a closer communication between research and 

public health institutions in to develop this, for now theoretical, tool and use it in practice 

to choose the most suitable intervention to be performed, especially at light of the 

current intense intervention plan ongoing for both infections. To pursue these future 

aims, the cooperation of professionals in modelling, analysis and data collection, but also 

of different expertise including ornithologists, entomologists and public health 

institutions, is fundamental, but makes these perspectives challenging. Despite of that 

the results obtained provide us with objective proves of the potential of these 

investigations to help in better understand, and then potentially reduce, WNV and 

baylisascariasis spread.  

In conclusion, the potential of mathematical modelling is undeniable. They allow a deeper 

comprehension of dynamics of infectious diseases by including spreading mechanisms 

and non-linearity of interactions among individuals and subgroups of populations. For 

this reason, their support to epidemiological studies can be of help for public health 

choices. On the other hand, it is fundamental for modellers to stay connected with 

concrete needs of public health and not to get lost in self-referential lucubration. The 

future development for mathematical modelling is a closer cooperation of different 

expertise in order to make them used to serve health institutions.  
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