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Abstract: The development of the hyperspectral remote sensor technology allows the acquisition of
images with a very detailed spectral information for each pixel. Because of this, hyperspectral images
(HSI) potentially possess larger capabilities in solving many scientific and practical problems in
agriculture, biomedical, ecological, geological, hydrological studies. However, their analysis requires
developing specialized and fast algorithms for data processing, due the high dimensionality of the
data. In this work, we propose a new semi-supervised method for multilabel segmentation of HSI
that combines a suitable linear discriminant analysis, a similarity index to compare different spectra,
and a random walk based model with a direct label assignment. The user-marked regions are used
for the projection of the original high-dimensional feature space to a lower dimensional space, such
that the class separation is maximized. This allows to retain in an automatic way the most informative
features, lightening the successive computational burden. The part of the random walk is related to a
combinatorial Dirichlet problem involving a weighted graph, where the nodes are the projected pixel
of the original HSI, and the positive weights depend on the distances between these nodes. We then
assign to each pixel of the original image a probability quantifying the likelihood that the pixel (node)
belongs to some subregion. The computation of the spectral distance involves both the coordinates in
a features space of a pixel and of its neighbors. The final segmentation process is therefore reduced
to a suitable optimization problem coupling the probabilities from the random walker computation,
and the similarity with respect the initially labeled pixels. We discuss the properties of the new
method with experimental results carried on benchmark images.

Keywords: hyperspectral image segmentation; linear discriminant analysis; spectral similarity;
random walks

1. Introduction

Hyperspectral imaging systems have gained a great amount of attention from re-
searchers in the past few years. The sensors of these systems allow the simultaneous
acquisition of hundreds of spectral wavelengths for each image pixel. This detailed spectral
information increases the possibility of more accurately discriminating objects, materials,
or regions of interest. Furthermore, the fine spatial resolution of the sensors enables the
analysis of small spatial structures in the image. The main property of the Hyperspectral
images is the strong resolving power for fine spectra, then they have a wide range of
applications in agriculture [1,2], food industry [3], geosciences [4,5], biomedical applica-
tions [6,7], document image processing [8], environment [9,10], and others. However, the
analysis of HSI requires developing specialized methods and algorithms for data process-
ing [11–14]. The main methods for the processing of the hyperspectral remote sensing
images include image correction [11], noise reduction [15], dimensionality reduction [12],
and classification [16–19].
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In principle, the spectral information from the available hundreds of narrow bands
collected by hyperspectral sensors can help discriminate among spectrally similar object
pixels. Then, the accurate discrimination of different regions in the image is possible
and the hyperspectral image classification is one of the most active part of the research
in the hyperspectral field [18,20–22]. However, the HSI technology still faces a series of
challenges, mainly including the following problems that need to be solved. The high
dimensionality of the hyperspectral data, for example, the spectral reflectance values of
hyperspectral images collected by airborne or space-borne imaging spectrometers, is up
to hundreds of dimensions. Moreover, factors such as sensors, atmospheric conditions,
surrounding environment, and composition and distribution of ground features affect
the spatial variability of spectral information. The interference of noise (e.g., Poisson
noise [23,24]) and background factors also seriously degrades the quality of the collected
data and the corresponding classification accuracy of HSI. Finally, in practical applications,
it is extremely difficult to obtain labeled samples to be used in the classification work of a
hyperspectral image. The intrinsic properties of hyperspectral images need to be addressed
specifically because conventional classification algorithms made for multispectral images
do not adapt well to the analysis of hyperspectral images [25].

Several approaches have been proposed for classification of HSI. A subclass of classi-
fiers is based on probabilistic approaches by using statistical tools to find the best class for
a given pixel providing a probability of the pixel being a member of each of the possible
classes. For instance, the multinomial logistic regression (MLR) classifier [26] supplies a
degree of plausibility for such classes. In the sparse version of MLR a Laplacian prior to
enforce sparsity is adopted which leads, with some computational limitations, to good
generalization capabilities in HSI classification. More recently, an improved version of this
classifier has also been proposed [27] using a subspace based method. The idea of applying
subspace projection approach relies on the assumption that the samples within each class
can approximately lie in a lower-dimensional subspace.

Due to their successful application in several problems of pattern recognition neural
networks have also attracted many researchers in the field of the classification of hyper-
spectral images [28–31]. The main advantage of these approaches comes from the fact
that neural networks do not need prior knowledge about the statistical distribution of the
classes. They need the availability of feasible training techniques for nonlinearly separable
data and their use has been affected by their training complexity as well as by the number
of parameters that need to be tuned. Several neural network-based classification methods
have been proposed in the literature that consider both supervised and unsupervised non-
parametric approaches [32,33]. Recently, the extreme learning machine (ELM) algorithm
has been successfully applied as nonlinear classifiers for hyperspectral data [34,35], and
have shown remarkable efficiency in terms of accuracy and computational complexity.
Some deep models have also been proposed for hyperspectral data feature extraction and
classification [16]. The architecture design is the crucial part of a successful deep learning
model together with the availability of an appropriate broad training set.

Another example of a supervised classification approach is support vector machines
(SVMs). They have been widely used for the classification of hyperspectral data due
to of their ability to handle high-dimensional data with a limited number of training
samples [36]. To generalize the SVM for nonlinear classification problems, the so called
kernel trick was introduced [37]. However, the sensitivity to the choice of the regularization
parameters and the kernel parameters is the most important disadvantage of a kernel SVM.
Other methods for HSI classification involve decision trees [38,39], random forests [40],
and sparse representation classifiers with dictionary based generative models [41,42].

In this work we present a novel local/global method for semiautomatic multilabel
classification of HSI. Semisupervised methods rely on limited information on the objects
to recognize inside the data. Graph Clustering CNNs [43] consists of a two-stage clus-
tering strategy in order to reduce the burden of graph convolution computation. The
authors in [44] apply a coupled spatial-spectral approach for approximating the convo-
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lution on graphs. Autoencoder models are widely employed for HSI classification tasks
(Ref. [45] and references therein). As a first step, we consider a preprocessing process using
novel feature selection approaches in order to address the curse of dimensionality and
reduce the redundancy of high-dimensional data. We adopt a linear discriminant analysis
based on the labeled regions in order to project the high dimensional feature space to a
lower dimensional subspace. Then we development a similarity index/distance between
pixel reduced features of pixel using reduced features of pixel and involving pixels in
a neighborhood. We point out that the so-called pixel based or spectral classifier only
treats the HSI data as a list of spectral measurement without considering spatial relations
of adjacent pixels, thus discarding important information. In a real image, neighboring
pixels are related or correlated, both because imaging sensors acquire significant amount
of energy from adjacent pixels and because homogeneous structures which are generally
large compared to the size of a pixel frequently occurred in the image scene. This spatial
contextual information should help for an accurate scene interpretation. Therefore, in order
to improve classification results, spectral-spatial classification methods must be developed,
which assign each image pixel to one class based on its own spectral values (the spectral
information) and information extracted from its neighborhood (the spatial information).
Then, the new similarity index includes the contextual spatial information provided in the
HSI data considering features of adjacent pixels together. The same strategy was recently
consider in [46] for the segmentation of color images.

Using the new similarity index we represent the image with an undirected graph
where the set of vertices is the set of pixels present in the image, and the set of the edges
consist of the pairs of neighboring pixels in the image. The weight of an edge can be
represented by a function based on the difference between the features of each pixel. The
vertices set can be partitioned into two sets: the “labeled vertices”, and the rest of the image
pixels. In order to label the last vertices we develop a random walker approach which
improves the quality of the image segmentation and involves only the minimization of a
quadratic function. We remark that our method considers in a different nonlinear way two
terms and it is not a simple thresholding step. In fact, the distances between features affect
at the same time the similarity between labeled and unlabeled pixels and the construction
of the graph for the random walk. We point out that we could consider the random walk
method as a Laplacian-based manifold method with a solid theoretical background [47].

The remaining sections of the paper are organized as follows. Section 2 introduces
the new method and the improved random walker segmentation algorithm. Moreover, we
will also discuss a new definition of non-local distance between the features of the pixels.
Section 3 is devoted to the numerical experiments. In this section the proposed method
is tested on some benchmark images, in order to evaluate its performance. Following
the findings of the case study, the conclusions are presented in the last Section 4 with a
discussion about the properties and the possible developments of the approach.

2. A Spatial-Spectral Classifier Method for Hyperspectral Images

The detailed spectral information collected by the available hyperspectral sensors
improves the capability of discriminating between different objects/sub-regions in an
image by providing a division into classes with increased accuracy. This accurate capacity
for discrimination makes hyperspectral data a valuable source of information to be fed
to advanced classifiers. The output of the classification step is generally known as the
classification map.

However, several particular problems should be considered in the classification task
of hyperspectral data, among which are the following: the spatial variability of the spectral
characteristics, the high number of spectral channels, the high cost of true sample labeling.
In this paper we introduce a novel classification method in the semi-automatic approach
framework. The general goal is to segment an image into two or more separate regions,
each corresponding to a particular object (or the background), based on some user input.
The proposed method reduces the interaction to the minimum, asking the user to just
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choose the object of interest by selecting a subregion inside it. The proposed approach does
not attempt to estimate a specific model for a texture region, or an object, instead it tests for
the homogeneity of a given feature pattern in a region: the features are the bands for each
pixel in the image. In order to identify this homogeneity, the following assumptions about
the image are made:

(a) the image contains a set of approximately homogeneous regions;
(b) spectral variables are also highly correlated that their dimension can be reduced

without losing important information;
(c) the features between two neighbouring regions are distinguishable.

The first assumption requires images that present several regions with similar features,
and we require a noise level that allows to distinguish the different regions. See [48–50]
for a discussion on noise affecting data. Based on the second assumption we include a
dimension reduction as a first processing step. For classification, in the lower dimensional
space, we expect that data are well separated. Then, in the low dimensional space nearby
points or points on the same structure (cluster or manifold) are likely to have the same label.
In our case, nearby points are those pixels with similar features. Assumption (a) refers to a
local property of the image: in an homogeneous region there is an high probability that
a random walker remains in such region, whilst it is unlikely that it can reach a far but
similar region. On the other hand, Assumption (b) refers to a global property of the image:
similar regions may share similar spectral signature even if they are distant.

The classification results could be improved by using the contextual spatial informa-
tion provided in the HS data in addition to the spectral information. In order to capture
the spatial variations of the pixel features we consider closest fixed neighborhoods and a
distance which involves all the pixels in these neighborhoods. Finally, the classification
map is obtained by combining a random walk based model [51–53] with a direct label
assignment: both are computed using this distance. The resulting energy changes the
energy related to the random walker approach and improves the quality of the image
classification. Moreover, the algorithm involves only the minimization of a quadratic
function. We point out that the graph-based methods have been paid attention because of
their solid mathematical background [47], relationship with sparseness properties, kernel
methods, model visualization, and reliable results in many areas.

2.1. Regularized Linear Discriminant Analysis

When dealing with hyperspectral image analysis, one usually has a large number of
spectral features m and a relative small number of training marked pixels NT , divided in
nM marked regions. A simple linear discriminant analysis (LDA) would then result in an
ill-posed problem. In fact, from a theoretical point of view, one should deal with an infinite
dimension Hilbert space to be linearly and compactly projected onto a finite dimensional
one (see [54]). From a computational point of view, different strategies have been tested to
overcome the ill-posedness of the problem. In [55] it is shown that an efficient version of
the regularized LDA (RLDA) proposed in [56] performs better in segmenting hyperspectral
images than support vector machine (SVM) classifiers and other LDA-based classifiers,
such as penalized LDA, orthogonal LDA, and uncorrelated LDA.

The aim of RLDA is to find a projection matrix Ĝ ∈ Rm×l to reduce the high-
dimensional feature x ∈ Rm to a lower dimensional vector a = Ĝ>x ∈ Rl , l � m.
More precisely (see [55], Equation (10)),

Ĝ = arg max
G∈Rm×l

{
trace

((
G>(S + λI)G

)−1G>SbG
)}

, (1)

where S is the total scatter matrix, Sb is the between-class variance matrix, I is the identity
matrix, and λ is a regolarization parameter. Note that RLDA reduces to a classical LDA
when λ = 0.
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The efficient Algorithm 1 for RLDA (see [55]) needs two singular values decomposi-
tions (SVD).

Algorithm 1 Efficient RLDA given in [55]

Require: λ ≥ 0
Ensure: Ĝ as in (1)
[U, D, V]← SVD(H) . H = UDV>

r ← rank(H) = rank(D)
Ds ← D2 + λIr
[Ub, Db, Vb]← SVD(D−1/2

s U>Hb) . D−1/2
s U>Hb = UbDbV>b

Ĝ ← UD−1/2
s Ub

The first one computes the SVD of the normalized data matrix

H =
1√
nL

[XT − µ1>] ∈ Rm×NT ,

where XT ∈ Rm×NT is the matrix data of the marked pixels and µ ∈ Rm is the feature mean
vector of such data. The second SVD involves the normalized between-class data matrix

Hb =
1√
NT

[
√

n1(µ1 − µ),
√

n2(µ2 − µ), . . . ,
√

nnM (µnM − µ)] ∈ Rm×nM ,

where nj (resp. µj) denotes the sample size (res. the feature mean vector) for each marked
region indexed by j ∈ 1, . . . , nM. The challenging calculation of a ε-approximation of such
SVDs may be faced with the new efficient randomized algorithms given in [57] (to this aim,
Matlab introduced the function svdsketch since R2020b, that we decided to use).

Finally, the matrix Ĝ, output of the Algorithm 1, is the matrix that projects the nM
marked regions in a subspace that optimizes the Fisher score in a robust way [55]. We
expect that this low-dimensional subspace will carry the relevant information to segment
the entire figure. Hence, the original image X0 ∈ Rm×nP is mapped to Y = Ĝ>X0 ∈ Rl×nP .

2.2. A Spectral/Spatial Similarity Measure

After reducing the data, it is necessary to define an appropriate metric to establish
the similarity between pixels in the mapped image Y. Each pixel in yj in Y has l � m
features (projected bands) that represent a vector in the linear space Rl . Instead, to focus
on a pixel-wise similarity we fix a system of neighbourhoods with Nb pixels, for each
pixel, for example 8–neighborhoods, and a feature space, subset of Rl . Finally we collect
all the entries of the feature vectors in a single vector f j ∈ Rl·Nb . We fix a distance dl·Nb

in the space Rl·Nb . Then, for a couple of pixels yj and yi, we define the similarity index

S(yj, yi) =
(
dl·Nb

( f j, fi) + ε
)−1, ε � 1, that will be used in our experiments as a weight

function, see (8) below. Moreover, the notion of similarity may be extended to a comparison
between a pixel yj and a label k ∈ {1, . . . , nM}. In fact, the region marked by label k is
formed by pixels that have their features, from which we may extract a “centroid feature”
f̂ (k), that best represents the labeled region. Then, for any pixel yi and any region k,
the quantity

S(i, k) =
(

dl·Nb
( fi, f̂ (k)) + ε

)−1
(2)

will represent the similarity between the pixel i and the region k. This index can be
interpreted as the first step of a k-means algorithm, whose starting centroids are computed
with the user-marked regions as seeds.
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This similarity, or the distance, could be used in a clustering algorithm because it
represents a measure and/or comparison between pixels. Moreover, this distance allows to
see the feature of the pixel in relation to its neighbors. This non-local method is inspired by
recent works in signal analysis [58–60].

Moreover, using information from the patches instead of single pixels induces a
smoothing effect [61] which may be useful in presence of noise. Indeed, consider a pixel
yj: denote with f ∗j ∈ Rl·Nb its corresponding feature vector and with f j ∼ f ∗j +N (0, σ2 Id)

its noisy version when Gaussian noise with zeros mean and covariance matrix σ2 Id is
considered, being Id the identity matrix. Consider another pixel yi such that the intersection
of the neighbourhoods of yj and yi is empty. We can give an estimation of the expected
value E

[
dl·Nb

( f j, fi)
2] of the square euclidean distance as

E
[
dl·Nb

( f j, fi)
2
]
= ‖ f ∗j − f ∗i ‖2 + 2 · (l · Nb)σ

2 = dl·Nb
( f ∗j , f ∗i )

2 + (2l · Nb)σ
2

A similar estimation can be given when the noise affecting the pixels is not addictive
but signal-dependent: for the case of Poisson noise f j ∼ Poiss( f ∗j ) one obtains

E
[
dl·Nb

( f j, fi)
2
]
= ‖ f ∗j − f ∗i ‖2 + | f ∗j + f ∗i |1 = dl·Nb

( f ∗j , f ∗i )
2 + ‖ f ∗j + f ∗i ‖1

where ‖ · ‖1 is the `1 norm in Rl·Nb and dl·Nb
( f ∗j , f ∗i ) is the euclidean distance between the

clean pixels. The above estimations are based on the fact that for a random variable X one
has E[X2] = E[X]2 + σ2(X), with σ2(X) the variance of X.

Figure 1 depicts the while procedure for features compression and similarity computa-
tion. The first row is devoted to explain with a small example how the reduction is pursued.
Consider just three pixels and their spectral distribution, i.e., the red, blue and green curves.
The RLDA projection compresses each distribution in just a 2D vector: having at disposal
these reduced vectors, one can compute the relative distance among these.

The second row depicts the procedure for a larger image: the grid on the left represents
the pixels of the image, while the curves correspond to the spectral distributions for (some
of) these pixels. Suppose that the dimension of the image is m× n× `, where m× n is the
dimension of the grid while ` refers to the number of recorded hyperspectral frequencies.
The RDLA algorithm then compresses the distribution of each pixel in just two principal
components (PC1 and PC2), providing a smaller data with size m × n × 2. Consider
now two pixels, namely P1 and P2, and their 8–neighborhoods in each component: in the
previous notation, this hence amounts to have l = 2 and Nb = 8. Then, the vectors f1 and
f2 that collect all the feature values of P1 and P2 and relative neighborhoods, respectively,
belong to R16: we can compute the similarity index as

S(P1, P2) =
1

d16( f1, f2) + ε
, ε� 1

with d16 being a distance in R16 (for example, the classical Euclidean distance).

2.3. The Random Walker Method

The random walker (RW) method (see [51]) is a segmentation method based on a “path
distance”. It belongs to the classes of probabilistic methods, that allow to address several
scientific tasks, such as optimization problems via Consensus-Based Optimization [62],
Opinion Formation [63] or Particle Swarm Optimization [64].
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Figure 1. Visual representation of the RLDA algorithm and distance computation of the neighbor-
hoods. First row: example with just 3 pixels and their hyperspectral distribution, reduced in their 2D
principal components. Second row: RLDA applied to a larger image. Third row: extraction of the
8-neighborhoods of two pixels in each principal component.

More precisely, the RW method works as follows: in each image there are subregions of
pixels which are marked with labels. Then, starting from a unmarked pixel, a random walk
is performed along the whole image. Obviously, the subregions closer to the starting points
are more likely to be first reached than the others. The random walk is then biased in order
to promote those paths that involve similar pixels: a longer path with similar pixels may
have a shorter “path distance” than a longer one that crosses non homogeneous regions.

More formally, the framework here involves an undirected graph G = (V, E), where
V = {vi|vi is a pixel in the image} is the set of vertexes and E is the set of edges. Some
pixels have been marked by the user, and will be denoted by Vm, the set of “marked vertices”
in the graph. Vm consists of nM marked regions. Define the set of labels for the marked
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vertices as a function Q(vj) = k, ∀vj ∈ Vm. The other “unmarked vertices” of the image are
denoted by Vu, so that V = Vm

⋃
Vu. The set of edges E will contain all the pairs of pixels

which are neighbors in the original image, and eij will denote the edge linking the vertexes
vi and vj.

The weight of an edge eij encodes node similarity, and is represented by a function
ω(vi, vj). If d(vi, vj) represents some distance between two pixels, then common choices of
ω are

ω(vi, vj) = e−β d(vi ,vj)
2

or ω(vi, vj) =
1

ε + σ d(vi, vj)

where the value of the parameters β, σ, ε > 0 can be tuned accordingly. Starting form
an unmarked vertex, a random walk is performed. At each step, when the walker is in
the vertex vi, the probability of reaching the neighbor vj depends on ω(vi, vj) proportion-
ally: the highest values of the distance d will imply lower probabilities of reaching that
neighbor. The algorithm then computes the probability of reaching any one of the labeled
vertices belonging to one of the nM marked regions. Formally, for any vertex vi ∈ Vu
and k ∈ 1, . . . , nM, we denote by xk

i this probability. For a labeled node vj ∈ Vm that is
associated to the label Q(vj) ∈ {1, . . . , nM}, we have xk

j = δi,Q(vi)
. Image segmentation is

then made on these probabilities, and the algorithm will tend to observe the weights of the
image edges during the segmentation.

In [51], the computation of the probabilities {xk
i , i ∈ Vu, k = 1, . . . , nM} are calculated

by solving a sparse linear system of equations, that involves the graph Laplacian matrix L
associated to ω, that is defined as

Lij =


∑

vk adjacent to vi

ω(vi, vk), if i = j

−ω(vi, vj), if vi and vj are adjacent nodes
0, otherwise.

In particular, for each label k, the probabilities xk =
(

xk
1, xk

2, . . . , xk
|V|

)>
are found by

solving the minimization of

E(xk) =
1
2 ∑

(vi ,vj)∈E
ω(vi, vj)(xk

i − xk
j )

2 =
1
2

xkT
L xk. (3)

Note that, since L is positive semi-definite, the only critical points of E will be minima.
In addition, since the corresponding continuous problem leads to the minimization of the
Dirichlet integral via harmonic functions then the minimization problem (3) is also called
combinatorial harmonic function (see [65]). The following problem

xk
D = argmin

x
E(xk), k = 1, . . . , nM (4)

is also called combinatorial Dirichlet problem.
We recall that V = Vm

⋃
Vu and Vm

⋂
Vu = ∅. Without loss of generality, it is assumed

that the nodes in L and x are ordered so that marked nodes comes first and unmarked nodes
after. Therefore, for each k ∈ {1, . . . , nM}, we may decompose the above formula (3) into

E(xk
m, xk

u) =
1
2

[
xk

m
>

, xk
u
>][ Lm B

B> Lu

][
xk

m
xk

u

]
, (5)

where xk
m and xk

u correspond to the probabilities of the labeled and unlabeled nodes, respec-
tively, while B represents the anti-diagonal blocks of the Laplacian matrix. The problem
could be interpreted as an interpolation of missing data (the unmarked points), while we
have defined some (numerical) values for a subset of the vertices (our labeled nodes).
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Omitting the superscript k for the ease of notation, the Equation (5) reads

E(xm, xu) =
1
2

x>mLmxm + x>u B>xm +
1
2

xT
u Luxu

and the unknowns are the entries of the vector xu. Differentiating E with respect to xu and
finding the critical point yields

Luxu = −B>xm (6)

which is a system of linear equations with |Vu| unknowns. If every connected compo-
nent contains at least a labeled vertex, then the Equation (6) is non-singular. Define
Xu = (x1

u, x2
u, . . . , xnM

u ) and Xm = (x1
m, x2

m, . . . , xnM
m ), then the solution to the combinatorial

Dirichlet problems (4) may be found by solving

LuXu = −B>Xm. (7)

where Xm is the labeling matrix with values in {0, 1} such that Xm1 = 1 and Lu is invertible.
Thus, each unlabeled pixel vi gets nM probabilities (x1

i , x2
i , . . . , xnM

i ). Eventually, the label
assigned to vi ∈ Vu corresponds to the index of maximum-by-rows in the solution of (7). For
example, suppose that an image contains only nM = 4 marked regions. Consider just one
pixel vi ∈ Vu: the solution of (7) for this pixel reads as (x1

i , x2
i , x3

i , x4
i ) = (0.15, 0.5, 0.25, 0.1):

this means that a random walker starting from vi has a probability of reaching the first
region equal to 0.15, it has a probability of reaching the region labeled with k = 2 of 0.5 and
to reach the the region marked as k = 3 or k = 4 with probability of 0.25 or 0.1, respectively.
This pixel is then labeled with as belonging to the second region, since a random walker is
more likely attracted from that region. This approach is adopted also in [53].

Finally, in the next section we will test a combination of RW probabilities and similarity
index, where the weights in Equation (3) are chosen as

ω(vi, vj) = S(vi, vj) =
1

dl·Nb
( fi, f j) + ε

, ε = 10−3. (8)

2.4. A Local/Global Classification Method

Now, we consider the vertex labeling function, for simplicity we will consider labels
represented by integers,

FL : V → SL = {1, 2, . . . , nM}, nM ∈ N, nM > 1

which associates a label in a certain set to each vertex (pixel). Combining the RW approach,
with the new distance defined above, and the new similarity measure, let FL as

FL(vi) = argmax
k∈SL

(S(i, k)α (xk
i )

1−α) (9)

where S(i, k) is given in (2), xk
i are solutions of (7), and 1 ≥ α ≥ 0 is a parameter intro-

duced for adding flexibility to the algorithm and to provide different weights to the two
components of the labeling function. Due to the concavity of the logarithm function, and
the positivity of S(i, k) and xk

i , we can rewrite the labeling problem in an equivalent way
as follows

FL(vi) = argmax
k∈SL

(
α log(S(i, k)) + (1− α) log(xk

i )
)

. (10)

The proposed method therefore can be summarized in Algorithm 2.
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Algorithm 2 Hyperspectral Random Walk by Similarity Index algorithm (HyperRaWaSI)
1. Set the parameters α, λ, the neighbor system and the similarity function.
2. Acquisition of user-marked pixels.
3. Compute the projection of the original image X0, Y = Ĝ>X0, where Ĝ> is given by
Algorithm 1.
4. Compute the global similarity index S(i, k) for any vi ∈ Vu and vk ∈ Vm.
5. Solve system (7) for Vm, where the Laplacian matrix uses the index computed at step 3.
6. Evaluate the labeling function as in (10) for the image X0.

Remark 1. The two terms in the functional in (10) could be considered as a “fidelity term”, the
α log(S) part, and a regularizing term, the (1− α) log(x) part.

Remark 2. The approach employed in our work is not simple post-processing: the similarity index
with spatial information plays a role inside the classification decision. The optimization viewpoint
depicted in Equation (10) raises a different framework from a post-processing one. Furthermore, the
features distances affect at the same time the similarity between labeled and unlabeled pixels and on
the construction of the graph for the part of the random walk.

Figure 2 provides a visual representation of the steps for Algorithm 2 and how they
are related. The very first step is to acquire the user-marked region in the original image:
this labels are the building blocks of the entire procedure, since

• they are employed to get the optimal projection of the hyperspectral image and hence
the feature image;

• they are used to compute the centroids from the feature image;
• they represent the seeds for the random walker method.

The final segmentation is obtained by solving (10), which involves a convex combina-
tion of the similarity indexed image, obtained by the feature image and the centroids, and
the output of the random walk method.

Figure 2. Flow chart of Algorithm 2.

3. Results

In this section we present the numerical experiments done in order to assess the perfor-
mance of the proposed algorithm. We used four different datasets, publicly available at http:
//www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (last
visited: 17 October 2021):

• University of Pavia: this image was taken by the German Aerospace Agency (DLR)
using the airborne ROSIS (Reflective Optics System Imaging Spectrometer) sensor.
The spatial dimensions of the slices are 610× 340 and the number of spectral band

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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is 103: then the dataset size is 103× 207,400. The ground resolution is 1.3 m and the
spectral gamma is 430–860 nm. The number g of ground truth labels is 9: Asphalt,
Meadows, Gravel, Trees, Painted metal sheets, Bare soil, Bitumen, Self-blocking bricks,
and Shadow.

• Pavia Center: this image refers to the center of the city of Pavia, but some samples
in this dataset contain no information: the spatial size is 1096× 1096 and it is then
reduced to 1096 × 715. The considered spectral bands are 102, leading to a final
size of 102× 783,640. The spectral bands lie in the interval 430–860 nm and the
ground resolution is 1.3 m. The g = 9 ground truth labels are Water, Trees, Asphalt,
Self-Blocking Bricks, Bitumen, Tiles, Shadows, Meadows, Bare Soil.

• KSC: this image refers to the Kennedy Space Center, Florida (US) and it was acquired
by the airborne AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) NASA
instrument. The spatial dimensions of the slices are 512× 614 and the number of
the spectral bands is 176: the size of the dataset is hence 176× 314,368. The ground
resolution is 18 m and the spectral gamma is 400–2500 nm. The g ground truth labels
are 13: Scrub, Willow swamp, CP hammock, CP/Oak, Slash pine, Oak/Broadleaf,
Hardwood swamp, Graminoid marsh, Spartina marsh, Cattail marsh, Salt marsh,
Mud flats, Water.

• Indian Pines: this image refers to the Indian Pines test site in North-Western Indiana,
taken by AVIRIS sensor. The spatial dimensions are 145× 145 and the employed bands
are 220: The dataset size is hence 220× 21,025: the spectral gamma is 0.4–2.5 nm. The
g ground truth labels are 16: Alfalfa, Corn-notill, Corn-mintill, Corn, Grass-pasture,
Grass-trees, Grass-pasture-mowed, Hay-windrowed, Oats, Soybean-notill, Soybean
mintill, Soybean-clean, Wheat, Woods, Building-grass-trees-drives, Stone-trees-drives.

• Salinas HSI: this image refers to an area including agricultural fields in the Salinas
Valley, California, acquired again by AVIRIS sensor. The spatial size is 512× 217
and the number of bands is 204: the dataset size is hence 204× 111,104 the ground
resolution is 3.7 m, while the spectral gamma is 0.4–2.5 nm. The g = 16 ground truth
labels are: Broccoli gr. wds 1, Broccoli gr. wds, Fallow, Fallow rough plow, Fallow
smooth, Stubble, Celery, Grapes untrained, Soil vineyard develop, Corn sen. gr. wds,
Lettuce romaine 4 wk, Lettuce romaine 5 wk, Lettuce romaine 6 wk, Lettuce romaine
7 wk, Vineyard untrained, Vineyard vert. trellis.

The numerical experiments are organized as follows: the datasets Indian Pines, Pavia
University and Salinas HSI are employed to assess the performance of the proposed algo-
rithm, using suitable indexes and segmentation quality measurements. The datasets Pavia
Center and KSC are used as real-world datasets: the labels contained in the ground truth
are employed as seed for our segmentation technique.

All the experiments were carried on a laptop equipped with Linux 19.04, with an
Intel(R) Core(TM) i5–8250U CPU (1.60 GHz), 16 GiB RAM memory (Intel, Santa Clara, CA,
USA) and under MatLab R2020b environment (MathWorks, Natick, MA, USA). The code is
available at https://github.com/AleBenfe/RaWaCs (last access: 17 October 2021).

3.1. Performance Measurements

This section makes use of the datasets Indian Pines, Pavia University, and Salinas HSI.
As previously mentioned, the proposed method belongs to the class of semi-supervised
techniques: the initial seeds, i.e., the user-marked regions, are in a lower number then
the original ones, that are 16, 9, and 16 for Indian Pines, Pavia University, and Salinas HSI,
respectively. We denote with Gt the ground truth, which contains NG labels, and with
{gi}i=1,...,g the marked subsets. We select manually nM labels on the dataset: this will
produce a segmentation St result with nM marked regions {sj}j=1,...,nM . In order to assess
the performance when the ground truth contains a number g of labels greater than nM, we
make use of the following indexes.

https://github.com/AleBenfe/RaWaCs


J. Imaging 2021, 7, 267 12 of 21

• Rand Index (RI) [52]: this index measures if the two partitions of the image, namely
Gt and St, are coherent. For any couple of pixels (p1, p2) in the ground truth Gt, the
RI measures the coherence between the partitions: it checks if p1 and p2 belongs to
the same subset g ∈ Gt and at the same time they belongs to the same subset s ∈ St.
It checks also if p1 and p2 belongs to the two different subsets g1, g2 ∈ Gt and at the
same time they belongs to two different subsets s1, s2 ∈ St. Denote with ns the number
of couples that belongs to the same subset in Gt and that belong to the same subset in
St, while denote with nd the number of couples that do not belong to the same subset
in Gt and that do not belong to the same subset in St, then

RI =
ns + nd(

nG
2

)

where nG is the total number of pixels labeled in Gt and
(

nG
2

)
refers to the number of

all possible couples. The best performances are obtained when the RI is close to 1.
• Overall Accuracy (OA): for each true label i = 1, . . . , nG, we compute

ı̂ = arg max
j=1,...,n

{#(gi ∩ sj)}.

This classifies the label i as belonging to the region of sı̂ ⊆ St, marked with ı̂. The
Overall Accuracy is defined as

OA =

Ng

∑
i=1

#(gi ∩ sı̂)

g

∑
i=1

#(gi)

=

Ng

∑
i=1

max
j=1,...,n

{#(gi ∩ sj)}

nG
,

which measures the average number of pixels of the ground truth Gt that are truly
classified together. The best performances are obtained when the OA is close to 1.

The first experiment refers to the Indian Pines dataset: the original image is depicted
in Figure 3a, the segmentation result in Figure 3b whilst the ground truth labels are in
Figure 3b. These results are obtained by setting λ = 0.01 and α = 0.8 in Algorithm 2. The
Rand Index for this particular experiment is 0.8505, while the OA is 0.9029: this means that
each user-marked label contains the most part of a region marked in the ground truth. This
result is clearly shown in Figure 3d: the element in (i, j) position shows the percentage of
the pixels in ground truth label j which are marked as belonging to the user-marked label i.

The Pavia University and Salinas HSI datasets present very similar results, with the
same setting for the parameters (α = 0.8, λ = 0.01): the segmentation on the former
provides a RI of 0.8060 and a OA of 0.9393, and the proposed procedure reaches a reliable
performance on the latter too, with RI = 0.8704 and OA = 0.9696. These experiments
show that the proposed procedure is able to properly cluster several regions, according
to common hyperspectral properties, even when the initial seeds are selected via a visual
inspection of some of the bands presented in the dataset. Figure 4 presents the results for
the Pavia University and Salinas HSI datasets.
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Figure 3. Indian Pines segmentation results. (a): false gray scale image. (b): segmentation result.
(c): true labels. (d): accuracy over the classes. The colormaps in (b,c) are different because the
segmentation process takes into account 5 labels, while the ground truth contains 16 labels. Each
region in the ground truth falls almost entirely in one of the 5 manually selected labels.

Table 1 collects the computational times of the entire procedure (excluding the marking
process) for each image: even for very large datasets such as Pavia University the proposed
algorithm is very fast. We employed the MatLab function svdsketch which implements
the RLDA procedure depicted in Algorithm 1.

Table 1. Computational time in seconds.

Dataset Size Time

Pavia University 103× 207,400 1.08
Indian Pines 220× 21,025 0.13
Salinas HSI 204× 111,104 0.45
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(a) (b) (c)

(d) (e) (f)

Figure 4. (a–c): false grayscale image, segmentation result and ground truth labels for the Pavia
University dataset. (d–f): false grayscale image, segmentation result and ground truth labels for the
Salinas HSI dataset. The former experiments achieves an Overall Accuracy of 0.93, whilst the latter
achieves an OA of 0.9696.

We now assess the dependence of the performance on the parameters α and λ: the
plots in Figure 5 depict the behavior of the Rand Index with respect to α in correspondence
of several choice for λ, namely from λ = 1 to λ = 10−6. These plots show that the
proposed procedure is quite stable with respect to this settings, showing an increasing
of the performance around α = 0.8. Moreover, the dimensionality reduction seems to
be independent on the choice of λ. As already noted in [46], the best performances are
achieved when α 6= 0 and α 6= 1, meaning that the coupling (in this case, via a convex
combination) of the RW approach and of the similarity index is the optimal strategy with
respect to selecting only one of the two methods.
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Figure 5. (a–c): Dependence of the RI wrt α for several values of λ, from 1 to 10−6 for Indian Pines,
Pavia University and Salinas HSI datasets, respectively. The RI remains high, there is a peak around
α = 0.85 in the former cases, while the Salinas HSI datasets achieve its best performance for α = 0.65
when λ is lower than 1. The number of bands obtained by the dimensionality reduction is stable
wrt λ.
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3.2. Comparison with State–of–the–Art Methods

This section is devoted to compare the proposed strategy with state-of-the-art methods,
namely K-MBC [21], FCM [66], FDPC [67], and GWEEN [68], when the true number of
clusters is known. The seeds employed for our method are randomly chosen in the ground
truth mask: for each marked region, two small squares with size 7 pixels are selected. See
Figure 6 for a visual explanation of this process and for example of different square size.

(a) (b) (c) (d)

Figure 6. (a) Ground truth labels. (b–d) Random seeds for the proposed procedure, chosen among
the ground truth mask. From left to right: square seeds of dimension 3, 5, and 7 pixels. The squares
are clipped in order to refer to the correct region.

Table 2 presents the comparison between our method and the other ones using the
Overall Accuracy and the Purity indexes as evaluations. The Purity index measures how
much pure a cluster is, i.e., its tendency to contain a sole class. The performance indexes
regarding the other methods are taken from ([21], Tables 4 and 5). The setting for the
proposed procedure are α = 0.93, 0.92 and α = 0.91 for Salinas, Pavia, and KSC datasets,
respectively, while λ = 0.1 for all 3 datasets.

Table 2. Comparison between methods.

Salinas Pavia KSC
Method O.A. Purity O.A. Purity O.A. Purity

FCM 54.6 0.63 41.9 0.47 52.5 0.56
FDPC 62.2 0.71 44.2 0.54 47.6 0.64
GWEEN 65.3 0.77 47.9 0.62 49.8 0.69
K–MBC 76.5 0.93 65.9 0.91 58.2 0.74
HyperRaWaSI 93.8 0.94 91.1 0.90 97.8 0.98

The proposed procedure overcomes all the methods used in the comparison, both on
overall accuracy and on purity indexes.

We test the performance of the strategy with respect to the size and shape of the user-
marked regions. We consider the salinas and Pavia datasets, and we employ as user-marked
regions two randomly chosen squares with size 3, 5, and 7 (see Figure 6). The results are
depicted in Table 3.

As one expects, the larger the marking size, the higher the performances: even with
a very small marking (3× 3 square), the overall accuracy is above 80% and the purity is
greater than 90% in the case of salinas dataset, meaning that the recognized clusters contain
mostly one class.
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Table 3. Performance behavior with respect to the label size.

Salinas Pavia
Size O.A. Purity O.A. Purity

3 89.9 0.92 80.1 0.80
5 92.7 0.94 82.7 0.81
7 93.8 0.94 91.1 0.90

3.3. Segmentation as Atlas

In this section the Pavia Center and KSC datasets are segmented using the ground truth
labels as seeds. The idea beyond this strategy relies on the concept of atlas (see [69]): an
atlas is a collection of objects whose labels are known. The strategy consists in merging the
images of the atlas with the one which has to be segmented, hence the resulting image in
this way contains a labeled part (from the atlas) which allows the classification of the rest
of the data.

We apply this strategy to the Pavia Center and KSC datasets: we adopted this approach
since the subsets labeled in the ground truth data are low in number in both cases, despite
the dimension of the images.

Figure 7 refers to the Pavia center dataset: in the left panel a colored image of the
landscape is depicted, while the central panel shows the labels contained in the ground
truth. The strategy consists then of using these labeled regions as an atlas, providing
exact information for the classification, without requiring user intervention. The final
result, obtained with α = 0.9 and λ = 0.2 is given in the last panel of Figure 7: a visual
inspection of the achieved segmentation suggests that the recognition of the various regions
is remarkable and precise. Indeed, all the red roofs, together with their projected shadow,
are recognized in a remarkable way. The trees are well segmented even if few markings of
them are contained in the atlas. Note that there is an abrupt interruption inside the image,
as previously mentioned in the description at the beginning of this section: despite this
discontinuity, the proposed procedure does not suffer from the presence of such issue in the
dataset, providing a segmentation that can take into account that the image is not continuous.

Figure 7. Result of the segmentation of Pavia Center using the ground truth labels as atlas. From left
to right: image of the landscape in false colors, labels of the ground truth, final result. The latter
panel shows that all the roofs are remarkably recognized, as the shadows they project on the ground.
The vegetation is segmented with a very high level of precision. We reported the labels as reported in
the database we used for these experiments: there are clearly some errors, since some classes (such as
Shadows, Meadows and Bare Soils) refers to objects that are not the ones described by these labels.
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We apply the same strategy (using the ground truth as an atlas) to the KSC dataset,
where the main aim is to segment the different type of vegetation. Figure 8 presents the
visual representation of the segmentation result, obtained by setting α = 0.97 and λ = 10−4.
The right part of the image present a reliable segmentation, since the different parts of
terrain and vegetation are well recognized. On the other hand, the segmentation result on
the left part classifies some buildings as part of vegetation or water, since the ground truth
does not present any label referring to human constructions, such as buildings, bridges or
streets. Figure 9 is devoted to showing the reason why some buildings are included in the
Water label: indeed, the river contains several white parts which the segmentation process
correctly includes in the Water label. On the other hand, there are several buildings that
present a spectral signature (both in the visible and in the infrared region) very similar to
these white regions inside the river. The picture shown in Figure 9 also better exposes the
reliable performance on the right part of the image.

Scr
ub

W
illo

w
 s
w
am

p

C
P h

am
m

oc
k

C
P/O

ak

Sla
sh

 p
in
e

O
ak

/B
ro

ad
le
af

H
ar

dw
oo

d 
sw

am
p

G
ra

m
in
oi
d 

m
ar

sh

Spa
rti

na
 m

ar
sh

C
at

ta
il 
m

ar
sh

Sal
t m

ar
sh

M
ud

 fl
at

s

W
at

er

Figure 8. Segmentation results on the KSC dataset. From left to right: false color image, ground
truth labels employed as seeds, and segmentation result. On the bottom of the images the legend
associates the color to the labels.

Figure 9. Overlay between the segmentation and original image (in grayscale) for the KSC dataset.

We finally report that the computational times for the segmentation of Pavia Center
and KSC datasets, which present both large dimensions: 102× 783,640 the former and
176× 314,368 the latter. In both cases, the computational time is close to being negligible
with respect to the size (see Table 4).
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Table 4. Computational time in seconds.

Dataset Size Time

Pavia University 102× 783,640 5.24
KSC 176× 314,368 3.31

4. Conclusions

In this work we proposed a new spectral/spatial semi-automatic classification method
coupling a Regularized Linear Discriminant analysis for dimension reduction, a suitable
similarity index, and a random walker approach. The final computational problem involves
a new energy function obtained by a new definition of similarity/distance between pixel
using a reduced features space and pixels in a neighborhood. The experimental results
showed that the proposed approach is very robust with respect to the presence of noise
and with good accuracy. In our approach we have the flexibility of a system of different
neighborhoods for the calculation of the distance between pixels and in the construction of
the graph corresponding to a given image.

Regarding the hyper-parameters λ and α, we observed that in the regularization
process the choice of the λ parameter does not seem to influence the numerical results even
varying it by several orders of magnitude. The RW part encourages the selection of convex
zones, consequently changing the α parameter in Equation (10) can give more weight to
these sub-regions in the final classification. In a future paper we will consider appropriate
learning methods for the optimal choice of these parameters for some classes of images.

From the computational point of view, the most expensive steps concern the calcula-
tion of the new distance between pixels and the preliminary reduction step (the compu-
tation of the projection operator Ĝ>, see Algorithm 1). However, we observe that these
operations can be performed efficiently in parallel, for example with an appropriate im-
plementation through the use of GPUs. Moreover, we adopted a fast state-of-the-art SVD
algorithm. The computation of the probabilities of RW requires the numerical solution
of linear systems which may be large, but sparse and well structured at the same time,
consequently, efficient algorithms can be used. Then, our method is reliable and efficient
also for high-definition images.

We point out that it is possible to introduce some set of suitable atlas through the
projection matrix Ĝ, see Algorithm 1. We plan to explore the combination of atlas and our
classifier using an adaptive approach in order to learn better weights to be employed in
the features distance. Moreover, we will consider the possibility to replace some or all the
labeled pixels with atlases well adapted to the specific image. Preliminary results were
shown and discussed in Section 3.3. Further comparisons will be made with other semi-
automatic methods, identifying suitable quality measures of the segmentation obtained.
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