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Abstract. Polarized rational surfaces (X,L) of sectional genus two
ruled in conics are studied. When they are not minimal, they are de-
scribed as the blow-up of F1 at some points lying on distinct fibers.
Ampleness and very ampleness of L are studied in terms of their lo-
cation. When L is very ample and there is a line contained in X and
transverse to the fibers, the conic fibrations (X,L) are classified and a
related property concerned with the inflectional locus is discussed.
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1. Introduction

In the study of osculation for projective varieties there is a large literature
concerning scrolls over a curve. The investigation of quadric fibrations over
a curve, from the same point of view, was started in [7]. In particular, the
special case of dimension two, namely surfaces fibered in conics over a curve,
is in itself interesting in some respects: for instance, though the expected
maximal dimension of the osculating spaces does not distinguish them from
a general surface, the special structure they have implies that the curve cut
out by any osculating hyperplane is reducible, containing a fiber. In [6] we
studied the osculatory behavior of smooth surfaces fibered in conics over a
curve, and, as an application, we described the inflectional loci of a special
class of such surfaces with sectional genus g = 2, that we called Castelnuovo
surfaces. This study oriented our interest towards a better understanding
of how these surfaces are framed in the more general context of the rational
conic fibrations polarized by an ample line bundle of sectional genus two.
From this perspective, first we have to note that while in the context of very
ample line bundles rational conic fibrations with g = 2 coincide with rational
surfaces with g = 2, this is no longer true in the wider setting of ample line
bundles. Actually, in Fujita’s classification of polarized surfaces with g = 2
[3, Theorem 15.2, pp. 122–123], they simply correspond to cases 60) − 62),
up to blow-ups (see case 0) there), but other rational surfaces appear (cases
7), 8)) besides conic fibrations.
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2 A. Lanteri, R. Mallavibarrena

So, let (X,L) be a polarized rational surface of sectional genus two ruled
in conics. If X is minimal, then X ∼= Fe, a Segre–Hirzebruch surface of
invariant e ≥ 0, and the fact that L is an ample line bundle of genus two
immediately leads to determine its expression in terms of the generators of
Pic(X) and to get the bound e ≤ 2. If X is not minimal, by means of
elementary transformations, we can describe X via a birational morphism
η : X → F1 as the blow-up of F1 at points p1, . . . , pµ, lying on distinct fibers,
and then

(1) L = η∗L0 −
µ∑
i=1

ei,

where L0 ∈ Pic(F1) is an ample line bundle of genus two and ei is the ex-
ceptional curve corresponding to pi for i = 1, . . . , µ. Moreover, µ ≤ 11.
Conversely, the line bundle L defined by (1) in this situation is ample pro-
vided that p1, . . . , pµ are general enough, according to Yokoyama [12]. So, as
a first thing we explore the precise conditions that the points p1, . . . , pµ have
to satisfy in order to ensure the ampleness of L, and we make them explicit.
They are expressed in the first part of Theorem 10. However, doing the
same to ensure the very ampleness of L, in which case, necessarily, µ ≤ 7,
looks more delicate. Nevertheless, we succeed to do it thanks to Proposition
5 (2), Proposition 7, and the characterization of the nefness and bigness of
the anticanonical bundle we obtain by translating Demazure’s almost gen-
eral position condition for points in P2 [2] in terms of F1. This is summarized
in the last part of Theorem 10.

In connection with this problem, one could refer to the paper by E. Bese
[1], who studied, more generally, the spannedness and the very ampleness
of line bundles of type (1), when X is obtained by blowing-up any Segre–
Hirzebruch surface Fe and L0 is any ample line bundle on it. However, some
results of Bese specialized to the situation under consideration do not coin-
cide with ours, unfortunately (see Remark 5 for details). Actually, according
to [1, Theorem 4.2], it seems that if L0 has bidegree (2, 4), seven points pi’s
could lie on a general curve of F1 of bidegree (2,2) without affecting the very
ampleness of L. But this is not true in view of Proposition 7 and Remark 4.
Moreover, the last part of Theorem 10 says that this is essentially the key
difference. In fact further slight discrepancies simply derive from the fact
that while the conditions we obtain characterize the very ampleness of L,
[1] only provides sufficient conditions for that.

In the final Section we provide the complete list of conic fibrations with
g = 2, polarized by a very ample line bundle, containing a line transverse
to the fibers (Theorem 12). If µ ≤ 6 any such line, as well as those con-
stituting the irreducible components of the reducible fibers, is contained in
the inflectional locus of X embedded in PN by |L|. This is not true however
when µ = 7, and in this case we make explicit the condition ensuring that
such a line is not contained in the inflectional locus (Proposition 13).
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Rational conic fibrations 3

2. Background

All surfaces considered in this paper are smooth and defined over the
complex field. We use the standard notation and terminology from algebraic
geometry. In particular, we recall that a polarized surface is a pair (X,L)
consisting of a surface X and an ample line bundle L on X. The degree and
the sectional genus of (X,L) are defined by d(X,L) := L2 and g(X,L) :=
1+ 1

2(KX+L) ·L, respectively. We say that a line bundle is spanned to mean
that the corresponding invertible sheaf is generated by global sections. For
any integer e ≥ 0, we denote by Fe the Segre–Hirzebruch surface of invariant
e, i.e. Fe = P(E), where E = OP1 ⊕ OP1(−e). By s and f we denote the
(a, if e = 0) tautological section of minimal self-intersection s2 = −e, and a
fiber, respectively. We recall that the classes of s and f generate the Picard
group of Fe, hence, for any line bundle L on Fe we can write L = [αs+ βf ]
for some integers α, β. According to [4, Corollary 2.18, p. 380], L is ample,
if and only if it is very ample, if and only if α > 0 and β > αe. For further
properties we refer to [4, Ch. V, Sec. 2]. In particular, when α = 2 (and
β > 2e), the polarized surface (Fe,L) is a conic bundle. In this case, by the
projection formula we have h0(L) = h0(π∗L) = h0(S2E ⊗ OP1(β)), where
π : Fe → P1 is the bundle projection and S2 stands for the second symmetric
power. Note that

S2E ⊗ OP1(β) = OP1(β)⊕OP1(β − e)⊕OP1(β − 2e).

Moreover, all summands have positive degree, since β > 2e. Therefore,

(2) h0(L) = 3(β − e+ 1).

It is useful to recall that F1 is isomorphic to the projective plane P2 blown-
up at a point, say q0. If τ : F1 → P2 stands for this blow-up, then the
tautological section s is just the exceptional curve τ−1(q0). It follows that
τ∗OP2(1) = [s+f ], and then the general element in the linear system |s+βf |
is the proper transform via τ of an irreducible plane curve of degree β having
a singular point of multiplicity β − 1 at q0.

The following fact will be used often.
Remark 1. Let r be any positive integer. On F1, we have s ∩ γ = ∅ for
any irreducible curve γ ∈ |r(s+ f)|. This simply follows from the fact that
s · (s+ f) = 0.

3. Rational conic fibrations in the setting
of polarized surfaces

Let X be a smooth projective surface and let L be any line bundle on X.
We say that (X,L) is a pre-conic fibration if X is endowed with a fibration
π : X → B over a smooth curve B (i.e. π is a morphism with connected
fibers) such that the following conditions hold:

(3) (F,LF ) =
(
P1,OP1(2)

)
for any general fiber F of π;
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moreover, singular fibers, if any, are reducible and each consists of

(4) two (-1)-curves `, `′ with ` · `′ = L · ` = L · `′ = 1.

Note that if L is ample then (4) is a consequence of (3). In this case
we say that the polarized surface (X,L) is a conic fibration. We will use
the expressions pre-conic bundle and conic bundle to mean that X has no
singular fibers, i.e., that it is a P1-bundle. If B = P1, then X is a rational
surface and we say that (X,L) is a rational pre-conic fibration. For such a
pair, let g be the (virtual) arithmetic genus of L. First of all we point out the
following fact. Let F be a fiber of π. Since F 2 = 0 we have KX ·F = −2 by
the genus formula. On the other hand, L ·F = 2. So (KX +L) ·F = 0, and
(KX +L) · ` = 0 for any irreducible component ` of a reducible fiber, by (4),
hence KX +L = π∗OP1(α) for some integer α. In particular, (KX +L)2 = 0;
furthermore, 2g − 2 = L · (KX + L) = L · αF = 2α, which gives

(5) L = −KX + (g − 1)F.

In particular, we get L2 = K2
X + 4(g − 1). On the other hand, let µ be

number of singular fibers of π : X → P1. By contracting an irreducible
component of every singular fiber of π we get a birational morphism from
X to an Fe, factoring through µ blowing-ups; hence K2

X = 8− µ, and then

(6) L2 = 4(g + 1)− µ.
This applies in particular, when L is ample, to polarized rational conic
fibrations, that we simply call rational conic fibrations when there is no
ambiguity. In this case g = g(X,L) is the sectional genus and d = d(X,L)
is the degree of (X,L). Then d > 0, and g ≥ 0. Since X has Picard number
ρ ≥ 2, we note that g = 0 if and only if the rational conic fibration (X,L)
has at the same time the structure of a rational scroll [8, Corollary 2.3], and
this can happen only for (P1×P1,OP1×P1(1, 2)), π being the projection onto
the first factor. We can thus assume that g ≥ 1. Moreover, we note that
rational conic fibrations with g = 1 are simply the pairs (X,−KX), where
X is a del Pezzo surface distinct from P2. This explains the interest for case
g = 2.

Proposition 1. Let (X,L) be a rational conic fibration. Then µ ≤ 4g + 3.
Moreover, d ≤ 4(g + 1), with equality if and only if

(X,L) =
(
Fe, [2s+ (g + e+ 1)f ]

)
for some integer 0 ≤ e ≤ g.

Proof. The first inequality is obvious in view of (6), since d ≥ 1, L being
ample. The second inequality is simply due to the fact that µ ≥ 0 and the
characterization of the equality follows from the properties of the Segre–
Hirzebruch surfaces. Once we know that X = Fe for some e ≥ 0, the
expression of L follows from the genus formula. Finally, the fact that s ·L =
−e+ g + 1 > 0, due to the ampleness of L, implies that e ≤ g. �
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Remark 2. Clearly, the upper bound for µ provided by Proposition 1 can be
improved if the ample line bundle L satisfies some additional requirement.
Actually, if L is ample and spanned, then necessarily L2 ≥ 2 and equality
holds if and only if either (X,L) =

(
P1×P1,OP1×P1(1, 1)

)
, which however is

not a conic fibration, or there exists a finite morphism ϕ : X → P2 of degree
2 such that L = ϕ∗OP2(1). Let 2b be the degree of the branch divisor;
then KX = ϕ∗OP2(−3 + b) = (b − 3)L by the ramification formula and so
the condition (KX + L)2 = 0 implies b = 2, i.e. ϕ is the del Pezzo double
plane, in which case g = 1. As a consequence, if L is ample and spanned,
then µ ≤ 6 if g = 1, while µ ≤ 4g + 1 if g ≥ 2. We have a stronger
improvement assuming that L is very ample. Actually, by restricting the
fibration morphism π : X → P1 to any smooth curve C ∈ |L| we get a
morphism π|C : C → P1 of degree 2; so either g = 1 or C is hyperelliptic.
Therefore

(7) µ ≤ 4(g + 1)− dg,
where dg denotes the smallest degree of a curve of this type. For instance,
µ ≤ 5 (µ ≤ 7 resp.) if g = 1 (g = 2 resp.). However, though (7) is sharp
for g ≤ 2, this is no longer true in general. For instance, for g = 3 we have
dg = 6, hence (7) would give µ ≤ 10. Nevertheless, according to [5, Theorem
4.1,ii)], the smallest degree of a rational conic fibration embedded in some
projective space is 7, hence µ ≤ 9.

Consider again a rational conic fibration (X,L) where L is simply an
ample line bundle. In view of the characterization provided by Proposition
1 we can assume that π has µ ≥ 1 singular fibers. As we said, each of them
consists of two (−1)-lines meeting at one point. By contracting one of these
two (−1)-curves on every singular fiber we thus get a birational morphism
η : X → X0 where X0 is a rational P1-bundle, hence X0 = Fe, for some
e ≥ 0. Moreover, L = η∗L0 −

∑µ
i=1 ei, where e1, . . . , eµ are the exceptional

curves contracted by η, and L0 is an ample line bundle on Fe in view of the
Nakai–Moishezon criterion and the ampleness of L. Furthermore, the fact
that 2 = L · F for every fiber F of X implies that also the fibers f of Fe
have degree 2 with respect to L0. So, we can write L0 = [2s+αf ], for some
integer α. Note that KX = η∗KFe +

∑µ
i=1 ei. Since KFe = [−2s− (e+ 2)f ],

the sectional genus g of (X,L) is given by

2g−2 = L·(KX+L) = L0 ·(KFe +L0) = [2s+αf ]·(α−2−e)f = 2(α−2−e).
Thus L0 = [2s + (e + g + 1)f ] and the ampleness implies e ≤ g. However,
we can say more. Consider the points pi = η(ei), i = 1, . . . , µ. Clearly
p1, . . . , pµ lie on distinct fibers of Fe. Suppose that t of these points, e.g. the
first t, p1, . . . , pt, lie on the section s (on the same section s if e = 0).

Proposition 2. Let η : X → Fe be a birational morphism expressing X as
the blow-up of Fe at points p1, . . . , pµ lying on distinct fibers, with some of
them, say p1, . . . , pt with t ≥ 1 belonging to the (−e)-section s. Then there
exists a birational morphism η′ : X → Fe+1 expressing X as the blow-up of

5



6 A. Lanteri, R. Mallavibarrena

Fe+1 at points p′1, . . . , p
′
µ lying on distinct fibers, with only t−1 of them, say

p′2, . . . p
′
t, belonging to the

(
− (e+ 1)

)
-section s′ of Fe+1, and conversely.

Proof. By [9, Section 2] (see also [11, Ch. V. § 1, pp. 85–89]) the elementary
transformation elmp1 centered at p1, gives rise to a commutative diagram

X

η′

$$

η

{{
Fe −−

elmp1−−−→ Fe+1.

where η′ : X → Fe+1 is the blowing up of Fe+1 at p′1, . . . , p
′
µ, with p′i =

elmp1(pi) for i = 2, . . . , µ and p′1 = elmp1(f1), where f1 is the fiber of Fe
through p1, since p1 ∈ s. Then s′ := elmp1(s) is the

(
− (e + 1)

)
-section of

Fe+1 and p′i ∈ s′ for i = 2, . . . , t, while p′1 6∈ s′. �

Up to an iterated application of Proposition 2, we can thus assume that
e = 1, i.e., η : X → F1, with p1, . . . , pµ lying on distinct fibers. As a
consequence, L0 = [2s+ (g + 2)f ]. By the way we note that

L2 = L20 − µ = −4e+ 4(g + 2)− µ = 4(g + 1)− µ,

as already pointed out in (6).
The above discussion can be summed up in the following structure the-

orem for polarized rational conic fibrations (compare with [5, Proposition
3.1, i) for g = 2 and Theorem 4.1, ii) for g = 3] when L is very ample).

Theorem 3. Let (X,L) be a rational conic fibration of sectional genus g.
Then either

(1) (X,L) = (Fe, [2s+ (g + e+ 1)f ]) for some 0 ≤ e ≤ g, or
(2) X has µ > 0 singular fibers, it is obtained by blowing-up F1 at points

p1, . . . , pµ lying on distinct fibers, and L = η∗[2s+(g+2)f ]−
∑µ

i=1 ei,
where η : X → F1 is the blow-up.

In the following, we will explore some further restrictions on the location
of the pi’s deriving from the ampleness of L. First of all we note the following
fact.

Proposition 4. Suppose that p1, . . . , pt belong to the (−1)-section s of F1.
Then t ≤ g − 1.

Proof. Let σ := η−1(s) be the proper transform of s via η. Then σ =

η∗s −
∑t

i=1 ei, since s is smooth. Therefore its degree with respect to L is
given by

(8) σ · L =
(
η∗s−

t∑
i=1

ei

)
·
(
η∗L0 −

µ∑
i=1

ei

)
= s · L0 − t = g − t.

Then the assertion follows from the ampleness of L. �
6
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An advantage of looking at η : X → F1 is that, as we said, F1 is P2 blown-
up at a point, say q0, the tautological section s of F1 being the exceptional
curve of the blow-up τ : F1 → P2 of P2 at q0. Set qi := τ(pi) for every
i = 1, . . . , µ. Composing η with τ we can look at the birational morphism
θ := τ ◦ η : X → P2, which allows us to regard X as the projective plane
blown-up at the µ+ 1 points q0, q1, . . . , qµ. Note that q0 cannot be collinear
with two other points qi and qj , otherwise their preimages pi and pj via τ
would belong to the same fiber of F1, which is not the case.

Moreover, given a point, say p1, on s, the corresponding point q1 ∈ P2 is
an infinitely near point to q0. According to Proposition 4, we thus see that
at most g − 1 of the qi’s (i = 1, . . . , µ) can be infinitely near points to q0.

More generally, if µ > 0, we can observe the following fact.
Remark 3. Up to renaming, suppose that p1, . . . , pν with ν ≤ µ lie on an
irreducible section s′ of F1. Since s′ ∈ |s + βf | for some β ≥ 0 (so s′ = s
if and only if β = 0), letting σ′ = η−1(s′), the same computation as in (8)
gives σ′ · L = 2β + g − ν, and therefore, the ampleness of L implies that
no more than g + 2β − 1 of the points pi can lie on an irreducible section
s′ ∈ |s + βf | of F1. Looking at the blowing-up τ : F1 → P2 and recalling
what we said in Section 2, we know that for β = 1 (β = 2 respect.), s′

is the proper transform of a line in P2 not containing q0 (of an irreducible
conic passing through q0 respect.). Thus, for g = 1 the above restriction is
equivalent to the requirement that no three of the qi’s in P2 (i = 1, . . . , µ) are
collinear and that at most four of them can lie on an irreducible conic passing
through q0. These conditions are well-known in view of the classification of
del Pezzo surfaces. Similarly, for g = 2, we have that at most three of the
qi’s (i = 1, . . . , µ) can be collinear and at most five of them can lie on an
irreducible conic passing through q0. In the same way, looking at the proper
transform γ of a general element in |2s+ 2f |, i.e. the proper transform via
θ of a general conic not passing through q0, we conclude that no more than
2g+ 3 of the qi’s (i = 1, . . . , µ) can lie on a general conic in P2 (i.e., no more
than 5 for g = 1 and no more than 7 for g = 2). Let us note the following
consequence. If g = 2, then q0, q1, . . . , q6 cannot lie on an irreducible conic,
otherwise L could not be ample. On the other hand, q1, . . . , q7 lying on an
irreducible conic does not affect the ampleness of L. However, this prevents
L from being very ample (see Remark 4 in Sec. 4).

Along the same line we can investigate further restrictions on the pi’s in
connection with any irreducible curve C ∈ |2s+ βf | for β ≥ 3. In this case,
pa(C) ≥ 1 and, since C ·f = 2, if pi ∈ C, then multpi(C) ≤ 2, so C can have
at worst double points, provided that their number does not exceed pa(C).
For instance, letting β = 3 we have pa(C) = 1, hence C can have one double
point at most. So, if e. g. C has a double point at p1 and passes through
p2, . . . , pν , with ν ≤ µ, then from

C · L =
(
η∗(2s+ 3f)− 2e1 −

ν∑
j=2

ej

)
·
(
η∗(2s+ 4f)−

µ∑
i=1

ei

)
= 9− ν,

7
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we see that if µ ≥ 9, the ampleness of L prevents that 9 of the pi’s lie on a
curve C ∈ |2s + 3f | having a double point at one of them. This translates
in terms of plane curves by saying that q0, q1, . . . , q9 cannot lie on a cubic
having a double point at a qi with i > 0.

A relevant consequence of (5) is the ampleness or the very ampleness of
L for g ≥ 2, provided that the anticanonical bundle −KX is good enough.
In fact we have

Proposition 5. Let (X,L) be a pre-conic fibration for some line bundle L,
let F be a fiber, and set Am := −KX +mF for any positive integer m.

(1) If −KX is nef then Am is ample for any m.
(2) If −KX is nef and big then Am is very ample for any m.

Note that Ag−1 = L, by (5).

Proof. We haveAm = A1+(m−1)F . So, since the line bundle corresponding
to a fiber is spanned, it is enough to prove both assertions for A := A1 [4,
Ex. 7.5(d), p. 169]. If −KX is nef, then A is nef, being the sum of two nef line
bundles; moreover A2 = K2

X −2KX ·F +F 2 ≥ 4, since K2
X ≥ 0, −KX being

nef, and KX ·F = −2 by the genus formula. So, if A is not ample then there
exists an irreducible curve C ⊂ X such that 0 = A · C = −KX · C + F · C,
in view of the Nakai–Moishezon criterion. Since both summands are non-
negative, this implies that KX · C = F · C = 0. The latter condition says
that C is contained in a union of fibers, so, due to the structure of (X,L),
it is either a fiber or an irreducible component of a singular fiber, hence a
(−1)-curve. In both cases the equality KX ·C = 0 cannot hold, and therefore
A is ample.

To prove the second assertion, write A = KX+M where M = −2KX+F .
Note that M is nef, so being both −KX and F . Moreover, M2 = 4K2

X −
4KX · F = 4K2

X + 8 ≥ 12, since −KX is also big by assumption, and
KX ·F = −2 as already observed. We can thus apply Reider’s theorem [10,
Theorem]: if A is not very ample, then X has to contain a divisor D > 0
such that one of the following holds:

i) D ·M = 0 and D2 = −2 or −1;
ii) D ·M = 1 and D2 = −1 or 0;
iii) D ·M = 2 and D2 = 0.

Let us prove that neither of the cases above may occur.
In case i), due to the expression of M , it must be D · KX = D · F =

0. The latter condition says that D is contained in a union of fibres, but
this immediately leads to a contradiction: actually, since every singular
fiber consists of two (−1)-curves meeting at one point, we can write D =∑u

j=1 sjFj +
∑v

i=1 ri`i where the Fj ’s are fibers, the `i’s are irreducible
components of singular fibers and s1, . . . su, r1, . . . rv are positive integers;
then D ·KX = −2

∑u
j=1 sj −

∑v
i=1 ri cannot be zero.

8
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In case ii), it must be D ·KX = 0 and D · F = 1. Moreover, the genus
formula implies that D2 = 0. Since −KX is big the Hodge index theorem
shows that D has to be numerically trivial, but this contradicts D · F = 1.

In case iii) we get either: j) D ·KX = 0 and D ·F = 2, or jj) D ·(−KX) = 1
and D · F = 0. The same argument as in ii) rules out subcase j). On the
other hand, subcase jj) cannot occur in view of the genus formula. This
concludes the proof. �

4. Sectional genus two

In this Section (X,L) will be a rational conic fibration with g = 2. First
assume that L is simply an ample line bundle. If µ ≥ 1, Proposition 4 says
that t ≤ 1, i.e. at most one of the points p1, . . . , pµ can lie on the tautological
section s. Recalling the description in terms of the birational morphism θ :
X → P2 provided in Sec. 3, this can be translated into the following result,
which improves [5, Remark 3.2] even in the setting of polarized surfaces.

Proposition 6. If g = 2 then one at most of the qi’s can be an infinitely
near point to q0.

Furthermore, by specializing (5), we have

(9) L = −KX + F,

where F stands for a fiber of X. Moreover, d = 12− µ by (6). Relation (9)
allows us to prove the following result, which provides a partial converse to
Proposition 5 (2).

Proposition 7. Let (X,L) be a rational conic fibration of sectional genus
2 with L very ample. Then −KX is nef and big.

Proof. If X = Fe, with e ≤ 2, then −KX is obviously ample for e ≤ 1,
and nef and big for e = 2. So, according to Theorem 3 and Remark 2, we
can suppose that X is obtained via a blow-up η : X → F1 at 1 ≤ µ ≤ 7
points lying on distinct fibers, one at most, say p1, belonging to the minimal
section s of F1, and the line bundle L is given by L = η∗[2s+ 4f ]−

∑µ
i=1 ei.

Recalling (2), we get h0(2s+ 4f) = 12. Thus h0(L) ≥ h0(2s+ 4f)− µ ≥ 5,
because µ ≤ 7. Since L·F = 2, we thus get dim(|L−F |) = dim(|L|)−3 ≥ 1
and then, due to (9), | − KX | = |L − F | is at least a pencil. Clearly,
K2
X = K2

P2 − µ − 1 = 8 − µ ≥ 1, hence −KX is big provided that it is
nef. Suppose, that −KX is not nef. Then there exists an irreducible curve
C ⊂ X such that C · (L − F ) = C · (−KX) < 0, i.e.,

C · L < C · F.

As C ·D < 0 for every D ∈ |−KX | = |L−F |, necessarily the curve C has to
be contained in the fixed part of |L−F |, so we can write |L−F | = C+ |R|,
where R is an effective divisor. Thus

2 = L · F = (L − F ) · F = C · F +R · F ≥ C · F,
9



10 A. Lanteri, R. Mallavibarrena

because F is nef. On the other hand, the ampleness of L implies C · L ≥ 1.
Combining this with the above inequalities we get

1 ≤ C · L < C · F ≤ 2,

and this in turn implies

(10) C · L = 1 and C · F = 2.

We claim that this exceptional situation cannot happen L being very ample.
Suppose (10) holds. Then C is a line on X ⊂ PN embedded by |L|; moreover,
C is contained in the linear span 〈F 〉 ⊂ PN of every fiber F , since it intersects
every fiber at two points. As a consequence, the planes 〈F 〉 constitute a
pencil whose axis is the line C itself, and so X is contained in the P3 spanned
by that pencil. But the only smooth surface in P3 admitting a structure of
conic fibration is the cubic surface, and this is not compatible with g = 2.
Therefore (10) cannot occur. �

More generally, we have

Proposition 8. Let (X,L) be a rational conic fibration of sectional genus
2 and suppose that L is ample and spanned. Then either

a) 8 ≤ µ ≤ 9, or
b) −KX is nef and big, unless

(11) µ = 7, t = 0, and p1, . . . , p7 belong to an irreducible curve of |2s+2f |.

Proof. By Remark 2 we know that µ ≤ 9 since L is ample and spanned.
Suppose we are not in case a). Then µ ≤ 7 and so we can argue as in the part
of the proof of Proposition 7 leading to formula (10) under the assumption
that −KX is not nef. Then, C is a bisecant of the fibration. Moreover,
the fact that LC is an ample and spanned line bundle of degree 1 on C
implies that C is a smooth rational curve. Consider the birational morphism
η : X → F1 again and set γ := η(C); then γ ⊂ F1 is an irreducible curve. We
can write γ ∼ as+ bf for some integers a and b, and C = η∗γ −

∑µ
i=1 νiei,

for suitable non-negative integers νi = multpi(γ). As F = η∗f , we have

2 = C · F =
(
η∗γ −

µ∑
i=1

νiei
)
· η∗f = γ · f = a,

and this implies 0 ≤ νi ≤ 2 for every i = 1, . . . , µ. So, if γ is singular, it can
have at worst double points at some of the pi’s and since C is rational, their
number is exactly pa(γ). By the genus formula we have

2pa(γ)− 2 = γ · (KF1 + γ) = (2s+ bf) · (b− 3)f = 2(b− 3),

hence pa(γ) = b− 2. Let ε be the number of the pi’s for which νi = 1. Then
b− 2 + ε ≤ µ ≤ 7. Thus, we get

1 = C · L =
(
η∗[2s+ bf ]−

µ∑
i=1

νiei
)
·
(
η∗[2s+ 4f ]−

µ∑
i=1

ei
)

10



Rational conic fibrations 11

= −4 + 8 + 2b− 2(b− 2)− ε = 8− ε.
Therefore 7 = ε = µ and b − 2 = 0. So, γ is a smooth curve of |2s + 2f |
containing all the seven pi’s. In particular, t = 0 in view of Remark 1, and
then assertion b) in the statement is proved. �

Remark 4. The special case (11) arising in Proposition 8 is an effective
exception to the nefness of −KX . To see this, referring to the blow-up
τ : F1 → P2 and to θ = τ ◦ η : X → P2, consider that [2s+ 2f ] = τ∗OP2(2).
Then the exceptional situation in (11) corresponds to the fact that the seven
points qi = τ(pi) (i = 1, . . . , 7) of P2 lie on an irreducible conic. According
to [2, Théorème 1, p. 39], this fact prevents −KX from being nef (and hence
L from being very ample).

Here is an easy application of (9) and Proposition 7. Clearly, in case
t = 1, the proper transform of the tautological section s via η : X → F1 is a
(−2)-curve which is a line of (X,L) and a section of X. In fact we can say
more.

Proposition 9. Let X ⊂ PN be a rational conic fibration of sectional genus
2 with µ > 0, let η : X → F1 be the morphism expressing X as the blow-up
of F1 at p1, . . . , pµ, and let C ⊂ X be a line. Then, either

1) C is a component of a singular fiber of X, or
2) C is a (−2)-curve and a section of X.

Proof. Let L be the hyperplane bundle of X and let C ⊂ X be a line of
(X,L). In view of the relation (9) we have 1 = C · L = C · (−KX) + C · F .
Clearly, F is nef. Moreover, −KX is also nef in view of Proposition 7, then
either

i) C ·KX = −1 and C · F = 0, or
ii) C ·KX = 0 and C · F = 1,

and in these two cases C is as in 1) and 2) respectively. �

5. Characterizing the very ampleness of L for g = 2

Notation as in Section 3. Let η : X → F1 be the blowing up of F1

at points p1, . . . , pµ with µ ≤ 11, lying on distinct fibers, and let L =
η∗[2s + 4f ]−

∑µ
i=1 ei. Since g([2s + 4f ]) = 2 > 0, if p1, . . . , pµ are general,

then L is ample, according to Yokoyama [12, Theorem, 1.8]. Then (X,L) is
a polarized rational conic fibration of sectional genus 2. On the other hand,
if p1, . . . , pµ are not general, the “bad curves” containing some of them and
preventing L from being ample include those mentioned in Section 3, but
there could be more. In this Section, as a consequence of Proposition 5 and
Proposition 7 we succeed to describe precisely the conditions on the location
of p1, . . . , pµ characterizing the very ampleness of L for µ ≤ 7. To do that
we need to translate the condition that q0, q1, . . . , qµ are in almost general
position according to [2, p. 39] in terms of the points p1, . . . , pµ on F1. The
relevant fact is that, while the same conditions are obviously sufficient for

11



12 A. Lanteri, R. Mallavibarrena

the mere ampleness of L, they turn out also to be necessary except in the
geometric situation specified by (11).

So, let (X,L) be a rational conic fibration of sectional genus g = 2 and
consider the blow-up θ : X → P2 at q0, q1, . . . , qµ where µ ≤ 7 (we can
assume this fact since it is a necessary condition for the very ampleness of
L; see Remark 2). According to [2, Théorème 1, equivalence of conditions
(a) and (d), p. 39], −KX is nef if and only if q0, q1, . . . , qµ are in almost
general position (see [2, Definition 1, p. 39]). Note that property (∗) in [2,
point b) p. 38] is certainly satisfied in the present case in view of Proposition
6. This means that the first requirement in [2, Definition 1, p. 39] is fulfilled,
and therefore the points q0, q1, . . . , qµ are in almost general position if and
only if they are

i) no four on a line, and
ii) no seven on a conic.

Before translating these conditions in terms of the points p1, . . . , pµ on F1,
we note that if t = 1 (i.e. q1 is infinitely near to q0), then a line or a conic
through q1 has to contain q0.

So, let us translate the complementary situation of i).

i-1) suppose that q0, qi1 , qi2 , qi3 lie on a line. This means that the three
points pi1 , pi2 , pi3 belong to the same fiber of F1 (which is not the
case since L is ample);

i-2) suppose that qi1 , qi2 , qi3 , qi4 are on a line, the 4-tuple not including
q0 (and then not even q1 if t = 1). This means that the four points
pi1 , pi2 , pi3 , pi4 belong to an irreducible curve in the linear system
|s+ f | (but this contradicts the ampleness of L: immediate check).

Therefore no four of the pi’s can lie on an irreducible curve in |s + f |.
However, three can lie on such a curve if either t = 0, or t = 1 provided that
p1 is not one of them (recalling Remark 1).

Next let us translate the complementary situation of ii). Of course this
requires µ = 6 or 7.

ii-1) suppose that the conic contains q0. This means that six of the points
pi belong to an irreducible curve in the linear system |s + 2f | (an
immediate check shows that this contradicts the ampleness of L);

ii-2) suppose that the conic misses q0 (and then, necessarily, t = 0);
this means that the seven points p1, . . . , p7 belong to an irreducible
curve in the linear system |2s+ 2f | (this is the special case (11)) in
Proposition 8 b), which does not contradict the ampleness of L).

Here is the main result.

Theorem 10. Let (X,L) be a rational conic fibration of sectional genus 2
with L ample and µ ≤ 7 singular fibers.

j) Then (X,L) is as in point (2) of Theorem 3, with g = 2; moreover,
the points p1, . . . , pµ satisfy the following conditions: at most one
can lie on s; no four are on an irreducible curve in the linear system

12



Rational conic fibrations 13

|s+f |, and no six are on an irreducible curve in |s+2f |. Conversely,
if these conditions are satisfied for a pre-conic fibration (X,L) with
g = 2, then L is ample.

jj) Moreover, if all the above conditions are satisfied, then L is spanned.
jjj) Furthermore, L is very ample if and only if the above conditions

are satisfied and, in addition, in case µ = 7, t = 0 and the points
p1, . . . , pµ do not belong to an irreducible curve in |2s+ 2f |.

Proof. j) follows from the above discussion, taking also into account Propo-
sition 4. Assertions jj) and jjj) are trivial if µ = 0. So let µ ≥ 1 and consider
the blow-up η : X → F1 again. Since L = η∗[2s + 4f ] −

∑µ
i=1 ei, we see

from [1, Theorem 4.1] that the sufficient conditions for the spannedness of L
are weaker than those listed in j); this implies jj). Finally, jjj) follows from
Proposition 5 (2) and Proposition 7, taking into account jj) and Proposition
8. �

Note that the conditions in j) are also sufficient for the ampleness of L
when µ ≤ 6. Actually, the ampleness of L follows from Proposition 5 (1)
and [2, Théorème 1], since the conditions in j) express the nefness of −KX

for µ ≤ 6. On the other hand, if µ = 7, then either −KX is nef and then
L is ample, or (X,L) is as in (11) (which, however does not prevent L from
being ample.

Corollary 11. Let (X,L) be a polarized rational conic fibration with g = 2.
If µ ≤ 7 then L is very ample, except if (11) holds.

Remark 5. We used Bese’s paper [1] for the spannedness of L but we did not
for the very ampleness. Actually, according to [1, Theorem 4.2], L would
be very ample provided that for any curve C ∈ |xs + yf | with x and y
nonnegative integers no both zero, such that x ≤ 4, y ≤ 3,

(12) at most ν := x(x− y + 3) + y(4− x)− 3 of the pi’s belong to C.

Let µ = 7. Note that ν > 7 for all admissible pairs (x, y) with x ≥ 3, hence
requirement (12) is meaningful only for the restricted subset of admissible
(x, y) with x ≤ 2. Moreover, (12) is obvious when x = 0 because the seven
points lie on distinct fibers; similarly, (12) is obvious also when y = 0, since
in this case C = s or 2s according to whether x = 1 or 2, and we know that
at most one of the pi’s can lie on s. This reduces the analysis to 11− 5 = 6
admissible pairs and a close check can be done. In particular, recalling that
µ = 7, in addition to the conditions in j) of Theorem 10, we see that (12)
includes some further restrictions, like that the seven point cannot lie on a
curve in |s+ 3f | or in |2s+ 3f |. Looking at the plane model and using the
usual notation, we see that these curves are the proper transforms on F1 of
a cubic passing through q0 with multiplicity 2 or 1 respectively. However,
the fact that these curves do not enter at all in our conditions (see jjj) of
Theorem 10) is not a trouble once we consider that Bese’s conditions are
only sufficient conditions (but not necessary) for the very ampleness of L.

13
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For the remaining (x, y), (12) is satisfied in view of the conditions in j) of
Theorem 10. The key point, however, is that this happens also if the seven
points lie on an irreducible curve C ∈ |2s+2f |. Thus L would be very ample
even in this case according to Bese, but we stress that this is in contrast
with what we proved (this is exactly the exceptional configuration in (11)).

6. Rational conic fibrations with g = 2 containing lines

Finally, in this Section we characterize the rational conic fibrations (X,L)
of sectional genus 2, with L very ample, containing a line C transverse to
the fibers.

If X = Fe with e ≤ 2, then L = [2s+ (e+ 3)f ] by Theorem 3. Since C is
an irreducible curve we have either C = s or C ∼ as+ bf for some integers
a and b such that b ≥ ae. Moreover, a = 1 or 2 because C is transverse to
the fibers and C ·f ≤ 2 since C is a line and f is a conic. In the former case,
from 1 = C ·L = s · [2s+ (e+ 3)f ] = 3− e we get e = 2. In the latter, we get
1 = C · L = (as+ bf) · [2s+ (e+ 3)f ] = −2ae+ 2b+ a(e+ 3) ≥ a(e+ 3) ≥ 3,
a contradiction. Therefore e = 2 and C = s. On the other hand, as
s · (2s + 5f) = 1 we have that this curve is in fact a line of (X,L). Next,
suppose that µ ≥ 1 and use the description via the birational morphism η,
recalling that µ ≤ 7 since L is very ample. By Proposition 9 we know that
C is a section of X with C2 = −2. Then γ := η(C) is a section of F1, hence
γ ∈ |s+ αf | for some integer α ≥ 0. Moreover, C = η∗γ −

∑µ
i=1 νiei, where

νi = multpi(γ) = C · ei ≤ 1 for every i = 1, . . . , µ, because both C and ei are
lines in X embedded in some PN by |L|. Let ε be the number of the pi’s for
which νi = 1. Then

−2 = C2 = γ2 − ε = 2α− 1− ε.
Thus α = 1

2(ε − 1), so that ε has to be odd. If ε = 1 then α = 0, hence
γ = s and, up to renaming, p1 ∈ s. If ε > 1, then, ε = 2α + 1 ≥ 3. On
the other hand, ε ≤ µ ≤ 7, hence α ≤ 3. Therefore ε = 3, 5 or 7 according
to whether α = 1, 2 or 3, respectively. Let α = 1; then γ ∈ |s + f | and it
contains three of the pi’s (clearly, no one of them can lie on s, by Remark
1). Next let α = 2; then γ ∈ |s+ 2f | and it contains five of the pi’s. Clearly,
here µ ≥ 5 and it can happen that p1 ∈ s, because s · γ = s · (s + 2f) = 1.
Finally, if α = 3, then ε = 7 = µ, i.e. γ ∈ |s+ 3f | and it contains all seven
points pi’s. The above discussion proves the following result.

Theorem 12. Let (X,L) be a rational conic fibration of sectional genus 2,
with L very ample. Then (X,L) contains a line C transverse to the fibers if
and only if either

(X,L, C) = (F2, [2s+ 5f ], s),

or (X,L) is as in point (2) of Theorem 3 with µ ≤ 7 and C = η−1(γ),
where γ ⊂ F1 is an irreducible section and one of the following conditions is
satisfied:

a) γ = s and it contains p1;
14



Rational conic fibrations 15

b) γ ∈ |s+ f | and it contains three of the pi’s;
c) γ ∈ |s+ 2f | and it contains five of the pi’s;
d) γ ∈ |s+ 3f | and it contains p1, . . . , p7.

At first glance the statement of Theorem 12 does not seem to fit with [6,
Proposition 8 (2)]. But there is a good reason for that since the morphism
η : X → F1 in point (2) of Theorem 3 we refer to here is not the same as
the birational morphism X → Fe constructed in [6]. In fact the above curve
γ has nothing to do with the curve denoted by `0 in [6].

Remark 6. i) Consider the four cases occurring in Theorem 12 for µ ≥ 1.
Clearly, in case a) we have t = 1. In case b), let pi1 , pi2 , pi3 ∈ γ. Referring
to the blow-up τ : F1 → P2 we have that γ = τ−1(`), where ` ⊂ P2 is a line
containing three of the qi’s. So three of the qi’s are collinear. Similarly, in
case c), let pi1 , . . . , pi5 ∈ γ. Referring to τ again we have that γ = τ−1(G),

where G ∈
∣∣OP2(2)−q0−

∑5
j=1 qij

∣∣. So q0 and five more points qi’s (possibly

one of them being infinitely near to q0) are on a conic. As a consequence,
in all these cases, even if t = 0, the above conditions prevent (X,L) from
being a Castelnuovo surface, according to the definition in [6, p. 2857]. On
the other hand, in case d), we have γ = τ−1(Γ), where Γ ∈

∣∣OP2(3)− 2q0 −∑7
i=1 qi

∣∣. So the eight points qj ’s lie on a cubic having a double point at q0.
In this case (X,L) is in fact a Castelnuovo surface according to [6], provided
that t = 0.

ii) Looking over the proof of Theorem 12, suppose that γ 6= s and let σ be
the proper transform of s; then σ 6= C. Recall that, up to renaming, p1 at
most among the pi’s can belong to s, by Proposition 6. Then σ = η∗s−xe1,
where x = 1 or 0 according to whether p1 ∈ s or not (i.e., t = 1 or 0). We
thus get σ · L = s · (2s + 4f) − x = 2 − x. Hence σ is either a line or a
conic, accordingly. In particular, σ is a conic if and only if t = 0. As a
consequence, σ ·C ≤ 2, since C is a line. Moreover, equality means that the
line C lies in the plane 〈σ〉 spanned by σ in the PN where |L| embeds X.
An easy computation shows that

σ · C = (η∗s− xe1) ·
(
η∗[s+ αf ]−

ε∑
j=1

eij

)
=

{
α− 2 if p1 ∈ s ∩ γ,
α− 1 otherwise.

This is 2 if and only if α = 3, namely in case d) of Theorem 12. Moreover,
since in this case 2 = σ ·C = s · (s+ 3f)−x = 2−x, implies x = 0, we have
t = 0. Therefore C ⊂ 〈σ〉 if and only if X embedded by |L| is a Castelnuovo
surface of degree 5 in P4.

Now we connect the previous discussions with the inflection points of
X ⊂ PN , linearly normally embedded by |L|. Let us recall some general
facts from [6, Section 2] in the specific case we are dealing with. Let PX(L)
be the second principal part bundle of L and let

j : H0(X,L)⊗OX → PX(L)
15



16 A. Lanteri, R. Mallavibarrena

be the sheaf homomorphism associating to every section σ ∈ H0(X,L) its
second jet jx(σ) evaluated at x, for every x ∈ X. Let r := maxx∈X{rk(jx)}
be the maximum rank of jx on X. Clearly, 3 ≤ r ≤ min{N + 1, 6} since
PX(L) is a vector bundle of rank 6, X being a surface. A point x ∈ X is
said to an inflection point if rk(jx) < r. This is in accordance with the fact
that the osculating space to X at x is defined as Oscx(X) := P(Imjx). Then
the inflectional locus Φ(X) of X is defined as the set of the inflection points.
In view of the definition of the osculating space, the osculating hyperplanes
to X at x can be regarded as the elements of the linear system |L − 3x|
(hyperplane sections of X having a singular point of multiplicity ≥ 3 at x).
As a consequence, dim(|L − 3x|) + dim

(
Oscx(X)

)
= N − 1, or equivalently

rk(jx) = N − dim(|L − 3x|). In particular, we see that

(13) if |L − 3x| = ∅, then x 6∈ Φ(X).

Coming back to the situation in Theorem 12, note that

N = h0(L)− 1 ≥ h0(2s+ 4f)− 1− µ = 11− µ
due to (2). Moreover, N ≥ 4 since L is very ample. If N ≥ 5, then the line
C is always contained in Φ(X), according to [6, Theorem 5 (2)]. If N = 4,
which implies µ = 7, we have to analyze all possible cases a)–d) in Theorem
12 to decide whether the line C is contained or not in Φ(X). We can argue
as follows. Fix x ∈ C and let Fx be the fiber of X passing through x. Since
C and Fx are a line and a conic containing x, they are fixed components of
|L − 3x| [6, Lemma 2(1)]. Thus,

dim(|L − 3x|) = dim(|L − Fx − C − x|) = dim(| −KX − C − x|),
recalling (9). Keeping the notation used in the proof of Theorem 12, we
can write C ∼ η∗(s + αf) −

∑ε
j=1 eij , where ε = 2α + 1, with α = 0, 1, 2, 3

according to cases a), b), c) and d) respectively in Theorem 12. Letting
P := {p1, . . . , pµ}, we thus see that P \ γ consists of µ − ε = µ − 1 − 2α
points. Thus

dim(| −KX − C|) = dim
(∣∣η∗(s+ (3− α)f

)
−
µ−ε∑
k=1

eik
∣∣)

≥ dim(|s+ (3− α)f |)− (µ− 1− 2α),

equality holding if and only if

(14) P \γ imposes linearly independent linear conditions on |s+(3−α)f |.
Note that this certainly happens in case d) of Theorem 12, because P \ γ is
empty. Now, a straightforward computation shows that h0

(
s+ (3− α)f

)
=

7 − 2α, hence dim(| −KX − C|) = 0, provided that (14) holds and µ = 7.
This in turn implies that

(15) | −KX − C − x| = ∅
unless x ∈ D ∩ C, where D is the only divisor in | −KX − C|. But D is a
section and D ·C = 2, hence (15) holds for the general point x ∈ C. Then, as

16



Rational conic fibrations 17

a consequence of (13), C is not contained in Φ(X). So we have the following
result.

Proposition 13. Let (X,L) and C be as in Theorem 12 and suppose that
N = 4 (hence µ = 7). If (14) holds, then the line C is not contained in the
inflectional locus of X. In particular this applies to case d).

Remark 7. In fact, as to case d) we proved in [6, Theorem 18] that when
X ⊂ P4 is a Castelnuovo surface, then the inflectional locus is finite and
consists of 75 points, in general. We use this opportunity to point out that
unlike we said in [6, Example b), p. 2870] Castelnuovo surfaces, as defined
in [6, p. 2857] do not exhaust the class of surfaces of sectional genus 2 in P4.
Actually, there exist surfaces with t = 0 that are not Castelnuovo surfaces
as well as examples of surfaces with t = 1.

The following example offers an interesting situation in connection with
Proposition 9, Theorem 12 and Proposition 13.

Example. Let X be the surface obtained by blowing-up F1 at 7 points
p1, . . . , p7 lying on an irreducible curve γ ∈ |s+ 3f | and sufficiently general,

with p1 ∈ s, and let L = η∗[2s + 4f ] −
∑7

i=1 ei, with obvious meaning of
the symbols. Then L is very ample, |L| embeds X in P4 as a quintic surface
and (X,L) is a rational conic fibration with g = 2 and t = 1. In particular,
it is not a Castelnuovo surface in the sense of [6, p. 2857]. Let s̃ and C
be the proper transforms on X of s and of γ, respectively. Both curves are
lines transverse to the fibers of X, and in fact they are (−2)-curves. They
correspond to case a) and to case d) respectively in Theorem 12. Since

η∗s = s̃ + e1 and η∗γ = C +
∑7

i=1 ei, one immediately sees that s̃ and C
intersect at one point, say y1. Similarly, the line e1, which is a component
of a singular fiber, intersects both C and s̃. Set y2 := e1 ∩ C and y3 :=
e1 ∩ s̃. Following the argument used to prove Proposition 13, we see that
−KX−C = η∗s = s̃+e1. Similarly, −KX−s̃ = η∗[s+3f ]−

∑7
i=2 ei = C+e1.

According to Proposition 13 the conclusion is that no x ∈ C ∪ s̃ can be an
inflection point of X except the three points yj , j = 1, 2, 3, which indeed are
such.
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