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Abstract. We consider eigenvalue problems and bifurcation of positive solu-

tions for elliptic equations with indefinite weights and with Neumann bound-
ary conditions. We give complete results concerning the existence and non-

existence of positive solutions for the superlinear coercive and non-coercive

problems, showing a surprising complementarity of the respective results.

1. Introduction

This article concerns the eigenvalues for elliptic equations with an indefinite
weight function

−∆u = λa(x)u in Ω ⊂ RN

Bu = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain, a : Ω→ R is a continuous and sign-changing
function, and B denotes a homogeneous boundary condition, say Dirichlet or Neu-
mann.

Eigenvalue problems with indefinite weights have numerous applications in en-
gineering, physics, biology, etc.; see the recent work by Sovrano [20] concerning
selection-migration models in population genetics.

The second order ODE corresponding to (1.1) has been widely studied, begin-
ning with the work of Bôcher [2], Hilbert [12], and Richardson [18]. The first
work for the Dirichlet boundary value problem in higher dimensions goes back to
Holmgren (1904) [13] who considered the equation in bounded domains in two di-
mensions, proving the existence of a sequence of positive and a sequence of negative
eigenvalues.

For recent works on such problems we cite the work by de Figueiredo [7], Hess-
Kato [11] and Manes-Micheletti [16] in which the indefinite Dirichlet eigenvalue
problem in Ω ⊂ RN was studied. They proved the existence of two sequences of
eigenvalues 0 < λ+

1 < λ+
2 ≤ · · · → +∞ and 0 > λ−1 > λ−2 ≥ · · · → −∞, and gave

a variational min-max characterization for these eigenvalues. The aim of Manes
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and Micheletti was to generalize the assumptions for the so-called Ambrosetti-
Prodi problem: considering a nonlinearity which crosses asymptotically the first
eigenvalue of the Laplacian, Ambrosetti and Prodi (1972) [1] gave in their pioneering
result a global description of the solutions structure of the associated Dirichlet
problem, characterizing it as a global fold mapping between Banach spaces. To
achieve this, the linearization of the nonlinear mapping needs to be controlled in
every point of the domain space, which leads to the indefinite eigenvalue problems
studied by Manes-Micheletti. For interesting generalizations of these methods, see
[4, 5, 6, 19].

Recently, López-Gómez and Rabinowitz [15] studied bifurcation problems asso-
ciated to indefinite eigenvalue problems. In particular, for the model problem

−∆u = λa(x)u− |u|p−1u in Ω ⊂ RN

u = 0 on ∂Ω

with 1 < p and a(x) continuous and sign-changing, they showed the existence at
least k pairs of solutions for λ > λ+

k , as well as for λ < λ−k , implying that all
eigenvalues of equation (1.1) are also bifurcation points.

In this article we study the eigenvalue problem with Neumann boundary condi-
tions which has been less studied.

−∆u = λa(x)u in Ω ⊂ RN

∂u

∂ν
= 0 on ∂Ω.

(1.2)

There is again a positive and a negative sequence of eigenvalues, with the peculiarity
that λ+

1 = 0 if
∫

Ω
a(x)dx > 0, and λ−1 = 0 if

∫
Ω
a(x)dx < 0; this implies in

particular that λ+
1 = λ−1 = 0 if

∫
Ω
a(x)dx = 0. The variational characterization

and properties of these eigenvalues are given in section 2.
In section 3 we consider the bifurcation of positive solutions from the first eigen-

values λ±1 for the problems

−∆u = λa(x)u± up in Ω ⊂ RN

u > 0 in Ω

∂u

∂ν
= 0 on ∂Ω

(1.3)

We will prove the following results, which show an interesting complementarity
between problems (1.3) with (−) and with and (+).

Theorem 1.1. Assume that a ∈ C(Ω) and sign-changing, and p > 1. Then
equation (1.3) with (−) has

• for λ < λ−1 and for λ > λ+
1 a positive solution,

• for λ−1 ≤ λ ≤ λ
+
1 no positive solution.

Theorem 1.2. Assume that a ∈ C(Ω) and sign-changing, and 1 < p < N+2
N−2 . Then

equation (1.3) with (+) has

• for λ ≤ λ−1 and for λ ≥ λ+
1 no positive solution,

• for λ−1 < λ < λ+
1 a positive solution.

The complementarity is most striking in the degenerate case
∫

Ω
a(x)dx = 0.

Then we have λ−1 = λ+
1 = 0, and hence
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Corollary 1.3. If
∫

Ω
a(x)dx = 0:

• problem (1.3) with (−) has a positive solution for every λ 6= 0 (p > 1);
• problem (1.3) with (+) has no positive solution for every λ ∈ R (1 < p <

(N + 2)/(N − 2)).

2. Eigenvalue problem with indefinite weights

In this section we give a short description of the spectrum, eigenfunctions, and
some of their properties for the eigenvalue problem

−∆φ = λa(x)φ in Ω

∂φ

∂ν
= 0 on ∂Ω

(2.1)

where Ω ⊂ RN is an open bounded domain, with ∂Ω of class C1, and a = a(x) ∈
L∞(Ω) is a non trivial function. As mentioned in the introduction (see also Manes-
Micheletti [16]), if a = a(x) changes sign then there exist two sequences

(i) {λ+
j } of positive eigenvalues, with associated eigenfunctions {φ+

j },
(ii) {λ−j } of negative eigenvalues, with associated eigenfunctions {φ−j }.

Manes and Micheletti [16] discussed the Dirichlet case (for more general elliptic
operators). Here we focus on the Neumann case. We define the bilinear form

S(u, v) :=

∫
Ω

a(x)uv dx

Let B+ = {u : S(u, u) = 1}, B− = {u : S(u, u) = −1}.

Remark 2.1. Since a = a(x) changes sign, both B+ and B− are nonempty.

In what follows, we outline some properties of the eigen-pairs (λ±j , φ
±
j ), and

rephrase the variational characterization for the eigenvalues given by Manes and
Micheletti [16], see also [3].

(a) (Quasi-orthogonality) If λ∗ and λ∗ are two different eigenvalues of (2.1),
and resp. φ∗, φ

∗ two associated eigenvectors, then φ∗, φ
∗ are orthogonal∫

Ω

∇φ∗∇φ∗ dx = 0,

∫
Ω

a(x)φ∗φ
∗ dx = 0.

(b) (First eigenvalues)

λ+
1 = inf

u∈B+

∫
Ω

|∇u|2dx ≥ 0, λ−1 = − inf
u∈B−

∫
Ω

|∇u|2dx ≤ 0

are simple, with associated positive eigenfunctions φ+
1 and φ−1 .

(c) (Higher eigenvalues) For k ≥ 2,

λ+
k = inf

dimF=k
sup

u∈B+∩F

∫
Ω

|∇u|2dx > 0, λ−k = − inf
dimF=k

sup
u∈B−∩F

∫
Ω

|∇u|2dx < 0,

or equivalently, using MM characterization,

1

λ+
k

= sup
dimF=k

min
u∈F,u6=0

∫
Ω
a(x)u2∫

Ω
|∇u|2

,
1

λ−k
= − sup

dimF=k
min

u∈F,u6=0
−
∫

Ω
a(x)u2∫

Ω
|∇u|2

. (2.2)

(d) λ+
k → +∞ and λ−k → −∞ as k → +∞.
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(e) (Positivity of first eigenfunctions) The eigenfunctions corresponding to the
first eigenvalues have constant sign. Moreover, the eigenvalues λ 6= λ±1 do
not posses a positive eigenfunction.

The same results occur in both the Dirichlet and the Neumann case, but a dis-
tinction is a must: while for the Dirichlet case the inequality for the first eigenvalues
λ±1 is strict, i.e. λ−1 < 0 < λ+

1 , we have that λ = 0 is always an eigenvalue in the
Neumann case. Indeed, for Neumann boundary conditions, when

∫
Ω
a(x)dx = 0,

then both first eigenvalues λ+
1 and λ−1 coincide with zero. On the other hand, when

the mass of the sign-changing weight a(x) is unbalanced (say,
∫

Ω
a(x)dx < 0), we

still have that λ−1 = 0 fits in the characterization described above. Roughly speak-
ing, if the negative part is dominant, the first “negative” eigenvalue is the trivial
one, as stated in the following proposition.

Proposition 2.2 (Neumann case). Let a : Ω→ R be a continuous, sign changing
function.

(1) If
∫

Ω
a(x) dx < 0 (resp. > 0), then

λ−1 = 0 and λ+
1 > 0 (resp. λ−1 < 0 and λ+

1 = 0
)
.

(2) If
∫

Ω
a(x) dx = 0, then

λ−1 = 0 = λ+
1 .

Proof. (1) The first statement is trivial. Indeed, λ−1 := − infu∈B−

∫
Ω
|∇u|2dx = 0,

since the infimum is attained by the constant function u(x) = α, where α satisfies

α2 = − 1∫
Ω
a(x) dx

.

For λ+
1 we argue by contradiction. If λ+

1 := infu∈B+

∫
Ω
|∇u|2dx = 0, there is a

sequence un = wn + sn, with
∫

Ω
wn = 0 and sn ∈ R such that∫

Ω

a(x)u2
n = 1,

∫
Ω

|∇wn|2dx→ 0, as n→ +∞.

Therefore wn → 0 strongly in H1(Ω) and sn is bounded: otherwise we would have
(up to subsequences)

1 =

∫
Ω

a(x)u2
n =

∫
Ω

a(x)(s2
n + 2wnsn + w2

n)dx = s2
n

(∫
Ω

a(x) dx+ o(1)
)
→ −∞.

Since sn is bounded, up to subsequences, sn → s and un → s strongly, from which
we obtain

1 =

∫
Ω

a(x)u2
n → s2

∫
Ω

a(x) ≤ 0,

which is a contradiction.

(2) Let Ω+ = {x ∈ Ω : a(x) > 0} and B ⊂⊂ Ω+ a ball. Let vε(x) = 1 + ε η, where
η ∈ C∞0 (Ω) is a positive smooth function with compact support in B, and ε > 0.
Then ∫

Ω
|∇vε|2∫

Ω
a(x)v2

ε

=
ε2
∫

Ω
|∇η|2∫

Ω
a(x)(1 + εη)2

=
ε2
∫

Ω
|∇η|2

ε
∫

Ω
a(x)(2η + εη2)

→ 0, as ε→ 0.

This proves that λ+
1 = 0. With a similar argument, taking a smooth function with

support in Ω− we obtain that λ−1 = 0. �
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3. Superlinear equations - bifurcation of positive solutions

We now consider superlinear equations of the form

−∆u = λa(x)u± h(u) in Ω

u > 0 in Ω

∂u

∂ν
= 0 on ∂Ω

(3.1)

where a : Ω → R is continuous and sign-changing, and h ∈ C(R+,R+) is a super-
linear function. As a model function we will consider h(s) = sp, p > 1, but the
results will remain valid for a large class of superlinear nonlinearities.

We investigate bifurcation results when the parameter λ crosses the eigenvalues
λ±1 . We obtain a rather complete picture of existence and non-existence of solutions.
We will see (see Figures 1 and 2) that the existence and non-existence results for
the equations with −up, resp. +up, have a completely complementary behavior: for
λ’s for which there exists a solution for (1.3) with (−) there exists no solution for
(1.3) with (+), and vice versa.

3.1. Existence and non-existence of solutions for problem (1.3) with (−).
We remark that the corresponding Dirichlet problem has been treated by López-
Gómez and Rabinowitz [15], emphasizing on the existence of a growing number
of (pairs of) solutions for increasing |λ|. Here we consider the Neumann problem,
which presents some peculiarities, and we restrict attention to the existence and
non-existence of positive solutions.

Let us now consider the model problem (1.3) with (−):

−∆u = λa(x)u− up in Ω

u > 0 in Ω

∂u

∂ν
= 0 on ∂Ω

(3.2)

First, we prove a non-existence result.

Theorem 3.1. Let a = a(x) ∈ C0(Ω), and suppose that a(x) changes sign. By
Proposition 2.2, we have that λ−1 ≤ λ

+
1 . Then, for every λ ∈ [λ−1 , λ

+
1 ], the problem

(3.2) has no non-trivial solution.

Proof. If
∫

Ω
a(x)dx = 0, then [λ−1 , λ

+
1 ] = {0} and the assertion is trivial. Let∫

Ω
a(x)dx < 0 (the other case is similar); suppose that u is a positive solution of

(1.3) with (−). Multiplying by u and integrating we obtain∫
Ω

|∇u|2 dx− λ
∫

Ω

a(x)u2 +

∫
Ω

up+1 dx = 0.

Now, if λ
∫

Ω
a(x)u2 ≤ 0 the assertion is obvious. If not,

∫
Ω
a(x)u2 > 0, and using

the characterization of λ+
1 we obtain

0 =

∫
Ω

|∇u|2 dx− λ
∫

Ω

a(x)u2 +

∫
Ω

up+1 dx ≥
(
1− λ

λ+
1

) ∫
Ω

|∇u|2 +

∫
Ω

up+1 dx > 0.

�

Next, we show that for λ outside of the interval [λ−1 , λ
+
1 ], problem (3.2) has

always a positive solution.
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Theorem 3.2. For every λ > λ+
1 or λ < λ−1 the Neumann problem (3.2) has at

least one positive solution. In particular, if
∫

Ω
a(x) = 0, then for every λ 6= 0 the

problem has a positive solution.

Proof. We proceed by steps. First, we observe that the solutions of (3.2) correspond
to critical points of the functional

Φλ : H → R, Φλ(u) =
1

2

∫
Ω

|∇u|2 +
1

p+ 1

∫
Ω

up+1 − λ

2

∫
Ω

a(x)u2 (3.3)

where H := H1(Ω).
Actually, the functional is well defined on H only for 1 < p+ 1 ≤ 2N

N−2 . This is
not an obstacle. Lemma 3.3 below provides an a priori estimate, which allows to
use the following functional instead of (3.3):

Φ̃λ : H → R , Φ̃λ(u) =
1

2

∫
Ω

|∇u|2 +

∫
Ω

G(u)− λ

2

∫
Ω

a(x)u2.

where

G(s) =


sp+1

p+1 , if 0 ≤ s ≤ Cλ
p
p+1C

p−1
λ s2 − p−1

p+1C
p
λs if s > Cλ

0 if s < 0,

and Cλ :=
(
|λ| ‖a‖∞

) 1
p−1 , as suggested by the next lemma.

Lemma 3.3. All solutions of (3.2) and of

−∆u = λa(x)u− g(u) in Ω

u > 0 in Ω

∂u

∂ν
= 0 on ∂Ω

(3.4)

where g(s) := G′(s), satisfy the estimate

0 ≤ u(x) ≤
(
|λ| ‖a‖∞

) 1
p−1 := Cλ, x ∈ Ω

Proof. If u ∈ H is a weak solution of (3.2), it satisfies∫
Ω

∇u∇v dx+

∫
Ω

(
up − λa(x)u

)
v dx = 0 ∀v ∈ H.

Take v = (u − Cλ)+, where w+(x) = max{0, w(x)}, and Ω+
λ = {x ∈ Ω : u > Cλ}.

We have ∫
Ω+
λ

∇u∇(u− Cλ)+ dx = −
∫

Ω+
λ

u
(
up−1 − λa(x)

)
(u− Cλ)+ dx.

i.e. ∫
Ω

|∇(u− Cλ)+|2 dx = −
∫

Ω+
λ

u
(
up−1 − λa(x)

)
(u− Cλ)+ dx ≤ 0

since up−1 > ‖a‖∞|λ| and u > 0 on Ω+
λ . This proves that u ≤ Caλ.

In a similar way, if u is a weak solution of (3.4), it satisfies∫
Ω

∇u∇v dx+

∫
Ω

(G′(u)− λa(x)u)v dx = 0 ∀v ∈ H.
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For v = (u− Cλ)+ it holds∫
Ω

|∇(u− Cλ)+|2 dx

= −
∫

Ω+
λ

[ 2p

p+ 1
Cp−1
λ u− p− 1

p+ 1
Cpλ − λa(x)u

]
(u− Cλ)+ dx

≤ −
∫

Ω+
λ

[ 2p

p+ 1
Cp−1
λ u− p− 1

p+ 1
Cp−1
λ u− λa(x)u

]
(u− Cλ)+ dx

= −
∫

Ω+
λ

[Cp−1
λ − λa(x)]u(u− Cλ)+ dx ≤ 0,

so that u ≤ Cλ. �

Thus, all positive critical points of Φ̃λ will satisfy 0 ≤ u ≤ Cλ, and will hence be
also critical points of Φλ, and thus solutions of (3.2). In the next proposition we

show that for λ /∈ [λ−1 , λ
+
1 ] the functional Φ̃λ has a negative minimum.

Proposition 3.4. Let λ > λ+
1 or λ < λ−1 . Then

−∞ < inf
u∈H

Φ̃λ(u) < 0 (3.5)

Proof. We first prove that the functional is coercive (this proves the first inequality).
Indeed, we have

Φ̃λ(un)

≥ 1

2

∫
Ω

|∇un|2 +

∫
Ω

G(un)− λ

2

∫
Ω

a(x)u2
n

≥ 1

2

∫
Ω

|∇un|2 +

∫
[un≥Cλ]

G(un)− |λ|
2
‖a‖∞

∫
Ω

|un|2

=
1

2

∫
Ω

|∇un|2 +
p

p+ 1
Cp−1
λ

∫
[un≥Cλ]

u2
n −

p− 1

p+ 1
Cpλ

∫
[un≥Cλ]

un −
|λ|
2
‖a‖∞

∫
Ω

u2
n

≥ 1

2

∫
Ω

|∇un|2 +
( p

p+ 1
− 1

2

)
|λ| ‖a‖∞

∫
Ω

u2
n − c

(∫
Ω

u2
n

)1/2

− p

p+ 1
Cp−1
λ

∫
[0<un<Cλ]

u2
n

≥ min
{1

2
,
p− 1

p+ 1
|λ|‖a‖∞

}
‖un‖2H1 − c‖un‖H1 − c1.

For the second inequality we treat first the case
∫

Ω
a 6= 0. Suppose

∫
Ω
a(x)dx < 0

(the case
∫

Ω
a(x)dx > 0 is similar). For λ > λ+

1 (> 0), it is sufficient to evaluate Φ̃λ
on uε = εφ+

1 , where φ+
1 is the eigenfunction associated to λ+

1 and ε > 0 is small.

Φ̃λ(uε) =
ε2

2

∫
Ω

|∇φ+
1 |2 +

εp+1

p+ 1

∫
Ω

|φ+
1 |p+1 − ε2λ

2

∫
Ω

a(x)|φ+
1 |2

=
ε2

2

(
1− λ

λ+
1

)∫
Ω

|∇φ+
1 |2 + o(ε2) < 0, for ε small.

For λ < λ−1 = 0 it is sufficient to evaluate Φ̃λ on uε = ε, ε small.
The degenerate case

∫
Ω
a(x) = 0 requires a special treatment. Recall that in

this case λ−1 = λ+
1 = 0. It is not sufficient to evaluate the functional on the
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(constant) first eigenfunction to obtain the second inequality in (3.5). Indeed, we

need to evaluate Φ̃λ on a more suitable function. Since a is continuous (and sign-
changing), it follows that there exists a ball Br(x̄) ⊂ Ω with a(x) > 0 on Br(x̄).
Let η ∈ C1

0 (Ω) a positive function with supp η = Br(x̄).

First we consider the case λ > 0. We evaluate Φ̃λ on vε = ε
(
1 + ε

p−1
2 η
)

(with
ε > 0 small).

Φ̃λ(vε) =
ε2

2

∫
Ω

|∇
(
1 + ε

p−1
2 η
)
|2 +

εp+1

p+ 1

∫
Ω

|1 + ε
p−1

2 η|p+1

− ε2λ

2

∫
Ω

a(x)(1 + ε
p−1

2 η)2

=
εp+1

2

∫
Ω

|∇η|2 +
εp+1

p+ 1

∫
Ω

|1 + ε
p−1

2 η|p+1 − ε2+ p−1
2 λ

∫
Ω

a(x)η

− εp+1λ

2

∫
Ω

|η|2

= −ε2+ p−1
2 λ

∫
Ω

a(x)η +O(εp+1) < 0

for ε small, since
∫

Ω
a(x)η > 0.

For the case λ < 0, we change η with −η. �

The proof of Theorem 3.2 is now easily completed, observing that the infimum
of Φ̃λ < 0 is attained, since Φ̃λ is weakly lower semi-continuous. �

We can summarize the solution situation of Theorems 3.1 and 3.2 in the following
bifurcation diagrams. We recall that variational methods do not yield continuous
branches of solutions, so the figures are (possibly) a simplification.

The first plot on the left shows the standard bifurcation diagram when a(x) is
a positive weight. The plot in the middle gives the situation when a(x) changes
sign (with

∫
Ω
a < 0). We see that there is a bounded interval with non-existence

of positive solution, while there is existence everywhere else. Finally, the plot on
the right illustrates that in the degenerate case, that is for a sign-changing weight
a(x) with

∫
Ω
a(x) = 0, we have a positive solution for every λ 6= 0. It is interesting

to note that from 0 = λ−1 = λ+
1 emanate two bifurcation branches, albeit the

corresponding eigenspace is one-dimensional, spanned by the constant 1.

6 ∃

0

6 ∃

0 λ+
1

0

a(x) definite, a(x) > 0 a(x) indefinite,
∫

Ω
a(x) < 0 a(x) indefinite,

∫
Ω
a(x) = 0

Figure 1. Bifurcation diagram for equation (3.2)
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3.2. Existence and non-existence of solutions for problem (1.3) with (+).
We now consider the problem

−∆u = λa(x)u+ up in Ω

u > 0 on Ω

∂u

∂ν
= 0 on ∂Ω

(3.6)

where Ω ⊂ RN is a bounded domain, a = a(x) is a sign changing continuous
function, and p > 1. We first state the following existence result.

Theorem 3.5. Assume that a(x) changes sign, and that 1 < p < N+2
N−2 . If λ ∈

(λ−1 , λ
+
1 ) := Ia, then problem (3.6) has a positive solution.

Remark 3.6. Recall that

Ia = (0, λ+
1 ) if

∫
Ω

a(x)dx < 0,

Ia = (λ−1 , 0) if

∫
Ω

a(x)dx > 0,

Ia = ∅ if

∫
Ω

a(x)dx = 0 .

Proof. We prove the existence result for
∫

Ω
a(x) < 0 via a variational approach.

The proof for
∫

Ω
a(x) > 0 is similar.

Let us observe that weak solutions of (3.6) correspond to critical points of the
functional

Ψλ : H1(Ω)→ R, Ψλ(u) =
1

2

∫
Ω

|∇u|2 − 1

p+ 1

∫
Ω

up+1 − λ

2

∫
Ω

a(x)u2.

For λ ∈ (0, λ+
1 ) we can apply the classical Mountain Pass theorem of Ambrosetti-

Rabinowitz, and we first need to prove some geometric estimates. Theorem 3.5
then follows in a standard way, since we have compactness due to the subcritical
growth.

First, we prove that the functional Ψλ has a mountain-pass geometry.

Proposition 3.7 (0 is a local minimum). Assume
∫

Ω
a(x)dx < 0 and λ ∈ (0, λ+

1 ).
Then there exist η > 0 and ρ > 0 such that

Ψλ(u) ≥ η > 0 ∀u : ‖u‖ = ρ.

Proof. It is sufficient to prove that there exists δ > 0 such that

J(u) :=
1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

a(x)u2 ≥ δ > 0, ∀u : ‖u‖ = 1. (3.7)

Indeed, if (3.7) holds, then, thanks to the compact embedding H1 ⊂⊂ Lp+1,

Ψλ(ρu) ≥ δρ2 − Cρp+1 ≥ δ

2
ρ2 := η,

for a suitable ρ small.
Note first that J(u) ≥ 0 for all u ∈ H1. Indeed, if

∫
Ω
a(x)u2dx ≤ 0 this is trivial.

Otherwise we use the variational characterization of λ+
1 :

J(u) =
1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

a(x)u2 ≥ 1

2

(
1− λ

λ+
1

)∫
Ω

|∇u|2 ≥ 0.
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We now prove (3.7) by contradiction: suppose that there exists a sequence {un}
such that

‖un‖ = 1 and J(un)→ 0+.

Split un = wn + αn where αn =
∫
Ω
a(x)un(x)dx∫
Ω
a(x)dx

, so that
∫

Ω
a(x)wn(x)dx = 0. We

have αn → 0, since otherwise, up to subsequence, |αn| ≥ δ > 0, for some positive
δ, and

J(un) = J(wn) +
λα2

n

2

∣∣∣ ∫
Ω

a(x)
∣∣∣ ≥ λδ2

2

∣∣∣ ∫
Ω

a(x)
∣∣∣

Thus we have 1 = ‖un‖2 = ‖wn‖2 + o(1).
Then there is η > 0 such that

∫
Ω
|∇wn|2 ≥ η > 0. If not, up to subsequences,∫

Ω
|∇wn|2 → 0 and (wn is bounded in H1) and wn → w in L2(Ω), and hence there

exists w such that

wn ⇀ w weakly in H1 and strongly in L2

In particular ‖∇w‖2 = 0, so that w is a constant of norm 1. But this leads to a
contradiction, since

0 =

∫
Ω

a(x)wn → w

∫
Ω

a(x) 6= 0 .

Now, since
∫

Ω
|∇wn|2 ≥ η > 0, we can use again the argument above to obtain

o(1) = J(un) =
1

2

∫
Ω

|∇wn|2 −
λ

2

∫
Ω

a(x)w2
n +

λα2
n

2

∣∣∣ ∫
Ω

a(x)
∣∣∣ ≥ 1

2

(
1− λ

λ+
1

)
η,

which is a contradiction. Hence, (3.7) holds. �

To complete the geometric requirements of the Mountain Pass Theorem, we
need to find a function u such that Ψλ(u) < 0. But this is trivial: it is sufficient to
evaluate Ψλ on constant functions α:

Ψλ(α) = − 1

p+ 1

∫
Ω

αp+1 − λ

2

∫
Ω

a(x)α2 → −∞, |α| → +∞.

Finally, we can apply the mountain-pass (MP) theorem of Ambrosetti & Rabi-
nowitz and find a non trivial solution of problem (1.3). This completes the proof
of Theorem 3.5. �

Remark 3.8. We note that by means of minimization arguments concerning the
ground state level given by the MP-Theorem, the positivity of the solution is stan-
dard (see e.g. [21]).

Next, we turn to non-existence results for equation (3.6).

Theorem 3.9. Suppose that a(x) changes sign, that 1 < p < N+2
N−2 , and assume

that λ /∈ (λ−1 , λ
+
1 ). Then equation (3.6) has no positive solution.

Proof. First we note that for λ = 0 there is no positive solution in any case.
Suppose that

∫
Ω
a(x)dx ≤ 0. We show that then the problem (3.6) has no

positive solutions for λ ≥ λ+
1 or λ < 0.

(a) Consider first λ > λ+
1 ≥ 0: suppose by contradiction that u is a positive

solution of (P+). We may read u as a positive eigenfunction (associated with the
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eigenvalue λ) of the problem

−∆ψ = λb(x)ψ, in Ω

∂ψ

∂ν
= 0 on ∂Ω,

(3.8)

where b(x) = a(x) + up−1

λ > a(x) in Ω.

If
∫

Ω
b(x) dx ≥ 0 (this is the case, for instance, when

∫
Ω
a(x)dx = 0) we are

done: from property (e), the unique positive eigenfunctions are related to λ−1 (b)
and λ+

1 (b), where λ−1 (b) ≤ λ+
1 (b) = 0.

If
∫

Ω
b(x)dx < 0, the unique positive eigenfunctions are related to 0 = λ−1 or

λ+
1 (b), so it must be λ = λ+

1 (b). But since b(x) > a(x), we have the inclusion
B+(a) ⊂ B+(b), where

B+(a) =
{
v ∈ H1 :

∫
Ω

a(x)v2 > 0
}
, B+(b) =

{
v ∈ H1 :

∫
Ω

b(x)v2 > 0
}
.

Therefore,

λ = λ+
1 (b) = inf

B+(b)

∫
Ω
|∇v|2∫

Ω
b(x)v2

≤ inf
B+(a)

∫
Ω
|∇v|2∫

Ω
a(x)v2

= λ+
1 ,

so that λ ≤ λ+
1 . To exclude the case λ = λ+

1 , observe that both infima are actually
minima, and hence λ+

1 (b) < λ+
1 .

(b) Consider λ < 0: suppose by contradiction that u is a positive solution of
(P+). Again we may read u as a positive eigenfunction (associated to the eigenvalue
λ) of the problem

−∆ψ = λb(x)ψ, in Ω

∂ψ

∂ν
= 0 on ∂Ω,

(3.9)

where b(x) = a(x) + up−1

λ ≤ a(x) in Ω, with
∫

Ω
b(x)dx <

∫
Ω
a(x)dx ≤ 0.

Since
∫

Ω
b(x)dx < 0, the unique positive eigenfunctions are related to λ−1 = 0 or

λ+
1 (b) > 0, so it must be λ ≥ 0. The case

∫
Ω
a(x)dx > 0 is handled similarly. �

Again we can summarize Theorems 3.5 and 3.9 in the following bifurcation dia-
grams.

6 ∃

0

6 ∃ 6 ∃

0 λ+
1

6 ∃ 6 ∃

0

a(x) definite, a(x) > 0 a(x) indefinite,
∫

Ω
a(x) < 0 a(x) indefinite,

∫
Ω
a(x) = 0

Figure 2. Bifurcation diagram for equation (3.6)

In the first plot on the left we show the situation for weights a(x) > 0. We see
that it is complementary to the situation in Figure 1: the branch covers now the
negative half-line of the λ parameters. The plot in the middle shows the situation
for sign-changing weights a(x), with

∫
Ω
a(x)dx < 0. Now there exist solutions for

every λ between the two first eigenvalues λ−1 = 0 and λ+
1 , and no solution for all
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other λ’s. Again, we see that the situation is complementary to the situation in
Theorems 3.1 and 3.2. We have drawn the branch as a curve connecting λ−1 and λ+

1 .
This is justified for 1 < p < N

N−2 by Theorem 3.10 which gives an a priori bound

for all positive solutions for λ in a bounded interval. For N
N−2 ≤ p < N+2

N−2 we do
not have currently a proof of such a bound, we refer however to the proofs of such
bounds for related equations with Dirichlet boundary conditions by de Figueiredo-
Lions-Nussbaum [8] and Gidas-Spruck [10]. Finally, for the plot on the right we
have the surprising result that for the degenerate case

∫
Ω
a(x)dx = 0 we have no

positive solution, for any λ ∈ R; again, this is complementary to the situation of
Theorems 3.1 and 3.2, where we have existence of a positive solution for all λ 6= 0.

3.3. A priori bound for positive solutions of equation (3.6). In Figure 2 we
have drawn a solution curve connecting the first eigenvalues λ−1 and λ+

1 . This is
justified by the following a priori bounds for positive solutions of equation (1.3),
in the case that 1 < p < N/(N − 2).

Theorem 3.10. Let 1 < p < N
N−2 . Then for every Λ > 0 there exists a constant

c0 = c0(Λ) such that for |λ| ≤ Λ it holds ‖uλ‖ ≤ c0, for every positive solution uλ
of equation

−∆u = λa(x)u+ up in Ω

u > 0 on Ω

∂u

∂ν
= 0 on ∂Ω

(3.10)

Proof. (a) First we integrate equation (3.10) over Ω and obtain

0 =

∫
Ω

−∆u dx = λ

∫
Ω

a(x)u(x) dx+

∫
Ω

up dx

It follows that

‖u‖pp ≤ |λ| ‖a‖∞
∫

Ω

u(x) dx ≤ d ‖u‖p

and hence
‖u‖p ≤ c (3.11)

for all positive solutions.
(b) Now multiply equation (3.10) by u and integrate,∫

Ω

|∇u|2dx = λ

∫
Ω

a(x)u2(x) dx+

∫
Ω

up+1dx ≤ c‖u‖p+1
p+1 (3.12)

Now we use the well-known Gagliardo-Nirenberg inequality, see Nirenberg [17]
which reads: suppose that Ω ⊂ RN is a bounded domain with the cone-property.
Then there exist constants c1 and c2 such that for all u ∈Wm,r(Ω) ∩ Lq(Ω)

‖Dju‖p ≤ c1‖Dmu‖ar‖u‖1−aq + c2‖u‖q
where

1

p
=

j

N
+ a
(1

r
− m

N

)
+ (1− a)

1

q
Applying this inequality for j = 0, p→ p+ 1, r = 2, m = 1, q → p, we obtain

‖u‖p+1 ≤ c‖∇u‖a2‖u‖1−ap + c‖u‖p (3.13)

where
1

p+ 1
= a

(1

2
− 1

N

)
+ (1− a)

1

p
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This condition implies

a
(1

p
+

1

N
− 1

2

)
=

1

p
− 1

p+ 1
=

1

p(p+ 1)

and hence

a =
1

p+ 1

2N

2N − (N − 2)p

By (3.13) and (3.11) we now have

‖u‖p+1
p+1 ≤ c ‖∇u‖

a (p+1)
2 + c

and hence by (3.12)

‖∇u‖22 ≤ c ‖∇u‖
2N

2N−(N−2)p

2 + c

We want that 2N
2N−(N−2)p < 2, which is the case if

1 < p <
N

N − 2

Then ‖∇u‖2 ≤ c, from which we obtain that ‖u‖ ≤ c. �

For p ∈
[
N
N−2 ,

N+2
N−2

)
we have no a priori bound for positive solutions readily

available, and so we cannot exclude that the solution branches explode when λ→
0 = λ−1 or λ → λ+

1 . However, in view of the a priori bounds for the Dirichlet
problem by de Figueiredo-Lions-Nussbaum [8] and Gidas-Spruck [10] we tend to
believe that this does not occur.
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[13] E. Holmgren; Über Randwertaufgaben bei einer linearen Differentialgleichung zweiter Ord-

nung, Ark. Mat., Astro och Fysik, 1 (1904), 401–417.
[14] M. L. Lapidus; Valeurs propres du laplacien avec un poids qui change de signe, C. R. Acad.

Sci. Paris Ser. I Math. 298 (1984), 265–268.



268 M. CALANCHI, B. RUF EJDE/SI/01
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