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Abstract

We consider a scheduling problem where a set of n jobs has to be processed in a non-preemptive way on a
set of m identical parallel machines. Each job j is associated with a positive integer processing time pj . The
problem is also characterized by a conflict graph where adjacent nodes in the graph represent conflicting
jobs that cannot be processed on the same machine. A schedule is an assignment of a time interval of pj
time units on m machines for each job j. The schedule is feasible if intervals on the same machine do not
overlap, and jobs to be processed on the same machine are pairwise not conflicting. The aim is to find a
feasible schedule that minimizes the maximum completion time of the jobs. The problem is NP-hard as it
generalizes both the problem of scheduling jobs on identical parallel machines to the aim of minimizing the
makespan (P ||Cmax ) and the vertex coloring problem (VCP), two well-known NP-hard problems. We present
the first stand-alone branch-and-price (BP) algorithm that works directly on the problem. In comprehensive
computational experiments with benchmark instances, we prove that the new BP algorithm, even without
using ad-hoc primal heuristics and feasibility check algorithms, is competitive with the best exact solution
algorithm proposed so far in the literature. These results are mainly achieved thanks to the branching scheme
we propose.
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1. Introduction

We consider a scheduling problem where a set N = {1, . . . , n} of jobs has to be processed in a non-
preemptive way on a set M = {1, . . . ,m} of identical parallel machines. Each job j ∈ N is associated with
a positive integer processing time pj . A conflict graph G = (N,E) defined over the set of jobs is also part of
the problem description. Each edge (j′, j′′) ∈ E models the impossibility of processing jobs j′ and j′′ on the
same machine; j′ and j′′ are said to be conflicting jobs. A schedule is an assignment of a time interval of pj
time units on the machines for each job j ∈ N . The schedule is feasible if intervals on the same machine do
not overlap, and (j′, j′′) /∈ E for each pair of jobs j′ and j′′ processed on the same machine. The aim is to
find a feasible schedule that minimizes the maximum completion time of the jobs (i.e., the makespan).

The problem is NP-hard as it generalizes both the P ||Cmax scheduling problem (i.e., the problem of
scheduling jobs on identical parallel machines to the aim of minimizing the maximum makespan, denoted
by means of the three-field notation introduced in (Graham et al., 1979)) and the vertex coloring problem
(VCP), two well-known NP-hard problems (Garey and Johnson, 1979). This characterization is first due to
Bodlaender et al. (1994) who introduced the problem into the literature as the scheduling with incompatible
jobs problem. Additionally, they proposed polynomial time approximation schemes (PTAS) for solving the
problem in some special cases arising with particular structures of the conflict graph.

Recently, Kowalczyk and Leus (2015, 2017) addressed the problem referring to it as the parallel machine
scheduling problem with conflicts (PMC). In their papers Kowalczyk and Leus (2015, 2017) define the PMC
as “theoretically important” and describe several applications in many different fields such as the scheduling
of computing services, TV advertisement scheduling and resource assignment in workforce planning. We
refer the reader to the original papers for an extensive description of these applications.
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In the literature there are a few problems that share many similarities with PMC. For instance, the
problem of scheduling with bag constraints (Page and Solis-Oba, 2018) and the scheduling of identical jobs
on uniform machines with a conflict graph (Mallek et al., 2019). In the former the set of jobs is partitioned
in disjointed subsets called bags and no two jobs from the same bag are allowed to be assigned on the same
machine. The latter considers a different configuration for the machines, uniform instead of identical and
only jobs with unit processing times. Unfortunately, since these problems only represent special cases of
PMC, the interesting results obtained cannot be directly applied to PMC. It is worth noting that, in the
literature, the name scheduling with conflicts (Even et al., 2009) and scheduling with conflict graphs (Hong
and Lin, 2018) are also used for other problems not directly related to PMC. These problems consider a
different definition of conflicts: if two jobs are in conflict, they cannot be scheduled concurrently on two
different machines. The structure of the resulting problem is very different from PMC.

(Kowalczyk and Leus, 2015) presented compact mixed-integer linear programming (MILP) models for
PMC defined by using binary variables that assign jobs to machines. The authors experimentally shown
how addressing these kind of models is not effective, even when symmetry-breaking constraints (SBCs)
are included into the formulation. This is in line with what happens for other scheduling problem variants
(Unlu and Mason, 2010; Berghman et al., 2014; Yu and Hung, 2016). For the latter scheduling problems,
flow-based formulations may represent better alternatives (see, e.g., Mallek et al., 2019). However, as for
PMC, additional variables and/or constraints have to be considered in order to handle conflict constraints,
making unattractive addressing these kind of formulations in this specific case. According to this line of
arguments, Kowalczyk and Leus (2017) proposed the first effective exact algorithm for the solution of the
problem. The algorithm exploits the relation between PMC and the bin packing problem with conflicts
(BPPC), where the latter consists of packing items of given sizes, and that are pairwise in conflict, in a
minimum number of bins with a limited capacity, such that two items in conflict are not in the same bin.
In particular, the algorithm is inspired by the one presented in (Dell’Amico et al., 2008) for the solution
of P ||Cmax and proceeds as follows. First, a lower bound z∗ on the optimal solution value z∗ is computed
by exploiting known bounds for P ||Cmax . Then, an upper bound z∗ is computed by applying two greedy
heuristics and an improving local search algorithm. Additionally, if the heuristics fail in finding a feasible
solution, a non-trivial feasibility check algorithm is run to see whether the problem instance is infeasible or
not. When the instance is feasible, an iterative binary search algorithm is started to identify the optimal
solution value. At each iteration, the condition dz∗e = z∗ is checked to see if the instance has been solved
to optimality. If not, an instance of the BPPC with bins of capacity z̃∗ = b(z∗ + z∗)/2c is solved by means
of a branch-and-price (BP) algorithm. The BP algorithm (and so the iteration) terminates as soon as the
lower bound on the optimal value is greater than m or a feasible solution to the BPPC instance is found.
In particular, to the aim of finding a feasible solution, a diving search heuristic is also run at every node of
the tree (before branching is applied). When the BP algorithm terminates, if a feasible solution is found,
then z∗ is set to z̃∗, otherwise the value of z∗ is updated to z̃∗ + 1. A final remark concerns the feasibility
check algorithm. First, several lower bounds on the chromatic number of the conflict graph G are computed.
When all these bounds are less than, or equal to, m, the VCP associated with G is solved by means of an
additional BP algorithm, also in this case making use of a diving search heuristic run at every node of the
tree. This additional BP algorithm terminates either proving the infeasibility of the instance or describing
a feasible colouring of G using at most m colours, i.e., an initial feasible solution to the PMC instance.

In this paper we focus on the exact solution of PMC. Our contribution is threefold: (i) First, we present
the first stand-alone BP algorithm that works directly on the problem, embedding just an optional, straight-
forward, restricted master heuristic. In comprehensive computational experiments with benchmark instances,
we prove that the new BP algorithm is highly competitive with the algorithm proposed by Kowalczyk and
Leus (2017). (ii) While devising the BP algorithm, we define a branching scheme that does not introduce
symmetries in the solution space and allows the column generation subproblems to share the same feasible
region at every node of the branch-and-bound tree. This, in turn, allows to design the column generation it-
eration to potentially avoid solving some of the subproblems. (iii) Finally, we show that new BP algorithm is
in line with state-of-the-art exact methods for P ||Cmax with respect to some classes of benchmark instances.

The rest of the paper is organized as follows. Section 2 describes the new stand-alone branch-and-price
algorithm we implemented to address PMC, with subsections on the extensive formulation, the column
generation algorithm, and the branching scheme. In Section 3, we experimentally evaluate the BP algorithm
using benchmark instances for PMC and P ||Cmax . Final conclusions are drawn in Section 4.
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2. Branch-and-price algorithm

In this section we present the main features and components of the new, stand-alone, branch-and-price
(BP) algorithm for solving PMC.

2.1. An extended set-covering formulation

Define S as the set of feasible schedules on any single machine. For each schedule s ∈ S, let asj be a
binary parameter equal to 1 if job j ∈ N is included in s, 0 otherwise. The makespan associated with the
schedule is defined as cs =

∑
j∈N pja

s
j and is independent of the actual sequence of the jobs included in

the schedule. For each s ∈ S and each i ∈ M , define a binary variable λsi that takes value 1 if schedule s
is chosen for machine i, 0 otherwise. Finally, let Ci be the makespan of the schedule assigned to machine
i ∈ M . We assume, w.l.o.g., that schedules are assigned to machines from 1 to m in decreasing order of
their makespan. Hence, machines 1 and m are assigned to the schedules having respectively the largest and
the smallest makespan. This allows to reduce symmetries in the solution space.

Using this notation, PMC can be formulated as follows:

min C1 (1a)

s.t.
∑
i∈M

∑
s∈S

asjλ
s
i ≥ 1 j ∈ N (1b)∑

s∈S
λsi ≤ 1 i ∈M (1c)∑

s∈S
csλsi ≤ Ci i ∈M (1d)

Ci ≥ Ci+1 i ∈ {1, . . . ,m− 1} (1e)

λsi ∈ {0, 1} i ∈M, s ∈ S (1f)

Ci ≥ 0 i ∈M (1g)

The objective function (1a) minimizes the largest makespan. This is ensured by constraints (1d) together
with (1e). Constraints (1d) define the makespans for all the machines. Then, constraints (1e) impose the
makespans associated with machines from 1 to m to be sorted in non-increasing order. Constraints (1b)
impose each job to be included in a schedule assigned to a machine, whereas constraints (1c) allow to assign
at most one schedule to each machine. Finally, constraints (1f) and (1g) define the domains of the variables.

In the BP algorithm, at each node of the branch-and-bound tree the linear relaxation of (1), eventually
augmented by constraints arising from branching decisions, is solved iteratively by means of column gener-
ation. The starting point is a linear relaxation of (1) defined over a subset S̄ ⊆ S of the feasible machine
schedules, called reduced master program (RMP). At each iteration, column generation alternates between
the optimization of the RMP and the solution of column generation subproblems. The former allows to re-
trieve optimal dual variable values w.r.t. set S̄. The latter, on the basis of the dual variable values, generates
negative reduced cost schedule variables λsi to be included in the RMP, if any. When no negative reduced
cost variable is found, the optimal solution of the RMP is also the optimal solution of the linear relaxation
of (1) (Desaulniers et al., 2005). Branching is finally required to ensure the integrality of the solution.

2.2. Column generation

Let µj ∈ R+ be the dual variable associated with constraints (1b) of job j ∈ N . Define θi ∈ R− and
ρi ∈ R− as the dual variables associated with constraints (1c) and (1d), respectively, of machine i ∈ M .
Finally, let σi ∈ R+ represent the dual variables associated with constraints (1e) for i ∈ {1, . . .m− 1}.

The dual of the linear relaxation of (1) is:

max
∑
j∈N

µj +
∑
i∈M

θi (2a)

s.t.
∑
j∈N

asjµj + θi + csρi ≤ 0 i ∈M, s ∈ S (2b)

− ρ1 + σ1 ≤ 1 (2c)
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j0 j1 jn−1 jn

(r̄set(j0,j1)1 , pj1 ,−µj1 − pj1ρi)

(0̄, 0, 0)

(r̄set(j1,j2)1 , pj2 ,−µj2 − pj2ρi)

(0̄, 0, 0)

(r̄set(jn−2,jn−1)1 , pjn−1
,−µjn−1

− pjn−1
ρi)

(0̄, 0, 0)

(r̄set(jn−1,jn)1 , pjn ,−µjn − pjnρi)

(0̄, 0, 0)

Figure 1: Multi-graph Gi = (V,A) for machine i ∈M .

− ρi − σi−1 + σi ≤ 0 i ∈ {2, . . . ,m− 2} (2d)

− ρm − σm−1 ≤ 0 (2e)

µj ≥ 0 j ∈ N (2f)

θi, ρi ≤ 0 i ∈M (2g)

σi ≥ 0 i ∈ {1, . . . ,m− 1} (2h)

Thus, for PMC there is one distinct subproblem for each machine i ∈ M . In particular, given the duals
(µ,θ,ρ,σ), the subproblem for machine i ∈ M consists of finding a minimum reduced cost schedule to be
assigned to the machine, where the reduced cost c̄si (µ,ρ) of schedule s ∈ S to be assigned to the machine is
defined as

c̄si (µ,ρ) = −
∑
j∈N

asjµj − csρi (3)

The solution represents a negative reduced cost variable if its value is less than θi.

It is worth noting that, when an upper bound C
1

is available for C1, the subproblem associated with
each machine i ∈M can be formulated as a knapsack problem with general conflict graph:

min −
∑
j∈N

xjµj − ρi
∑
j∈N

xjpj (4a)

s.t.
∑
j∈N

xjpj ≤ C
1 − 1 (4b)

xj′ + xj′′ ≤ 1 (j′, j′′) ∈ E (4c)

xj ∈ {0, 1} j ∈ N (4d)

in which binary variable xj , j ∈ N , takes value 1 if job j is part of the schedule assigned to machine i,
0 otherwise. The subproblems are thus strongly NP-hard (Pferschy and Schauer, 2009) and have identical
feasible regions. In Section 2.3 we will see how the designed branching rules keep identical the solution spaces
of the subproblems at each node of the branch-and-bound tree.

The subproblems can be addressed by solving directly formulation (4) with general-purpose MIP-solvers.
Alternatively, an ad-hoc solution technique can be designed by exploiting the subproblem features. This is
illustrated in Section 2.2.1.

2.2.1. Alternative subproblem modeling

The subproblem arising for each machine i ∈ M can be addressed as a shortest path problem with
resource constraints (SPPRC) on a directed, acyclic, multi-graph Gi = (V,A), with vertex set V = {j0}∪N
and arc set A. The vertices N = {j1, . . . , jn} represent the jobs, arbitrarily ordered, to be scheduled on the
machines, and (source) vertex j0 represents a dummy job with which each schedule starts, with p0 = 0. Set
A includes two ingoing arcs (jk−1, jk)0 and (jk−1, jk)1 for each vertex jk ∈ N (see Figure 1).

Each path P from j0 to jn in graph Gi = (V,A) represents a machine schedule including all jobs jk ∈ N
such that arc (jk−1, jk)1 is traversed along the path. Let N (P ) be the set of such jobs. The path P is feasible
if (j′, j′′) /∈ E for each pair of jobs j′ and j′′ included in N (P ). Feasibility is ensured by considering an order
set of binary resources, one for each job jk ∈ N , and vectors r̄set(jk−1,jk) ∈ B|N | that model the consumptions

of the binary resources along each arc in (jk−1, jk) ∈ A. Along arcs (jk−1, jk)1, jk ∈ N , r̄set(jk−1,jk)1 implies

unitary consumptions for the resources associated with jobs in {jr ∈ N | jr = jk ∨ (jr, jk) ∈ E}. For arcs
(jk−1, jk)0, jk ∈ N , r̄set(jk−1,jk)0 is set to 0̄ ∈ B|N |. A path is feasible if the consumption corresponding to each
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binary resource is less than or equal to 1. Then, arcs (jk−1, jk)1, jk ∈ N , are associated with processing time
pjk and cost −µjk − pjkρi, while arcs (jk−1, jk)0, jk ∈ N , are associated with zero processing time and zero
cost. This allows to correctly compute the makespan and cost associated with (the schedule corresponding

to) each path. Finally, when an upper bound C
1

is available for C1, the processing times associated with
the arcs in A can be interpreted as the consumptions of an additional resource taking values in Z+. In a

feasible path, the consumption of the additional resource has to be less than C
1
.

The subproblem for machine i ∈ M consists in finding a least cost feasible path P from j0 to jn in Gi.
The solution represents a negative reduced cost variable if its value is less than θi.

Dynamic programming algorithm. When modelled as SPPRCs, the subproblems can be solved by means of
a label setting dynamic programming algorithm (see, e.g., Irnich and Desaulniers (2005)). In such kind of
algorithms, each partial path from the source of the graph to vertex i is represented by a label (i, R,C).
Vector R has as many components as the number of different resources characterizing the problem. Each
component represents the consumption of the corresponding resource along the path up to vertex i, whereas
C is the cost of the path. When a partial path associated with label (i, R,C) is extended along arc (i, j), a

new label (j, R
′
, C ′) associated with the partial path reaching vertex j is defined. The components of R

′
and

the cost C ′ are defined based on R and C, respectively, taking into account the resource consumption and
the cost associated with the arc (i, j). Extensions must be feasible with respect to the consumption of all
the resources. To avoid enumerating all feasible paths, dominance rules can be applied to discard dominated
partial paths reaching the same vertex. A solution is a path represented by a minimum cost label associated
with the sink vertex.

For a given machine i ∈ M , let P be the partial path starting at vertex j0 = 0 and ending at vertex
jk ∈ V in graph Gi. We associate with P a label L = L(P ) that includes the following attributes:

jk: The last vertex of P ;

R
set ∈ B|N |: A vector with binary components modelling the set of not schedulable jobs through extensions

of path P ; the k-th component of the vector is associated with job jk ∈ N ;
C ∈ R: The accumulated costs along path P .

Therefore, R includes for the moment only |N | components. Later, R will be extended to take into account
additional constraints.

The initial label at vertex j0 is defined as (0, 0̄, 0).
A feasible path P = (j0, . . . , jk) associated with label L(P ) = (jk, R

set, C) can be extended along arc

(jk, jk+1)1 ∈ A if Rset
jk+1

= 0. When the extension is feasible, the new label L(P ′) = (jk+1, R
set′

, C ′) for

P ′ = (j0, . . . , jk, jk+1) results from the following extension rules:

Rset′

t =

{
1 if t = k + 1 ∨ (jk+1, jt) ∈ E
Rset

t otherwise
for k + 1 < n (5a)

Rset′

t =

{
1 if jt ∈ N (P ′)
0 otherwise

for k + 1 = n (5b)

C ′ = C − µjk − pjkρi (5c)

The extension of path P = (j0, . . . , jk) along arc (jk, jk+1)0 ∈ A is always feasible. The attributes of the
label L(P ′) are defined as follows:

Rset′

t =

{
1 if t = k + 1
Rset

t otherwise
for k + 1 < n (5d)

Rset′

t =

{
1 if jt ∈ N (P ′)
0 otherwise

for k + 1 = n (5e)

C ′ = C (5f)

As for dominance, let L′ = (jk, R
set′

, C ′) and L′′ = (jk, R
set′′

, C ′′) be two labels representing two different
paths ending at the same vertex jk ∈ V. Label L′ dominates label L′′ if both the following conditions are
satisfied:

Rset′

k ≤ Rset′′

k jk ∈ N (6a)

C ′ ≤ C ′′ (6b)
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Note that, in (5b) and (5e), R
set′

is set to the incidence vector of N (P ′) only to eventually increase the
cardinality of the pareto-optimal path set associated with vertex jn.

Maximum makespan constraint. Whenever an upper bound C
1

is available for C1, it is possible to easily
integrate the corresponding maximum makespan constraint into the subproblems as follows. An additional
component RC (with values in Z+) is included into the vector R of each label L = (ji, R,C). Initially,
the component is set to 0. An extension along arcs (jk, jk+1)1 ∈ Ai increases the component value by
pjk+1

, while the component value is simply copied in the new label in the other cases. The extension is

feasible if the resulting value of the component RC is less than, or equal to, C
1−1. Dominance between two

labels L′ = (jk, R
′
, C ′) and L′′ = (jk, R

′′
, C ′′) has to additionally check RC ′ ≤ RC ′′ .

Additionally, we sort the jobs in N in non-decreasing order according to their processing times. Thus,
whenever path P = (j0, . . . , jk) cannot be feasibly extended along arc (jk, jk+1)1 ∈ A, with L(P ) =

(jk, R
set
, RC , C), Rset

k+1 = 0, and RC + pjk+1
> C

1 − 1, we directly extend the path towards vertex jn
along a fictitious arc (jk, jn)0.

2.2.2. Column generation iteration

Let M = {i1, . . . , im} be the set of machines sorted in non-increasing order w.r.t. the corresponding ρik
values. At each column generation iteration, the subproblems are considered sequentially starting from the
problem related to machine i1. Let Sik be the set of pareto-optimal solutions for the subproblem associated
with machine ik ∈ M. For each solution in Sik , we check if it represents a negative reduced cost variable
(column) for any of the machines. Doing this, given that all subproblems share the same feasible region, we
avoid to solve subsequent subproblems corresponding to machines it, t > k, such that |ρik − ρit | < ε, with
ε→ 0+. (This applies when the subproblems are addressed whether by means of the dynamic programming
algorithm or by means of a MIP-solver that directly solve formulation (4)). The iteration terminates as soon
as negative reduced cost columns are found after the resolution of a subproblem.

2.2.3. Partial pricing

At each column generation iteration, two heuristic algorithms are considered in sequence before solving
the subproblems to optimality. They both consist in applying an heuristic version of the dynamic pro-
gramming algorithm outlined in Section 2.2.1. The first heuristic applies the dominance rules by ignoring
condition (6a). The second heuristic is run only if the first does not succeed in finding negative reduced cost
columns. In particular, it extends at most L labels along each arc (jk, jk+1)1 ∈ A, 0 ≤ k < n, the L labels
associated with the smallest costs. When both heuristics fail, the subproblems are solved to optimality.

2.2.4. Lower bounds

Lower bounds for P ||Cmax are also valid for PMC. Before starting column generation, we compute the
following lower bounds proposed in Dell’Amico and Martello (1995):

C1
0 =

⌈∑
ji∈Ñ pji

|Ñ |

⌉
(7a)

C1
1 = max{C1

0 , pj|Ñ |} (7b)

C1
2 = max{C1

1 , pj|Ñ |−m
+ pj|Ñ |−(m+1)

} (7c)

where Ñ is the set of jobs sorted in non-decreasing order according to their processing times, and pj|Ñ |−m

and pj|Ñ |−(m+1)
are the m-th and m+1-st largest processing times, respectively.

Whenever an upper bound C
1

is available for C1, if C1
2 > C

1
the current branch-and-bound node can be

fathomed without generating any column. Otherwise, constraint (1g) for C1 is substituted by C1 ≥ C1
2 . From

preliminary experimental results, this allows column generation to converge faster in finding the optimal
solution.

As will become clear in Section 2.3, the set of jobs may differ from one node to another due to branching.
This is the reason why lower bounds computation is performed before each column generation run.
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2.2.5. Restricted master heuristic

In order to speed up the BP algorithm, we embed into column generation a restricted master heuristic
as defined in (Joncour et al., 2010, p. 697). The basic idea behind restricted master heuristics is to solve, by
means of a general mixed integer linear programming (MILP) solver, the master problem (1) restricted to
a subset of the generated columns.

We run the restricted master heuristic each time we compute an optimal solution for the linear relaxation
of (1). More precisely: (i) We consider the set S̄ of the schedules associated with the columns λsi . (ii) The
schedules in S̄ are then used to initialize an integer program slightly different from (1), using binary variables
λs no more indexed by machine and assuming value 1 if schedule s is selected to be assigned to one of the
machines:

min C (8a)

s.t.
∑
s∈S

asjλ
s ≥ 1 j ∈ N (8b)∑

s∈S
λs ≤ m (8c)

csλs ≤ C s ∈ S̄ (8d)

λs ∈ {0, 1} s ∈ S̄ (8e)

C ≥ 0 (8f)

This allows to avoid symmetries in the solution space at the expense of an increase in the number of
constraints (8d) required to define the maximum makespan. (iii) Finally, we solve model (8) by means of a
general MILP solver.

Whenever an optimal solution to (8) is found, a new upper bound C
1

(for C1) becomes available. Thus,
column generation is reiterated to solve the linear relaxation of (1) by considering only machine schedules

with a makespan smaller than, or equal to, C
1 − 1.

2.3. Branching rules

When the optimal solution (λ̂, Ĉ) of the current linear relaxation of (1) is fractional, we apply a three-
level hierarchical branching scheme. The rules are presented in the following, in order of priority.

We consider first an adaptation of the branching rule proposed in Ryan and Foster (2003). For each pair

of jobs j′ and j′′, we define bj′j′′ =
∑

i∈M
∑

s∈S a
s
j′a

s
j′′ λ̂

s
i as the sum of the λsi variable values associated

with schedules that include both job j′ and job j′′. We select the fractional value b∗j′j′′ , 0 < b∗j′j′′ < 1,
closest to 0.5. On one branch we set b∗j′j′′ = 0, meaning that the two jobs must be included into different
schedules, while on the other branch we set b∗j′j′′ = 1, meaning that the two jobs must be included into the
same schedule. For b∗j′j′′ = 0, it is enough to modify the conflict graph by including the new edge (j′, j′′).
Whereas, for b∗j′j′′ = 1, we merge together jobs j′ and j′′ into one new job (reducing by 1 the cardinality of
set N) and update the conflict graph accordingly.

At the second level, we branch on the number of inclusions of a job into the schedules, i.e., aj =∑
i∈M

∑
s∈S a

s
j λ̂

s
i . We select a∗j , a∗j > 1, such that the value a∗j −ba∗jc is the closest to 0.5. Hence, we create

just one child node in which the set-covering constraint (1b) for the job j such that aj = a∗j is formulated
as a set-partitioning constraint.

When none of the previous branching rules applies, it means that at most |M | distinct schedules are

selected in the optimal solution (λ̂, Ĉ). Each such distinct schedule s̄ may be fractional assigned to different

machines, but
∑

i∈M λ̂s̄i = 1. (This follows from Proposition 1 in Barnhart et al. (1998) and contraints (1c);
see also (Wolsey, 1998, Section 11.6)). Furthermore, recall that every λsi variable in the RMP represent a

schedule s (to be assigned to machine i) which has to be feasible w.r.t. the current upper bound C
1

available

for C1, meaning that cs < C
1
. Thus, the optimal solution (λ̂, Ĉ) can be converted into a feasible solution

to (1) whose value improves the current upper bound C
1
. We give a concrete numerical example to better

clarify.

Example 1. Consider an instance with 10 jobs, associated with processing times 8, 2, 7, 3, 3, 5, 8, 2, 9,

and 6, to be scheduled on 5 machines. Assume that the current value of C
1

is 361. Furthermore, consider an
optimal fractional solution such that s′ = {3}, s′′ = {6, 1, 4, 9, 10, 7} and s′′′ = {8, 2, 5} are the 3 schedules,
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characterized respectively by makespan 97, 264, and 92, associated with the λ̂ variables. Note that all the

makespan are less than C
1
. Let the values of the λ̂ variables be the following: λ̂s

′

3 = 0.278041, λ̂s
′

5 = 0.721959,

λ̂s
′′

3 = 0.265228, λ̂s
′′

2 = 0.367386, λ̂s
′′

1 = 0.367386, λ̂s
′′′

4 = 1. Then,
∑

i∈M λ̂s
′

i =
∑

i∈M λ̂s
′′

i =
∑

i∈M λ̂s
′′′

i = 1

and the optimal fractional solution can be converted into a feasible solution to (1) with value 264 < C
1

= 361.

Let C ′
1

be the new upper bound value for C1. Then, define C1 as the lower bound value for C1 at the

current node, i.e., the value of the optimal fractional solution (λ̂, Ĉ). When C ′
1− C1<1, the current node

can be fathomed. Conversely, whenever C ′
1−C1≥1, it is necessary to continue exploring the subtree rooted

in the current node in order not to lose any feasible solution to (1), i.e., solutions with values C̃1 such that

C1 ≤ C̃1 < C ′
1
.

Example 2. (Continued from Example 1). With respect to the optimal fractional solution described in

Example 1, C ′
1

= 264 and C1 = 264λ̄s
′′

1 = max{264λ̄s
′′

1 , 264λ̄s
′′

2 , 97λ̄s
′

3 + 264λ̄s
′′

3 , 92λ̄s
′′′

4 , 97λ̄s
′

5 } ≈ 96.9899.

The current node cannot be fathomed as C ′
1 − C1 ≥ 1.

Hence, we create one child node associated with a problem identical to the one associated with the current
(father) node, but that will be solved by considering only machine schedules with a makespan smaller than,

or equal to, C ′
1 − 1 (see Section 2.2).

These branching rules do not introduce symmetries in the solution space, do not alter the structure of
the column generation subproblems, and allow these latter to share the same feasible region at every node
of the branch-and-bound tree.

3. Experimental results

All the algorithms have been implemented in C++ using CPLEX 12.7.0 with Concert Technology, and
compiled in release mode with MS Visual Studio Professional 2017. The experiments have been performed
on a 64-bit Windows 10 PC equipped with an Intel processor i7-6700K clocked at 4.00 GHz and with
32 GB of RAM. As for the parameters mentioned in the description of the column generation iteration
and of the partial pricing (see the correponding sections 2.2.2 and 2.2.3), ε and L have been set equal
to 1.0E-9 and 200, respectively. We allowed CPLEX to use at most 6 threads for each run by setting
IloCplex::Param::Threads=6. We set IloCplex::ParallelMode=1 in order to force CPLEX to always
use deterministic algorithms. CPLEX’s default values were kept for all remaining parameters.

In order to finalize the design of the BP algorithm, we run some preliminary experiments on a subset
of the 2500 PMC instances used in Kowalczyk and Leus (2017). Then, the performance of the resulting
BP algorithm has been assessed on the full set of benchmark instances for PMC and on the 3500 instances
for P ||Cmax presented in Mrad and Souayah (2018). The description of the benchmark sets along with the
analysis of the results obtained is reported thereafter.

3.1. Instances for PMC

The features of the instances considered in Kowalczyk and Leus (2017) are as follows. The number
of machines (m) and jobs (n) take values in sets {5, 10, 15, 20} and {10, 25, 50, 75, 100}, respectively. The
processing time of the jobs are all integers and randomly generated taking into account three different
ranges: (a) = [1, 10], (b) = [1, 50], and (c) = [1, 100]. Finally, the edge set E of the conflict graph G =

(N,E) is randomly generated selecting each of the n(n−1)
2 possible edges with density probability d ∈

{0.1, 0.2, 0.3, 0.4, 0.5}. For each combination of n, m, range and d, 10 instances have been generated, for a
total of 2550 instances.

3.1.1. Preliminary experiments

In order to finalize the design of the BP algorithm, we compared the performance of the proposed dynamic
programming (DP) algorithm (see Section 2.2.1) against those of CPLEX solving directly formulation (4).

To this aim we considered two fully-fledged versions of the BP algorithm, BP-DP and BP-CPLEX, that
differentiate each other only for the algorithm used to optimally solve the subproblems (the DP algorithm
is used in BP-DP, and CPLEX solving directly formulation (4) is used in BP-CPLEX), and evaluated their
performance while solving the linear relaxation of model (1) at the root node of the branch-and-bound tree.
In order to perform a meaningful comparison, we concentrated on the instances with n = 75 jobs. We set
the time limit of each run to 150 seconds.
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Figure 2: Solution times achieved by means of BP-DP and BP-CPLEX while solving the linear relaxation of
(1) at the root node of the branch-and-bound tree - Subsets of instances with n = 75 jobs
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By grouping the instances with same values of m and d, we get 20 groups of 30 instances each. BP-CPLEX
was able to solve the linear relaxation of model (1) for all the instances in each group, whereas BP-DP

was not for the groups m = 5; d = 0.2 and m = 5; d = 0.3. In particular, BP-CPLEX proved that all
the instances in these two groups are all infeasible, so as all the instances in groups m = 10; d = 0.5,
m = 5; d = 0.4, and m = 5; d = 0.5. All the remaining instances are feasible. In Figure 2, we reported
the box-plot concerning the solution times of BP-DP and BP-CPLEX for all the subsets for which both the
algorithms have been able to solve all the instances. Clearly, the solution times for the subsets of infeasible
instances m = 5; d = 0.2 and m = 5; d = 0.3 are not considered. The results for the subsets of instances
whose median of solution times is greater than 0.25 show that BP-DP is better than BP-CPLEX as far as feasible
instances are considered. This is true also for some subsets of infeasible instances, namely m = 10; d = 0.5
and m = 5; d = 0.5. In fact, except for the subset of instances m = 5; d = 0.4, each of the five statistics
concerning the solution times of BP-DP dominates the corresponding statistic regarding the solution times
of BP-CPLEX. Nevertheless, BP-CPLEX seems to be more stable than BP-DP in addressing infeasible instances,
being able to solve the linear relaxation of model (1) for all of them. In order to detail further the analysis,
for the subsets of instances whose median of solution times is greater than 0.25, we reported in Figure 3-
(a) the geometric means of the ratios of solution time taken over the 30 instances of each subset. For a
given subset, we compute instance by instance the ratio Sol. timeBP-CPLEX/Sol. timeBP-DP and provide the
graphical representation of the geometric mean over the 30 instances of the subset. For example, the fourth
bar associated with an average ratio Sol. timeBP-CPLEX/Sol. timeBP-DP of about 1.5, above 1, means that
solution times of BP-CPLEX are consistently longer (by a factor 1.5 on average) than those of BP-DP for
the subset of instances m = 10; d = 0.5. Then, in Figure 3-(b) we show the geometric means of the ratios
of computing time needed by BP-CPLEX and BP-DP to perform the last column generation iteration, i.e.,
the column generation iteration consisting in solving the subproblems when the dual variables assume a
given set of optimal values, and thus resulting in no new column generated. Again, as already shown by
results represented in Figure 2, the use of CPLEX solving directly formulation (4) is to be preferred only
for the infeasible instances of subset m = 5; d = 0.4. Finally, to the sake of completeness, we report that
the average number of calls to the algorithm used to optimally solve the subproblems has been greater
than 2 only for subsets of infeasible instances m = 10; d = 0.5, m = 5; d = 0.2, m = 5; d = 0.3, and
m = 5; d = 0.4. In particular, for the instances in subsets m = 10; d = 0.5 and m = 5; d = 0.4, Table 1
reports for BP-DP and BP-CPLEX the average number of columns generated by the corresponding algorithm
used to optimally solve the subproblems (Columns) and the average number of columns generated in total
to solve an instance (Tot. columns). Numbers are similar and show how the different performance of BP-DP
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Figure 3: Root node of the branch-and-bound tree - Subsets of instances with n = 75 jobs
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(a) Geometric means of ratios of solution time Sol. timeBP-CPLEX/Sol. timeBP-DP concerning the solution of the linear
relaxation of (1)
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(b) Geometric means of ratios of computing time Comp. timeBP-CPLEX/Comp. timeBP-DP needed to perform the last
column generation iteration to optimally solve the linear relaxation of (1)

and BP-CPLEX do not depend on the number of columns generated by the corresponding algorithm used
to solve the subproblems to optimality. Difference in performance that we attribute to the effectiveness of
CPLEX in solving the subproblems arising for not clearly infeasible instances by means of, among others,
preprocessing and probing techniques.

Table 1: Average number of columns generated

BP-DP BP-CPLEX

Subset Columns Tot. columns Columns Tot. columns

m = 10; d = 0.5 108.1 4790.1 74.7 4781.1
m = 5; d = 0.4 61.5 860.1 41.3 850.8

Hence, considering all the observations made herein-above, we decided to finalize the design of the BP
algorithm as follows. When the partial pricing fails (see Section 2.2.3), the subproblems are solved by CPLEX
addressing directly formulation (4) only if the current RMP has an infeasible base, otherwise the subproblems
are solved by the DP algorithm. We named this finalized version of the BP algorithm as BP.

Then, in order to assess the impact of the main components/features of BP, we derived different variants
from the algorithm by alternatively switching off:
• the possibility, at each column generation iteration, to avoid solving the subproblem corresponding to

machine it after having addressed the subproblem for machine ik, k 6= t, such that |ρik − ρit | < ε
(BP-SKIP); this implies that, given the set Sik of pareto-optimal solutions for the subproblem associated
with machine ik, no check is made to see if the solutions in Sik represent negative reduced cost variables
(columns) associated with other machines;

• the possibility, at each column generation iteration, to perform partial pricing (BP-PP);
• the possibility to run the restricted master heuristic (BP-RMH).
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For each variant, including BP, we solved the 600 benchmark instances with n = 75 jobs. Again, the time
limit (TL) for each run was set to 150 seconds.

Table 2 summarizes the results obtained. For each subset of instances and each of the four algorithms,
we report the average time spent while solving (the linear relaxation of model (1) at) the root node of the
branch-and-bound tree (Time (root)), the number of instances solved to optimality (Opt), and the average
solution time (Time). Additionally, we report for BP the average number of nodes explored (Nodes). Times
are given in seconds. A star (*) appears next to the name of the subsets including infeasible instances.

According to the Average/Total results reported in Table 2, we can see how, by avoiding to solve all the
subproblems associated with machines ir ∈ M sharing an almost identical value of ρir , BP is on average at
least 5 times faster than BP-SKIP in solving the root node of the branch-and-bound tree. In particular, this
design feature is more relevant than the possibility to perform partial pricing. Actually, BP is on average
‘only’ 2 times faster than BP-PP in solving the root node.

Looking at the average times to solve the root node per subset, only for subsets m = 5; d = 0.2 and
m = 5; d = 0.3, including infeasible instances, BP does not dominate both BP-SKIP and BP-PP. As for
the remaining subsets, the ratio between the average times is in favour of BP, especially as far as feasible
instances are considered. For subsets m = 15; d = 0.1 and m = 10; d = 0.1, BP is on average 2 orders of
magnitude faster than both BP-SKIP and BP-PP. For all the subsets with m = 20 and m = 15, with the
exception of m = 15; d = 0.5, BP is on average 1 order of magnitude faster than BP-SKIP. These different
speeds of convergence of the column generation algorithm have relevant impacts on the whole solution
process, allowing BP to solve about 30% and 12% more instances to optimality than BP-SKIP and BP-PP,
respectively. Also, always regarding the number of instances solved to optimality, and surprisingly enough,
BP-RMH is able to solve 485 instances against the 484 solved by BP. However, the average solution time of
BP is lower than the average solution time BP-RMH for all the subsets but m = 10; d = 0.3. In particular,
the time reduction occurs even if BP solves less instances in the subset (see, i.e., m = 10; d = 0.2) and is
around 30% for subsets m = 15; d = 0.2, m = 15; d = 0.3, and all those associated with m = 20. Thus, when
BP-RMH is able to solve an instance to optimality and BP is not, this substantially depends on the different
branch-and-bound trees explored by the two algorithms. Finally, let us consider the results reported for the
subset of feasible instances solved by BP, focusing in particular on the average time spent to solve the root
node and the number of nodes explored. For a given subset, when Time (root) is greater than 0.15, the
average time spent per explored node (150/Nodes) is much less than Time (root). Actually, the average time
spent per explored node is less than 0.3 for m = 15; d = 0.5, m = 10; d = 0.3, and m = 10; d = 0.4, and
is equal to 1 for m = 5; d = 0.1 (0.7 considering only the instances in the subset not solved to optimality).
Thus, the negative impacts of the so-called tailing-off effect of the column generation (see Lübbecke and
Desrosiers (2005)), if any, are very limited and ad-hoc stabilization techniques are not required.

As a consequence of all the analysis outlined in this section, we performed all following experiments by
using BP as final version of the BP algorithm.

3.1.2. Comparison with state-of-the-art exact algorithms

As mentioned in the Section 1, the algorithm presented in Kowalczyk and Leus (2017) is the best
known exact solution algorithm proposed so far in the literature for PMC. Hereafter, we will refer to
this algorithm as KL2017. We compared BP against KL2017 on the full set of PMC benchmark instances.
KL2017 was implemented in C, compiled by means of gcc (version 4.8.2) with full optimization pack -
O3, and run on one core of a system with an Intel Core i7-3770 processor, clocked at 3.4 GHz, 8 GB of
RAM, and Linux as OS. The MIP solver Gurobi 6.0.0 was used within the algorithm as linear and integer
solver. In Kowalczyk and Leus (2017), the authors set a time limit of 900 seconds for KL2017. However,
considering the different computational setting, to provide a fair comparison we set a time limit for BP of
720 seconds. This value has been computed considering the difference between the CPUs as reported in
PassMark (2021). The results obtained are summarized in Tables 3 and 4, having structures similar to the
tables given in Kowalczyk and Leus (2017). Complete detailed results for all instances are publicly available
at https://github.com/Treema81/PMC_Data.

For each range of processing times, and each combination of number of machines (m) and jobs (n), we
report in Table 3 the average solution time (Time) in seconds, the average number of branch-and-bound
nodes explored (Nodes), the number of instances proved to be infeasible (Infeasible), and the number of
feasible instances solved to the optimality (Optimal). Then, for the feasible instances for which valid lower
and upper bounds have been found, we report the average percentage optimality gap (Gap (%)) and, in
brackets, the number of instances over which the average gap is computed. Note that, for a given range of
processing times, each row of the table reports the aggregate results for the 50 instances associated with the
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Table 2: Results assessing the impact of the main components of BP - Subsets of instances with n = 75 jobs

BP-SKIP BP-PP BP-RMH BP

Subset Time Opt Time Time Opt Time Time Opt Time Time Opt Time Nodes
(root) (root) (root) (root)

m = 20; d = 0.1 8.34 29 48.3 0.98 24 77.3 0.07 30 13.0 0.07 30 8.4 101.0
m = 20; d = 0.2 8.93 27 49.7 0.46 30 32.4 0.08 30 15.1 0.08 30 10.1 98.4
m = 20; d = 0.3 7.52 27 51.2 0.70 30 22.5 0.09 30 18.4 0.09 30 11.6 104.0
m = 20; d = 0.4 8.49 21 79.6 0.86 30 35.3 0.11 30 30.0 0.11 30 20.5 143.4
m = 20; d = 0.5 9.97 16 91.3 1.00 25 70.9 0.12 26 56.7 0.12 27 41.8 274.4

m = 15; d = 0.1 6.79 30 36.9 13.67 15 110.1 0.06 30 10.3 0.06 30 9.7 123.0
m = 15; d = 0.2 6.85 23 73.0 0.50 30 48.1 0.08 30 22.4 0.08 30 15.9 136.6
m = 15; d = 0.3 6.55 19 86.8 0.76 29 42.4 0.09 28 39.5 0.09 30 27.3 181.0
m = 15; d = 0.4 8.17 11 106.8 0.93 15 103.6 0.15 17 90.6 0.15 16 88.6 471.0
m = 15; d = 0.5 10.21 7 137.4 1.28 5 137.9 1.19 9 121.5 1.19 10 119.5 931.6

m = 10; d = 0.1 5.97 28 64.1 10.49 21 101.8 0.06 30 14.2 0.06 30 13.6 146.7
m = 10; d = 0.2 5.57 14 102.9 0.90 25 65.6 0.07 25 66.9 0.07 22 62.7 292.1
m = 10; d = 0.3 5.78 4 139.5 1.75 5 139.1 1.62 7 128.5 1.62 7 129.6 644.9
m = 10; d = 0.4 12.77 0 TL 8.03 0 TL 2.28 0 TL 2.28 0 TL 590.8
m = 10; d = 0.5* 25.92 30 25.9 17.33 30 17.3 4.71 30 4.7 4.71 30 4.7 1.0

m = 5; d = 0.1 4.40 4 140.0 81.53 0 TL 3.83 13 110.9 3.83 12 109.7 155.5
m = 5; d = 0.2* TL 0 TL 29.17 30 29.2 53.41 30 53.4 53.41 30 53.4 1.0
m = 5; d = 0.3* 132.32 20 132.5 13.30 30 13.3 17.61 30 17.6 17.61 30 17.6 1.0
m = 5; d = 0.4* 30.09 30 30.1 6.12 30 6.1 4.39 30 4.4 4.39 30 4.4 1.0
m = 5; d = 0.5* 7.50 30 7.5 3.28 30 3.3 1.01 30 1.0 1.01 30 1.0 1.0

Average/Total 23.11 370 85.2 9.65 434 67.8 4.55 485 48.6 4.55 484 45.0 220.0

same values of m and n, independently of the value of the density d. Table 4 reports the same information
for each value of the density probability d and each combination of number of machines (m) and jobs (n).
Each row of the table reports the aggregate results for the 30 instances associated with the same values of
n and m, regardless of the of processing time values.

BP optimally solves 2296 out of the 2550 instances. In particular, BP proves 471 instances to be infeasible
and achieves the optimal solution for the other 1825 instances. Considering the remaining 254 instances not
solved to the optimality, BP computes a non-optimal feasible solution for 170 further instances, whereas it
is neither able to find any solution nor to prove the infeasibility within the imposed time limit (TL) for 84
instances.

Looking at the tables in more details, especially at the average solution times and the number of instances
solved, we can observe that the efficiency of BP clearly declines with the increase in the number of jobs n.
In fact, all instances with 10 and 25 jobs, and almost all with 50 jobs, have been solved to optimality, while
in only 87.5% of the instances with n = 75 and 71.33% of the instances with 100 jobs BP is able to achieve
the optimal solution.

Moreover, Table 3 shows that the number of instances solved to optimality decrease steadily with the
increase in range from 802 with range = [1, 10] to 737 with range = [1, 100]. The average computational
time grows accordingly, instances with range = [1, 100] take more than twice the computational time of the
instances with range = [1, 10], 131.3 seconds vs 59.1. In all ranges there are three classes of instances that
prove to be the most difficult to solve for BP (n = 50, m = 5), (n = 75, m = 10) and (n = 100, m = 15).
These instances takes always the longest computational time to be solved among all instances with the same
range and number of jobs n. This is in line with the results reported in Kowalczyk and Leus (2017) and
show that both BP and KL2017 encounter convergence difficulties on the same classes of instances.

Additionally, according to Table 4, increasing the number of conflicts makes, on average, the problem
more difficult. In fact, the average computational time rises from 70.7 seconds with d = 0.1 to 108.6 seconds
with d = 0.5. However, this growth is not monotone as for the range. Looking more closely, we can see that
the computational time increases with d for feasible instances, whereas it decreases at the increase of the
number of conflicts as far as infeasible instances are concerned. In more details, we observed three different
behaviours. Let us consider highly infeasible instances as the ones with m = 5 and n = 100. These instances,
as reported in Table 4, are the most difficult instances with d = 0.1 and are all already infeasible with d =
0.2. Increasing the number of conflicts cannot make them any more feasible but makes easier for BP to prove
their infeasibility. In fact, the average computational time to prove them infeasible decreases monotonically
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from 188.8 seconds with d = 0.2 to only 4.9 seconds with d = 0.5. Now, consider feasible instances like
the ones with with m = 15 and n = 75. They are always feasible with any value of d and the required
computational time increases from an average of 10.3 seconds with d = 0.1 to 470.4 seconds with d = 0.5.
Finally, let us take into account a more general case as the ones represented by instances with m = 10 and
n = 75. They show a quasi-parabolic trend. The computational time increases as long as they are feasible
reaching a peak with d = 0.4. Then the computational time drops to less than 5 seconds with d = 0.5 when
all instances become infeasible. The vertex of this hypothetical parabola, between d = 0.4 and d = 0.5 in
this case, represents the most difficult instances and corresponds to instances in which the chromatic number
of the underlying conflict graph is very close to m. These results follow the ones reported in Kowalczyk and
Leus (2017) and show that both BP and KL2017 have very similar behaviour.

The performance of BP are assessed against those of KL2017 in the following. In a private communication,
Kowalczyk and Leus (2017) sent us the detailed results for the 2550 benchmark instances. According to their
results, we have been able to see that 471 instances have been found infeasible and that the number of feasible
instances ranges between 2076 and 2079. Overall BP solved to optimality 2297 instances, while KL2017 is
claimed to reach the optimal solution for 2436 instances. In details, both algorithms proved the same 471
instances to be infeasible and, as for feasible instances, BP and KL2017 computed the optimal solution in
1826 and 1965 cases, respectively. However, comparing the results instance by instance, we noticed that for
87 feasible instances, claimed to be solved to optimality by KL2017, we are able to achieve a better solution.
In other words, the authors of Kowalczyk and Leus (2017) assert to have found 87 optimal solutions that are
not actually optimal. The differences, in terms of value of the objective function, with the results obtained
by BP are not negligible and range between 1 to 8. This means that KL2017 is able to solve at most 52 more
instances, out of 2079, than BP. Hence, the number of instances solved by both algorithms is comparable.
Moreover, over the 170 feasible instances for which valid lower and upper bounds have been computed, the
absolute difference between the bounds is equal to 1 in 47 cases, and to 1 or 2 in 64 cases. This shows how,
even without making use of ad-hoc primal heuristics and feasibility check algorithms, BP is competitive with
KL2017.
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Table 3: Computational results on instances with conflicts in function of range

Instances

Solution process Solved Feasible with LB/UB values

m n Time Nodes Infeasible Optimal Gap (%)

Range (a) = [1, 10]
5 10 0.0 4.7 0 50 -
20 25 0.1 11.3 0 50 -
15 25 0.2 11.4 0 50 -
10 25 0.2 9.4 0 50 -
5 25 0.3 14.1 16 34 -
20 50 1.5 22.7 0 50 -
15 50 1.4 34.3 0 50 -
10 50 4.2 102.6 0 50 -
5 50 36.3 97.4 31 19 -
20 75 4.8 67.5 0 50 -
15 75 18.0 185.5 0 50 -
10 75 185.4 859.0 10 29 15.9 (7)
5 75 27.2 25.6 40 10 -
20 100 50.7 249.9 0 49 3.7 (1)
15 100 265.6 1144.1 0 35 10.2 (8)
10 100 212.2 432.4 20 19 26.4 (4)
5 100 196.9 8.9 40 0 -

Average/Total 59.1 193.0 157 645 15.1 (20)

Range (b) = [1, 50]
5 10 0.1 5.1 0 50 -
20 25 0.2 11.7 0 50 -
15 25 0.2 13.5 0 50 -
10 25 0.4 13.5 0 50 -
5 25 0.6 23.2 16 34 -
20 50 2.5 37.4 0 50 -
15 50 3.3 60.4 0 50 -
10 50 12.5 188.7 0 50 -
5 50 117.4 216.6 31 15 2.3 (4)
20 75 16.5 138.6 0 50 -
15 75 167.8 938.6 0 42 1.7 (8)
10 75 299.5 1114.7 10 23 16.3 (14)
5 75 74.0 69.9 40 9 0.2 (1)
20 100 245.9 817.2 0 39 1.2 (11)
15 100 399.8 1555.3 0 26 8.1 (18)
10 100 316.3 673.1 20 12 6.7 (10)
5 100 202.5 6.9 40 0 -

Average/Total 109.4 346.1 157 600 7.2 (66)

Range (c) = [1, 100]
5 10 0.1 5.4 0 50 -
20 25 0.2 12.5 0 50 -
15 25 0.3 13.7 0 50 -
10 25 0.7 17.1 0 50 -
5 25 0.7 27.3 16 34 -
20 50 7.2 43.1 0 50 -
15 50 6.1 86.6 0 50 -
10 50 21.1 272.8 0 50 -
5 50 107.8 235.7 31 16 1.9 (3)
20 75 42.0 245.2 0 50 -
15 75 253.1 1313.6 0 38 1.5 (12)
10 75 360.2 1439.5 10 18 10.1 (19)
5 75 124.3 90.8 40 6 0.4 (4)
20 100 309.8 1129.4 0 36 1.7 (14)
15 100 462.2 1821.3 0 22 5.8 (20)
10 100 333.2 722.1 20 10 3.3 (12)
5 100 203.0 5.8 40 0 -

Average/Total 131.3 440.1 157 580 4.7 (84)
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Table 4: Computational results on instances with conflicts in function of density

Instances

Solution process Solved Feasible with LB/UB values

m n Time Nodes Infeasible Optimal Gap (%)

Density d = 0.1
5 10 0.1 6.9 0 30 -
20 25 0.2 14.6 0 30 -
15 25 0.3 15.5 0 30 -
10 25 0.6 18.7 0 30 -
5 25 0.7 36.2 0 30 -
20 50 10.0 46.3 0 30 -
15 50 3.2 55.2 0 30 -
10 50 3.6 79.5 0 30 -
5 50 8.5 92.0 0 30 -
20 75 9.0 100.1 0 30 -
15 75 10.3 122.7 0 30 -
10 75 14.7 146.9 0 30 -
5 75 298.6 306.5 0 25 0.4 (5)
20 100 44.9 158.8 0 29 0.7 (1)
15 100 25.1 179.2 0 30 -
10 100 52.4 264.3 0 30 -
5 100 TL 31.9 0 0 -
Average/Total 70.7 98.5 0 474 0.4 (6)

Density d = 0.2
5 10 0.1 5.5 0 30 -
20 25 0.2 12.9 0 30 -
15 25 0.2 14.6 0 30 -
10 25 0.5 14.7 0 30 -
5 25 0.8 34.3 0 30 -
20 50 2.3 38.9 0 30 -
15 50 3.2 52.2 0 30 -
10 50 5.7 87.1 0 30 -
5 50 422.9 821.1 3 20 2.1 (7)
20 75 10.9 98.2 0 30 -
15 75 17.1 136.5 0 30 -
10 75 133.3 483.8 0 28 0.2 (2)
5 75 54.7 1.0 30 0 -
20 100 40.9 182.5 0 30 -
15 100 86.6 330.9 0 30 -
10 100 529.7 1466.9 0 11 0.8 (19)
5 100 188.8 1.0 30 0 -

Average/Total 88.1 222.5 63 419 1.1 (28)

Density d = 0.3
5 10 0.0 4.9 0 30 -
20 25 0.2 11.9 0 30 -
15 25 0.2 12.8 0 30 -
10 25 0.4 12.2 0 30 -
5 25 0.8 32.7 0 30 -
20 50 2.2 35.0 0 30 -
15 50 3.3 55.9 0 30 -
10 50 10.8 123.0 0 30 -
5 50 3.2 1.0 30 0 -
20 75 13.0 102.4 0 30 -
15 75 28.8 180.3 0 30 -
10 75 535.6 2131.1 0 12 0.9 (18)
5 75 17.3 1.0 30 0 -
20 100 101.6 316.5 0 30 -
15 100 385.4 1292.8 0 18 0.9 (12)
10 100 TL 1312.8 0 0 28.2 (7)
5 100 66.4 1.0 30 0 -

Average/Total 111.1 331.0 90 360 6.1 (37)
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Density d = 0.4
5 10 0.0 4.2 0 30 -
20 25 0.1 10.7 0 30 -
15 25 0.2 12.1 0 30 -
10 25 0.4 10.7 0 30 -
5 25 0.1 3.5 18 12 -
20 50 2.0 27.8 0 30 -
15 50 3.9 63.0 0 30 -
10 50 23.8 291.8 0 30 -
5 50 0.9 1.0 30 0 -
20 75 21.7 143.3 0 30 -
15 75 204.9 878.5 0 28 0.4 (2)
10 75 TL 2925.7 0 0 25.7 (20)
5 75 4.3 1.0 30 0 -
20 100 284.3 823.6 0 26 0.6 (4)
15 100 662.2 2977.8 0 5 4.5 (25)
10 100 104.5 1.0 30 0 -
5 100 23.8 1.0 30 0 -

Average/Total 121.0 481.0 138 311 12.3 (51)

Density d = 0.5
5 10 0.0 3.8 0 30 -
20 25 0.1 9.2 0 30 -
15 25 0.2 9.4 0 30 -
10 25 0.3 10.4 0 30 -
5 25 0.1 1.0 30 0 -
20 50 2.1 24.1 0 30 -
15 50 4.4 75.9 0 30 -
10 50 19.0 358.9 0 30 -
5 50 0.2 1.0 30 0 -
20 75 50.8 308.1 0 30 -
15 75 470.4 2744.9 0 12 1.7 (18)
10 75 4.9 1.0 30 0 -
5 75 1.0 1.0 30 0 -
20 100 538.9 2179.5 0 9 1.8 (21)
15 100 TL 2753.9 0 0 24.4 (9)
10 100 29.5 1.0 30 0 -
5 100 4.9 1.0 30 0 -

Average/Total 108.6 499.1 180 261 6.0 (48)

3.2. Instances for P ||Cmax

As PMC generalizes P ||Cmax, which has been extensively studied in the literature, we decided to compare
BP against state-of-the-art exact algorithms for the latter problem, such as the DIMM algorithm by (Dell’Amico
et al., 2008), the branch-and-bound algorithms by Haouari and Jemmali (2008) and Lawrinenko (2017), or
the exact approach by Mrad and Souayah (2018) consisting of solving an an-arc flow model for the problem
by means of a commercial ILP solver.

As expected, preliminary experiments showed that, in general, BP cannot compete with state-of-the-art
exact algorithms for P ||Cmax. However, BP was quite effective in solving instances for which the average
number of jobs per machine (n/m) is relatively small. A similar behaviour characterizes other branch-and-
price algorithms proposed in the literature to address scheduling problems (see, i.e., Kowalczyk and Leus
(2018)). This kind of instances have been introduced by Haouari and Jemmali (2008) and classified by
the authors as hard instances. Except for small-sized hard instances (n ≤ 20), the performance of their
algorithm was deteriorating for increasing values of n ≤ 200 (Haouari and Jemmali, 2008, p. 33). These
benchmark instances have been addressed later in Lawrinenko (2017) and Mrad and Souayah (2018). In
particular, the exact approach proposed in the latter paper has been able to solve all the hard instances
with an average running time smaller than 8 seconds. Thus, to further assess the performance of their
algorithm, the authors introduced an additional set of hard instances. Such set includes instances with
ratios n

m ∈ {2.0, 2.25, 2.5, 2.75, 3.0}. For each ratio, seven different classes are considered for the random
generation of the processing times:
• Class 1: Discrete uniform distribution in [1, 100]
• Class 2: Discrete uniform distribution in [20, 100]
• Class 3: Discrete uniform distribution in [50, 100]
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• Class 4: Normal distribution with µ = 100 and σ = 20
• Class 5: Normal distribution with µ = 100 and σ = 50
• Class 6: Discrete uniform distribution in [n, 4n]
• Class 7: Normal distribution with µ = 4n and σ = n
Each class considers then pairs (n,m) such that:
• n ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} if n = m ∈ {2, 2.5}
• n ∈ {36, 54, 72, 90, 108, 126, 144, 162, 180, 198} if n = m ∈ {2.25, 3}
• n ∈ {22, 44, 66, 88, 110, 132, 154, 176, 198, 220} if n = m ∈ {2.75}
10 instances are generated for each pair (n,m), for a total of 3500 instances.

We decided to thoroughly test BP over the set of benchmark instances introduced by Mrad and Souayah
(2018), and that the authors kindly provided us. (All but the 70 instances for n = 220, m = 80, and
n/m = 2.75. We replaced them with the 70 instances associated with n = 187, m = 68, and n/m = 2.75,
that were included in the set the authors provided us.) In the remainder, we will refer to the exact approach
designed by Mrad and Souayah (2018) as to MS2018.

MS2018 was implemented in C++ (by making use of CPLEX 12.6 Concert Technology) and run on an
Intel Core i7-2600 (3.4 GHz) machine, with 16 GB RAM and Windows 7 Professional (64-bit) as OS. In Mrad
and Souayah (2018) the authors set a time limit of 1200 seconds for MS2018. However their setting, in terms
of computing power, is different from ours. For this reason, in order to provide a fair comparison, considering
the performance difference between the two processors as reported in the benchmark by PassMark (2021),
we set a time limit for BP of 850 seconds. Moreover, we initialized BP with a primal solution computed by
means of the same heuristic as that used in Mrad and Souayah (2018). Instance-wise detailed results are
available upon request. Table 5 shows the results computed by BP, grouped by ratio n

m and by class of
distribution. Each row of the table reports, for each class of distribution, the average execution time (Time)
and the number of instances not solved to the optimality (NS) w.r.t. the 10 instances associated with the
considered values of n and m.

BP is able to find the optimal solution in 3358 instances over 3500 with an average execution time of
97.51 seconds. In 111 of the 142 instances not solved to optimality the average residual gap is less than
1%. Instances not solved to optimality are not spread equally among ratios n

m and classes of distributions.
The higher are the ratio and the class identifier, the more difficult is to solve the instances to optimality. In
particular, almost 80% of the instances not solved belongs to classes 6 and 7 with ratio ≥ 2.5.

In order to compare the performance of BP and MS2018we only considered the 3430 commonly addressed
by both algorithms. Table 6 reports, grouped by ratio n

m and by class of distribution, the number of instances
not solved to optimality by BP and MS2018. The overall performance of the two algorithms are similar.
However, instances not solved by BP are more spread among different ratios and classes while all instances
not solved by MS2018 belong to classes 6 and 7 with ratio ≥ 2.25. Then, MS2018 seems to be slightly
more effective than BP while addressing instances in classes 1-6, whereas BP clearly outperforms MS2018 in
solving instances of Class 7. Overall, BP solves 1 more instance than MS2018. These results demonstrate that,
although BP was not specifically designed for P ||Cmax , it is in line with state-of-the-art exact methods for
this problem while addressing instances with a relatively small average number of jobs per machine.

17



Table 5: Computational results on P ||Cmax instances

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
n m Time NS Time NS Time NS Time NS Time NS Time NS Time NS

Ratio n/m = 2.00
20 10 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0
40 20 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.2 0
60 30 0.3 0 0.3 0 0.7 0 0.6 0 1.0 0 0.7 0 0.9 0
80 40 0.5 0 1.3 0 1.1 0 2.2 0 0.3 0 1.7 0 2.0 0

100 50 2.7 0 3.7 0 2.2 0 4.5 0 1.6 0 1.6 0 4.6 0
120 60 7.9 0 8.3 0 2.5 0 5.3 0 1.2 0 6.3 0 7.7 0
140 70 12.2 0 12.8 0 4.2 0 9.7 0 1.7 0 16.0 0 11.5 0
160 80 11.2 0 13.3 0 7.4 0 24.9 0 1.7 0 11.9 0 12.4 0
180 90 19.0 0 13.8 0 24.3 0 43.8 0 1.2 0 23.5 0 40.2 0
200 100 20.8 0 24.0 0 7.8 0 45.7 0 0.0 0 26.6 0 39.3 0

Average/Total 7.5 0 7.8 0 5 0 13.7 0 0.9 0 8.8 0 11.9 0

Ratio n/m = 2.25
20 8 0.1 0 0.5 0 0.8 0 0.8 0 0.4 0 0.7 0 0.8 0
40 16 0.7 0 1.7 0 2.7 0 2.3 0 1.1 0 2 0 2.6 0
60 24 2.0 0 3.6 0 5.7 0 5.3 0 3.1 0 4.8 0 6.5 0
80 32 3.6 0 8.9 0 10.9 0 9.7 0 8.5 0 11.3 0 15.7 0

100 40 10.5 0 99.9 1 21.0 0 21.4 0 10.2 0 23.9 0 29.5 0
120 48 17.2 0 25.8 0 41.5 0 38.9 0 106.8 1 43.6 0 129.8 1
140 56 27.1 0 123.9 1 63.0 0 58.6 0 34.3 0 152.8 1 98.9 0
160 64 45.7 0 68.5 0 97.5 0 87.5 0 34.6 0 214.3 1 155.9 0
180 72 39.9 0 164.5 1 134.9 0 120.7 0 57.0 0 394.6 3 319.5 1
200 80 70.3 0 113.2 0 198.1 0 186.9 0 107.5 0 421.9 2 371.5 0

Average/Total 21.7 0 61.0 3 57.6 0 53.2 0 36.4 1 127.0 7 113.1 2

Ratio n/m = 2.50
20 8 0.1 0 0.2 0 0.3 0 0.3 0 0.2 0 0.2 0 0.2 0
40 16 0.5 0 1.1 0 1.3 0 1.5 0 1.2 0 1.5 0 1.8 0
60 24 2.3 0 3.6 0 4.7 0 4.2 0 3.8 0 4.7 0 5.4 0
80 32 4.6 0 8.1 0 11.0 0 9.8 0 10.1 0 12.8 0 15.3 0

100 40 13.3 0 16.5 0 23.6 0 23.9 0 19.7 0 29.3 0 64.8 0
120 48 107.0 1 34.2 0 51.8 0 49.0 0 34.8 0 72.9 0 130.6 0
140 56 122.1 1 59.0 0 89.4 0 85.4 0 72.3 0 203.0 1 256.1 0
160 64 135.3 1 89.9 0 148.5 0 142.4 0 92.6 0 476.9 3 504.2 2
180 72 87.7 0 129.7 0 237.2 0 220.5 0 158.6 0 690.7 7 806.4 7
200 80 103.1 0 258.0 1 359.9 0 314.1 0 220.1 1 765.8 7 838.3 9

Average/Total 57.6 3 60.0 1 92.8 0 85.1 0 61.3 1 225.8 18 262.3 18

Ratio n/m = 2.75
22 8 0.3 0 0.4 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0
44 16 1.4 0 1.8 0 1.8 0 2.1 0 1.8 0 2.0 0 2.5 0
66 24 5.1 0 5.8 0 5.9 0 8.3 0 6.7 0 7.7 0 10.8 0
88 32 12.8 0 12.1 0 15.3 0 21.5 0 29.2 0 108.5 1 39.2 0

110 40 106.5 1 106.6 1 41.5 0 52.8 0 31.9 0 65.2 0 110.5 0
132 48 37.7 0 56.2 0 86.8 0 103.5 0 58.6 0 286.5 1 391.0 1
154 56 67.2 0 74.9 0 169.1 0 160.6 0 240.6 2 404.3 2 645.0 3
176 64 161.3 1 133.0 0 252.0 0 239.4 0 112.8 0 564.1 1 845.5 9
187 68 99.1 0 123.1 0 364.8 0 320.9 0 208.3 1 770.3 6 TL 10
198 72 187.4 1 196.2 0 384.6 0 372.8 0 322.5 2 791.7 6 TL 10

Average/Total 67.9 3 71.0 1 132.2 0 128.2 0 101.3 5 300.1 17 374.5 33

Ratio n/m = 3.00
36 12 0.9 0 1.1 0 0.8 0 0.8 0 1.2 0 1.2 0 1.1 0
54 18 3.4 0 3.1 0 1.8 0 2.1 0 4.0 0 3.9 0 4.3 0
72 24 6.7 0 7.4 0 5.1 0 6.6 0 9.6 0 10.0 0 17.1 0
90 30 13.4 0 12.1 0 11.5 0 15.6 0 16.3 0 27.5 0 33.4 0

108 36 21.8 0 21.4 0 16.7 0 22.9 0 27.8 0 53.0 0 191.2 1
126 42 113.8 0 45.8 0 33.9 0 42.3 0 52.3 0 100.8 0 140.3 0
144 48 127.7 1 139.4 1 49.9 0 49.6 0 241.9 2 282.7 1 252.8 0
162 54 65.9 0 79.2 0 68.8 0 104.9 0 348.8 3 428.7 2 576.9 0
180 60 171.9 1 193.3 1 94.2 0 119.4 0 134.9 0 660.6 5 839.0 7
198 66 104.1 0 217.3 1 212.8 1 131.2 0 169.2 0 844.5 9 TL 10

Average/Total 63.0 2 72.0 3 49.5 1 49.5 0 100.6 5 241.3 17 290.6 18
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Table 6: Comparison between BP and MS2018 - Benchmark instance by Mrad and Souayah (2018)

Instances not solved by

BP MS2018

For n/m equals to For n/m equals to

Class 2.00 2.25 2.50 2.75 3.00 Total 2.00 2.25 2.50 2.75 3.00 Total

1 0 0 3 3 2 8 0 0 0 0 0 0
2 0 3 1 1 3 8 0 0 0 0 0 0
3 0 0 0 0 1 1 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0 0 0 0 0
5 0 1 1 4 5 11 0 0 0 0 0 0
6 0 7 18 11 17 53 0 2 17 14 13 46
7 0 2 18 23 18 61 0 20 26 27 24 97

Total 0 13 41 42 46 142 0 22 43 41 37 143

4. Conclusions

In this work, we presented the first stand-alone branch-and-price (BP) algorithm for solving directly
the parallel machine scheduling problem with conflicts (PMC). The problem is NP-hard as it generalizes,
among others, the P ||Cmax scheduling problem. Differently from state-of-the-art algorithms addressing PMC
and the P ||Cmax scheduling problem, the BP algorithm does not make use of ad-hoc primal heuristics and
feasibility check algorithms, it incorporates just an optional, straightforward, restricted master heuristic.
Dispite of this, by means of comprehensive computational experiments with benchmark instances, we prove
that the new BP algorithm is competitive with the best exact solution algorithm proposed so far in the
literature for PMC. Moreover, we additionally show that the BP algorithm is in line with state-of-the-art
exact methods for P ||Cmax while addressing instances with a relatively small average number of jobs per
machine. The main component of the BP algorithm that contributed to the overall effectiveness of the
approach is the branching scheme we propose, that does not introduce symmetries in the solution space and
allows the column generation subproblems to share the same feasible region at every node of the branch-
and-bound tree. In turn, this allows to design the column generation iteration to potentially avoid solving
some of the subproblems.

Acknowledgement. This research was funded by Regione Lombardia, grant agreement n. E97F17000000009,
Project AD-COM.

References

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and Vance, P. H. (1998). Branch-and-price: column
generation for solving huge integer programs. Operations Research, 46, 316–329.

Berghman, L., Leus, R., and Spieksma, F. C. R. (2014). Optimal solutions for a dock assignment problem with trailer
transportation. Annals of Operations Research, 213(1), 3–25.

Bodlaender, H. L., Jansen, K., and Woeginger, G. J. (1994). Scheduling with incompatible jobs. Discrete Applied Mathematics,
55(3), 219 – 232.

Dell’Amico, M. and Martello, S. (1995). Optimal scheduling of tasks on identical parallel processors. ORSA Journal on
Computing, 7(2), 191–200.

Dell’Amico, M., Iori, M., Martello, S., and Monaci, M. (2008). Heuristic and exact algorithms for the identical parallel machine
scheduling problem. INFORMS Journal on Computing, 20(3), 333–344.

Desaulniers, G., Desrosiers, J., and Solomon, M., editors (2005). Column Generation. Springer, New York.
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