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Abstract We present the software framework underlying the NNPDF4.0 global determination of parton
distribution functions (PDFs). The code is released under an open source licence and is accompanied
by extensive documentation and examples. The code base is composed by a PDF fitting package, tools
to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile
analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent)
determination, the public release of the NNPDF fitting framework enables a number of phenomenological
applications and the production of PDF fits under user-defined data and theory assumptions.
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1 Introduction

The success of the ambitious programme of the upcoming Run III at the LHC and its subsequent High-
Luminosity upgrade [1, 2] relies on achieving the highest possible accuracy not only in the experimen-
tal measurements but also in the corresponding theoretical predictions. A key component of the latter
are the parton distribution functions (PDFs), which parametrize the quark and gluon substructure of
the colliding protons [3, 4]. PDFs are dictated by non-perturbative QCD dynamics and hence must be
phenomenologically extracted by matching a wide range of experimental data with the corresponding
theoretical predictions. The determination of PDFs and their uncertainties requires a robust statistical
framework which minimises unnecessary assumptions while implementing known theoretical constraints
such as QCD evolution, sum rules, positivity, and integrability.

Recently, a new family of global PDF analyses has been presented by the NNPDF Collaboration:
NNPDF4.0 [5]. This updated PDF determination framework supersedes its predecessor NNPDF3.1 [6]
by improving on all relevant aspects, from the experimental input and theoretical constraints to the
optimisation methodology and the validation of results. As with previous NNPDF releases, the NNPDF4.0
PDFs are made publicly available via the standard LHAPDF interface [7]. However, until now only the
outcome of the NNPDF fits (the LHAPDF interpolation grid files) was released, while the code itself
remained private. This situation implied that the only option to produce tailored variants of the NNPDF
analyses was by requesting them to the developers, and further that results were not reproducible by
external parties. Another limitation of private PDF codes is that benchmarking studies, such as those
carried out by the PDF4LHC working group [8, 9], become more convoluted due to the challenge in
disentangling the various components that determine the final outcome.

Motivated by this state of affairs, as well as by the principles of Open and FAIR [10] (findable, ac-
cessible, interoperable and reusable) Science, in this work we describe the public release of the complete
software framework [11] underlying the NNPDF4.0 global determination together with user-friendly ex-
amples and an extensive documentation. In addition to the fitting code itself, this release includes the
original and filtered experimental data, the fast NLO interpolation grids relevant for the computation of
hadronic observables, and whenever available the bin-by-bin next-to-next-to-leading order (NNLO) QCD
and next-to-leading (NLO) electroweak K-factors for all processes entering the fit. Furthermore, the code
comes accompanied by a battery of plotting, statistical, and diagnosis tools providing the user with an
extensive characterisation of the PDF fit output.

The availability of the NNPDF open-source code, along with its detailed online documentation, will
enable users to perform new PDF analyses based on the NNPDF methodology and modifications thereof.
Some examples of potential applications include assessing the impact of new measurements in the global
fit; producing variants based on reduced datasets, carrying out PDF determinations with different theory
settings, e.g. as required for studies of αs or heavy quark mass sensitivity, or with different electroweak
parameters; estimating the impact on the PDFs of theoretical constraints and calculations e.g. from
non-perturbative QCD models [12] or lattice calculations [13, 14]; and quantifying the role of theoretical
uncertainties from missing higher orders to nuclear effects. One could also deploy the NNPDF code as
a toolbox to pin down the possible effects of beyond the Standard Model physics at the LHC, such as
Effective Field Theory corrections in high-pT tails [15,16] or modified DGLAP evolution from new BSM
light degrees of freedom [17]. Furthermore, while the current version of the NNPDF code focuses on
unpolarised parton distributions, its modular and flexible infrastructure makes it amenable to the deter-
mination of closely related non-perturbative collinear QCD quantities such as polarised PDFs, nuclear
PDFs, fragmentation functions, or even the parton distributions of mesons like pions and kaons [18].

It should be noted that some of the functionalities described above are already available within the
open source QCD fit framework xFitter [19,20]. The NNPDF code offers complementary functionalities
as compared to those in xFitter, in particular by means of state-of-the-art machine learning tools for the
PDF parametrisation, robust methods for uncertainty estimate and propagation, a wider experimental
dataset, an extensive suite of statistical validation and plotting tools, the possibility to account for generic
theoretical uncertainties, and an excellent computational performance which makes possible full-fledged
global PDF fits in less than one hour.

The main goal of this paper is to summarise the key features of the NNPDF code and to point
the interested reader to the online documentation, in which the code is presented in detail and which,
importantly, is kept up-to-date as the code continues to be developed and improved. First, in Sect. 2
we describe the structure of the code and its main functionalities, including the relevant options. The
framework used to analyse the outcome of a PDF fit is described in Sect. 3, while in Sect. 4 we describe
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Fig. 2.1. Schematic of the NNPDF code. The three main inputs are the theoretical calculations, encoded in terms of the
precomputed FK-tables, the methodological settings as determined by the hyperopt procedure, and the experimental data in
the common buildmaster format. The PDFs are fitted using n3fit, and following a postfit selection the outcome is stored
in the LHAPDF grid format. Finally, a thorough characterisation of the results is carried out by the validphys framework.

a few examples of possible applications for which users may wish to use the code. We conclude and
summarise some possible directions of future development in Sect. 5.

2 Code structure

The open-source NNPDF framework enables performing global QCD analyses of lepton-proton(nucleus)
and proton-(anti)proton scattering data in terms of the NNPDF4.0 methodology described in [5]. The
code is publicly available from its GitHub repository

https://github.com/NNPDF/

and is accompanied by an extensive, continuously updated, online documentation

https://docs.nnpdf.science/

In this section, we describe the structure of the code and we present a high-level description of its
functionalities. We invite the reader to consult the documentation for details on its usage.

The workflow for the NNPDF code is illustrated in Fig. 2.1. The NNPDF code is composed of the
following main packages:

The buildmaster experimental data formatter A C++ code which transforms the original measure-
ments provided by the experimental collaborations, e.g. via HepData [21], into a standard format that
is tailored for PDF fitting. In particular, the code allows for a flexible handling of experimental system-
atic uncertainties allowing for different treatments of the correlated systematic uncertainties [22,23].

The APFELcomb interpolation table generator This code takes hard-scattering partonic matrix
element interpolators from APPLgrid [24] and FastNLO [25] (for hadronic processes) and APFEL [26]

https://github.com/NNPDF/
https://docs.nnpdf.science/
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(for DIS structure functions) and combines them with the QCD evolution kernels provided by APFEL

to construct the fast interpolation grids called FK-tables [27]. In this way, physical observables can be
evaluated in a highly efficient manner as a tensor sum of FK-tables with a grid of PDFs at an initial
parametrisation scale Q0. APFELcomb also handles NNLO QCD and/or NLO electroweak K-factors
when needed.

Theory predictions can be generated configuring a variety of options, such as the perturbative order
(currently up to NNLO), the values of the heavy quark masses, the electroweak parameters, the
maximum number of active flavours, and the variable-flavour-number scheme used to account for the
effects of the heavy quark masses in the DIS structure functions. The FK-tables resulting from each
choice are associated to a database entry trough a theory id, which allows to quickly identify them
them.

The n3fit fitting code This code implements the fitting methodology described in [5, 28] as imple-
mented in the TensorFlow framework [29]. The n3fit library allows for a flexible specification of
the neural network model adopted to parametrise the PDFs, whose settings can be selected auto-
matically via the built-in hyperoptimisation tooling [30]. These include the neural network type and
architecture, the activation functions, and the initialisation strategy; the choice of optimiser and of its
corresponding parameters; and hyperparameters related to the implementation in the fit of theoretical
constraints such as PDF positivity [31] and integrability. The settings for a PDF fit are input via a
declarative run card. Using these settings, n3fit finds the values of the neural network parameters,
corresponding to the PDF at initial scale which describe the input data. Following a post-fit selection
and PDF evolution step, the final output consists of an LHAPDF grid corresponding to the best fit
PDF as well as metadata on the fit performance.

The libnnpdf C++ legacy code A C++ library which contains common data structures together with
the fitting code used to produce the NNPDF3.0 and NNPDF3.1 analyses [6, 32–35]. The availability
of the libnnpdf guarantees strict backwards compatibility of the NNPDF framework and the ability
to benchmark the current methodology against the previous one. To facilitate the interaction between
the NNPDF C++ and Python codebases, we have developed Python wrappers using the SWIG [36]
library.

The validphys analysis framework A package allowing to analyse and plot data related to the
NNPDF fit structures and I/O capabilities to other elements of the code base. The validphys

framework is discussed in detail in Sect. 3.

Complementing these main components, the NNPDF framework also contains a number of additional,
ever-evolving, tools which are described in the online documentation.

Development workflow. The NNPDF code adopts a development workflow compliant with best practices
in professionally developed software projects. Specifically, every code modification undergoes code review
and is subjected to a suite of automated continuous integration testing. Moreover, before merging into the
main release branch, all relevant documentation is added alongside any new tests that may be relevant to
the incoming feature. This feature ensures that a broad code coverage within the test suite is maintained.

Installation. The various software packages that compose the NNPDF fitting code can be installed via
the binary packages provided by the conda interface, as described in

https://docs.nnpdf.science/get-started/installation.html

The binary distribution allows users to easily install the entire code suite alongside all relevant depen-
dencies within an isolated environment, which is also compatible with the one that has been tested
automatically. Consequently, PDF fits can be produced with a known fixed version of the code and all
its dependencies, regardless of the machine where it is running, hence ensuring the reproducibility of
the result. For the purposes of code development, it is also possible to set up an environment where the
dependencies are the same but the code can be edited, allowing users to contribute to the open-source
framework.

https://docs.nnpdf.science/get-started/installation.html
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Input configuration. The settings that define the outcome of a NNPDF fit are specified by means of a
run card written in YAML, a common human-readable data-serialisation language. The main elements of
fit run cards are:

Input dataset: for each dataset, the user has to specify the NNPDF-internal string associated to it, the
fraction of the data that goes into the training and validation subsets, and the inclusion of K-factors
in the corresponding theoretical predictions. The latter are assigned different naming conventions
depending on their nature: NNLO QCD, NLO electroweak, heavy-quark mass corrections for neutrino
DIS [37], or overall normalisation rescaling. Correlations between common systematic uncertainties
between different datasets are automatically taken into account.

Kinematical cuts: a declarative format that specifies the cuts applied to the experimental data, based
on the kinematics of each data point and depending on the corresponding theory settings. The cuts
can be based on simple relations between the kinematics of each data point, such as the usual Q2

min

and W 2
min cuts applied to DIS structure functions, some derived quantity such as the value of the

lepton charge asymmetry in W decay data, or on more complex conditions such as retaining only
points where the relative difference between NLO and NNLO predictions is below some threshold.
These kinematical cut configuration can either be specified directly in the run card or the built-in
defaults can be used, and can be required for individual datasets or for types of processes instead.

Theory settings: the settings for theory predictions to be used in the fit, such as the perturbative
order and the values of the coupling constants and of the quark masses, are specified an entry in the
theory database, which in turn selects the set of FK-tables, to be used during the fit. A wide range of
FK-tables for the most commonly used theory settings are already available and can be installed using
the NNPDF code, while tables corresponding to different settings can also be assembled by the user
whenever required. The settings for the available entries of the theory database are specified in the
online documentation.

Fitting strategy and hyperparameters: the user can specify via the run card a number of method-
ological settings that affect the optimisation, such as the minimisation algorithm with the corre-
sponding parameters, the maximum training length, the neural network architecture and activation
functions, and the choice of PDF fitting basis (e.g. using the evolution or the flavour basis). These
methodological settings can either be set by hand or taken from the result of a previous hyperopt

run. Furthermore, random seeds can be configured to achieve different levels of correlation between
Monte Carlo replicas across fits, as required e.g. for the correlated replica method used in the αs(mZ)
extraction of [38]. The user can additionally decide whether to save the weights of the neural networks
during the fit or not, and whether to fit the Monte Carlo replicas or instead the central values of the
experimental data. Another choice accessible via the run card is whether to use real data or instead
fit to pseudo-data generated from a known underlying PDFs, as required during a closure test [32,39].

PDF positivity and integrability: as described in [5], in the NNPDF4.0 determination one imposes
theoretical requirements on the positivity and integrability of the fitted PDFs by means of the La-
grange multiplier method. The user can then decide via the run card whether or not (or only partially)
to impose these constraints on the PDFs, and if so define the initial values of the Lagrange multiplier
weights. Note that some of the parameters governing the implementation of these theory requirements
can also be adjusted by means of the hyperoptimisation procedure.

Weighted fits: the user can choose to give additional weight to specific datasets when computing the
total χ2. This feature can be useful to investigate in more detail the relative impact that such datasets
have in the global fit, and explore possible tensions with other datasets or groups of processes following
the strategy laid out in [5].

The run cards required for producing the main NNPDF4.0 fits are stored under

https://github.com/NNPDF/nnpdf/tree/master/n3fit/runcards/reproduce_nnpdf40/

These enable users to readily reproduce the results and also generate modifications of dataset selection,
methodology or theory choices by suitably tweaking a run card.

Performance. One of the main advantages introduced by the new methodology underlying NNPDF4.0
in comparison to its predecessors using genetic algorithms is the significant fitting speed up achieved. As
an illustration of this improvement in performance, we note that the NNPDF4.0 NNLO global fit takes

https://github.com/NNPDF/nnpdf/tree/master/n3fit/runcards/reproduce_nnpdf40/
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fewer than 6 hours per replica on a single CPU core, as compared to ' 36 hours using the NNPDF3.1-
like methodology. This significant reduction of the CPU footprint of the global PDF fits leads to a faster
production rate of fit variants, and it also allows one the prototyping of new approaches to PDF fitting
using deep learning. Indeed, technologies such as hyperoptimisation were previously impractical but with
the improved computational performance of the NNPDF code they are used in the fit. Furthermore, with
the use of TensorFlow in the fitting toolkit, the ability to conveniently perform fits on the Graphics
Processing Unit (GPU) might allow for further improvements in performance as suggested by the study
in Ref. [40]. Such an implementation in the main NNPDF code is reserved for a future release.

3 The NNPDF analysis code: validphys

The validphys toolkit is at the heart of the NNPDF code base, bridging together the other components
and providing basic data structures, compatibility interfaces, I/O operations and algorithms. These are
used to assemble a suite of statistical analysis and plotting tools. We describe it here, and refer the
reader to the publications mentioned in the code structure description in Sec. 2 as well as the online
documentation of the NNPDF framework for further details on the other parts of the code.

The validphys code is in turn built on top reportengine [41], a data analysis framework which seeks
to achieve the following goals:

– To aid structuring data science code bases so as to make them understandable and lower the entry
barrier for new users and developers.

– To provide a declarative interface that allows the user specifying the required analysis by providing
a minimal amount of information in the form of a run card, making the analysis reproducible given
said run card.

– To provide a robust environment for the execution of data analysis pipelines including robust error
checking, automatic documentation, command-line tools and interactive applications.

The key observation underpinning the design of reportengine is that most programming tasks in data
science correspond to codes that are fully deterministic given their input. Every such program can be
seen as a direct acyclic graph (DAG), see example the one shown in Fig. 3.1, with links representing the
dependencies between a given step of the computation and the subsequent ones. Specifically, the nodes in
such graph (resources) correspond to results of executing functions (providers) which usually correspond
to functions in the Python programming language. These functions are required to be pure, that is, such
that their outputs are deterministic functions of the inputs and that no side effects that alter the state of
the program happen.1 These side effects are typically managed by the reportengine framework itself,
with tools to, for example, save image files to a suitably unique filesystem location.

The goal of simplifying the programming structure is achieved then by decomposing the program
in terms of pure functions. Code developers are required to reason about the inputs of each individual
function as well as its code, but not about any global state of the program or the order of execution, with
the problem of putting the program together being delegated to the framework.

The reportengine framework has extensive facilities for automatically building the computation
graph from the provided input. Users are only required to specify the ultimate target of the analysis (such
as a figure, table, or report) with the intermediate steps being deduced thanks to a set of conventions
in the program structure and a collection of utilities provided by the framework (for example tools to
implement the map-reduce pattern). This allows complex analyses to be specified by purely declarative
run cards without the need to write custom code for each of them. In turn, the run cards allow any user
to precisely reproduce the results based on it and the corresponding version of the code.

A simple validphys run card, illustrating a minimal analysis of a dataset is shown in Fig. 3.2 with
the DAG it spawns in Fig. 3.1.

As an example of the meta-programming features of reportengine, the template text input in
the runcard displayed in Fig. 3.2 illustrates how it is possible to spawn arbitrary other actions, with
their corresponding dependencies, based on the user input as shown in Fig. 3.1. The framework allows
implementing similar complex workflows with its programming interface. Users are referred to the online
documentation for further details, code references, and specific examples.

The introspection capabilities of reportengine enable it to provide a robust and convenient environ-
ment for carrying out analysis. Most notably they enable specifying powerful checks on the user input.

1 Note that the concept of pure function is used here somewhat more loosely than in programming languages such as
Haskell [42], since side effects such as logging information or writing files to disk are allowed as long as they are idempotent.
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output_path

meta_file pandoc_template report_style

report

meta templatename stylename

dataset

covmat

results

plot_chi2dist dataset_chi2_table

sqrt_covmat

fitthcovmatt0set use_weights_in_covmat norm_threshold

covariance_matrix

abs_chi2_data

pdf

chi2_stats

report_generator template_text out_filename main mathjax bibliography_file

Fig. 3.1. Direct acyclic graph corresponding to the run card provided in Fig. 3.2. The graph shows the inputs extracted
from the run card, such as pdf (the PDF set) and the dataset, the intermediate steps required for the χ2 computation (such
as evaluating the covariance matrix), and the final target requested by the user, in this case a training report containing
a histogram and a table with the χ2 values obtained for this dataset for the indicated input PDF and choice of theory
settings.

dataset input:
dataset: ATLAS WP JET 8TEV PT
cfac: [QCD]

theoryid: 200

use cuts: "nocuts"

pdf: NNPDF31 nnlo as 0118

template text: |
# Histogram

{@plot chi2dist@}

# Table

{@dataset chi2 table@}

actions :
- report(main=True)

Fig. 3.2. A validphys runcard which produces a report containing a table and a histogram with the χ2 values obtained
for the ATLAS W+ + jets 8 TeV differential distributions when using the Nrep = 100 replicas of NNPDF3.1 NNLO as
input dataset and the theory settings specified by the theoryid: 200 of the database. In particular, the runcard specifies
the string for the dataset, the use of QCD K-factors, and the requirements that no kinematic cuts should be applied to
the input dataset. Possible input options are referenced in Sec. 2. The DAG graph corresponding to the execution of this
runcard is represented in Fig. 3.1.
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Basic constraints are implemented by instrumenting type annotations of Python functions, which are used
to verify that data types in the run cards match those expected by the code, but in addition arbitrary
checks can also be attached to both input values or provider functions. This is commonly known as con-
tract programming, but differs with many implementations in that checks are executed at the time the
DAG is being built instead of when functions are executed. Thus, the DAG construction phase can be seen
as a compilation phase, where developers have the ability to write arbitrary compiler checks. This feature
allows eliminating large classes of runtime errors, thereby increasing the chances that the analysis runs
to completion once the DAG has been constructed and checked. Another introspection feature consists
of the capability of tracing the required inputs for a given provider and displaying them as automatically
generated command line documentation.

As an implementation of the reportengine framework the validphys code features workflow focused
on declarative and reproducible run cards. The code relies on common Python data science libraries
such as NumPy [43], SciPy [44], Matplotlib [45] and Pandas [46] through its use of Pandoc [47], and it
implements data structures that can interact with those of libnnpdf, as well as with analogs written
in pure Python. These include NNPDF fits, LHAPDF grids, and FK-tables. In addition, the code allows to
quickly acquire relevant data and theory inputs by automatically downloading them from remote sources
whenever they are required in a runcard. It also contains tooling to upload analysis results to an online
server, to share it with other users or developers, and to allow it to be reproduced by other parties.

Some common data analysis actions that can be realised within the validphys framework include:

– Evaluating the convolutions between FK-tables and PDF sets, to evaluate in a highly efficient man-
ner the theoretical predictions for the cross-sections of those datasets and theory settings we have
implemented. Note that here any input PDF set can be used, not only NNPDF sets.

– Producing data versus theory comparison plots allowing for the graphical visualisation of the wealth
of experimental measurements implemented in the NNPDF framework matched against the theory
predictions. Again, predictions for arbitrary PDF sets can be used as input.

– Computing statistical estimators based on such data versus theory comparison, such as the various
types of χ2 [22], together with many plotting and grouping options.

– A large variety of plotting tools and options for the PDFs and partonic luminosities, including plots
in arbitrary PDF bases. Some of these functionalities are related to those provided by the APFEL-Web

online PDF plotter [48].
– Manipulating LHAPDF grids, implementing operations such as Hessian conversions [49,50].

The typical output of validphys is an HTML report containing the results requested by the user via
the runcard. Fig. 3.3 displays the report obtained after executing the runcard in Fig. 3.2, consistent of an
histogram displaying the distribution of χ2 values for the Nrep = 100 replicas of the NNPDF3.1 NNLO
set when its predictions based on the theoryid:200 theory settings are compared to the ATLAS W,Z
13 TeV total cross-sections. In order to highlight the potential of validphys, we have collected in this
link

https://data.nnpdf.science/nnpdf40-reports/

representative training reports corresponding to the NNPDF4.0 analysis, such as comparisons between
fits at different perturbative orders and between fits based on different datasets.

Additional features of the current release of the validphys framework include tools that make possible:

– Comparing two PDF fits by means of the vp-comparefits tool, which generates a report composed by
almost 2000 figures and and 12 tables, displaying fit quality estimators, PDF comparisons, data-theory
comparisons and positivity observables.

– Carrying out and characterising closure tests [39] and future tests [52].
– Performing simultaneous fits of the PDFs together with the strong coupling constant [38].
– Evaluating the theory covariance matrix constructed from scale variations, which can then be used as

input for PDF fits accounting for missing higher order uncertainties (MHOUs) following the strategy
of [53,54].

– Studying Hessian PDF tolerances.
– Determining Wilson coefficients in the Effective Field Theory (EFT) framework together with PDFs

following the strategy presented in [15,16].
– Analysing theoretical prediction with matched scale variations.

In conclusion, it is worth emphasising that many of the validphys features described here can be
deployed outside the framework of the NNPDF fits. For instance, the tooling to evaluate the theory

https://data.nnpdf.science/nnpdf40-reports/
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Fig. 3.3. The output of executing the runcard in Fig. 3.2 with validphys is an HTML report consistent of an histogram
and the corresponding table indicating the distribution of χ2 values over the Nrep = 100 replicas of NNPDF3.1 NNLO for
the ATLAS W+ + jets 8 TeV differential distributions [51] and the theoryid:200 theory settings.

covariance matrix could also be relevant in the context of Hessian PDF fits, and comparisons between
PDF sets can be carried out for other fits beyond NNPDF, provided one is careful and adopts consistent
theoretical settings for each of the inputs.

4 Applications

Let us briefly discuss now some possible future applications of the NNPDF fitting framework presented in
this work. As representative examples, we consider the inclusion of new experimental data, producing fits
varying the theory settings, and going beyond the determination unpolarised collider PDFs. We discuss
each of these applications in turn, and for a more comprehensive list we refer the interested user to the
online documentation.

Adding new experimental data to the global fit. A typical application of the open-source NNPDF frame-
work would be that of assessing the impact of some new measurement in the global PDF fit. Carrying out
a full-fledged fit has several advantages as compared to approximate methods such as Bayesian reweight-
ing [55, 56], in particular one does not rely on the availability of prior fits composed by a very large
number of replicas. Also, this way the user can easily vary the input dataset or the theoretical settings
of this baseline fit. Furthermore, it is possible to add simultaneously to the global fit a large number of
new datasets, while the reliability of the reweighting procedure is typically limited to a single dataset.

To implement a new dataset in the NNPDF code, one should start by adding the new measurement
to the buildmaster suite. This will parse the new data points into the common format suitable for
its use in the PDF fits. Such an implementation will in general include information regarding the data
central values, specification of the kinematic variables, statistical uncertainties and any relevant correlated
systematic uncertainties that may exist in the dataset. In particular, the systematic uncertainties must
be accompanied by metadata specifying their type (i.e if they are multiplicative or additive) as well as
any possible correlations they may have with other systematic uncertainties (for example, the luminosity
uncertainty will often be correlated across a given experiment). These uncertainties will then be used to
construct the covariance matrix as well as the Monte Carlo replicas used to train the neural networks
parametrising the PDFs.
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Furthermore, in order to run the fit, the user would have to produce the corresponding FK-tables for this
new dataset, which implies evaluating the fast NLO grids via APPLgrid, FastNLO, or PineAPPL [57] and
then combining them with the DGLAP evolution kernels via APFELcomb. Depending on the perturbative
order and electroweak settings of the fit, one needs to complement this FK-table with bin-by-bin NNLO
QCD and/or NLO electroweak K-factors. With these ingredients, it is then be possible to add the data
to a NNPDF fit and gauge its impact by comparing to a baseline with this same dataset excluded. If
the impact of the dataset on the PDFs is moderate one can adopt the same hyperparameters as in the
baseline reference; however, it is recommended practice to verify the stability of the fit results with respect
a dedicated round of hyperoptimisation. Note also that new theory constraints, e.g. as those that could
be imposed by lattice QCD calculations, can be accounted for in the same manner is with the addition
of a new dataset.

As a consequence of adding the new dataset to those already packaged within the NNPDF code, the
user now has access to the validphys tools described in Sect. 3, and hence they can easily characterise
the goodness of the fit and quantify the agreement with the theory predictions, and well as assess the
impact of this new dataset into the PDFs, partonic luminosities, and physical cross-sections.

NNPDF fits with different theory settings. Another foreseeable application of the open source fitting code
is to produce variants of the NNPDF global analyses with modifying settings for the theoretical calcu-
lations. For instance, in determinations of the strong coupling αs(mZ) from collider data, one typically
needs a series of PDF fits with a wide range and fine spacing of αs values. These dedicated fits can be
produced with the NNPDF code, and in addition while producing such PDF fits the user can also choose
to tune the input dataset, e.g. by excluding specific types of processes, and the theory settings, e.g. with
different variable-flavour-number-scheme. As emphasised in [58], when extracting SM parameters such
as αs(mZ) from datasets sensitive to PDFs, it it necessary to simultaneously account for the impact of
such datasets on the PDFs themselves (and not only on αs) to avoid biasing the determination. Hence,
these varying-αs fits should already include the dataset from which αs will be extracted, and this is only
possible thanks to the availability of the NNPDF open source code.

The same caveats apply in the case of determinations of the heavy quark (charm, bottom, and top)
masses from collider processes in which PDFs also enter the theory calculations. Other possible examples
of NNPDF fits with varying theory settings are fits with different flavour assumptions, DGLAP evolu-
tion settings, or with approximations for unknown higher order perturbative corrections such as those
evaluated from resummation. One may also be interested in tailored PDF sets for specific cross-section
calculations, such as the doped PDFs [59] where the running with the active number of flavours nf is
different for αs(Q) and for the PDF evolution.

In order to run a variant of the NNPDF fit with different theory settings, the user needs to verify if
the corresponding sought-for theory-id already exists in the theory database. If this is the case, the fit
with the new theory settings can be easily produced by adjusting the theory-id parameter in the run
card. If, however, the FK-tables with the required theory settings are not available in the database, the
user needs first to produce them using APFELcomb. We note that this is a relatively inexpensive step from
the computational point of view, provided the corresponding NLO fast grids and the associated K-factors
have been already produced. The user can follow the instructions in

https://docs.nnpdf.science/tutorials/apfelcomb.html

to produce FK-tables with their desired settings and assign them to a new theory-id in the theory
database. By means of the validphys tooling, this new set of FK-tables can also be uploaded to the
theory server where it will become available for other users.

Beyond unpolarised collinear PDFs. The current version of the NNPDF code focuses on unpolarised par-
ton distributions. However, its flexible and modular infrastructure can be extended to the determination of
related non-perturbative QCD quantities by means of the same methodology. While the NNPDF approach
has also been used for the determination of polarised PDFs [60,61], fragmentation functions [62,63], and
nuclear PDFs [64, 65], in all these cases the code infrastructure only partially overlaps with that under-
lying NNPDF4.0. For instance, the polarised PDF determination rely on the Fortran predecessor of the
NNPDF code, while the nuclear PDF fits adopt the FK-table approach for theoretical calculations but
are based on a stand-alone machine learning framework. The availability of the NNPDF framework as
open source code should hence lead to progress into its extension to other quantities beyond unpolarised
collinear PDFs, as well as for the determination of the collinear PDFs of different hadronic species such

https://docs.nnpdf.science/tutorials/apfelcomb.html


An open-source machine learning framework for global analyses of parton distributions 11

as pions or kaons. These studies are especially interesting at the light of future experiments with focus on
testing the nucleon, nuclear, and mesonic structure, from the Electron Ion Colliders [66, 67] to AMBER
at the CERN-SPS [18].

A closely related application of the NNPDF fitting code would be the simultaneous determination of
non-perturbative QCD quantities exhibiting non-trivial cross-talk, such as nucleon and nuclear PDFs [68],
(un)polarised PDFs together with fragmentation functions [69], or collinear and transverse-momentum-
dependent PDFs. Such integrated global PDF determinations have many attractive features, for instance
in the proton global analysis it would not be necessary anymore to treat in a special manner the deuteron
and heavy nuclear datasets (since the A dependence would be directly extracted from the data), and the
interpretation of processes such as semi-inclusive DIS (SIDIS) would not rely on assumptions about the
behaviour of either the nucleon PDFs (for the initial state) or the fragmentation functions (for the final
state). Clearly, a pre-requisite for such integrated fits is the availability of the code infrastructure for the
determination of the individual non-perturbative QCD quantities within the public NNPDF framework.

5 Conclusions

In this work we have presented the public release, as an open-source code, of the software framework
underlying the recent NNPDF4.0 global determination of parton distributions. The flexible and robust
NNPDF code exploits state-of-the-art developments in machine learning to realise a comprehensive deter-
mination of the proton structure from a wealth of experimental data. The availability of this framework
as open source should encourage the broader high-energy and nuclear physics communities to deploy
machine learning methods in the context of PDF studies.

Among the wide range of possible user cases provided by the NNPDF code, one can list assessing the
impact of new data, producing tailored fits with variations of SM parameters such as αs(mZ) or mc for
their simultaneous extraction together with the PDFs, and studying the eventual presence of beyond the
SM physics in precision LHC measurements of the high-pT tails of kinematic distributions using effective
field theories. Furthermore, the determination of related non-perturbative QCD quantities from nuclear
PDFs and polarised PDFs to fragmentation functions represents another potential application of the
NNPDF framework

In order facilitate these various applications, the NNPDF codebase is now almost entirely written in
Python, the currently de facto standard choice of programming language within both the data science
as well as the scientific community. With the majority of the libraries being highly efficient wrappers of
faster languages, Python is no longer bottle-necked by performance and so its relatively low barrier of
entry should allow for the NNPDF code to be modified and expanded. With this motivation, we have
discussed how the user may wish to configure a run card for their PDF fit, indicated the details of the
parameters that are exposed to the user, and presented the validphys library which acts as an in-house
analysis suite designed to be not only reproducible, but also allowing for complex tasks to be achieved
using transparent run card based inputs.

We reiterate that we have restricted ourselves to a succinct high-level summary of the main func-
tionalities of the NNPDF code. The main reference for the interested user is online documentation which
accompanies this release, which features technical commentary as well as example use cases. The docu-
mentation is kept continuously up-to-date following the ongoing development of the code.
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