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a b s t r a c t

We present a class of iterative fully distributed fixed point methods to solve a system of linear
equations, such that each agent in the network holds one or several of the equations of the system.
Under a generic directed, strongly connected network, we prove a convergence result analogous to the
one for fixed point methods in the classical, centralized, framework: the proposed method converges to
the solution of the system of linear equations at a linear rate. We further explicitly quantify the rate in
terms of the linear system and network parameters. Next, we show that the algorithm provably works
under time-varying directed networks provided that the underlying graph is connected over bounded
iteration intervals, and we establish a linear convergence rate for this setting as well. A set of numerical
results is presented, demonstrating practical benefits of the method over existing alternatives.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The problem we consider is

y = b (1)

here A = [aij] ∈ Rn×n and b = [bi] ∈ Rn are given, and y ∈ Rn

is the vector of the unknowns. The matrix A is assumed to be
nonsingular, so that the problem has a unique solution. We also
assume that the problem is solved in a distributed computational
framework determined by a set of computational nodes which
can communicate through a sequence of graphs. Let Ai ∈ R1×n

and bi ∈ R be the ith row of A and b respectively. It is assumed
that each node i knows the corresponding Ai and bi and needs to
obtain the solution y∗ through an iterative, distributed algorithm.
This assumption is later relaxed in the sense that the number of
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nodes is N ≤ n, and each node can hold several rows of the matrix
A, see Section 3.1.

The considered problem is important as linear systems appear
naturally in a number of control problems, like the estimation
problems on graphs described in Barooah and Hespanha (2007),
including localization problems, time synchronization and mo-
tion consensus and parameter identification in wireless sensor
networks (Bolognani, Favero, Schenato, & Varagnolo, 2010). A
particularly important example of application is Ordinary Kriging
(OK) (Cortes, 2009; Cressie, 1993; Krige, 1951; Matheron, 1963),
an optimal linear prediction technique of the expected value of a
spatial random field. In Section 5 we will use a special case known
as Simple Kriging as an example of application of our method.
In Cortes (2009) a combination of Kriging and Kalman filters is
applied to estimate a spatio-temporal random field, where at each
iteration of the presented method a Kriging problem has to be
solved distributedly by the network of agents.

There is a vast literature devoted to solving systems of linear
equations in the conventional centralized environment (Green-
baum, 1997; Saad, 2003), as well as a number of results that cover
parallelization of classical iterative methods which are applicable
to the case of fully connected distributed environment, From-
mer and Szyld (1992). Our interest in this paper is the class of
fixed point methods (Greenbaum, 1997; Saad, 2003) and their
extensions to the distributed framework, as described above. We
develop a class of novel, fully distributed, iterative fixed point
methods to solve (1), wherein each node can exchange messages

only with those in its neighborhood in the communication graph,
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nd each node obtains the estimate of the solution y∗ of prob-
em (1). Then (1) can be transformed into an equivalent fixed
oint problem

= My + d, (2)

and one can apply the Banach contraction principle and define
the fixed point iterative method of the form yk+1

= Myk + d, for
suitable choices of M ∈ Rn×n and d ∈ Rn (see Section 2 for the
details).

The sufficient and necessary condition for the convergence
of such iterative sequence is ρ(M) < 1, where ρ(M) is the
spectral radius of M . Furthermore, a sufficient condition for the
convergence of {yk} is given by ∥M∥ < 1 for an arbitrary matrix
orm ∥·∥. Clearly, there is a number of suitable ways to define the

iterative matrix M in such way that either ρ(M) < 1 or ∥M∥ < 1
for many matrix classes, like symmetric positive definite matri-
ces, M-matrices, H-matrices, etc. (Berman & Plemmons, 1994).
Typical methods are the Jacobi and Gauss–Seidel method as well
as their modifications like Jacobi Overrelaxation (JOR), Succes-
sive Overrelaxation (SOR), Symmetric Successive Overrelaxation
(SSOR) method and so on (Greenbaum, 1997; Saad, 2003). The
convergence of fixed point methods is linear and the convergence
factor is determined by the spectral radius or the norm of M . The
main idea of relaxation methods is to introduce a parameter that
reduces the norm (or the spectral radius) of the corresponding
iterative matrix and ensures faster convergence.

There is a rich literature on parallelization of fixed point itera-
tive methods, where the computational nodes communicate in an
all-to-all fashion (Bertsekas & Tsitsiklis, 2015; Frommer & Mayer,
1989; Frommer & Szyld, 1992, 2000). In the case of very large
dimensions one needs to split the computational effort between
different computational nodes to speed up the algorithm. The
total cost of solving the problem of interest is mainly dictated
by the corresponding computational cost and the communica-
tion cost of exchanging messages between the parallelized nodes
(processes) along iterations. Usually, major bottlenecks include
waiting for the slowest node to complete an iteration, or la-
tency incurred by the time to communicate a message. For this
reason asynchronous methods, which allow for latency in com-
munication and nonuniform distribution of computational work,
are also considered, Frommer and Szyld (2000). The methods of
this type are convergent under different communication latency
conditions (Frommer & Szyld, 2000).

The framework we consider assumes a network of compu-
tational nodes which communicate through a generic directed
graph, which can depend on time. Thus the results in Bertsekas
and Tsitsiklis (2015), Frommer and Mayer (1989), Frommer and
Szyld (1992, 2000) are not applicable. The same framework is also
considered in Alaviani and Elia (2020), Anderson, Mou, Morse,
and Helmke (2016), Liu, Morse, Nedić, and Basar (2017), Liu, Mou,
and Morse (2018), Mou, Lin, Wang, Fullmer, and Morse (2016),
Shi and Anderson (2016), Wang, Zhou, Mou, and Corless (2019),
Xiao and Hu (2017), and a survey of the methods is presented
in Wang, Mou, Lian, and Ren (2019). The focus of these methods
is to ensure convergence of the local approximations to the global
solution, in the presence of time-varying communication graphs.
In the context of these algorithms, convergence is defined in two
possible ways. In Mou et al. (2016), Xiao and Hu (2017) each
node holds a local approximation of a subset of the variables and
convergence of these local variables to the corresponding part of
the solution is required. In Anderson et al. (2016), Liu et al. (2017,
2018), Shi and Anderson (2016), Wang et al. (2019) every node
contains a vector of the same size as the unknown vector of the
linear system, and the convergence of each local vector to the full
solution in ensured. We are interested in the second scenario. The

method presented in Frommer and Szyld (1992) is applicable to

2

a general problem of the type (1) with loose restrictions on the
matrix A and can be used to solve the linear least squares problem
s well.
In this paper, we propose a novel distributed method to solve

1), which we refer to as DFIX (Distributed Fixed Point). DFIX
ssumes the same computational framework as Liu et al. (2017,
018), Wang et al. (2019) but differs significantly from the above
entioned methods. We provide a canonical way to decentralize
ny fixed point method for solving linear systems and we extend
he convergence theory of centralized fixed point methods to the
istributed case in the sense of sufficient conditions. That is, we
emonstrate that the condition ∥M∥∞ < 1 continues to be suffi-

cient in the distributed environment, assuming that each network
agent locally stores a vector of dimension n. The main conver-
gence result is completely analogous to the centralized case —
given an iterative matrix with infinity norm smaller than 1, the
iterative sequence converges for an arbitrary starting point. The
theory presented here thus covers a large class of linear systems.
We prove R-linear convergence of DFIX under directed strongly
connected networks and explicitly quantify the corresponding
convergence factor in terms of network and linear system pa-
rameters. As detailed below, numerical simulations demonstrate
advantages of DFIX over some state of the art methods.

With respect to the underlying graph, representing the con-
nection among the computational agents, both the case when the
graph is fixed (i.e., the connectivity among the nodes is the same
at any time during the execution of the algorithm) and the case
when the network can change at every iteration, are considered.
In the fixed graph case we prove that convergence holds if the
network is strongly connected, while in the time-varying case
we give suitable assumptions over the sequence of networks. The
time-independent case is a particular case of the time-varying
case but for the sake of clarity we first present and analyze the
algorithm assuming the network is fixed and then generalize the
analysis to the time-varying case.

Any system of linear equation (1) with symmetric matrix A
can be considered as the first order optimality condition of an
unconstrained optimization problem with cost function 1

2x
TAx −

T x. It is therefore of interest to compare the approach of solving
(1) applying some distributed optimization method (Li & Qu,
2017; Nedic, Olshevsky, & Shi, 2016; Shi, Ling, Wu, & Yin, 2015;
Sundararajan, Van Scoy, & Lessard, 2019) to the minimization of
the quadratic function 1

2x
TAx− bT tx with DFIX. We thus compare

omputational and communication costs of DFIX with the state-
f-the-art optimization method from these papers and show that
he computational costs with DFIX are significantly lower, while
he communication costs are comparable or go in favor of DFIX,
epending on the connectivity of the underlying graph. Thus the
umerical efficiency of DFIX is also shown. A comparison with
he method from Liu et al. (2017) is also presented in Section 5,
emonstrating the clear advantage of DFIX.
The contributions of this paper are the following: a novel

ixed point iterative method for solving linear systems in the
istributed environment is defined and convergence analysis that
s analogous to the classical centralized case is presented, show-
ng that the sufficient convergence condition is the same; the
onvergence factor depends on the norm of the iterative matrix,
he diameter of the underlying communication graph and the
eight matrix. The results are then extended to the case of
irected communication graph and the time-varying graph under
easonable connectivity conditions. Extensive numerical tests are
erformed and the results confirm theoretical findings.
This paper is organized as follows. Section 2 contains the

escription of the computational framework together with a brief
verview of fixed point methods. The method DFIX is defined and
nalyzed in Section 3 for the fixed graph case. In Section 4 we



D. Jakovetić, N. Krejić, N. Krklec Jerinkić et al. Automatica 134 (2021) 109924

p
t
K
d

2

m
t

y

b
n

(
i

y

T
f
p
a
u
m
α

i

y

i
(

A
c

G

s
t
a
a
w

A
e

,

resent the time-varying case. Numerical results that illustrate
he theoretical analysis as well as an application of DFIX to a
riging problem are presented in Section 5. Some conclusions are
rawn in Section 6.

. Preliminaries

Let us first briefly recall the theory of fixed point iterative
ethods for systems of linear equations. A generic method of

ype (2)
k+1

= Myk + d, (3)

is convergent if ρ(M) < 1, where ρ(M) is the spectral radius of
M , i.e., the largest eigenvalue of M in modulus. This condition is
oth necessary and sufficient for convergence. Given any matrix
orm ∥ · ∥ one can also state the sufficient convergence condition

as ∥M∥ < 1. There are many ways of transforming (1) to the
fixed point form (2), depending on the properties of A, with Jacobi
and Gauss–Seidel methods, as well as their relaxation versions
being the most studied methods. To fix the idea before defining
the distributed method we recall here the Jacobi and Jacobi Over-
relaxation, JOR, method, keeping in mind that we will consider a
generic M in the next section.

Assume that A is a nonsingular matrix with nonzero diagonal
entries. Using the splitting A = D−P , with D = diag(a11, . . . , ann),
the Jacobi iterative method is defined by (3) with M = D−1P :=

MJ . In other words, given d = D−1b and denoting by yk =

yk1, . . . , y
k
n) the estimate of solution to (1) at iteration k, the new

teration is defined by

k+1
i = −

1
aii

n∑
j=1,j̸=i

aijykj + di, i = 1, . . . , n.

he method is linearly convergent for many classes of matrices,
or example strictly diagonally dominant matrices, symmetric
ositive definite matrices etc. (Greenbaum, 1997; Saad, 2003),
nd the rate of convergence is determined by ρ(MJ ). To speed
p convergence and extend the class of matrices for which the
ethod is convergent, one can introduce a relaxation parameter
∈ R and define M = αD−1P + (1− α)I . In other words, the JOR

teration is given by

k+1
i = (1 − α)yki −

α

aii
(

n∑
j=1,j̸=i

aijykj + bi), i = 1, . . . , n. (4)

If A is a symmetric positive definite matrix, the JOR method
converges (Greenbaum, 1997; Saad, 2003) for α ∈ (0, 2ρ(MJ )−1).
Assuming that each node can communicate directly with every
other node, the method can be applied in parallel and asyn-
chronous manner, see Bertsekas and Tsitsiklis (2015), Frommer
and Szyld (2000).

Let us now define precisely the computational environment
we consider. Assume that the network of nodes is a directed
network G = (V, E), where V is the set of nodes and E is the
set of all edges, i.e., all pairs (i, j) of nodes where node i can send
information to node j through a communication link.

Definition 1. The graph G = (V, E) is strongly connected if for
every couple of nodes i, j there exists an oriented path from i to j
n G. That is, if there exist s1, . . . , sl such that (i, s1), (s1, s2), . . . ,
sl, j) ∈ E .

ssumption A1. The network G = (V, E) is directed, strongly
onnected, with self-loops at every node.
3

Remark 1. The case of undirected network G can be seen as the
particular case of directed graph where G is symmetric. That is,
(i, j) ∈ E if and only if (j, i) ∈ E . In this case, the hypothesis that
is strongly connected is equivalent to G connected.

Let us denote by Oi the in-neighborhood of node i, that is, the
et of nodes that can send information to node i directly. Since
he graph has self loops at each node, then i ∈ Oi for every i. We
ssociate with G an n×n matrix W , such that the elements of W
re all nonnegative and each row sums up to one. More precisely,
e assume the following.

ssumption A2. The matrix W ∈ Rn×n is row stochastic with
lements wij such that wij > 0 if j ∈ Oi, wij = 0 if j /∈ Oi.
Let wmin denote a constant such that all nonzero elements of

W satisfy wij ≥ wmin > 0. Such constant exists if Assumption
A1 holds. Moreover, we have wmin ∈ (0, 1). Therefore, for all
elements of W we have

wij ̸= 0 ⇒ wij ≥ wmin. (5)

The diameter δ of a network G is defined as the largest distance
in the graph between two of its nodes.

3. DFIX method

Let us consider a generic fixed-point method (3) for solving
(1) with M = [mij] ∈ Rn×n, d = [di] ∈ Rn defined in such a
way that each node i contains the ith row Mi ∈ R1×n and di ∈ R.
Moreover, assume that the fixed point y∗ of (2) is a solution of
(1). The algorithm is designed in such way that each node has its
own estimate of the solution y∗. Thus at the iteration k each node
i has its own estimate xki ∈ Rn with components xkij, j = 1, . . . , n.
The DFIX method is presented in the algorithm below.

Algorithm DFIX

Step 0 Initialization: Set k = 0. Each node chooses x0i ∈ Rn.
Step 1 Each node i computes

x̂k+1
ii =

n∑
j=1

mijxkij + di, x̂k+1
ij = x̂kij, i ̸= j. (6)

Step 2 Each node i updates its solution estimate

xk+1
i =

n∑
j=1

wijx̂k+1
j (7)

and sets k = k + 1.

Notice that at Step 1 each node i updates only the ith com-
ponent of its solution estimate and leaves all other components
unchanged, while in Step 2 all nodes perform a consensus step
(deGroot, 1974; Hendrickx, Jungers, Olshevsky, & Vankeerberghen
2014; Touri & Nedic, 2012) using the set of vector estimates
x̂k+1
j . Thus the network agents have to locally store (and reach
consensus to) a vector (solution estimate) of dimension n which
thus grows with the number of agents N . Defining the global
iterative variable

Xk
=

(
xk1; . . . ; xkn

)
∈ Rn2 .

Algorithm DFIX can be stated in the condensed form using Xk,
M̂i and d̂i for i = 1, . . . , n, where d̂i = (0, . . . , di, . . . , 0)T ∈ Rn

and M̂i ∈ Rn×n has the ith row equal to M , the rest of diagonal
elements equal to 1 and the remaining elements equal to 0. Now,
Step 1 can be rewritten as x̂k+1

i = M̂ixki + d̂i, and we can rewrite
the Steps 1–2 in matrix form as

k+1 k ˆ
X = (W ⊗ I)(MX + d) (8)
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here ⊗ denotes the Kronecker product, M = diag
(
M̂1, . . . ,

M̂n
)

∈ Rn2×n2 , and d̂ =

(
d̂1; . . . ; d̂n

)
∈ Rn2 . Notice that Eq. (8)

is only theoretical, in the sense that since each agent has access
only to partial information, the global vector Xk, the matrix M
and the vector d̂ are not computed at any node and it serves only
for convergence analysis of Algorithm 1.

The following theorem shows that all local sequences {xki }, i ∈

{1, . . . , n} converge to the fixed point y∗ of (2). Denote X∗
=

(y∗
; . . . ; y∗) ∈ Rn2 .

Theorem 1. Let Assumptions A1 and A2 hold, ∥M∥∞ = µ < 1
and let {Xk

} be a sequence generated by (8). Then the global error
Ek

= Xk
− X∗ satisfies

∥Ek+1
∥∞ ≤ τ∥Ek−δ+1

∥∞, (9)

where τ = 1 − wδ
min(1 − µ) and δ denotes the diameter of the

underlying computational graph G.

Proof. Since W is assumed to be row stochastic there holds
(W ⊗ I)X∗

= X∗. Moreover, using the fact that d̂ = (I ⊗ I −M)X∗,
we obtain the following recursion

Ek+1
= (W ⊗ I)MEk. (10)

Notice that ∥(W ⊗ I)M∥∞ ≤ 1, and therefore

∥Ek+1
∥∞ ≤ ∥Ek

∥∞. (11)

Now, denoting by eki the ith block of Ek (the local error corre-
sponding to node i) and by ekij its jth component, we get from (10)

ek+1
ij = wijMjekj +

∑
s̸=j

wiseksj. (12)

The thesis follows if we prove that

|ek+1
ij | ≤ τ∥Ek−l+1

∥∞ (13)

holds for every k if the distance between j and i in the graph is
equal to l, with τ = (1 − wl

min(1 − µ)). We proceed by induction
over the distance l. If l = 1, that is, if there is an edge from j to i,
then wij ≥ wmin > 0. By (12) we get

|ek+1
ij | ≤ wij|Mjekj | +

∑
s̸=j

wis|eksj| ≤

≤ wijµ∥Ek
∥∞ + ∥Ek

∥∞

∑
s̸=j

wis ≤

≤
(
1 − wij(1 − µ)

)
∥Ek

∥∞ ≤

≤
(
1 − wmin(1 − µ)

)
∥Ek

∥∞,

and defining τ ′
=

(
1 − wmin(1 − µ)

)
< 1, we get

|ek+1
ij | ≤ τ ′

∥Ek
∥∞. (14)

Assume that (13) holds for distance equal to l−1, and let us prove
it for l. Let (j, sl−1, sl−2, . . . , s1, i) be a path of length l from j to i.
In particular we have that wis1 > 0 and thus

|ek+1
ij | ≤ wis1 |e

k
s1j| +

∑
s̸=s1

wis|eksj|. (15)

For each of the terms |eksj| in the sum, by (11), we have

|eksj| ≤ ∥Ek
∥∞ ≤ ∥Ek−l+1

∥∞. (16)

Let us now consider the term |eks1j|. Since (j, sl−1, sl−2, . . . , s1, i)
is a path of length l from j to i and the distance between j and
i is equal to l, we have that the distance between j and s is
1

4

equal to l − 1 and therefore, by inductive hypothesis we have
for τ ′

= (1 − wl−1
min(1 − µ))

|eks1j| ≤ τ ′
∥Ek−(l−1)

∥∞ = τ ′
∥Ek−l+1

∥∞. (17)

Putting (16) and (17) in (15), we get

|ek+1
ij | ≤ wis1τ

′
∥Ek−l+1

∥∞ +

∑
s̸=s1

wis∥Ek−l+1
∥∞ =

=
(
1 − ws1j(1 − τ ′)

)
∥Ek−l+1

∥∞ ≤

≤
(
1 − wmin(1 − τ ′)

)
∥Ek−l+1

∥∞

(18)

and defining τ :=
(
1 − wmin(1 − τ ′)

)
we get (13). Now the thesis

follows directly from the fact that the distance between any two
nodes is smaller or equal than the diameter δ of the graph. □

The previous analysis shows that the global error in nonex-
panding and that we have a decrease after at most δ iterations,
where δ is the diameter of the underlying graph. Next we quantify
the R-linear convergence factor.

Corollary 1. Suppose that the assumptions of Theorem 1 are satis-
fied. Then each node’s solution estimate xki converges to the solution
y∗ of the problem (2) R-linearly with the factor γ = τ 1/δ , i.e., for
each i ∈ {1, 2, . . . ,N} there holds ∥xki − y∗

∥∞ = O(γ k), where
γ =

(
1 − wδ

min(1 − µ)
)1/δ .

Proof. Denote ξk := ∥Xk
− X∗

∥∞ = ∥Ek
∥∞. Notice that (11)

implies that ξk+1 ≤ ξk for every k. Moreover, every iteration k
can be represented as k = sδ + c , where s, c ∈ N0 and c < δ.
Then,

ξk ≤ ξk−c ≤ τ sξ0 = τ (k−c)/δξ0 ≤ τ k/δτ−1ξ0 := γ kC,

where

γ = τ 1/δ
=

(
1 − wδ

min(1 − µ)
)1/δ

and

C =
ξ0

τ
=

∥X0
− X∗

∥∞

1 − wδ
min(1 − µ)

.

y definition of Xk and X∗ we have ∥xki −y∗
∥∞ ≤ ξk, i = 1, . . . ,N

nd the result follows. □

.1. DFIX method - multirow case

The previous result can be generalized in such a way that
ach node holds more than one row as follows. We consider now
generic fixed-point method for solving (1) by the fixed point

terative method (3), with N nodes and M = [mij] ∈ Rn×n, d =

di] ∈ Rn defined in such a way that each node i ∈ {1, 2, . . . ,N}

ontains several rows of M and d. Let us denote the rows assigned
o node i by Ri ⊂ {1, 2, . . . , n}. We assume Ri

⋂
Rj = ∅ for i ̸= j

nd
⋃N

i=1 Ri = {1, 2, . . . , n}. More precisely, each node i holds
j ∈ R1×n and di ∈ R, for all j ∈ Ri. The algorithm is again
esigned in such way that each node has its own estimate of
he solution y∗. Thus, at the iteration k each node i has its own
stimate xki ∈ Rn with components xkij, j = 1, . . . , n.

lgorithm DFIXM

Step 0 Initialization: Set k = 0. Each node chooses x0i ∈ Rn.
Step 1 Each node i computes

x̂k+1
ij =

n∑
l=1

mjlxkil + dj, j ∈ Ri, x̂k+1
ij = x̂kij, j /∈ Ri. (19)
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Step 2 Each node i updates its solution estimate

xk+1
i =

N∑
j=1

wijx̂k+1
j (20)

and sets k = k + 1.

Notice that at Step 1 each node i updates only the components
j ∈ Ri of its solution estimate and leaves all other components
unchanged, while in Step 2 all nodes perform a consensus step us-
ing the set of vector estimates x̂k+1

j obtained from the immediate
neighbors.

Defining the global variable at iteration k as before, Xk
=(

xk1; . . . ; xkn
)

∈ RNn, Algorithm DFIXM can be stated in the con-
densed form with d̂i =

(
0, . . . , dj, dj+1, . . . , dj+qi , . . . , 0

)T
∈ Rn

and M̂i ∈ Rn×n such that the jth row of M̂i is equal to the jth row
of M for all j ∈ Ri, the rest of diagonal elements are equal to 1
and the remaining elements are equal to 0.

Now, Step 1 can be rewritten as x̂k+1
i = M̂ixki + d̂i, and each

iteration of Algorithm DFIXM can be written as

Xk+1
= (W ⊗ I)(MXk

+ d̂) (21)

where M = diag
(
M̂1, . . . , M̂n

)
∈ RNn×Nn, and d̂ =

(
d̂1; . . . ; d̂n

)
∈ RNn. Again, (8) is never computed at any node and it is derived
only for theoretical analysis.

The following theorem shows that for every i ∈ {1, . . . ,N} the
local sequence {xki } converges to the fixed point y∗ of (2) as in the
case of DFIX.

Theorem 2. Let Assumptions A1–A2 hold, ∥M∥∞ = µ < 1 and let
{Xk

} be a sequence generated by (21). Then, for every k, the global
error Ek

= Xk
− X∗ satisfies

∥Ek+1
∥∞ ≤ τ∥Ek−δ+1

∥∞, (22)

where δ denotes the diameter of the underlying computational graph
G and

τ = 1 − wδ
min(1 − µ) ∈ (0, 1). (23)

Proof. The proof is essentially the same as the proof of Theorem 1
with some technical changes. The error expression is now

ek+1
ij = wijMhekj +

∑
s̸=j

wiseksj, (24)

where h depends on i and j. As in the previous case, we prove the
thesis by proving that if the distance between j and i in the graph
is equal to l, then

|ek+1
ij | ≤ τ∥Ek−l+1

∥∞, (25)

for every k, with τ = 1 − wl
min(1 − µ) ∈ (0, 1). Let us proceed by

nduction over the distance l. If l = 1, that is, if there is an edge
rom j to i, then wij ≥ wmin > 0. By (24) we get

|ek+1
ij | ≤ wij|Mhekj | +

∑
s̸=j

wis|eksj| ≤

≤ wij∥Ek
∥∞

n∑
l=1

|mhl| + ∥Ek
∥∞

∑
s̸=j

wis ≤

≤ wijµ∥Ek
∥∞ + ∥Ek

∥∞(1 − wij)

≤
(
1 − wij(1 − µ)

)
∥Ek

∥∞ ≤

≤
(
1 − wmin(1 − µ)

)
∥Ek

∥∞,

and defining τ ′
= 1 − wmin(1 − µ) < 1, we get

k+1 ′ k

|eij | ≤ τ ∥E ∥∞. (26)

5

The rest of the proof is completely analogous to the proof of
Theorem 1 and hence omitted here. □

Analogously, we can quantify the convergence factor in the
same way as before and the corollary below holds.

Corollary 2. Suppose that the assumptions of Theorem 2 are
satisfied. Then each node’s solution estimate xki converges to the
solution y∗ of the problem (2) R-linearly with the factor γ = τ 1/δ ,
i.e., for each i ∈ {1, 2, . . . ,N} there holds ∥xki − y∗

∥∞ = O(γ k),
where γ =

(
1 − wδ

min(1 − µ)
)1/δ .

DFIXM is a generalization of DFIX that might be of practical
importance as it allows us to solve an n dimensional linear system
with an arbitrary number of nodes N ≤ n which might be the
case in many applications. However we will continue with DFIX
method for time-varying networks in the next Section to avoid
notation cluttering and to facilitate reading. The changes in the
proofs are of the same type as above.

4. Time-varying network

The method discussed in the previous sections is valid only if
the graph representing the communication among the agents is
the same at each iteration. If some failure of the communication
link between two agents occurs during the execution of the
algorithm, the underlying network changes, and Theorem 1 does
not apply anymore. Thus DFIX is extended to the framework
of time-varying communication networks and conditions on the
sequence of communication graphs that yield convergence result
analogous to the fixed network case are given. In particular we
show that, in order to achieve convergence, strong connectivity
is not necessary at any time.

Assume that a sequence of directed graphs {Gk}k is given, such
that at iteration k, Gk represents the network of nodes. That is, at
iteration k, each node can communicate with its neighbors in Gk.
he DFIX algorithm described by Eqs. (6) and (7) can be applied
n this case if we replace (7) with

k+1
i =

n∑
j=1

wk
ijx̂

k+1
j (27)

here W k is the consensus matrix associated with the graph
Gk, that is, W k satisfies Assumption A2 with G = Gk. With
this modification, the equation describing the global iteration
becomes

Xk+1
= (W k

⊗ I)(MXk
+ d̂). (28)

Let us first discuss the sequence of communication graphs.

Definition 2. Given graphs G1, G2 with Gi = (V, Ei), their compo-
sition is defined as G2 ◦ G1 = (V, E) where E := {(j, i) ∈ V2

| ∃ s ∈

V such that (j, s) ∈ E1, (s, i) ∈ E2}.

In other words an edge from j to i in G2 ◦ G1 exists if we can
ind a path from j to i such that the first edge of the path is in G1
nd the second edge is in G2. This definition can be extended to
inite sequences of graphs of arbitrary length.

emark 2. Let us consider a generic set of graphs G1, . . . , Gm. It
s easy to see that if for every index j the graph Gj has self-loops
t every node then the set of edges of the composition G1◦. . .◦Gm
ontains the set of edges of Gj for every j. In particular, if there
xists an index ȷ̂ ∈ {1, . . . ,m} such that Gȷ̂ is fully connected, then
1 ◦ . . . ◦ Gm is also fully connected.
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efinition 3. Given an infinite sequence of networks {Gk}k and
positive integer m̄, we say that the sequence is jointly fully

(respectively, strongly) connected for sequences of length m̄ if for
very index k, the composition Gk ◦ Gk+1 ◦ . . . ◦ Gk+m̄−1 is fully

(respectively, strongly) connected.

Definition 4. Given an infinite sequence of networks {Gk}k and
wo integers τ0, l, we say that the sequence is repeatedly jointly
trongly connected with constants τ0, l, if for every index k, the
omposition Gτ0+kl◦Gτ0+kl+1◦ . . .◦Gτ0+(k+1)l is strongly connected.

Definition 5. Given two vertices i, j we say that there is a
joint path of length l from i to j in Gk, . . . , Gk+m̄−1 if there exist
s1, . . . , sl−1 such that (i, s1) ∈ Ek+m̄−1, (s1, s2) ∈ Ek+m̄−2, . . . ,

(sl−1, j) ∈ Ek+m̄−l, and we say that i, j have joint distance l
in Gk, . . . , Gk+m̄−1 if the shortest joint path from i to j is of
length l.

Our analysis is based on the following assumption.

Assumption A3. {Gk} is a sequence of directed graphs, with self-
loops at every node, jointly fully connected for sequences of
length m̄, for some positive integer m̄.

The algorithm presented in Liu et al. (2018) works for time-
varying network in a similar framework. Formally, the hypothesis
on {Gk} in Liu et al. (2018) is the following.

Assumption A3’. {Gk} is a sequence of directed graphs, with self-
loops at every node, jointly strongly connected for sequences of
length p̄, for some positive integer p̄.

We show now that Assumptions A3 and A3’ are equivalent, in
the sense specified by Proposition 1. In the following, given an
integer m, we denote with Gm the composition of m copies of G.

Lemma 1. If G is a directed strongly connected graph with self-loops
at every node and diameter δ, then Gδ is fully connected.

Proof. By definition of composition we have that (i, j) is an edge
in Gδ if and only if ∃s1, . . . , sδ−1 ∈ V such that

(i, s1), (s1, s2), . . . , (sδ−1, j) ∈ G. (29)

We want to prove that for every i, j ∈ V a sequence of nodes sh
as in (29) exists.

Since G is fully connected with diameter δ, there exists a path
in G from i to j of length l ≤ δ. That is, there exist a set of nodes
v1, . . . , vl−1 such that (i, v1), (v1, v2), . . . , (vl−1, j) are edges in G
and therefore a sequence satisfying (29) is given by sh = vh for
h = 1 : l − 1 and sh = j for h = l : δ. □

Proposition 1. Let {Gk} be a sequence of graphs where, for each k,
Gk = (V, Ek) is a directed graph with self-loops at every node. The
following are equivalent:

(1) there exist τ0, l ∈ N such that {Gk} is repeatedly jointly
strongly connected with constants τ0, l

(2) there exists p̄ ∈ N such that {Gk} is strongly connected for
sequences of length p̄

(3) there exists m̄ ∈ N such that {Gk} is fully connected for
sequences of length m̄

Proof. It is easy to see that (2) ⇒ (1) with τ0 = 0 and l = p̄
and since full connectivity clearly implies strong connectivity, we
have that (3) ⇒ (2) with p̄ = m̄.

We now prove that (1) ⇒ (2) with p̄ = 2l. That is, we
prove that if (1) holds, then for every index s the composition
Gs◦. . .◦Gs+2l−1 is strongly connected. Given an index s, we denote
with r̄ the remainder of the division of (s − τ ) by l, we define
0

6

h̄ := l−1(s − τ0 + l − r̄). By definition of r̄ and h̄ and applying
1) with k = h̄ we have that the graph H := Gs+l−r̄ ◦ . . . ◦

s+2l−r̄−1 = Gτ0+h̄l◦. . .◦Gτ0+(h̄+1)l−1 is strongly connected and thus
Gs ◦ . . . ◦ Gs+2l−2 = Gs ◦ . . . ◦ Gs+l−r̄−1 ◦ H ◦ ◦Gs+2l−r̄ ◦ . . . ◦ Gs+2l−1
s strongly connected. Since 2l − r̄ ∈ l + 1, . . . , 2l we have the
thesis.

Finally, we prove that (2) ⇒ (3). Since the size of V is
finite, there exists a finite number of graphs with vertices V . In
particular, there exists a finite integer L equal to the number
of strongly connected graphs with vertices V . We denote with
H1, . . .HL such graphs, with δj the diameter of H j and with δ̄ :=

max δj. Given any index k, we consider (δ̄ − 1)L + 1 sequences of
length p̄ as follows:

S1 = Gk ◦ Gk+1 . . . ◦ Gk+p̄−1,

S2 = Gk+p̄ ◦ Gk+p̄+1 . . . ◦ Gk+2p̄−1,

...

S(δ̄−1)L+1 = Gk+(δ̄−1)Lp̄ . . . ◦ Gk+(δ̄−1)Lp̄+p̄−1.

Statement (2) implies that, for every j ∈ {1, . . . , (δ̄−1)L+1}, Sj ∈

{H1, . . .HL} and thus there exists an index ı̂ ∈ {1, . . . , L} such that
at least δ̄ elements of {S1, . . . , S(δ̄−1)L+1} are equal to Hı̂. Using the
fact that, by Lemma 1, Hδı̂

ı̂ is fully connected and Remark 2, we
have Gk ◦ Gk+1 ◦ . . . ◦ Gk+(δ̄−1)Lp̄+p̄−1 = S1 ◦ . . . ◦ S(δ̄−1)L+1 fully
connected, so (3) holds with m̄ = (δ̄ − 1)Lp̄ + p̄. □

To conclude the considerations on the sequence of networks
we remark that, since we are assuming that the linear system
(1) has unique solution and that each node contains exactly
one row of the coefficient matrix, the D-connectivity hypothesis
introduced in Liu et al. (2017) is equivalent to Assumption A3’
and thus, by Proposition 1, to Assumption A3.

Theorem 3. Assume that a sequence of networks {Gk}k is given, sat-
isfying Assumption A3, and that for every index k the corresponding
consensus matrix W k satisfies Assumption A2. Let {Xk

} be a sequence
generated by (28) with ∥M∥∞ = µ < 1. For every k ∈ N the global
error Ek

= Xk
− X∗ satisfies

∥Ek+1
∥∞ ≤ σ∥Ek−m̄+1

∥∞, (30)

where σ = (1 − wm̄
min(1 − µ)) and m̄ is the constant given by

Assumption A3.

Proof. We follow the proof of Theorem 1. For every index k, the
matrix W k is row stochastic and ∥(W k

⊗ I)M∥∞ ≤ 1, so we get

Ek+1
= (W k

⊗ I)MEk. (31)

and

∥Ek+1
∥∞ ≤ ∥Ek

∥∞. (32)

For every node i, j and for every iteration index k, we have

ek+1
ij = wk

ijMjekj +

∑
s̸=j

wk
ise

k
sj. (33)

We now prove that if the joint distance between j and i in Gk−m̄+1,
Gk−m̄+2, . . . , Gk is equal to l, then for every k

|ek+1
ij | ≤ σ∥Ek−l+1

∥∞, (34)

where σ = (1 − wl
min(1 − µ)). We proceed by induction over the

joint distance l. If l = 1, that is, if wk
ij > 0, proceeding as in the

derivation of (14) we get

|ek+1
ij | ≤

(
1 − wk

ij(1 − µ)
)
∥Ek

∥∞( ) k k

≤ 1 − wmin(1 − µ) ∥E ∥∞ =: σ∥E ∥∞.
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ssume now that (34) holds for distance equal to l − 1. Let
j, sl−1, sl−2, . . . , s1, i) be a joint path of length l from j to i in
Gk−m̄+1, Gk−m̄+2, . . . , Gk In particular we have that wk

is1
> 0 and

hus

ek+1
ij | ≤ wis1 |e

k
s1j| +

∑
s̸=s1

wis|eksj|. (35)

sing the fact that (j, sl−1, sl−2, . . . , s1) is a joint path of length
− 1 from j to s1 in Gk−m̄+1, Gk−m̄+2, . . . , Gk−1, applying the in-
uctive hypothesis and proceeding as in the proof of the previous
heorem, we get

|ek+1
ij | ≤

(
1 − wmin(1 − σ ′)

)
∥Ek−l+1

∥∞ (36)

ith σ ′ given by (34) for distance l − 1, and defining σ :=(
1 − wmin(1 − σ ′)

)
= (1 − wl

min(1 − µ)) we get (34) for distance
equal to l.

Since the sequence {Gk} is fully connected for sequences of
length m̄ we have that for every couple of nodes i, j the joint
distance between j and i in Gk−m̄+1, Gk−m̄+2, . . . , Gk is smaller or
equal than m̄ and the statement follows. □

Theorem 3 shows that the time-independent case fits in the
time-varying framework with Gk is equal to G. If the diameter of
G is δ, then Assumption 3 holds with m̄ = δ and the two theorems
coincide.

5. Numerical results

In this section we present testing results for DFIX method
and comparison with the state-of-the-art distributed optimiza-
tion algorithms from Li and Qu (2017), Nedic et al. (2016), Shi
et al. (2015), Sundararajan et al. (2019) referred to here as DIGing,
EXTRA and SVL respectively, and the method for solving systems
of linear equations presented in Liu et al. (2017), abbreviated here
as Projection. The test set consists of two types of problems: Sim-
ple Kriging problems and linear systems with strictly diagonally
dominant coefficient matrix. The influence of the connectivity of
the underlying network on computational and communication
cost of DFIX is studied in Section 5.1. We also compare DFIX
with the mentioned methods on a simple Kriging problem. In
Section 5.2 we repeat the comparison considering a randomly
generated linear system. The DFIXM method is considered as well
and we discuss the situation of fixed linear system and increasing
number of the nodes. In Sections 5.3 and 5.4 we consider the
cases of directed and time-varying networks, respectively.

The results demonstrate that DFIX, analogously to the classical
results, outperforms the optimization method for solving the un-
constrained quadratic problem both in terms of computation and
communication. With respect to the method from Liu et al. (2017)
the comparison is again favorable for DFIX. Clearly, the method
from Liu et al. (2017) is designed for a wider class of problems,
but in the case of unique solution and a suitable iterative matrix
its efficiency is significantly lower than DFIX.

In the following, the DFIX method we consider is defined using
Jacobi Overrelaxation, as specified in Section 2, as the underlying
fixed point method. The iteration k of the distributed method at
each node is given by

x̂k+1
ii = (1 − α)xkii −

α

aii

⎛⎝∑
j̸=i

aijxkij − bi

⎞⎠ ,

x̂k+1
ij = xkij for j ̸= i,

(37)

and

xk+1
i =

n∑
wijx̂k+1

j . (38)

j=1

7

In the rest of the section we refer to the method defined by
Eqs. (37), (38) as DFIX-JOR, and we choose the relaxation pa-
rameter α in (37) as 2/∥D−1A∥∞ where D = diag(a11, . . . , ann).
The methods for distributed optimization DIGing, EXTRA and SVL
are applied to solve the unconstrained problem with quadratic
objective function given by 1

2x
TAx − bT x, which is equivalent to

finding a solution of (1). The step-size parameter for DIGing and
EXTRA is chosen as η = 1/(3L) where L = maxi=1:n 2∥Ai∥

2
2,

hile the parameters for SVL method are computed through the
rocedure described in Sundararajan et al. (2019). We remark
hat the relaxation parameter for DFIX and the step-size η for
IGing and EXTRA can be easily computed in the distributed
ramework, the computation of the optimal parameters for SVL
equires knowledge of the extremal eigenvalues of the matrix A
nd the spectral gap of the consensus matrix W . Finally, Projec-
ion method deals with the linear system (1) directly and it does
ot require the computation of any additional parameter, but it
equires a local initial vector x0i for each node i.

.1. Simple Kriging problem

The first problem we consider is Simple Kriging (Cressie,
993). Let us consider a physical process modeled as a spatial
andom field and assume that a network of sensors is given in
he region of interest, taking measurements of the field. The goal
s to estimate the field in any given point of the region. Assuming
hat the field is Gaussian and stationary, and that the expected
alue and covariance function are known at any point, this kind
f problem can be solved by Simple Kriging method.
Denote with Z(s) the value of the random field at the point

, and with µ(s) its expected value, which is assumed to be
nown. Moreover, by the stationarity assumption, the covariance
etween the value of Z at two points is given by

ov(Z(s1),Z(s2)) = K(∥s1 − s2∥2)

or some nonnegative function K. Given the positions in space
s1, . . . , sn} ⊂ R2 of the n sensors of the network, let {Z(s1),
. . ,Z(sn)} be the sampled values at those points and define the
ovariance matrix A = [aij] ∈ Rn×n as aij = K(∥si − sj∥2). Now,
iven a point s̄ where we want to estimate the field, the vector
∈ Rn is defined as bi = K(∥si − s̄∥2). The predicted value of Z(s̄)

s then given by

ˆ(s) := µ(s̄) +

n∑
i=1

xi(Z(si) − µ(si))

here (x1, . . . , xn) is the approximate solution of the linear sys-
em

x = b. (39)

learly, the matrix W plays an important role in the DFIX-JOR
ethod. So let us first illustrate the influence of connectivity
ithin the network in terms of communication traffic and com-
utational cost for the kriging problem, with covariance function
iven by

(t) := exp(−5t2). (40)

e assume that a set {s1, . . . , s100} ⊂ [−30, 30]2 of agents is
iven and for any m ∈ {2, 4, . . . , 48, 50} we take the m-regular
raph with vertices {s1, . . . , s100}. The matrix W is defined using
he Metropolis weights (Xiao, Boyd, & Lall, 2006), which in the
-regular case are given by

ij =

{
(m + 1)−1, if j = i or j ∈ Oi, (41)

0, otherwise.
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Fig. 1. Number of iterations.

or each value of the degree m the system Ax = b is solved
ith DFIX-JOR. In Figs. 1 and 2 we plot the number of iterations
nd the total communication cost, respectively, until the stopping
riterion

max
i=1,...,n

∥Axki − b∥ ≤ 10−4 (42)

s satisfied, for graphs of increasing degree. The communication
ost is computed as follows. At each iteration, Step 1 does not
equire any communication, while in Step 2 node i shares xki
with all the agents in its neighborhood. The per-iteration traffic
is thus given by n2m = 2|E|n, where E is the set of edges
f the underlying network and m is the degree. Note that here
e implicitly assume that there is a dedicated communication

ink between any pair of agents. This reflects practical scenarios
here dedicated peer-to-peer channels are ensured, e.g., through

requency division multiple access or similar schemes. In the
ther tests that we present the broadcasting scenario will also be
onsidered: in that case, the per-iteration communication cost is
ndependent to the number of edges in the network and it is given
y the number of nodes times the size of the shared vectors, thus
t is proportional to the number of performed iterations.

From Figs. 1 and 2 one can see that, as the degree of the net-
ork increases, the number of iterations required to satisfy (42)
ecreases, while the total communication traffic first decreases
hen increases again. As the connectivity of the graph improves,
he local information is distributed through the network more
fficiently, and a smaller number of iterations is necessary. On
he other hand, if the degree is larger, the consensus step (7) of
he algorithm requires each node to share its local vector with
larger number of neighbors, yielding a higher communication

raffic at each iteration. The fact that the overall communication
raffic (Fig. 2) is nonmonotone suggests that for large values
f the degree, the decrease in the number of iterations in not
nough to balance the higher per-iteration traffic. Let us now
ompare the DFIX-JOR with DIGing (Li & Qu, 2017; Nedic et al.,
016), EXTRA (Shi et al., 2015), SVL (Sundararajan et al., 2019)
nd Projection method (Liu et al., 2017). We consider a 10 × 10
rid of nodes located at {s1, . . . , s100} ⊂ [−3, 3]2 and, given a
ommunication radius R > 0, we define the network so that
odes i and j are neighbors if and only if their distance is smaller
han R. The linear system that we consider is derived by the
riging problem described at the beginning of this section. That
s, we consider again Ax = b with

ij = K(∥si − sj∥2), bi = K(∥si − s̄∥2) (43)

here K is given by (40) and s̄ is a fixed random point in [−3, 3]2.
roceeding as in the previous test, we compute the communica-
ion traffic and computational cost required by the three methods
 m

8

Fig. 2. Communication cost.

Fig. 3. Simple kriging problem (43), computational cost.

to achieve the tolerance specified at (42), for different values of
the communication radius R. For each method, the overall com-
putational cost is given by the number of iterations performed
times the per-iteration cost, calculated as the number of scalar
operations in one iteration. Similarly, the communication traffic
is given by the number of iterations times the total number of
vectors shared by the nodes during one iteration, times the length
n of the vector. The matrix W is defined as in Xiao et al. (2006),
with off-diagonal elements wij =

1
1+max{mi,mj}

if j ∈ Oi, and
wij = 0 otherwise, where mi denotes the degree of node i. The
iagonal elements are wii = 1−

∑
j̸=i wij. The resulting matrix W

s stochastic. The stopping criterion is the same as in the previous
est. The initial point at each node is the same for all the methods,
0
ii = bi/aii and x0ij = 0 for every j ̸= i. In Figs. 3, 4 and 5 we
lot the obtained results. As we can see, in this framework, DFIX
ethod is more efficient than the methods we compare with,
oth in terms of computational and communication costs.

.2. Strictly diagonally dominant systems

Let us now consider a linear system Ax = b of order n = 100,
here A and b are generated as follows. For every index i we take
i randomly generated with uniform distribution in (0, 1) and A
s a symmetric diagonally dominant random matrix obtained as
ollows: take âij ∈ (0, 1) with uniform distribution and then set
˜ =

1
2 (Â+ ÂT ) and finally A = Â+ (n−1)I , where I is the identity

atrix of order n. The underlying network is an m-regular graph
ith n nodes. For every fixed value of the degree m, 10 random

inear systems are generated, solved with all methods and the
verage number of iterations needed to fulfill (42) is computed.
he total amount of computation and communication for each
ethod are then obtained multiplying the average number of
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Fig. 4. Simple kriging problem (43), peer-to-peer communication traffic.

Fig. 5. Simple kriging problem (43), broadcasting communication traffic.

Fig. 6. m-regular graph, computational cost.

iterations and the per-iteration computational cost and commu-
nication traffic, respectively. The matrix W is defined as in (41),
the parameter of the methods are computed as described at the
beginning of the section, while the initial guess at each node
and the termination condition are as in the previous test. In
Figs. 6, 7 and 8 we plot the results for m ∈ {2, 4, . . . , 48, 50}.
FIX outperforms DIGing, EXTRA and Projection method in terms
f computation and communication both in the peer-to-peer
nd in the broadcasting scenario, while SVL method performs
etter than DFIX for values of the degree larger than 15. We
emark again that SVL method is run with the optimal choice of
he parameters, exploiting information on the eigenvalues of A
and W .

The same tests were performed on random Erdos–Renyi graphs
with given expected average degree for a sequence of increasing
degrees. In these tests all methods are more expensive in terms
of both communication and computational effort but the mutual
comparison is the same as in the case of m-regular graphs.
9

Fig. 7. m-regular graph, peer-to-peer communication traffic.

Fig. 8. m-regular graph, broadcasting communication traffic.

Fig. 9. Computational cost.

To confirm the effectiveness of DFIXM, we repeat the previous
test with a linear system of size n = 500 and N = 100
nodes, where each node is assigned 5 equations. As we can see in
Figs. 9, 10 and 11 the results for all the methods are completely
analogous to the case where each node holds one equation.

Let us now show the influence of the number of nodes in
the network on performance of the five methods. We consider
a linear system of size n = 100 generated as described above,
and for N = 10, 20, . . . , 100 consider a regular network of size
N . For each value of N the degree of the network is chosen so
that the ratio between N and the degree is constant. The results
are plotted in Figs. 12–14. The amount of both computation and
communication of all the methods increases together with the
number of nodes. Moreover, DFIX seems to outperform all the
methods that we compare to in terms of computational costs,
while in terms of communication it seems to be comparable
with Projection and both methods seem to be cheaper than the

optimization methods.
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Fig. 10. Peer-to-peer communication traffic.

Fig. 11. Broadcasting communication traffic.

Fig. 12. Computational cost.

5.3. Directed networks

We now consider underlying directed networks. Let n = 100
be the size of linear system generated as in the previous tests. We
consider a randomly generated directed network of size n such
hat the average out-degree of the nodes is equal to a fixed m.
he consensus matrix W is defined with off-diagonal elements
ij = 1/(1 + m̂i) if j ∈ Oi, and wij = 0 otherwise, where m̂i

enotes the out-degree of node i, and the diagonal elements are
ii = 1 −

∑
j̸=i wij. The resulting matrix W is row-stochastic.

n Figs. 15, 16, 17 we plot the results for m = 8, . . . , 50 for
FIX, DIGing, EXTRA and Projection. The SVL method fails to
onverge in this framework. The resulting comparison among the
our methods is analogous to the case of undirected networks:
FIX seems to require the smallest computational effort among
ll methods and a similar communication traffic as Projection.
10
Fig. 13. Peer-to-peer communication traffic.

Fig. 14. Broadcasting communication traffic.

Fig. 15. Computational cost.

Fig. 16. Peer-to-peer communication traffic.

5.4. Time-varying network

We now compare the performance of the five methods in
the time-varying case described in Section 4. The sequence {G }
k
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Fig. 17. Broadcasting communication traffic.

s generated as follows. For a fixed strongly connected graph
= (V, E) and a scalar γ ∈ (0, 1], at every iteration k we

andomly generate Ek by uniformly sampling γ |E| edges from E
nd we set Gk = (V, Ek). This construction can be interpreted as
aving a fixed underlying graph G that represents the available
ommunication links among the nodes, and employing at each
teration only a fraction γ of the links. In particular, γ = 1
orresponds to the case Gk = G for every k. As remarked in
Section 4, this is equivalent to the time-independent case. The
tests we present here are compare the communication and com-
putational costs required by the five methods to solve a given
linear system using the same sequence of networks {Gk}. We
generated the linear system as in Section 5.2 and chose G as the
undirected m-regular graph with n = 100 vertices and degree
m = 8. The same test is repeated for γ in {0.1, 0.2, . . . , 1}. For
every k the consensus matrix W k associated with Gk is defined
as in (41), the termination condition and all the parameters of
the methods are chosen as in the previous sections. In Figs. 18–
21 we plot the results (note that Fig. 19 repeats the results of
Fig. 18, excluding Projection method). The computational cost
and the communication traffic are calculated as described in
Section 5.2. DFIX outperforms the three methods for distributed
optimization both in terms of computation and communication
in this framework. Comparing with Projection, for every value of
the parameter γ , the computational cost of DFIX is significantly
lower, but it requires a smaller amount of communication only
for large values of γ (that is, when each graph Gk is equal or
close to G). Moreover, we can see that for all the methods except
for SVL there is an optimal value of γ < 1, that minimizes the
communication traffic, suggesting that using the whole graph G
at every iteration (that is, setting γ = 1) is inefficient. A similar
phenomena happens for DIGing, EXTRA and DFIX also for the
computational cost (Fig. 19), while we can see in Figs. 18 and
19 that Projection and SVL methods are most efficient when all
the available communication links are used at each iterations. For
γ < 1 the networks Gk are in general not connected, but the
joint connectivity of the overall sequence is enough to ensure the
convergence of the methods.

6. Conclusions

A class of novel, iterative, distributed methods for the solution
of linear systems of equations, derived upon classical fixed point
methods. We proved linear convergence for strongly connected
communication network and showed that the convergence rate
depends on the diameter of the network and on the norm of
the underlying iterative matrix. In particular, if the graph is
strongly connected the obtained result is analogous to the clas-
sical, centralized case. The presented method is extended to the

time-varying case and an analogous convergence result is proved

11
Fig. 18. Computational cost.

Fig. 19. Computational cost.

Fig. 20. Peer-to-peer communication traffic.

Fig. 21. Broadcasting communication traffic.

under suitable joint connectivity assumptions, comparable with
assumptions required by different methods in literature. The
algorithm is compared with the relevant optimization methods
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resented in Li and Qu (2017), Liu et al. (2017), Nedic et al.
2016), Shi et al. (2015), Sundararajan et al. (2019). The numerical
esults show good performance of DFIX in comparison with the
entioned methods. In particular, in the vast majority of the
onsidered tests, DFIX outperformed all the methods in terms of
oth computational cost and communication traffic.
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