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Abstract
An analogue of the Mukai map mg : Pg → Mg is studied for the moduli Rg,� of genus g
curves C with a level � structure. Let P⊥

g,� be the moduli space of 4-tuples (S,L, E,C) so
that (S,L) is a polarized K3 surface of genus g, E is orthogonal to L in Pic S and defines
a standard degree � K3 cyclic cover of S, C ∈ |L|. We say that (S,L, E) is a level � K3
surface. These exist for � ≤ 8 and their families are known. We define a level � Mukai map
rg,� : P⊥

g,� → Rg,�, induced by the assignment of (S,L, E,C) to (C, E⊗OC ).We investigate
a curious possible analogy between mg and rg,�, that is, the failure of the maximal rank of
rg,� for g = g� ±1, where g� is the value of g such that dimP⊥

g,� = dimRg,�. This is proven
here for � = 3. As a related open problem we discuss Fano threefolds whose hyperplane
sections are level � K3 surfaces and their classification.

1 Introduction

Our aim is to convince the reader, showing a program and new results, of the interest repre-
sented by some complex projective varieties whose curvilinear sections are canonical curves
C of genus g, endowed with a distinguished nonzero �-torsion element η ∈ PicC . Often one
says that (C, η) is a level � curve of genus g, cfr. [7]. Fixing (g, �) the moduli space of these
pairs is integral, quasi projective and denoted by Rg,�.

To enter further in the matter let us mention two other names from the title: K3 surface
and Fano threefold. The K3 surfaces S we consider are very special: they admit a non split
cyclic cover of degree �, still birational to a K3 surface. This is defined by a line bundle
OS(E) := E such that h0(OS(�E)) = 1 and h0(OS(mE)) = 0 for m < �. The study of
these surfaces stems from Nikulin’s classification of K3 surfaces with an order � symplectic
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automorphism and the classification implies � ≤ 8, [24]. Since then several foundational
results, in use here, did follow, cfr. [13–16,26].

Now let L ∈ Pic S be a genus g polarization orthogonal to E . Let η := OC (E), where
C ∈ |L| is smooth, then it turns out that (C, η) is a level � curve. We say that the triple
(S,L, E) is a level �K3 surface of genus g, see definition (3.1) for some precision. Fixing � the
moduli of these triples are reducible for infinitely many values of g. However a distinguished
irreducible component exists for every g, namely the moduli space of triples (S,L, E) such
that Pic S is the sum of ZL and its orthogonal lattice. We denote it by

F⊥
g,�. (1)

Finally we come to the moduli space P⊥
g,� of 4-tuples (S,L, E,C) such that C ∈ |L| and

(S,L, E) defines a point inF⊥
g,�. Such a space is strictly related with the first topic considered

in our paper. To introduce it let us define the level � Mukai map. This is the rational map

rg,� : P⊥
g,� → Rg,�, (2)

assigning the moduli point of the 4-tuple (S,L, E,C) to the moduli point of the pair (C, η),
where η isOC (E). LetPg be themoduli space of triples (S,L,C), where (S,L) is a polarized
K3 surface of genus g and C ∈ |L|, then the previous name is motivated by the well known
Mukai map

mg : Pg → Mg, (3)

assigning the moduli point of the triple (S,L,C) to the moduli point of the curve C . Some
famous connections between canonical curves of genus g, K3 surfaces and Fano threefolds
are well represented by mg and, in particular, by a curious variation of its rank. We recall
that a rational map f : X → Y of integral varieties has maximal rank if dim f (X) =
min{dim X , dim Y }.

Considering mg we recall that dimPg = 19 + g and dimMg = 3g − 3, therefore
dimPg = dimMg iff g = 11. Now m11 is birational but, curiously, mg fails to be of
maximal rank precisely before and after this transition value, that is, for g = 11± 1. For the
rest mg is dominant for g ≤ 9 and generically injective for g ≥ 13. As is well known this
anomaly is due to the presence behind the scene of some Fano varieties, whose curvilinear
sections are general canonical curves of genus 11 ± 1, cfr. [8,22,23,25].

A task of this paper is to point out the same possible anomalies for the level �Mukai maps
rg,�. The case � = 2 has already been done and it is an experimental origin to this work. If
� = 2 we have dimP⊥

g,2 = dimRg,2 for g = 7. Then rg,2 fails to be of maximal rank for
g = 7 ± 1 and is birational for g = 7, [11,19,27]. The ’Fano varieties behind the scene’ for
g = 8 and g = 6 are addressed or revisited in Sect. 7.

In Sect. 5 we summarize the question for each �. Let g� be the unique value of g such that
dimP⊥

g,� = dimRg,�, for l = 2, 3, 4, 5, 6, 7, 8 we respectively have:

g� = 7 , 5 , 4 , 3 , 2 , 2 , 2. (4)

In this paper we present the following theorem, solving the question for � = 3.

Theorem 1.1 Let rg,3 : P⊥
g,3 → Rg,3 be the level 3 Mukai map then:

(1) r4,3 has not maximal rank,
(2) r5,3 is birational,
(3) r6,3 has not maximal rank.
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The image of r4,3 is contained in a divisor of R4,3, parametrizing pairs (C, η) such that the
multiplication map μ : H0(ωC ⊗ η) ⊗ H0(ωC ⊗ η−1) → H0(ω⊗2

C ) is not an isomorphism.
This case seems interestingly related to the G2-variety, see [23] and Sect. 7.

The proof of (3) is sketched here and it will appear elsewhere. The image of r6,3
parametrizes pairs (C, η), where C is a curvilinear section of a suitable Gushel–Mukai
threefold singular along a rational normal sextic curve, see Sect. 7.

Let (S,L, E) be a level � K3 surface of genus g and φ : S → P
g the morphism defined

by L, we assume for simplicity that φ is birational onto S := φ(S). Then we close this
introduction with few lines addressing the classification of Fano threefolds

X ⊂ P
g+1

whose general hyperplane sections are projective models S as above. The problem sounds
similar to that of classifying threefolds T ⊂ P

g whose hyperplane sections are Enriques
surfaces, that is, Enriques–Fano threefolds. It seems however quite neglected.

Some examples of threefolds X appear in this paper, most are normal and Sing X is a
curve. Moreover X admits a cyclic cover π : X̃ → X , branched exactly on Sing X . A basic
notion of level � polarized projective variety (X ,L, E) is introduced in the next section, since
it is useful in the cases we want to consider.

We wish to thank the referee for the careful reading and the useful advice.

2 Some preliminaries

In what follows X is a smooth, irreducible complex projective variety and L is a big and nef
line bundle on X , we say that (X ,L) is a polarized projective variety. On the other hand we
are interested, along this paper, in some families of cyclic coverings

π : X̃ → X . (5)

Then we fix our conventions about, [10], [21, I p.242]. By definition π is a finite morphism
of degree � ≥ 2 and it is the quotient map of the action of an automorphism of order � of
X̃ . We assume that X̃ is normal, up to composing π with the normalization map. Hence X̃
is reduced with irreducible connected components. Starting from π , we briefly review the
recipe for its construction. Notice that π∗OX̃

∼= A, where

A = OX ⊕ E−1 ⊕ · · · ⊕ E−�+1 (6)

and E ∈ Pic X . Assume X̃ is connected and hence irreducible. Then π defines the field
extension π∗ : k(X) → k(X̃) and its trace map induces the exact sequence

0 → E−� s→ OX → OB → 0, (7)

for some s ∈ H0(E�). The multiplication by s defines a structure of OX -Algebra on A. We
have X̃ = SpecA, moreover π factors through the projection u : P(A) → X . The branch
divisor of π is div(s) and will be denoted by B. For B we fix the notation

B = m1B1 + · · · + mr Br , (8)

where B1, . . . , Br are prime divisors. Conversely, a pair (E, B) such that B ∈ |E�| defines
on A an OX - Algebra structure as above and a cyclic cover π . Notice that the condition
g.c.d.(�,m1, . . . ,mr ) = 1 implies the irreducibility of X̃ .
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Now let C be a reduced curve and η ∈ PicC a nontrivial �-torsion element. Then (C, η)

uniquely defines, using a nonzero vector s ∈ H0(η�), a nonramified cyclic cover

π : C̃ → C,

which is nontrivial. To give a pair (C, π) is equivalent to give a singular level � curve (C, η).
Now recall that a curveC ⊂ X is mobile if moves in an irreducible algebraic family covering
X , with integral general member. In the Néron–Severi group N1(X)⊗ZR the mobile classes
of such curves generate an important convex cone, [5, 1.3 (vi)], [21, II p. 307]. Finally we
introduce the following definition.

Definition 2.1 Let E ∈ Pic X , the pair (X , E) is a level � structure on X if:
◦ |E�| = ∅ and a general B ∈ |E�| defines an integral cyclic cover,
◦ there exists a mobile curve C in X such that CB = 0.

Assume dim X = 1 then X is the smooth, integral curve C and E is a line bundle of degree
0 such that E� ∼= OC . Moreover we are assuming that the cover π : C̃ → C defined by E
is integral. Hence E is a nontrivial �-torsion element. Then, for curves, the definition is the
traditional one. In higher dimension the next property is clear.

Proposition 2.1 Let (X , E) be a level � structure on X and C ⊂ X a mobile curve such that
CE = 0, where OX (E) ∼= E . Then OC (E) is an �-torsion element of PicC.

Proof Consider D ∈ |E�|. Since C is movable we can assume that C is not a component of
D. Then C ∩ D is empty because CE = 0. This implies that E� ⊗ OC ∼= OC (D) ∼= OC . ��
Remark 2.1 Nevertheless we may have a trivial OC (E) even when E is not, and even gener-
ically when C moves in its family. This is obvious if C is smooth and rational. Furthermore
consider a curve F and the projection p : F × X → X . Then (F × X , p∗E) is a level
�-structure on F × X and p∗E is trivial on the mobile curve p∗(x), x ∈ X .

Then, to address the concrete topics of our paper, we turn to polarized pairs (X ,L) and we
denote by d the dimension of X . We assume that |Lm | is globally generated for m >> 0 and
observe that a general complete intersection of d − 1 elements of |Lm | is a smooth, integral
mobile curve, which moves in an irreducible family Cm of transversal complete intersections
in X .

Proposition 2.2 Let X , L, E be as above. Assume CE = 0, where C ∈ Cm andOX (E) ∼= E .
Then OC (E) is a nontrivial �-torsion element of PicC, moreover

h0(OX (kE)) = 0, k ≡ 0 mod �.

Proof By induction on d = dim X . Let d = 1 then X = C and {C} = Cm . Since E
defines an integral cover, the statement follows. Let d ≥ 2 and C = D1 · · · · · Dd−1, where
D1, . . . , Dd−1 ∈ |Lm |, then a general D in the linear system generated by D1 · · · Dd−1 is
smooth. OD(D) is nef, big and globally generated. Let π : X̃ → X be the cyclic cover,
branched on B, since C is mobile and CB = 0 we can assume C ∩ B = ∅. Now let
f : X → P

n be the morphism defined by |D|, then f is generically finite onto its image and
the same is true for f ◦ π : X̃ → P

n . Then C̃ = π−1(C) is connected by the connectedness
theorem and OC (E) is non trivial of �-torsion in PicC . Moreover (D,OD(E)) is a level �

structure and the second statement follows by induction on d . ��
Keeping this notation we finally come to the following definition.
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Definition 2.2 A level � polarized variety is a triple (X ,L, E) such that (X , E) is a level �

structure on X and CE = 0, where C ∈ Cm .
Actually the triples (X ,L, E) we will consider always satisfy the additional property:

|L| is base point free and defines a birational morphism onto its image

f : X → P
n . (9)

Hence we assume C = H1 ∩ · · · ∩ Hd−1 ∈ C1, where H1 · · · Hd−1 ∈ | f ∗OPn (1)|. So C
shows the distinguished line bundles ηC := E ⊗ OC and LC := L ⊗ OC and these lead us
to the varieties we are interested in. For these LC is the canonical sheaf ωC . For the triples
considered, we will also have that the restriction r : H0(L) → H0(ωC ) is surjective and that
X := f (X) is normal. So we are going to deal with projective varieties X whose curvilinear
sections are canonical curves C , endowed with the étale cover defined by ηC . This includes
K3 surfaces and Fano threefolds with a prescribed level � structure.

3 Level � K3 surfaces

We begin discussing the families of level � polarized K3 surfaces (S,L, E) and the chances
that C ∈ |L| be a curve with general moduli. We say that C2 = 2g−2 is the degree of (S,L)

and g its genus. As usual the moduli space of (S,L) is denoted by

Fg, (10)

it is an integral quasi projective variety of dimension 19. Let [S,L] ∈ Fg be a general point,
we recall that then Pic S ∼= ZL and |L| defines an embedding

f : S → P
g (11)

for g ≥ 3. Coming to level � structures (S,L, E), these properties are no longer satisfied, as
we are going to recall. We fix our notation as follows, the map

π ′ : S̃′ → S (12)

is the covering morphism defined by E . As already established its branch divisor is

B = m1B1 + · · · + mr Br ,

where B1, . . . , Br are the irreducible components of Supp B. Of course, since Pic S has no
torsion, B is not zero. We fix the following convention:

◦ r is the number of irreducible components of Supp B,
◦ t is the number of its connected components.

Moreover we set

B1 + · · · + Br = Bred = N1 + · · · + Nt , (13)

where N1 · · · Nt denote the connected components of Supp B. Notice that CBi = 0 for
i = 1 · · · r . Indeed C is integral and dim |C | ≥ 1 so that CBi ≥ 0. Since B ∈ |�E | then
CB = 0 and this implies CBi = 0. Then, applying the Hodge Index Theorem, Bi is an
integral curve on S with B2

i < 0. Hence B2
i = −2 and Bi is P1. The same argument applies

to N j which is a reduced connected curve of arithmetic genus 0. In particular each N j is
contracted by f to a quadratic singularity and Pic S is not isomorphic to Z.

It is not difficult to see that the Kodaira dimension of S̃′ is zero, moreover, with some
elaboration, one has the following property, cfr. [14,24].
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Proposition 3.1 Either S̃′ is birational to a K3 surface or to an abelian surface.

Definition 3.1 Let (S,L, E) be a level � K3 surface, we say that:

(1) (S,L, E) is of K3 type if S̃′ is birational to a K3 surface,
(2) (S,L, E) is of abelian type if S̃′ is birational to an abelian surface.

Case (2) is scarcely interesting for our purposes. We aim indeed to use the curves C ∈ |L| in
order to parametrize the moduli spaceRg,� of level � curves in low genus. But in case (2) C
has not enough moduli for g ≥ 3.

We assume since now that (S,L, E) is a level �K3 surface of K3 type. Then, to ameliorate
the expositon, we just say with some abuse that (S,L, E) is a level � K3 surface. We say
that two triples (Sn,Ln, En), (n = 1, 2), are isomorphic if there exists a biregular map
β : S1 → S2 such that β∗L2 ∼= L1 and β∗E2 ∼= E1, i = 1, 2.

As mentioned the classification of these triples is due to Nikulin and originates from his
paper [24]. The part of interest here is the classification of pairs (S̃,G), where S̃ is a K3
surface and G is a finite group of symplectic automorphisms of S̃. There exist 14 classes
of pairs (S̃,G) such that G is commutative and G is Z/�Z exactly for 2 ≤ � ≤ 8. After
the classification, several papers addressed the description of the moduli and the projective
models of these K3 surfaces. It is due to mention here [13–16,26].

The triple (S,L, E) determines an associated triple (S̃, L̃, γ ), where γ ∈ Aut S̃ is a
symplectic automorphisms of order � and (S̃, L̃) is a polarizedK3 surface of degree �(2g−2).
We have indeed Bred = N1 + · · · + Nt , where the summands are the connected components
and −2-curves. Let ν : S → S be their contraction morphism, then the Cartesian square

S̃′ π ′−−−−→ S

ν′
⏐
⏐
�

⏐
⏐
�ν

S̃
π−−−−→ S

(14)

is the Stein factorization of ν ◦ π ′. In it ν′ is a birational morphism. Let G ⊂ Aut S̃′ be
the group whose quotient map is π ′. As we will see π ′∗H0(L(−E)) sits in H0(L̃) as an
eigenspace of the natural representation of G and defines a generator γ of G. Moreover π

is the quotient map of the induced action of G on S̃. Conversely, starting from π and the
minimal desingularization ν, π ′ is reconstructed from the fibre product π ×S ν.

In order to describe the rational singularities occurring in Sing S we use the notation

T := n1T1 + · · · + nsTs, (15)

where T j is the singularity type and n j the number of points of type T j in Sing S.

Theorem 3.2 Let (S, E,L) be a level � K3 surface of genus g, then one has 2 ≤ � ≤ 8 and
(S, E) satisfies one of the following conditions:

(1) � = 2. One has t = 8, r = 8 and T = 8A1.
(2) � = 3. One has t = 6, r = 12 and T = 6A2.
(3) � = 4. One has t = 6, r = 14 and T = 4A3 + 2A1.
(4) � = 5. One has t = 4, r = 16 and T = 4A4.
(5) � = 6. One has t = 6, r = 16 and T = 2A5 + 2A2 + 2A1.
(6) � = 7. One has t = 3, r = 18 and T = 3A6.
(7) � = 8. One has t = 4, r = 18 and T = 2A7 + A3 + A1.
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See [24]. It is also useful to observe that always one has

E2 = B2

�2
= −4. (16)

Now, in view of the concrete applications in this paper, we mention some relevant properties
of the structure of Pic S and of the moduli of the above triples.

Definition 3.2 Fg,� is the moduli space of level � K3 surfaces of genus g.

As in the case of (S,L), the construction ofFg,� relies on the usual notion of lattice polarized
variety, see [3,9,18,24] for this K3 case. In particular, for every g ≥ 2, Fg,� has a standard
irreducible component to be constructed as follows. We may have

Z[L] ⊕ MS ⊆ Pic S, (17)

where the sum is orthogonal. Moreover MS has rank r and it is generated by the classes
[B1], . . . , [Br ], [E], with E ∼= OS(E), so that the relation �[E] − [B] = 0 is satisfied in
Pic S. We can see the inclusion as the image of a primitive embedding of lattices

υ : Zc ⊕ M� → Pic S, (18)

where υ(c) := [L] and υ(M�) = MS . The lattice M� is given with the set of generators
{e, b1, . . . , br } so that υ(e) = [E], υ(b1) = [B1], . . . , υ(br ) = [Br ]. Notice also that

c2 = 2g − 2 , e2 = −4 , b21 = · · · = b2r = −2, (19)

cfr. [24]. Fixing these data, the moduli space of triples (S,L, E) endowed with an embedding
υ, can be constructed as a moduli space of lattice polarized K3 surfaces (S, υ). In our case
S is M-polarized with M := Zc ⊕ M� and the induced embedding M ⊂ L := H2(S,Z) is
unique up to isometries, [24]. Then the moduli space is constructed as quotient of the period
domain of these surfaces S. In particular its dimension is 19−r , [9, Section 4.1 and Theorem
1.4.8], [4, Section 2.4 and Proposition 2.6]. Moreover a unique irreducible component of it
is the closure of the moduli points of pairs (S, υ) such that

Pic S = Z[L] ⊕ MS . (20)

In this case we will say that (S,L, E) is a standard triple of genus g and level �. Let us fix
our notation:

Definition 3.3 F⊥
g,� is the moduli space of standard triples of genus g and level �.

F⊥
g,� exists for any g ≥ 2 and � = 2 · · · 8. Fixing �, F⊥

g,� is the unique irreducible component
of Fg,� along a proper countable set of values g ∈ N.

Remark 3.1 Let (S,L, E) be a non standard triple and C ∈ |L|. Then, at least experimentally
for � = 2, C is never general in moduli for g ≥ 4. This is true even when the parameter
count makes that possible in low genus, see [20]. The situation is quite different for standard
triples. This paper studies indeed the modular properties of C in this case: standard behavior
or peculiarities of C .
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4 A standard projective model

Given a standard triple (S,L, E), let us construct a projective realization of S useful to our
purposes. Consider C ∈ |L| such that C ∩ B = ∅ and C̃ ′ = π ′∗C . Then the curve C̃ = ν′∗C̃ ′
is biregular to C̃ ′ via the contraction ν′ : S̃′ → S̃ and the linear map

ν′∗ : H0(OS̃′(C̃ ′)) → H0(OS̃(C̃)) (21)

is an isomorphism, we identify the two spaces under it. Then, using C̃ , it is easy to remind
of the action of the group Z/�Z on this space and of its eigenspaces. Let

0 → OS̃′ → OS̃′(C̃ ′) → ωC̃ → 0

(22)

be the standard exact sequence, then Z/�Z acts on its associated long exact sequence

0 → H0(OS̃′) → H0(OS̃′(C̃ ′)) → H0(ωC̃ ) → 0.

As is well known the Z/�Z-decomposition of H0(ωC̃ ) is as follows

H0(ωC̃ ) =
⊕

k=1···�−1

π ′∗H0(ωC ⊗ η−k)
⊕

π ′∗H0(ωC ). (23)

and this implies that H0(OS̃(C̃
′)) decomposes as

H0(OS̃(C̃
′)) =

⊕

k=1...�−1

π ′∗H0(OS(Hk))
⊕

π ′∗H0(OS(C)), (24)

whereOS(H1) . . .OS(H�−1) ∈ Pic S andOC (Hk) ∼= ωC ⊗ η⊗−k , up to reindexing. Since C̃
has genus g̃ = g + (� − 1)(g − 1) it follows dim H0(OS̃(C̃)) = g + 1+ (� − 1)(g − 1). In
particular the above decomposition immediately implies that

dim H0(OS(Hk)) = dim H0(ωC ⊗ η−k) = g − 1, k = 1 · · · � − 1. (25)

In what follows, it is also useful to recall the mentioned fact that E2 = −4.

Lemma 4.1 It holds hi (OS(E)) = hi (OS(−E)) = 0, for i ≥ 0.

Proof By assumption E is not effective. The same is true for −E , since �E ∼ B and B > 0.
This implies h0(OS(E)) = 0 and h2(OS(E)) = h0(OS(−E)) = 0. Since E2 = −4 we have
χ(OS(E)) = 0 and then h1(OS(E)) = 0. The same argument applies to −E . ��
Now we consider the line bundle OS(C − E) and the standard exact sequence

0 → OS(−E) → OS(C − E) → OC (C − E) → 0.

Lemma 4.2 Let g ≥ 2 then the associated long exact sequence is

0 → H0(OS(C − E)) → H0(ωC ⊗ η−1) → 0,

in particular it follows dim |C − E | = g − 2 and hi (OS(C − E)) = 0, i ≥ 1.

Proof By the previous lemma hi (OS(E)) = hi (OS(−E)) = 0, for i ≥ 0. Moreover we have
h0(ωC ⊗ η−1) = g − 1 and h1(ωC ⊗ η−1) = 0. Then the statement follows. ��
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Now we observe that the pull-back by π ′ defines a linear embedding

π ′∗ : H0(OS(C − E)) → H0(OS̃′(C̃ ′)).

We have indeed OS̃′(C̃ ′) ⊗ π ′∗OS(E − C) ∼= OS̃′(π ′∗E) and finally

h0(OS̃′(π ′∗E)) = h0(π ′∗OS̃′(π ′∗E)) = h0(A(E)) = 1, (26)

with A = OS ⊕ OS(−E) ⊕ · · · ⊕ OS((1 − �)E). The equality defines, up to a nonzero
constant factor, the linear embedding π ′∗. Then Im π ′∗ is the Z/�Z-invariant space

π ′∗H0(OS(C − E)).

Proposition 4.3 Let g ≥ 3 and Pic S ∼= Zc ⊕ M�, then |C − E | is base point free.
Proof Since S is a K3 surface, it suffices to prove that |C − E | has no fixed component. Let
F be an integral fixed component of |C− E |, set f = F ·C for a generalC . Then f is a fixed
divisor of |ωC⊗η−1|. ApplyingRiemann-Roch toC it follows dim |η( f )| = deg f −1. Since
g ≥ 3 then deg f ≤ 2.Hence F is a line, a conic or FC = 0.Wehave F ∼ xC+∑

y j B j+zE
in Pic S. Assume deg f > 0 then 0 < CF = (2g − 2)x ≤ 2 with x ∈ Z: a contradiction for
g ≥ 3. Let CF = 0 then F2 = −2 by the Hodge Index Theorem and F is a P1 contracted
by f|C | : S → P

g . By Lemma 4.2, h0(C − E) = g − 1 = (C − E)2/2 + 2. Let M be the
moving part of the linear system |C−E |, then dim |M | ≥ 1 and MF ≥ 0. Moreover we have
C − E ∼ M + kF + R, where R is a curve not containing F and k ≥ 1. Let G ∈ |M + F | be
general then G contains F : otherwise the curve kF could’nt be a component of the element
G + (k − 1)F + R ∈ |C − E |. Hence F is a fixed component of |M + F |. Now observe that
MF ≥ 0 and then consider the standard exact sequence

0 → OS(M) → OS(M + F) → OF (M) → 0.

We claim that, passing to the associated long exact sequence, it follows

χ(OS(M)) = χ(OS(M + F))

andχ(OF (M)) = 0. Since F = P
1 this impliesMF < 0: a contradiction. To prove the claim

consider a smooth D ∈ |M |. Then either D is integral of genus g − 2 and h1(OS(M)) = 0
or M ∼ (g − 2)N and N is a smooth integral elliptic curve. Via Serre duality we have
h2(OS(M)) = h2(OS(M + F)) = 0. Moreover MF ≥ 0 implies h1(OF (M)) = 0. Then,
in the former case, h1(OS(M)) = 0 implies h1(OS(M + F)) = 0 and the claim follows. In
the latter case replace M by N . Then the equality and the same contradiction follow by the
same type of arguments. ��
Now we introduce a second linear system associated with E . At first let us set

Bred := B1 + · · · + Br , (27)

where the summands are the irreducible components of Supp B. Then we recall that

E = 1

�
(m1B1 + · · · + mr Br ), with m1 · · ·mr ∈ [1 · · · � − 1].

Definition 4.1 Set E̊ = Bred − E = 1
�
(m̊1B1 + · · · + m̊r Br ), where m̊i := � − mi .
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Let us denote by ni the coefficients of the curves Bi in −�E . Then ni ≡ m̊i mod �. More
precisely, E is a generator ofZ/�Z = 〈Bi , E〉/〈Bi 〉 and E̊ is its opposite inZ/�Z; in particular
it is a different generator of the same group. Hence E̊ := OS(E̊) is a level � structure, with
the same properties of E . We notice that E̊ defines a cover π̊ ′ : S̃′ → S so that π̊ ′ = π ′ ◦ a
and a� = idS̃′ . Then we define

|H | := |C − E |, H̊ := |C − E̊ |. (28)

The rational maps associated with these linear systems respectively will be

p : S → P, p̊ : S → P̊, (29)

where P := |H |∗ and P̊ := |H̊ |∗ are the projective space Pg−2. Let ι be the inclusion

P × P̊ ⊂ P
(g−1)2−1 (30)

defined by the Segre embedding, we set f := ι ◦ (p × p̊) and fix the notation

f : S → P × P̊ ⊂ P
(g−1)2−1. (31)

Definition 4.2 The morphism f is the main projective model of (S,L, E).

The next two remarks are simple but relevant in order to discuss f , (the second one follows
by a direct computation of E · E̊ , where the class E is explicitly given in [24]):

(1) f ∗O
P(g−1)2−1(1) ∼= OS(H + H̊) ∼= OS(2C − Bred),

(2) H H̊ = 2g + 2 − t .

Proposition 4.4 The divisors [H − H̊ ] and [H̊ − H ] are not effective classes for � ≥ 3 and

h1(OS(H − H̊)) = h1(OS(H̊ − H)) = 6 − t . (32)

Proof We have H(H − H̊) = H̊(H̊ − H) = t − 8. Since the general elements of |H | and
|H̊ | are irreducible curves, the first statement follows for � ≥ 3 because then t ≤ 6. The
second statement just follows from Riemann-Roch. ��
Now let us consider, for a general C ∈ |L|, the standard exact sequence

0 → OS(C − Bred) → OS(2C − Bred) → OC (2C − Bred) → 0. (33)

Since C is smooth and disjoint from Bred , then OC (−Bred) is trivial and |2C − Bred | cuts
on C a linear system of bicanonical divisors. Moreover we know that both |H | and |H̊ | are
base point free. Hence the same is true for |H + H̊ | = |2C − Bred|. Notice that

(2C − Bred)
2 = 8(g − 1) − 2t,

which is ≥ 0 for g ≥ 3 and any of the prescribed values of t, �. Actually the zero value is
only reached in the known situation g = 3, � = 2. Hence we assume g ≥ 4 for � = 2. Then
a general D ∈ |H + H̊ | is a smooth integral curve such that D2 > 0. As is well known, this
implies hi (OS(H + H̊)) = 0 for i ≥ 1 and the next property follows.

Proposition 4.5 Let g be as above then dim |2C − Bred| = 4g − t − 3 and the long exact
sequence associated with the exact sequence (33) is as follows:

0 → H0(OS(C − Bred)) → H0(OS(2C − Bred)) → H0(ω⊗2
C ) → H1(OS(C − Bred)) → 0.
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The linear system |C − Bred| also deserves some observations. Since we are dealing with a
general standard triple (S,L, E), we know that |C | defines a morphism

f|C | : S → P
g

which is the contraction ν : S → S, composed with the embedding S ⊂ P
g defined by |ν∗C |.

Since a general C is disjoint from B, |ν∗C | is a linear system of Cartier divisors. Let ISing S
be the ideal sheaf of Sing S, it is clear that the natural map

f ∗|C | : H0(ISing S(1)) → H0(OS(C − Bred))

is an isomorphism. Then, considering the above exact sequence (33), we have

h0(OS(C − Bred)) − h1(OS(C − Bred)) = χ(OS(2C − Bred)) − χ(ω⊗2
C ) = g + 1 − t .

(34)

This implies the next property.

Proposition 4.6 It holds h1(OS(C − Bred)) = 0 if and only if h0(OS(C − Bred)) = g+1− t ,
that is, the points of Sing S are linearly independent in P

g.

On the other hand consider the commutative diagram

0
⏐
⏐
�

H0(OS(C − Bred))
⏐
⏐
�

H0(OS(H)) ⊗ H0(OS(H̊))
μS−−−−→ H0(OS(H + H̊))

ρH⊗ρH̊

⏐
⏐
� ρC

⏐
⏐
�

H0(ωC ⊗ η−1) ⊗ H0(ωC ⊗ η)
μC−−−−→ H0(ω⊗2

C )
⏐
⏐
�

H1(OS(C − Bred))
⏐
⏐
�

0

(35)

whereμS andμC are the multiplication maps and the vertical arrows are the restriction maps.
It follows from Lemma (4.2) that ρH ⊗ ρH̊ is an isomorphism. The next property is clear.

Proposition 4.7 If μC is surjective then h1(OS(C − Bred)) = 0 i.e. ρC is surjective.

Since χ(OS(C − Bred) = g + 1 − t let us point out that μC is not surjective if

g < t − 1. (36)

We do not further investigate the diagram, for our applications these results suffice.
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5 Views on theMukai maps in level �

In this section we only put in large the picture we have outlined in the introduction. This
picture concerns the maps in (3) and (2), that is, the Mukai map

mg : Pg → Mg

and the level � Mukai maps

rg,� : P⊥
g,� → Rg,�.

These maps, and the involved moduli spaces, have been previously considered.We recall that
the points of Pg are the elements [S,L,C] such that [S,L] ∈ Fg and C ∈ |L|. The Mukai
map mg is the natural forgetful map. We have

(1) mg is dominant for g ≤ 9,
(2) mg is not dominant for g = 10,
(3) mg is birational for g = 11,
(4) mg has 1-dimensional fibre for g = 12.
(5) mg is generically injective for g ≥ 13.

Thus mg has not maximal rank for g = 10, 12. It is indeed known that a general [C] ∈
m10(P10) is a linear section C of the G2 variety W ⊂ P

13, [23]. Hence the family of 2-
dimensional linear sections ofW through C is a P3. It turns out from this fact that the fibre of
m10 at [C] is 3-dimensional. Then m10(P10) has codimension 1. Genus 12 Fano threefolds
play a similar role, then a general fibre of m12 is a rational curve.

In this perspective, asking about the connections between the moduli spaceF⊥
g,�, of level �

K3 surfaces of genus g, andRg,� is, as observed, natural. For a general point [S,L, E] ∈ F⊥
g,�

one can ask if (C, η), with C ∈ |L| and η = E ⊗ OC , defines a general point of Rg,�. More
precisely recall that P⊥

g,� is the moduli space of 4-tuples (S,L, E,C) such that [S,L, E] ∈
F⊥
g,� and C ∈ |L|. The level � Mukai map rg,� : P⊥

g,� → Rg,� is the morphism sending

[S,L, E,C] ∈ P⊥
g,� to the point [C, ηC ] ∈ Rg,�, where ηC is E ⊗ OC . About the possible

dominance of the map rg,� we have:

(1) 3g − 3 = dimRg,2 ≤ dimP⊥
g,2 = 11 + g iff g ≤ 7.

(2) 3g − 3 = dimRg,3 ≤ dimP⊥
g,3 = 7 + g iff g ≤ 5.

(3) 3g − 3 = dimRg,4 ≤ dimP⊥
g,4 = 5 + g iff g ≤ 4.

(4) 3g − 3 = dimRg,5 ≤ dimP⊥
g,5 = 3 + g iff g ≤ 3.

(5) 3g − 3 = dimRg,6 ≤ dimP⊥
g,6 = 3 + g iff g ≤ 3.

(6) 3g − 3 = dimRg,7 ≤ dimP⊥
g,7 = 1 + g iff g ≤ 2.

(7) 3g − 3 = dimRg,8 ≤ dimP⊥
g,8 = 1 + g iff g ≤ 2.

These issues have not been systematically considered but for � = 2. We close this expository
section with a summary on what happens for � = 2, 3.

5.1 The picture for � = 2

Wehave 3g−3 = dimMg ≤ dimP⊥
g,2 = 11+g iff g ≤ 7. Again, rg,2 behaves unexpectedly

near the value of transition, which is now g = 7.

(1) rg,2 is dominant for g ≤ 5,
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(2) rg,2 is not dominant for g = 6,
(3) rg,2 is birational for g = 7,
(4) rg,2 has not finite fibres for g = 8.
(5) rg,2 is generically injective for g ≥ 9.

These surfaces are known as (standard) Nikulin surfaces. Cases (1), (2), (3) are treated in
[11,12], the remaining ones, (standard and non standard), in [19,20]. Notice that rg,2 is not
of maximal rank for g = 6, 8. In genus 6 the condition C ⊂ S implies that the following
multiplication map is not an isomorphism as expected:

μ : Sym2H0(ωC ⊗ ηC ) → H0(ω⊗2
C ). (37)

Then (C, ηC ) does not define a general point ofRg,2, see [3]. We point out that, studying the
two cases where rg,2 has not maximal rank, two families of singular Fano threefolds appear.
Their hyperplane sections are singular models S of general Nikulin surfaces S. The existence
of these threefolds implies the failure of the maximal rank.

5.2 The picture for � = 3

We will prove that rg,3 behaves unexpectedly near g = 5:

(1) rsg,3 is dominant for g ≤ 3,
(2) rsg,3 has not maximal rank for g = 4,
(3) rsg,3 is birational for g = 5,
(4) rsg,3 has not maximal rank for g = 6.

Remark 5.1 The case g ≥ 7 should be considered for further investigation, addressing the
generic injectivity. The (uni)rationality of Rg,3 is known, or elementary, for g ≤ 5, cfr.
[1,2,28]. We recall that Rg,3 is of general type for g ≥ 12 and of Kodaira dimension ≥ 19
for g = 11, [7]. Bruns proved in [6] that R8,3 is of general type. The cases g = 6, 7, 9, 10
and partially g = 11 are open.

6 TheMukai map in level 3

6.1 The case of genus 4

Let [S,L, E,C] ∈ P⊥
g,� be general and � = 3, as in Sect. 2, (35) we consider the commutative

diagram

H0(OS(H)) ⊗ H0(OS(H̊))
μS−−−−→ H0(OS(H + H̊))

ρH⊗ρH̊

⏐
⏐
� ρC

⏐
⏐
�

H0(ωC ⊗ η−1) ⊗ H0(ωC ⊗ η)
μC−−−−→ H0(ω⊗2

C ).

(38)

Since � = 3 we have t = 6 connected components of Supp B. Then, by proposition (4.7),
μC is not surjective if g < t − 1 = 5. This is obvious for g ≤ 3. For g = 4 the dimension
count suggests that in R4,3 the map μC is not surjective in codimension 1 .

Proposition 6.1 Let [C, η] ∈ R4,3 be a general point then μC is surjective, moreover the
locus of points such that μC is not surjective is an effective Cartier divisor in R4,3.
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Indeed, for g = 4 and � = 3, this locus turns out to be the locus Dg,� defined in [7, p. 77].
There, for low level � ≥ 3 and for g ≤ 16, the so defined Torsion bundle conjecture B is
proven, which implies thatD4,3 is an effective Cartier divisor inR4,3. Then the next theorem
follows. Notice also that, for g = 4, theorem 1.7 of [2] implies that μC is an isomorphism
for a general (C, η).

Theorem 6.2 The map r4,3 : P⊥
4,3 → R4,3 fails to be dominant.

Remark 6.1 The case g = 4 turns out to be of special interest. See the last section for a
natural, presently conjectural, geometric interpretation.

6.2 The case of genus 5

Differently from the case g ≤ 4 the multiplication map

μC : H0(ωC ⊗ η) ⊗ H0(ωC ⊗ η−1) → H0(ω⊗2
C )

can be surjective for g ≥ 5 and a general point [C, η] ∈ Rg,3. This property occurs in genus
g = 5 and makes possible the proof of the next birationality theorem.

Theorem 6.3 The Mukai map r5,3 : P⊥
5,3 → R5,3 is birational.

Before proving it we cannot avoid a long series of preliminaries. We will always assume that
[S,L, E,C] ∈ P⊥

5,3 is a general point, in particular Pic S ∼= Zc ⊕ M3. Let

0 → OS(H + H̊ − C) → OS(H + H̊) → ω⊗2
C → 0 (39)

be the standard exact sequence, at first we point out the following fact.

Proposition 6.4 The associated long exact sequence is

0 → H0(OS(H + H̊))
ρC→ H0(ω⊗2

C ) → 0. (40)

Since H + H̊ − C ∼ C − Bred, the next lemma implies the previous statement.

Lemma 6.5 It holds hi (OS(C − Bred)) = 0 for i ≥ 0.

Proof Since C(Bred − C) < 0, h0(OS(Bred − C)) = 0. Hence h2(OS(C − Bred)) is zero
by Serre duality. Since (C − Bred)

2 = −4 then χ(OS(C − Bred)) = 0 and the statement
follows if h0(OS(C − Bred)) = 0. Assume A ∈ |C − Bred| then A is not connected. This
follows from χ(OS(A)) = h0(OS(A)) − h1(OS(A)) = 0 and the standard exact sequence

0 → OS(−A) → OS → OA → 0.

This implies A = A1+ A2, where A1 is a connected component and A2 = A− A1 is a curve.
We have C(A1 + A2) = C(C − Bred) = 8 and we can choose A1 so that CA1 > 0. Assume
CA2 = 0 then the morphism φ : S → P

5, defined by |C |, maps birationally A1 + A2 + Bred
onto a degree 8 hyperplane section of S = φ(S). This is the curve φ∗A1, singular at the points
of φ(Bred) = Sing S. These points are the images by φ of the six connected components
of Bred and are exactly six. Indeed each fibre of φ is connected and hence two connected
components V1, V2 of Bred , contracted to the same point, are connected by an effective
divisor W orthogonal to C . On the other hand, under our generality assumption, we have
Pic S ∼= Zc ⊕M3. Moreover a direct computation shows that, in the negative definite lattice
M3, SuppW is union of irreducible components of Bred . Actually one computes that the only
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classes of irreducible (−2)-curves are the classes of B1 · · · B12. This implies W = 0 and
V1 = V2. But then φ∗A1 is not integral, because it is a hyperplane section of φ(S) with six
singular points. Then there exists an irreducible component R of it such that 0 < CR < 8. The
same is obvious ifCA2 > 0. Since Pic S ∼= Zc⊕M3 we have [R] = x[C]+∑

yi [Bi ]+z[E],
with x, yi , z ∈ Z. But this implies 0 < CR = x8 < 8 with x /∈ Z: a contradiction. ��
Proposition 6.6 The linear systems |H | and |H̊ | are not hyperelliptic.
Proof Let |H | be hyperelliptic, then |H | defines a 2 : 1morphismψ : S → P

3 onto a quadric
surface Q := ψ(S). As is well known the pull-back of a ruling of lines of Q defines a pencil
|F2| of curves such that F2

2 = 0 and HF2 = 2. Moreover |F1| := |H − F2| is a pencil of
irreducible elliptic curves. The same is true for the moving part of |F2|. Since H ∼ F1 + F2
andC ∼ H + E we haveC(F1+ F2) = 8 and alsoCFi ≥ 2, i = 1, 2. Let |F | be the moving
part of the pencil |Fi | such that CFi is minimal, then it follows 2 ≤ CF ≤ 4. On the other
hand we have F ∼ xC +∑

y j B j + zE in Pic S. This implies 2 ≤ CF = 8x ≤ 4 and x /∈ Z:
a contradiction. The same argument works for |H̊ |. ��
Lemma 6.7 It holds hi (OS(2H − H̊)) = hi (OS(2H̊ − H)) = 0 for i ≥ 0.

Proof From H ∼ C − E and H̊ ∼ C − E̊ we have 2H − H̊ ∼ C − 2E + E̊ , moreover

H̊(H̊ − 2H) = −8 ⇒ h0(OS(H̊ − 2H)) = 0 ⇒ h2(OS(2H − H̊)) = 0.

Since (2H− H̊)2 = −4 then χ(OS(2H− H̊)) = 0. Hence the statement follows for 2H− H̊
if we prove h0(OS(2H − H̊)) = 0. For this we observe that the well known descriptions of
E and E̊ are as follows. For i = 1 · · · 6 consider Ni = Bi + B ′

i , that is, the i-th connected
component of Bred = ∑

i=1···6 Bi + B ′
i . Then in Pic S we have

[E] =
∑

i=1···6

1

3
[Bi + 2B ′

i ], [E̊] =
∑

i=1···6

1

3
[2Bi + B ′

i ] (41)

up to exchanging E with E̊ . Since 2H − H̊ ∼ C − 2E + E̊ , it follows that

2H − H̊ ∼ C −
∑

i=1···6
B ′
i . (42)

This implies that [2H − H̊ ] is not an effective class. Indeed let B ′ := B ′
1 +· · ·+ B ′

6, observe
that (C − B ′)Bi = −1, i = 1 · · · 6. Assume C − B ′ ∼ F where F is an effective divisor.
Then FBi = −1 implies Bi ⊂ F and F = F ′ + B1 + · · · + B6 where F ′ is effective. Hence
C − Bred ∼ F ′ > 0: a contradiction to the above lemma (6.5). ��
We will profit of genus 3 curves of the non hyperelliptic linear systems |H | or |H̊ |.
Lemma 6.8 It holds ∀ D ∈ |H |, h0(OD(H̊−H)) = 0 and ∀ D̊ ∈ |H̊ |, h0(OD̊(H− H̊)) =
0.

Proof Let D ∈ |H |, once more consider the standard exact sequence

0 → OS(H̊ − 2H) → OS(H̊ − H) → OD(H̊ − H) → 0

and its long exact sequence. We have h1(OS(H̊ − 2H)) = h1(OS(2H − H̊)) = 0 by the
previous lemma and h0(OS(H̊ − 2H)) = 0 because H(H̊ − 2H) = −2. Then it follows
h0(OD(H̊ − H)) = h0(OS(H̊ − H)). Finally the latter is zero by Proposition (4.4). ��
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Let D ∈ |H | be smooth then OD(H̊ − H) ∼= OD(b), where deg b = 2. We fix the notation
b for such a divisor and the notation μD for the following multiplication map:

μD : H0(ωD) ⊗ H0(ωD(b)) → H0(ω⊗2
D (b)). (43)

Let us also point out that h0(OD(b)) = 0 by the above lemma. Moreover we fix the notation

νD : H0(OS(H)) → H0(ωD), ν̊D : H0(OS(H̊)) → H0(ωD(b)) ,

ρD : H0(OS(H + H̊)) → H0(ω⊗2
D (b)) (44)

for the natural restriction maps. Then we consider the commutative diagram:

H0(OS(H)) ⊗ H0(OS(H̊))
μS−−−−→ H0(OS(H + H̊))

νD⊗ν̊D

⏐
⏐
� ρD

⏐
⏐
�

H0(ωD) ⊗ H0(ωD(b))
μD−−−−→ H0(ω⊗2

D (b)).

(45)

which is similar to our main diagram (35)

Proposition 6.9 The vertical arrows and the horizontal arrow μD are surjective.

Proof Let p : S → P
3 be the map defined by |H |, then p|D : D → P

2 = |ωD|∗ is the
canonical map and |ωD(b)| is cut on D by |Id|S(3H)|, where d is any element of |ω⊗2(−b)|
and Id|S is its ideal sheaf. Moreover the map p∗ : |OP2(3)| → |ω⊗3

D | is an isomorphism and
|Id|S(3H)| = p∗|IZ |P2(3)|, where Z = p∗d and IZ |P2 is its ideal sheaf. Hence it follows

h0(IZ |P2(2)) = h0(ω⊗2
D (−b)) = h0(OD(b)) = 0 and h1(OD(b)) = h0(OD(b)) = 0.

This easily implies hi (IZ |P2(3 − i)) = 0 for i > 0, that is, IZ |P2 is 3-regular. Hence, by
Castelnuovo-Mumford regularity theorem, the multiplication map

μ : H0(OP2(1)) ⊗ H0(IZ |P2(3)) → H0(IZ |P2(4))) (46)

is surjective. Now consider the standard exact sequence of ideal sheaves

0 → Ip(D)|P2(4) → IZ |P2(4)
ρ→ IZ |p(D)(4) → 0

and its associated long exact sequence. Since Ip(D)|P2(4) ∼= OP2 it follows that

h0(ρ) : H0(IZ |P2(4)) → H0(ω⊗2
D (b))

is surjective. On the other hand we have μD ◦ λ = h0(ρ) ◦ μ, where λ is the tensor product

λ1 ⊗ λ2 : H0(OP2(1)) ⊗ H0(IZ |P2(3)) → H0(ωD) ⊗ H0(ωD(b))

of the natural isomorphisms λ1 : H0(OP2(1)) → H0(ωD) and λ2 : H0(IZ |P2(3)) →
H0(ωD(b)). Since λ is an isomorphism and h0(ρ) andμ are surjective, thenμD is surjective.
The surjectivity of ρD follows from the vanishing of h1(OS(H̊)) and the standard exact
sequence

0 → OS(H̊) → OS(H + H̊) → ω⊗2
D (b) → 0.

Since ω⊗2
D (b) is OD(H + H̊), the surjectivity of νD follows from the above exact sequence

twisted by −H̊ . Finally the exact sequence

0 → OS(H̊ − H) → OS(H̊) → ωD(b) → 0

implies that ν̊D is an isomorphism. Indeed we have h0(OS(H̊ − H)) = h1(OS(H̊ − H))

= 0 in its long exact sequence by (32). Hence νD ⊗ ν̊D is surjective too. ��
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Proposition 6.10 The map μS : H0(OS(H)) ⊗ H0(OS(H̊)) → H0(OS(H + H̊)) is sur-
jective.

Proof Let us consider again the commutative diagram (45), that is,

H0(OS(H)) ⊗ H0(OS(H̊))
μS−−−−→ H0(OS(H + H̊))

νD⊗ν̊D

⏐
⏐
� ρD

⏐
⏐
�

H0(ωD) ⊗ H0(ωD(b))
μD−−−−→ H0(ω⊗2

D (b)).

Counting dimensions we have dimKerμS ≥ 4, hence it suffices to show that the equality
holds.Nowweknow thatμD andνD⊗ν̊D are surjective.LetKbe theKernel ofμD◦(νD⊗ν̊D),
then the dimension count gives dimK = 8 and, of course, we have KerμS ⊆ K. Therefore,
to prove dimKerμS = 4, it suffices to produce a 4-dimensional subspace V ⊂ K such
that V ∩ KerμS = (0). To this purpose consider the space of decomposable vectors V :=
〈s〉 ⊗ H0(OS(H̊)), where s is nonzero and div(s) = D. Then we have (νD ⊗ ν̊D)(V ) = (0)
and hence V ⊂ K. On the other hand let t ∈ H0(OS(H̊)), then μS(s ⊗ t) = st and this is
zero iff t = 0. Hence V ∩ Ker μS = (0). ��
Now we go back, in genus 5, to our usual diagram (35) in Sect. 2. This is

H0(OS(H)) ⊗ H0(OS(H̊))
μS−−−−→ H0(OS(H + H̊))

ρH⊗ρH̊

⏐
⏐
� ρC

⏐
⏐
�

H0(ωC ⊗ η) ⊗ H0(ωC ⊗ η−1)
μC−−−−→ H0(ω⊗2

C ).

(47)

Proposition 6.11 μC : H0(ωC ⊗ η) ⊗ H0(ωC ⊗ η−1) → H0(ω⊗2
C ) is surjective.

Proof We have already shown that μS and ρH ⊗ ρH̊ are surjective. By (40) and its related
lemma the same is true for ρC . Hence the surjectivity of μC follows. ��
Let P15 := P(H0(OS(H))∗ ⊗ H0(OS(H̊))∗) and let P3 × P

3 := ι(|H |∗ × |H̊ |∗) be the
image in P

15 of the Segre embedding ι. Now we study the morphism defined in (4.2)

f : S → P
3 × P

3 ⊂ P
15,

that is, f = ι ◦ (p × p̊). Since the map μS is surjective it follows that

(p × p̊)∗H0(OP3×P3(1, 1)) = H0(OS(H + H̊)). (48)

Let P11 ⊂ P
15 be the linear embedding of P(Imμ∗

S) defined by μ∗
S , then we have

f (S) ⊆ P
11 · (P3 × P

3) ⊂ P
15, (49)

In other words f is just the morphism defined by the complete linear system |H + H̊ |
composed with the linear embedding P11 ⊂ P

15.

Proposition 6.12 The map p × p̊ is an embedding for a general point [S,L, E] ∈ F⊥
5,3.

Proof The linear systems |H | and |H̊ | are non hyperelliptic. Hence p, p̊ are generically
injective and the same is true for f . In particular f : S → f (S) is biregular over f (S) −
Sing f (S) and Sing f (S) is a finite set of rational double points. Let R ⊂ S be an integral
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curve contracted by f then R is biregular to P1 but it is not Bi . Indeed R is contracted by p
and p̊ while Bi is not, as one can directly compute. Notice also that C ∼ 1

2 (H + H̊ + Bred).
Therefore, since RC ≥ 0, it follows

RC = 1

2

∑

i=1...12

RBi ≥ 0

with RBi ≥ 0. Assume RBi = 0 for each i , then RC = 0. Since the Picard group of S is
Z[L] ⊕ M3, R is necessarily contained in M3 = Z[L]⊥. By [14] the unique (−2)-curves
contained inM3 are the Bi ’s, which contradicts the fact that R cannot be a Bi . Now assume
that RBi ≥ 2 for some Bi and consider, among the maps p and p̊, the one not contracting Bi ,
say p. Then p embeds Bi as a line. On the other hand p contracts R · Bi , which is a divisor
of degree ≥ 2 in Bi : a contradiction. This implies RBi = 1 for each i . Finally consider two
distinct curves as above, say B1 and B2, which are contracted by p. Let us also claim that
p(B1) and p(B2) are distinct points for a general (S,L, E). Since RB1 = RB2 = 1 then
p(R) is not a point: a contradiction.

We now prove that p(B1) = p(B2) for a general (S,L, E). If two curves are contracted
by a map p to the same point, there is a tree of (−2)-curves connecting these curves which is
contracted by p. Since p is defined by |H |, the (−2)-curves contracted by p are orthogonal
to H in Z[L] ⊕ M3, which is the Picard group of a general S. By a direct computation
one observes that the negative defined lattice orthogonal to H contains exactly 12 (−2)-
classes, which are ±Bi for i = 1, . . . , 6. Since Bi B j = 0 if i, j ∈ {1, . . . , 6} and i = j ,
p(B1) = p(B2). ��
At this point the special geometry determined by μS appears, we have

KerμS = H0(I(1, 1)), (50)

where I is the ideal sheaf of P11 · (P3 × P
3) in P

3 × P
3 and dimKerμS = 4. Let

� := P
11 · (P3 × P

3), (51)

then f (S) sits in P
11 as a K3 surface of degree 20 and f (S) ⊆ �. Now assume that the

intersection scheme � is proper, then � is a K3 surface of degree 20 and hence

f (S) = �. (52)

Postponing its proof, we therefore assume the following claim.
Claim For a general triple (S,L, E) the intersection scheme � is proper. Then we prove

the birationality of the Mukai map r5,3 : P⊥
5,3 → R5,3.

Proof (Proof of the birationality) Since P⊥
5,3 andR5,3 are irreducible of the same dimension,

it suffices to show that r5,3 is birational onto M := r5,3(P⊥
5,3). Let x = [S,L, E,C] be

general in P⊥
5,3 and y = r5,3(x), then y = [C, η] with η := E ⊗ OC . Let y ∈ M be general,

we prove that a unique x = [S,L, E,C] exists so that [C, E ⊗ OC ] = y. We already know,
for a general y = [C, η] ∈ M, the surjectivity of the multiplication map

μC : H0(ωC ⊗ η) ⊗ H0(ωC ⊗ η−1) → H0(ω⊗2
C ),

because this condition is open and non empty on M. Then, applying to μC the same con-
struction applied to μS , one obtains

C ⊆ � := P
11 · (P3 × P

3) ⊂ P
15. (53)
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Let V = H0(ωC ⊗ η)∗ and V̊ = H0(ωC ⊗ η−1)∗, here C is bicanonically embedded in
P
11 := P(Im μC )∗ and the inclusion is the Segre embedding P(V ) × P(V̊ ) ⊂ P(V ⊗ V̊ ).

Now the properness of � is an open condition on M, not empty under our claim. Then
(�,O�(1)) is a polarized K3 surface as above. Since y = r5,3(x) for some x = [S,L, E,C],
the commutative diagram (47) implies that [�,O�(1)] = [S,L]. Therefore μC defines a
rational map, sending y = [C, η] ∈ M to x ∈ P⊥

5,3, which is inverse to r5,3. ��
Proof (Proof of the claim) Since each component of � has dimension ≥ 2, it suffices to
construct one D ∈ |OP3×P3(1, 1)| so that D · � = D · S. We choose the hyperplane section

D = (P × P
3) + (P3 × P̊), (54)

where P and P̊ are general planes. Then we have D · S = D + D̊, where D ∈ |H | and
D̊ ∈ |H̊ | are smooth, non hyperelliptic curves of genus 3. We show, only for D, that

D = P
11 · (P × P

3) , D̊ = P
11 · (P3 × P̊). (55)

The map p : D → P is the canonical map; we fix on P coordinates (x) = (x1 : x2 : x3). The
map p̊ : D → P

3 is defined by |ωD(b)|, where deg b = 2 and h0(OD(b)) = 0. This implies
that ωD(b) is very ample, we fix coordinates (y) = (y1 : · · · : y4) on P

3. The resolution of
O p̊(D)(1) ∼= ωD(b) is definitely well known, [17]. We have the exact sequence

0 → OP3(−1)⊕3 A→ O⊕4
P3

→ ωD(b) → 0, (56)

A = (ai j ) being a 4 × 3 matrix of linear forms in (y). Then p̊(D) is a determinantal curve
defined by the cubic minors of A. In particular A has rank 3 on P

3 − p̊(D) and, since
p̊ : D → p̊(D) is biregular and p̊(D) is smooth, it also follows that p̊(D) is the set of points
y ∈ P

3 such that A has exactly rank 2. This implies that the equations ai1x1+ai2x2+ai3x3 =
0, i = 1 . . . 4, define a complete intersection D̂ ⊂ P × P

3 such that Supp D̂ = D. Finally
one easily computes that D̂ and D have the same degree 10 with respect to OP3×P3(1, 1).
This implies D̂ = D and the claim follows. ��

6.3 The case of genus 6

Theorem 6.13 The Mukai map r6,3 : P⊥
6,3 → R6,3 has not maximal rank.

In this paper we only sketch the proof of this theorem and its geometric motivation: see Sect.
7 and also [28]. We postpone some details to further investigation onR6,3. We conclude that
the mentioned analogies are confirmed for � = 3: the Mukai maps

m11±1 , r7±1,2 , r5±1,3 (57)

have not maximal rank, while they are birational for g = 11, 7, 5. These maps are not
dominant for g = 10, 6, 4 and they have positive dimensional fibre for g = 12, 8, 6.

7 Views on Fano threefolds with sections of level 2 or 3

We close this paper discussing some families of Fano threefolds X ⊂ P
g+1, whose general

hyperplane sections are singular K3 surfaces S of the considered types. Then S is endowed
with a degree � cyclic cover π : S̃ → S with branch locus Sing S. Moreover its minimal
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desingularization ν : S → S fits in a standard level � K3 surface (S,L, E), so that L ∼=
ν∗OS(1) and E induces π : S̃ → S. We have � = 2, 3.

For some families a natural cyclic cover πX : X̃ → X is visible, with branch locus the
curve Sing X . However we do not address it here. The existence of these families implies
that rg,� has not maximal rank. They correspond to the peculiar values

(g, �) = (6, 3), (6, 2), (8, 2), (4, 3). (58)

For � = 2 these families are known, [11,19,27]. The case (6, 2) is revisited herewith emphasis
on a singular quadratic complex of the Grassmannian G(2, 5). This implies that r6,2 is not of
maximal rank. For (6, 3) we introduce a family of Gushel - Mukai threefolds singular along
a rational normal sextic curve. This is responsible for the failure of the maximal rank of r6,3.
The case (8, 2) is similar and not treated here, [27]. Finally we point out the plausible relation
of the case (4, 3) to the G2-variety.

7.1 A singular Gushel–Mukai threefold: � = 3 and g = 6

We sketch the geometric construction implying theorem (6.13). Let g = 6 and � = 3, keeping
our notation we consider p × p̊ : S → P

4 × P
4. Then p is defined by the linear system

|H | = |C − 1

3

∑

i=1···6
(Bi + 2B ′

i )|, (59)

where Bi + B ′
i , are the connected components of Bred. Let x0 := [S,L, E,C] ∈ P⊥

6,3 be a
general point, then a standard analysis shows that p : S → p(S) is the contraction of

∑

Bi
to six points and that p(B ′

i ) is a line. Moreover we have

p(S) = F0 ∩ Q, (60)

where F0 is a cubic and Q a smooth quadric. Notice that p|C is the embedding defined by
ωC ⊗ η−1, since CBi = 0 then p(C) ∩ Sing p(S) = ∅. Let C ′ := p(C) and let

0 → Ip(S)(3) → Ip(C)(3) → IC ′|p(S)(3) → 0 (61)

be the standard exact sequence of ideal sheaves of Q, we notice the isomorphisms Ip(S)(3) ∼=
OQ and p∗ : H0(OS(3H − C)) → H0(Ip(C)|p(S)(3)). This implies that

0 → H0(OQ) → H0(IC ′(3)) → H0(OS(3H − C)) → 0 (62)

is its associated long exact sequence. It easily follows that C ′ is projectively normal. A
second standard step is the remark that OS(3H − C) is a genus 3 polarization of S. Now
let M ∈ |3H − C |, then p∗(C + M) ∈ |Ip(C)|p(S)(3)| and it is cut on p(S) by a cubic
hypersurface. Therefore we have in Q the complete intersection scheme

p∗(C + M) = F0 ∩ F∞ ∩ Q, (63)

where F0, F∞ are cubics. Let S′
0 = F0 · Q and S′∞ = F∞ · Q. We consider the pencil

PM = {S′
t , t ∈ P

1}, (64)

of cubic sections of Q generated by S′
0 and S′∞. We can assume p(S) = S′

0, notice that
a general S′

t is a possibly singular K3 surface, smooth along C ′. Let σt : St → S′
t be its

minimal desingularization and Ct := σ ∗
t C

′, then St is endowed with the line bundles

Ht := σ ∗
t OQ(1), Lt := OSt (Ct ), Et := Lt ⊗ H−1

t . (65)
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For t = 0 the fourtuple (St ,Lt , Et ,Ct ) defines the point x0 = [S,L, E,C] of P⊥
6,3. For t = 0

we have constantly Ct = C . Now consider the family of fourtuples

{(St ,Lt , Et ,Ct ), t ∈ P
1}, (66)

then the assignment t → [St ,Lt ] ∈ F6 defines a non constant rational map m : P1 → F6.
Assume (St ,Lt , Et ) is a K3 surface of level 3 for a general t . Thenm lifts to a map m̃ : P1 →
P⊥
6,3, sending t to [St ,Lt , Et ,Ct ], and the next statement immediately follows.

Proposition 7.1 If (St ,Lt , Et ) is a K3 surface of level 3 for a general t , the curve m̃(P1) is
in the fibre at the point [C, η] of the Mukai map r6,3, which is therefore not of maximal rank.

The assumption mentioned in the statement depends on the choice of the element M in
|3H − C | and in general it is not satisfied. However the assumption is satisfied choosing in
|M | the very special element

M0 := 2A +
∑

i=1···6
Bi , (67)

where A is the unique element of |C − ∑

i=1···6(Bi + B ′
i )|. The curve A is biregular to P

1

and p|A embeds it as a rational normal quartic curve. Let A′ = p(A), then the base scheme
of PM0 is a non reduced, complete intersection curve and its 1-cycle is

p∗(M0 + C) = 2A′ + C ′. (68)

In other words the surfaces S′
t intersect along a contact curve A

′ of multiplicity two and along
C ′. It turns out that a general Sing S′

t consists of six nodesmoving in A′ and each node belongs
to a line in S′

t . This can be shown using the special property that η ∼= ωC ′(−1) ∈ PicC is
of 3-torsion. Omitting further details of this construction, let us just say that M0 defines a
pencil of level 3 and genus 6 K3 surfaces as required.

To close geometrically this sketch let A be the non reduced component, supported on A′,
of the base curve of PM0 and IA|Q its ideal sheaf. Consider the rational map

φ : Q → P
7 (69)

defined by the linear system |IA|Q(3)|. Let us notice the following property.

Proposition 7.2 Themap φ is birational onto its image W, which is a singular Gushel–Mukai
threefold whose general hyperplane sections are singular K3 surfaces S as above.

Therefore W is a complete intersection of type (1, 1, 2) in the Grassmannian G(2, 5). We
notice that SingW is a rational normal sextic curve. This completes our sketch.

7.2 The tangential quadratic complex of P4: � = 2 and g = 6

LetGn be the Plücker embedding of the Grassmannian of lines of Pn , a quadratic complex is
just a quadratic section ofGn . Let Q ⊂ P

n be a quadric, then the family T of tangent lines to
Q is a quadratic complex, named sometimes the tangential quadratic complex. We assume
Q is smooth, then T is a Fano variety. Notice that SingT is the Hilbert scheme of lines of Q,
of codimension and multiplicity 2 in T.

Now we assume n is even. Then T has a unique nontrivial quasi étale 2:1 cover

π : T̃ → T, (70)
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whose branch locus is SingT. Let us describe the known map π in the case n = 4, since it
is linked to the Mukai map r6,2 : P⊥

6,2 → R6 and its behavior. This is treated in [11]. For

n = 4 the Hilbert scheme of lines of Q is the 2-Veronese embedding of P3, say

V ⊂ G4 ⊂ P
9. (71)

Let t ∈ T, consider the pencil {Hp, p ∈ t}, where Hp is the polar hyperplane to Q at p.
Its base locus is a plane Pt and Qt := Pt · Q is a conic. Since t is tangent to Q, a standard
exercise shows that Sing Qt = t ∩ Q. This defines a smooth, integral correspondence

T̃ := {(t, r) ∈ T × V | r ⊂ Qt }. (72)

Notice that its projection onto T is a quasi étale 2 : 1 cover branched on V , say

π : T̃ → T. (73)

Indeed the fibre ζt := π∗(t) is the Hilbert scheme of lines of Qt and is finite of length 2.
Then ζt is smooth iff rank Qt = 2 iff t /∈ V and ζt has multiplicity 2 iff rank Qt = 1 iff
t ∈ V .

Now it is well known that a general 2-dimensional linear section S = T∩P
6 is the model

defined by |L| of S, where [S,L, E] ∈ F⊥
6 is general. In particular Sing S = V ∩P

6 is an even
set of 8 nodes, defining π |S̃ with S̃ = π−1(S), cfr. [11,19,20]. For � = 2 and [S,L, E] ∈ F⊥

g ,

the surface S, or its model S, is known as a standard Nikulin surface of genus g. Therefore we
can say that a general 3-dimensional linear section ofT is a Fano threefold whose hyperplane
sections are standard Nikulin surfaces of genus 6. Let us denote such a section by

X = T ∩ P
7, (74)

notice that Sing X is a curvilinear section of V , hence an elliptic curve of degree 8.
Finally let C and S respectively be the family of general curvilinear sections C and that

of general 2-dimensional linear sections S of T. Consider the family of pairs

P := {(C, S) ∈ C × S | C ⊂ S}. (75)

Let (C, S) ∈ P then C is a canonical curve and C ∈ |OS(1)|. Let ν : S → S be the
desingularization then ν∗C ∈ |L| and η := E ⊗ Oν∗C defines π |C̃ , where C̃ = π−1(C).
Then the assignment of (C, S) to [S,L, E, ν∗C] defines a dominant rational map

m : P → P⊥.

We already know that the Mukai map r6,2 fails to be of maximal rank. However we can now
see this fact from a geometric perspective: the existence of the Fano variety T and its quasi
finite 2 : 1 cover π . Indeed this implies that C ∈ C is contained in a higher dimensional
family of sections S of T, so that C cannot have general moduli.

More precisely the parameter space C is open in theGrassmannianG(5, 9), hence dim C =
24. Moreover Aut Q ⊂ Aut P4 has dimension 10 and acts faithfully on C. Then we have
dim C//Aut Q = 14 < dimR6 = 15. Hence r6,2 cannot be dominant.

Remark 7.1 Let C ∈ C then C̃ = π−1(C) is a smooth, integral curve of genus 11. We have
C̃ ⊂ S̃ ⊂ X̃ ⊂ P

12, where X̃ = π−1(X) is a non prime Fano threefold of genus 11. We
just mention that C̃ is the base locus of a pencil of hyperplane sections of X̃ and that the
birational Mukai map m11 : P11 → M11 is not invertible at [C̃].
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7.3 TheG2-variety: � = 3 and g = 4

A geometric interpretation seems plausible and it is possibly postponed to future work. It
relates to the failure of the Mukai map in genus 10. As in (14) let π : S̃ → S be the
cover induced by E and ν : S → S the desingularization map. For a general C the map
ν : C → S\Sing S is an embedding, then we set C := ν(C). Let C̃ := π−1(C) then
(S̃,OS̃(C̃)) is a K3 surface of genus 10. This suggests that S̃ embeds in the G2-variety
W ⊂ P

13 as a linear section, [23]. Now a general curvilinear section of W is not general as
a genus 10 curve. In the same way, if it is a triple cover of a genus 4 curve, it seems not a
general genus 4 triple cover.
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