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Abstract

We study several connected problems of holomorphic function spaces on homogeneous
Siegel domains. The main object of our study concerns weighted mixed norm Bergman
spaces on homogeneous Siegel domains of type II. These problems include: sampling, atomic
decomposition, duality, boundary values, boundedness of the Bergman projectors. Our anal-
ysis include the Hardy spaces, and suitable generalizations of the classical Bloch and Dirichlet
spaces. One of the main novelties in this work is the generality of the domains under consider-
ation, that is, homogeneous Siegel domains, extending many results from the more particular
cases of the upper half-plane, Siegel domains of tube type over irreducible cones, or symmet-
ric, irreducible Siegel domains of type II.

2010 Mathematical Subject Classification: 42B35, 32M15.

Keywords: Bergman spaces, homogeneous Siegel domains, atomic decomposition, bound-
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Introduction

This research monograph is devoted to the study of spaces of holomorphic functions on a class of
unbounded domains in several variables. The domains we are concerned with are the homogeneous Siegel
domains of type II, and the spaces we shall consider are Hardy and Bergman spaces. On the one hand,
we wish to give a uniform and systematic presentation of the main results developed in the literature
on several related problems on weighted Bergman spaces on homogeneous Siegel domains of type II. On
the other hand, we extend the aforementioned results from a variety of particular settings to the general
case.

Recall that a connected open subset D of C™ is said to be a homogeneous domain if the group of
holomorphic automorphisms of D acts transitively on D. Homogeneous Siegel domains of type II have
been introduced in [56] as unbounded models of the bounded homogeneous domains on finite-dimensional
complex vector spaces (cf. [73]).

The simplest example of a Siegel domain is the upper half-plane C; = R + R’ in C, which is an
unbounded domain biholomorphically equivalent to the unit disc in C by means of the Cayley transform.
Various spaces of holomorphic functions on C; can be considered, such as the Bergman space (p €]0, oo])

AP(C4) = Hol(C4) N LP(Cy),

where Hol(C,.) denotes the space of holomorphic functions on €, the Hardy space

7(C4) = { 7 € Hol€.): supl (- +)lancey < o0 }.
Yy

the Dirichlet space
D(Cy4) = { f € Hol(Cy): f' € L*(Cy) }

(modulo constant functions), and the Bloch space

B(Cy) = { f €Hol(Cy): sup Sz|f'(2)] < oo}

zeCy

(modulo constant functions).
Following [58], for p,q €]0,00] and s > 0 one may also define the weighted Bergman space

h o d
azne) ={ g emoes [+ illmn) Leoo )

(resp.
ARI(Cy) = { f € Hol(Cy): Slilg (||f(' + iy)HLp(JR)ys) <00 }

when ¢ = oo). With this definition, the mapping f — f’ induces an isomorphism of A2?(Cy) onto
Agfl(CJr)El so that one may define the space AL4(C.) for p,q €]0,00] and s < 0, as the space of
holomorphic functions on C; (modulo polynomials of degree at most [—s]|) whose derivative of order

[—s] + 1 belongs to Azf[is]H(CJr). In this way, the space A7*(C,) is canonically isomorphic to the

Hardy space H?(C, ), while A%fm(CJr) is the Dirichlet space D(C.) and A;”°°(C4) is the Bloch space

LAt least when p = ¢ € [1, 0], this is a consequence of Cauchy estimates and a suitable version of Hardy’s inequality.
In the general case, this follows from the atomic decomposition described below.

2Notice that, in Chapter [ below, the Bloch space will be denoted by 280’00(([3+), while Ag”°?(C4) will denote the
Hardy space H*(C4).

iii
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All the above spaces have been widely studied in various directions. For example, since the space
A22(C,), s > 0, is a hilbertian space which embeds continuously into the space of holomorphic functions,
it has a reproducing kernel, namely
s5(2i)25+L 1

2 (2 —w)2s L’

K (Za ’LU) =
One may then consider the integral operator (s > 0)

(Pof)(z) = | Ko(z,w)f(w)(Sw)* " du,

C+

called the Bergman projector, and prove that it induces an endomorphism of the mixed norm space

> d
LE(Cy) = { f:CL—=C:f measurable,/ (£ (- +Z‘y)||Lp(R)yS)q ?y < 50 }
0

(modification if ¢ = o0) if and only if p,q > 1 and 2’ > s+ 2. In addition, Py reproduces the elements
of AP9(C,), that is
Pof=f Vfe AP(Cy)

if and only if 28’ > s+ 14 1/ min(1,p) (p,q €]0,0]). In particular, if p,q > 1 and 25’ > s+ 2, then Py
induces a continuous projector of L24(C,) onto A21(C,).
Furthermore, holomorphy implies that the elements of AP'4(C.) are ‘quasi-constant’ (in a suitable
weak sense) on the sets
QR,j,k — [2k}RRj7 QkRR(j + 1)] ~ [QkR7 2(k+1)R],

for j,k € Z and R > 0, so that the sampling map
S: f e (Szrgw) P f (2R

where the zg ;1 € QRr.ix are arbitrary) induces an isomorphism of AP'9(C.) onto a closed subspace of
3T 2Js s +

= { A€ TN (Al < oo }
k

(modification if ¢ = 00).

Observe that the only reason why the Bergman projector Py fails to induce an endomorphism of
L29(Cy) when p < 1 or ¢ < 1 is that the elements of L24(C,) are not locally integrable in general in
those cases. In view of the preceding sampling result, this problem could be overcome ‘discretizing’ the
domain L29(C) of Py, thus findining an ‘atomic decomposition’ of A2?(C,). One may then prove that
the mapping

A: P95\ Z )\j,kKs/( . ,ZRJ"]C)(SZRyjﬁk)%,isilil/p € A:Z’q(CJr)
3k
is continuous (and has a continuous linear section if R is sufficiently small) if and only if 2¢' > s+ 1 +
1/ min(1, p).

Another interesting problem related to these spaces is that of determining the boundary values of
the elements of AP4(Cy ), that is, the limits of the functions f,: R 3 x — f(z +iy) € C for y — 07,
for every f € AP4(C,). It turns out the the boundary values of the elements of A2?(C,) span the
closed subspace of the homogeneous Besov space B; 2(R) consisting of the distributions whose Fourier
transform is supported in R. Furthermore, the so-defined mapping

B: AD9(Cy) 5 f — lim f(- +iy) € B, i(R)
y—0t ’

is an isomorphism onto its image For p = ¢ = 2, this latter result is closely related to the Paley—Wiener
representation theorems, which assert that the elements of A%?(C,.) are the Laplace-Fourier transforms
of the elements of L?(|-|72% - H!') supported in R

Finally, suitable inclusions between the spaces Ap’q(CJr) which are the counterparts of the Sobolev
embeddings between the corresponding Besov spaces B, 7, allow to characterize the dual of AL¢(C.) by
means of the sesquilinear form, for p, q €]0,00[ and s, s’ > o

APA(C4) x A§:7q,(c+) > (f,g9)— fla + iy)g(a + ay)ys T/ D+ dzd?y.

C+

3Define p’ = max(1,p)’, so that p’ = oo if p < 1 and % + ﬁ = 1if p > 1. Define ¢’ analogously.
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The preceding sesquilinear forms then induce continuous sesquilinear forms on A?9(C4) x Ag:’q/ (Cy) for
all 5,5’ € R which induce an antilinear isomorphism of A’;:’q (C4) onto AP4(C4). In particular, this
identifies the Bloch space A;>>(C,) with the dual of the (unweighted) Bergman space A} (C).

The preceding results can be (and have been) investigated in more general contexts. One first observes
that RY is the simplest example of a symmetric cone, that is, a self-dual open cone (with respect to
some chosen scalar product) not containing any affine line, on which the group of affine automorphisms
acts transitively. Then, one may consider an arbitrary symmetric cone 2 C R™ and the associated tube
domain, which is also called a Siegel domain of type I,

D =R"+if2.

In this case, D can be foliated as the union of the translates R™ + ih of the ‘Silov boundary’ or ‘distin-
guished boundary’
bD =R™

of D, that is, the smallest closed subset of 9D on which every bounded continuous function on D which
is holomorphic on D has the same supremum as on D. In this case, the weight function on {2 can be
replaced by a power of the characteristic function

0: D>z i—>/ e{h2) dp,
2

of £2 or, more generally, by a ‘generalized power function’ A%, : 2 — R%, where s € R" and r is the
rank of the cone 2. Throughout the whole work, we denote by H* the k-dimensional Hausdorff measure
and by d(-) the integration in the given variable with respect to the appropriate Hausdorff measure.
Given the symmetric, or more generally homogeneuous, cone {2, there exists a vector d € R” canonically
associated to §2 such that v := AS - H™ is the unique (up to a multiplicative constant) Radon measure
invariant under the linear transformations that preserve {2 (see Definitions and [Z12). Then, we
consider the spaces

A’s”q(D)={f€H01(D): / (||f<-+z’h>||Lp<mm>Asn<h>)qdm(h)<oo}

(modification when max(p,q) = o0). In this case, the boundary values of the elements of AP9(D) can
be naturally embedded in a space of Besov type B, Z’(bD) under suitable assumptions, even though the
corresponding (continuous and one-to-one) boundary mapping

B: AP9(D) — B,3(bD)

is not an isomorphism, in general. Observe that, when D = C,, one has natural isomorphisms
(—A)*'/2: B;q(]R) — B;;IS/ (R), where A denotes the second derivative on R. In the general case, one
may define suitable generalized Riemann—Liouville operators which induce isomorphisms B;q(bD) —
B;;Isl (bD). Nonetheless, such operators are in general far from being (fractional powers of) hypoelliptic
operators. For this reason, while in the case of Cy4 it is relatively easy to study the spaces A27(D) for
s < 0 by means of suitable Taylor expansions, in the general case the situation is far more involved (cf.,
e.g., [1]).

For what concerns sampling and atomic decomposition, they can be investigated replacing the sets
Qr.j,,r with the balls B(z; r, R) associated with some invariant distance, where (z; 1) is an R-lattice on
D. In a similar way one may also study tube domains over homogeneous cones, that is, open cones not
containing any affine line, on which the group of affine automorphisms acts transitively.

The preceding considerations may be further extended to homogeneous Siegel domains of type II,
that is, homogeneous domains of the form

D={((z2)eC"xC":Sz—P((,() e N},
where (2 is an open convex cone in R" which does not contain any affine line and

P:C"xC"—=C™
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is a hermitian mapping such that &(¢,¢) € 2\ {0} for every non-zero ¢ € C™. The homogeneity of D is
equivalent to the homogeneity of 2 and a suitable condition on @ (cf., e.g., [T4, Theorem 2.3]). In this
case, the Silov boundary

bD ={(¢,2) e C" xC™: Sz —P((,() =0}
of D can be identified with A/ = C" x R™ by means of the mapping

(€, 2) = (G2 +19(¢, C)).

As before, D can be foliated as the union of the translates D + ih, h € £2, of bD. Furthermore, N can
be endowed with the structure of a 2-step stratified group which acts holomorphically on D. The Haar
measure on A is both left and right invariant and coincides with the Lebesgue (i.e. Hausdorf) measure
H2n+m In this setting, we consider the spaces

agoo) = { g emoo): [ ([ 5o vioeo+inpac ))q/pagmmm(m@o}

(modification when max(p, q) = 00).
In this situation, though, a more prominent lack of symmetry can generate new phenomena. For
example, if {2 is the closed convex envelope of { &(¢,(): ¢ € C™ }, then, at least for p € [1, o],

HP?(D) = { f €Hol(D): sup / [f (¢ +iD(¢,¢) +ih)|Pd(¢,z) < oo}
henU
(modification if p = o0) for every neighbourhood U of 0 in {2. On the contrary, in the classical case
C; = R +iR%, a holomorphic function f on D such that sup ||f(- + iy)||Lrr) for every R > 0 can
0<y<R

281 o

grow exponentially fast at infinity. This is the case, e.g., for the function f: z — f_ll et dt =
Cy.

In addition, in order to define the Besov type spaces By, q(bD), while identifying bD with NV, one needs
to make use of the non-commutative Fourier transform associated with A, which is far less manageable
that in the commutative case. Even in the simple case of the Heisenberg groups, the characterization of
the image of the Schwartz space under the Fourier transform provided in [36] is quite complicated. Con-
sequently, working with the Fourier transform of general tempered distributions may not be convenient.

The aforementioned problems have been studied at different levels of generality. We point out that
there exists also a vector b € R", canonically associated with D, that plays an important role in the
analysis, see Definitions and We now indicate is a brief list of papers most relevant to the
present work.

e Gindikin in [37] studied the unweighted Bergman space A* 9 /2( ) and the Hardy space H?(D) for
general Siegel domains of type II, established Plancherel formulae and determined the reproducing
kernels;

e Ogden and Végi in [51] studied the spaces H?(D) for general Siegel domains of type II in connection
with the Fourier transform of the group N;

e Coifman and Rochberg in [28] studied the spaces Aé(b+2d) a/p(D), p €]0,00[, on symmetric g
Siegel domains of type II, and investigated atomic decomposition;

e Ricci and Taibleson in [58] established almost all the results considered in the discussion above for
the spaces A21(C,);

e Békollé and Temgoua Kagou in [13] studied the spaces ALP(D), p € [1, oo[, on homogeneous Siegel
domains of type II, and investigated the properties of the Bergman projectors;

e Bekolle in [6] studied the spaces A% (D), p €]0,1], on irreducible symmetric Siegel domains of
type II, and characterized their duals;

e Bonami in [I7] studied the spaces A% (D), p,q € [1,00], on irreducible symmetric tube domains,
and SLEveyed results concerning the boundedness of the Bergman projectors and the boundary
values

4See Definition [ If D is symmetric, then it is also homogeneous.
5Here, and in the rest of the paper, 1, == (1,...,1) € IN".
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e Békollé, Bonami, Garrigos, Nana, Peloso, and Ricci in [8] studied the spaces AL (D), p,q €
[1, 00[, on irreducible symmetric tube domains, and investigated their atomic decomposition and
the boundedness of the Bergman projectors;

e Bekolle, Bonami, Garrigos, and Ricci in [9] studied the spaces A% (D) on irreducible symmet-
ric tube domains and investigated their boundary values and the boundedness of the Bergman
projectors;

e Ciatti and Ricci in [27] studied the boundedness of the unweighted Bergman projectors on un-
weighted Bergman spaces on Siegel domains of type II over (not necessarily homogeneous) polyhe-
dral cones;

e Debertol in [31] studied the spaces AL:4(D) on irreducible symmetric tube domains and investigated
their boundary values and the boundedness of the Bergman projectors;

e Nana and Trojan in [50] studied the spaces AZP(D), p € [1,00] on irreducible symmetric tube
domains, and investigated the boundedness of the Bergman projectors;

e Nana in [49] studied the spaces AP4(D), p,q € [1, 00[, on homogeneous Siegel domains of type 11,
and investigated the boundedness of the Bergman projectors;

e Békollé, Ishi, and Nana in [I2] studied the spaces AZ?(D) on homogeneous Siegel domains of type
II, and investigated their atomic decomposition;

e Békollé, Gonessa, and Nana, in [10] study the spaces A2'9(D), p, q € [1, 0c], on irreducible symmetric
tube domains, and investigate their atomic decomposition and complex interpolation spaces;

e Christensen in [26] studied the spaces ALy’ (D), p,q € [1,00], on symmetric tube domains, and
investigated a different kind of atomic decomposition thereon;

e Arcozzi, Monguzzi, Peloso, and Salvatori in [4] studied the spaces A22(D) on the symmetric Siegel
domains of type II associated with the cone R’ , and established Paley—Wiener theorems;

e Békollé, Gonessa, and Nana in [I] studied the spaces A29(D), p,q € [1, o0, on homogeneous Siegel
domains of type II, and investigated the boundedness of the Bergman projectors

The preceding description of the available literature (which makes no claim to be exhaustive) should
suggest how rarely the general study of the spaces AZ9(D), p,q €]0,00], s € R", on homogeneous
Siegel domains of type II has been undertaken. This is one of the main objects of the present research
monograph.

Before describing the structure of each chapter, we shall briefly discuss an issue concerning the notion
of a weighted Bergman space. In the literature, two different interpretations of the notion of a weight
appear. The first one is that employed in [58], and is the one we described above and shall consistently
adopt in Chapters[3land [l In this case, the weight A$, acts as a multiplier of the function and not of
the measure. With this convention, the space of boundary values of A?*4(C_.) embeds canonically in the
classical homogeneous Besov space Bp a(R).

The second one is that employed in [I3] [6] 7] 8 9], 50, 49| 12| 10, 26]. In this case, the weight A%,
acts as a multiplier of the measure, and the resulting space A2?(D) is then equal to A(s+b/2)/q(D),
where b € R" is as above. Even though this choice is quite common in the literature, it still has
some drawbacks. On the one hand, it fails to include the spaces AL>°(D) for s # 0. On the other
hand, it suggests considering only the Bergman projector Ps p/2)/2 on AL(D), thus ignoring the more
general pattern that appears taking into account the full scale of the projectors P/, as (more or less
explicitly) done in [58]. The aforementioned issues have also undesirable (minor) consequences, such
as: the inclusions between the spaces A27(D) are usually described in terms of the growth of the LP
or L*-norms of the function on the translates of bD, since most of the spaces A2>°(D) are missing.
The correspondences between the indices p,q,s are more cumbersome in some situations since, e.g.,
By, §s+b/ 2/ 9(D), while the Riemann-Liouville operator corresponding
(D) (for s’ sufficiently large).

AP4(D) has boundary values in

to the generalized power function A%, on 2" maps AL4(D) into ALY

6Notice, though, that when D is not a tube domain and p # g, then the definition of AL'?(D) adopted in [49} [TT] is
different from ours.
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For these reasons, we preferred to follow [58] and to consider the weight as a multiplier of the function
and not of the measure. We shall only depart from this choice in Chapter [I, whose results are mostly
propaedeutical to the chapters which follow.

In Chapter IIvae shall first introduce the notion of a Siegel domain D of type II, and define the group
structure on its Silov boundary bD. We shall then briefly indicate some basic facts about the Fourier
transform on bD, and then apply this machinery to the study of the weighted Bergman spaces Aﬁ’q(D)7
defined as

q/p
ARU(D) = {f € Hol(D): /Q (/le(C,H@'@(C,O +z’h)|”d(C,w)) dp(h) < 00}

(modification when max(p, q) = co), where p is a positive Radon measure on {2 satisfying some minimal
assumptions.

This leads to a characterization of A29(D) by means of the Fourier transform (cf. Propositions
and [[36), and to the determination (up to a Fourier inversion) of the reproducing kernels of the Hardy
space Ai"’o(D) and of the weighted Bergman space A3’2(D). We shall also prove some results on
the inclusions between the various weighted Bergman spaces (Proposition [[22) and a density result
(Proposition [[L29). Because of the general nature of the ‘weight’ i, though, these results are only ‘local’
in a suitable sense, and will only be extended to global results by homogeneity, in Chapter

The results concerning the use of the Fourier transform of A/ are basically a simplified version of [51].
The main novelty here is the generality of the ‘weight’ u, which can lead to some new phenomena in
some cases: for example, it may happen that, given f € AZVQ(D) and h € £2, the function f(- +ih) does
not belong to the Hardy space Aivoo(D). This is the case, e.g., when D = C; and du(y) = e~ ¥ dy.

In Chapter 2l we shall introduce the notation on homogeneous Siegel domains which we shall consis-
tently employ in the chapters that follow, and we shall prove several technical lemmas. In this chapter
we shall introduce our notation for the ‘generalized power functions’ A%, and A%, on 2 and 2’ resp. We
shall prove some results on the gamma functions on {2 and {2’, most of which are already present in the
literature (cf. [37, 50]). We shall then introduce our notation for the Riemann-Liouville operators and
prove some basic facts about them. Finally, we shall recall some basic facts on the canonical invariant
Kéhler metric and the invariant measure on D, and we shall prove a general version of ‘Koranyi’s lemma’
(Theorem [242)), extending [12l Theorem 1.1]. This result is of fundamental importance to deal with
atomic decomposition. We shall then define suitable lattices on D and {2 and prove the quasi-constancy
on invariant balls of several important functions on D, {2, and (2.

In Chapter B we shall introduce the weighted Bergman spaces A2?(D) on the homogeneous Siegel
domain D of type II and study in full generality some of the problems we presented for C,.. This study
will be completed in Chapter We shall then prove inclusion results between the Bergman spaces
(Propositions and B7), and density results for their intersections (Proposition B.d). We shall then
determine an explicit formula for the reproducing kernel of the Bergman space A22(D) (Proposition[B.1T)
and determine its reproducing properties on other spaces (Proposition3.13]). We shall then briefly develop
Paley-Wiener theorems for A22(D), extend them below the critical index following [4] (Proposition 3.17),
and determine an analogue of the classical Dirichlet space in this context (Proposition BIg]).

Next, we shall prove some results on sampling (TheoremsB2Tland B:22) and on atomic decomposition
(Propositions and 331 and Theorems and B33)), following [58] B]. Optimality is achieved in
some situations, even though the general picture is still unclear. We then apply the preceding results to
characterize the dual of AZ?(D) under various assumptions (Propositions[3:36land B38]), following [58] §].

In Chapter @}, we shall introduce the spaces of Besov type By ,(bD) and develop some basic facts of
the associated theory, such as duality results and the compatibility with the Riemann—Liouville oper-
ators previously defined, which play the same role as the fractional Laplacian for homogeneous Besov
spaces. We shall not delve deeply into the theory of Besov spaces (thus proving results on multiplication,
convolution, Fourier multipliers, or interpolation), since our main focus is in their connection with the
weighted Bergman spaces.

In Chapter Bl we shall complete the study of weighted Bergman spaces started in Chapter We
shall study the boundary values of the elements of A2:2(D) (Proposition 4 and Theorem BI0), fol-
lowing [9]. We shall then prove the equivalence of several conditions concerning the boundary values of
the spaces A2'9(D), their atomic decompositions, and the boundedness of the Riemann-Liouville opera-
tors (Corollary B.16). Finally, we shall study the boundedness of the Bergman projectors, following [9]
(Theorem [(.25).

In the Appendix [A]l we shall collect a few results and notation on mixed norm spaces. After recalling
the definition of the mixed norm space LP?(u,v), for p,q €]0, 0], we shall characterize its dual in two
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specific situations (Propositions [AT0, and [ATT]) and compare LP4(u,v) with the space L9(u; LP(v))
(Propositions [A7] and [AL8). For this latter comparison to make sense, we shall briefly recall the def-
inition and some properties of the Bochner spaces LP(u; Z), where Z is a locally bounded F-space
(cf. Definition [AT]).

We shall adhere as far as possible to the commonly adopted notation. Possible exceptions to this
rule are explicitly defined at their first occurrence and then listed in the Index of Notation, to which the
reader is referred for any unspecified piece of notation.

We conclude the introduction with some notational remarks. We first notice that the spaces ALP(D)
are the (‘pure norm’) weighted Bergman spaces, the unweighted Bergman spaces if s = —d/q. In order
to make the notation as uniform as possible, we shall denote by Af> (D) the Hardy spaces H?(D). The

A\?Bz+d)/2 (D), while the (generalized) Bloch space will

(generalized) Dirichlet space will be denoted by
be denoted by A3 (D)

For a better treatment of the duality between the various weighted Bergman spaces A2?(D), it will
be convenient to introduce some smaller spaces Ag:g (D), which are defined by some vanishing conditions
‘at infinity.” In particular, A24(D) = AL§(D) when p,q < oo, so that the difference between AL?(D)
and AZ'((D) only matters when either p or ¢ equals oo.

In order to deal with both AZ4(D) and AL{(D) (and in similar circumstances), we shall make

considerable use of statements of the form
‘Assume that A (resp. B if C') holds. Then A’ (resp. B’ if C”) holds,’

where A, B, C, A’, B’, and C’ denote suitable properties. We believe that these statements should be
clear from the context! Sometimes, C or C’ may be empty. We hope that this shortened notation be
of help to understand the various statements.

Finally, we remark that we shall not denote explicitly the measure in integrals and Lebesgue spaces
when it reduces to a suitably normalized Lebesgue measure.

"The element s’ of IN" is relevant only for the definition of A\?l;2+d)/2 o (D) and A\SOS?O(D) as sets, as well as for the

precise determination of their norms. As a matter of fact, changing s’ gives rise to canonically isomorphic spaces.
8More precisely, the above statement is equivalent to the following lengthier one (expressed in symbols for simplicity):

‘A = A)N[((AN-C)V(BAC)) = (A’ A=C")V (B AC"))]



Chapter 1

Elementary Theory

In this chapter we shall introduce our main notation on Siegel domains of type II over open convex
cones not containing affine lines. We begin with an open convex cone 2, not containing any affine
line, in a finite-dimensional real vector space F' of dimension m, and an {2-positive hermitian mapping
®: FE x FE— F, where F is a finite-dimensional complex vector space of dimension n. One may wonder
why E and F are not directly identified with C™ and R"™, respectively, by a suitable choice of coordinates.
On the one hand, this would cause some notational issues, since we shall consider on F several complex
structures other than the original one, giving rise to different spaces Fy. On the other hand, we believe
that this choice marks more clearly the different roles played by E and F', which might not appear
identifying F x Fg with C"*™ (we denote by Fg the complexification of F, that is, F ®g C).

Denoting by D the corresponding Siegel domain, we observe that the action of the Silov boundary
bD on D stems from a 2-step nilpotent group structure on the ambient space E X Fg which turns D in
a semigroup.

In Section [[.2] we recall some basic facts on the Fourier transform on N and establish some notation.
See [51] for a more detailed study of the Fourier transform on A and for a direct comparison of the
Bargmann and Schréodinger representations. We shall content ourselves with a brief exposition of the
main properties of the Bargmann representations, which are particularly well adapted to the study of
Siegel domains of type II.

In Section [[3] we study a provisional version of the weighted Bergman spaces we shall study in
Chapter As we mentioned in the introduction, in this chapter it will be convenient to choose a
positive Radon measure p as the weight. Nonetheless, the role of p will be of importance only when
dealing with the spaces A%9(D) (cf. Section[IF), for which the Plancherel formula allows a more detailed
treatment. For other spaces, we shall only deal with ‘local’ properties of such spaces, for which the role
of p is virtually irrelevant (provided that it satisfies some minimal requirements).

In Section [[L4] we apply the results of Section to the study of the spaces Ai’q(D). In particular,
by means of Propositions and[L36] we shall characterize the spaces A%9(D) by means of the Fourier
transform, thus establishing some Paley-Wiener theorems. These results will then be applied to find the
reproducing kernels of the Hardy space Ai*OO(D) (Corollary [[39) and of the weighted Bergman spaces
A%2(D) (Corollary [LAT)). While the procedure to find Corollary [L33 is essentially the same as the one
of [51], Corollary [[41] seems to be new, at least in the stated generality.

1.1 General Definitions

In this section we introduce the notation we shall adopt for Siegel domains of type II, the associated
boundary, the group structure of the latter, and its action on the domain.

Denote by E a vector space over C of finite dimension n and by F' a vector space over R of finite
dimension m > 0[] Let £ be an open convex cone with vertex 0 in F' and not containing any affine lines
(that is, such that its closure {2 is proper). Denote by 2’ the dual cone of (2, that is, the interior of the
polar of £2 in F’. More explicitly,

Q2 ={XeF:(A\h)y>0 Yhe\{0}}.

INotice that we do not impose the condition n > 0, so that our analysis applies to tube domains as well. The condition
m > 0 is nonetheless necessary to avoid trivialities.
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We shall endow F with the (partial) ordering induced by 2, so that ‘z < y’ means ‘y — x € 2’ for every
z,y € F.

Throughout the whole presentation, we shall denote by (-, -) a bilinear pairing and by (-|-) a
sesquilinear pairing, without explicitely indicating the spaces on which these pairings are defined. Such
spaces will be clear from the context and we believe that such abuse of notation will cause no confusion.

Let &: E x E — F¢ be a positive non-degenerate hermitian mapping, that is:

1) @ is linear in the first argument;

D(¢,¢") = 2(¢', ) for every (, (' € E;

@ is non-degenerate;

2

(1)
(2)
3)
(4) ®(C) = D((,¢) € 2 for every ( € E.

Observe that, assuming conditions (1), (2), and (4), condition (3) is equivalent to the following one:
(3") @(¢,¢) # 0 for every non-zero ¢ € E.

Definition 1.1. Define the Siegel domain of type II associated with the cone {2 and the mapping @ as
D:={((,z) e ExFc:8z—-P() e N},

and denote by
bD = {((,2) € Ex Fg: Sz —9(¢) =0}

its Silov boundary.

If E={0}, D is in particular called a Siegel domain of type I or a tube domain. .

The domain D is said to be homogeneous if the the group G(D) of biholomorphisms of D onto itself
acts transitively on D.

Moreover, D is said to be symmetric if for every ({,z) € D there exists ¢ € G(D) such that ¢ o ¢
is the identity and (¢, z) is an isolated fixed point of ¢. Finally, D is said to be irreducible if it is not
holomorphically equivalent to a product of two Siegel domains.

Remark 1.2. We explicitly point out that, according to our Definition [T} the class of Siegel domains
of type II includes the class of Siegel domains of type I, that is, we allow the space E to reduce to
{0}. There is no common agreement in the literature on this point. For instance, in [37] and [28] the
same convention is adopted, the references [6] and [12] implicitly adopt it too. On the other hand, the
works [18] and [30] assume that F # {0 } and therefore a domain of type II cannot be of type I as well.

We make the choice of including the tube type domains in the definition of Siegel domains of type II
for a practical reason. All our results are proved in both cases E # {0 } and F = {0 }, unless explicitly
indicated, and it becomes simpler to deal with a single class of domains.

We recall that if D is symmetric, then it is also homogeneous. In addition, recall that bD can be

characterized as the smallest closed subset B of D such that sup|f| = sup|f| for every bounded continuous
D
function f: D — C which is holomorphic on D (cf. [A7, Lemma 2.2]).

The proof of the following result is straightforward and left to the reader. Notice that it both endows
bD with a group structure and provides a holomorphic action of bD on D by left translations, as we shall
see below.

Lemma 1.3. The mapping -: (E x F¢) x (E x F¢) = E x Fg, defined by
(€ 2) - (¢,2) = (C+ {2+ 2" +2i0(C, ()

for every (,¢" € E and for every z,z € Fg, endows E X Fg with a nilpotent (real) Lie group structure
of step 2 with centre { 0 } x Fe. The identity is (0,0) and

(¢, 2)7h = (¢, —= + 2i®(C))
for every (¢,z) € E X Fg.

Notice that the derived subgroup [E x Fg¢, E x F¢| of E x Fg is the vector space generated by
{0} x SP(E x E), which is contained in, but not necessarily equal to, {0} x F.



CHAPTER 1. ELEMENTARY THEORY 3

Definition 1.4. We endow F x Fg with the product defined in Lemma [[3]

Observe that, if (¢, 2),({’,2') € E x Fg, then
S(z + 2" +2i0(C, Q) — (¢ + ') =Sz = P(¢) + 3z — ((),

so that
D-D,D-DCD, D-DCD, and bD -bD C bD.

Thus, D, D, and bD are subsemigroups of E x F¢ and act analytically on both D and D. In addition,
bD~1 C bD, so that bD is a subgroup of E x Fg.

Definition 1.5. Define A as E x F, endowed with the group structure given by the product

(¢ 2)(¢a) =+ e+ 2" +230(¢, ().

Observe that the mapping
N3 (¢ ) = (G +i9(C)) € bD

is an isomorphism of Lie groups.

Definition 1.6. For every f: D — C and for every h € (2, define

i N3 (Cx)— f(¢x+iD(C) +1ih) € C.

1.2 The Fourier Transform

In this section we briefly discuss the Fourier transform on the 2-step nilpotent group N. Since we
are mostly interested in the interaction of the Fourier transform with weighted Bergman spaces, we shall
make use of the Bargmann representations, which are particularly well suited to the purpose.

Definition 1.7. Define, for every A € F’,
Ba: ExE3(C.¢)— (ASB((,C)) € R
and
W ={XeF':3(+#0such that B\(¢,-)=0}.
Observe that W is a proper algebraic variety of F’ and that W = () if and only if £ = {0}. In

addition, 2" N W = () since B, is the imaginary part of the non-degenerate scalar product

ExE> ()~ (A, D¢, ¢))

for every A € (2 (here, \¢ = A ® I¢).

We fix a scalar product on the real vector space E X F' for which ¥ and F' are orthogonal and for
which the multiplication by i is a skew-adjoint endomorphism of E. Observe that the Hausdorff measure
H2 ™ = H2P QH™ is both left- and right-invariant on A, so that we may choose it as the Haar measure
on N. We endow E and F, and consequently F’, with the corresponding scalar products and Hausdorff
measures.

Definition 1.8. For every A € F'\ W, define Jy € GL(FE) so that

(Ac, @(¢,i¢)) = (¢IIxnC)

for every (,(’ € E.
In addition, define the (absolute value of the) Pfaffian of Jy (considered as an endomorphism of the
real vector space underlying F)

|Pf()\)| = |det@(J>\)|,

where detg denotes the complex determinant, and set

Ay ={A€F :VC£0 (A\DC)>0}.



CHAPTER 1. ELEMENTARY THEORY 4

Observe that
BA(¢, ¢) = R(C|IA()
for every ¢,¢’ € E. In addition, the properties of ¢ show that J = —Jy for every A € F'\ W, and that
—iJ)y is positive if A € Ay, in which case Jy = i|.Jy|. Further,
[PEV)| = dete(|Ja]) = |detr(Jx)]'/?
for every A € F/\ W, and |Pf(\)| = 1 for every A € F’ if and only if £ = {0 }. Finally, A, = F”’ if and
onlyif E={0}.

Definition 1.9. For A ¢ W, define
JL =[x

and let E be the vector space E endowed with the complex structure induced by J3, i.e.,

(z+1iy) A ¢ = a( +yJiC

for every z,y € R and for every ( € Ej.
Define

PA(C, () = SP(ILC, ) +i99(C, ¢)
for every (,(’ € E.

Notice that @, is an R-bilinear form on Fy which is C-linear in the first argument, and that (A¢, @)
is hermitian and positive. In addition, A € Ay if and only if A € W and J{ = i or, equivalently, & = @,.
This is also equivalent to E) = FE.

Observe, in addition, that J} and ¢ commute, so that Jj is a C-linear endomorphism of E. Since, in
addition, Jf = —I, we see that E is the direct sum of two orthogonal subspaces Ey  and E) _ such
that J{ = +i on E 1. Then, E\ = E) 4 if and only if A € A4.

Now, take A ¢ W, and observe that A/ ker A is isomorphic to the (2n + 1)-dimensional Heisenberg
group (interpreting R as the 1-dimensional Heisenberg group, by an abuse of language). Therefore,
the Stone—von Neumann theorem (cf., e.g., [34, Theorem 1.50]) implies that there is (up to unitary
equivalence) one and only one irreducible unitary representation 7y of N such that 75 (0,z) = e~ iha) T
for every x € F. This representation is characterized by the fact that it possesses a cyclic unit vector
whose corresponding diagonal coefficient is the function

(C,2) o o= IO N30 (e =5 ()

(cf. [51] and 5l Section 2] for more details). We can realize 7y as follows.

Definition 1.10. Define Hy := Hol(Ey) N L?(vy), where vy = e 2220} . 3427 and where Hol(FE))
denotes the space of holomorphic functions on Ey. Then, define

A (G, @) (w) i= eI O=0 Oy (o — ()
for every ¢ € Hy, for every w € FE), and for every ((,z) € N.

The representations 7y are also known as the Bargmann representations.

Definition 1.11. For v € E), define

Oy 0t = 5 (0 —i07,)1(0)

for every R-differentiable function ¢ on Ej, so that g, ¥ = 9,3(0) for every ¢ € Hol(E)). In particular,
OE, v is an element of the complexification of the real tangent space of Ey at 0.

Observe that dg, » = 0, if v € E) 4, while O, , = 0p, if v e Ey _.
Proposition 1.12. The following hold:

e T is an irreducible continuous unitary representation of N' in Hy;
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20 [PE(N)]

T

® ey = XE, 15 a unit vector in Hy, and

<7T>\ (ga $)€A,o |e>\,0> = e(/\c,—im—qu@»

for every (¢,x) € N, where {-|-) denotes the inner product in H);

o for every v € Ey, for every ¢ € C(my) and for every w € E).

dma (95, 0)9 (W) = —0vp(w)

and
dmr(OE, 0) Y (w) = 2(Ac, Pr(w, )Y (w).

Cf. [51] for more details on the Fourier transform on A/, and for a connection between the represen-
tations my and the Schrodinger representations employed, e.g., in [5].

The unit vectors ey o and the relative orthogonal projectors are of particular importance in the study
of holomorphic functions, as we shall see in Proposition

Proof. Straightforward computations show that 7y is a unitary representation of ' in Hy. Continuity
is established by means of |75, Theorem 16.28]. Further, arguing as in [66, Lemma 5.1], one may prove
that 7y is irreducible. In order to prove that

(mA(C @)eroler,o) = etrem o)

we observe that for all w € E
A Ba(w)) = ||Ix] 2w,

Now, for (¢,x) € N, with some obvious change of variables we see that
<7T)\(<, )6)\ 0|6/\ 0> = e<)‘f —iz—Px(¢ %/ 2(A¢, P (W) =P (w,C)) dw
_ e()\m‘,—zz——é)\(g» 2n |Pf | / 2(Ac,Pr (w—C(/2)—iSPy (w,()) dw

— oo iz—3Px(C))

=3 w]?—iR{w || x| 712 IAC) d
<%>/e “

— e{Ae,—iz—3B5(0)) o= 51121/ 2 TN

_ e(kc,—iz—%‘px(C))e—%(>\145A(C)>,
recalling that [Pf(\)| = detgr(|Jx|'/?), and appling 40, Theorem 7.6.1]). In particular, taking (¢,z) =

(0,0), we see that |lexollm, = 1.
The last assertions follow easily. O

Even though we have not fully described the dual of A/ (when F # {0 }), we are now able to present
the associated Plancherel formula. Cf. [5I] for more details and a precise interpretation of the formalism
of direct integrals.

Definition 1.13. We denote by .Z(H)) the space of endomorphisms of H), and by .Z?(H,) the space
of Hilbert-Schmidt endomorphisms of Hy. For A € F/ \ W and f € LY(N), define m\(f) € £ (H,) by
setting

o= [ eomcaysdc).
for ¢ € Hjy.
Corollary 1.14. The mapping
L'N)s f(m(f))e ] <H)
AEF\W
induces an isometric isomorphism

n—m 57

P: LAN) —

L2(Hy)|PE(N)|dA.

antm AW
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Proof. The assertion follows from [0l Section 2|, [51, Theorem 5.2|, and Proposition [[T2 when E # {0 },
from standard Fourier analysis otherwise. [l

Definition 1.15. We denote by P, ¢ the self-adjoint projector of Hy onto the space generated by ey o,
with the notation of Proposition [[LT2]

Observe that Py o(Hy) = ﬂveEk kerdmy(0E, v) for every A € F/'\ W.

In the following proposition, we show that the Fourier transform of holomorphic functions is relatively
simple. It does not say anything when F = {0 }.

Proposition 1.16. If f € Hol(D), h € 2 and f, € LY(N) + L?*(N), then

() = xa. (M7a(fn)Pao
for almost every A € F' \ W.
Cf. |57, 4] for the case 2 = R .

Proof. Take v € E and let Z, be the left-invariant vector field on NV which induces dg ,, at 0. Then,

Zofn(Gx) = Op|w = f((¢ @ +iD(C)) - (w,ih)] =0

since f is holomorphic and bD acts holomorphically on D.
Fix a representative 7 of the ‘mapping’ A\ — mx(f1), and observe that there is a negligible subset N
of F’, containing W, such that
7(A)dmA(Op,0) =0

for every A € N and for every v in a countable dense subset of F, hence for every v € E by continuity.
Then, Proposition [[L12 implies that
T(A) <>‘a qf)( ! ,’U)> =0

for every A € A4\ N. By the arbitrariness of v in E, it follows that 7(\) vanishes at every (holomorphic)
polynomial on E which vanishes at 0, hence at every element of Hy which vanishes at 0 (argue as in [34]
Theorem 1.63]). Therefore,

7(A) =7(A)Pxro

for every A € Ay \ N.
If, otherwise, A ¢ Ay U N, then we may take a non-zero v € E) _, so that

T(N)Oy = —7(A\)d7mr(0p,,») =0

by Proposition [[L.T2l Since the image of 9, contains the set of (holomorphic) polynomials on E), which
is dense in H) (argue as in [34] Theorem 1.63]), this implies that 7(\) = 0. O

1.3 Bergman and Hardy Spaces

In this section we shall introduce a provisional definition of weighted Bergman spaces. Most of the
results proved in this section are relative to ‘local’ properties of such spaces. For this reason, we shall

also introduce the spaces AZ"{OC(D) for a better treatment of such ‘local’ properties.

We observe explicitly that the spaces AL°°(D) defined below are simply the Hardy space H?(D) if
Supp (p) = £2. We keep the general notation for the sake of uniformity.

We refer the reader to the appendix for an explanation of the notation concerning Lebesgue spaces.

Definition 1.17. Take a positive Radon measure p on 2, and define, for p, ¢ €]0, 4+00],

APA(D) = { f € Hol(D): /Q||fh|\qu(N) dp(h) < oo}

endowed with the topology associated with the distance

min(1pq) min(1,p,q)/q
(o) oo 15 = a5 = ([ 150 = anlly )



CHAPTER 1. ELEMENTARY THEORY 7

(modifications if ¢ = 00). We define also

APloo(D) = { f € Hol(D): [h > || full o) € Lise(n) }

endowed with the corresponding (metrizable) topology. We define A7'{(D) and A}'f (D) as the spaces

of f € Hol(D) such that the mapping h — fj, belongs to L (p; L(N)) and L. (15 L (N)), respectively,
endowed with the corresponding topology (cf. Definition [A.2).

Here and throughout the paper, we denote by L§ the closure of C,. in L, so that L§ = L if £ €]0, co],
andLézCoifﬂzoo
Remark 1.18. The measure pu can be replaced by any positive Radon measure with the same support

without altering the spaces AP>°(D) and A} (D).
Indeed, the mapping

@: b= | fallorvy = Sljl(pHXth”LP(N)a

where K runs through the set of compact subsets of A/, is lower semi-continuous on (2. Hence, the set

{he2:p(h) >t} is open in (2 for every t € R, so that ||[xc@| =) = sup ¢ for every closed
Supp(xc-)
subset C' of 2. In addition,

Supp (1) NU C Supp (xc - 1) € Supp (1) N C

if C' is the closure of an open subset U of (2.

The following lemma is taken from [51, Lemma 8.1]. The functions ¢(*) are very useful when arguing
by approximation.

Lemma 1.19. Take o € }O, % [ There is a family (g(s))€>0 of holomorphic functions on D such that
the following hold:

(1) there is a constant C > 0 such that |g(8)( ¢, z)| < e=sO (ISP +12|" +[h|%) for every e > 0, for every
h € 2, and for every (¢,z) € N;

(2) for every p €]0,00] and for every ¢ > 0 there is a constant C., > 0 such that Hg,(f)HLp(N) <
C&pe_ECW for every h € 2;

(3) ¢ ) 1 as e — 01, locally uniformly on D.

In particular, AP’? (D) # 0 for every p,q €]0, o0].

1,0,loc
Proof. Take a basis A1, ..., A, of F’ contained in 2’. Observe that, if ((,z) € D, then
S((Aj)es 2) = (A, 82 = D(C) + 2(Q)) = (A;,32 — 2(()) >0

since () € 2. Therefore, for every £ > 0 we may define
g¥: D> (¢ 2) Hexp(fsz )GC

where the complex power to the exponent « is the unique holomorphic function on €\ (—iR4) which
induces the mapping x — x“ on R’ . Thus, the above remarks imply that

199(¢, )] < exp (= £ cos(am) D_[((A)e, 2)|°)

j=1

for every ((,z) € D, where cos(am) > 0. Therefore, if h € (2,

95 (Ca) < exp (e CO;/Q 3% 12 s 1) + (g, 2(O)))

for every (¢,z) € N, since

(), +i@(C) +ih)[* > 2772(I(Az, 2)] + (g, h) + (N, ()
> 27230 (|0, 2) |+ (g, b)Y+ (O, B(0)7) -
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Set C' = cOS(om)Q*a/?ga*l_ Then, for every p €]0, 0o] there is a constant Cép > 0 such that
i e < Copexp (=€ 3200, b))
j=1

for every h € £2. The assertion follows easily. O

Lemma 1.20. Tuke a € |0,4], (g(s))€>0 as in Lemma 19, p,q €]0,00] and f € AP? (D). Then,

1,0,loc
g f converges to f in AZ:%,]OC(D) for e — 0T,

Proof. Assume first that ¢ < co. If p < oo, then the dominated convergence theorem shows that
tim (g7 fu = fall ooy = 0
e—0+
for every h € 2. If, otherwise, p = oo, then f5, € Co(N), so that ||g}(f)fh — fullLee vy = 0 for e — 07,

Thus, the dominated convergence theorem shows that ¢(¢) f converges to f in AZ’% loe(D) for e — 0.
Now, assume that ¢ = co. Since the mapping

Supp (1) > h v+ fr € LP(N)

is then continuous, the f, stay in a compact subset of LP(N) as h stays in a compact subset of Supp ().
Now, the endomorphisms ¢ — ¢(&)¢ of LP (N), as e runs through R , are equicontinuous, and converge
pointwise to the identity for € — 0. The assertion then follows from [20, Theorem 1 of Chapter X, §2,
No. 4]. O

The following result, which is a simple consequence of the subharmonicity of |f|?, is of fundamental
importance in the study of weighted Bergman spaces.

Lemma 1.21. Take f € Hol(D) and p €]0,00[. Then,

FCoP < f £ )P A, 2)

Bexre((¢,2),p)
for every (¢,2) € D and for every p > 0 such that Bexr.((¢,2),p) € D.
Proof. This follows from [45, Theorem 2.1.4 and Corollary 2.1.15]. O

The following result is a sort of ‘local’ version of the inclusions between the various weighted Bergman
spaces we shall prove later (cf. Propositions and B7). It still has some relevant consequences.

Here and throughout the paper, if v is a Radon measure and f € L] _(v), we shall denote by f-v the
measure with density f with respect to the measure v, so that (f-v)(B) = fB f dv for every Borel set B.
If § is a subset of L, (v), we shall define §-v = { f-v: f € § }. Finally, we shall define p’ := max(1, p)’

for every p €]0, 00|, so that p’ = oo if p €]0,1] and 1—1) + 1% =1ifpe[l, o0

Proposition 1.22. Take p1,p2,q1, g2 €]0,00] such that p1 < p2 and q1 < g2, and assume that x o -H™ €
qul

lac() - . Then there are continuous inclusions

APl#h (D) gAP27Q2(D) and Aphth (D) gAp21q2 (D)

w,loc w,loc 1,0,loc w,0,loc

The proof is based on [58 Proposition 2.2].

Proof. Denote by p the density of x - H™ with respect to p, and define ¢ := min(1, p1,¢1) to simplify
the notation. Define
i Ex Fx 25 (Cah)— (Ca+id(C) +ih) € D,

and observe that ¢ is a bijection of E x F' x {2 onto D. Observe that there are Ry > 0 and C’ > 0 such
that, for every R €]0, Ro] and for every h € {2,

Bexr.((0,ih), R/C") € o(Ba(0, R) x Br(h, R)) € Bexr.((0,ih), C'R).

Therefore, Lemma [[2T] implies that there is a constant C'r, > 0 such that

£(0,iR)[ < Cr, f f (¢ 2 (¢, ') AR’
BF(h,R) BN‘(O,R)
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for every h € 2 and for every R €]0, Ry] such that By« r.((0,ih),C'R) C D. Hence,
fCar<Crf o fCa el )
Br(h,R) J Brr(0,R)

for every (¢,z) € D and for every R €]0, Ry such that Bryr.((0,ih), C'R) C D, where h = 3z — &(C).
Thus, applying Minkowsky’s integral inequality, the right invariance of the measure on N and Jensen’s
inequality,

min(1, min(1,q1)/¢
ARl = 11l o ear
min(1,q1)/¢
< (cmf s dh’)
Bp(h,R)
min(1,q1)/4 min(1,q1
ORI Il
Br(h,R

In addition, the left invariance of the measure on N, Holder’s inequality, and Jensen’s inequality show
that

TR (AN v

CRO ][ /4 1
< Trull7e dh
( ey AL e

min(1,q1)/¢ 1 min(1,q1
<Ot —mes e .
Cl P1 Br(h,R)
R

min(1,q1)
I3

where C, == H?"t™(Bar(0, R)). Therefore, there is a constant Cp, 4, ,.r > 0 such that

! 1
Hth?’l’;lEqu Cp1.a1.p2.R ]{3 ”fh’ ||ILH;T(Nq)1) dn’
F

R

Cpl q1,p2,R / min(1 Q1) / /
= e fh’ Py o(h") dp(h).

Now, let K be a compact subset of 2, and take R €]0, Ry] in such a way that Bry r.((0,ih), C'R) C D
for every h € K. Then, setting
Bp(K,R) = | Br(h,R)
heK

and

1/ min(1,q1)
C — (K)l/q Cpl#]h}’mRHXBF(K,R)QHLQQ ()
P1,41,P2,92, R 12 ,Hm(BF(O, R)) ’

by means of Holder’s inequality we see that

1/Q2
(108 ey ) < 00 sl
K heK

1/‘11
< Cpy,g1,p2,2,R (/ Hqule(/\/) du(h)> ;
Br(K,R)
so that the first assertion follows.

For what concerns the second assertion, take f € AP%% (D) and (¢()).~0 as in Lemma [T Then,

1,0,loc
Lemma [[20 implies that ¢(®) f converges to f in APLSL(D) as € — 07, hence also in Apzl’gf: (D). Tt will
then suffice to prove that ¢(¢) f € AP (D) for every € > 0. Let us first show that g fh € LI (N) for

every h € §2. The assertion is clear if po < co. Otherwise, the assertion follows from the fact that fnis
continuous and bounded. If g3 < oo, this is sufficient to conclude. Otherwise, we have to show that the
mapping

Supp (1) > h > gi fu € L7 (V)
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is continuous. If pa < oo, it suffices to observe that f is continuous on D and that the functions g,(f) iy

as h runs through a compact subset K of D, are uniformly bounded in absolute value by an element of

LP2(N) (e.g., |99 sup || ful o (n))- When ps = 0o, we observe that the f;,, as h runs through a compact
heK

subset K of D, are uniformly bounded and equicontinuous. Hence, the g}(f) fn , as h runs through K, are
equicontinuous on N and at the point at infinity of A/. Thus, the mapping

N35h— g}(f)fh S CQ(N)
is continuous by [20, Theorem 1 of Chapter X, §2, No. 4]. O

Corollary 1.23. Take p,q1,q2 €]0,00] and assume that xgo - H™ € Lféc(u) cp. If g9 = q1, then

AZ’:{;C (D) = AZ:’{(Z)C (D) (as topological vector spaces).

In particular, if the measure p is relatively well-behaved, then the index ¢ in the definition AZ"{O (D)
is essentially irrelevant. Nonetheless, if we had simply considered the space A”'(° (D), then the inclusion

w,loc
AP4(D) C Aﬁ’ﬁ’fOC(D) = Aﬁ’fl’sc(D) would not have been clear.

Corollary 1.24. Take pi1,ps €]0,00] such that py < pa. Assume, further, that Supp (u) = 2. Then

there are continuous inclusions A} 70(D) C AP%SC(D) and A7 (D) € AP (D) -

Proof. Indeed, we may assume that = xyo - H™. O

Corollary 1.25. Take p €]0,00], assume that Supp () = 2, and take f € Aﬁ’fl’sc(D). Then, [ €
AP (D) if and only if fi € LE(N) for every h € £2.

1,0,loc
This result shows that the continuity of the mapping h — f, € LP(N) is ensured if we know that
fn € LE(N) for every h € £2.

Proof. Tt will suffice to prove that, if f € Hol(D) and f;, € L{(N) for every h € 2, then f € AP (D),

1,0,loc
that is, the mapping 2 > h+— f, € LP(N) is continuous. Notice that we may assume that p = y o - H™.

Define Ry, C’, and Cp, as in the proof of Proposition [[.22] so that

[fu(¢,2)| ™) < O ]l [ (G a)(¢ )P (¢! ) an!
Bp(h,R) JBx(0,R)

for every h € {2, for every ((,z) € N, and for every R €]0, Ry] such that
Bpxr((0,ih),C'R) C D.
Now, fix hg € £2 and Ry €]0, Ry/2] in such a way that Bryr.((0,iho),2C"R;) C D, and observe that

there is a constant C” > 0 such that

|fh(C,$)|min(1,p) < C//][ |fh/((C,ZC)(C/,ZC/)”min(Lp) d(C/,ac/) dn’

Bp(ho,QRl) véN(O,Rl)

for every h € Br(hg, R1) and for every ((,z) € N. Define

Fro: N3 (¢a) = [ fur (G ) (¢ )PP (¢! ) dn

Br(ho,2R1) éN(O,Rl)

and let us prove that fﬂh({ min(L.p) ¢ LE(N). If p < oo, it suffices to argue as in the proof of Proposition [.22]
Then, assume that p = 0o, and let us prove that the mapping

) x N > (h/, (g/,l'/)) — R(C',I’)fh’ e CO(N)

is measurable, where R/ . denotes the right translation by (¢’,z’). Since Cy(N) is a separable Banach
space and since (8¢ z))(c,z)en 18 total (that is, generates a dense vector subspace) in the dual M*(N)
of Co(N), by [22, Proposition 10 of Chapter IV, §5, No. 5| it will suffice to show that the mapping

NxN>3 (h/, (C’,l‘/)) — (5(@1),R(</1z')fh’>
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is measurable for every (¢,z) € N, and this is clear. Therefore, the mapping
2 x N > (h/, (C’,l‘/)) — R(C’,m’)lf”' S Co(N)

is measurable. In addition, it is easily seen that the R . |fw|, for b’ € Bp(ho,2Ry1) and ({',2') €

Ba(0, Ry), stay in a bounded subset of Co(\), so that fr,, € Co(N).
Then, the assertion follows from the dominated convergence theorem when p < oo, and from the
equicontinuity of the fj,, h € Br(hg, R1), at the point at infinity of N, when p = occ. O

The following result is the extension of a well-known (and quite useful) fact concerning functions in
the classical Hardy spaces H?(C,.). In the classical situation, it is closely related to the subharmonicity
of |f] (for p > 1) and to a suitable decomposition of the elements of H?(Cy) (for p < 1). The general
case follows from the classical one by means of Fubini’s theorem.

Proposition 1.26. Take p €]0,00] and assume that Supp (1) = 2. Then, for every f € AL>(D), the
mapping 2> b= || frllLe vy s decreasing.

Recall that F (hence £2) is endowed with the ordering ‘z < y if and only if y — z € 2.’

Proof. Take hg € 2 and a unit vector h € 2. It will suffice to prove that the mapping RY >y
| fro+ynllr(ary is decreasing for every f € AP:°°(D). Let Fj be the orthogonal complement of h in F,
and fix ¢ € F and 2’ € F},. Define

fhomcars C4 3 (x+1y) — f((, 2"+ iho + (z +iy)h) € C,

where C; = R 4 iR%. Then, fy, n o is holomorphic on Cy. Let us prove that fu, n.c.r € A3 (Cy).
Indeed, defining Ry, C’, and Cg, as in the proof of Proposition [[[22] we see that
| Fo,ic,ar (x + i) CP)

< CRQ][ ][ |fh/((§;1'/ + xh)((/,z//>>|min(1,p) d(C/,SC”> dh/
Br(ho+yh,R) JBax(0,R)

for every z + iy € C1 and for every R €]0, Ry such that Bryr.((0,ihg), C'R) C D. Therefore,

min Cr Cll/ max(L.p) min(1,
fh h,Cx! +Zy I3 1p)<0—][ fh’ p ) dn’
H 0,h,¢ ( )”L (R) C;él/ma,x(l,p) Br(hotyh,R || ||L (N)
1/ max(1,
w”fnmm (1,p)
= Cgbl/ max(1,p) AL (D)
for every y > 0, where
Cr= sup  HYBx(0,R) N[, z")+ RA])

(¢'z")EEXFY,
and
CF, = H*" "™ (Bx (0, R)).
Thus, fho,hyCyﬂﬁ/ S Ag_ﬁo (C+), so that

I fhooncar (- + i)l Loy < fnosncar (- 4+ ) Low)
for every y,y’ > 0 such that y > 3/, thanks to [32, Theorem 11.5|. The assertion follows easily. O

Lemma 1.27. Take p,q €]0,00], and assume that Supp (u) = 2. Then, AL(D) (resp. Au 1.(D)) is

complete if and only if the inclusion AP9(D) C Hol(D) (resp. A7{ (D) C Hol(D)) is continuous.

Proof. One implication follows from the closed graph theorem (for complete metrizable topological vec-
tor spaces), the other one from the completeness of the mixed norm space LP*4(H?*"*+™ 1) (cf. Proposi-

tion [AL6). O

Corollary 1.28. Take p, q €]0,00] and assume that xo-H™ € LIOC( )-w. Then, ALY(D) and A}, (D)
are complete.
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Proof. This follows from Proposition [[22] and Lemma [[L27] since A;’:l’gs (D) embeds continuously into

Hol(D). O
The following density result is a ‘local’ version of Proposition[3.9l It still has some useful consequences.

Proposition 1.29. Take p1,p2,q €]0,00] such that py < p1. Then, the space AV (D) N AP (D)

1,0,loc 1,0,loc
is dense in the space A}'y" (D).

The proof is based on [51, Lemma 8.1], which deals with the density of the space A}},,°(D)NA%;> (D)
in the space A%,,7°(D).

Proof. Take (g(*)).~¢ as in Lemma [LT9 and take f € Aﬁfé?loc(D). Notice that we may assume that

P2 < p1. Set s = ;fl’—lf';—z if p1 # 00, s = pg if p1 = co. Then Hoélder’s inequality implies that

()

I(f9 ) nllLre vy < g o | faller vy < Cesl —eClAl®,

Tnller(anye

for every h € £2. Therefore, fg(¢) € AZT(’)?IOC(D) N AZ?&?IOC(D) for every € > 0. The assertion then follows

from Lemma [T.20] O

1.4 Paley—Wiener Theorems

In this section we shall study some global properties of the weighted Bergman spaces Ai’q(D)7 making
use of the Fourier transform on A. In particular, we shall characterize the spaces A%%(D) and Ai’ﬁ‘fOC(D)
by means of the Fourier transform (thus proving analogues of the classical Paley—Wiener theorems) in

Propositions and [[.36]

Definition 1.30. We denote by L the Laplace transform of p, defined as
(e = [ & dulr)
0

for every A € F(, such that R\ € Z,,, where

Dy, = { ANeF: (Lu)(\) = /Qe_o"h) du(h) < 0o } .

We now recall some basic facts on the Laplace transform. The proofs, which are elementary, are
omitted.

Lemma 1.31. The set ), is a union of translates of £2. In addition, if D, is not empty, then p induces
a Radon measure on (2.

Lemma 1.32. Assume that y is non-zero and homogeneous of degree d € R, that is, that (r-).p = %p

for every r > 0. Then, the following conditions are equivalent:
(1) 2 £0;
(2) p induces a Radon measure on §2;
(3) there is an open neighbourhood V' of 0 in £2 such that p(V N 2) < oco.

Assume that 9, # 0 and denote by S be the interior of the convex hull of Supp (1). Then, d <0, S
is an open convex cone which does not contain any affine line, and S’ C 9, C 5.

Observe that, if yo - H™ € L;](:C(/L> - 11, then Supp (p) = 2.

The following result shows that the holomorphy of f not only simplifies the Fourier transform of fj
(cf. Proposition [[LT6]), but also relates the Fourier transforms of fj, and fp,, for h,h" € 2. If we were able
to define the inverse Fourier transform of an arbitrary measurable field of operators on A, we could

then define a general notion of boundary values of the elements of AZ oo (D), at least for p € [1,2].
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Proposition 1.33. Take p € [1,2], and assume that Supp () = 2. Then, for every f € AZ’ESC(D) there
is a measurable field of operators

m: F = [ 2(Hy)
\EF/
such that
ma(fn) = e 7r(N) = xa, (Ne” MM rr(A) Py o

for almost every A ¢ W and for every h € (2.
The proof is based on [61, Theorem 19.2]|, which deals with the case D = Cy.

Proof. Define (g(*)).~¢ is as in Lemma Then, up to replacing f with fg(®) and then passing to
the limit, we may assume that p = 1. Take two distinct elements h, h’ of 2. Let F be the orthogonal
complement of (" — h)R in F, so that Fg is an algebraic complement of (h' — h)C in Fg. Define
EF(O, p) = Bz(0,p) 4+ [=p, p](h — h) for every p > 0. Then, by Cauchy’s integral theorem,

AR/ —h N
WA(XBE(pr)XEF(pr)fh) — e< >7TA(XBE(07P)><BF(O1P)fh/)
1
== cilh—1 / F(Ca+i®(C) +ih + (ep+ it) (R — h))
e=+1 Bg(0,p)xBg(0,p) /0

« efi(serti)()\,h’fh) d+ WA(C) 1,/) d(Ca 1,)

for every p > 0 and for every A ¢ W. Now, the right-hand side of the preceding formula is bounded in
Z(Hy)-norm by

1
g(p) == 3 [ — hle®H =1 / ey (- + 200 = )2 e
e==+1

In addition,

/ g(p) dp < 26X+ sup || ful| 1y < o0,

R ' €[h,h]

so that there is a sequence py — oo such that g(px) — 0 for & — oco. Hence, passing to the limit for
k — oo, we see that 7y (fs) = e =Py (fur). Therefore, it suffices to define 7¢(\) = ey (f) for
some (hence every) h € (2 and for every A ¢ W. The second equality follows from Proposition O

In the following corollaries, we draw some consequences of Proposition [[.33] in the cases of Hardy
(A%>°(D)) and weighted Bergman spaces (A2?(D)). The case of Hardy spaces has already been com-
pletely solved by at least three different methods in [37, [44] [5I]. Our approach is basically that of [51].

Corollary 1.34. Keep the hypotheses and the notation of Proposition[1.33, and assume that p =2 and
that f € A2>°(D). Then, 74()\) = 0 for almost every X ¢ 2’ and

2n—m

2 . 2
1130y = 2o | 17O s IPE) 0

In particular, Ai*"o(D) is a hilbertian space. In addition, there is a unique fo € L?*(N) such that
77(A) = mA(fo) for almost every X € F', | foll L2y = ||f||Ai,00(D), and fn — fo in L>(N) as h — 0.

To the best of our knowledge, the case of the weighted Bergman spaces Ai*Q(D) considered below
has not been considered in the literature in this generality. Cf. [37] for the case up = H™, treated with a
different method.

Corollary 1.35. Keep the hypotheses and the notation of Proposition .33, and assume that p = 2 and
that f € Ai’Q(D). Then, T¢(A) =0 for almost every X ¢ %.@# NAy, and

2n—m
2 _ 2
T NN (0 [P VIR RS

Egu Ay

The following result, together with Proposition [[L33] completes the characterization of Ai’q(D) and
AQ,Q

1 Joc (D) by means of the Fourier transform.
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Proposition 1.36. Take q €]0,00] (resp. q €]0,00), and assume that Supp (u) = 2 and that A%9(D)

(resp. Au 1,c(D)) is complete. Let 7: Ay = [[cp L (Hx) be a measurable field of operators such that
the following hold:

(1) 7(N) = 7(A)Pxo for almost every A € Ay ;

' 1/2
(2) the mapping h — (f/1+|‘T(/\)||2$2(Hx)ei2<)\’h>|Pf()\)|d/\) belongs to L(u) (resp. L (1)).

Then, there is a unique f € AZ(D) (resp. f € Ai’ﬁ‘fOC(D)) such that

ma(fn) = e MM r(N)

for almost every A € Ay and for every h € (2.
If, in addition, fA+||T )|z (rryye~ M PE(N) | X < 0o for every h € £2, then

2n—m

1(62) = Zoze [ T (€ R )e OS2 PRy

+

for every (¢, z) € D.
In order to prove Proposition [[L36, we need two simple lemmas.

Lemma 1.37. Take q €]0,00] and assume that Supp (u) = §2. Let 7: 2" — []\co ZL(H\) be a
measurable field of operators such that the mapping

1/2
v ([ IO P pE )] )

belongs to L (p). Then, the mapping

gp: h— /Q,|‘T(A)||;2(HA)67P<A’h>|Pf(>\)| d)\

is finite, continuous, and decreasing on {2 for every p € [1,2].

Proof. Observe that there is a p-negligible subset N of 2 such that go(h) is finite for every h € 2\ N,
thanks to [22] Proposition 14 of Chapter IV, §5, No. 9]. Then, take h € {2, and observe that there
is h € 2N (h—2)\ N since the support of p is the whole of 2. It then follows that the mapping
Q2 3 X e M) stays in LY(v) N L®(v), where v = |Pf| - H™. Hence, g,(h) is finite for every
p € [1,2]. In addition, g,(h’) < gp(h) for every h, h’ € £2 such that h’' —h € 2, since e~ (M) o= R for
every A € 2. Hence, g, is decreasing. Continuity follows from the dominated convergence theorem. O

Lemma 1.38. Let U be an open subset of a hilbertian space X over C of finite dimension k, let v be a
Radon measure on a Hausdorff space Y, and let Z be a Banach space over C. Take p € [1,00] and take
f € Hol(U; LP(v; Z)). Then, there is a (H** ® v)-measurable mapping g: U x Y — Z such that g(-,y)
s holomorphic for every y € Y and g(x, -) is a representative of f(x) for every x € U.

Proof. Identify X with C*. Take 29 € X and take r,, > 0 so that the Taylor series of f at xy converges
absolutely to f on B(xg,74,). For every a € INF choose a representative f, o of = 9% f(20), and let Ny,

be the v-negligible set of y € Y such that }_ | i | fzo,a (¥ )Hr‘al = o0. Then, deﬁne Gao: B(20,72,) XY —
Z so that
gwo € y Z ro, ‘T_xo)a
a€eNFk

for every (z,y) € B(zo,7rz,) X (Y \ Ng,), while gz, (x,y) = 0 for every (x,y) € B(xo,74,) X Nz,. Then,
Gzo 18 (H?* @ v)-measurable, g.,(-,y) is holomorphic for every y € Y and g,,(z, -) is a representative
of f(x) for every x € B(xg,rz,)-

Now, take xg,21 € U, and observe that, since B(zg,7z,) N B(x1,7,,) is separable, there is a v-
negligible subset Ny, 5, of Y such that g, (z,y) = g4, (z,y) for every x € B(zo,ry,) N B(x1, 75, ) and for
every y € Y \ Ny, .o,. Next, observe that there is a countable subset C' of U such that

U= U (z,72)

zeC
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Then, set N ==, ., cc Nuo,z:, and define g(z,y) = gu, (2, y) for every x € B(wo, 74, ), for every zg € C,
and for every y € Y\ N, while g(z,y) = 0 for every (x,y) € U x N. The preceding remarks show that g
is well-defined, that N is v-negligible, and that ¢ satisfies the conditions of the statement. O

Proof of Proposition [L.30. STEP I. Assume first that either ¢ = oo or 7 is compactly supported in A .

Observe that, if ¢ = oo, then our assumptions imply that 7 is supported on 2. Define :fvo: 2 +iF —
L?(N) so that, for every h € 2+ iF,

ma(fo(h)) = xa, (e~ Aol z(y)

for almost every A € F’\ W, thanks to Corollary [[LT4l Let us prove that ]70 is holomorphic. With the
notation of Corollary [[T4] this is equivalent to showing that the mapping

—{()e,h)
h—e € T€ﬂ_n+m

- / * 22 PEY A
Ay

is holomorphic, and this latter fact follows easily from Morera’s theorem, thanks our assumptions. Next,
take v € F and let Z, be the left-invariant vector field on N which induces m at the origin (cf. Defi-
nition [[LTT]). Then,

m(Zufo(h) = —e~ MM r(N)dma(Z,) = 0
for almost every A € F'H so that Z, fo(h) = 0 (in the sense of distributions) for every h € £2+ iF. Next,
take w € F', and observe that

T @u(fo(h))) = iX w)e™ XM (N) = —idyy (e~ I7(N) () = —imx (9w fo) (h)
for almost every A € A, and for every h € {2+ iF. Now, observe that Lemma [[.3§ shows that there is a

measurable mapping fl: (24 1F) x N = C such that ]71( -, (¢, z)) is holomorphic for every (¢,z) € N,
while fi(h, -) is a representative of fy(h) for every h € 2+ iF. Define fo: D — C so that

F2(¢,2) = fi(Sz — B(C), (¢, R2))

for every (¢, z), so that f~’2 is measurable and locally square-integrable. In addition, Z_v:fvg = 0 for every
v € E (interpreting Z, as the left-invariant vector field on E x Fg which induces dg ,, at (0,0)), while

aiw}; = Zawf?

for every w € F. It then follows that j~’2 satisfies Cauchy-Riemann equations on D (m the sense of
distributions), so that it has a holomorphic representative f € A%%(D) (resp. f € A*9 (D)) which
necessarily satisfies the conditions of the statement.

STEP II. Now, consider the general case. We may assume that ¢ < oco. Let (X;) be an increasing
sequence of compact subsets of A, whose union is A,. Then, step I implies that for every j there is

f; € A29(D) (vesp. f; € A2 (D)) such that

m((Fn) = xz,(Ne” MM 7 ()

for almost every A € A4 and for every h € §2. In addition, by dominated convergence we see that (f;)

,loc

is a Cauchy sequence in A%%(D) (resp. Ai’?oc( ), so that it converges to a limit f in A29(D) (resp.
Ai"foc( )). The function f then satisfies the conditions of the statement.

STEP III. Observe that Tr(7(A)7wx (¢, Rz)*) = Tr(7(N\) (7 (¢, Rz)Pro)*), and that

[7A(C R2) Proll %2y = Tr(Pro) = 1

for every A € A4 and for every ((,z) € D. Consequently, if

/ 7\ ||z (myye” MM [PEA) | dX < o0
Ay

for every h € {2, then

277/ m
F16.2) = T [ Tlrm ey e O H e
T
for every ((,z) € D, thanks to Corollary [.T4l O

2To see this, convolve f~o(h) on the right with a smooth approximate identity, and pass to the limit.
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Corollary 1.39. Assume that Supp (u) = 2 and define

27’7,7’!71

S((¢2), (¢, 7)) =

/ e{rayi(z=2)+28(¢,C) [PE(A)|dA

ﬂ-n—i-m
for every (¢, 2),(¢’,2") € D. Then, S is the reproducing kernel of Ai’oo(D), that 1s,
f(ga Z) = <f|S( ) (ga Z))>Ai’°°(D)

for every f € Ai’oo(D) and for every ((,z) € D.

This gives an alternative proof of [37, Theorem 5.3]. The function S is also known as the Cauchy—
Szegd kernel.

Proof. For every (¢, 2") € D, denote by S/ /) the unique element of the hilbertian space Aim(p) such
that (f[Sic ) = f(¢',2") for every f € Aivoo(D) (cf. Proposition [[L22] and Corollaries [[28 and [L34).
Set o’ := Rz’ and b’ = Iz’ — P({’), and observe that

2n—m

A ) = (¢ a') = 2 [ Trlm (i mal )P A

27’7,7’!71

- /Q el (fo) (¢ /) Pao) ) MO [PEA) X,

ﬂ-n—i-m

where fo is the limit of f;, in L2(N) for h — 0 (cf. Proposition and Corollary [[34). Conversely,

Proposition [36 and Lemma [[37 show that, for every fo € L*(N) such that 7 (fo) = xo (M) (fo)Pxro

for almost every A € F' \ W, there is a unique f € AZVOO(D) such that fo = %in%) frn in L2(N). By the
—

arbitrariness of fy, it then follows that
A ((Sier2n)n) = e‘(x\,h-i—h/}ﬂA(C/’x/)P)\,O

for every h € {2 and for almost every A € (2. Hence, Proposition and Lemma [[.37 show that
(S(C’,z/))h(CﬁC) equals

2n7m

/ Tr(Pyoma(¢' = G o’ — = 230(C,¢')) Pao)e” M [PE(A) [ dA
Q/

7rner

by the Fourier inversion formula, for (almost) every (¢,z) € N and for every h € 2. The assertion
follows from Proposition [[L.I2) [l

The following result, which is based on the reproducing properties of the Poisson—-Szegé kernel, has
some interesting consequences which do not arise in the study of tube domains. In particular, if A4 \ £
is negligible, p € [1,00], and f € AP (D), then f(- +1ih) € Ap>°(D) for every h € {2, a fact which is
clearly false in tube domains.

Corollary 1.40. Take p € [1,00] and assume that Supp (n) = 2. Assume that Ay \ 2’ is negligible and

take [ € AZ’TEC(D). Then, the mapping h + || fullLr(ary is decreasing on §2.

Observe that the assumption that A\ 2’ is negligible (for #™) means that the closed convex envelope

of ¢(E) is £2. Equivalently, A, = (2.

Proof. With the notation of Corollary [39] define (the Poisson—Szegd kernel), for every (¢, z) € D,

P¢,z) = S((¢,2), (¢, 2) S (-, (¢, 2))ol,

where S(-,((,2))o denotes the limit of S(-,(¢,2))s in L?(N) as h — 0. Hence, Pi¢,) is positive, has
integral 1, and

2n+m
-H ,

(P, ©) = ¢(Co, o)

lim
(¢.2)—=(Co,zo+iP (o))

for every bounded continuous function ¢ on N and for every (o, zo) € N (cf. [43] Theorem 2.4|). In
addition,

Plerartia(en)-(¢.) = Ple (¢, —2') )
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for every ((,2) € D and for every (¢',2') € N. Further, if p > 1 and f € AL>°(D), then

f(¢z+ih) = (fulP¢.2))

for every ((,z) € D and for every h € 2 (cf. [43 Proposition 2.7]).

Assume first that p < 2, so that f € Ai’fgc(D) by Proposition [[22] By means of Proposition [[33]

we then see that the mapping h — || fal|L2(n) is decreasing on £2, so that f(- +ih) € A%2>°(D) for every
h € £2. Then, f(¢,z + ih) = (fn|P(,z)) for every ((,z) € D and for every h € 2 by the preceding
remarks. Further,

P¢ zyiv()+in) (0) = Po,iny (¢, —)
for every (¢,z) € N and for every h € £2, so that

Jrnen = fnx Poin

for every h,h’ € 2 (cf. the proof of [43, Proposition 2.7]). Using Young’s inequality, we then see that
I frnlle vy < I fllpean)-

The case p > 2 is treated assuming first that f € AZ”TSC(D) - AZ:TSC(D) and then using Proposi-
tion to get the conclusion, when p < oo. If p = oo, then take (¢(*)).5¢ as in Lemma Then,
the above arguments show that (¢®) f)nn = (¢°f)n * Pyo,inry for every h,h' € §2 and for every ¢ > 0,

whence fy1n = fn * Poin) passing to the limit. Thus, the mapping h + || fn||L () is decreasing. [

Corollary 1.41. Assume that Ai’Q(D) is complete and that Supp (n) = §2. Define K,,: D x D — C so
that

P 2) = (IR () a2 o)
for every f € Ai’Q(D) and for every (¢',z") € D. Then,

1
Lp(2))

(Kl - (&, 2)n) = X194, (\) e*(z\,thSz’,QS(C’))W/\(Cl7 %Z’)P,\y()

for almost every N ¢ W, for every ((',2") € D, and for every h € 2.
If, in addition, %@u N Ay C O, then

2n—m

KH((C’ Z), (gla ZI)) = pr——

/ e(,\c,i(z—?)Jrzqs(g,g/)) |Pf()‘)| d\
19,02 Lyu(2X)

for every (¢, 2),(¢',2") € D.

The function K, which is the reproducing kernel of the weighted Bergman space Ain(D), is also
known as the (weighted) Bergman kernel.
Recall that 2, is the set of A € F’ for which Lp()) is finite.

Proof. Notice that K, is well defined thanks to Lemma [L27 Define K¢/ .y = K,(-, (¢, 2)) for every
({',2") € D. Set 2/ == Rz and b/ := Iz’ — &((’), and observe that, with the notation of Corollary [[.35]

2n7m

A = 2 [ Tlm(fom(C )P 4

2n—m

— T [ Mm@ Py e PR
T J1gnay

(cf. Proposition [[.T6 and Corollary [[L33]), but also

2n—m

FC = Do Ty O VERENIPE) A

In addition, take a compact subset X of the interior of %@M N A4 and observe that Proposition
implies that there is a unique fs € A%*(D) such that mz((fx)n) = xs(A)e= M Py o for almost every
A € W. Taking into account the arbitrariness of X' and observing that £u(2)) is finite and non-zero for
every \ € %@M since the support of u is the whole of (2, it follows that

1
L(2X)

TA((K (¢ 2))n) = e MERD 1 (¢ 2 Pro
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for every h € {2 and for almost every \ € %@“ NAL.
Now, if %@# N A, C (2, then Proposition [36] and Lemma [37 imply that (Ber,2)n(C, ) equals

gn—m / / / / “ounany [IPEY)
Te(Proma(¢ — o' — o — 239((, () Pao)e” ™ I
Sy 9,0 ( ( (€. ¢))Pro) Calo)
for every (¢,z) € N and for every h € 2. Thus, the assertion follows from Proposition [[T2l 0

1.5 The Kohn Laplacian on N/

We now illustrate some connections between the Hardy spaces Aiﬁf(D) and the Kohn Laplacian
on N (associated with the chosen scalar product on F). We refer the reader to [52, 53] for further
information on this topic, and references therein.

Take ¢ € {0,...,n}, and denote by A,(N) the pull-back under the canonical projection N' — E
of the (0, ¢)-exterior power of the cotangent bundle of E. If (1,...,(, are coordinate functions on F
associated with a fixed orthonormal basis (v1,...,v,) of E, a section of A4(N) is therefore a mapping

of the form 3
> aadl”,

where a, is a (real-valued) function on N and dac* = dCa, A A dg for every strictly increasing
multi-index « in IN?. The scalar product on E then induces a scalar product on the space of compactly
supported continuous sections of A, (N)

(w1, w2) /N (@1(C2),wa (¢, 2)) (€, 7).

Now, for every smooth section w =3 wadl” of Ag(N), define
Opw = Z ZZ_k(wa)dg“_k AdCY,
a k=1

where Zj, is the left-invariant vector field on E' which induces Jg,,, at the origin. Denote by 5; the
formal adjoint of 0, with respect to the scalar product previously defined. The left-invariant differential
operator acting on smooth sections of A4(N)

Dl()q) = 51;5; + 5;51;

is called the Kohn Laplacian. In [52], Proposition 2.1], an explicit expression of Déq) has been provided.

In particular,
0% =+ zzn: Dby )
k=1
where £ := —13"" (Z,Zy + ZiZy,).
Proposition 1.42. The kernel of Déo) in L2(N) is
H2(N) = { e L*N): ma(f) = xa, N)mA(f)Pro for almost every X € F'\ W }.

If Ay \ 2 is negligible, then I;TQ(N') is the set of boundary values of the Hardy space Aiﬁf(D)

Proof. We observe that
A (OF ) = ma(f)dma (@)

for almost every A € F’ \ W and for every f € L?*(N) such that Dl()o)f € L*(N), where DI()O)’T denotes
the formal transpose of Dgo), that is

0), .
D[())T:‘Cflza@(vk)'
k=1
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Now,
dﬁA(Dl()O)’T) = d7TA Z /\ QS ’Uk IH>\
k=1
for every A € F/\ W. Take A € F/ \ W, and let vy 1,...,vs, be an orthonormal basis of E which
diagonalizes —iJy. Let 0y 1,...,0), be the corresponding eigenvalues, and let Zy 1,...,2) , be the
left-invariant vector fields on N which induce 9g y,,...,9g v, at the origin. Then, it is readily verified
that
I~ ——
L= —3 ;(Zk,kzk,k + ZxkZx k),

so that Proposition [[12 implies that, if we define ey o == [[f_; (A, @Pr(+,vax))** for every o € IN", then
n
dma(L)era = Z 14 2a) |05 k])ex o
k=1

In addition, it is not hard to see that (ex o)aen» is a complete orthogonal system in Hy (cf. [34, Theorem

1.63]). Therefore, dmy (0, ol T) is a positive self-adjoint operator with purely discrete spectrum, its least

eigenvalue is
n

Tre|Ja| = Y (A @(ux)) = Tra(|Ja] + i),

and the corresponding eigenprojector is Py . It then follows that ker dﬁA(DI()O)’T) = {0} for every
A€ F'\ (WUAL), while ker dﬂA(Dl()O)’T) = Cey if A € A;. Therefore, the assertion follows.

In particular, if Ay \ 2’ is negligible, then H? (N) is the set of boundary values of the Hardy space
Ai’f(D), thanks to Corollary [[L34] and Proposition O

1.6 Notes and Further Results

1.6.1 The material collected in this chapter is far from being complete or comprehensive. Several
relevant topics, such as non-tangential or admissible limits at the Silov boundary of the elements of the
Hardy spaces, or the properties of the Poisson kernel, are not treated in detail. Only Paley—Wiener
theorems are treated in depth, even though the description of the ‘boundary values’ of the elements of
the weighted Bergman spaces Ai*q(D) is only given up to a Fourier transform (cf. Propositions [[33]).
For the weights considered in Chapter B} we shall characterize these spaces as suitable Besov spaces (at
least for ¢ < 2). One may wonder if an analogous assertion holds for more general weights. Cf. [62] and
the references therein for a treatment of Besov and Triebel-Lizorkin spaces with weights in suitable local
Muckenhoupt classes.

1.6.2 The measures H?"t™ @ i are precisely the Radon measures on A/ x {2 that are invariant under
the ’horizontal translations’ by A". Thus, under the identification of D with N x {2, such measures
constitute the analogue of the translation invariant measures on C., or, in its bounded realization, the
rotational invariant measures on the unit disk.

1.6.3 Most of the results in this chapter are proved under the assumption that Supp(p) = 2. The case
when Supp(u) ; (2 is certainly of interest, but the situation is by far more complicated. An interesting
space of holomorphic functions on C; was studied in [54] in connection with the so-called Miintz—Szdsz
problem for the Bergman space, and was denoted by .#2. In this case u is an atomic measure on Y, with

Supp(p) = 3IN and, in our notation, .#* = A%?(C) N AiEOIOC(CJF) endowed with the A%?(C)-norm.
27riz)

It was shown in [54] that the space A%?(C ) contains wildly behaved functions, such as exp(ze
also [55] and references therein for a further discussion on functions in A% 2(C+) for a general p.

. See



Chapter 2

Homogeneous Siegel Domains of Type
I1

In this chapter, we shall introduce our notation for various objects related to homogeneous Siegel
domains of type II and recall some basic facts.

In Section 2Tl we shall recall some basic facts on T-algebras and the associated homogeneous cones.
We shall generally avoid to make use of the associated formalism as long as possible, and reformulate
several definitions in a more conceptual way in Sections and In particular, we shall define the
generalized power functions A%, and A%, on {2 and (2’, respectively. In the remainder of Section 23] and
in Section [Z4] we shall report several results on gamma and beta functions related to these generalized
power functions. These results will be of importance in the development of the theory of weighted
Bergman spaces (cf. Section []).

Finally, in Section 2.5 we shall recall some basic properties of the Bergman metric on D and define
some related metrics on {2 and 2’. Notice that these latter metrics are different from the canonical invari-
ant Riemannian metric on general homogeneous cones defined in [33] I.4], unless E = { 0 }. Nonetheless,
since both metrics are invariant, the difference is of minor importance. We shall then introduce a suitable
notion of lattices on D which is adapted to the decomposition of D as a union of translates of bD. This
restriction, which is analogous to that employed in [58], is necessary to deal with mixed norm Bergman
spaces. For less general Bergman spaces, more general lattices may be employed. We shall then present
several quasi-constancy results for various relevant functions on D, (2, and (2.

2.1 T-Algebras

In this brief section we recall some notions from [72]. Cf. also [50]. Notice that we shall no longer
make use in the sequel of the notation of this chapter, unless explicitly stated, in favour of a more
conceptual one.

For every r € IN*| we denote by A, the monoid {0 }U{1,...,r }2 endowed with the product defined
by (4,k)(45', k') = (4, k) if k = j/ and 0 otherwise, while (j, k)0 = 0(j, k) = 0 for every 4, j', k, k' = 1,...,7r.

Definition 2.1. A T-algebra of rank r is a (not necessarily associative) finite-dimensional graded algebra
A over R of type A, (cf. [I9, Definition 1 of Chapter III, §3, No. 1]), endowed with a linear involution *
such that the following hold:

(1) A%y = Ayj for every j,k=1,...,7 and (ab)* = b*a* for every a,b € A;
(2) Ap={0}and dimA;; =1forevery j=1,...,r;

(3) for every j = 1,...,r there is e; € A;; such that left and right multiplication by e; induce the
identity on A;j and Ay ;, respectively, for every k= 1,...,7;

J

(4) if we define Tra = 37_, (€}, a) for every a € A, where ¢/ is the unique graded linear functional on
A which takes the value 1 at e; (j =1,...,r), then the mapping (a,b) — Tr(ab) is symmetric;

(5) for every a,b,c € A, Tr(a(bc)) = Tr((ab)c);

20
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(6) the symmetriﬂ bilinear mapping (a, b) — Tr(a*b) is positive and non-degenerate;
(7) setting T' == D}, Ajk, one has t(uw) = (tu)w and t(uu*) = (tu)u* for every t,u,w € T.

The vector space subjacent to A may then be endowed with the scalar product (a,b) = Tr(a*b),
a,be A

Notice that A,y is orthogonal to A p if (5, k) # (j',k'). Indeed, if a € A, and b € Ajs s, then
a*b=01if j # j/, and ba* = 0 if k' # k, whence (a,b) = Tr(a*b) = Tr(ba*) = 0.

Definition 2.2. Define
Ty ={aeT:(efa)>0 Vj=1,...,r}, H={acA:a=a"},
C(A)={tt":teT,}, C'(A) = {t't:teTy}.

The cones C(A) and C’(A) are said to have rank r.

The following result is proved in [72]. Recall that an open convex cone C' not containing any affine
line is said to be homogeneous if the group of affine automorphisms of C acts transitively on C.

Theorem 2.3. The following hold:
(1) Ty, endowed with the product induced by A, is a Lie group;

(2) the algebra A’ with the same operations as A and the graduation Ag‘,k = Arfijrti-k, .k =
1,...,7, is a T-algebra;

(3) C(A) and C'(A) are open convexr cones, and are dual to one another with respect to the scalar
product on H;

(4) (tz)t* = t(at*) and (t*z)t = t*(at) for every t € T and for every x € H;

(5) the mappings
(t,x) — tat” and (t,x) — trat

are simply transitive left and right actions of Ty on C(A) and C'(A), respectively, which are dual
to one another with respect to the scalar product on H.

Finally, every homogeneous open convex cone not containing any affine line is isomorphic to C(A)
for some T-algebra A.

The following lemmas are the analogues of well-known facts concerning (classical) triangular groups.

Lemma 2.4. Define T as the set of t € T such that (¢},t) = 1 for every j = 1,...,r. Then,
[Ty, Ty] =Ty and Ty is a nilpotent subgroup of T'.

Proof. Recall that, by Theorem 23] T is a Lie group. In addition, define a mapping X from 7' into
the set of left-invariant vector fields on T so that (X (¢)f)(t') = f'(¢') - (¢'t) for every t € T, for every
t' € Ty, and for every f € C'(T). Then, it is easily verified that X is an isomorphism of T onto the
Lie algebra of T, and that [X(¢), X (¢')] = X (tt' — t't) for every ¢,t’ € T. In addition, it is also clear
that the subspace Ty == P i<k Aj i, of T identifies with the Lie algebra of 7%, which is clearly nilpotent.
Since T and T; are connected, by [23] Proposition 4 of Chapter III, §9, No. 2| it will suffice to show
that [T,T] = Tp. Now, take o € R" and «; # ay whenever j # k, and define ¢, = Z;:1 aje;. Then,
for every t € Ty,
tto — tat = »_(ak — a;)t;n,
j<k

so that the mapping ¢ — tt, — t,t is an automorphism of Ty. Hence, [T,T] = T, and the assertion
follows. (|

IObserve that Tr(a) = Tr(a*) for every a € A, since the only automorphism of the field R is the identity, and since the
subalgebras Aj ; of A are isomorphic to R. Then, (4) shows that Tr(a*b) = Tr(b*a) for every a,b € A.
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Lemma 2.5. For every s € C" the mapping

ATy 5t H<€;,t)25j ecC”

j=1

is a homomorphism of Lie groups. Conversely, every homomorphism of Lie groups from T into C* is
of this form.

The definition of A® may seem peculiar. Nonetheless, since we are more interested in the cone C'(A)
than in the group T, we define the homomorphism A® in such a way that it induces the mapping
> i1 tjej v [1j—; t; when transferred on C(A) by means of the bijection t — ¢t*. Observe also that
A®: T, — RY if and only if s € R".

Proof. Tt is clear that A® is a homomorphism, since (e}, tt') = (e’,t)(e};,t’) for every ¢,#' € T" and for
every j = 1,...,r. Conversely, let A be a homomorphism of 7y into C*. Since B = @;:1 Rie;is a
subgroup of T'; isomorphic to (R%)", there is a unique s € C" such that A(t) = [];_, (e}, t)2%i for every
t € B. Denote by T; the subgroup of ¢ € T such that (e}, t) =1 for every j =1,...,7, and observe that
BTy, =T and that [T, Ty] = T1 by Lemma 24 so that A(Ty) = {1}. Then, A = AS. O

2.2 Notation

In this brief section we establish the main notation for homogeneous cones and homogeneous Siegel
domains of type II.

As mentioned in Section [Z1] we shall interpret the formalism of T-algebras in a more conceptual way,
fixing a group T which acts simply transitively on {2 and 2’ and ‘base points’ e;; and eg in 2 and (2.
We shall also define two vectors m and m’ which are closely related to the geometry of {2 and (2, and
will play an important role in the sequel.

We shall then impose a condition on D which is equivalent to (affine) homogeneity. This condition
implies that the Pfaffian |Pf| induces a character on T, which will play an important role in the sequel.
We shall therefore introduce a proper piece of notation.

Define E, F, 2, &, D, bD, and N as in Section [T, and assume further that (2 is a homogeneous
cone. Further, define 7y, Hy, and |Pf| as in Section By Theorem 23] there are a T-algebra A and
an isomorphism ¥ of the corresponding space H onto F' such that W(C(A)) = §2. Hence, ‘W(£2') is the
image of C'(A) under the isomorphism of H onto its dual H' induced by the scalar product of H. Define

r r
en =W E e; and e =t g e;
Jj=1 Jj=1

We shall assume that F' carries the scalar product induced by that of H, and we shall say that r is the
rank of 2. Then, T acts simply transitively on the left on 2 and on the right on ', and the actions
of Ty on £2 and (2" are transpose of one another.

Definition 2.6. Define m; ;, := dim A; ;, for every j,k=1,...,r, and set

m = g m; e and m = g m;j k

k>j . k<j .
J Jj=1,...,r J Jj=1,...,r

We then define A3, for every s € C”, as in Lemma [2.5]

We shall assume that for every ¢ € Ty there is ¢ € GL(E) such that
t-d=do(gxg).

This condition is equivalent to assuming that D is a homogeneous Siegel domain (cf. [74] Theorem 2.3]
and [47, Proposition 2.2]).

We shall no longer make use of the symbols A, H, e;, e} (G=1,...,r), and ¥ with the above meaning,
unless explicitly stated.
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Lemma 2.7. There is b € R" such that A=P(t) = |detr(g)| for every t € Ty and for every g € GL(E)
such that t - ® =P o (g x g).

Proof. Observe first that the group U(®) of elements of GL(FE) which preserve @ is closed in GL(E)
and contained in the unitary group associated with the scalar product {(eq)c,P) on E. Hence, U(®) is
compact, so that |det g| = 1 for every g € U(®). Therefore, we may define a function detg: T — R*
so that detg(t) = |detr(g)| for every t € T'y and for every g € GL(E) such that ¢ - & =®o (g x g). It is
easily seen that detg is a homomorphism of T’ into R, so that dete = A~P for some b € R". O

Definition 2.8. We define b as in Lemma [2.7]

We conclude this section with some examples and remarks.

Ezxample 2.9. If D is an irreducible symmetric Siegel domain of type II, then there are a,b € IN such
that a = mj for every j,k € {1,...,r } such that j # k, and such that b = —b1,. In addition, D is
uniquely determined, up to a biholomorphism, by the three parameters a, b, and 7.

Then,

m = (a(r = j))j=1,...;, M =(a(j = 1))j=1,..r,
and
d=—-(1+a(r—1)/2)1,.

In particular, m = — 2;21 dj = r(1 4 a(r —1)/2). Observe that, in this situation, A" and its powers
play a central role in the theory of such domains. For this reason, it is quite common, in the literature, to
consider only irreducible symmetric Siegel domains of type II (or simply tube domains), and to consider
only the spaces ALy’ (D), with the notation of Chapter

In addition to that, irreducible symmetric Siegel domains (or, more precisely, their bounded coun-
terparts) have been completely classified by E. Cartan in [24]. See also [I] for a brief exposition of the
classification.

Ezxample 2.10. If r = 1, then D is necessarily irreducible and symmetric, and is biholomorphically
equivalent to the unit ball in E x Fg. In this case, d = —1 and b = —n. In addition, N is isomorphic
to R if n =0, and to the (2n + 1)-dimensional Heisenberg group H,, if n > 0.

Remark 2.11. We observe that D is a tube domain, that is, E = {0}, if and ounly if b = 0.

2.3 Gamma Functions

In this section we introduce our notation for generalized power functions. Observe that, while the
definition of generalized power functions on (2 is quite uniform (up to the notation), at least two ways
to define generalized power functions on {2’ exist in the literature. On the one hand, in e.g. [37, [13], the
generalized power functions on 2’ are defined identifying 2’ with the cone C'(A’), with the notation of
Section 2] thus reversing the order of the variables. On the other hand, in e.g. [50], the generalized
power functions on 2" are defined by means of the canonical right action of Ty on 2’ in complete analogy
with the case of 2. We shall follow this latter convention. Thus, when comparing our results with those
presented in the literature, it will sometimes be necessary to reverse the order of the variables.

We then identify the invariant measures on T, {2, and (2’, as well as the modular function on T} .
Then, we report some basic results concerning the gamma and beta functions on the cones {2 and (2’
introduced in [37].

We conclude this section with some basic results on the generalized Riemann-Liouville operators on
2 and £, following [37].

Definition 2.12. For every s € C", define the generalized power functions A%, and A%, on 2 and 2,
respectively, so that
Af(en) =1, A%y (eqr) =1,
Ot h) = A%()A%(h),  and  Af(A- 1) = A3(E) A% (N)
for every t € Ty, for every h € {2, and for every A € 2. Recall that AS is the character of T’y defined

as in Lemma
With m and m’ as in Definition 2.6] we set

d::—(lr—i—%m—i—%m’),

and
vo = AL . Hq™ and vor =AY, - H™.
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In the following lemma, we define the Hausdorff measure H™ on T with reference to the formalism
of Section 2. using the identifications of Section

Lemma 2.13. The Hausdorff measure H™ on T4 is relatively invariant. Its left and right multipliers
are

A(rtm)/2 and A(lﬂrm’)/?,
respectively. In particular, the modular function on Ty is
A(m'—m)/2
In addition,
(LQ)*(A—(ITH’H)/? CH™) = 2—(m+T)/2A§i2 S

and

(1 ) (AT rtmD/2 qqmy — 9= (A2 AL, gy,

where
to: Ty ot—t-eqe2 and togr: Ty Dtrseq -tef?.

In particular, v, and vg are two T -invariant measures on 2 and (2, respectively.

Proof. Observe first that the product on 7% is bilinear, so that H™ is relatively invariant. Then, take
¢ € Co(Ty) and t = Y7, aje; for some o € (RY)", and observe that

/(p(tt’)dt’:/ o | > aithy dt’:of(lr““)/ (') at’,
T, T, ’

j<k T

so that AQr+m)/2 ig the left multiplier of H™. Analogously, A»+m)/2 ig the right multiplier of ™,
so that the modular function of T, is A —m)/2,
Then, denote by J the Jacobian of the mapping t: Ty 3 t — tt* € 2. Observe that

Vo (t)v = vt* + to*

for every ¢t € Ty and for every v € T (identifying T" with the tangent space of T at t). Define P: A — T
by P(a); i = a; for j < k and P(a); = 0 for j > k, and observe that, for every v € T" and for every
w€E H,

(o), w) = 2(v,wt) = (v, 2P(wt)),

so that ¢, (t)*w = 2P(wt). Therefore,
o) (v = 2P((vt*)t + (tv™)t)

and, in particular, i (e)* 5 (e) = 21 +2 377 ¢}, whence

J(e) = 2m+n)/2,

Now, the area formula shows that
(t2)(J - H™) =xa - H™.

In addition, since Ty acts on I’ by linear mappings, the measure H™ on (2 is relatively invariant, so that
J(t) = J(te) = A%(t)J (e)

for some s € R" and for every ¢ € T.. Now, to determine s it suffice to compute J(¢) for t = Z;Zl aje;,
a € (R%)". However, in this case

2P((vt™)t + (tv*)t); 6 = 2(1 + 6j,k)vj7kai

for every j < k, so that )
J(t) = AQ-FT™/2(0) 7 (e).

Thus,
(LQ)*(Af(lrer)/? CH™) = 2*(m+r)/2A?2 CH™

The other assertion is proved similarly O
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Recall that £ denotes the Laplace transform.

Proposition 2.14. The measure A%,-vg induces a Radon measure on §2 if and only if Rs € %er(]Rj_)T.
In this case,

L% va) = "7 [ 1 (s - 52) A5
j=1

Analogously, A3, -vq induces a Radon measure on 2’ if and only if Rs € %m’+ (R%)". In this case,

. m/; .
L(AS ~vo)=(27) 2 H r (sj - TJ) AL
j=1

Cf. [37, Theorem 2.1] for the original results, where a different normalization of the scalar product is
used.

Proof. Observe first that, by Lemma T3]
L5 vo)lea) = 2002 [ e gty
Ty
in the sense that one side of the equality is defined if and only if the other one is, and then equality

holds. Now, Tr(tt*) = [t|* = 3, <, [tjx[*, while AS; A Fm)/2 gy - [T;—, 751" ™™, so that the preceding

integral is defined if and only if Rs — %m € (R%)" and, in this case,

27"/T e~ Tr(tt*)A;*(lrer)/Q(t) dt = 7.‘_(m—r)/2 H F(Sj _ mj/2),
+

Jj=1

since 2 [;° o=@’ g2 —m; 92 = I(s; —m;/2) (j =1,...,r) and [y e~ dz = /. The fact that, when
Rs € im+ (Ry)",
o miN s
LA -vo) = (2m) " [[ I (sj - 73) A
j=1

follows by homogeneity. The second assertion is proved similarly. O

Definition 2.15. We define, for Rs € im + (R%)"
o m;
To(s ::/ e (€M AS (D) dvg(h) = (27) 7 I'(s,——
€)= | (k) dvo(h) = (2m) 7 [ 1 (5, - 2)
and, for Rs € im’ + (R})",

—r m’;
Toi(s) = / e~ e A%, (N dvr (N) = (27) 77 Hr<sj7f).
’ j=1

As a corollary to Proposition 2.14] we now present some elementary results on beta functions.

Corollary 2.16. Take s,s' € C" and h € 2. Then, the function h' — ASTY(h — B)AS(R) is ve-
integrable on 2N (h — £2) if and only if Rs,Rs' € m + (R%)", in which case

/ I'o(s)Io(s') /
A (h — W) A% (W) dvg(h) = Z222 220 Ases'+d (),
[ 250 ) 8500 avon) = RS a4

An analogous statement holds for 2'. Cf. [37, Theorem 2.2] for the original result.

Proof. The first assertion follows easily from Proposition 214l For what concerns the second assertion,
assume that s, s’ € $m+(R% )" and observe that the above equality is equivalent to (A, vo)* (A%, ve) =

%A?js/ - V. Since the Laplace transforms of both sides of the asserted equality are equal on

{2 4+ iF by Proposition [ZT4] the assertion follows. O
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Corollary 2.17. Takes,s’ € C" and h € 2. Then, the function h' — A%, (h+ h’)A?; (h') is ve-integrable
on £2 if and only if Rs' € im + (R%)" and Rs + Rs’ € —im’ — (R%)", in which case

I'o(s"YI'o(—s—+s") oo
F_Q/(*S) A(Z (h)

/Q 2%, (h -+ W) A5 () dv () =

An analogous statement holds for 2. Cf. [37, Proposition 2.6] for the original result (which is flawed
by an incorrect computation of the modular function on 7). See also [50, Lemma 4.19] for an alternative
proof, under the additional assumption s € —%m' — (RL)".

Proof. Define a mapping I: h +— h~! on 2 so that (t-en)™! :=t"1.eq, for every t € T'y. Then, it is easily
verified that I(en + 2) = 2N (e — 2). In addition, Lemma [ZT3] shows that I, (vg) = A(mem 2 vg.
Therefore,

/ A% (eq + W) AL (R) dvg(h') = / A% RN AT — eq) dug(h)
2 en+1?

-/ ATy IR AW — eg) dva(h)
2N(eq—1N2)

_ / Ay emmmO2E A A (e — 1) dva(R)
2N(eq—12)

_ / AL en — 1) AT dvg (1),
2N(ee—1N)

where each integral is defined if and only if the other ones are, and then all the equalities hold. Therefore,
the assertion follows from Proposition [ZT4] Corollary 16 and homogeneity. O

It will be relevant, e.g. in the study of Riemann-Liouville operators, to know which generalized power
functions on 2 and (2’ are actually polynomials. Cf. [42] for a more detailed study of this subject.

Definition 2.18. We denote by IN, and IN(,» the sets of s € R” such that A$, and A§,, are polynomials,
respectively.
To simplify the notation, if s € C" and a € R, we define

as = az;:1 Sj — 6(25:1 55) loga.

By an abuse of language, we also define

7= eﬂ'zZ/Q

for every z € C. We define i® accordingly.

d m

In particular, a=% = a "

and =P = a”.
Lemma 2.19. Ny, and Ng: are sub-monoids of N" and are isomorphic to IN".
In particular, N, and INg. are cofinal in R" for <.

Proof. Clearly, 0 € Np NN and both IN; and IN/ are stable under the sum. Thus, IN, and INg. are
sub-monoids of R’ . To see that they are contained in IN", keep the notation of Chapter .I] (identifying
F with H), and observe that

T

T T
S e — 8 o . — Sj
A% E Qjci | = 2o E V&€ | €| = ]___[ @
Jj=1 Jj=1

j=1

for every a € (R%)". Finally, Ng is isomorphic to IN" thanks to [42, Theorem 2.2]. The assertions
concerning N, are proved analogously. O

Combining the fact that polynomials are entire functions with Proposition 214l we are then able
to show that the generalized power functions on {2 and (2 always extend to holomorphic functions on
2 +4F and ' +iF’, respectively. Notice that, if s € Z", then A%, and A$,, are rational functions, but
may have singularities on 92 + iF and 92 4 iF’, respectively, in general. We denote by S'(F) and
S'(F’) the spaces of tempered distributions on F and F’, respectively.
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Corollary 2.20. For every s € C", the functions A%, and A%, extend to holomorphic functions on
2+ iF and 2 +1iF'. In addition, the mappings

C os— AL(h+i-)eS(F)
and

C'os— AL (MN+i-) e S'(F)
are holomorphic for every h € 2 and for every \ € (2.

Proof. Take s € C". By Lemma 2.T9, we may take s’ € IN; such that s’ — Rs € %m’ + (R%)", so that
Proposition 2.14] implies that

/ 1
AS — S
Q QFQ/(SI—S)

so that Af, extends to a holomorphic function on {2 4 ¢F'. In addition, it is clear that the mapping

L(AS = var),

s— ALh(h+i-) = A?;(h—i—i-) IF/(e*'ﬁh)A?;,—S Vo) € S'(F)

Toi(s' —s)

is holomorphic on the set of s € C" such that Rs — s’ € f%m’ — (R%)". By the arbitrariness of s’, the
assertions concerning (2 follow. The remaining assertions are proved similarly. O

Recall that, when 2 = R, the Riemann-Liouville potentials I° on R are defined so that
e ()M i Rs >0
FH@GE)™®) if ®s < 1.

In the general case, an analogous definition by cases is no longer possible, in full generality, since stronger
conditions on s are needed to ensure local integrability of A?;rd and A7, For this reason, it will be
convenient to define the operators I3, by means of their Fourier transform. To do this, though, we need
to give a (distributional) meaning to ;1_{1% A7 (A + ). This is the purpose of the following result.

Lemma 2.21. Take s € C". Then,

Jo = %1611(12 AH(h+i-) and JH = AheI}Zl’ AH(h+i-)
h—0 A—0

are well defined elements of S'(F) and S'(F"), respectively. In addition,
JH = i°Af, and JH =15 A%,
on 2 and 2, respectively, and the mappings
C">s— J, €S (F) and  C"2sw— J5 € S'(F)
are holomorphic.

Proof. We prove only the assertions concerning Jg,. If —Rs € %m’ + (R%)", then Proposition 2.14 shows
that

1 1
AS(h+i )= —— LA vV h+i)= ——Fp(e M ATS 1,
.Q( +’L) FQ/(—S) ( o "V )( + ) FQ/(—S)]:F (e o Ve )a
so that J§, = ﬁIF/(A!_?/S . Z/_QI).

Now, let U be the set of (z,h) € C x (2 +iF) such that z € R_ and zh € 2+ ¢F, and let us prove
that U is a connected open subset of C x (£2+4F). Indeed, U is clearly open. Further, observe that for
every z € C \ R_ the set U, of h € Fg such that (z,h) € U is the convex set (2 +iF) Nz~ 1(2 +iF),
and is therefore connected. In addition, take zp, 21 € C\ R_ such that 320521 > 0 if either Rzp < 0 or
Rz1 < 0. Let us prove that there are h € 2 and h’ € F such that

[(1— )Rz + tR21]h — [(1 — £)S20 + tS21]h' € 2
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for every t € [0,1]. Indeed, if Rzp, Rz; > 0, it suffices to take h € 2 and ' = 0. If, otherwise, Rzp < 0
or Rz, < 0, it suffices to take h € 2 and A’ = Rh for some R such that Rzg — RSzg, Rz1 — RSz, > 0,
which is possible since SzoSzy > 0. Thus,

[Zo(h + ih/), Zl(h + ’Lh/)] C 2 +ifF.
By the arbitrariness of zp and z1, it follows that U is connected. Now, observe that the mapping
U:U53 (2,h) — AL (zh) — 25A%(h) € C

is holomorphic, where C\R_ > z ++ 2% € C is the unique holomorphic function which equals x + e31°8®
on R . Observe that ¥ vanishes on R x {2 by the homogeneity of A7, so that it vanishes on the whole
of U by holomorphy. Thus,
A5 (h+ih") = AL (R —ih)
for every h,h' € £2, so that J§, = iSA$, on (2.
In the general case, take s’ € Ny such that s’ — Rs € 2m’ + (R%)". Then, clearly

T = A5 )T

so that J§, = iSA§, on (2.
For what concerns holomorphy, fix some s’ € IN. Then, the mapping s — A3, (i - )J_f{sl e S'(F)

is holomorphic on the set of s such that ®s € s’ — m’ — (R%)", so that the assertion follows from
Lemma [2.T9) 0

Definition 2.22. For every s € C", we define Riemann-Liouville potentials on F' and F’ as follows:

I5 = lim FRl(AS(\+i-))
e’
A—0

. 1 — .
Iy = lim P/ (Ag (h +1i-)).
h—0
We collect in the following result some elementary properties of the Riemann-Liouville potentials
previously defined.

Proposition 2.23. Take s,s’ € C". Then, the following properties hold:

(1) I = 7 A% - ve f Rs € gm+ (RY)", while I = 115 4% -ver if Rs € gm’ + (RY)";

2) LIf = A7 on 2 +iF and LI5, = AL° on 2 +iF;

3) If, is supported in 2 and I, is supported in (ol

IS
4) I3, is supported at 0 if and only if s € =W/, while I3, is supported at 0 if and only if s € —INg;

(
(
(
(5) IS5 % IS = I3 and I3, * IS, = I3

Since clearly I?z = 0 and I?z' = dp, it then follows that I§, and I3, are fundamental solutions of the
differential operators I,® and I, for every s € Ny and for every s € Ny, respectively.

Proof. (1) This follows from Proposition 214

(2) This follows from (1) and Proposition [Z14] when Rs is sufficiently large. The general case then
follows by holomorphy, thanks to Lemma 2271

(3) This follows from (1) when Rs € i4m + (R%})” and Rs € im’ + (R%)", respectively, and by
holomorphy in the general case.

(4) This follows from the definition of N and INg.

(5) This follows e.g. from Corollary 216 when Rs, Rs’ € im + (R%)" and Rs,Rs’ € im’ + (R})",
respectively. The general case follows by holomorphy, since the space

o(F) ::{TGD'(F): Supp (T') gﬁ}

(where D'(F') denotes the space of distributions on F')is a commutative and associative convolution
algebra (cf. [64, Theorems XIII, XIV, and XIV bis]). O
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When convolving smooth functions with I3, we shall often restrict ourselves to the case s € —INgy,
so that I, is a differential operator and no issues occur. With a deeper analysis, one may sometimes
extend such results to more general values of s.

Proposition 2.24. For every s € C", for every s’ € Ng/, and for every h € 2+ iF,
(A% * %) (k) = (s + jm), A5 (1),
where (s + %m’)s, = H;Zl(sj + %mz) (85— 8+ %m3 +1).
Proof. By holomorphy, it will suffice to prove the assertion for h € 2 and Rs € s’ +d + %m + (RE)".
Then, Proposition 2.23] shows that
A% 155 =To(s —d) 5 4« 1%
= I'o(s — d)I5~ ¢
I —d /
__To(s—=d) A
I'n(s—s'—d)

whence the result, since % =(s+im’) o O

We now describe further properties of the generalized power functions A!_?b and A;;’ in terms of the
preceding results.

As we observed in Example 29 b,d € R_1, when D is irreducible and symmetric. As a consequence,
some objects in the theory of Bergman spaces simplify in that case (cf., e.g., [I]). This need no longer
be the case if D is either not irreducible or not symmetric.

Proposition 2.25. The following properties hold:
e —bec Ny,
o [Pf(\)| = [Pf(eqn)|AGP(N) for every A € 2;
o O (H") = %Iﬁb.
Proof. Observe first that, with the notation of Section [[L2]
Iat =g g

for every A € {2, for every t € T4, and for every g € GL(E) such that ¢ - @ = @ o (g x g). Therefore,
under the same assumptions,

[PE(A - 1)] = dete(|ne|) = [dete(g)Pdete(|Ia]) = A7P(1)[PEN)|

by the definition of b. Hence, [Pf(\)| = [Pf(eq)|AgP(N) for every A € £2'.
Next, observe that

[PE(eqn) | AGP(N) = [PE)| = [deto(Jy)] = deto(—iy)
for every A\ € (2. Since the mapping
F’ \ W 3 A+ detg(—idy) € C

is clearly polynomial, it then follows that —b € INg. -

Finally, observe that ®.(H?") is a positive Radon measure on F' which is concentrated on ®(E) C 2,
since the positive quadratic form @ is a proper mapping. In addition, a simple change of variables shows
that

n

1

L R A o

for every A € (2, since (\, P(()) = ‘|J,\|1/2C‘2 for every A € 2/ and for every ( € E. Now, observe that
Proposition 2.23] implies that

(LI5P)(A) = A% (N)
for every A € (2 so that

7.‘-77/
b (H") = —— 1"
M) = Bitean '

by the uniqueness of the Laplace transform. (I
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2.4 FEvaluation of Some Norms

This section contains several technical results which will be very useful in the following chapters. We
mainly report or extend the results present in the literature to compute the LP norms of several functions
associated with the generalized powers functions on {2 and (2.

While the results concerning the study of L? norms for p < oo are generally reduced to the compu-
tations of L' norms, the study of L> norms is slightly subtler and will be addressed by some passages
to the limit.

Lemma 2.26. Takes € C" and h € 2. Then, A% (h+i-) € L'(F) if and only if Rs € d— im' — (R%)".
In this case,
FQ/ (d — éRS) Rs—d (h)
[Far(—s/2)]2 ¢ '

Again, an analogous statement holds for 2. The proof is based on |50, Lemma 4.20], which deals
with the case s € —m’ — (R%)".

/ | A%, (h + iz)| do = (4m)m2%s
F

Proof. Observe first that A$,(h +ix) = A?Qp(h +ix)? for every x € F, so that A,(h+i-) € L*(F) if
and only if A%?(h+i-) € L*(F). Now,
1 _
AP hti )= ————Fp(e CMAS? vy
2 ( + ) F_Q/(*S/2)]:F (e 2 V-Q)
when fs € —m’ — (R% )", thanks to Proposition 214l By Proposition 2.23 and analyticity,
AP (h+i-) = Fp(e M)
on {2 for every s € C". Observe, in addition, that Proposition Z23 implies that

_ 1 _
177 = A g
2 To(—s/2)—2 7@

on (2, and that I,; /2 # 0. Therefore, Proposition 214 shows that
€_<"h>15,s/2 c LQ(Q/) Ve

if and only if —Rs+d € 2m’ + (R%)", in which case

s , (2m)™ - _
/F|A9(h +iz)| dz = Tor(=s/2)F Jo © A2 AL () dvgr (N)
_ F_Q/ (d — §RS) Rs—d
— (2 m2§Rs d S h).
( 7T) |FQ/(_S/2)|2 2 ( )
The assertion follows since 2=4 = 2™, O

We now present an analogue of Corollary 217l The proof is inspired by that of [50, Lemma 4.19].

Lemma 2.27. Take s € C" such that Rs € f%m’ — (R%L)", and take h € 2. Then, the function

B s A% (h+ 1) is @, (H?")-integrable on 2 if and only if Rs € b — sm’ — (R%)". In this case,

s / oy I\ 7" Loy (b —s) s—b
/Q 2 ) A0 () () = e DS AT ),

For the sake of simplicity, we shall not characterize the set S of s € R" such that the function h/' —
A% (h + 1) is &, (H?™)-integrable on 2 for every h € 2. We simply observe that, if —b € +m + (R7)",
then Propositions 214 and show that S = b — sm’ — (R%)", while S = R" if £ = {0} since, in
this case, @.(H?") = §. The interested reader may recover the general case observing that S is an open
subset of R", that the mapping

S+ iR" > s+ / A% (h+ h')dd, (H*™)(W) € C
0
is holomorphic, and that the mapping
R™ 55 / A% (h + 1) d, (H2M) () € [0, 0]
2

is continuous by Fatou’s lemma.
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Proof. Assume first that s € f%m’ — (R%)", and observe that Propositions T4 and [Z23] and Tonelli’s
theorem imply that

/ AS (h+ h)dd, (H*™) (W) = / / ShER) ACS v dd. (H2) (R
0 F_Q/ S ’

e {(Ah) A?Z/_s()\) dl/_Q/ ()\)

|Pf(€rz')|FQ'( /n

T .
- |Pf(€n(/2)|Fn/( 540"

if and only if s € —§m — (R%)", while the first integral is co otherwise. The assertion for general s
follows, since |A%| = ARS on 2. O

The preceding results allow to compute L? ‘norms’ of several functions associated with the generalized
power functions A§, and A%, p €]0, 00[. We now deal with L> norms.

Definition 2.28. For every s,s’ € R}, we define

with the convention 0° = 1.

Lemma 2.29. Take s € C". Then, A%, is bounded on the bounded subsets of §2 if and only if s € R’
In this case,

le™ ™ VA% |l L () = (Rs/e) ™ AGTS(N)
for every h € (2.

An analogous result holds for 2'.

Proof. Keep the notation of Chapter 1] and let B be a bounded subset of 2. Then, sup (e},t> is
tenpeEB
finite for every j = 1,...,r, so that A, is bounded on B whenever Rs € R’ . Conversely, assume that

Rs ¢ R, and take j € { 1,...,7 } so that Rs; < 0. Then, the sequence (t;/k+>;_,;ej) eq is bounded
in £2, but

lergOA?z tj/k—i—Zej/ cen | = oo.
J'#d
Now, assume that fts € (R )", and observe that, if p is (finite and) large enough, Proposition 214

implies that
He_()\a . >A_(§R;S||LP(VQ) — FQ (p?RS)l/pp_%sA;;,RS(/\)

for every A € 2'. Therefore, passing to the limit for p — oo and using Stirling’s formula,
le™ A% | e ) = (Rs/€)™ A5 (V)
for every A € £2'. The assertion for Rs € R’, follows by continuity. O

Lemma 2.30. Tukes,s' € C" and h € 2. Then, the function h' — A% (h+h')A%,(R') is bounded on 2
if and only if Rs' € R, and Ns + Ns’ € —RY,, in which case

, Rs’ Rs’ —Rs — Rs’ —Rs—RNs’
sup | 4%, (h 4+ 1) A% ()| = (RS (s — )

_ Rs+Rs’
hen - (7%5)73% AQ (h)

In addition, A%(h+ -)A3, € Co(£2) if and only if Rs' € (R%)" and Rs +RNs’ € —(R%)".

An analogous result holds for (2.
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Proof. By homogeneity, we may assume that = ep. Then, define a mapping I: 2 > h — h™t € 2
such that I(t-eq) =t"!-eq for every t € T4, so that I(eq + 2) = 2N (en — 2). Thus,
sup A% (e + W) AH(W)| = sup AR (W) AT (W ~ eq)
hen W eeq+92
= sup  ASMAF (W —ep)
W enN(en—2)
= sup A;;RS_ERS/(h')A%S/ (e — 1),
heQN(ea—0)

which is finite if and only if Rs’ € R’, and Rs + Rs’ € —R’., thanks to Lemma 229 Now, if s € (R )"
and s + s’ € —(R%)", then for p (finite and) sufficiently large we have, by Corollary 217,

Tows) Lo (—p(s +5))\ /" ot
FQ/(*])S) ) A.Q+ (h‘)a

so that, passing to the limit for p — oo and using Stirling’s formula,

[0 = A% (h + W) AL (R ) o) = (

s / s’ 111 SIS/ (_S - S/)_S_S/ s+s’
sup |A% (h + B A% (R)] = — AL (h).
h'eQ (—s)

The assertion for general s and s’ follows by continuity.
To conclude, observe that

li A—ERS—ERSI h/ A?Rs’ _h/ -0
P L BT (W)AG (e —h')

if and only if Rs’ € (R%)" and Rs + Ns’ € —(R%)", so that AL (h + A% € Co(2) by the preceding
remarks. O

Corollary 2.31. Take s € R". Then, A%, is decreasing on §2 if and only if s € —IR',.

An analogous result holds for 2. Recall that F is endowed with the ordering induced by 2, so that
r <y if and only if y — z € §2, for every x,y € F.

Proof. Apply Lemma 230 with s’ = 0. O
Lemma 2.32. Take s € C" and h € 2. Then, the function x — |A%(h + ix)| is bounded on F if and

only if s € —RT., in which case

' (_%S)—Eﬁs
AS h = —
soplaah+ ol = G

In addition, |A%(h+i-)| € Co(F) if and only if Rs € —(R%)".

AR (h).

An analogous result holds for 2’
Proof. Assume first that #s € —(R%)". Then Lemma shows that, if p is large enough,
I'o(d — pRs) )1/p AERs—d/p(h)
[T (—(p/2)s)? “ ’
so that, passing to the limit for p — co, and using Stirling’s formula,

_ S—ERS
CR) A ).

1A%+ i) o) = 27 ((4@’”

2% (h + iz)| = 2
22‘2' Q( ’L.T)| |(7S)7S|

Then, by continuity we see that the same happens also for every s € —IR',.
Now, assume that A%, (h +i-) is bounded on F. Then,

A (hti-)= A (h+i)AS(h+i-)

is integrable on F for every s’ € d — 2m’ — (R% )", thanks to Lemma 226, so that Lemma Z20 implies
that Rs +s’ € d — 2m’ — (R7)". By the arbitrariness of §/, it then follows that s € —R”,..
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Next, assume that s € —(R? )", and define
[ F+i02 5 (x+ih) — AL —ix) € C,

so that, with the notation of Section [[3] f € Aﬁnl 10C(F +402) for p (finite and) sufficiently large. In
addition, A%,(h+i-) = fu(—-). Since Proposition [[22] shows that f € A°° (F + i42), this implies
that A% (h+i-) € Co(F).

Finally, assume that s € =R, \ (—=R%)", and let us prove that AS(h+i-) & Co(F). Indeed, keep the
notation of Section 2] and define

t, :=re; + Z ek

ke
for every p > 0, where j € {1,...,r } is chosen so that s; = 0. Then,

A% (h+it, - ) = AL(t, - h + ix)

l/Q O loc

for every x € F and for every r > 0. Arguing as in the proof of Lemma 22Tl we then see that, for every
x € (2,

AL (h+it, - x) = PAY (x — it - h),
which converges to 1A%, (x —iP(h)) as r — 400, where P is the projector of H onto H N (Zkl# Ak,é)

)
with kernel HN (>, _; (A, + Ak ;)). Since A%, is holomorphic on 2+4F and does not vanish identically,
there is © € (2 such that A%, (z—iP(h)) # 0, so that HI—P A%, (h+it,-x) # 0 even though 1ir}_n tpx = o0.
r——+o00 T—+400

Thus, A% (h+i-) € Co(F). O
The following functions are closely related to the reproducing kernels of the spaces Ai,’Q(D) that we

shall define in Section Bl (c¢f. Proposition BIT]).

Definition 2.33. Take s € C", and define

Bloof6:2) = 5 (357 - #(6.0)
for every ((¢, 2),(¢’,2")) € (D x D)U (D x D).
Observe that B, ,)(C,z)B(_iZ,)(C,z) = 1, so that Bf, .(¢,2) # 0 for every ((¢,2),(¢",2)) €

(D x D)u (D x D).
We conclude this section with the computation of the L£?(D) norms of the functions Bt ) (cf. Def-

inition 235)).
Lemma 2.34. Take p €]0,00], s € C", and ((¢',2"),h) € (Dx 2)U(DUR). Then, (B(Sc, Z/))h € LH(N)
(resp. (B(S“Z,))h € LP(N)) if and only if Ns € (b +d) - m — (RL)" (resp. s € =R, if p = o0).

In this case,
H (B(SCIVZ/)) h

_ (Um)"a Lo (b+d — ps) \ 17
Csp = ( [Pt(en)||[ Lo (—(p/2)s)|? )

= Oy AR B D 1 g (),
i FPAY) (h+ 32" = o(())

where

if p < oo, while Cs o = %-

Proof. Assume first that p = 1, and define A’ := Sz’ — @(¢’). Then,
< x4 idD( + ih) — 2’
[ | (SRR E o ¢ ) aca)

_2%4 F|As B+ + B ()~ (v —a')i = S C)i) (G, z)

e “S//IAS (h+h + b —iz)| dz d. (H>")(h")
2

(Am)" I (d — Rs)
7TIFQ/(Qs/z )2 S /Ams Uk KA R ARG

_ (47T)m nF{ZI(b+d ?RS)A%S b—d
[Pf(eq )|l (—s/2)?

(h+n')
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by Lemmas and 227 provided that s e b+d — %m’ — (R%)". The first integral is oo otherwise.
= [(2.2), [y
Lr(N) V) il
Next, assume that p = co. Then, Corollary 23T and Lemma 232 imply that B, ., € L*>(N) if and
only if §RS € —R’,, and that, in this case,

The assertion for p < oo follows since H (B?C, ,)) ’

S . S el !
H (B(c/’z/))hHLoo(N) = CS,OOA_Q(h/+ N4 QS(C ))

In addition, Lemma 2.32] again shows that ( . ,))h € Cy(N) if and only if s € —(R%)". O

Definition 2.35. Take s € R” and p, ¢ €]0,00]. We define L:9(D) as the Hausdorff space associated
with the space

{ f:D—=C: fis measurable,/ (A5, (W) fall eany)? dve(h) < oo }
Q

(modification when ¢ = o), endowed with the corresponding structure of a locally bounded F-space.
We define LZ'((D) as the closure of C.(D) in LE9(D).

Notice that LZ'((D) = L29(D) if (and only if) p,q < oc.
Proposition 2.36. Tukes € R", s’ € C", p,q €]0,00], and ({',2") € D. Then, B(C’ € LLG(D) (resp.
B(Sé,ﬁz,) € L29(D)) if and only if the following conditions are satisfied:

e sc m+( " (resp. s € RY if g =00);

o Rs' € (ber) - —m — (RL)" (resp. Rs" € =R, if p = 00);

est+Rs' el (b+d) m—( " (resp. s+ Rs' € + (b+d) RY if g =00).
In this case,

s+s’—(b+d
wpepy ~ CxrCespada DS — 0((),

where Cy , is that of Lemma[Z2.5), and

HB(SC”ZI)

C .Z(EW$%ﬂwm®+d%w@+%W)w
e I'o((g/p)(b+d) — gRs') ’

if ¢ < oo, while
c _ (bt d)/p—s —Rs)brd) /s
SR (b +d)/p — Re))br)/p-R

Proof. Take h € £2. Then Lemma E34 shows that ( ¥, /)) € LE(N) (resp. (B(Sé/,z,))h e LP(N) if

and only if s’ € 1—17(b +d) — %m’ — (R%)" (resp. R’ € =R, if p = 00), and that, in this case,

Rs'—(b+d
oy = o™ TV (32— (),

(Lo

If ¢ < oo, then Corollary 217 shows that B(Sé, .y € LGG(D) (resp. B(Sé, .y € LB9(D)) if and only if the
conditions of the statement hold and that, in this case,

HB(Scf,z')

Finally, if ¢ = co, then Lemma 230 shows that B(Sé/ .y € L5 (D) (resp. B(Sé, .y € LB>(D)) if and only
if the conditions of the statement hold and that, in this case,

|B%.

The assertion follows. O

+Rs’—(b+d
agopy ~ ConCosimalia ™ (S — 0(()).

Rs’—(b+d
L) CorpCasrpoc s TS — 0(()).
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2.5 Lattices and Quasi-Constancy

This section deals with the various tools needed for the ‘discretization’ of several problems related to
weighted Bergman spaces (and Besov spaces).

We first recall the definition of the Bergman metric and use this metric to induce an invariant metric
on {2 (which is not, in general, the ‘canonical’ invariant metric on a homogeneous cone). We also fix
an invariant measure on D. We then deal with the quasi-constancy of several functions on D, §2, 2’ on
invariant balls.

We conclude this section with a suitable definition of lattices on D, £2, and 2, and with a proof of
their main properties.

Denote temporarily with B the composite of the unweighted Bergman kernel (that is, the reproducing
kernel associated with the unweighted Bergman space Aiﬁn (D), with the notation of Section [[3]) and
the diagonal mapping of D. Then, Corollary [[Z1] and Propositions 2214l and show that

B(Cv Z) - 4m7Tn+mF_Q(—d) A})Z+2d (SZ - QS(C))

for every (¢, z) € D. The Bergman metric k is then defined by
k(¢ . vv' = 9,0, (log B)((, 2)

for every (¢, z) € D and for every v,v" € E x Fg. Notice that k is a Kéhler metric. We denote by g its
real part, that is, the associated Riemannian metric.
Simple computations lead to the following result.

Lemma 2.37. For every ((,z) € D and for every (v,w), (v',w') € E x Fg,

(AWMVM)CA?”ﬂm>m

k(.o (v, 0) (0 ) =

A2 () A2 ()
i i— , APy (p ,
(g #0.0) - (57 - 9160 - G o)

where h = Sz — P(C).
Definition 2.38. We endow D with the Riemannian distance d associated with g, and we define

4mpntm o (—d)
Up :

= B A,
|Pf(€Q/)|F_Q/(*b — 2d)

We denote with B(((, z), p) the open ball with centre (¢, z) € D and radius p > 0 relative to the distance
d.

The constant in the definition of vp has been added for computational reasons. Indeed, with these
conventions,

/D fdvp = /Q /N fu(C, ) d(C, 2) A% (h) dvg (h)
for every f € L'(vp).

Proposition 2.39. Denote by G(D) the group of biholomorphisms of D onto itself. Then, the following
hold:

1) G(D) acts transitively on D;

)
2) k, g, and the associated distance d are G(D)-invariant;
3)
)

the measure vp is G(D)-invariant;

(
(
(
(

4

the metric space (D,d) is complete. In particular, the closed balls relative to d are compact.
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Proof. (1) This follows from the fact that G(D) contains the left translations by elements of bD and the
automorphisms of the form ({, 2) — (g¢,t-2) for t € T} and g € GL(E) such that ¢ - & =® o (g x g).

(2) This follows from [45, Proposition 1.4.15].

(3) This follows from [45, Proposition 1.4.12].

(4) The first assertion follows from [48 Theorem 1.3], while the second assertion follows from the
Hopf-Rinow theorem (cf. [46, Corollary 6.7]). O

Definition 2.40. We endow (2 with the Riemannian metric g, induced by g through the embedding
h v+ (0,ih) of £2 in D. We denote with dy, the associated distance. We denote with B (h, p) the open
ball with centre h € 2 and radius p > 0 relative to the distance dg,.

We endow (2 with the Riemannian metric g/ and the associated distance dgs obtained by means
of the identification 2 >t e — eq -t~ € 2, where t € T,.. We denote with By (), p) the open ball
with centre A € 2’ and radius p > 0 relative to the distance d.

In this way, the distances on {2 and (2 are T -invariant.

The following result allows us to compare the invariant balls on D and 2. In particular, it shows
that, even though g, was defined by means of an embedding, the distance on {2 is actually a ‘quotient’
of the distance on D.

Lemma 2.41. The mapping 0: D 3 ((,z) — Sz — P(C) € 2 is a Riemannian submersion. In addition,
for every (¢, 2),(¢',2') € D,
d_Q(Q(g; Z)a Q(g/a Z/)) < d((Ca Z)a (g/a Z/)),

with equality if (¢, z),(¢",2") € (¢",2")- ({0} x i82) for some ({",2") € bD.

Recall that, if (M;,g1) and (Ms,gs) are Riemannian manifolds and f: M; — M is a submersion,
then f is a Riemannian submersion if T, (f) induces an isometry of ker T, (f)* onto T (,,)(Mz) for
every r1 € M;.

Observe that, in particular, the closed balls of {2 are compact, so that the distance dy induces the
uniformity of a complete space on 2.

Proof. Take (v,w) € E'x F and w’ € iF', and observe that
K(,in) (v, 0)(0,w") € iC

by Lemma [Z37] since A}’;ﬂd is real on §2. Thus, (v,w) and (0,w’) are orthogonal for g ). Since
E x F = ker¢'(0,ih) for every h € {2, this implies that iF is the g )-orthogonal complement of
ker ¢/(0,7h). In addition, the restriction of ¢’(0,ih) to iF is an isometry between g ;) and (gq)n by
definition, so that p is a Riemannian submersion at (0,:h) for every h € £2. By the invariance of k and p
under the action of bD (cf. Proposition 239)), it follows that ¢ is a Riemannian submersion on the whole
of D.

Thus, if v: [0,1] — D is a piecewise smooth curve joining two points (¢, z) and (¢’,2’) of D, then
0o7:[0,1] = 2 is a piecewise smooth curve joining h := o((,z) and h' == p({’, z’), and

I(eo) (Dllga <11V (B)lle

for every t where ~ is differentiable. Consequently,

da(e(¢,2), 0(¢',2") < d((¢,2), (¢, "))

for every (¢, 2),({’,2") € D, by the arbitrariness of 7. To prove the last assertion, we may assume that
(¢,2) = (0,ih) and (', 2") = (0,4h’), by homogeneity. If v is a piecewise smooth curve joining h and h’
in 2, then (0,iv) is a piecewise smooth curve joining (0,¢h) and (0,ih’), ¥ = g o (0,47), and

17 ) llge = 100,47)(*)le,

whence

Equality holds by the preceding remarks. [l
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We now prove some quasi-constancy lemmas for several functions on D, §2, and (2’. The following
result, also known as Korényi’s lemma, is of fundamental importance to deal with atomic decomposition
of weighted Bergman spaces. It first appeared in [28, Lemma 2.3] for symmetric Siegel domains of type
IT and s = b+2d. It has then been extended in [I2] Theorem 1.1] to general homogeneous Siegel domain
of type II, for s = b 4+ 2d. By an inductive procedure, we extend this result to the case of general s.

Theorem 2.42. Take s € C" and R > 0. Then, there is a constant C' > 0 such that

B, 2)
B(SCVZ) (<”) Z”)

for every (¢, 2), (', 2"),(¢",2") € D such that d((¢',2"),(¢",2")) < R.

— 1] < Cd((¢,2), (", 2")

Remark 2.43. This result may be extended in two ways. On the one hand, one may prove the same as-
sertion under the weaker assumption (¢, z) € D, by continuity. On the other hand, arguing by symmetry,
one may prove that

B(sgl,zl)(C{a Zi)
B?C%@) (G2, 22)

1] < C(d((CL/Zl)v (§2; 22)) + d((éﬁazi)a (Cév Zé)))

for every (gla Zl)a (gia Zi)a (§25 22)5 (Céa Zé) € D such that

d((gla Zl)’ (€2a 22))’ d((C£a Zi), (Céa Zé)) < R.

Proof. We prove the assertion by induction on r. Even though the case r = 1 can be treated aside,
since the following construction is meaningful (though trivial) for » = 1, we may artificially introduce
the rather trivial case r = 0 and proceed with the inductive step. Observe, though, that the we do not
consider the trivial domain D = {0 } elsewhere. Then, assume that r > 1 and that the assertion holds
for every homogeneous Siegel domain of type II over a homogeneous cone of rank < r. Keep the notation
of Section 2711 so that F' = H and {2 = C(A). Define

AT = B Aji,

Jik=2

and endow A1) with the structure of a T-algebra of rank r — 1 with the operations of A and the
graduation Agfk_l) = Aji1p41, for j,k =1,...,r — 1. Let TJ(FT_l), HC=D and 20=1 = C(AT=Y) be
the associated spaces.

Let 7"=D: A — A1 be the linear mapping which induces the identity on A"~ and vanishes
on Ajy for every j,k = 1,...,r such that either j = 1 or £ = 1. Thus, 7"~ may be considered as
the self-adjoint projector of A onto A ~Y. Notice that, even though 7("~1) need not be a morphism of
algebras, it is easily verified that

W(T_l)(a*> _ 7r(7"—1) (a)*, 7r(7"—1) (tt/> _ 7r(7"—1) (t)ﬁ(r—l) (tl),

and

W(T_l)(tl't*) — F(T_l)(t)ﬂ'(T_l)(.T)F(T_l)(t)*
for every a € A, for every x € H, and for every t,t' € T. In particular, 7"~ (H) = H=D z(r=1)
induces a homomorphism of 7'y onto Tffl), and 7"=V(C) = 2"~V Therefore, by an abuse of notation,

Qs

S oy o = A(C?’s) on C for every s’ € C"!, whence

’ r—1 0,s’
A Oﬂéj = A(c :

on C + iH by holomorphy.

Next, observe that 7rg_1) o® is a 2~V _positive hermitian mapping of E into H"~Y. Let E"~1) be
the quotient of E by the radical of 7Tg71) o®, and let 75: F — E("~1 be the canonical projection. We
denote by #("~1) the non-degenerate 2("~1-positive hermitian mapping of E"~1 into H"~1 induced

by 7rg_1) o ®. Observe that for every ¢ € Tj_T_l) there is ¢ € GL(FE) such that t-® = P o (g X g), so that

t- (N od) = (a0 d)o (g% g).
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In particular, g preserves the radical of Wg_l) o @, so that it induces an element ¢’ of GL(E( 1) such
that t - "= = ¢("=D o (¢/ x ¢'). Therefore,

D=1 = { (¢',2") e B x H(T V. gy — o=y e Y }
is a homogeneous Siegel domain of type II, and D"~V = (75 x 7Tg 1))(D). Define

’ Zi

' (r—1 s 77«'_/ r—
B(SCé(,z;))(G’Zi) = Age-n < 2 2 — ¢ 1>(CLC§)>

for every (1, 2}), (¢, 25) € DU~V and for every s’ € €', In addition, let d"~" be the Bergman
distance on D"~ Then, the inductive assumption implies that for every s’ € C"~! there is a constant
Cs > 0 such that

leﬁ(rfl)(gl 2)
(¢hrzg) 1271 r—
Wil < CS,d( 1)((<ivzi)a(<évzé))
Bigmy (C2%2)
for every (¢}, 24), (¢}, 21), (¢, 25) € D=V such that d"=Y(({], 2}), (¢5, 25)) < R. Further, the preceding
remarks show that, for every ((o, 20), (¢1,21) € D,

(0,8 s’,(r—1) (r—1)
BKO z0) (Cl’ 21) B(ﬂE((O),m(cTil) (20)) (ﬂ-E (Cl)’ Tc (Zl))

Then, take s € C", and observe that there are s’ € C"~! and 7 € C such that s = (0,s') + 7(b + 2d), so
that

Tb 2d J(r—1 r—1
Bl ey (C1:21) = B m)BE O D o ((G)m Y (2a)

for every (o, 20), ((1,21) € D. Now, select an n-dimensional real subspace E of E, and interpret E as the
complexification of E. Endow E with the corresponding conjugation. Then, observe that, since D x D
is convex, hence simply connected, for every 7 € C there is a holomorphic function

b-: DxD—C

such that

B(T(b;-2d)(< Z) = e ((6:2),(¢,2)
¢z ’

for every ((,2),(¢’,2") € D. Then, it is readily verified that for every 7 € C there is constant ¢, € C
such that
b, =7b1 +cr

Now, by [12, the first proof of Theorem 1.1] there is a constant C > 0 such that

191((¢:2), (¢,2)) = ba((¢, 2), (¢", ")) < Ca((¢, 2), (¢,2")

for every (¢, z) € D and for every (¢, 2'), (¢, 2") € D such that d((¢’,2"),(¢",2")) < R. Therefore, for
every 7 € C there is a constant C; > 0 such that

b+2d (CI ,) N
ffbi)gd> — 1| < Grd((¢',2), (¢", 2))
(C Z) (C// //)

for every (¢,2) € D and for every (¢, 2'), (¢",2") € D such that d((¢’, 2"), (¢",2")) < R.

Next, observe that the mapping g X 7r0(3 V. p D=1 s analytic, hence locally Lipschitz. Then,
Proposition 2.39 and the preceding remarks show that there is a constant C' > 0 such that

Ble (%)

B(sgﬁz) (O,ZGQ) -

< Cd((¢',2),(0,ieg))

for every (¢, 2), (¢, 2’) € D such that d((¢’, 2'), (0,ien)) < R. The assertion then follows by homogeneity.
O
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Corollary 2.44. Take s € C". Then, there are two constants R,C > 0 such that

A%, (h+ 1)

20T 4l < Cdo(h B
A,(h + h'") o(W', 1Y)

for every h € 2 and for every h',h" € §2 such that do(h',h") < R.
If, in addition, s € R, then for every R’ > 0 there is a constant C' > 0 such that

1
aAfQ(h +h") < AL(h+ 1) < C'AL(h+ R
for every h € 2 and for every h',h" € §2 such that do(h',h") < R'.

An analogous result holds for 2.

Proof. When h € {2, it suffices to apply Theorem with (¢, z) = (0,ih), ({',2") = (0,ih'), and
(¢",2") = (0,ih”), thanks to Lemma 24T} The general case follows by continuity. O

Lemma 2.45. Take R > 0. Then, there is a constant C' > 0 such that, for every h,h' € 2 and for every
AN € 2 such that do(h,h') < R and dgy (A, N') < R,

1 _ (AR
— < <C.
¢Sy S¢

The proof is based on [8, Theorem 2.45], which deals with symmetric cones.

Proof. Observe that 2 = (£2)’, so that (\,h) > 0 for every non-zero A € £ and for every h € 2. By
compactness (cf. Proposition [Z39)), there is a constant C; > 0 such that
1
10
Cl <)\a €n

<Oy

<

for every A € (2 such that |[A\| = 1 and for every h € Bn(eq, R). Then, the same holds for every
A € 2. Next, take h,h’ € 2 such that dp(h,h') < R, and choose ¢t € Ty so that b/ =t -egp. Then,

. 71.
do(t™t-h,en) < R and &’:,)) = ()2;_’:16(2@, so that
C1 (MK

for every A € (2. Applying the above arguments to 2, we see that there is a constant Cy > 0 such that

L _h
— <
Cy ~ (N, h)

< O

for every h € (2 and for every A\, N € 2’ such that do/ (A, \) < R. Then, the assertion follows with
C = CCs. O

Corollary 2.46. Take R > 0. Then, there is a constant C > 0 such that, for every h,h' € 2 and for
every A, N € 2 such that dp(h,h') < R and dgo/(\N) < R,

1 _ 1n
< —

1 _ A
Proof. We prove only the second assertion. The first one is proved analogously. Observe that the
mapping 2/ 3 XA — (A, en) € Ry is (positively) homogeneous of degree 1 and vanishes only at 0 (since

eq € 2 =(")). Therefore, there is a constant C; > 0 such that
1
SN < (e < Gl
1

for every A € 2. The assertion follows from Lemma [Z.Z5] O
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Lemma 2.47. There is a constant C > 0 such that

1
—=lt-eol <|lt-[| < Clt-eql

NG

and such that
TP T eye) il s

for every t € T...

An analogous result hold for 2’
The first assertion has been proved, with C' =1, in [9, Lemma 2.12] for the case of symmetric cones.

Proof. Since |egq| = /T, it is clear that %|t cen| < ||t-||. Analogously, it is clear that ||t ||=* < [[t~1-]|.
Then, keep the notation of Section B.Il and observe that there is a constant C; > 0 such that

|aa’| < Cilalla’|
for every a,a’ € A. Therefore, for every 2z € V and for every t € Ty,
|t a] = [tat*| < CP|t||][t] = CF |||t
since clearly |t| = [t*]. Therefore, ||t- | < Cy|t|*. Now,
[t]? = Tr(tt*) = Tr(t - eq) = (t- e, eq) < Vrlt-eql,

whence the first assertion.
Finally, observe that

T

1 = Z(_l)k—l Z Ljrga " t/jk—ljk

k
k=1 jecge He=1(€,,1)
1 - k—1 /
S DDA DRI | QA
k=1 1< <J LZ{ j1s sk }

for every t € T'.. Observe that [e;| = 1, so that 0 < (€, t) = Tr(e;t) < |t| for every t € Ty and for every
j=1,...,7. Therefore,

1+C1)" =1
|t_1| < ( :_ 1) |t|r_1,
CYAL/2(t)
so that (140 2
_ 1+C)" =1 2(r—
A R Sl My A [ Aol
It < A
and the result since [t|? < 7|t en| <[t ]. O

Definition 2.48. Take 6 > 0, R > 1, and let (hy)rex be a family of elements of (2. Then, we say that
(hy) is a (6, R)-lattice if the following hold:

e the balls By (hg, d) are pairwise disjoint;
e the balls B(hy, RS) cover D.
We define (9, R)-lattices on 2 in an analogous fashion.

Since we want to deal with mixed norm spaces on D, we shall define lattices on D more carefully.
Heuristically, the index set must have a product structure in order to keep track of the mixed norm
structure of the functions spaces on D we shall consider. In order to simplify the computations, we shall
also require that each lattice on D induce, in a rather straightforward way, a lattice on {2. More general
choices are possible.

Definition 2.49. Take § > 0, R > 1, and let ((j x, 2j.x)jeskex be a family of elements of D. Then, we
say that (¢ k. 2jx) is a (6, R)-lattice if the following hold:



CHAPTER 2. HOMOGENEOUS SIEGEL DOMAINS OF TYPE I1 41
o there is a (0, R)-lattice (hi)rex on (2 such that hy = Sz, — (k) for every j € J and every
ke K;
o the balls B((jk, 2jk),d) are pairwise disjoint;
o the balls B((¢jk, 2j,x), RO) cover D.
Lemma 2.50. Take 6 > 0. Then, there is a (J,4)-lattice on D.

Consequently, there are (d,4)-lattices on (2 and (2’ (actually, one may prove that there are (9,2)-
lattices on {2 and (2, as in [9, Lemma 2.6]).
The argument is classical. See, for example, [9] Lemma 2.6].

Proof. Let J be a maximal subset of bD +ieg, such that the balls B(((, z),d), for ({,z) € J, are pairwise
disjoint. Observe that, by maximality,

bD +ieo C | J B, 2),20).
(¢,z)ed
Next, choose a maximal subset K of T such that the sets
U(bD+it'€Qv§> = U B((ga'z)aa)v
(¢,z)ebD+it-en

for t € K, are pairwise disjoint, so that, by maximality (and the bD-invariance of d),
D= JU®D+it- eq,20).
teK

Then, for every k € K choose g, € GL(E) such that k-& = $o (g X gx), and define ((j x, zj.x) = (gx X k)j
for every (j,k) € J x K. Let us prove that the balls B(((jx,2;k),0) are pairwise disjoint. Indeed, take
(4, k), (j', k') € J x K such that (j,k) # (§/, k). If k £k, then

B((ngﬁ Zj7k>a 5) C U(bD + ik - €0, 5) and B((gj/7k/7 Zjlyk/)v 5) C U(bD + ik’ - €0, 5)7
so that B((jk, zj,k),0) N B((¢jr k7, 2j7 1), 0) = 0. If, otherwise, k = &/, then j # j’, so that

B((Ciuk» 2i.k),0) = (gx, k) (B(3,0))  and B(((jr ks 2j.k), 0) = (gx, K)(B(S', 9))

are disjoint. Finally, observe that U(bD + ieg,20) C ;e ; B(j,49), so that the balls B(((jk, 2j,k), 40)
cover D. Then, (¢, 2jk)jerkek is a (d,4)-lattice. O

Proposition 2.51. Take &g > 0 and Ry > 1. Then, there is N € N such that, for every (4, R)-lattice
(Ck» 2jk) jesker on D with § €]0,60] and R €)1, Ry), every ball B(({j k, zjk), RY) intersects at most N
balls B((Cj/7k/,2j/7k/),R(S), (jl, k/) eJxK.

The argument is classical. See, for example, [9, Lemma 2.6]. Notice that a similar result holds for
lattices on {2 and (2'.

Proof. Indeed, fix (j,k) € J x K, and let L be the set of (j', k") € J x K such that B(({j k, 2jk), RS) N
B((¢jr ks 2j7 1), RO) # 0. Then,

U B, ziw), RS) C B((Giks i), 2R6),
(47.k")EL

so that, by Proposition 2.39]
Card(L)vp(B((0,ien),d)) < vp(B((0,ieq), 2RJ)).
Thus, it suffices to take N greater than sup 22BW0ca)2Rod))

oD Tup(B((Uien) )
density with respect to H2"+2m, O

, which is finite since vp has a smooth
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2.6 Notes and Further Results

2.6.1 The study of generalized power functions on homogeneous cones and of the associated gamma
functions was first developed in [37], to which the reader is referred for some further developments which
are not treated here.

Of particular interest is the study of the generalized Riemann-Liouville potentials I5,. Here we discuss
only the case s € —INg for simplicity, so that I§, is supported on { 0 }. As we noted in Proposition [Z23]
the differential operator 7§, with convolution kernel I§, has an explicit fundamental solution, namely I,®.
In addition, since I,® is supported in {2, convolution with 7% with distributions supported on a translate
of 2 is always possible, thus giving an inverse to the operator Z%, on the space of such distributions.
Nonetheless, it is sometimes relevant to solve the equation 7§, f = g for more general g, especially in a
constructive way (e.g., for g analytic).

If 2 = R, then subtracting a suitable Taylor polynomial to g is often sufficient to define a formal
perturbation of ¢ * I,® (which need not be defined) which gives a solution of the equation 7§, f = g. For
more general {2, the situation is more complicated, since partial ‘indefinite integrations’ over suitable
subcones of 2 are needed. Cf. [37] for further details.

2.6.2 Another interesting problem concerning the Riemann-Liouville potentials is the determination
of the set G(§2) of s € R” for which I%, is a positive measure (this set is called the ‘Gindikin—Wallach set’
in [41]). From Proposition ZZ2Z3 it follows that G({2) contains 2m -+ (R*)", but in fact it is strictly larger.
The set G(£2) has been first described by Gindikin [38] for general homogeneous cones. See also [71] [41] 3]
for more details.

Here we content ourselves with a brief description of G(§2), based on [41]. For every € € {0,1}",
define

m(®) = Eskmj7k ,
k>j

so that m = m("). Then, endowing R” with the componentwise product,

g2)= U (%m@ﬁ(my)’

ec{0,1}"

where the union is disjoint. In addition, 2 splits into the disjoint union of its 7', -orbits O, for € €
{0,1}", defined so that

T
Oe :T+' E E€5€5,
j=1

with the notation of Section 21l Then, O1, = 2. Finally, for every s € %m(s) + e(R% )" the positive
measure [g, is concentrated on O, and can be explicitly described.
Similar results hold for 2.

2.6.3 Using the results of 2.6.2, we are now able to give a necessary and sufficient condition for A4 \ £2/
to be negligible.

Proposition 2.52. Take s € G(2) (¢f. 2.6.2). Then, the following conditions are equivalent:
(1) se (RY)";
(2) the closed convex hull of Supp (I%,) is £2.

The proof is based on [35, Theorem 1.6], which deals with the case in which 2 is an irreducible
symmetric cone.

Proof. (1) = (2). Keep the notation of Section Il Take € € {0,1}" such that I, is concentrated
on O =T} - ec, where e, = Z;/:1 ejrej. In other words, s € 2m(® + e(R%)". Take j € {1,...,7}
and let us prove that e; € O. If ¢; = 1, then it is clear that (e1, /k + ¢;) - ec — e; for k — oo, so that

e;j € Oc. If, otherwise, £; = 0, then m's > 0, so that thereis k € { j 4+ 1,...,r } such that m;; > 0 and
er = 1. Then, take t € A;; so that [t| = 1, and observe that (eq, /k+1t) - ec — tt* = ;.
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Therefore, T - e; C O. for every j =1,...,r. Since
T
Q:T+'€1T QZT+'€]’,
j=1

we then see that {2 is contained in the closed convex hull of O,, whence (2).
(2) = (1). Assume by contradiction that s; = 0 for some j € {1,...,r}. Then, ¢; = 0 and

0= mge) = Zk>j €xmyj k, so that for every k € { j,...,r } either e, =0 or A;, = {0 }. Consequently,
() t-ee) = erlef,tintin)) =0
k>j

for every t € T4. It then follows that the closed convex hull of O, is contained in the kernel of e’:
contradiction. O

Corollary 2.53. The following conditions are equivalent:
(1) Ay \ $2" is negligible;
(2) be (R*)".

Proof. This follows from the fact that Ay is the polar of Supp (®.(H>")) = Supp (I;°) = O_p
(cf. Proposition 2:25) and from Proposition 2521 O



Chapter 3

Weighted Bergman Spaces: Sampling,
Atomic Decomposition, and Duality

In this chapter we develop at length the theory of weighted Bergman spaces on homogeneous Siegel
domains of type II. We recall that the provisional notation of Sections and [[4] will no longer be used.

In Section B, we shall introduce our notation for the weighted Bergman spaces A24(D), and prove
some inclusions (PropositionsB.2land B17) between them. We shall also characterize the values of p, ¢, s for
which the space AP4(D) is non-trivial (Proposition [B.0)) and prove some (weak) density results between
the various weighted Bergman spaces (Proposition B).

In Section B2 we shall translate in the new notation the Paley—Wiener theorems developed in
Section [L4, determine an explicit expression of the reproducing kernel of A2:2(D) (Proposition B1T]),
and determine its reproducing properties on the various weighted Bergman spaces (Proposition B.I3)).
By means of these results, we shall then extend the definition of the Bergman spaces A2?2(D) beyond
the critical index im and prove Paley—Wiener theorems for such spaces (Proposition BIT).

In Section B3] we shall deal with sampling results (Theorems B21] and B.22)), with the aid of the
results of Section

In Section B.4] we shall deal with atomic decomposition for the spaces AP9(D). As mentioned in the
introduction, by atomic decomposition we mean the possibility of expressing each element f of A2:¢(D)

as a sum of the form b))/
s’ + —s—s’
Z)‘j’kB(ﬁj,kaZj,k)AQ ! (),
3.k

where ((j x,2jx) is a lattice on D, (hg) is the associated lattice on {2, and

1flags(py ~ [IAller.a

(cf. Definition B.20). Thus, the validity of atomic decomposition counsists (virtually) of two halves: the
continuity of the map
VX DN AB AT ()
.k

from ¢79 into APL9(D), and the surjectivity of ¥ (which implies that ¥ induces an isomorphism of a
quotient of (77 onto AP9(D)). We then say that property (L)2? holds if ¥ is continuous, and that
property (L')2? holds if ¥ is continuous and onto (hence a strict morphism, by the open mapping
theorem). Recall that, if X and Y are topological vector spaces, then a strict morphism 7: X — Y is a
continuous linear mapping which induces an isomorphism X/ kerT — T'(X). In order to give sufficient
conditions for the validity of properties (L)2'? and (L')29, it is convenient to prove the validity of the

stronger property (L)2'{, that is, the continuity of the mapping

’ b+d —s—s’
A Z )‘j’le?Cj,k-,Zj,k)lA(QJr i (Px)
7.k

from 79 into AR9(D) (Theorem B.33). It turns out that property (L)g¢ implies not only property
(L)29, as one would expect, but also property (L')2*? (Theorem B32).

44
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In Section 0] we show some interesting connections between property (L’)?>? and the characterization
of the dual of AZ§(D) (cf Definition3]). On the one hand, if property (L’)>? holds, then the sesquilinear

form on AZG(D) X AL Lo a1 p)—sms

(f.9) = /D 162G AT (32— B(0)) dup ((, 2)

induces an isomorphism of A

b+d)/mm(1 )—s_s ODtO AL§(D)" (Proposition [3.38). On the other hand,

/,q/
(b+d)/ min(1,p)—s—s’,s’
(Proposition B.38). In particular, property (L’)’(Db’j]rd)/min(1 p)—s_s & holds if and only if the space

p
A(b+d)/m1n(1,p) s—s’

We keep the hypotheses and the notation of Chapter

Theorem B.20] implies that the space A? ’q( )’ satisfies an analogue of property (L')?,

/(D) is canonically isomorphic to AZ'G(D)’.

3.1 Weighted Bergman Spaces

In this section we define (mixed norm) weighted Bergman spaces, and present their basic properties.
In particular, we characterize the values of s for which A22(D) is not trivial (Proposition B3] and we
prove some (weak) density results (Proposition ..

Throughout the chapter, we shall often indicate some minor modifications needed to treat the case
max(p,q) = co. As in Chapter 2] it turns out that the conditions on s are more uniform for the spaces
AZG(D) (whose elements vanish at oo in a suitable sense), even though the larger spaces AL?(D) are
somewhat more natural. In order to give a general treatment of duality between weighted Bergman
spaces, though, it is worthwhile dealing thoroughly with both spaces.

Definition 3.1. Take s € R" and p,q €]0,00]. We define the weighted Bergman spaces (cf. Defini-

tion 235)
AP9(D) :==Hol(D) N L?9(D) and  ADG(D) = Hol(D) N LY §(D),

with the topology induced by LE9(D).

Recall that LL'G(D) is the closure of C.(D) in LL9(D), and differs from LL4(D) (if and) only if
max(p, q) = oc.
Observe that, with the notation of Chapter [l A2?(D) = AL9(D), where

W= A‘};+d CH™.

Moreover, the unweighted Bergman spaces are the spaces A”? - /p(D).

In the following result we provide simple inclusions between the spaces A29(D). As we shall see in
Section i1 these inclusions are closely related to the Sobolev embeddings of the Besov spaces considered
in Chapter @ We shall deal with the spaces AZ'((D) in Proposition 3.7}

Proposition 3.2. Take s1,s2 € R" and p1,q1,p2, g2 €]0, 0] such that

1 1
p1 < p2, a1 < qo, and Sz = 81 + (——> (b+d).
P2 P1

Then, there is a continuous inclusion
Az (D) € A2 (D).

Proof. We assume that ¢; < oo and leave the (inessential) modifications for the case ¢ = oo to the
reader. By Proposition [[22] there are a compact subset K of {2 and a constant C' > 0 such that

1/‘11
Von o < C ( [ @30 0)” dl/n(h))

for every f € APV (D) (with the notation of Chapter [L3 cf. Definition [LT7). Then, take t € Ty,

vo,loc

choose g € GL(FE) so that t - ® = @ o (g x g), and observe that the C-linear mapping ({, z) — (g¢,t - 2)
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preserves D. Applying the preceding estimate to the mapping (¢, z) — f(g¢,t- z), which clearly belongs
to APV (D), we obtain

vo,loc

AL ()| frcpl| o )

1/Q1
< a0 o) ([ (@501l w)" o)

1/‘h
= cat ) ([ (@Il w)” wam)
t-

Thus,
SUP}A& ||fh||LP2(N)| CHf“Apl 91Dy
and
@ Ha 11
([ @50 lm0)" dra®) " < Conlk 0l gy
where K~ == {t-eq:t7" - eg € K }. The assertion follows by means of Hélder’s inequality. O

Corollary 3.3. Take s € R", p,q €]0,00], and f € AD9(D). Then, the mapping h — || fr|rny is
decreasing on 2.

Proof. Take (g'*)).~¢ as in Lemma I3 and observe that ¢(®) f(- 4 ih) € Ay>(D) for every h € £ and
for every € > 0, since f € AL:°°(D) by Proposition B2l Then, Proposition [[.28] shows that

19 frsn |l Loy < 19 Frsn | o an

for every € > 0 and for every h, h’,h” € 2 such that b’ — b’ € 2. Passing to the limit for ¢ > 0, we then
obtain

I fran Loy < I fntnell e
for every h, k', k" € 2 such that b’ — k" € 02[] Then assertion follows by the arbitrariness of h. O

In Section B3 we shall investigate the conditions on s and s’ which ensure that the sesquilinear form
defined in the following result induces an antilinear isomorphism of Ap o (D) onto AZG(D)".

Corollary 3.4. Take s,s’ € R" and p,q €]0,00]. Then, the sesquilinear form on ALZ4(D) x Ag,/’q/ (D)

(f,9) /D F(C,2)g(C, 2) A%~/ min(le) (o, _ () dup (¢, 2)

is well defined and continuous.

Proof. Tt suffices to observe that AP9(D) C A;nazcl(/lpp )f)nfz(l()irz))(D) continuously by Proposition 321 O

We now characterize the values of p, ¢,s for which A29(D) is non-trivial.

Proposition 3.5. Takes € R" and p,q €]0,00]. Then, ALG(D) # {0} (resp. AL9(D) #{0}) if and
only if s € 5 er (R%)" (resp. s € R if g = o0).

The proof is based on [8, Proposition 3.8], which deals with the case in which p,q > 1, s € R1, and
D is an irreducible symmetric tube domain.

Proof. STEP 1. Assume that s € m+(R* )" (resp. s € R’ if ¢ = 00), and observe that the functions q(®,
€ > 0, of Lemma [.T9 belong to A 20(D) (vesp. AL4(D)). Thus, ALE(D) # {0} (resp. AL9(D) # {0 }).

STEP II. Assume first that ¢ < oo and that s & ﬁm + (R%)", and take f € AP9(D). Then,
Corollary implies that the mapping h — || fn| Lr(n) is decreasing on §2, hence everywhere 0 since
A??S - v does not induce a Radon measure on 2 (by Proposition 2.T4]).

Hndeed, since ||g(5)||o<> =1 for every h € 2, it is readily seen that ||fx | Lr ) < hm 1nf||fhgh Loy < Nfrllzeary for
every h € §2.



CHAPTER 3. WEIGHTED BERGMAN SPACES 1 47

Then, assume that ¢ = co. Keep the notation of Chapter Il If s € R’ but s; = 0 for some
jed{l,...,r}, then define t; == e;/k + Zj,#j ejr, so that AS(ty, - en) = 1 for every k € IN, and t;, - e
converges to the point at infinity of £2 as k — oco. If f € AZ(°(D), then

B [|fryeq [l oy =0,

which implies that f = 0 since f is holomorphic and the mapping h > ||fn||Lr(n) is decreasing on 2.
Finally, assume that s ¢ R, and take f € AP>°(D). Take j € {1,...,r } such that s; < 0, and define
ty, as above, so that AS(ty) — 400 as k — oo. Arguing as above, we then see that || f;,.c. ||z — 0 as
k — oo, so that f = 0.

Lemma 3.6. Take s € R, p,q €]0,00], and f € ALG(D) (resp. f € Ap4(D)). Then, the mapping
023 hw— f(- +ih) € APY(D)
is continuous (resp. for the weak topology o(AL1(D), Li;’i(l/p_l)+(b+d)(D))).

Proof. Indeed, Proposition .22 and Corollary B.3lshow that || f,||L»(nr) is a decreasing function of h € (2

which is also continuous if f € Ag:g(D), so that the assertion is easily established. O

Proposition 3.7. Take s1,s2 € (R%)" and p1,q1,p2,q2 €]0,00] such that

1 1
p1 < p2, a1 < qo, and Sz = S1 + (——) (b+d).
P2 P1

Then, there is a continuous inclusion

Aplﬁql (D) g Ap21q2 (D)

s1,0 s2,0

Proof. Take f € AP*#'(D), and observe that Proposition [[22 implies that f, € L5*(N) for every h € 2

51,0
and that the mapping 2 > h + f, € LE*(N) is continuous. Then, take (¢(*)).~¢ as in Lemma 19
and observe that f(- +ih)g(®) € AL (D) for every h € £2 and for every € > 0 (cf. Proposition BT).

In addition, using Lemmas [20] and B0 we see that f(- +ih)g®) converges to f in AZ1% (D), hence in
Ap2%(D) by Proposition[3.2 as h — 0 and € — 0F. The assertion follows thanks to Proposition 3.2 O

Corollary 3.8. Take s € R", p,q €]0,00], and f € APY(D). Then, the following conditions are
equivalent:

(1) f e Ag5(D);
(2) fu € LG(N) for every h € 2 (and AL (h)| fullLevy — 0 as h — oo if ¢ = 00);
(3) fn € LE(N) and the mapping h — A%, (h) fi, belongs to Co(82; LE(N)).

Proof. (1) = (3). This follows from Proposition 317

(3) = (2). Obvious.

(2) = (1). This follows from Proposition [A8if ¢ < oo. If, otherwise, ¢ = oo, then it suffices to
show that the mapping 2 > h + f;, € LE(N) is continuous, but this follows from Corollary [L28 O

Proposition 3.9. Take s1,s2 € R" and p1,p2, ¢1,q2 €]0, 0], and assume that sg € ﬁqu (R%)" (resp.
sz € RY, if g2 = o). Then,
ALVEY (D) N AR (D) (resp. ALVEN (D) N AL292 (D)) is dense in  ALVE (D).

s1,0 S2, s1,0 s1,0

In addition,

ALY (D) N AP (DY (resp. ALY (D) N AE2 (D)) is dense in APV (D)

52,0

for the weak topology o (A% (D), inls’ffi_(l/pl_l)+(b+d)(D)).
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Proof. Take f € AP"¥(D) and take ¢®) as in Lemma for some choice of « €]0,1/2[. Then,

51,0
Lemma B8 implies that f(- +ih)g®) € AZVGH(D) for every h € 2 and for every e > 0. In addition, set

p3 = % if po < p1, and p3 == 0o otherwise, so that Holder’s inequality implies that

—eCln'|™
b

(£ +i0)g ) mll oz ) < Crg el fre | pmsston o (ary

for every h,h’ € {2 and for every £ > 0, with the notation of Lemma Now, Corollary implies
that the mapping

W ([ f | pmeton o2 a7y

is decreasing on 2, so that f(- + ih)g(®) € AP>@(D) (resp. f(- +ih)g(®) € AL2%(D)) for every h € £2

52,0
and for every e > 0. Next, it is easily verified that f(- + ih)g(®) converges to f(- + ih) in AL (D)
as € — 07, while f(- + zh) converges to f in AL’('(D) as h — 0 thanks to Lemma .6 The second
assertion is proved similarly. O

3.2 Paley—Wiener Theorems

In this section we translate some results of Section[[L4linto the new formalism of this chapter (Proposi-
tion[3.1T). We then show that the weighted Bergman kernels associated with the spaces A22(D) have nice
reproducing properties for more general weighted Bergman spaces (Proposition B13), and that Riemann—
Liouville operators induce isometries between the spaces A2:?(D), up to a constant (Proposition B.15)).
Even though this latter result will be considerably extended in Section Bl we need Proposition
to give a (somewhat formal but) reasonable extension of Proposition B11l for s ¢ im + (R%)" (Propo-
sition BI7)). We conclude this section presenting some invariance properties of the so-defined space
E?E;2+d)/2 (D) (Proposition BI8), which may therefore be interpreted as a generalization of the classical
Dirichlet space.

Definition 3.10. For every s € R, define

0

53]
L2 = { re | LAHNAZFF PN AN\ T=TP. } .

Proposition 3.11. Tukes € 1m+(R%)". Then, there is a unique isometric isomorphism P: A2%(D) —
L2(82") such that
_ JPtlea)|[Ta(2s) (\n
Pf(A) = gsgm—ngntm © A (fn)

for every f € A22(D), for every h € 2, and for almost every \ € 2B m addition, the reproducing

S

kernel of A2%(D) is the mapping

Pf(eq/ )|l (2s—b—d
Kal(€,2), (¢ ) = (efmi'rnfnfps'ﬁ@s) S (e}

Remark 3.12. Thus, Ks((¢, 2),({’,2")) is the weighted Bergman kernel for the weighted Bergman space
A2%(D) = Hol(D) N L2?(D) and the inner product is given by

<f|g>A§2(D) = /Q/A/fh(gax)gh(gaw)d(C"r) A?;er(h)dh

- /D £(¢,2)9(C, HAB™P=4(Sz — B(C))dun (¢, 2),

see Definition 2.351

Proof. Observe first that Corollary [[.35] shows that

2n—m
1130y = o |

2Recall that e{*" 7y (f;) does not depend on h for almost every \, thanks to Proposition [L33}

2
ey (forr) L(AE - vo) 2N)[PE(N)| dA;

’32(}5)
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in addition, Propositions .T4] and imply that
L(A% - vg)(20) = 475 T (25) AP (V)

and
[PE(A)| = [Pf(eqr)|AgP (M)

so that P is an isometry of A2?(D) into £2(§2"). In addition, Proposition [[30 implies that P is onto.
For the second assertion, it suffices to observe that

2s—b-deim’'+m-b+1,+(R})" Cim + (R})"
since m, —b € R’., and to apply Corollary [L41l O

In the following result we extend the reproducing properties of the weighted Bergman kernels to more
general weighted Bergman spaces.

Proposition 3.13. Take p,q €]0,0], s,s’ € R" and f € ALY(D). Assume that the following hold:

e s€ (b+d) 2,m + (RL)";

e s+s' e mm(l o) (b+d) - — (R%)" (resp. s+’ € mm(l ) (b+d)—RY if ¢ =00);
o (b+d) 2,mf(]R*)T

Then, for every (¢,z) € D
= [ HE K mraaal(€ 2 (L) AT (3 = B(C) ().
Remark 3.14. Observe that, by Proposition BTl the previous equality can be written as
£(6,2) = e /D P& 2Bl (¢ 2) AR (82 — 8(¢)) dup (7).

where ,
[Pf(eq )| I'a (=)
gmpntmo(b+d —s')’

Cg/ —

Moreover, since the relations between the various parameters are simpler using the kernels B rather
than the Bergman kernels Kg, we will privilege the former ones in the rest of the work.

The proof is based on [58] Lemma 4.4], which deals with C;.. Notice that the conditions on s and s’

simply ensure that B( 2) IS A(b+d)/mm(1,p) e

Proof. Notice that we may assume that s € %m + (R% )" if ¢ < oo and that s € R, if ¢ = oo, thanks

to Proposition B.5] so that s’ € b+d — %m — (R%)". Then, Proposition B.IT] shows that the assertion
holds if

f € ABI(D) N AR

(b+d— s/)/2(D>

In addition, Proposition .30 shows that Bf’c . € A(ber)/ min(1,p)—s—s'? 5O that the assertion follows from
Proposition by continuity. O

Cf. Corollary [5.11] and Proposition [B.13] for a much more general version of the following result. We
provide a simple direct proof for the sake of completeness.

Proposition 3.15. Take s € ler (R%)" and " € Ng:. Then, convolution by \/%1_ induces

an isometry of A2?(D) onto Aifs/ (D).
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Proof. Observe first that Lemma 22T shows that Fp (I 55/) induces the homogeneous polynomial i AS),
on {2, so that
d7TA (155 ) =q° A?Q/ ()\)IH)\

for every A € F'\ W. Now, take f € A22(D), and observe that f x 155/ is a well-defined holomorphic
function on D. In addition, if n € CS°(F'), then

(f =155 % m)n = fox (I;% % n) € LX)

and

ma((f * 155 %) = (Frn)(\)i® AL, (A ma(fr)

for every almost A\ € ' and for every h € (2. By the arbitrariness of 7, this implies that f * I 55/ €
2,2

AZ7y (D) and that

F_Q(2S + 28’ )

Frnm M)

’
% I—S 2 _
”f 2 HAifs/( D)

by Proposition 311l Conversely, if f € Agfs,( ), then there is a unique f € A22(D) such that my(fy) =

i_S/A;;,ﬂA(fh) for almost every A € €2’ and for every h € 2, so that f = f x 155/. O

Definition 3.16. Takes € R” and s’ € N/ such that s+s’ € 2m+ (R%)". Then, we deﬁne 22’2 (D) as

the Hausdorff locally convex space associated with the space of f € Hol(D) such that fx*1 5 S Ai f (D),
endowed with the corresponding topology.

In other words, the elements of Eij(D) are equivalence classes of Hol(D) modulo the elements of
Hol(D) which are annihilated by convolution with I pal

In the following result we provide an extension of Prop051t10n|3:|:[| to the spaces A\z (D). We shall
see later (cf. the remarks following Definition BI7) that As . (D) may be canonically identified with a

subspace (with a finer topology) of A% E’E+d)/2(D) when s € 3(b+d) + ;m’ + (R})".

Proposition 3.17. Take s € R" and s’ € N¢/ such that s +s' € im + (R%)". Then, there is a unique
isomorphism,

W A%

s,s’

(D) = LI(12)
such that ) o

mA((f 15 )n) = = M= AL (N2 (H)(N)
for every f € AT s,( ), for almost every A € 2, and for every h € B

In addition, \/'Pjiig/z)ﬁjﬁfjfj”w is an isometry and AE;(D) s a hilbertian space.

In particular, Eg’i/(D), for s’ € N/ N (im + (Ri)r), is canonically isomorphic to the Hardy space
A2>°(D), thanks to Corollary [L34] and Proposition

(D) —
L£2(£2") which is an 1s0morphlsm onto its image. Thus, it only remains to prove that ¥ is onto. Then,
take 7 € £2(£2'), and fix s’ € N such that s + s’ € m + (R%)". Then, Proposition BI1l implies that
there is a unique f € A such that

Proof. The property of the statement clearly defines a unique continuous linear mapping ¥ : A2

s,s’

s+s( )

ma(fn) = €M AL (N)T(N)

for almost every A € 2’ and for every h € £2. Since D is a convex open subset of F X Fg, [69, Theorem
9.4] implies that there is g € Hol(D) such that g « I,® = f. Denoting by ¢ the equivalence class of g in
A%2 (D), it follows that ¥(§) = 7, whence the conclusion. O

s,s’

Proposition 3.18. Take s’ € N¢ such that 3(b+d)+s’ € m+(R%)". Then, the space A(b+d)/2 o
(and its hilbertian norm) is invariant under composition with the affine automorphisms of D.

D)

/
3We identify f * 15 with its unique representative in AS+S/ (D).
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The precise way in which the ‘composition’ of the elements of A\?{ir 4)/2.8' (D) with the affine auto-
morphisms of D has to be intended will be defined in the proof.
Cf. [4, Theorem 5.5] for the case {2 = R, in which case an explicit knowledge of the group of

22,2

holomorphic automorphisms leads to a proof of the invariance of A(b Ld)/2.8 (D) under the group of all

holomorphic automorphisms of D.
Proof. In order to simplify the proof, we shall denote by A\?f)2+d)/2(D> the space A\?{id)/“, (D) endowed
with the norm induced by the mapping ¥ of Proposition B.17, which is a multiple of the norm of
12,2
A2 00 (D)

Observe first that, by [4T, Propositions 2.1 and 2.2], the group of affine automorphisms of D is the
semidirect product of the group G of left translations by elements of bD and the group

Go={g1x(92)c: 91 € GL(E), g2 € GL(F),92(2) = 2,92® =P o (g1 X g1) } -

Now, take 7 € L2(f2') such that 7 has compact support in {2, and let f be the unique element of
A2™(D) such that

m(fr) = e_(’\’h>7'()\)

for almost every A € 2" and for every h € {2 (cf. Proposition [[36]). Observe that f induces an element
of A\?£2+d)/2 (D). Since they form a dense subspace of A\?£2+d)/2 (D), it will suffice to prove our assertion
f%" such f. Then mapping f +— f o A, for A € G1G2, may then be extend by continuity to the whole of
2
Albray2(D):
Observe that, if A € Gy, then my(f, o A) equals the composition of 7y (fx) with a unitary automor-
phism of H), so that

I (fn o A2y = llmx(fa)ll L2y
for almost every A € 2’ and for every h € {2, whence

||thA||ZZ’2 (D) = ||fh||22’2 (D)’

(b+d)/2 (b+d)/2

Next, take A € Ga, so that A = g1 X (g2)¢ for some gi, g2 as above. Denote by G(£2) the set of
elements of GL(F') which preserve (2, so that G(£2) is a closed subgroup of GL(F') which acts transitively
on {2. Let K be the stabilizer of ep in G(£2). Then, K is a compact normal subgroup of G({2)
(cf. 1, p. 31]). In addition, if Gr denotes the subgroup of G({2) induced by the action of T} on
£2, then G({2) is the semidirect product of Gr and K. Since K is compact, each of its elements has
determinant 1 in absolute value, so that there is t € T’ such that |det(gs)| = A~9(¢). In the same way,

we see that |det(g1)| = AP (¢) for a suitable choice of t. Then, g; X g2 is an automorphism of A/ and
|det(g1 x g2)| = A=P=9(t), so that

TA((f o A)n) = mA(fgzn 0 (91 X 92))
= APy 1 (foan)
= APTd (e~ NP (N o g h).

Therefore,
[(fod)lPee = / IT(A o g3 HII3AZCTI () AGZP~(N) dA
(b+d)/2( ) 0
=/ [T MI3ATH(6) AGP (N - 1) dA
= 2
- ||f||A?];2+d)/2(D)’
whence the result. O

Remark 3.19. If D is an irreducible symmetric Siegel domain of type Il and 7* € IN, then a ‘generalized
Dirichlet space’ D has been defined in [3, pp. 223-224]. Such space is invariant (with its norm) under
the (suitably defined) composition with all the elements of GG, where G is the component of the identity
in the group of holomorphic automorphisms of D. In [I, Theorem 5.2] it is also proved that, if D is
irreducible and symmetric and H is a complete prehilbertian space of holomorphic functions in which
the constant functions are adherent to { 0 }, which is invariant (with its norm) under the composition



CHAPTER 3. WEIGHTED BERGMAN SPACES 1 52

with all the elements of G, and for which the mapping ¢ — f o ¢ is continuous on a maximal compact
subgroup of G for every f € H, then ™ € IN and the Hausdorff space associated with H is canonically
isomorphic to D.

In particular, if 7* ¢ IN, the space A(b Ld)/2.s ,(D) cannot be G-invariant in such a natural way. It

would be interesting to determine if A(b+d)/2’s, (D) is isomorphic to D when = € IN.

3.3 Sampling

In this section we provide some sampling theorems. In particular, we show that, under suitable
assumptions, the spaces A29(D) can be effectively studied by means of a suitable discretization.

Definition 3.20. Take p, g €]0, 0c], and take two sets J and K. Define
PUTK) = { X e C " (Njw)jes)er € LUK EP(T)) },
endowed with the corresponding quasi-norm, and define £§%(J, K) as the closure of C*K) ip P J K).

Then, (79(J, K) and £{(J, K) are locally bounded F-spaces. In addition, ¢9(J, K') is canonically
isomorphic to ¢ (K;¢5(J)) (cf. Proposition [A8]).

Theorem 3.21. Take Ry > 1, p,q €]0,00] and s € 2—1qm + (R%)" (resp. s € R, if ¢ = 00). Then,

there are 6o > 0 and C > 0 such that, for every (3, R)-lattice (Cjk, zjk)jeskex on D with 6 €]0, 60 and
R €]1, Ry|, defining hy, == Szj k —DP(Cj k) for every k € K and for some (hence every) j € J, the mapping

S: Hol(D) > f v ( b+ d)/p (g, k)f(gj,k,zj,k))jk € ¢/xK

induces an isomorphism of ALG(D) onto a (closed) subspace of £5(J, K) (resp. of AL4(D) onto a (closed)
subspace of ¢71(J, K)) such that

—||f||AP agpy S OCPFMPEUS F | a1y < Cllfll aza()
for every f € ALE(D) (resp. for every f € AR4(D)). In addition,

AT (D)NSTH (T, K)) C APE(D)  (resp. A%

s—(b+d)/p N S_l(gp’q(JaK» g AIS),Q(D))

(b+ay/p(D)
Theorem B.2T] is an immediate consequence of the following more general result.

Theorem 3.22. Take d; >0, Ry > 1, p,q €]0,00] and s € ﬁm—l—(]Ri)T (resp. s € R" if g =o0). Then,
there are two constants 6_ > 0 and C > 0 such that, for every e € { —,+ }, and for every (8, R)-lattice
(Ck» 2j.k) jesker on D with § €]0,6.] and R €]1, Ry), defining

Sy Hol(D) 5 fos [ AL TPy max  |f]] ec/*K
B((Cj,k024,),1R0) &

and

S_: Hol(D) > fs [ AL ®T Py min |f]] e @/*K,
B((¢j,k+24,1),R3) &

one has
—HfHAM(D) < §CEnEmM/PEmIa) G £l a0y < C| fl| azapy

for every f € ALE(D) (resp. for every f € AR4(D)). In addition,
STHEGI(L K)) S AZE(D)  (resp. STH(EMI(J, K)) € ALI(D))
when € = +, while
A brayp(P) N SZHIG (I, K)) € AZG(D) (resp- AZZ(pray (D) N SZHea(J, K)) € AR(D))

when ¢ = —



CHAPTER 3. WEIGHTED BERGMAN SPACES 1 53

The proof is based on [58, Lemma 6.3], which deals with Sy in the case of C4, and [8, Theorem
5.6], which is Theorem B.2T] in the case in which p = ¢ € [1,00] and D is an irreducible symmetric tube
domain.

With minor modifications, one may further prove that, for every s’ € R", there is 6_ > 0 such
that, if f € Hol(D), S_f € 29(J,K) (vesp. S_f € £79(.J,K)), and the mapping (¢, z) — A% (3z —
B(O) (¢, 2)e 61" =IR=I"~[32=2(OI" i5 hounded on D for some a €]0,1/2[, then f € ALG(D) (resp.
f e Ap1(D)).

We first need some simple lemmas.

Lemma 3.23. There are pg > 0 and C' > 0 such that for every p €]0, 00[, for every p €]0, pol, for every
f € Hol(D) and for every (¢,z) € D,

FCaP<C ]l 1P dvp.
B((¢,2),p)

Proof. Observe that there are pg > 0 and v > 0 such that, for every p €]0, po],
BEXFC((Oa ’L'G_Q), p) Cc B((Oa ieQ)a p’Y)
Now, Lemma [[.2T] shows that
£0.iea)l < f £ P a2
Bexre((0iee),p/v)

for every p €]0, po] and for every f € Hol(D), so that our assertion follows for (¢, z) = (0,ieg), with

C = sup vp(B((0,ieq), p)) sup A;bezd.

0<p<po H2nt2m (BEXFC((O’ ieQ)’ p/’Y)) Bo(eq,po)
The assertion for general ((, z) follows by homogeneity. O
Lemma 3.24. There are pg > 0 and C > 0 such that, for every p,p’ €]0, po], for every f € Hol(D), for
every (C,2),(¢',2') € D such that p = d((¢, 2), (¢', #)) < po,

FC D - <L s |f)

P B((¢,2)+0)

Proof. Observe first that there is p1 > 0 such that exp g ;.,,) induces diffeomorphisms
BT(o,ieQ)(D) (0’ p) - B((O’ ieQ)a p) and aBT(O,ieQ)(D) (0’ p) - aB((Oa i€n), p)

for every p €]0, p1] (cf. [46, Theorem 6.4]). In addition, there are ps €]0, p1] and v > 1 such that
1
;d((C',z’),( "2 <) = (72 < vd((E 2, (¢, 27)

for every (¢',2),(¢”,2") € B((0,ieq), p2) U Bexr,((0,ien), p2). Finally, observe that there is 4’ such
that
|0y €XP (g, z¢.) (tV)] <7

for every v € ET(MQQ)(D)(O, 1) and for every t € [0, p2]. Then, choose py = p2/(27). In addition, take
p < po, [ € Hol(D), (¢, 2") € 0B((0,ieq), p), and let v € T(g ;c,,)(D) be the unit vector such that

eXp(O,ieg)(pv) = (gla ZI)'
Then,

d

p
¢ = £0.ie0)] <[] 5 1(expia 000

< p osup ‘f’ (eXp(o,ieQ)(tU)) : (av GXP(O,ieQ)) (tv)‘
te]o,p[
<vp sup |£/(¢",2")].
(¢”,2")€B((0,ieq),p)
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In addition, Cauchy’s integral formula implies that

172 < 2L sup ][ £, 2") + )| du
P w11 JaBe(0,p /)

for every (¢, 2") € B((0,ieq), p) and for every p’ €0, po]. Thus,

: 7Y
[f(¢,2") = f(OieQ)| < —-p  sup  [f].
P B((0ieq).ptp')
The general assertion follows by homogeneity. O

Lemma 3.25. There are py > 0 and a constant C > 0 such that, for every p,q €]0,00], for every
p €0, po], for every f € Hol(D) and for every h € (2,

1/q
| fallLoay < CV/minpd) <]é o %o ) dVﬁ(h)> :

(modification if ¢ = 00).

a(h,p)

Proof. Set ¢ :=min(1,p,q) to simplify the notation. By Lemma [3.23] there are py > 0 and C’ > 0 such
that
sl <e it
B((¢,2).p)

for every f € Hol(D), for every (¢, z) € D, and for every p €]0, pg]. Then, applying Minkowski’s integral
inequality (with exponent %) and Young’s inequality,

||fh|\ip(/v) < C/C,/a]lB " )H|fh'|e * [(XB((0,ih),p) )0r]” ‘LP/Z(N)A?)JFd(h/)dVQ(h’/)
o(h,p
Ab+d(h/)
<l Sy dvali)
Bang) N AbH(p)

for every f € Hol(D) and for every h € (2, where

. _ va(Blea.p))
* = Up(B((0,ieq). )

and

C":=C" sup sup C;)H (XB((O,ieQ),P))h’
0<p<po W €N

By Corollary [Z44], there is a constant C' > 0 such that, for every f € Hol(D) and for every h € (2,

LY(N)'

l
1 ulloiny < C Ji o Wl ),
o(h,p

provided that py is sufficiently small. Then, Jensen’s inequality (with exponent ) leads to the conclusion

O

Proof of Theorem [3.222. 'We leave to the reader the (purely formal) modifications needed to deal with
the case max(p, q) = oc.
STEP 1. Define, for every p > 0 and for every h € (2,

My(h) = H(XB((OJm),P))hHLl(N)'
Let us first show that M, is bounded. Observe that, for every (¢,z) € N and for every h € £2,
d((¢, = +ih +i9(0)), (0,ieq)) = d((g™ ¢t - x +ieq +iP(g™ (), (0,it " - en)),
where t € Ty, g € GL(E), h=t-eg,and t-® = Po (g X g). Since

d((O,itfl . e_Q), (0, ien)) = dQ(ﬁil cen,eq) = d_Q(e_Q, h)
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and since (XB((0,ien),r5))n = 0 if h & Bo(eq, RJ), thanks to Lemma 2ZT] we then conclude that

U  {(¢a) eN: (G +id() +ih) € B((0,ieq), p) }

hEBQ(GQ,R(i)

c U @xtH{(Ga) eN: (¢ z+i®(Q) +ien) € B(0,ieq), 2p) }),

(9,t)EK’

where K’ is a suitable compact subset of GL(E) x T. Therefore, Proposition implies that there
is a compact subset K" of N such that (Xp((0,ieq),r5))r < XK~ for every h € §2, so that || M,|| o) <
H2n+m (K”).

Then, for every £ €]0, 0], for every t' € T, and for every (¢',z') € N,

—(b+d)/¢ —1 p\1/¢
||(XB(((’,z/+iq§(()+it’»en)7p))hHLZ(/\/) =4, ) (W )Mp(t'=" - h) ,
with the convention 0° = 0. In particular, (cf. Lemma Z4T]),

—(b+d)/¢ _
= XBQ(hk7p)(h)AQ( )/ (hk)Mp(tkl : h)l/l

H (XB((Cj,kvzj,k)’p))h‘ LY(N)

for every h € 2 and for every k € K, where t, € T'y and hy =t - ep. In addition,
| M| oo (vg) = P2t for p— 0.

For every h € (2, define
K, :Z{kEK: hGBQ(hk,R(S)},

and observe that there is N € IN such that Card(K}) < N for every h € {2, provided that R < Ry and
0 < 04, thanks to Proposition 2511 We may also assume that every h € (2 is contained in at most N
balls B (hy,2R0), k € K, and that every (¢, z) € D is contained in at most N balls B(((; r, zj,x), 2R6),
(J, k) € J x K, provided that R < Ry and ¢ < d,. Finally, set £ := min(1, p, q).

STEP II. Let us prove that Sy maps A24(D) into ¢74(J, K). Take f € A22(D) and define

CD,p = VD(B((O,iGQ), p)) and C_(Z,p = I/Q(BQ(QQ, P))
for every p > 0 to simplify the notation. Then, Lemma implies that there are py €]0,1/2] and
(1 > 0 such that

C
_max [f]P < —— /
B((Cjyx-25.k), RO) CD.p06 JB((¢j1025.0)2(R400)6)

[f1Pdvp

for every (j, k) € J x K. Therefore, Corollary 244 implies that there is a constant Cy > 0 such that

Co
CD,Pots

(S+f>?,k < A};;(hk) /_(2 /A[|(XB((Cj,k7Zj,k),(R+P0)5)f)h(Ca 1.)|p d(Ca ZL') dI/Q(h)

for every (j, k) € J x K. Hence,

C
DS S 5

N Az () [ 1l oy v (B)
jeJ PO

Bo (hi,(R+po0)d)

for every k € K. Now, Lemma [3.25] shows that there is a constant C'5 > 0 such that

/ Ll ) dva ()
Bo (hi,(R+po)d)

p/q
< 03/ <][ Hth%p(N) dVQ(h)> dvg(h')
B (hi,(R+p0)d) Bao(h!,pod)

C p/q
< @M / 1l ()
Cg,goa Bg(hi,(R+2p0)9d)
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for every k € K, provided that pgd is sufficiently small. Therefore, another application of Corollary [Z44]
shows that there is a constant C% > 0 such that

1/p

Q2,(R+p0)s
I8+ lerasner € o ST NP gy,

D,pod " $2,p00
Next, assume that s € im + (R%)", and let us prove that S; (AZG(D)) C £5(J, K). Indeed, take

q €]0,q[so that s € 5 m+ (R* )", and observe that the preceding computations show that S, (A2'G(D)N

APA(D)) C (], K) N PA(J, K), so that the assertion follows by means of Proposition if p < o0,
since in that case (P9(J, K) N ¢P9(J, K) C ~Eg’q(J,K). If, otherwise, p = oo, then it is clear that
lim (S4f);x = 0 for every f € ADI(D) N AL9(D) and for every k € K, so that the assertion follows as
Jj—o0 ’

before.
STEP III. Conversely, assume that S; f € £0%(J, K) (resp. S+ f € ¢79(J,K)), and let us prove that
[ € ALY(D) (resp. f € AZG(D)). Indeed, it is readily verified that

btd)/p—
| fn] < Z ARTVP () (XB((¢)nzs0).R8)) , (S+F )ik
(j,k)eJth

on D, for every h € (2, so that fj, € L{(N) (resp. fr, € LP(N)) for every h € 2. In addition,
1fnllzreay < NYPIAG (i) MRs(t - B)YP(S4f)jk) ok o)

< NV +(1/p=1/9) +HMR6||1/pH( S(hi)[[((S+£)j.k ”eP(J))

Ca(Kp)
so that the assertion follows.

STEP IV. Finally, take f € A2> €§+d)/ (D) such that S_f € £;%(J,K) (resp. S_f € ¢71(J, K)), and

let us prove that f € AJG(D) (resp. f € AP(D)) and that

£l azapy < CEEHmM/PTMIA G fl s a0y

for a suitable constant C' > 0, depending only on ¢_ and Ry, provided that J_ is sufficiently small.
Observe that, for every (j,k) € J x K, we may find ((} 4, 2} ;) € B(((jks 2j,), RS) such that

[f (G zip)l = min |f].

B((C.k:%5,k),R0)
Now, Lemmas and .24 imply that there are p; > 0 and C5 > 0 such that, for every j € J, for every
k € Ky, and for every (¢,z) € N such that d(((jx, 2j.k), (¢, z +1iP(C) + th)) < RS,
| (G )] <L (GGks 25.6) | + C3RINXB((¢ atiw(c)+in) 2R5+00) Fl Lo (wp)
provided that R0 < p;. Then,
Il ey < 2074 [ Mpsllioe) Y AGPTV I (G s )17 + 20705 (CaROPOL(R),
(7,k)eTX K},
where
O1(h) = Z / XB((¢s250),R8) )0 (G )/ XB((¢,a+id(¢)+ih),2R5+p) | f P dvp d(¢, @)
(j,k)ETX Kp, D
Now, set K*) = Uneso(h,,,rs) Kn for every k" € K, so that Card ({ KFeK:keKH* }) < N by step

I, provided that 6 < d,. Then, Corollary [Z44] implies that there are constants Cy, C’y > 0 such that, if
Ro < P15

q/p
[asm| X A 0isGes0r]  da)
£ (G.k)ETX K
q/p
<CiCars Y. A5 ) [ S0 S AP V)| £(Cg 2P
k' eK keK (k) jeJ

< CZLCQ,RaNmaX(l’q/p) |‘S—f|‘gp,<1(.] K)
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where the last inequality follows from the convexity or subadditivity of the mapping = — x%/? on R.
Now, observe that

- /D F(C ) PO, s ) dun (¢ ),

where

(§ 2 h / Z (XB((<J ksZj.k),RO)NB((¢!,2"), 2R6+p1) (C; ) (gﬂz)

(J,k)eT XK},

In addition, for every (¢’,2’) € D and for every h € (2, setting h/ := Iz’ — &({’), one has

02(¢, 2’ h) < N|(XB((c,»)2r6+p) )0l L1 vy = NMagsip, (B h)AE(ber)(h/),

provided that R < Ry and § < min(pg, d4). Therefore, by step I we see that

61(h) < N[ Marsspe [l /

| frr ||€p(/\/) dve(h),
B (h,2R54p1)

provided that R < Ry and ¢ < min(pg, ).
Now, take (g(e))g>0 as in Lemma [LT9 for some a €]0, 1/2[. Then, it is readily seen that f(=) := fg(®)
belongs to AL (b+d)/ (D), and that clearly S_f. < S_f for every € > 0. In particular, the mapping

h — ||fh8)||Lp(N is (finite and) decreasing on 2, thanks to Corollary B3] for every e > 0. In addition,
observe that we may take d; €]0, min(pg, 0+ )] and p; sufficiently small such that Bg(en,2Rod1 + p1) C
en/2 4+ (2, so that, by homogeneity,

Bg(h,2Ro61 + p1) S h/2+ 2

for every h € (2. Then, the preceding estimates (applied to f (E)) show that there is a constant C5 > 0
such that

[ (=)

< C5s ASS(R)SP ™2\ S_ Fll o 5C!
oy S o (h) 1S=fller(rx 5y +6C5

h' = XBg(h2rs+p1) ()

LPM I Le (vg)

< C5A.Q ( )6(2n+m)/p||5 f||€1’ (JxKy) T 5050{2 22R061+p1

fh/2 Lo’

e is decreasing. If
we define x¢: D 3 ((, 2) = Xeg,/2¢40(S2 — D(C)) € Ry for every £ € IN, then there is a constant C > 0

such that

for every € > 0, provided that § < d; and R < Ry, since the mapping h > Hf(e)

HXef(s)

for every € > 0 and for every £ € IN, provided that § < §; and R < Ry. Now, observe that

< 065(2n+m)/p+m/q”Sff”ZP"’(J,K) + 5C6H>(e+1f(€)

LE9(D) LE(D)

< llazg

Lqu(D) s— (b+d)/p

< Orell fllaz

((n+m)/p+m/q)(£+1) .00
< G2 I lazse,

v

()
D Hg Xe+1‘ bia
) Lk ay»(P)

b+d)/p —
XeQ/2é+1+QA§z re

< otay/p(P) ‘ Li(va)

(D)

for suitable constants C7 ., Cs . > 0. Then, choose N’ > (n+m)/p+ m/q and choose d_ €]0, d1] so that
Cd_ < 27N and observe that the preceding computations show that, if & €]0,9_],

() ‘ — N\ g-eN H () ‘ _ () ‘
Hf Xe|| gy eele <f Xt papy T 3V I x4 e ()
Cs
< T 0TS

for every € > 0 and for every £ € IN. Passing to the limit for £ — oo we then infer that f(*) € AP:9(D)
and that o

AR9p) 1 —2-N

o

5(2n+m)/p+m/qHS Fller. (LK)
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for every € > 0. Then, passing to the limit for ¢ — 0, we infer that f € AP9(D) and that

C n-+—m m
| Fllazaoy < g5 8PS f | g )

It only remains to prove that, if s € 2—1qm + (R%)" and f € AZ” (b+d)/p( )N S=H(eEY(J, K)), then
£ € AZY(D).
Observe first that the preceding computations show that

Cs

lIxe(f — f(a))HLg’q(D) < W5(2n+m)/p+m/q||S (f

— FD)leroa )

Since S_(f — f¥)) < S_f§+(1 — ¢®)), where [§+(1 - g(a))]j p = ma.XB((Cj’k_yzjyk)’R&‘l - g(8)| for every

(j,k) € J x K, and since 1 — g©®) — 0 locally uniformly, it is readily seen that x.(f — f¥)) = 0 in
L29(D) for e — 0. In particular, f, € Lg(N) for every h € 2, and h — X.,, 204+ 0(h) A% (R)|| full Lo (ar)
belongs to Li(vg) for every £ € IN. To conclude, it will essentially suffice to show that, if ¢ = oo, then
A% (A) || frllLe vy — 0 as h approaches the boundary of £2. Observe that, by the preceding computations,
there is a constant Cy > 0 such that

[ fallee(ary < CoAQ*(MIS—fller(rxry) + 6Coll fuyallLev

for every h € {2. Observe that

AL rs2llLery = 22 A% R/ 2)|[ a2l ey < 28] f[]az==(

for every h € (2. Therefore, assuming that d_ is so small that 6_C925 < 1/2,

1
ALl =D 27 Z( S (R 29| fry2e | Lo v _ﬁA?Z(h/Qé)||fh/2“1|LP(./\/))
LeN
< Cy Z 27e||57f||ev(Jth/zg)
e

for every h € £2. Now, observe that 1 := mingen d(en, en/2!) > 0, and that n = mingen dgo(h, h/2T1)
for every h € §2, by homogeneity. Therefore, if d_ is so small that 2Rod— < 7, then the sets K}, j5¢, as £
runs through IN, are pairwise disjoint for every h € {2. Hence,

AL (W) | fall oy < 2CoNYP|S_ fllnoe (11

for every h € §2, where K} = [,y K} j2e- Since K is contained in the complement of every fized finite
subset of K if h € 2\ (e/2° + £2) and / is sufficiently large, this and the preceding arguments prove
that A% (h)| fall ey — 0 as h — oo in 2, provided that §_ is sufficiently small (independently of f).
The proof is complete. O

Corollary 3.26. Take p,q €]0,00], s € = zgm+ (RL)" (resp. s € RY if ¢ =00) and s" € Ngr. Then, con-

volution by I, s induces a continuous lmear mapping Ay ¢(D) — ADY, o(D) (resp. ALY(D) — ADY(D)).

Proof. Using Cauchy’s estimates, we see that there is a constant C' > 0 such that

[f*Ig%|<C  max _|f]

B((O zeQ) 1) B((0,ien),2)

for every f € Hol(D). Therefore, by homogeneity we see that

’

5(Jz — P max * 1 s’ < (C max
ol (©) B((C,z),l)lf | B((sz)lfl

for every ((,z) € D and for every f € Hol(D). Therefore, the assertion follows from Lemma and
Theorem O
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3.4 Atomic Decomposition

In this section we deal with atomic decomposition for the spaces A24(D). As mentioned earlier, along
with property (L')2?, which is the properly called atomic decomposition, we consider also a stronger
property (L)&'%, which is somewhat easier to deal with. As we shall see in Section [5.2] these properties

are closely related with analogous statements concerning the Bergman projectors.

Definition 3.27. Take p, ¢ €]0,00] and s,s” € R” such that the following conditions are satisfied:
e s€ 2—1qm + (R%L)" (resp. s € R, if ¢ = 00);
o s’ ¢ (b+d) — —m — (RL)" (resp. s’ € =R if p = o0);
e s+s' €+ (b+d) mf(IR*) (resp. s’ € 1 5(b+d) —RL if ¢ = 00).

Then, we say that property (L)J'd o (resp. (L)Jd) holds if for every dp > 0 there is a (d,4)-lattice
(Gok» 2j,k) jes ke s with 6 €]0, dg], such that, defining hy, == Sz, — P((j,) for every k € K and for some
(hence every) j € J, the mapping

Ay AMB«] e k)Ag‘;“”/P—s—s (hy)
J.k

is well defined (with locally uniform convergence of the sum) and maps £§?(J, K) into AZ'G(D) continu-
ously (resp. maps ¢79(J, K) into A2?(D) continuously).

If we may take (¢, 2jk)jeskek, for every oo > 0 as above, in such a way that the corresponding
mapping ¥ is onto, then we say that property (L')2'% , (resp. (L’)p’q ) holds.

s,s’,0 s,s’

Because of Theorems [B.21] and B.22] it is useful to know that atomic decomposition holds for suffi-
ciently ‘fine’ lattices. This is the reason why we formulated properties (L){'d, ; and (L)¢'¢, (and then
(L")2d o and (L')2'd)) is a somewhat strong way.

Notice that the conditions on s and s’ are natural, since they ensure that B(C . € ALG(D) (resp.

B(S € AR4(D)) for every ((,z) € D. In the following result we provide further necessary conditions

od).

for the validity of property (L)J'd , (vesp. (L)

Lemma 3.28. Take p,q €]0,00] and s,s" € R” such that property (L)2'd,  (resp. (L)2'd,) holds. Then,
the following hold:

o sEsup( (b+d) m)—i—(Ri)T (resp. s € RY, if ¢ = 00);
e s € 7m1n(pp )(b + d) — mm/ _ (Rj-)r’
o s+s’ €inf (mm(l o) (b+d) - 5 S m, (b+d) — ﬁm') —(R%)" if ¢’ < oo ands+s' € (m(b+

d) - ]Rg) (E(b +d) - Am' - (]Ri;)T) if ¢ = 0.
Proof. By Proposition 2.30] it will suffice to show that

(SO,ien) € A(b—i—d)/mln(l,p) s—s’ (D)

Take 69 > 0. Then, there is a (0, 4)-lattice (¢ x, 2jk)jeskek, With ¢ < &g, such that the mapping

BUTLK) D A Y B L ARV () € ara(D)
7,k

is well defined and continuous, where hy = Sz, — D@((j %) for every k € K and for some (hence every)
j € J. Observe that the continuity of the mapping f — f(0,ie) on AP9(D) implies that there is a
constant C7 > 0 such that

4 . b+d)—s—s’
S TNRBY, 4z 0 (0,i€) AR TV ()| < Mgz 0
7.k
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for every A € ¢5'9(J, K). Therefore, Proposition [A11] implies that
(B my ) (0s e ) AT (1)) € 0 (),
so that the conclusion follows from Theorems and O
Definition 3.29. Take p, ¢ €]0,00] and s,s” € R” such that the following conditions are satisfied:
e s€ 2—1qm + (R%L)" (resp. s € R, if ¢ = 00);
IS %(b +d) — ﬁm’ — (R%L)" (resp. 8" € =R if p = 00);
e s+s’ € %(b+d) - %qm' — (RL)" (resp. s’ € %(ber) —R7 if ¢ = 00).

Then, we say that property (L)Jd  , (vesp. (L)J'd | ) holds if there are a (4, R)-lattice (jk, 2jk)jes ke K

for some § > 0 and R > 1, and a constant C' > 0 such that, defining hj = 3z — P((; ) for every
k € K and for some (hence every) j € J and

s’ b+d)/p—s—s’
(NG 2) = DNk BE, sy (€2 AT TV ()
7,k

for every A € C/*X and for every ({, z) € D, one has

¥4 (Ml zz-apy < CllMeroar, )
for every A € (59(J, K) (resp. A € £79(J, K)).

Notice that, unlike in Definition B.27 we do not need to define properties (L)J'd 5 , and (L)J'd |

requiring some condition to hold for several lattices, thanks to the following result.

Proposition 3.30. Take p,q €]0,00] ands,s’ € R, and assume that property (L)d, , | (resp. (L)2d )
holds. Then, for every dg > 0 and for every Ro > 0 there is a constant C' > 0 such that, for every
so € s+ R", for every s € 8" +s —so — R, and for every (6, R)-lattice ((jk, zjk)jeskex such that

§ €]0,d0] and R €]1, Ro], defining hy, := Sz, — P(Cj i) for every k € K and
’ b d _ !
UL (N(¢2) = Z‘Aj’kB(sgj,kazj,k)(g,z> AE}-’- )/p—so %0 (hy)
4.k

for every A € C7*K and for every (¢,z) € D, one has

C
||W+(>\>HL§(’)(’(D) < 5(2n+2m)/p’+(1/p71/q)+m ||A||ZP’Q(J,K)

for every A € (59(J, K) (resp. X € (P1(J, K)).

In particular, property (L)', o . (resp. (L)', ,) implies property (L)’s’;‘f5670,+ (resp. (L)’s’(’)’{567+).

Proof. By assumption, the are a (¢', R')-lattice (C} 1., 2j1 1) jresr ke on D, with 6" > 0 and R’ > 1,
and a constant C’ > 0 such that, defining hj, = 327, ,, — &((} ;) for every k' € K" and

VL)) =Y

j/ k!

(¢, 2)|AG TV ()

/ ’
Ny o B

’ ’
j/yk/7zj/7k/)

for every N € C7*¥ and for every (¢,z) € D, one has
125 )| ga oy < CMN e i

for every X € (5'9(.J', K') (vesp. N € ¢74(J', K')). Then, define mapping p: J x K — J' x K’ in such a
way that
d((gt/;(j,k)vz/p(j,k))v (ngﬁ ijk)> <R'¢

for every j € J and for every k € K, and observe that, for every (j/,k") € J' x K’,

vp(B((0,ien), R'd +9))
vp(B((0,ien)),d)

Card(p™"(j', ) <
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since the balls B((¢j .k, 2j,k),9), as (j, k) runs through p~'(j’, k"), are pairwise disjoint and contained in
B((Cjr s 251 gr) 6" +6). In addition, define

K= {keK:3(G,7) €I plik) = (k) },

and observe that the balls B(hy,?), for k € K}/, are pairwise disjoint and contained in B(hj,, R'6' +0)
thanks to Lemma 2.47] Hence,

vo(Bleg, RS +5))

Card(Ky) < vo(B(en,9))

Thus, there is C” > 0 such that
Card(p~L(j', k') < ¢"§~(@n+2m) and Card(Ky ) < C"6™™

for every j' € J' and for every k' € K’, provided that § < 6y and R < Ry. Now, take A € C/*X and
define X, 1 =37 i jy—(j7 )| Aiikl, so that
||)‘/H€M(.]’,K’) < C/ll/p’Jr(l/P*l/Q)Jr6*(2n+2m)/p’,(1/?*1/‘ﬁ+mH)\Hepyq(JyK)
and X € £5(J',K') if X € £5'%(J,K). Now, Theorem 242 implies that there is a constant C"”” > 0 such
that
S kB[4 ) < LX),

gk

Therefore, it will suffice to choose C = C'C"/P'+(1/p=1/0)+ " gince

A7 (S — B(O)) AL TR0 ()[BT (C2)| <

(Cjkr25,%)
for every (j, k) € J x K and for every (¢, z) € D, thanks to Proposition 230 O

In the next result we show that property (L)2'd, | (resp. (L)Jd | ) implies property (L){'d, o (resp.

(L)2d). As we shall see in Theorem [3.32 it actually implies property (L')J’d, 5 (vesp. (L')2d).

s,s’

Proposition 3.31. Take p,q €]0,00] and s,s’ € R” such that property (L)J'd o, (resp. (L)Yd | ) holds.

Let (i ky 2.k)jetkek be a (6, R)-lattice for some 6 > 0 and some R > 1. Define hy = 3z — D((j)
for every k € K and for some (hence every) j € J. Then, the mapping

Vih o DO NwB 0 A8 ()
J.k

induces a continuous linear mapping from £5(J, K) (resp. from (74(J, K)) into AZG(D) (resp. AL(D)).

Proof. The assertion follows immediately from Propositions2Z.36and B30 when property (L)%, , | holds.
Then, assume that property (L)’s”’g,7 . holds and let us prove that the sum defining W (A) converges locally
uniformly for every A € ¢74(J, K). Observe that Theorem [2:42] implies that there is a constant C' > 0

such that
|B§szjk)(§lazl>| C|B<szjk)(§,2>|

for every (¢, 2),(¢’,2") € D such that d((¢, 2),(¢’,2")) < 1, and for every (j,k) € J x K. In addition,
there is a negligible subset N of D such that, for every ((,z) € D\ N,

STINEBE, . ([ ANNARTVPTE () < 0.
7,k

Then, the sum defining ¥(\) converges uniformly on B(((,2),1) for every ((,2) € D \ N, so that ¥(\)
is pointwise well defined and holomorphic. It is then easily verified that ¥(\) € ALZ9(D), and that
W P1(J, K) — AP9(D) is continuous. O

Theorem 3.32. Tuke s,s’ € R", p,q €]0,00] such that property (L)'d, o . (resp. (L)2'd ) holds. Fix
Ry > 1. Then, there is 69 > 0 such that, if 6 €]0,60] and R €]1, RO] then the mapping ¥ defined
in Proposition [3.31) has a continuous linear section W': AZG(D) — £5%(J, K) (resp. ¥': ALY(D) —
wa( ], K)).
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Thus, property (L){'d, o, . implies property (L)J’d, ;, while property (L)Ld, | implies property (L")2'd,.
Since clearly property (L)s «.0.+ implies property (L)s o 4+» it also implies property (' )g:g,.

The proof is based on [IBEI, Theorem 1.5], which deals with C..

Proof. Put a well-ordering on J x K and define

Uje = B((Cjik, 2j,k), RO) \ U B w2ix), RO)

(4"k")<(3,k)

for every (j, k) € J x K, so that (Uj 1) k)esx ki is a Borel measurable partition of D (since J and K are
countable). In addition, define ¢; 1 = vp(Uj k) for every (j, k) € J x K, so that

vp(B((0,ien),0)) < ¢jk < vp(B((0,ien), RJ))

for every (j, k) € J x K. Then, define
8: ALUD) 3 f > (indly V) f (G 2in) ) € 09T K,

so that Theorem B.22 shows that S is well defined and continuous, and maps AZ§(D) into £((J, K)
under the finer assumptions. In addition, define S’ := ¥S and hy = Sz, — P((jx) for some (hence
every) j € J and for every k € K. Then, Proposition BI3] and Lemma B.28 imply that, for every
1 € Avi(D),

(f = §'1)(C 2) Z / BY, (6 2)A5 (8 — 8(C))

— PG 230 BE 4 a2V AGT () du (¢, ).
Hence, Theorem [Z42] Corollary[Z44] and Lemma [B.24]imply that there are pg > 0 and C; > 0 such that

[(f = S"1)(¢, 2)]

<SCIRSS e sup F(C B, . (G )| AG (h)
jzk (B (G R H00) () ?

for every (¢,z) € D. Now, let (C} ,, 2% 1) jresr wers be a (1,4)-lattice on D (cf. Lemma 250), and
observe that the proof of Proposmlonm together with Theorem 2.42] and Corollary 2.44] again, implies
that there is a constant Cy > 0 such that
I(f =S )¢ 2)]
< CoRS Y sup IF(C B, |, (€ 2)AGY (hy)
FARY A AT
31K (2B (S ¥ ) RO+p0+4)

for every (¢, 2) € D, where hy, = Sz}, ., — (), ;) for every k' € K’ and for some (hence every) j' € J'.
Hence, Theorem [3.22] and Proposition .30 show that there is a constant C3 > 0 such that, if R < Ry
and 0 < 1, then

If = S"fll aza(py < O30 fll a2y
Take §p > 0 so that C30g < % Then,

min(1,p,q)

(- §Yf < 3 2 mintLeai | g minLo)

j=k ARY(D) jzk

for every k € IN, so that -, (I — S')’ is a well defined endomorphism of AZ§(D) (resp. A2(D)), and
is the inverse of S’. Hence,
vi=8> (I-8")

JEN

is a well defined and continuous linear mapping from AZ'§(D) into £5?(J, K) (resp. from AL(D) into
(], K)), and 00 = §'Y (I - S') = L. -
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In the next result we shall provide some sufficient conditions for properties (L)'  , and (L)2'g, .

Theorem 3.33. Take p,q €]0,00] and s,s" € R" such that the following hold:
esCaim+ (g — o) m'+ (RY);
s 2q 2min(1,p) 2q + +/

os'c mln(l D) (b + d) - 2miI}(1,p) m’ — (]Ri)r’

1 1 *\T .
es+s' € (1p)(b+d)——qm (Qmin(lyp)—z)er—(]RJr) ;
Then, properties (L)J'd o , and (L)L | hold.

This result is optimal when ¢ < p < 1 and gives atomic decomposition for all spaces A24(D) such
that ¢ < min(1,p).

The proof of the case p,q € [1,00] is based on [8 Theorem 4.10], which deals with irreducible
symmetric tube domains. The strategy of [58, Lemma 5.1], which gives optimal results for C, leads to
worse results in the general case.

We shall prepare the proof of Theorem [B.33] by means of some simple consequences of Schur’s lemma.

Lemma 3.34. Take q € [1,00] and s1,s82 € R" such that the following conditions hold:
(1) s2 € 2q,m+ Lm’ + (RY)";
(2) S1 + 82 € —%m — %q,m' — (Rj_)r

Then, the mapping

T: ()5 f s Ago /Q FI)AS (- + h) A% (h) dva(h) € C(2)

induces endomorphisms of L3(vq) and of L(vg).

The proof is based on [8, Theorem 4.5], which deals with the case in which {2 is irreducible and
symmetric, and s1,s82 € R1,.

Proof. Assume first that ¢ = 1. Then, for every f € C.(£2),
ITflr0my < [ [FOIAG () 253 (b + 1) A5 () dlw x v (b, 1)
2x 82

Therefore, the assertion follows from Corollary 217
Next, assume that ¢ = co. Then, for every f € L*°(vg,), by an abuse of notation,

Iy < 1 ey 300 AGE==20) [ A5 o+ 1) 251 dva(h),

so that by means of Proposition 214 we see that T" induces an endomorphism of L>°(vy,) if conditions (1)
and (2) are satisfied. Further, by means of Lemma we see that A 752 AT (- + h) € Co(£2) for
every h € (2, so that T induces also an endomorphism of Cy(2) under the same assumptions.

Finally, assume that ¢ €]1, co[. Define

' Cu(0) BgHA%/Q (WYAZST52 (W) A3 (- + 1) dvo () € C(9),

so that "T'(g-vg) = (T"g)-ve for every g € C.(§2). Take s’ € R, and observe that Corollary 217 implies
that there are constants Cy,Cy > 0 such that

T(AL) = ALY and  T'(A%) = C,A%
provided that the following conditions hold:
(i) ¢'s’ +s2 € gm+ (RY)";

(i) ¢'s’"+s1+s2 € —%m’ — (RY)";
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(i) g8’ —s1 — sz € %m + (R
(iv) gs' —sz € —4m’ — (R%)";

It is then clear that we may find s’ satisfying conditions (i) to (iv) if and only if conditions (1) and (2)
are satisfied, in which case [39, Lemma 1.2] implies that 7" induces an endomorphism of L?(vg). O

Corollary 3.35. Take q € [1,00] and s1,s82 € R" such that the following conditions hold:
(1) s2 € gom + 5om' + (RY)";
(2) S1 + 82 € —ﬁm — %q,l’nl — (R*Jr)r
Let (hi)kex be a (0, R)-lattice on 2, with § > 0 and R > 1. Then, the mapping
T: CH) 5 N A5 N " N AR (- + i) A% () € C(92)
keK
induces continuous linear mappings ({(K) — Li(vp) and (1(K) — Li(vg).

Proof. By Lemma [334] let 77 be the endomorphism of L%(vg) such that, for every f € Li(vgp),
(T'f)(h) = Ag* > (h) /Q F(h)AG (h+ 1) A (1) dva ().

In addition, endow K with a well-ordering and define

Uy, == B(hg, R6) \ ( U B(hk/,R5)>

K <k
for every k € K, so that (Uy) is a measurable partition of £2 and B(hy,d) C Uy C B(hy, RJ) for every
k € K. Therefore, by means of Corollary 2.44] we see that there is a constant C' > 0 such that the linear
mapping
W LK) 3 A Y Mxw, € L(ve)
keK
is well-defined and satisfies 1
oMy S TEN N Lawa) < CllAlles ()

for every A € (4(K). In addition, Corollary 244 implies that there is a constant C’ > 0 such that, for
every positive A € (9(K),

1

L@ <1 <c@n),
so that T induces a continuous linear mappings ¢9(K) — Li(vg). To see that T'(co(K)) C Co(vg), it
suffices to observe that A% 72 A% (- + hy) € Co(£2) for every k € K, thanks to Lemma 230 O

Proof of Theorem[3.33 Take a (6, R)-lattice ((j i, 2jk)jeskerx on D for some § > 0 and some R > 1
(cf. Z50). Define hy = Szjr — P((j,x) for every k € K and for some (hence every) j € J. In addition,
define B B
;k = B(SCJ,kazj,k‘)
for every s” € R" and for every (j,k) € J x K, to simplify the notation. Further, for every A € ¢74(J, K)
define bd ,
V() = 3 ABIIAG T () € [0, 00]
4.k

STEP I. Assume first that ¢ < p < 1. Then, for every h € 2,

b+d—p(s+s’ ’
1201y < SNl A5 9PE ) [(BS 2 0
gk

In addition, Lemma [2.34] shows that there is a constant C; > 0 such that

B RIE ) = C1A% ~CFD (4 by
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for every (j,k) € J x K and for every h € £2. Therefore, using the subadditivity of the mapping z ~ 2:9/P
on R+,

q/p
(N Hqu(D) Cq/pz Z'A%Hp A?Z((ber)/pf(ers))(hk)x

r_ q
x / (AS D (1) 23,(1) ) dvia(h)
Q
Now, Corollary Z.T7] implies that there is a constant Cy > 0 such that
’_ q r_
/ (APt n) A1) dva(h) = CoALEH TP gy
Q

for every k € K. Hence,
1 1
1@ (Nl ooy < CLPCy [ Mlowr .16

whence the result in this case.
STEP II. Assume, now, that ¢ > p < 1, and define

T: N s Al ST NARTDTPEE (A,
keK

so that T maps continuously fg/p(K) and £9/?(K) into Lg/p(ug) and L%P(vg), respectively, by Corol-
lary B35l Arguing as in step I, we then see that

1/p

TN zzapy < CL|T [ D 1Nl
J k La/P(vg)
for every A € ¢79(J, K), whence the assertion in this case.

STEP III. Assume, now, that ¢ < 1 < p. For every (j,k) € J x K, choose 7j; € C.(£2) so
that X5((¢;x.2500.6/2) S Tik S XB((G iz and define Cg := sup [ (X5((0.ien).a)),, M. Define
€

0: D> ((,2)—~Sz—d(¢) € 2 and
WP K) S A Y \amindy VP g € O(D),

7.k

and let us prove that ¥’ maps continuously ¢(J, K) and ¢*9(J, K) into LL'§(D) and LE4(D), respec-
tively. Indeed, take X\ € ¢P1(J, K), and observe that

b+d —s
1 O nllze oy < AZTYP75(0) ST Nkl (X80 00000:0))

keK||jet L)

A(b""d)/z? S(h)

<Oy S sy (W (N
,;(A (b+d)/p(hk) B(hy,0) Jik )i ller ()

for every h € {2, so that Corollary 244 there is a constant C?} > 0 such that

12/ 2oy < G| 2 X0 | i )illen

keK

Li(ve)
= Civa(Balea, ) Mlewacs,x)-

Thus, ¥ induces a continuous linear mapping ¢79(.J, K) — L29(D). In addition, since ¥'(C/*K)) C
Ce(D), we also see that ¥ induces a continuous linear mapping £0(J, K) — LZ'((D).
Now, observe that Theorem 242 and Corollary 2244l imply that there is a constant Cy > 0 such that

[P (A)n (S, 2)

04// "(IADw (¢, ")

= Ca [ (N | (B, (€] A9 1) v

(Bt o), (G| (' a) A% () dva (i)
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for every \ € P9(J, K), for every h € (2, and for every (¢,z) € N. Therefore, Young’s inequality and
Lemma [2.34] show that there is a constant Cs > 0 such that

12\l ey < Cs / 12 (ADa [l o A5~ CTD (h 4+ 0 ASH (1) dvo (1)
(9]

for every A € ¢74(J, K), and for every h € {2, since s’ € b+d — im’ — (R%.)". Therefore, the preceding
arguments and Corollary 2.44] imply that there is a constant Cg > 0 such that

s’'—(b+d —s—s’
12Nl ooy < Co D NG5 lenny A5 TV (B + hi) AL (y.),
keK

so that, by the subadditivity of the mapping = + 29 on R,

b+d—s—s’
1ZO g0y < cZn )il 1y ABPTATE ()

x / (2502504 )" v (h).
Q
Hence, Corollary 217 implies that there is a constant C; > 0 such that
1Ml zz2py < C7ll M goa g, x0)-

In order to conclude, it suffice to observe that ¥ (C/*)) C LEA(D).
STEP IV. Finally, assume that p,q > 1. Define ¥’ as in step III, and define

T': f s A3 / PSP W) A (1) dug (1),
0

so that 7" induces endomorphisms of L{(vy,) and L?(vg) by Lemma 3341 Therefore, taking step III into
account,

1M lLzepy < Csl|I T 2zawan 1% (IADI Lz-2(py
< G5 || T || 2 (Laqwa)) Chva(Balea, ) |\ .o, x) -

Since clearly ¥(C/*K)) C LPE(D), the assertion follows. O

3.5 Duality

In this section we shall explore the duality induced by the sesquilinear forms of Corollary B4l As
we shall see, this topic is closely related to that of atomic decomposition. On the one hand, atomic
decomposition on A? ’q( ) allows us to identify its dual with a space of holomorphic functions. On
the other hand, the dual of Ag 4(D) always enjoys an analogue of the atomic decomposition studied in
Section B.41

We first show how atomic decomposition implies a simple characterization of the dual of weighted

Bergman spaces. Notice that, as the proof shows, the assumptions that property (L')’S)’(qurd)/ min(1,p)—s—s’,0

holds can be slightly weakened. Indeed, it suffices to assume that property (L)” ’fb +d)/ min(1,p)—s—s,0 and

that the B((b+)d)/mm(1 p)—s—s’ , as (¢, z) runs through D, form a total subset of ,4177q( ) (i.c., generate a
dense vector subspace of AY ’q( ))-

Proposition 3.36. Tuke s,s’ € R" and p, q €]0, 0] such that property

(L’)ﬁj?b+d)/ min(1,p)—s—s’,0

holds. Then, the sesquilinear form on AZG(D) x Ag//’q/ (D)

(f,9) — /D F(C,2)g(C, ) A%~/ min(l) (o, _ () dup (¢, 2)

induces a antilinear isomorphism of Ag//’q/ (D) onto AZG(D)".
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The proof is based on [58, Theorem 8.2], which deals with the case D = C,. We shall prepare the
proof by means of the following lemma, which is of independent interest.

Lemma 3.37. Take p,q €]0,00[ and s,s’ € R” such that property (L )’s”sq,o holds.  For every L €
(A’s”:g(D))', define
F(L): (¢.2) v (L. B,

Then, the antilinear mapping

F: (AD§(D)Y — AR

(btd)/ min(1,p)—s—s' (D)

18 continuous.

The proof is based on [58] Lemma 8.1], which deals with the case D = C..

Proof. Let us first prove that F(L) is holomorphic. Observe that Theorem 2.42 implies that there are
two constants R, C' > 0 such that

|B(§’ ’)(Cv ) (g” ”)(Cv )|
d((¢’,2"), (¢",2"))
for every (¢, 2),(¢,2"),(¢",2") € D such that d((¢’,z'),(¢"”,2")) < R. Taking into account the fact
that d((¢',2"),(¢",2") < (¢, 2") = (¢",2")| as (¢, 2") — (¢",2"), Proposition 2:36] and the dominated
convergence theorem imply that the mapping F'(L) is holomorphic on D. Now, by assumption, for every
do > 0 there is a (9, 4)-lattice ((j k., 2j.k)jetkex on D for some ¢ €]0,dp] such that the mapping

§ C|B(S<//,z//) (C, Z)|

, b+d)/p—s—s’ 4 s
UGS K) 3 N Y N ARSIV (g e APS(D)
Jik
is well defined and continuous. Observe that F(L) € A O(Eb +d)/p ,(D) thanks to Proposition and
Lemma 328
Then, Theorem B.2T] shows that, if we choose dg sufficiently small, then there is a constant C > 0
such that, setting s” := (b+d)/min(1,p) —s — ',

)

b+d s—s
P oy < € (A ) ) G 200) »
wad (I K

Jik

where hy = Sz, — P((j,x) for some (hence every) j € J and for every k € K. Then,

IF oty € sup |3 Ak AGTV P () F(LY Gk 210)|-

H)‘”gp q(zK)<1 gk

thanks to Proposition [A.11] so that

b+d —s—s’ 4
|F(L )||Ap//q (D) S <C sup <L’2Aj7kA(_Q+ )/p (hk)B(SCj,kaZj,k)>

H)‘Ileg’qu,x)gl ik
< Ol 2z (r,5);,428 o)) 1Ll 4z 2Dy -
Therefore, F(L) € Ag:/q, (D) and the asserted continuity holds. O

Proof of Proposition[3.36l The given sesquilinear pairing is continuous by Corollary[34] so that it induces
a continuous antilinear mapping of AZ,"* (D) into AZ'§(D)’. Then, take L € AL¢(D)’, and observe that

Lemma [B.37 implies that the mapping F(L): ((,2) — <L B((?er)d)/mm(l p)—S—8 > belongs to Ag:,q/ D).

Then, Proposition B.I3 and Lemma B:28 imply that, for every ({,z) € D,

b+d)/ min s’ T TN~ N
O I

<B((E)+)d)/m1n(1,p) s—s’

F(L)>.

Now, by assumption the set of B((?er)d)/mm(l’p)*s*s,, for (¢,2) € D, is total in AZ((D), so that (L, f) =

(fIF(L)) for every f € AZ¢(D) by continuity. The assertion follows. O
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We now show that the dual of a weighted Bergman space has suitable atomic decompositions. This
is a consequence of Theorem B.21] by transposition.

Proposition 3.38. Tuake p,q €]0,¢], and s, s’ € R" such that the following conditions hold:

OS€sup( (b+d) Q/m)Jr(Ri)r;
o s cinf (§(b+d) - QLp,m/,ber— %m) — (R%)";

e s+s' e (b+d) - 57m— (RY)".

mm(l p)

Denote by ¢: A (D) — Ag:g(D)’ the continuous antilinear mapping induced by the

(D)

(b—‘,—d)/mm(l,p) s—s’

sesquilinear form on ALG(D) x A(ber )/ min(1,p)—

(f.9) > /D (629G 857 (32— (0) dun (¢, 2),

and take a (0, R)-lattice (i k, 2j,k)jeskex on D for some 6 >0 and R > 1. Then, the following hold:

(1) for every X € E’O)/’q/(J, K) (resp. 27 (J,K)), the sum

s’'—(b+d)/p
Z)\]kL B(C]lczj k))A (hk)
Jik

converges strongly (resp. weakly) in ALG(D)';
(2) for every Ry > 1 and 69 > 0 there is a constant C > 0 such that
M)l azg(py < C57(2n+m)/p7m/qHAHZP’M’(J,K)
whenever 0 < dy and R < Ry;

(3) for every Ry > 1 there is 6, > 0 such that ¥ is a strict morphism of (2" (J,K) onto ALG(D)
whenever 6 < 61 and R < R;y.
In particular, when Aﬂljrqc;_s_s,(D) can be identified with Ag:g (D), this result gives atomic decompo-

sitions for A’];/jrqc;_s_s,(D). In addition, this result shows that the image of ¢ is weakly dense in AL§(D)’,
and also dense when p’, ¢’ < oo.

The proof is based on [8, Theorem 5.7], which deals with the case in which p = ¢, s € R1,, and D is
an irreducible symmetric tube domain.

Proof. Define
S: ADY(D) > f s (A% DTV P () € 451, K),

so that Theorem [B.21] shows that S is continuous and also an injective strict morphism if § is small
enough. Hence, 'S: (79 (J, K) — A% §(D)" is continuous and is a surjective strict morphism if § is small
enough. Let us prove that

tS()\) _ Z)\j,k L(B(Séj,k,Zj,k))A?;_(b+d)/p(hk)
.k

for every A € ¢74'(J, K). Indeed, assume first that A has finite support and take f € AZG(D). Then,
Proposition B.13] shows that

<fa tS Z )‘] kf Cj,k? Zj,k ) ?] (b+d)/p(hk)

g,k

_Z)\L AS (b+d) /P / f C Z C’ ,)(gj,k,zj, )

g,k

x A (32— &(¢)) dvp((, %)
<f D Nk t(BE,,0)AS (b+d)/p(hk)>,

gk
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whence the assertion in this case. Thus,

s’ —(b+d
t Z)\J’kb B(CJ k%3, k))A ( " )/p(hk)
7.k

with convergence in the strong topology of AZ'((D)" when X € Egl’ql(l], K), and with convergence in the

’

weak topology o (AL (D)", ALG(D)) when A € (74 (J, K). The assertion follows. O
Corollary 3.39. Take p,q €]0,00|, and s,s" € R" such that property (L')2'd, o holds. Then, property
(Lq(b+d)/mnﬂlp) s—s',s DOlds.

Proof. This follows from Lemma 328 and Propositions [3.36] and [3.3 O

3.6 Notes and Further Results
3.6.1 As noted in Proposition 311} the function

Ks: Dx D3 ((¢,2),(¢,2) = BRras (¢ 2)
is (up to a constant) the reproducing kernel of A2?(D) for every s € m € (R%.)". As noted in [7]] in the
case in which D is an irreducible symmetric Siegel domain of type II, there are other values of s € R1,
for which Ky is the reproducing kernel of a hilbertian space Ag of holomorphic functions. More precisely,
As is the Hausdorff completion of the subspace of Hol(D) generated by the BPF97% for (¢,z) € D

(¢2)
endowed with the semi-norm

2
k

bt+d—2 b+d—2
ZCjB(gj,zj) ° Z CJCJ’B(g .z ,)S(Cjazj)
j=1 A JJ'=

for every k € IN, for every ¢; € C and for every ((j,z;) € D, j=1,...,k.

Thanks to |71, Proposition 3.1.5] this happens if and only if s € %Q(Q), where G(£2') denotes
the Gindikin-Wallach set associated with 2 (cf. 2.6.2). When s € 229 4 im’ + (R% )", the space As
embeds canonically into A\zz, for every s’ € INg, such that s+ s’ € im + (R7%)", and is actually equal to

the space A22(D) to be defined in Section|5:|] (cf. Proposition 2:24)).
When s € 244 4 1[G(2") \ ( "+ (R%)")], however, the space As is somewhat singular and has

no relationship Wlth the spaces A2

s+ For example, A(b+a)/2 is the space of constant functions on D,

which has nothing in common with the generahzed Dirichlet space A%2 More generally, by means of

s,s’"
Proposition 2241 it is readily seen that Ag *IQS = {0} for every s’ € N such that s+s’ € m+(R%)".
These singularities have been addressed when D is an irreducible symmetric domain and s € R1,
in |2} [l B], where some new ‘invariant’ spaces are defined, in some situations, as suitable (possibly
higher order) ‘residues’. It would be interesting to compare such spaces with the corresponding spaces
AZS,(D) We refer the reader to [T, B] for further details.

We wish to return to this kind of questions in a future work.

3.6.2 When s € 1G(12), the space As = A22(D) (cf. 3.6.1) can be characterized as the space of
f € Hol(D) such that

sup [ | funlaonn AL (W) < .
heR2J
In addition, there is a constant ¢ > 0 such that
1/2
1514, = s ([ fuselBoonr )
he? (7]

for every f € As. See [T1] for the case in which D is an irreducible symmetric Siegel domain of type II.
The details are left to the reader.
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Thus, the spaces Ag for s € %Q(Q) can be considered as ‘generalized Hardy spaces.” One may
therefore consider the space HP*9(D) of f € Hol(D) such that

sup [ = |l fn o0 [ o < 0

fors € G(£2) and p, ¢ €]0, 0], endowed with the corresponding normf When s € im+(R%)", one simply
recovers the space A? ’/‘fl (D). Such spaces have been extensively studied in [35] when D is an irreducible
symmetric tube domain and p = ¢. We do not know if the resulting spaces fit into one of the scales of

~

spaces AP141 (D), ggim (D), or AL»21(D) (cf. Chapter[l) when (p,q) # (2,2)ors € {0 }U(%er(lRi)’”).

S1,S2

3.6.3 With the notation of 3.6.1, we remark that, when » = 1 and n > 0, so that D is biholomorphic
to the unit ball of C™*!, the space Ay s2 may be canonically identified with the Drury—Arveson space

(ct. ).

4 Actually, with a finer analysis of the orbit of Ty in £2 on which T o is concentrated, one may define H, 29(D) in complete
analogy with ALY'?(D), thus getting more interesting spaces when g = co.



Chapter 4

Besov Spaces of Analytic Type

In this chapter, we introduce the Besov spaces B} (N, £2). In comparison with our main reference [9],
two new difficulties arise: on the one hand, the group N is not necessarily commutative, so that the
associated Fourier transform is far less manageable. On the other hand, we shall consider the full range
of exponents p, ¢ €]0, 0o] instead of dealing only with p,q € [1, o0].

In order to deal with the general case p,q €]0, 0], the classical techniques presented, e.g., in [70]
can be effectively extended to our situation. On the other hand, dealing with the case in which A is
not, necessarily commutative provides new kinds of issues, which are basically related to the fact that
the Fourier transform of the Schwartz space S(A) is not easy to manage. In order to deal with this
inconvenience, we shall introduce three spaces: So(N), So..(N), and Sp(N). Let us briefly explain the
role played by each one of them. First of all, because of the results of Section [[L4] it is convenient to
consider only functions f € S(N) such that

T (f) = xr (M) 7A(f)Pao

for every A € F'\ W. Nonetheless, the space of such f is too big for our purposes. In addition to that,
the description of the image of S(N) under the Fourier transform provided in [36] at least when N is a
Heisenberg group, is not easy to work with. For this reason, it is convenient to consider the space

SoWN) ={feSWN):3p e CX()VA € F'\W m\(f) =¢(A)Pro}-

Since the Fourier transform of the elements of S (N) is essentially scalar-valued, this choice implies,
in particular, that Sp(N') is commutative under convolution, a fact that will prove very useful in the
computations. In addition, by means of the classical Paley—Wiener theorems, it is not hard to prove that
the Fourier transform maps S (N) isomorphically onto C°(£2') (times the field A — Py o).

Even though the space Sp(N) has several important properties and is relatively easy to work with,
it is far too small to be dense in any of the Besov spaces B;q(N’, £2) to be defined. Moreover, it is not
stable under left translations. Nonetheless, the ‘left-invariant completion’ S 1, (N) of Su(N) has the
properties that S (A) is lacking in order to complete the study of the spaces B;q(/\/, £2). On the one
hand, the spaces Bj (N, §2) embed canonically into Sf, ; (A). On the other hand, Sg,7(N) embeds
canonically as a dense subspace of By (N, §2) (at least when p,q < o0).

One last issue occurs: it is unclear if any of the spaces S (N) and Sp 1 (N) is stable under pointwise
multiplication. Even though this fact is of minor importance when dealing with the case p,q € [1, o],
in order to extend to the general case the techniques presented in [70], we need to be able to multiply
functions with a control on their Fourier transforms. For this reason, we shall introduce an auxiliary
space Sq(N), which is defined with the aid of the Euclidean Fourier transform on the space F.

With these three spaces in hand, we can develop the basic theory of the Besov spaces B;yq(J\/' ,82)
following the classical case with only minor modifications.

Concerning the results which follow, we only remark that Theorem .23 which characterizes the dual
of By (N, £2), only covers the case p > 1. The case p < 1 will be established later on (Corollary 512
with the aid of the theory of weighted Bergman spaces.

4.1 Spaces of Test Functions

This section deals with the study of several subspaces of S(N) which are necessary to deal with
the Besov spaces to be defined in Section Since these spaces are essentially instrumental, we shall

71
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content ourselves with a few basic results.

Definition 4.1. Define
SoWN)={feSWN):Fp e CX()VA e F'\W m\(f) =¢(A)Pro}-

In addition, for every compact subset K of (2, define S (N, K) as the set of f € Sp(N) such that
mx(f) = 0 for every A € '\ K, endowed with the topology induced by S(NV). We endow S, (N) with
the finest locally convex topology for which the inclusions S (N, K) — S (N) are continuous.

Thus, Sp(N) is a complete locally convex space and embeds continuously into S(A). In addition, a
subset C of S (N) is bounded if and only if K is contained and bounded in Sp (N, K) for some compact
subset K of (2.

The following result collects the main properties of the space S (N).
Proposition 4.2. The following hold:
(1) the mapping Far: @ — [A — Tr(ma(v))] induces an isomorphism of So(N) onto C°(£2');
(2) for every ¢ € C(£2') and for every (¢,x) € N,

)G = T [y agb et =m0 ay;

7rner o

(3) for every 1,02 € Sp(N), p1 * @2 € Se(N) and
Fn(pr# pa) = (Fner) (Fae2);
(4) ifteTy, ge GL(E), p € SoN), andt-® =P o (g x g), then (g X t)«p € Sp(N) and

Fn((g x t)sp) = (Fne)(- ).

In particular, convolution is commutative on Sp(N). Observe that the mapping Fj is essentially
the (non-commutative) Fourier transform on N/, since

() = Fa (@) (N Pao

for every A € F’\ W and for every ¢ € S(N). The characterization of the image of S (N) under Fyr
will be of particular importance in the study of Besov spaces.

In the statement, we wrote (g x t).¢ instead of ART4() po (g x )~
Proof. (1)-(2) Take ¢ € Sp(N) and observe that, by Proposition [L.12]

(Fne)(A) = Tr(ma(p)) = (ma(@)exolero) = /j\[sﬁ(évx)em’”“’@“” d(¢, z)

for every A € 2. It then follows that Farp € C°(£2').
Conversely, take ¢ € C°(£2’), and define
2= Pf(eg: .
(G)(¢w) = 2P ea)l [0 b (n)oihe)= 02000
ﬂ-n m _f?’
for every (¢,z) € N. Then, Proposition and Corollary [LT4] imply that Gy € L?(N) and that
mA(G) = 1(A) Py o for almost every A € F/\ W. Now, take ay, a0 € IN and ag € IN™, and observe that
Faa di Bruno’s formula and some integrations by parts show that
a1 no 2nim|Pf(e-Q/)| (N, x)— —
O O (GU)(Gw) = ——m— | ¥(A)e Ao} =P, (A)AGP(A) dA
_ (—1e2n P
Tt iz — $(0)* S

!N =) 93 (1 B4, AP) (M) dA,

where

Ous(N) = Y o (X)) - (2N, RD(C, )™ - (=N, RD(-, )™

101
Y1+2v2=a T2
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for every A\ € ol Now, observe that the mapping ¢ — @({) is absolutely homogeneous of degree 2 and
vanishes only at 0. Therefore, for every N € IN there is a constant C;, > 0 such that

Cn

10%(G)(¢,2)| < AT +1eD¥

for every ((,z) € N and for every a € IN>"*™ with length at most N (identifying E with R?"). In
addition, since the mapping A — J5 = |Jy|71J, is (semialgebraic and) clearly analytic on F’\ W, it is
easily seen that mx(Gy)) = Y(\) Py o for every A € F'\W. Thus, G maps C°(F”) into S (N), and clearly
Fn and G are inverses of one another. Finally, it is readily seen that Far and G induce homeomorphisms
between S (N, K) and { ¢ € C2°(£2'): Supp (¢) C K } for every compact subset K of 2, so that Fy
and G are homeomorphisms between Sp(N) and C2°(£2').

(3) Take @1, p2 € Sy (£2), and observe that my(¢1 * 2) = mA(p1)7a(p2) for every A & W. Since
ma(pj) = Fa(p;)Pro for every A ¢ W and for every j = 1,2, this implies that ¢1 * 92 € Sp(N) and
that

Fn (1% p2) = (Fapr)(Fapz),
as we wished to show.
(4) Finally, define ¢ := Fprp, and observe that (2) and (3) imply that ¢(-t) € C°(£2’) and that

F (1) = AP ) (FR ) g™ x t7h) = (g x )
whence the result. O
Definition 4.3. We define Fpr: Sp(N) — C°(F") as in Proposition €2

As we mentioned above, the space S (N) is too small for some of our purposes. In order to get invari-
ance under left translations we introduce Sp 1 (N). The auxiliary space S (N), in turn, is introduced
to get control over pointwise multiplication.

Definition 4.4. Define Su(N) as the space of ¢ € S(N) such that Fr(p(C, -)) is supported in 27
for every ¢ € E and such that mx(p) = mr(@) Py for every A € 2. Endow Sq(N) with the topology
induced by S(N).

In addition, for every compact subset K of 2, define Sq; (N, K) as the space of ¢ € So (N) such
that w5 (p) = 0 for every A € F'\ (WUK), endowed with the topology induced by S(NV). Define Sp,1,(N)
as the inductive limit of the spaces Sp, 1, (N, K), endowed with the corresponding locally convex topology.

The following result collects some of the most important results concerning the spaces Sq,1,(N) and

S (N). In particular, it shows that So (N) is an algebra under pointwise multiplication.
Recall that a Montel space is a Hausdorff barrelled space whose bounded subsets are relatively
compact.

Proposition 4.5. The following hold:
(1) So(N) is a Fréchet Montel space;
(2) So.L(N) is a Hausdorff, complete, bornological Montel space;

(3) So.L(N) embeds canonically into So (N) and induces on Sq, (N, K) its topology for every compact
subset K of £;

(4) a subset of Sq,1,(N) is bounded if and only if it is contained and bounded in Sq (N, K) for some
compact subset K of (2;

(5) ma(p) =0 for every ¢ € So(N) and for every A € F'\ (2 UW);

(6) So(N) and So.L(N) are left-invariant;

Here, 8%1 denotes the partial derivative of order a;; with respect to the subspace E. In other words, if f € C*1(N),

then 03! (¢, z) = (f(- ,2))(@1) (¢) for every (¢,z) € N. Similar remarks apply to 0%2. Finally, the - appearing in the
definition of @4, () stand for symmetrized tensor products. In other words, if T and S are symmetric k- and h-multilinear
mappings on E x F, then (T - S)(vi,...,vp4k) = m ZaengL T(Vo(1)s- >V (k))S Vo (kt1)s - - » Vo(ktn)) for every

V1,...,0h4k € E X F, where &), denotes the set of permutations on {1,...,k+h }.
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(7) S(N) embeds canonically into Sq (N) and the left-invariant subspace of S(N') generated by
So(N) is dense in Sq.(N);

(8) So(N)Se(N) C Sa(N).

Thus, S, (N) can be interpreted as the completion of the left-invariant subspace generated by
S (N), with respect to a suitable topology. This remark should justify the ‘L’ appearing the symbol
So.L(N).

Proof. (1) Tt is clear that Sp(N) is a closed subspace of S(N), so that the assertion follows.

(2)—(4) Since clearly S 1, (N, K) is closed in S(N) for every compact subset K of 2, and since §2’
is locally compact and o-compact, [21I, Proposition 9 of Chapter II, §4, No. 6] implies that Sp 1, (N) is
Hausdorff and complete, and induces on Sp 1, (N, K) its topology for every compact subset K of 2'. In
addition, [21, Example 3 of Chpater 111, §2 and Corollary 3 of Chapter III, §4, No. 1| imply that S 1,(N)
is bornological and barrelled. Further, |21, Proposition 6 of Chapter III, §1, No. 4] implies that a subset
of S 1 (N) is bounded if and only if it is contained and bounded in Sq; 1,(N, K) for some compact subset
K of 2. Since S(N) is a Montel space, it then follows that Sg, 1, (N) is a Montel space. Finally, it is
clear that S (N, K) embeds canonically into So(N) for every compact subset K of £/, so that also
S0.1.(N) embeds canonically into So (N).

(5) Indeed, take ¢ € So(N) and A € F/\ (2 UW). Then,

m() = [ Felelc DOmE0 A =0,

(6) It suffices to prove that Sp(N) is left-invariant. Indeed, take ¢ € Sp(N) and (¢,z) € N. Then

TA(L(¢,z)0) = TA(C, 2)ma () = TA(C 2)ma(0) Pao = Ta(Lic,2)®@) Pro

for every A € 2. In addition,

Fr((Laye)(¢ ) = Frled = ¢, - —2—230(C, ("))
= o e Fp(p(( = ¢, 1) € CF(K)

for every (" € E. Therefore, L »yp € g_o(/\/)
(7) Let us first prove that Sp(N) embeds canonically into S (N, K). Indeed, take ¢ € Su(N) and
observe that clearly my(¢) = mx(p)Pa,0 for every A € (2. In addition, Proposition .2 implies that

oGy = 2P el oy Ahy@(¢) — i)

ﬂ-n-l-m
for every (¢, z) € N,where ¢ := Farp € C°(£2'). Therefore,

_ 2[Pi(eg)]

ﬂ-n

Fr(@(¢. ) Y Agre™ ) e O ()
for every ¢ € E. Thus, ¢ € Su.1(N). Continuity is then easily established.

Conversely, take ¢ € So ,(N), and let K be a compact subset of 2" such that mx(p) = 0 for every
A € F'\ (KUW). Then, Proposition 2] implies that there is 7 € S (N) such that Far7 equals 1 on K,
so that ¢ = 7. In addition, the space M of measures with finite support is dense in the space (’)’07 L (N)
of left convolutors of the space S(N) into itself, so that there is a filter § on M which converges to ¢
in O 1 (N). Now, M 7 is contained in the left-invariant subspace of S(N') generated by So(N), and
clearly § * 7 converges to ¢ = ¢ x 7 in S, (N, Supp (Fa7)), hence in S 1, (N). The assertion follows.

(8) Take ¢1,ps € So(N). Then,

Fr((p12) (¢, -)) = 2m) " Fr(en(C, -)) * Fr(e2(C, )

is supported in 2 for every ( € E, since 2 is a closed convex cone. Thus, it remains to prove that
ma(p192) = ma(p1p2)Pro for every A € 2/, To this aim, we define

LHN) = { f € L*(N): ma(f) = xar (M) 7a(f) Pao for almost every A € F/'\ W },
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and an operator £: L%,(N) — AZ°°(D) (with the notation of Section [3)) such that

A(Ef)n) = e MM ay(f)

for every f € L% (N), for every h € §2, and for almost every A € F'\W. Then, by means of Corollary [34]
and Proposition we see that £ is well defined and maps L%,(N) isometrically onto AZ>°(D). In

addition, E(f), — f in L2(N) as h — 0 for every f € L% (N). Now, it is clear that So(N) embeds
continuously into L% (N), so that @12 is the limit of (Ep1)n(Ep2)n in LY(N). In particular,
Ta(p1p2) = lim 7 ((Ep1)n(Ep2)n)
h—0
= lim m\((Ep1)n(Ew2)n) Pro
h—0
= ma(p192)Pro
for every A\ € 2/, where the second equality follows from Proposition The assertion follows. O

From the following result until Corollary 10, we shall extend to this setting some of the tools needed
to deal with the Besov spaces Bj , for the full range of exponents p, g €]0, oc]. Corollaries and [£10]
in particular, are trivial consequences of Young’s inequality when p > 1.

Corollary 4.6. The following hold:

(1) the trilinear mapping
S'(N) x 8a(N) x Sa(N) 3 (T, ,n) = (T )y € Sa(N)
is well-defined and separately continuous;

(2) (T x p)n) = 0 for every A € 2\ (Supp (Fap) + Supp (Fan)), for every T € S'(N) and for
every p,n € So(N).

Proof. (1) The considered trilinear mapping is clearly separately continuous with values in S(NV). Now,
observe that the set of d(¢ ., for (¢,z) € N, is total in §'(N). To conclude, it will then suffice to show

that (5¢c,z) * ©)n € S (N) for every p,n € g’g(]\/). However, since d(¢ z) * ¢ = L), the assertion
follows from Proposition
(2) As in (1), we may reduce to the case in which T' = (¢ ). In this case, then,

Fr((Lic.oyp)(C', ) = e 71232 Fr(o(¢ — ¢, )

2"Pf(eq)| - ,
_ 2MPfea)] —i(- atasa(cc N (Farp) Agbe {2 =0)
7-‘-77/

and
_ 2"|Pf(€g/)|

ﬂ-n

Fr(n(cs ) (Fam)AgPe=( 2D

for every ¢/ € E (cf. the computations of the proof of Proposition [L.3]). Since

Fr((Liczy)m(C, +)) = 2m) " Fr((Lice) ) (<, -)) * Frn(c's -))

and since

(L) = [ Frl((Ligarehn(Cs DOm0}
for every A € F'\ W, the assertion follows. O

Corollary 4.7. Take p € So(N). Then, for every p,q €]0, 0] such that p < q there is a constant C > 0
such that

1T Lany < ClIT || Loy
for every T € 8'(N') such that T =T x .

The proof is based on [70, Theorem 1.4.1], which deals with the abelian case.
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Proof. STEP 1. Assume first that T € §Q (N). Tt will suffice to prove the assertion for ¢ = co. Then,

(¢, )] < /N IT(¢ o) ((¢2) 7 (G a))] ()

1—min(1, min(1,
<1l oy It 2 I T N s

for every (¢, z) € N, so that

1/ min(1,
1Ty < el s ™ I o

since [|T| o (n is finite.
STEP II. Take n € Sp(N) such that n(e) = 1, that is, such that

7.rn+m

/ (Fae)NAR N A = Fimr—,

(cf. Proposition [£.2]). Define

p: (¢ @) = (p¢, pP)
for every p > 0. Let K be a compact convex neighbourhood of 0 in £ which contains Supp (Fx), so
that K contains the support of

Fr(mp) = p~ 2" 2™ (Farm)(p2 )

for every p €]0,1]. Observe that there is " € Sp(N) such that Fa¢' equals 1 on the compact subset
K + Supp (Fap) of £2'. Therefore, Corollary E.6 shows that T, € So(N) and that Tn, = (Tnpy) x ¢’
for every p €]0,1]. Thus, applying step I with ¢’ in place of ¢, we see that there is a constant C' > 0
such that
[Tl Loy < ClITpll Loy
for every T € 8’(N) such that T'= T x ¢ and for every p €]0,1]. Now, passing to the limit for p — 0T
we see that
TN Loy < Clgg(i)gf||T77pHLp(N) < CO|T| Loy

whence the result O

Corollary 4.8. Take p,q €]0,00] such that p < q and let B be a bounded subset of S (N). For every
¢ € B and for every t € Ty, define o1 € So(N) so that Faror = (Fap)(-t™1). Then, there is a constant
C > 0 such that, for every T € 8'(N), for every ¢ € B, and for every t € T4,

IT 5 @ill parry < CAVPTH DO )T s 0y | 1o )
In addition, if T x ¢, € L{(N), then T * ¢, € LE(N).

Proof. For every t € T, choose g; € GL(F) such that t-® = Po(g: X g+), and observe that Proposition 1.2
and the fact that (g; x t) is an automorphism of N imply that

(gt X O)u(T % ) = [(ge X 1) T] % ¢

for every T € S'(N), for every ¢ € B, and for every ¢t € T'y. Now, observe that there is a compact subset
K of (2 such that Farep is supported in K for every ¢ € B. Then, fix 1) € S (N) such that Far) equals
1 on K, so that (T * @) x 1) =T * ¢ for every T € 8'(N) and for every ¢ € B. Then, the first assertion
follows from Lemmas 27 and 213 and Corollary [£7]

For what concerns the second assertion, it will suffice to show that, if p < oo and T * ¢, € LP(N),
then T x ¢; € Co(N). Observe that, applying the preceding remarks with ¢ = max(1,p), we see that
T % p; € L™*(LP)(N). Therefore, T * ¢; = T * @1 * by € Co(N), whence the result. O

Corollary 4.9. Take ¢ € Sp(N), and fix a compact subset K of 2'. Then, for every p €]0, 00| there is
a constant C > 0 such that

IT % @' |y < CIT Lo an) 1€ ]| Lminam (ar)

for every T € S'"(N) such that T =T * ¢ and for every ¢’ € So(N') such that Fary' is supported in K.
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The proof is based on [0, Proposition 1.5.1], which deals with the classical case.

Proof. The assertion follows by Young’s inequality (with C' = 1) when p > 1, so that we may assume that

p < 1. Observe that ¢'* € S (N), so that L(zlm)go'* € Sn(N) by Proposition LR for every (¢, z) € IN and

for every ¢’ € Sp(N). Therefore, Proposition again shows that TL(?I)@’ * € Sp(N). In addition,

by means of Corollary [.6] we see that, if Far¢' is supported in K, then
—1 * —1 *
TLiuy " = (TLigay™) * ",

where ¢’ € Sp(N) and Farp” equals 1 on Supp (Fare) + K. Therefore, Corollary 7] shows that there
is a constant C” > 0 such that

~-1 -
17+ iy < [ LG sy )
—1 *
JITLE e ey A 2)

<0 [ ] 1T, el a¢ ) i)
N JIN
= C”||T||]Zp(N)||<p’||}£p(N)

for every T € S'(N) such that T = T % ¢ and for every ¢’ € Sp(N') such that Fare’ is supported in
K. (I

Corollary 4.10. Take p €]0,00] and let B be a bounded subset of So(N). For every ¢ € B and for
every t € Ty, define o1 € Sn(N) so that Farpr = (Fap)(-t71). Then, there is a constant C > 0 such
that, for every T € S'(N), for every p, @' € B, and for every t,t' € Ty,

1T % @1 * o |l Loy < CNT * o4l Loy

Proof. By assumption, there is a compact subset K of T such that Fare is supported in eg - K for
every ¢ € B. Take ¢, ¢’ € Band t,t’ € Ty. If oy x ), # 0, then (Kt)N(Kt') # 0, so that t/t71 € KK~
Next, for every t € T, choose g; € GL(FE) such that t-® = ®o (g, x g¢), and observe that Proposition 2]
and the fact that (g; x ¢) is an automorphism of N imply that

(g X )u(T o1+ ) = [(g¢ X )T % 0 % Py
and
(gt X 0)«(T 5 1) = [(ge X 0)uT] x
for every T € S'(N), for every ¢, ¢’ € B, and for every t,t' € T. Thus, we may reduce to proving that
1T * @ * oyl Loy < CLIT * @l Lo

for every T € S'(N), for every ¢, ¢’ € B, and for every t’ € KK ~1. Now, take 1 € S (N) so that Far1)
equals 1 on K, and observe that (T'* ) x 1 =T x ¢ for every T' € 8'(N) and for every ¢ € B. Thus,
Corollary .9 implies that there is a constant C; > 0 such that

1T % @ ol Loary < CLlIT * @l Lo |0k || mintro 4y

for every T € S'(N), for every ¢,¢' € B, and for every ¢/ € KK~!. To conclude, observe that
Lemma 47 implies that the Furp,,, as ¢’ runs through B and ¢ runs through KK~!, stay in a
bounded subset of C2°(§2’), so that the ¢}, stay in a bounded subset of S (N') by Proposition 21 The
assertion follows. O

We now describe the interactions of Riemann—Liouville operators with the spaces S (N), So.L(N),
and Sp(N).

Proposition 4.11. Take p,q €]0,00] and s € C". Then, the following hold:

(1) for every ¢ € gg(/\f) and for every A € F' \ W,

dma(p * I5) =i A7 (M) ma(e);
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(2) the mapping ¢ — ¢ * I$, induces automorphisms of Sap(N), So.L(N), and So(N);
(3) ¢ (i°15)* = @ * (i515) for every ¢ € Sa(N).
Notice that (i5I5)* # iI5), unless s € —INg.

Proof. (1) Take ¢ € So(N), and observe that (o * I$)(C, -) = (¢, -) = I, for every ( € E. Since
Fr(I§) =i"3A57 on 2 thanks to Lemma [2Z21] this implies that (¢, -) * I}, € S(F). In addition,

Tl I3) = [E Fr(p(C, ) * I5)(Nma(C, 0)d,

for every A € (2 so that
(e I5) = 12 AG7(Mma(e)
for every A € F' \ W, whence the assertion.

(2) By (1), it is clear that convolution by I§, maps So(N) into itself, so that it induces an endomor-
phism 7% of So (N) by the closed graph theorem. Since 7575 = 77575 = Ig, ) 7° is an automorphism
of So(N). From (1) it also follows that 7% maps So(N) into itself, so that it induces an automorphism
of Sp(N). Finally, it is clear that Z% induces an automorphism of Sq 1, (N).

(3) Take ¢ € Su(N). Then,

Fr((p* (15)°)(C -)) = Fre(C, ) * (15)")
= Fr(e(C ) Fr(ilg)
= Fr(p(C, ) Fr(I5)
= Fr((p* (1)) )

for every ¢ € E, since Fp(isl§) = ALf = ALS = Fp(i15) on ' by Lemma ZZI1 The assertion
follows. g

We conclude this section with some remarks on the dual of Sq 1,(N).

Definition 4.12. We denote by S, (N, K) and S, 1 (V) the strong duals of S, 1. (N, K) and S, 1.(N),
respectively, for every compact subset K of 2. We also define (T'|p) = (I, %) for every (T,¢) €
St LW, K) x Sq (N, K) and for every (T, ¢) € Sg, 1 (N) x Sa.L(N).

Proposition 4.13. The following hold:

(1) 84 (N, K) is canonically isomorphic to the quotient of S'(N') by the polar of S (N, K), for
every compact subset K of {2 ;

(2) S (V) is canonically isomorphic to the projective limit of the Sg, (N, K), where K runs through
the set of compact subsets of 2 ;

(3) S'QyL(N, K) is a complete Montel space;
(4) for every T € Sg, 1, (N) and for every ¢ € Sa(N), we may define

for every (¢,x) € N. In addition, T x ¢ = T' x @ for every T' € 8'"(N) such that the canonical
images of T and T" in Sq,1,(N, Supp (Farp)) are equal.

In particular, Corollaries E.1 to apply with §'(N) replaced by S, (V).

Proof. (1) Obvious.

(2) This follows from the characterization of the bounded subsets of Sg 1,(N) provided in Proposi-
tion

(3) This follows from Proposition [£5] and [21], Corollary 1 to Proposition 12 of Chapter III, §3, No.
8, and Proposition 9 of Chapter IV, §2, No. 5.

(4) Since clearly ¢* € So(N), T * ¢ is well defined thanks to Proposition The second assertion
is clear, since L .)¢* € S, (N, Supp (Farp)) for every ((,z) € N. O
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4.2 Besov Spaces

In this section we develop the basics of the theory of the Besov spaces B;q(N, £2). As we shall see in
Theorem (cf. also Theorem 26 and the proof of Proposition B.I7), for every T' € B;yq(/\/ ,§2) there
is a holomorphic function f on D such that

T=1
h1—>mofh

in 8}27 (N, even though f is not uniquely determined by this property. For this reason, one may say
that the B;yq(/\/', 2) are Besov spaces ‘of analytic type.’

In the following results, by an abuse of notation we shall often write ||ax||sa(x) instead of ||(ar)||ea(x),
for (ay) € L1(K).

Before we define the spaces By, q(/\/ , {2), we prove the equivalence of several (generalized) quasi-norms

on Sp, 1 (N).

Lemma 4.14. Take 6,8’ > 0, R,R' > 1, p,q €]0,00], and s € R". Let (A\x)rex and (N, )wer’ be a
(0, R)- and a (&', R')-lattice on {2, respectively, and define ty,t), € T4 so that

A = eqr -t and )\;v/ =eq - t;vz

for every k € K and for every k' € K'. Let (or)rex and (@), )wer be two bounded families of positive
elements of C°(£2") such that

Yooty =1 and Y ew( ) 21

keK k'eK’

on 2, and define i,V € So(N) so that Fa, = @r( -t ") and Fabh, = @) (-0 ") for every k € K,
and for every k' € K'. Then, there is a constant C > 0 such that, for every T € Sb’L(/\/‘),

1
EHAS /(hk’)HT*w;c’HLP(N)HLQ(K’) < HAS ,(hk)HT* 'l/JkHLP(N)HLq(K)
< C)| A% (i) % ol oo | iy

The argument is classical. Cf., for example, [0, Lemma 3.8].

Proof. Tt will suffice to prove the first inequality. Define

=Y el

keK

and observe that, since (g ) is bounded in C2°(£2"), Proposition 25T implies that the sum defining ¢ is
locally finite on 2. Therefore, @ is of class C* on (2'. For every k' € K’, let K be the set of k € K
such that ¢}, (-, )ex(-t.") # 0. By Proposition 251} there is N € IN such that Card(Kj) < N for
every k' € K’ and such that each k € K is contained in at most N of the sets K}/, for k' € K’. Then,
for every k' € K,

/ /—1 —1
- P (g Der(- 1) ~ -
Pt )= Y Ak = N G (e (8,
kEKk/ 80 kEKk/

where ,

T T 2
(P( t;C/) ZkEKk/ C'Ok( ’ (t;c’tlzl))

Observe that -, e, @ (- (t},t. ")) = 1 on the support of ¢}, and that the #},¢, ' stay in a compact subset
of T (independent of k') as k runs through K}/, so thatLemma 247 and the preceding remarks imply
that the family (&}, )x e is bounded in C2°(£2). Then, choose 1}, € Sp(N) so that Farhy, = & (-t ")
for every k/ € K'. Then, Corollary .10 and Proposition E.13 imply that there is a constant C; > 0 such
that, for every T' € Sg, 1 (N), for every k" € K, and for every k € K,

(T * i) * Dp | oary < CLIT * Ykl Loy -
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Now, for every k' € K’,
T 1y, = Z (T * g) * Py

kEK,,

by the associativity of convolution on Sf, 1 (N) x S(V) x S(N), so that

T % jll Lo ary < CLNPT0E ST | oy
kGKk./

for every k' € K'. In addition, Corollary 2.44] shows that there is a constant Cy > 0 such that

o VIT * G loy < Co Y A ) IT * il Loy
kEK,/

for every k' € K'.
Therefore,

4% (NI 5 G o | o rery < CoN I A I 5 ko) | oy

whence the result. O

Definition 4.15. Take s € R" and p,q €]0,00]. In addition, take (Ap)rer, (¢r), and (¢r) as in
Lemma [LT4 Then, we define Bj (N, £2) as the space of T' € S, (V) such that

(A (M )(T * x))x € LI(K; LP(N)),

endowed with the corresponding topology.
We denote by B5 (N, £2) the closed subspace of By (N, £2) consisting of the T' € Sg, ; (N) such that

(A% (M )(T * bw) )i € LE(K; Lo(N)).

As we shall see later, S, 1,(N) is (canonically embedded and) dense in B; W, 2) (cf. Theorem 23,
whence the notation.

Proposition 4.16. Take p, q €]0,00] ands € R". Then, By (N, 2) and B?;q(/\/, 2) are locally bounded
F-spaces. In addition, the inclusion By, (N, §2) C Sg, 1 (N) is continuous.

In particular, By (N, 2) and BZSW(N, 2) are complete.
Proof. Observe first that, with the notation of Definition [£T5 the mapping

N: S (M) 3 T o [ 3 M) IT % il oo |l € Bt

is lower semi-continuous. In addition, N is finite exactly on B} (N, §2), and the mapping (T1,T2) —
N(Ty — Tp)™n(1r) js a distance on BS (N, £2) which is compatible with its topology. Then, let (T}) be
a Cauchy sequence on B} (N, 2), so that (T}) is a Cauchy sequence on Sg, ; (N), hence converges to
some 7" in S, 1 (V) by Proposition EET3l Since N is lower semi-continuous on S, ; (A), it then follows
that 7' € By (N, 2) and that (T}) converges to T in By (N, §2). The assertion follows. O

In the following result, we show how the various affine automorphisms of D interact with the spaces

By (N, 92).

Proposition 4.17. Take s € R" and p,q €]0,00]. Denote by G the set of automorphisms of N of the
form g x t, wheret € Ty, g € GL(E), andt-® = ® o (g X g). Then, the following hold:

(1) the mappings T — LT, for ((,x) € N, induce equicontinuous automorphisms of By (N, 2)
and B%;q(./\/', 2);

(2) for every T € é§7q(N, 12), the mapping N> (,x) — LT € é§7q(N, Q) is continuous;

(3) the mappings T AQS_(l_l/p)(b+d)(t)(g xt).T, for gxt € G, induce equicontinuous automorphisms
of By ,(N,2) and B} (N, 2);
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(4) for every T € BZ?AN, 2), the mapping G2 g x t — (g x t).T € BZ?AN, 2) is continuous.

Proof. Fix a (0, R)-lattice (Ag)rer on 2 for some ¢ > 0 and some R > 1 (cf. Lemma [Z50), and define
tr, € T so that A\, = eqr -t for every k € K. Fix a positive ¢ € C2°(£2') such that } 7, _, ety =1
on (', and define ¢, € Sp(N) so that Farthy = (-t ') for every k € K. By Lemma EI4, we may
choose the norm on B;q(N, 2) induced by the mapping

T [ A% I il o0 ey

Then, it is immediately seen that the mapping 7' — L )T induces an isometry of B;yq(/\/ ,§2) and

gI’S”Z(N’ 2) for every (¢,z) € N, whence (1). For what concerns (2), fix T' € B3 (N, §2) and observe
a

(L(C,z)T) * ’l/Jk = lim

im Lo (T _7
iy o e (T ) = T x

lim
(¢,z)—(0,0)
in L{(N), for every k € K. Thus, L T converges to T in By (N, £2) as (¢, x) — (0,0) (by dominated
convergence, if ¢ < co. By equicontinuity at the point at infinity of K, if ¢ = c0). This proves continuity
at (0,0). Continuity on N follows since N is a group.
Now, take (¢ x t) € G. Then,

4% ) l(o % .77 o

La(K)
_ HASQ,(/\;C)H(g X 1) [T * (g x t)*wk]”LP(N)H“(K)

— A(ber)(lfl/p) (t)HAs /(/\k)”T % (g « t)*wk”Lp(N)

09 (K)

for every T' € S, 1 (N). In addition, Proposition EE2 shows that (g x t)*1x € Sp(N) and that

Far((g x ) r) = (- (tit) ™),

for every k € K. Since (A - t) is still a (d, R)-lattice, Lemma T4l shows that the mapping

T [ A% OWIT « (9 % el o a

09(K)

induces a norm on By (N, {2) which defines its topology, whence (3). Equicontinuity follows from a
refinement of the proof of Lemma T4l Finally, (4) is proved as (2). O

Lemma 4.18. The canonical embedding Sq.1.(N') — Sg, 1 (N) induces a canonical embedding Sq 1.(N') —
Bs (N, 9).

Proof. This follows immediately from the definitions of the spaces S 1 (N) and Bezyq(N ,§2), and from
the fact that S(N) C LE(N). O

In the following result we prove the analogues of the classical Sobolev embeddings between homoge-
neous Besov spaces on R.

Proposition 4.19. Take p1,p2,qi1,q2 €]0,00] and s1,s2 € R" such that

1 1
p1 < pa, q1 < g2, and sz =81+ (——) (b+d).
P1 P2

Then, we have continuous inclusions

(N,2)  and B2, (N,02)C B

P1,91 P2,q2

B3 (N, ) C B

P1,91 P2,q2

N, 02).

Proof. The assertions follow from Corollary and the continuous inclusions ¢4 (K) C (%(K) and
(5" (K) € 57 (K). O
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In the following, we shall denote by (- |-) the sesquilinear pairing between LP(N) and L? (N) defined
by

mm=&mmﬂ%m&

for every p € [1, 00].
Our aim is to extend this sesquilinear pairing to a sesquilinear form on

B3 (N, 2) x B, 5 /Dy ),

If p, q €]0, 0o (resp. if p, ¢ €]1, o0]), then Sp 1. (N) is dense in By, (N, £2) (resp. B;?;(l/p71)+(b+d)(N, 2))
by Theorem 23] so that this form is uniquely determined by its restriction to Se,1(N) x Sg 1 (N) (resp.
Sh. L (N) x Sq, (N)). Nonetheless, in the general case we can only give a direct definition and show its
independence from the most reasonable constructions.

Proposition 4.20. Take p,q €]0,00] and s € R". Let (A\g)rex and (N, )wer’ be a (6,R)- and a
(0, R')-lattice on 2" for some 0,8’ > 0 and some R, R’ > 1. Define tx,t,, € T+ so that

A = eqr -t and )\;c/ =eq - t;c/

for every k € K and for every k' € K'. Let (vr)rex and (@) )wer: be two bounded families of positive
elements of C°((2") such that

S et = Y et =

keK k'eK’

on 2, and define Vi, V;, € So(N) so that Fahy = @r( -ty ") and Faiby = ol (-t} ") for every k € K
and for every k' € K'. Then, the following hold:

(1) the sesquilinear forms on By, (N, 2) x B;?;(l/p71)+(b+d) (N, 2)

(T1, 1) — Z (T * Yr| To * i)

keK

and

(T0,To) = Y {Ty =g |To * i)

k'eK'’

are well defined and continuous;

(2) for every Ty € By (N, £2) and for every Ty € B;f;(l/p_1)+(b+d)(N, ),

D ATy | Toxpi) = > (Ty | Ta % p).

keK k'eK'’

Proof. (1) This follows easily from a twofold application of Holder’s inequality, since Proposition
S+(1/p—1)+(b+d)(N 0).

max(1,p),max(1,q)

(2) Fix Ty € By (N, 2) and T € B;iz_,(l/p_l)+(b+d)(/\/', (2), and observe that clearly

shows that the space B;q(N ,§2) embeds continuously into the space B

k=Y Pk kY * P

k' eK’

for every k € K (the sum being finite). Therefore,

Tysapr = D To* g * P % Pp

k'eK’

for every k € K (the sum being finite). Therefore,

(T * Yp|To * ) = Z (T * e * Vg % g | T * i)

k'eK’
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for every k € K. Now, observe that ¢, = ¢} and that ¢}, = ¢} since ¢ and ¢}, are (positive, hence)
real, for every k € K and for every k' € K’. In addition, convolution is commutative on So(N) by
Proposition 2] so that

D ATy g+ Ui [ To s i) = Y (Tox W % g % | T % 4 )

k'eK’ k€K’

for every k € K. Now, clearly

ST ST T W w i k| T )|

keK k'e K’
<D0 YT W ok 5 k| s () 1T % Dl [ )
keK k'eK'’

NSHPHWHD(N) D IT* |
K EK’

Lmax(1,p) N)||T2 ES ’l/)k/”Lp ) < o0,

where N := sup Card({ k € K: 9y x ¢}, #0}) < oo (cf. Proposition2Z51]). Therefore, arguing as above
k'eK’
we see that

S ATy | Tasbr) = D> Ty Wy % x| To + )

keK k'eK'keK

Y (T i To x ),

k'eK’

whence the result. O

Definition 4.21. Take p, ¢ €]0,00] and s € R”. Then, we define a sesquilinear form (-|-): By (N, £2) x

B;i]_,(l/p_l)+(b+d)(/\/', 2) — C in any one of the equivalent ways of Proposition E20

We denote by o}, , the corresponding weak topology (cf. [2I], Definition 2 of Chapter II, §6, No. 2])
( SN, Q) —s— (1/p 1)+(b+d)(N Q))

As we shall see later, (cf. Theorem .23 and Corollary 5.12)), the sesquilinear form ([ -) induces a an-
tilinear isomorphism of B} (N, §2) onto the dual of B °y W, £2), provided that p, g € [1, 00]. Therefore,
in this case the weak topology 0}, 4 1s simply the weak dual topology. Even though in the general situation
there is no such interpretation, the weak topology o3 . still has some of the most important properties
of the weak dual topology. In particular, it is Hausdorff (cf. Proposition [10) and the bounded subsets
of B (N, §2) are relatively compact for o3 , (cf. Corollary 23] below).

The next result shows that the sum ), - x4 (with the 1, chosen as below) enjoys nice ‘reproducing

properties’ in the spaces B%;q(N', 2) and Bj (N, 02).

Lemma 4.22. Take p,q €]0,00] and s € R". In addition, take (A\p)rex, (vx), (tr), and (V) as in
Lemma[{.14), and assume further that
Dot =1

keK

for every A € £2'. Then, for every T € B%;q(/\/', Q) (resp. T € B, ,(N,$2)),
T=) Txi
keK

with convergence in By (N, £2) (resp. in the weak topology Tpg

Proof. By transposition, it suffices to show the assertion when 7" € BS (N 2). Let K’ be a finite subset
of K and define Txs == 37,z T * 1. Let V be the (symmetrlc) set of (k,k") € K x K such that
Yy * P # 0. By means of Proposition 25Tl we then see that there is N € IN such that Card(V(k)) < N
for every k € K, where V (k) .= { k¥ € K: (k,k’) € V' }. In addition, Corollary .10l shows that there is
a constant C7 > 0 such that

1T % g % hwr || Loy < CLl T % Yl Lo vy
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for every T" € Sp, 1 (N) and for every k, k' € K. Then,

I Tker % Wl Loy < CrN™¥OUPy e ()T 5 gl Loy
so that
HA?;/(M)IITK/ * “/”“”L’”(N)Hf‘“m

< CleaX(l,l/p)

v ) () A NI # 0 |,

By Cauchy’s criterion and Proposition TG, the sum »7, -, T * ¢ converges in By (N, §2). To prove

that T'= 3", o, T * ¢y, it suffices to show that 7' ¢ = (EkeK T wk) * g for every k' € K, but this
follows from Proposition O

Theorem 4.23. Take p,q €]0,00] and s € R". Then, the following hold:
(1) So.L(N) is dense in B&;q(N’ 2);
(2) the sesquilinear form
(-]4): B W, 2) x B,5 /=D bH o g) o ¢
induces a antilinear isomorphism of

—s—(1/p—1)+(b+d) ’
B, (N, £2) onto B G, 902)
Notice that the space S _(21 (V) is always dense in By (N, £2) for the (Hausdorff) weak topology o7
thanks to Proposition [
The proof is based on [IQI, Proposition 3.27], which deals with the case in which p,¢ > 1 and D is a
symmetric tube domain. Before we pass to the proof, we need a technical lemma.

p,q’

Lemma 4.24. Take 1) € Su(N) and p €]0,1]. Define 1y == (gXt).1p for every t € Ty, where g € GL(F)
is such that t-® = Po (g x g)E Then, there is a constant C > 0 such that, for every T € §'(N) and for
every t € Ty,
1T % iy < CABTOATD@E) sup  [(FIT % 3y)].
fe€Sa,L(N)
[[f*ellLpary=1

Proof. Let us first show that we may reduce to proving the statement for ¢ = er,, where er, is the
identity element of T';. Indeed, assume that the statement holds for ¢ = er, , in which case “/’em = .
Observe that

(fFIT s 4be) = (f o (g x t)|[(g x )" T] x4)
and that

1 ellzowy = ([ 0 (9 x )] % ¢l o (97" x t7)][ 1y = A PFVP@DF 0 (9 x O] * ¢ll Loy

for every f € S L (N). Then,

sup  [(fIT s )| = ACTDP@) - sup [(fll(g x )" T] *9)],
fESa,L(N) fESa,L(N)
[ f*ell e ary=1 [ £+l Leary=1

so that

IT 5 el Lo ary = APTED[(g X )T 5 [l Loy < CAPFTDA=IDI@) sup (T ).
fESa,L(N)
If#ellLe (ay=1

Now, take ©)' € S (N) so that ¢ = 1 x )™ = ¢h*1), and fix a non-zero positive f € C>°(N) with integral
1; define f; := 272(nm) £(273 . ) for every j € IN, so that f; — & vaguely. Then, §(¢ . f;*1' € Sq.(N),

i (B¢, fi % /|7 * )| = lim |(Gc.a) * 51T % 4)] = (T 9) (G )]

j—o0

?Notice that the definition of 11 does not depend on g by Proposition B2
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and
C = supl|0(¢ o) * [; * )’ x Yl Lrary = sup|lfy * Yl ra) < 00
JEN jEN

for every T € S'(N), for every (¢,z) € N and for every j € IN. Therefore,

IT*Ylleny <C sup  [{f|T x 1)
feSa,L(N)
[[f*llLpary=1

for every T € S8'(N). O

Proof of Theorem[f.23 (1) Take T € B%;q(N ,{2), and let us prove that 7" may be approximated by
elements of S, 1,(N). Indeed, take (A\;)kex, (¢x), and (1) as in Lemma 22 so that

T:ZT*wk

keK

in B%;q(N ,{2). Hence, we may reduce to proving that T x ¢y may be approximated by elements of
So.LN) in By (N, ) for every k € K.

Then, let H be a convex compact neighbourhood of 0 in 2/, and take 7 € S (N) such that n(e) = 1
and such that Fan is supported in H. Then,

Mot (¢, ) = n(p¢, p°x)

is an element of Sp(N) and
Supp (Fam,) € H

for every p €]0,1]. In addition,
(T* ¢w)np € So,L(NV)

for every p €]0,1] thanks to Corollary A6l Hence, it will suffice to show that (T" * ¢;)n, converges to
T x4y in By (N, ) as p — 0. Observe that there is ¢, € So(N) such that Fy¢y equals 1 on
Supp (Fatk) + K, so that Corollary .6 shows that

(T *br)np = [(T * Pr)mp) * Yy,

for every p € [0,1]. Here, no(¢,z) = n(e) =1 for every (¢,z) € N. Since (T * ¢y)n, converges to T 1y,
in LP(N) as p — 0T, by dominated convergence, we have

lim, [(7 % )] 0 = (T 5 ) w0 = T % 4

p—0+

in LP(N). Tt is then easily seen that (1" ¢y.)n, converges to T * 1y in By (N, £2), whence the result.

(2) Take L € é;,q(N ,{2)', and observe that the preceding remarks show that there is a unique
T € S, 1, (N) such that

(L,n) = (|T)
for every n € So (N). Keep the notation of (1) and observe that, if K’ is a finite subset of K and
(fr) € SQ,L(N)K/, then

> lT ) :< > fk*l/Jk’T> = <L, > fk*1/)k>,

keK’ k€K’ keK’
so that

S T )| < L gy ey | 30 Fi e

keK' kEK'

B (N,92)

For every k € K, define K. as the set of k' € K such that ¢y 1y # 0, and observe that Proposition Z51]
implies that there is N € IN such that Card(Kj) < N for every k € K. Now, assume that p > 1, set
C1 = sup||¢x|| 1 (v, and observe that Young’s inequality implies that

keK

D frr o tw

keK’

<Gt Y slloeon

LP(N) kEK'NK
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for every k' € K. Taking Corollary 2.44] into account, we then see that there is a constant Co > 0 such
that

> (el x4y

keK'’

By the arbitrariness of (fi) and K, [I5, Theorem 1 of §2| shows that (A5 (A\x)T *4x) € L9 (K; LY (N))
when ¢ > 1. The case ¢ < 1 is easier: it suffice to consider the case Card(K’) = 1 and to apply the
duality between L?(N) and L? (N).

Conversely, assume that p < 1, and observe that Corollary[£.10Ishows that there is a constant C3 > 0
such that

< 01202N1/q+1/q ||L||BZ,Q(N’“Q)/

A% A Fell o) o iy

Z S Vp x g

keK'

<03 Z | fi * YrllLeary

Lr(N) kEK'NK,,

for every k' € K. Taking Corollary 2.44] into account, we then see that there is a constant C;y > 0 such
that

> (kI x4y

keK'’

< C3C4N1/q+1/q/ HLHB; SN2y

L Pl Lo [ g ey

If ¢ < 1, take K so that Card(K’) = 1 and apply Lemma[£.24] to obtain that (A!Z,S_(l/p_l)+(b+d)()\k)T*
wk) € L®(K; L*®(N)). If, otherwise, ¢ > 1, then use Lemma and argue as in the proof of [I5]
Theorem 1 of §2] to obtain (A~ /P~ PHI\NT w ) € L9 (K; L2 (N)).

Thus, we have proved that (AQ,_(l/p_1)+(b+d)()\k)T *y) € LY (K; LY (N)), that is,

T e B_S_(l/P—1)+(b+d)(N Q)

rq
By Proposition and the density of S 1 (N) in é§7q(N, 2), we then see that
(L, T") = (T"|T)
for every T" € B%;q(/\/, 2). O

Corollary 4.25. Take p,q €]0,00] and s € R". Then, the bounded subsets of By (N, $2) are relatively
compact for the weak topology o}, .

Proof. Take (Ag)ker, (pr), and (¢y) as in Lemma T4l Tt will suffice to prove that the set U of
T € B; (N, 2) such that

[ AL AT * Yell 2o a) | o ey <1
is compact for the weak topology o3 ,. Then, let i be an ultrafilter on U. By Proposition ILT6 (and its
proof) U is closed and bounded in Sg, ; (N), hence compact thanks to Proposition Therefore, L

converges to some Ty € U in Sp, 1 (N). Since Sg r(N) is dense in é;?;(l/p71)+(b+d)(N, 2), it is then
easily verified that {l converges to Tp in the weak topology o7 . O

The following result shows that the Riemann—Liouville operators play for the spaces By, q(/\f , {2) the
same role that the fractional powers of the Laplacian play for the classical homogeneous Besov spaces.

Theorem 4.26. Take p,q €]0,00] and s € R” and s' € C". Then, convolution by I on So.L(N)
induces a unique isomorphism of

B, (N, $2) onto B;z%s (N, 02)
and a unique isomorphism of )
B, (N, $2) onto B;z%s (N, 02)

. . . . ’
which is also continuous for the weak topologies oy, , and U;J[;RS .

Proof. Take (Ap)rer, (¥r), and (¢4) as in Lemma EI4l Observe that Proposition Il implies that
A% (Me)thw * Iy € Sp(N) and that

FN (D% (o) * I5) = % (A5 o) (1),
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for every k € K.
Then, choose ¢” € C°(£2') so that ¢, = pie” for every k € K, and define ¢, and 1} as the elements
of S (N) such that

Fatn = (A" o) (- t1)  and  Fadf =i (A7 (1,
so that ) )
i x 15 = Agy (A )iy, * ¥
for every k € K. Now, Corollary .10l implies that there is a constant C' > 0 such that

I % I8 * Uil Loy < CAGES (Aw)lIm * il o)
for every n € Sp.(N) and for every k € K, whence

|45 Qs 15+ vl |, < CllAB I+ Ghlloon o e

La(K)

for every n € Sp.1,(N). Thus, LemmaLI4 and Theorem [£.23]imply that the automorphism 1 — nx(i31%))
of 8.1 (N) extends to an continuous linear mapping

s, s’ . s Ss+Rs’
Iy Bp,q(/\/, ) — B,y (N, 02).

It is then easily that Isvs/ is actually an isomorphism with inverse If,j;s/fs .

(1/P D+ (b+d),s

Now, the transpose of I " with respect to the sesquilinear forms

(-]-): Byg™ (W, 2) x B, 0Dy, )
and
() BS 4N, 02) x B5 (/=D (0r D )

equals I;Z on So,(N) by Prop0s1t10n 1T whence the result since S 1 (N) is clearly dense in
s (N, 2) for the weak topology o3 O

4.3 Notes and Further Results

4.3.1 When p,q € [1,00], it is possible to give a ‘continuous’ characterization of the spaces B} (N, £2).
Indeed, if £/ 3 X\ — ) € C°(£') is a bounded measurable mapping such that each @, is positive and,
choosing ¢ty € Ty so that A =eg - ),

/ eAN -t ) dver (V) > 1

for every N € (2, and if ¢\ € Sp(N) is defined so that Fu(1x) = @a(-ty "), then T € B (N, ©2) if
and only if

(/Q (2%, WIIT %9l Lory) dm,@))”q e

(modification if ¢ = 0o0). The preceding expression then gives an equivalent norm on By, q(/\f , {2). Several
results of this chapter can be modified in this terms.

4.3.2 Several aspects of the classical theory of Besov spaces have not been treated in this chapter. Some
of them can be (at least partially) addressed by means of the results of Chapter Bl For example, thanks
to Theorem 26 and Corollary B.I1], we see that, if p1,p2,p3 € [1,00], ¢1,q2,q3 €]0, 0], 81,82 € R",
1 1 1 1 1 1
—t - =— and —4—=—
by P2 D3 @ g2 g3
then (by means of Young’s inequality) it is possible to give a reasonable definition of convolution which
induces a continuous bilinear mapping

BS (N, Q) x B (N, Q) — B22(N, Q).

P1,q1 P2,92 P393

One may also argue directly and extend the preceding discussion to the case of general py, pa, p3.
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4.3.3 Using Corollary .10 one may prove that, if p1, p2, ps3, g1, g2, g3 €]0, 0], s1,s2 € R",
1 1 1 1 1 1

—+—=—, and —+—=—

b1 P2 P3 q 42 a3
and s1,s2 belong to a suitable translate of —R!,, then it is possible to give a reasonable definition of
multiplication which induces a continuous bilinear mapping
Bt W 2) x B2, (N, 2) = B 22 (W, 92).
In this case, though, one cannot make use of Corollary [B.11] to extend the range of s; and sp for which
the preceding assertion holds. Nonetheless, arguing directly more precise results can be obtained.

4.3.4 As in the classical case, one may investigate the validity of multiplier theorems for Besov spaces.
Cf. [9, Proposition 3.34 and Remark 3.37] for the case of symmetric tube domains (and p,q € [1,00[),
where such multiplier theorems can be extended in a similar form. The case of (homogeneous) Siegel
domains of type II is more subtle. On the one hand, one may investigate the spectral multipliers
associated with finite (necessarily commutative) families of Riemann—Liouville operators, and find results
which are analogous to those presented in [9, Proposition 3.34 and Remark 3.37]. On the other hand,
general Fourier multipliers can be investigated. Nonetheless, since in this case the Fourier transform is
vector-valued, the situation is more delicate.

4.3.5 Tt is well known that classical Besov spaces enjoy very useful (real and complex) interpolation
properties. On the one hand, complex interpolation (which is meaningful only when p, ¢ € [1,o0]) can
be treated as in the classical case, since it is not hard to prove that the space st,,q(N ,§2) is a retract of
the space (A%, (\g))LY(K; LP(N)) (the retractions being independent of s, p, and ¢). Cf. [I6, Theorem
6.4.5] for the classical case (which applies to the case p,q €]1,00[). One may also consider the variant
of the complex method considered, e.g., in [70] to treat the general case p,q €]0, 0], and investigate
whether it can be generalized to the spaces BISW(/\/‘ , 02).

On the other hand, real interpolation seems to be more problematic. Indeed, the classical case heavily
relies on the interplay between integration on R* with respect to the invariant measure VR: (related to
the real method) and a dyadic summation over IN or Z (related to the definition of non-homogeneous and
homogeneous Besov spaces, respectively). When the rank r of the cone (2 is > 1, though, the situation
becomes more delicate and the naive generalization of the proof of, e.g., [0, Theorem 2.4.2] fails. On
the contrary, it seems that a suitable modification of the real method, where the role of R is suitably
replaced by (2, should prove more fruitful to extend the results of the classical case to this context.

4.3.6 Classical Besov spaces enjoy several equivalent definitions, e.g., by means of finite differences
or atomic decomposition. In connection to these remarks, we mention that in [58] the Besov spaces
B, (R, R ) were defined by means of their atomic decomposition. Cf. [25] for a study of atomic decom-
position on the spaces B;}qr (N, 02) in the case in which p,q € [1,00[, E = {0}, and 2 is symmetric.

4.3.7 The Besov spaces considered in this chapter were not proved to embed canonically into a suitable
quotient of the space S’'(N) of tempered distributions, but rather in the projective limit So. L(N).
In order to address this problem, denote by g}; (W) the strong dual of the closure of S (N) in
S(N) (endowed with the topology induced by S(N)). Observe that B, (N, {2) can be canonically
identified with the space of f € L?(N) such that mx(f) = xa (A\)mA(f)Pxo for almost every A € F'\ W,
thanks to Corollary [LT4l Therefore, B ,(\, £2) embeds canonically into Sf, ; (N). Since convolution by
the Riemann—Liouville operators induce automorphisms of g}; . (N) by Proposition LIl by means of

Proposition and Theorem E20 we see that B (N, 2) embeds canonically into So.L(N) for every
p,q €]0,2] and for every s € R". In [9], the same assertion is proved for p,q € [1,00[ and for s € R1,.,
provided that £ = {0} and 2 is an irreducible symmetric cone. We shall not pursue this investigation
any further.



Chapter 5

Weighted Bergman Spaces: Boundary
Values and Bergman Projectors

In this chapter we develop further the theory of weighted Bergman spaces on homogeneous Siegel
domains of type II. We recall that the provisional notation of Sections and [[4] will no longer be used.

In Section B.], we define an extension operator

. — 00,00
€: BP,Z(N’ 2) = As—(b-i-d)/p(D)
(Theorem [5.2)) and prove that AL-9(D) C £(B, 5(N,§2)) (Proposition E4). We then provide sufficient
conditions for the equality A29(D) = E(B, 3 (N, $2)) (Theorem EI0 and Corollary [B.TT]).

By means of these results we are able to provide a new interpretation of the sesquilinear dual pairing
between Bj (N, §2) and B;S;(l/p71)+(b+d)(N, 2) (Proposition B.I2) and to prove the equivalence of
several properties concerning the characterization of the boundary values of A29(D), the validity of
properties (L)2? and (L')29, and the fact that the Riemann-Liouville operators I,* induce isomorphisms
between various weighted Bergman spaces (Corollary [4.9)).

Finally, in Section we shall study the boundedness of the Bergman projectors Ps. As for atomic
decomposition, it is sometimes convenient to study also the boundedness of the operator Ps 4, whose ker-
nel is the absolute value of the kernel of Ps. Since the boundedness of Py 4 on A29(D), for p,q € [1, o0},
turns out to be equivalent to property (L)g:f{_ (Proposition[5.22)), no new sufficient conditions are provided.
Instead, we prove that, if £ induces isomorphisms of é;; (W, £2) onto AL'G(D) and of B;,Jr;:_(b+d) (N, 02)
OI;th( A’];/jrqc;_s_s/(D), then Py induces an endomorphism of LZ'((D) (cf. Definition Z35) with image
AP4(D).

We keep the hypotheses and the notation of Chapters Bl and [l

5.1 Boundary Values

This section deals with the limits }1Limo fn, for f € AP9(D). As we shall see (cf. Proposition [£.4)),
—

under very general assumptions these limits exist and belong to the Besov space B, Z(N ,§2). Conversely,
under the same assumptions every element of B, S(N ,§2) is the ‘boundary value’ of a unique element of

A? f(b L) /p(D). We shall then define /Tiqu(D) as the space of such holomorphic extensions, and provide

sufficient conditions for the equality A?4(D) = AP4(D) (cf. Theorem B.I0 and Corollary BIT).

We shall then draw some consequences of the interplay between weighted Bergman spaces and Besov
spaces. In particular, we shall use the results of Chapter F] translated in terms of the spaces AP¢(D)
(cf. Proposition B.13]), to show the equivalence (in a somewhat weak sense) of several relevant properties
of weighted Bergman spaces (cf. Corollary B.16).

Notice that, unlike in the case of tube domains (cf. [9]), we may not define the holomorphic extension
of the elements of B, Z(N ,§2) composing the Laplace transform with the inverse Fourier transform, since
the inverse Fourier transform is not readily available for general tempered distributions. Nonetheless, it
is possible to give a direct pointwise characterization of such extension by means of the ‘boundary value’
of the Cauchy—Szegs kernel. In order to do this, we need the following lemma.

89
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Lemma 5.1. Take p,q € [1,00], and s € R" such that s € ﬁ(b +d)+ %m’ + (R%)". Define, for every
(¢,2) € D and for every (', 2') € N,

roN |Pf(69’)|FQ’(_b_d) b+d o
S(Cyz)(c ,x') = Amgntm (B(g,z))o (¢',a").

Then, the following hold:

(1) mA(S(c.)) = xr (N)e= NS5y (¢, Rz) Py o for every X € F'\ W;

(2) the family (A?;(ber)/p,(%z —D(())S(c.)) is bounded in B%;q(/\/', 2);

(¢,)eD
the mapping D > ((, z) — »)) € C is holomorphic for everyT € B_° (N, §2).
3) th img D 3 (¢ T|Sc,z) € C is hol hic f T BpquQ

The proof is based on [9, Proposition 3.43], which deals with the case in which p,q > 1, s € R1,, and
D is a symmetric tube domain.
Observe that S .y is the ‘boundary value’ of the Cauchy-Szegé kernel (cf. Corollary [L39 and Propo-

sitions 214 and [2.25). Then, Corollary [[L34] shows that, for every f € A(Q)’OO(D),

f(C 2) = (folSc,2))

for every (¢, z2) € D, where fo = }1Limo fnin L2(N). As we shall see in Proposition 5.4 a similar statement
—

holds for more general weighted Bergman spaces.

Proof. (1) Observe that S .y € L?(N) by Lemma 234 and that clearly the measurable field
A= xar (Ve MOy (¢ R2) Py o

belongs to 2 fl?'\w L2 (Hy)|Pf(N\)|d), with the notation of Corollary [LT4l Since clearly

| Im (@R Prallanye™ 5D agbax = [ o090 agk () ay

is finite, it will suffice to show that

S(C,z) (Clv :C/)
2P (eq)|

7-rn+m

» Tr(mA (¢, Rz) Py oma(—C, —a'))e M 327D ATE(X) dX

for every ((,z) € D. However, this follows from Propositions and 214
(2) Choose g € GL(E) and t € T such that t - e = Sz — @(() and t - & = P o (g X g), and observe
that
Sics) = Licwe) (g x t)*S(O,ieQ)a

so that it will suffice to show that S(g ic,,) € B} (N, £2), thanks to Proposition I7 Take (A )ker, (tr),
(¢k); (¢Yr) as in Lemma ET4 Then, (1) implies that S(gc,,) * ¥ € Sp(N) and

]:N(S(O,ieg) * ) = Spk( . tlzl)e—( e)
for every k € K. Now, Lemma 240 shows that there is a constant C' > 1 such that

e*C</\k76rz> < e*(/\'tk1€n> < e*(Akyerﬁ/C

for every A € Supp (i) and for every k € K, so that the family

(euk,em/c@kef( : tk,em)
keK

is bounded in C2°(£2’). Hence, the family

(e<,\k,en>/CA((§’/+d)/p (Ak)S(0,ie0) * wk)keK
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is bounded in L{j(N), whence S je,,) € é;,q(N, £2) thanks to Proposition 214, Lemmas and [Z45]
and Corollary 244
(3) Take T' € B, %, (N, £2), keep the notation of (2), and assume further that

Yoen(-t )P =1
keK
on (2. Let us first prove that the mapping
D> (C,Z) — <T*’lﬂk|5(<1z) * ’L/Jk) eC

is holomorphic for every k € K. Indeed, arguing as in (1) we see that

n—m Pf ’
Siem w0 (@) = 2 ) o (o)A - = 4 2i9(¢.¢)

for every ((,2) € D and for every (¢’,2') € N. The mapping

(¢, 2) = (S(e,zy * Yu) (¢, 2)

is therefore holomorphic for every (¢’,z’) € N. In addition, observe as in the beginning of (2) that

Ste,2) * ¥k = Lic e [[S0,ieq) * (k0 (g x t))] o (g7 x t71)],

so that S .y * 1, stays in a bounded subset of S(NV) as long as ((, z) stays in a compact subset of D.
In particular, as long as (¢,z) stays in a compact subset of D, the function |S( .y * x| is uniformly
bounded by an element of L?(N'). Hence, the dominated convergence theorem shows that the mapping

D> (C,Z) — (S(Qz) * 1/}k) S Lp(N)
is continuous. Then, by means of Morera’s and Fubini’s theorem, we see that the mapping
D> ((,2) = (T * Yr|Sc,2) * w) € LP(N)

is actually holomorphic.
To conclude, it will suffice to show that the sum

D (T | Sc 2y * k)

keK

converges (to (T'|S(c,.))) locally uniformly in (¢,z) € D. However, this follows from the fact that the
families

(A% )1S(c.2) * Vil L)) pe i

are uniformly bounded by an element of ¢{(K) as long as ({, z) stays in a compact subset of D, thanks
to (2). O

We are now able to define the announced extension operator.

Theorem 5.2. Take p,q €]0, 0], and's € f%(b+d)f QLq,m’f(]Rj)T. Define S¢ .y, for every (¢,2) € D,
as in Lemma 2 1), and define

£: By (N, 2) 3T = [(C.2) = (T1S(c,)] € A% pa)/p(D)-
Set (ET)o =T for every T € B, (N, §2). Then, the following hold:

(1) the linear mappings T — (ET)n, as h runs through (2, induce equicontinuous endomorphisms of
B;,q(Nv Q);

(2) if T e B%;q(N, 2), then the mapping
QU{0} > hw (ET), € BS (N, 2)

18 continuous;
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(3) if T € B} (N, $2), then the mapping
QU{0}3h= (ET)n € By (N, 2)
is continuous for the weak topology o}, .

The proof is based on [9, Proposition 3.43], which deals with the case in which p,q > 1, s € R1,, and
D is an irreducible symmetric tube domain.

Proof. (1) Take (Ag)kek, (tk), (¢x), and (¢x) as in Lemma 22l Then, Lemmas .22l and B.I imply that

Sey = D S * Ui

keK

7(1/p_1)+(b+d)(/\/', 2). Therefore, Proposition [£.20] shows

for every ((,z) € D, with convergence in ép, .

that
(T1S¢,»)) = Z (T|S(¢,2) * ¥x)

keK
for every (¢, 2) € D. In addition, the sum converges locally uniformly if the S, . stay in a compact subset

of é;sg(l/p_1)+(b+d)(N, 2), which is the case if (¢, z) stays in a compact subset of D. Furthermore,

settiné h =Sz — &(¢) to simplify the notation,
S(e,z) * Yk = Li¢c.r2)(S(0,in) * ¥k),

and

S(0,in) * Y € Sa(N)
for every k € K, thanks to Lemma 51l Now, S(gn) * ¥r = (S(0,in) * ¥r)", so that

(TS(¢,2) * ¥r) = (T * (S(0,in) * ¥x))((, Rz)
for every k € K. Next, for every k¥’ € K, define
Kk/ :{kEK’l/}k*’l/}k/ 7&0},

so that Proposition Z5Tlimplies that there is N € IN such that Card(Kj/) < N for every k' € K. By the
previous remarks, for every k€’ € K and for every h € 2,

(gT)h * ’lpk/ = Z (T * (S(O,ih) * ’L/Jk)) * ’L/Jk/

keK

= Z T % ((S(0,in) * Yr) * Yrr)

keK

= ) T (w * (S,in) * P))

keK,,

Z (T % brr) % (S0,in) * Vi)

kEK,

Now, S(o,in) * ¥x € Se(N) and

‘FN(S(O,ih) * ’L/Jk) = (pk(,tlzl)e—(.,h)-

In addition, it is easily seen that the family

(- k) )
(e ¥k hes?

is bounded in C¢°(£2’), so that Corollary .10 implies that there is a constant C7 > 0 such that
I T" % s * So,iny * Vrllrary < CLlIT" * Pnr || Lo
for every h € (2, for every k, k' € K, and for every T" € 8'(N). Thus,

1ED)h * i | Loy < NY™REPCHT 5 || oy
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for every k' € K and for every h € 2, whence (1).
(2) By (1), Proposition 17 and Theorem 23] it will suffice to prove the assertion when T' € S (N).
In this case, (ET)n = T*S(0,in) € Sa(N) and Far(T*S(in)) = (Fa'T)e™ M. Since clearly the mapping

QU{0}Y3h (FaT)e M e (02

is continuous, the assertion follows from Proposition 2] and Lemma 18
(3) Observe first that, by (1), Propositions and [T and Theorem 23] it will suffice to prove
that, for every T' € B} (N, §2) and for every 1 € Sp(N), the mapping

RU{0}sh— ((ET)u|n) € C

is continuous. Now, the arguments of (1) imply that

(ED)nlm) = Y (Tly* Sy * i * i) = (Tl * So,imy)
k.k' €K

for every h € {0} U2 (defining S(g,y = d.). Thus, the assertion follows from the arguments of (2). O

Definition 5.3. Take p, ¢ €]0,00], and s € R” such that s € %(bJr d)+ 2+I,m’ + (R%)". Then, we define

€: By g, 2) = A1 ay (D)

as in Theorem 5.2l In addition, we define
APU(D) = E(B,5(N.2))  and  AZY(D) = E(B 5N, 2)),
endowed with the corresponding (direct image) topology.

As in Section[£.3, from now until the end of this section, in order to simplify the notation, we shall
sometimes write ||ax||sa(xy instead of ||(ar)||ea(x), for (ax) € L4(K).

Proposition 5.4. Take p,q €]0,00], and s € R" such that the following hold:
e sE %qur (R%)" (resp. s € R, if g = o0);

e s€ %(b—i—d) + 22,m’ + (RL)".

Then, there are continuous inclusions
E(Sa,L(N)) C AY(D) C ALH(D)

(resp.
E(Sa,L(N)) € APY(D) C AL(D)).
In particular, AL'¢(D) is dense in Z’S),’g(D) (resp. E71(AL9(D)) is dense in B, 5(N, §2) for the weak
topology 7, 7%).
The proof is based on [, Theorem 1.7], which deals with the case in which p,q > 1, s € R1,, and D
is a symmetric tube domain.

Proof. We shall prove that there is a continuous linear mapping
B: AY4(D) — B,5(N, Q) (resp. B: AL9(D) — B, 5(N,02))
such that £B = I, and that
E(Sa.LN)) CAZG(D)  (resp. £(Se.L(N)) € ALY(D)).

This will prove all assertions.
STEP 1. We define first an isomorphism B: Agy™ (D) — B9, (N, 2) such that EB = I. By Corol-

lary [[34] the linear mapping
B: Ay®°(D) > f — lim fi, € L*(N)
—
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is well defined and continuous. By Proposition [[L36] B is an isomorphism of A(Q)’OO(D) onto
LHN) = { f € L*(N): ma(f) = xr(A)ma(f) Pao for almost every A € F'\ W }.

Since it is easily seen that the canonical mapping L, (N) — Sf, 1 (N) induces an isomorphism of L7, ()

onto B, (N, §2), it follows that B is an isomorphism of AY*°(D) onto B, (N, 2). Finally, it is clear
that EB = 1.
STEP II. We now prove the existence of B on Ag’g(D) By Proposition and step I, it will suffice

to prove that B maps AL¢(D) N A2>°(D) into Bp1 (N, 2) continuously. Then, take (Ag)ker, (tk), (¢r),
and (1) as in Lemma In addition, define ¢, € S_Q( ) so that
T —( it en) -1
Fnr =e k or(-t, )
for every k € K, thanks to Proposition 2] Then, take f € Ag:g(D) N A?)’OO(D)7 and observe that
Bf = (Bf) =
keK

in L2(N), thanks to step I and Corollary [LT4l In addition, observe that step I and Proposition [L33)
imply that

™ (Fiteq) = "M em(B7),

so that _
(Bf) %tk = frt.0y, Vi

for every k € K. Now, for every k € K define
K = { K ecK: dQ/()\k,Ak/> < 2R6 },

so that Proposition [Z51] implies that there is N € IN such that Card(Ky) < N for every k € K. In
addition, Corollary .10 implies that there is a constant C; > 0 such that

([T thye * 7/’k/HLp(N) S GiT = 1/’k”Lp(/\/)

for every T € S§’(N') and for every k, k' € K. Thus,

[BF) e o < Cr S ooy, * il

keK,,

for every k' € K. Now, by Lemma 250 (and its proof) we may assume that there is a (0, R)-lattice
(Ck» 2jk) jes ke on D such that

hk = %Zj,k — Q)(Cj,k) == tlzl
for every j € J and for every k € K, and such that
bD + (0,ihx) € | B((Gok» 2j.6), RO).
jedJ

Then, define Bj . as the (relatively compact open) subset of A/ such that

X8, = (XB((¢0250).R5)) A,

for every (j, k) € J x K.
Now, assume that p > 1. Then, by means of Young’s inequality, we see that there is a constant
C5 > 0 such that

I(B) * o llowy < Co > Ifnellzeinys

keK,,

for every k' € K, so that by means of Corollary [Z44] we see that there is a constant C3 > 0 such that

1AG* Q) INBE) * a1y < Co

O (hi) [ fr e (ary Heq(K)'
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Since clearly there is a constant Cy > 0 such that

el ooy < CaAn TPy, H sup|f|)
Biw Lillen(a)

for every k € K, the assertion follows from Theorem 322 provided that ¢ is sufficiently small.
Then, assume that p < 1, and observe that

J s Bcar ) < [ S sulix

N ey Biw
([ j,k|zzk<<<',x'>-1<c,x>>|d<<',x'>)pd<c,x>

for every k € K. In addition, by homogeneity we see that there is a constant Cg > 0 such that

/N(/Bj’khzk((clax/)_l(@w))|d(C’,x’)) (¢, 2) < Ce AL D ()

for every j € J and for every k € K. Thus, by means of Corollary [Z44] we see that there is a constant
C7 > 0 such that

IBS) oy < CrAG™ Vi) 303 sunlfI7.

keK, jE€J Bjk

Therefore, the first assertion follows as above by means of Theorem B.22] provided that ¢ is sufficiently
small.

Finally, take ¢ € Sp.(N) and choose ¢’ € Sp(N) such that Fa¢'(A) = 1 for every A € 2’ such
that mx(p) # 0. Then, ¢ = ¢ * ¢’ and

(Eo)n = o (¢ * S0,in)) € Sa,L(N)

for every h € £2. Tt then follows easily that Ep € ALG(D).
STEP III. Take f € AP4(D), and choose (9(*)).~¢ as in Lemma [[LT3 Observe that

FE = f(- +ih)g® € ADI(D) N A3 (D)
for every h € {2 and for every € > 0. In addition,

£ &M azacpy < 1 fllaza(oy

for every h € {2 and for every ¢ > 0 (cf. Corollary B.3]). Furthermore, arguing as in step II, we see that
there is a constant Cg > 0 such that

||Bf(€h)||B sV,0) S < Cs||f& ||A§’Q(D)

for every h € {2 and for every € > 0. Therefore, Corollary [ 1mphes that the B(f(&™) stay in a
relatively compact subset of B, 5(N, 2) for the weak topology o, 5. Let T be the limit of B fE&R) (for
the weak topology o, 7) along an ultrafilter £ which is finer than the filter ‘= — 0" and h — 0.” Then

f= lim f&M = lim &BfEM)=¢£T
(e,h),U (e,h), 4

pointwise. Since & is one-to-one on B (N, £2) by Theorem [52] this implies that 7" does not depend on
i, so that B(f(=") converges to T in the weak topology 0,5 If we define Bf := T, it is then easily

verified that B induces a continuous linear mapping of A29(D) into B, 5(N, §2) such that EB = I.
The inclusion £(Sq,(N)) C A4(D) is proved as in step II. O

We shall now introduce an auxiliary property which will allow us to give sufficient conditions for the
equality A27(D) = AR1(D). Cf. [9] for a discussion of its significance in other areas of mathematics.
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Definition 5.5. Take s € R and p, g €]0, c0]. We say that property (D)IS;,Z (resp. (D)3 ,) holds if there

are a (0, R)-lattice (Ag)kek, for some 6 > 0 and some R > 0, a bounded family (¢x)rex of elements of
C2°(£2') such that

Yoty =1

keK

on {2 (where t € Ty and A\, = eqy -ty for every k € K), and two constants ¢, C' > 0 such that

> Thx

keK

< CHAS S (A )eS e || Ty wk”LP(N)H
Lr(N)

L1(K)

for every (Ty) € S(N)H) (resp. for every (T) € S (N)H)), where ¢y, € So(N) and Farthy = @r( -t ).

0
q and

Observe that property (D)% (resp. (D)3 ) implies property (D)i:g (resp. properties (D)i

(D)3 ;) for every G €]0,q] and for every § € s — R} .
Lemma 5.6. Take p,q €]0,00] such that ¢ < min(p,p’). Then, property (D)g,q holds.
The proof is based on [9, Lemma 4.8|, which deals with the case p,q > 1.

Proof. Observe first that property (D)7, ¢ and (D)3, clearly hold for every £ €]0,00]. The general
assertion follows by interpolation, as in the proof of [9, Lemma 4.8]). O

Lemma 5.7. Take s € R" and p,q €]0,00], and assume that property (D)%Y (resp. (D)3 ,) holds. Take
(Me)kek, (r), and (Yr) as in Lemmal[f 1]} Then, there are two constants ¢,C > 0 such that

> Thx

keK

< €| A8 e Ty o

La(K
o (K)

for every (Ty) € SN (resp. (Ty) € S'(N)F)).

Proof. By assumption, there are a (¢, R')-lattice (A}, )w ek on £2’ for some §’ > 0 and some R’ > 1, a
bounded family (¢}, )i er of elements of C2°(£2’) such that

>t =1
k'eK’

on (2, where t}, € T and
)\;v/ = e t;c/

for every k' € K’, and two constants ¢/, C’ > 0 such that

Z Ty 1y

k' eK’

<
Lr(N)

S (N Je® @l | T 5 | oy

Ca(K")

for every (T7,) € S(N)E) (resp. (T},) € S'(N)ED), where ¢}, € So(N) and Farhy, = @4 (i) for
every k' € K'. Choose tj; € T so that
A = eqr -t

for every k € K.
For every k' € K', define

Ky ={keK:¢Ypxt, #0} and K, ={k" e K': 9y, *;, #0},
and observe that Proposition 2.5 shows that there is N € IN such that
Card(Ky ), Card(K},) < N

for every k' € K’ and such that each k € K belongs to at most N of the sets K. Define

= eu(-th),

k' eK’



CHAPTER 5. WEIGHTED BERGMAN SPACES I1 97

so that ¢ is well-defined, of class C°°, and > 1 on (2. Define, in addition,

Br = o
@' (k)

for every k € K and for every k' € K’, so that

oe(- ) = D Fe(-ty New (-t ),
kEK,,
~ Pk

Pr = —1\—
Yrery Pt )Y

and P = =
S~

and ,
Pr
Zk”eK]/g/ (p;c// ( ° (t;dt;cjl)—l)
for every k € K and for every k' € K'. By means of Lemma [Z47 and the preceding arguments, we see
that the families (@) and (@), ) are bounded in C2°(£2"). Then, define ¢, ¢}, € So(N) so that

~/
Prr =

Fantr=an(-t7Y) and  Faibl = @ (1Y)

for every k € K and for every k' € K'.
Fix (T}) € SIN)H) (resp. (T) € S"(N)K)), and define

for every k' € K, so that (T},) € S(N)") (resp. (T},) € S'(N)*E")) and
ZTMW = Z T % ).
kEK K EK'

Now, Corollary .10 implies that there is a constant C; > 0 such that

T 5 Y * Vell Lo ary = 1T % D # rcllLoary < CLIT 5 il ooy

for every T" € §'(N), for every k' € K’, and for every k € K, so that

[T * i || Lo ary < CLNE/P=D+ Z T * Yre|| Lo ) -
kEKk/

In addition, Lemma [2.45] shows that there is a constant ¢ > 0 such that e’ (Nire) < ePree) for every
k' € K’ and for every k € K;/. Analogously, Corollary 2.44] shows that there is a constant Co > 0 such
that A%, (\),) < C2A%,, (A\g) for every k' € K’ and for every k € Kjs. Therefore,

> Tk iy

< C3HA?Q’()‘I€)QC<A’“@Q>||Tk *wkHLP(N)HEQ s
kEK (K)

Lp(N)
where C5 = C'Cy N(1/p=1++max(L,1/9) 0, - The assertion follows. O

The next lemma, which is the first step in the proof of Theorem [5.I0, characterizes properties (D)3 ,
and (D)%Y in terms of the extension operator €. See [9, Proposition 4.16] for another equivalent formu-
lation of property (D)3 , in the case in which p,q € [1,00[, s € R1,, and D is an irreducible symmetric
tube domain.

Proposition 5.8. Keep the hypotheses and the notation of Theorem[5 2. Then, the following conditions
are equivalent:

(1) property (D)3, (resp. (D)3%) holds;

(2) € induces a continuous linear mapping from By (N, §2) (resp. By (N, 12)) into AP°(D).
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In addition, the following conditions are equivalent:
(1") property (D)IS):;JO holds for every s’ € s — (R%)";
(2") & induces a continuous linear mapping from é;:q(N, Q) into APZ (D) for every s’ € s — (R%)".

The proof is based on [9, Proposition 4.16], which deals with the case in which p,q € [1,00[, s € R1,,
and D is an irreducible symmetric tube domain.

Proof. (1) = (2). Take T' € B} (N, £2) (resp. T € Sq,1.(N)). By homogeneity, it will suffice to prove
that
(ET)y, € LP(N)  for some h € 2.

Take (Ai)ker, (wr)ker, (tk)ker, (Yk)ker, C and ¢ as in Definition [F.5 Observe that, by Lemma 5.7
we may assume that
doen(tyh) =1

keK

T =Y T

keK
in the weak topology op , thanks to Lemma [1.22] Hence,

on {2, so that

(ET)h =D (ET)n * x

keK

pointwise for every h € (2. For every k € K, define
Ky ={KeK: {p*xthp #0},

and observe that, by Proposition 5T}, there is N € IN such that Card(K}) < N for every k € K. By
the proof of Theorem (.2, we know that

ET)n* e = > (T * wr) * (S(o,im) * Vi)

keK,,

for every h € {2 and for every k' € K. Then, define

Ty = Z (T % Yr) * S0,in)

ke K'NKy

for every finite subset K’ of K and for every k € K, so that

Z (ET)n * rr = Z T ks * V.
K ER keK

Therefore,

Z (ET)p * Yi

k'eK’

< CHAS /(}\k)ecuk,m) | Tk g * wk”LF(N)
LP(N)
Now, observe that Lemma 5Tl shows that S(o 1) * ¥ € Se(N) and that

0a(K)

Fn(S,in) * r) = ‘Pk('tlzl)e_("h)_

By means of Lemma 245 we see that there is a constant Cy > 0 such that the family

(euk,m/cle—(-thm%)
he2,ke K

is bounded in C2°(£2'), so that Corollary 210l implies that there is a constant Cy > 0 such that

| T" % s * (S0,in) * Vi)l Loy < Coe™Pw oM/ Co) 7 4 YrllLe ()
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for every T" € §'(N), for every k, k' € K, and for every h € (2. Hence,
HTK/,k % WHLP(/\/) < CQN(l/P*1)+HT * wkHLp(N) Z oAk h)/C1
K €K,

for every k € K and for every h € 2. By means of Lemma again we see that there is a constant
Cs > 0 such that e~ M/Cr  e=(Ah)/Cs for every k € K, for every k' € K}, and for every h € £2.
Therefore,

||TK’,k % wkHLP(N) < CQNmax(l,l/;D)HT * wkHLP(N)e_O\k’m/CS

for every k' € K and for every h € £2. Now, take h € §2 so that ceqg — h/Cs € —2 (e.g., h = cCzep),
and observe that

< CCgNmax(l’l/p)HAs /()\k)HT % wkHLP(N)ng
Lr(N)
so that, by the arbitrariness of K’,

IET)nllopry < CCN™ P A% WIT % el 2o a) [l o 1

> (ED)n*

k'eK'’

(K)

whence (2).
(2) = (1). Take (M\p)rex, (tr), (¢r), and (1) as in Lemma @23 In addition, take (T}) € S'(N))
(resp. (T}) € SN, fix h € £2, and define

Th = Ti* P,
keK
where ¢y, € Sp(N) and
Fatbin = i+t )el M
for every k € K. For every k € K, define
Ky ={kKeK:pxtpy 0},

and observe that Proposition 25T implies that there is N € IN such that Card(Kj) < N for every k € K.
Now, by means of Lemma [2.45] we see that there is a constant Cy > 0 such that the family

(e—c4<xk,h>%e< : tk,h>)
keK,hef?

is bounded in C¢°(£2'), so that Corollary LI0 shows that there is a constant C5 > 0 such that
T % rp * s | Loy = [T % Wk % Ui | Loary < Cse@r A% M T s || Loy
for every T" € §'(N), for every k, k' € K, and for every h € 2. Therefore,
HT;Q * 7/)kHLP(N) < C5N(1/p*1>+ Z oCa(Apr,h) | Ty 1/)k/||Lp(/v)
K ey,
for every h € 2 and for every k € K. In particular, since T; € B5 (N, 2) (resp. T; € Sq r(N)) for
every h € {2, there is a constant Cg > 0 such that

IETH ) oy < CeAS(B)|| A% (M) D> e M T s by || oy

K EK)

L1(K)

for every h,h' € £2. Let us prove that (ET})n = D> .cx [r * ¢x for every h € 2. Now, by the proof of
Theorem (and observing that the considered sums are finite),

(ETy)n = Z (T3, * (S(0,in) * Vi) * Yrr

kk' €K
= (Thrr * Yrr b * (S(0,in) * Vr)) * Y
kK k" EK
= Z Tk// * ’l/}k// * ’l/}k * ’l/}k/
kK k" EK

Z Tk >k’l/Jk.

keK
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Therefore, by means of Corollary [Z44] we see that there is a constant C; > 0 such that

> T

keK

< Cr %y (1) A% ()™ P | T x v
LP(N)

£9(K)

Thus, (1) follows choosing h = eg,.

(1) = (2'). Take s’ € s — (R%)", and take s” € s — (R} )" such that s’ € s” — (]R”jr)T By the
implication (1) = (2), we see that £ induces two continuous linear mappings from By (N, 2) and
é;:q (N, 22) into A (D) and A” 7 (D), respectively. Therefore,

E(Sa.L(N)) C AP (D) N APZ(D).
Since clearly (€f), € LE(N) for every f € Sp,(N), this implies that
E(Sa,LN)) € ATZ (D)

by Corollary B.8 The assertion follows by means of Theorem .23

(2') = (1’). This follows from the implication (2) = (1). O
Corollary 5.9. Take q €]0,00] and s € f%q,m’ — (R%)". Then, property (D)3, , holds.
Proof. This is a consequence of Theorem and Proposition .8 O

In the next result we give sufficient conditions for the equality A29(D) = Z?s’*q(D). Since it is not
known, in general, when property (D);;]O holds, we give here a general result, and provide more explicit
conditions in Corollary B.111

Theorem 5.10. Take s,s’ € R" and p, q, q €]0, 00] such that the following hold:
e property (D);:;jo (resp. (D)Z:q) holds;
e s€ 2—1qm—s’+ (2% - %)er’—i—(R’jr)’” (resp. s € —s' + R, if ¢ =§ = 00);
e sc(b+d)+5,m + (RY)"

Then, AV4(D) = AL4(D) (resp. of AL4(D) = AL4(D)).

The proof is based on [9] Theorem 4.11], which deals with the case in which p,q € [1,o0[, s € R1,,
and D is an irreducible symmetric tube domain.

Proof. Take T € é;;(/\/, 2) (vesp. T € B, 3(N,2)). In addition, take (Ax)rek, (tr), (¢x), and (¢x) as
in Lemma 22| Let us first prove that

EW(ET)n) = (ET)(- +1ih)
for every h € (2. Indeed, the proof of Theorem shows that
EETI)w * ¥ = Y (ET)n* i) * (S(oinry * i)
k'eK

= Z (T br) % (S(0,in) * Yrrr) * (S(o,inr) * Vir)

k' k" eK

= Z (T * ) * (S0,i(hthr)) * Ur)

k'eK
= (ET)ntn * Y
for every k € K and for every h, h’ € {2, since clearly
S(0,ih’) * 5(0,ih) = 5(0,i(h+h'))-
Now, Proposition shows that there is a constant C; > 0 such that (ET)a, € LE(N) (resp.
(ET)op € LP(N)) and

A5Y WIED vy < O A% ANED ) o |, o
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for every h € 2. Further, observe that

ET)n e = Y (T * i) * (S(o,in) * Ya),

K €K,
so that, by means of Lemma 2.45] and Corollary [Z.T0) we see that there is a constant Cy > 0 such that
IET ) * Ykl Loay < Coe™ MM/ T 5 gy | Loy

for every h € {2 and for every k € K. Then, take s” € R", and observe that

X

HAS,/(/\k)efQ’“’h)/CZHT * wk”L’J(N)Hﬁ(K) < HA;;N(/\k)eiQkyh)/(Q@) L4(K)

x| As (e M sy oy

)

‘EQ(K)

where ¢ € [1,00] and % = (% - l) . Observe that Proposition 2214l Lemma 229, and Corollary [Z44]
+

7 q
show that there is a constant C3 > 0 such that

HA;;”(/\k)67<Akvh>/(202) < C3A% (h)

0i(K)

for every h € {2, provided that

s" € f%qu' — (R%)" (resp. s” € —R%if § = 00).
In addition, Proposition .14 and Lemma again show that there is a constant Cy > 0 such that
= A" ()

HAers'Jrs” o~ Ak, )/(4C2)
¢ Li(va)

provided that

1
s'€—s'—s+om+(RL)"  (resp.s” € —s'— s+ RLif ¢ = ).
q

Observe that our assumptions imply that we may find s” satisfying the preceding requirements, so that,
setting 05 =278 s 01020304,

IET | azapy < Cs || Ag? A)IT  Ykll Lo o s

o

Thus, € maps B, 5(N, 2) into AL9(D) (resp. B, (N, £2) into AL9(D)) continuously. To conclude, by
Proposition 54 and Corollary B8, it will suffice to show that, if ¢ = co and T € Sp 1 (N), then the
mapping

hi= AW IET)nl e )

belongs to Cp(£2). Since we may further reduce to the case T € Sp(N) by left-invariance, the assertion
follows easily from Proposition £2] since s € (R% )" under the first set of assumptions. O

Corollary 5.11. Take p,q €]0, 0] and

1 1 1 1
— _— — — ~(b+d)+ —m’ RY)".
s € sup <2qm+<2min(p,p’) 2q>+m,p( + )+2q/m>+( +)
Then, AZ4(D) = AY8(D) and AL9(D) = AL4(D).
This result is optimal when ¢ < min(p, p’).
Proof. This follows from Lemma and Theorem O

We are now able to extend the second assertion of Theorem [£.23] to the general case p, ¢ €]0, o0].
In the following result we both provide a (sesquilinear) dual pairing between the spaces Ag’g (D) and

/T’;:’ql (D), and a new interpretation of the sesquilinear form

°s —s—(1/p—1)4(b+d
(-]-): B (N, 2) x B> /=D (),
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Proposition 5.12. Take p,q €]0,<], s (b+d) ,m +(RL)", and s’ € ; (b+d) Mmur
(R%)". Defines"” :=s+s"—(1/p—1)+ (b+d), and assume that s” € m-+ (R’ )T. Then, the sesquilinear
form

(] Vs ESa,L(N) x E(Sa,.LN) > (f.9) = /D £(¢.2)9(C, 2) A% (32 — B(¢)) dvp (¢, 2)

is well-defined and extends to a unique continuous sequilinear form on Ap’q( ) X Zp/’ql( D) which is

continuous on the second factor with respect to the topology induced by the weak topology O' (1/p 1)+ (b+d)

through el m addition, this extension of (-|-)s.s induces an antilinear isomorphism of Ap A (D) onto
AZG(D)', and
anmis”FQ (S”)

(ETIET + 1% New = —r—in

(T|1")
for every T, T" € Sq,(N).

Proof. Take T,T" € S (N, and observe that

/D (ETY(C2)(ET * I55)(C, 2) A% (32 — B(C) dvp (¢, 2) =

277/7715

= g / / (A (T)ma(T7)) A%y (Ve > PR dA A% (k) dvg(h)

2 mis’ Fg(s " .
T — . Tr(mx (T)ma(T)*)|PE(N) | dX

2n—mis” T'o (S”) )
=————2(T|T
9s” pn+m < | >
where the first equality follows from Corollary [[LT4land Proposition d.1T], the second equality follows from
Proposition 214, while the last equality follows from Corollary [[T4l The assertion follows easily. O

The following result simply translates Theorem [.26] in terms of the spaces Zgﬁq(D). It still has
relevant consequences.

Proposition 5.13. Take p,q €]0,00] and s,s’ € R” such that s,s +s' € (b +d) + 5om’ + (RY). Let

I B3 (N, Q) = BS ™ (W, )

S s’

be the unique isomorphism which is continuous for the weak topologies o 5 and o, and which induces

P.q
the automorphism f — f * IQs of So,.(N). In addition, define a mapping

=" APY(D) — AP, (D)

so that o, )
T fn=2"°(fn)

for every f € AP1(D) and for every h € (2. Then, Z-% induces tsomorphisms

Ap1(D) = ALLy (D) and  ALY(D) — ALY, (D).
Proof. The assertion follows from Theorem E26, since clearly Z=% (ET), = E(Z5'T);, for every T €
B, 5N, §2) and for every h € {2 (argue as in the proof of Theorem [5.2]). O

By means of Proposition 513}, several properties of some weighted Bergman spaces A24(D) ‘prop-
agate’ to all the spaces AL4(D). In particular, all spaces AZ?(D) enjoy an analogue of the atomic
decomposition studied in Section [3.4]

I This latter requirement is needed to ensure uniqueness when max(p’,q') = oo
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Corollary 5.14. Take p,q €]0,00] and s € 1—17(b +d)+ Q%/m’ + (R%). Take Ry > 1 and s’ € R" such
that ) ) ) )
/ - b d o I - _ R* T.

sree min(l,p)( ) 2" <2min(1,p) 2q)+m (R3)
Then, there is &g > 0 such that, for every (0, R)-lattice ((jk,2jk)jeskerx on D, with § €]0,d] and
R €]0, Ryl, defining hy = Szjx — P((jx) for every k € K and for some (hence every) j € J, the
mapping

SIS K) 3N Y NBSL L AGTYETI () € Ape(D)
j.k

is a surjective strict morphism and induces a strict morphism So of ¢59(J, K) onto gg:g(D). Further,
both S and Sy have a continuous linear section.

To prove this result, we need a lemma.

Lemma 5.15. Take p,q €]0,00], s € %(b +d) + Q%Z/m’ + (R%), and 8" € C". Then, the following
conditions are equivalent:

5 € Zg:g(D) (resp. B ) € AP4(D)) for some (C,z) € D;

(1) B s

(<

€ ﬁg:g(D) (resp. B(Sé’z) € Ar4(D)) for every ((,z2) € D;
(3) s+ ¥ € %(b+d) — %qm’ — (R%)" (resp. s+ s’ € 1—1)(b+d) —R% ifg=00).
Proof. Observe first that, by Corollary 51T, there is s” € N, such that

Ay o(D) = Al (D) and AL (D) = A2 (D).
We define Z~5" as in Proposition 513
(1) = (3). Observe that Proposition (13 implies that

-~ " ’

I7° (B, € A2, (D) (resp. 7% (Bf;»)) € A% (D)).
Now, Proposition shows that

!’ 75// o . 1" 1 S/7S//
B(SQZ) x« IS = (20)° (s’ + §m')s,, B(C,z) .

Observe that (s’ + $m’)_, # 0 since 7" is injective on AP4(D), so that

By S € AZS, (D) (resp. B}, € A% (D)).
Therefore, Proposition 236 implies that (3) holds.
(3) = (2). Fix (¢, 2z) € D. Observe first that Proposition 2:24] shows that

By o+ 1% = (20 (' + m), B S

/

In addition, since Rs’,s + RNs’ € %(b +d) - R,

s’ 00,00 s’ —s'’ 00,00
Bleo) € Al brayy  ad By €ALD yay

by Proposition Further, if s is large enough, then Proposition [2.36] also shows that B(Sé;” €

AZE,, (D) (resp. B(sétj” € AV, (D)). Now, Z—" induces a continuous linear mapping

AZ rayp(P) = ALS_brayp(D);

which extends the isomorphism

AL4(D) — ALY

e o(D) (resp. AP9(D) — ggfs,, (D)),

thanks to Corollary 3226, Theorem[5.2] and Proposition 513l Therefore, B(Sé . € A}S’:g (D) (resp. B(Sé . €
ggq(l))), whence (2) by the arbitrariness of (¢, z) € D. O]



CHAPTER 5. WEIGHTED BERGMAN SPACES I1 104

Proof. By Corollary .11l there is s” € INg such that

AP (D) = AP4, (D) and  APE, (D)= APd, (D).

In addition, Theorems .32 and B33 imply that, if s’ is large enough, then for every s’ € R" such that

1 1 ! 1) m
R SR r L+ — (R®)"
sts ¢ min(l,p)( +d) 2q (Qmin(l,p) 2q)+ e

and for every Ry > 1, there is §p > 0 such that, for every § €]0, d], for every R €]0, Ry|, and for every

0, R)-lattice ((j.k, 2.k ) jeskex on D, defining hy := Sz, 1 — P((;.1) for every k € K and for some (hence
3.k 23k )j€, 7, 7,
every) j € J, the mapping

Sepsr: (P9(J K) 3\ — Z )\MBS,’S” A((?er)/pfsfsf(hk) 6 A’;fs” (D)

(o krz4k)
gk

is a surjective strict morphism and induces a strict morphism Ssis7,0 of £5%(J, K) onto A2, (D).
Further, both Ss1¢ and Ssys7 o have a continuous linear section. With the notation of Proposition 513
define B

Ss = - Sers”

and
"
Ss,O =17° Ss—i—s”,O

so that Se: P9(J, K) — AP4(D) and Seo: £ J, K) — ﬁg:g(D) are surjective strict morphisms and
have a continuous linear section. In order to conclude, it will suffice to show that

S// s/_s// o S/
° (B.s) ) = o5 B2y

for a suitable ¢/ g» # 0. This follows from Proposition 2224 and Lemma O

In the following result, we characterize the equality A2((D) = ﬁg:g(D) by means of atomic decom-
position and the properties of Riemann—Liouville operators. Since we do not know, in general, if, e.g.,
property (L)g:g, implies property (L)’s’:g,, for all s” € 8" — R’ , this characterization is somewhat weaker
than one may hope.

Corollary 5.16. Take p,q €]0,00] and s € %(b +d)+ 2};' m’ + (R%) such that s € 21—qm + (RY) (resp.
s € RY if ¢ = o0). Then, the following conditions are equivalent:

(1) AZ4(D) = ALE(D) (resp. AL9(D) = AL4(D));

(2) property (L"2°3, o (resp. (L’)g,’g,) holds for every s’ in some translate of =R, ;

’
s,s’,0

(3) property (L)yd o (resp. (L)2:d) holds for every s’ in some translate of —RY ;
(4) convolution by I;ZS, induces an isomorphism of AL{(D) onto AZLL, (D) (resp. of ALY(D) onto

s+s’,0

Agfs, (D)) for every s’ in the intersection of Ng: with some translate of R, .

Proof. (1) = (2). This follows from Corollary .14l

(2) = (3). Obvious.

(3) = (1). By Corollary [5.14] we may find s’ € R" and a (9, R)-lattice ((jx, 2j.x)jcskck for some
d > 0 and some R > 1 such that, defining hy = Sz, — D((j %) for every k € K and for some (hence
every j € J), the mapping

/ b+d —s—s’
A Z )\j’kB(st,ka]\k)AEQ i ()
J.k

induces a continuous linear mapping of £%(J, K) into AL’§(D) (resp. of /79(J, K) into AL-9(D)) and a
strict morphism of £{?(J, K) onto A’s’,’g (D) (resp. of £79(J, K) onto AP4(D)). The assertion follows from
Proposition (.41

(1) < (4). This follows Corollary 5.11] and Proposition .13l O
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Definition 5.17. Take p,q €]0,00], s € R", and s’ € Ny such that s + 8" € (b +d) + 2q/m +
(R%)". Then, we define jls?:g,( ) as the Hausdorff locally convex space associated with the space of

fA € Hol(D) such that f I 55 A’s’fs,( ), endowed with the corresponding topology. We define
Ara

0 (D) analogously

Thus, A?Z (D) can be identified with A29(D) = AP§(D) when s € 1(b +d) + s-m’ + (R})". In
addition, the new definition of A\zz, (D) coincides with the preceding one, thanks to Proposition
Furthermore, arguing as in the proof of Proposition [3.17] one may prove that convolution by I 55, induces

an isomorphism of Ap’g (D) onto A’s)fs, (D).

We conclude this section with some necessary conditions for property (D)
necessary for the equality A?(D) = AP4(D) by Propositions B2 and

—s,0

pa » which are then also

Proposition 5.18. Take p,q €]0,00] and s € R", and assume that property (D);Z’O holds. Then, the
following hold:

(1) ifsebrd) +54 ’+@ﬁy}MMse(%—§an¥+RL

(2) ifg>2, p<oo, andn =0, thens € (i—%)m’—i—(]Ri)ﬁ

Observe that property (D),% holds if AD9(D) = /Tqu(D). In addition, property (D),? implies

property (D);Z’O.

The proof is based on [9, Proposition 4.34], which deals with the case in which p,q € [1,00[, s € R1,.,
and D is a symmetric tube domain. Notice that the corresponding assertion of [9, Proposition 4.34] is

sharper than (1), since a more refined procedure allows to show that s € (ﬁ — 2—1(]) m’ + (R%)" (under

the assumptions of [9, Proposition 4.34]).

Proof. (1) Take s’ € (b +d) — —m —s— (R%)", so that Lemma [5.15 implies that B(O len) € Ap’q( ).
Since, by Proposfmonm Ap’q( ) C AP>°(D), Proposition2:30 implies that s’ € E(b—i-d)— spm’ —(R%)"
ifp<ooands €+ (b +d) — —m —R7 if p = co. By the arbitrariness of s’, this implies that

11\
- R’.
S € (2p 2q) m + R
(2) Assume that ¢ > 2, p < oo, and n = 0. Take (Mi)ker, (tx), (¥x), (¢¥r), C, and ¢ as in

Definition 5.5l In addition, fix a ﬁnlte subset K’ of K such that Bg (A, R6) N B/ (0,1) # O for every
k€ K', take p € C°(F’) so that

XBo (esd/2) < (0 — Ak) < XBgo (Ar5)

for every k € K', choose T € Su(N) such that Fa(T) = ¢, and define Ty, = e** )T so that
Ty € Sp(N) and
FN(Tk) = ¢(- = Ak)
for every k € K’ (here we use the assumption that n = 0). By Lemma [5.7, we may assume that
or(A- t;l) =1 for every A € Bg/(Ag,0), so that Ty x ¢y, = T), for every k € K'.
Now, take a probability space (X, u) and a finite family (r4)rex: of Rademacher functions on X,
that is, p-measurable functions on X such that

1
(@ Tk) (H)ZW Z e

keK! ee{ —1,1}%’

(cf. |39, C.1]). Then, by Khintchine’s inequality there is a constant C; > 0 (independent of K”) such

that
1/2 1/2
(zw) |5 an <cl(z|ak|2>
keK’ Lr (1) keK'’

keK'
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for every (ay) € CX' (cf. |39, C.2]).
Now, setting Co := C maxg e“{"¢?) where H is a compact subset of F’ such that B (MRS) CH
for every A € 2" such that Bg/(A, RS) N Br/(0,1) # 0 (cf. Corollary 2.40]),

Z Tk (x)aka

< Gof| AZ 0w Ie@)ar il oy

09 (K"
keK! Lr(N)
= Co|I Tl o i) [ A k)| o ey
for pu-almost every = € X, so that
||ak||42(K/ 0102HAQ, )\k akHlQ(K/
Choosing ap = A(!g,/(q_m)s()\k) and recalling that ¢ > 2, we then find
Z A(2q/(q 2))5 i) < (C105 )2q/ q-2)
keK'
By Corollary 244 the arbitrariness of K’ implies that
/ A29/a=2)8 (3 gy (N) < oo,
2'AB L (0,1)
so that s € %m' + (R%)" by Lemma [[.32] and Proposition 214l O

5.2 Bergman Projectors

In this section we deal with the boundedness properties of the Bergman projectors Ps. As for atomic
decomposition, it is somewhat simpler to deal with integral operators with positive kernels, so that we
shall introduce an auxiliary operator Fs . It then turns out that, when p,q > 1, the boundedness of
Py 4+ on LP9(D) is equivalent to property (L)g’g, (cf. Proposition [(.22)). This will, in particular, imply
that property (L)', , implies property (L)ber oSt

For the operators Ps/ a weaker result holds. On the one hand, in full generality one may prove that
the boundedness of Py on LP9(D) implies property (L)2% (cf. ProposMonEﬂ) On the other hand, if
property (L)Jd, holds for every s’ in a translate of —R';, then Py is bounded on LL(D) for every s’ in

a translate of —R", (cf. Corollaries 5.16] and ISTZEI)
In addition to that, if Af] e woD) = A{; +qd «_w0(D) and some iimple necessary conditions are
satisfied, then Py induces a continuous linear mapping of LY (D) into A29(D) (cf. Theorem B.2Z5).

s,s’

Definition 5.19. For every s € b+d—+m— (R?)", define the Bergman projector Ps: C(D) — Hol(D)
by

(PS)C2) / F( 2Bl (G ) AFH (S — B(C)) dvp (¢, 2)

for every f € C.(D) and for every ((,z) € D, where ¢g = 4,,|Liffi{ﬁ }Li‘gi;?s). In addition, for every
s € R" we define Ps 1 : C.(D) — C(D) b

(Par )(C.2) / FC ) B ()| A (82 — 8() dun (', )

for every f € C.(D) and for every ((,z) € D.

Notice that we dropped the constant ¢ from the definition of Ps 4 to simplify the computations.

In the following result we shall prove some necessary conditions for the boundedness of Py on LE9(D).
Notice that the condition p,q > 1 is a consequence of the fact that LE?(D) does not embed in L, (vp)
if min(p, q) < 1.

Proposition 5.20. Takes € R", s’ € b+d— %m— (R%)", and p,q €]0,00], and assume that Py induces
an endomorphism of LZG(D) (resp. a continuous linear mapping of LY ¢(D) into LE4(D)). Then, the
following hold:
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°p,g=1;

e s € sup (2—1qm, %(b +d)+ %q,m’) + (RL)" (resp. s € R, and s € (%(b +d)+im’ + (Ri)r) if

q=0o0);
e s € 7m1n(pp )(b + d) ~ Smme min1(p7p/)m/ _ (Rj-)r’
es+ts e (b+d) m’ — (R%)";

es+s'eb+d- 5 L m— (R 1) ifq <ooands+s' €eb+d—RY if ¢ = oo,
Similar results hold for Ps 4, without any initial restrictions on s’.

Proof. Since the linear mapping f +— f(0,iep,) is continuous on AL4(D), the assumptions imply that
the mapping

C@) 3 1= [ 162, (0,ien) A5 (32 = B(0)) dvp(c.2) € €
induces a continuous linear functional on Lg’g(D), so that p,q > 1 and
B(SC,Z)(()?ie-Q) € Llp;jrqd s—s’ (D)

thanks to Proposition mﬁ Then, Proposition 236 implies that the following conditions hold:

e s€ (b+d)+2q (R%)" ifq’<ooaunds€%(b—i—d)—i—]Rf|r if ¢ = oo;
° s’E%(ber)f%p,m’f(]Ri)T if p’ < oo and s’ € —RY if p’ = oo;
e s+ €b+d72—q,m (Ry)"if ¢ <ooands+s"€eb+4+d—R if ¢ = oo.

Now, fix 7 > 0 such that Bpxr.((0,ieq),7) € D and choose 7 € C([0,7]) so that 7(r) = 0 and
Jexr, TU(C 2) = (0,ie0)[) (¢, 2) = 1. Then, define

F: D3 (G 2) = 7(|(¢2) = (0,7en) ) AGT (32 — 8(Q)) € C,

so that clearly f € L6 (D). Now, the mapping (¢', 2) +— B(Sé, " (¢, 2) is holomorphic for every (¢, z) € D,
so that

[Pflea) |l (=8') oo

Py = )
(f) 4m7T”+mFQ(b +d— S/) (0,ieq)

by Cauchy’s integral formula, suitably applied. Therefore, B(o ca) € LLG(D) (resp. B(o i) € L2(D)),
whence the other assertions thanks to Proposition 2.36] and the preceding remarks. O

In the following result we show that, even though C.(D) need not be dense in L24(D), when Py
induces a continuous linear mapping of Lp ’q(D) into LE4(D), it is possible to define a canonical extension
of Py to LP9(D) in a rather constructive way. We then show that Py is self-adjoint in some sense.

Proposition 5.21. Take p,q € [1,00], s € R", and s’ € b+d — %m — (R%)", and assume that Py
induces a continuous linear mapping of Lp’q(D) into LL9(D). Define

oo = [ 5T AG (32 = (¢ dv(¢' )
for every f € L29(D) and for every g € Lf)/jrq(;isis,(D). Then, the following hold:
(1) define, for every f € LE9(D) and for every ((,z) € D,

where cg = 47LP;T(L$3;¥£*(’ZI’)S:(;L)S) Then, Pspsq, is a well-defined continuous linear projector of L¥9(D)

onto APY(D);

2 Argue directly to exclude the case in which min(p,q) < 1 and max(p, q) = co
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(2) define, for every g € Lf)/jrq(;isfs,(D) and for every (¢, z) € D,
(Plz))J:(Zifsfs/,s/g) (C’ Z) = Cs,<B(sé,z) |g>s’
Then, PYJ is a well-defined continuous linear projector of Lgl_;_q(;_s_s,(D) onto Ai‘g/_;_q(;_s_s,(D)’.
(3) for every f € LBYU(D) and for every g € Lf],_;_q(;_s_s,(D),

(PPEf1g)s = (1P egrw9)ar

In the sequel we shall simply write Py instead of Py or Pg;’isfs, o

Proof. STEP 1. Observe first that, arguing as in the proof of Lemma B.37 and using Proposition [5.20, we

see that PJ and Pg;g_s_s/ o are well defined and induce continuous linear mappings of L£?(D) and
Lf)/jrq(;,s,s,(D) into Hol(D), respectively.

SteP I1. Let us prove that P} is a projector of L2?(D) onto AL4(D). By step I and PropositionsE.T3]
and 520} it will suffice to show that PJJ maps LE9(D) into itself. Observe first that, by assumption,
there is a constant C' > 0 such that

P23 fllzapy = |Ps fllLzapy < Ol fllLza(p
for every f € C.(D). Now, take f € LP9(D) and choose two positive functions ¢ € C.(N) and ¢ € C.(£2)
so that |||l L1y = [[9]|z1(r) = 1. Define

(G a) = PEMp(p= 1 p722)  and  Y,(h) = p " Yn(ph)

for every (¢, z) € N, for every h € 2, and for every p > 0. In addition, define

Forp2.s (€, 2) = A7 (h) /Q[A?o(h')((xB«o,ieg>,p1>f)hf) * 9] (G )ps (h = ') dI

for every ((,2) € D and for every p1, pa, p3 > 0, where z :== Rz and h := Sz — ().
Then, fPhPZ,Ps € CL(D) and
||fP11P2yps ”L’;’q(D) < ”f”L’sj’q(D)

for every p1, p2, p3 > 0. In addition,

lim lim lim f s=f
p1—=+00 py—0+ p3—0+ P1oP2:P5

in the weak topology o (LP-4(D), Lf)/jrq(;fs,s/(D)), so that

lim lim lim PP¢ ., = PP
P1—=+00 py—0+ p3—0+ s Jo1sp2.po S8’

pointwise on D. Therefore,
IP22 fllrzapy < Clfllnea(py

by lower semi-continuity.
STEP III. Take f,g € C.(D) and observe that

(PPAflg)s = (FIPEY oy w9)y

By the arguments of step II, the same holds for every f € L2'%(D). Now, observe that [15, Theorem 1 of

§2] shows that the sesquilinear form (-|-) induces an antilinear isometry of Ly 1% (D) into LE(D)’.
Therefore,

p'.q <
||Pb+d—s—s’g||le):fdlisis/(D) X C”gHLi;‘gisis/(D)

for every g € C.(D). Hence, the arguments of step II show that Plffdfsfs’,s’ is a continuous linear
projector of Ly 1% (D) onto A% (D), whence (2). Assertion (3) follows. O

Proposition 5.22. Take p,q € [1,00] and s,s’ € R". Then, the following conditions are equivalent:
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(1) property (L)d o, (resp. (L)$d, ) holds;
(2) Pyt induces an endomorphism of LY §(D) (resp. L29(D)).

In particular, property (L)S .0t (resp. property (L )S o ) implies property (L)ﬁl_i_qc;_s_s, o4

Proof. Take a (6, R)-lattice ((jx, 2jk)jctkex on D for some 6 > 0 and some R > 1 (cf. ZE0), and define
hi =Sz — P((j k) for every k € K and for some (hence every j € J).
(1) = (2). Let us prove that the linear mapping

T IP9(D) 5 f / £ A (S a0 dup(C.2) | € P9I K)
B((CJ ky%j k), R3) 7,k

is well-defined and continuous, and induces a continuous linear mapping of LL'§(D) into £5%(J, K).
Indeed, define Bj i == B(((jk,2jk), R6) for every j € J and for every k € K. In addition, observe that
there are N € IN and a constant C'; > 0 such that

ZXBM < Nxbp, ZXBQ(hk,R(S) Nxa,

and such that
b-+d
1Oes;0nll e < CLAGPT P (h)  and  IxBomw.rs) e e < Cr

for every j € J, for every k € K, and for every h € 2 (cf. Proposition[Z5Tland the proof of Theorem [3.22)).
Then,

A?2+(b+d)/17/ (h) dvo(h)

/ 106 2) (x5, 00 (G 2) (G 2)
N

T F)pllenir) < /
Bg(hk,R(S)

()
L A (OO A8 (h) dva(h)
B (hy,R9) ()
-¢ / Hf X P ’ AS(h) dvg(h
1 i) w || (xB,. )8 He Dl ey 0 (h)dvo(h)
<01N1/p/ ||thLP(/\/)A_SQ(h)dZ/Q(h,),
Bgo(hy,R9)

where the first inequality follows from the convexity of the norm of ¢7(.J), the second inequality follows
from Holder’s inequality, and the last inequality follows from the choice of N. Therefore,

T flleracrnc) < CLNMP / [ f1ll Loy A% (R) dve ()
B (hy,,R6) (k)

< CENY| || = il ooy A5 ()X B sy ()

Li(ve)

La(K)

= GNP | Uil oy W) b, () oo,

< CENYPHVA| F ooy,
where the second inequality follows from Hélder’s inequality, while the last inequality follows from the
choice of N. To conclude, observe that T(Ce(D)) € CVY*¥) so that T(LEE(D)) C 59(J,K) by

continuity.
Now, by Theorem [242] and Corollary 2.44] there is a constant Co > 0 such that

/ (¢ ) B o (G, 2)| A5 (37 — B(()) dup (¢, #')
D
b+d —s—s’
<O Y (TIDklBEL oy | AGTDP7575 (hy)
g,k
q

so that by means of property (L)J'd  , (resp. (L){'d, ,) we infer that Py 4 induces an endomorphism of
L’s):g(D) (resp. L2Y(D)).



CHAPTER 5. WEIGHTED BERGMAN SPACES I1 110

(2) = (1). For every (j,k) € J x K, choose 7; ; € C.(2) so that

XB((¢j,77.1):6/2) S Tk S XB((Guer25.0),0)
Then, the proof of Theorem shows that the mapping
T P K) 5 A Y \arirdy TV e Lii(D)
3.k

is well-defined and continuous, and that T"(¢5?(J, K)) C LY¢(D). Now, observe that Theorem 222 and
Corollary 244 imply that there is a constant C3 > 0 such that

Cs—s C
ik A(ber)/p s=s'(p < 3 T )\
Z' j,k Cjkzjk | 2 ( k) ( ((0 Ze_()) 5/2>> ,+( | |

P,q )
s,s’,4

Since Py induces an endomorphism of LZ'G(D) (resp. LY?(D)), property (L)' , (vesp. (L)
follows.

Corollary 5.23. Take s,s’ € R" and p,q € [1,00]. Assume that the following conditions hold:
e s€ 2—1qm + %,m’ + (RL)";

es+s €btd-5m—om' — (R}

Then Py 4 induces endomorphisms of Lg'q(D) and ngrq(;fsfsf,o(D); and of L24(D) and Lf)/jrq(;fsfs,(D)
by transposition.

This result covers [49, Theorem 2.1], which deals with the case in which 8" = —¢gs + b + d.
Proof. This follows from Theorem .33 and Proposition O

Proposition 5.24. Take p,q € [1,00] and s,s" € R", and assume that Ps induces an endomorphism of
Lg’g( ) (resp. LE1(D)). Then properties (L)S:g,yo, (L)S:g,, and (L’)b_;_d s_s (Tesp. property (L)S 2 and
(LY —ssr) hold.

Proof. Let (Cjk,2jk)jesker be a (d, R)-lattice for some 6 > 0 and some R > 1. Define hy = Sz —
D((j k) for every k € K and for some (hence every) j € J. Choose, for every (j,k) € J x K, an affine
automorphism ¢; , of D so that

©ik(0,ie0) = (Cjks 24 k)

so that
@jyk(B((Oa Z.G_Q), T)) - B((CjJﬁ ijk)a T)
for every r > 0. Fix §’ > 0 so that Brxr,((0,ie0),0") C B((0,iep),d), and define

Bji = ¢jk(Bexr((0,ieq),d"))
for every (j, k) € J x K. In addition, define
ZAJ,kaJ (G 2) A5 PPV (G — p(()) AR gy
for every (¢,z) € D and for every A € C/*¥. Then, arguing as in the proof of Theorem B33 we see

that S induces a continuous linear mapping ¢#4(J, K) — LP4(D). In addition, by Proposition [£.21] and
holomorphy we see that, for every A € (74(.J, K),

Ps(S(N) = ¢y Z )\j’k/B B(Séz)(év, 2)d(¢, Z/)At()2+2d+(b+d)/zﬂfsfs (h)
- -

b d s—s’
- CS/C Z )\J’ (<] k%3, k)(g’ ) - )/p (hk)
Jik

where C' == H*" "™ (Bpy 1. ((0,ie0),d")). Property (L)L'd follows. The proof is then completed by
means of Proposition [5.21] O



CHAPTER 5. WEIGHTED BERGMAN SPACES I1 111

We now show how the Bergman projectors Py interact with the spaces ﬁqu(D)_

Theorem 5.25. Take p,q € [1,00] and s,s" € R" such that the following conditions hold:
° sEsup( (b+d) 2q/m) + (RL)";

os—l—s’einf(b—i—d— (b—i—d)—z—qm)—(]Ri)T;

° Ab—i—d s— s’O( ) Af)-i-qd s— s/O(D>‘
Then, Ps induces a continuous linear mapping of LY§(D) into AP4(D).

The proof is based on [9, Proposition 4.28|, which deals with the case in which s € R1, and D is an
irreducible symmetric tube domain. _

In particular, under the stated assumptions (and assuming further that p, ¢ < c0), AR9(D) = AR4(D)
if and only if Py induces an endomorphism of L2:4(D).

Proof. Take f € LJG(D) N L?b2+d ¢)2(D), and observe that (b +d —s')/2 € sm + (R%) thanks to

our assumptions, so that Py is the self-adjoint projector of L(ber s)/2 (D) onto A(ber o )/2( ) by
Proposition .11l Therefore,

Py f € A%? (D),

(bt+d—s')/2
so that there is a unique T' € B(S —b-d)/2 (N, 2) such that
PS’f = ET,

thanks to Corollary 511l In addition, Proposition [3.11] shows that there is a unique 7 € E(b td—s) /2( ')

(cf. Definition BI0) such that
TA(ET)p) = e~ MMr())

for almost every A € 2 and for every h € (2. Further, clearly T % n* € L?(N) for every n € Su(N).
Arguing as in the proof of Theorem 52 we then see that
ETxn )= (ET)p*n"
for every h € {2, so that
AT * %) = 7(A)ma(n)”
for almost every A € 2. It is then easily seen that, for every n € S 1,(N) one has

Txn* € L*N) and  m(T*n*) = 7(\)ma(n)*

for almost every A € 2. By means of Corollary[[L.T4 and Proposition [ 11] we also see that the mapping
A= ma(n) belongs to L2 4, 4y »(£2'), so that

2n7m|Pf(€Q/)|

(Tln) = (T*n7)(e) = —— 5 Te(ma(T *1*)) Ag? (A) dA.

Q/
Therefore, Proposition 2.14] shows that
275" |Pf(eq) 2(\,h) Ad
T Tr(mx (T A /S A)dA
(T = o tioas =7 [ [ T a0 ag )
x AR (1) dug (h).

Now, the preceding remarks and Proposition .11l show that
—2(\,h) ,Z:b+dfs’Alf()i/fdfs’(>\)7_rA (T % 77*) _ ﬂ_A((ST)h>ef( >ﬂ')\ (77 % I (b+d))*
b+d
= (P Pn)ma €+ 15, )1

for almost every \ € 2’ and for every h € 2. Therefore, Corollary [[L.T4] implies that

(Tn) =, /D (P 1)(C,2)Em * Ty~ TV (¢, 2) A5 (32 — 8(C)) dvp (¢, 2)
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for a suitable constant ¢, # 0. The Proposition [(.21] then implies that

(Tn) = & /D F(¢G)Em* Iy~ PN 2) A5 (82 — B(0) dvp (¢, 2),

so that b
(I < Ielel 1 lgacy |[€n + 15~

p’q :
Lb+d s— s/(D)

Now, by assumption there is a constant C; > 0 such that

N T e

’q! +s/—(b+d 9
Ly (D) BP0

while Theorem [E.20] shows that there is a constant C's > 0 such that

'—(b+d
22 Callnllse, .-

BS+S’*(b+d) (N, _Q)
By the arbitrariness of 7, Theorem .23 shows that there is a constant C'5 > 0 such that

TN ;5 ar,0) < Call fll ey

that is,
1o 75y oy = €T 1155 o0 < Ol gy
The assertion follows by means of Proposition O

We now draw some consequences of Theorem [B.25 In the next result we prove that, if ALG(D) =

Zs’g (D), then one may improve Theorem and show that Py induces an endomorphism of LJ'¢(D).

Observe that the assumption on s’, which does not appear in Theorem [5.27] is necessary only when
p = oo. Otherwise, we would only be able to show that Py induces a continuous linear mapping of
L}S’:g(D) into LP9(D).

Corollary 5.26. Take p,q € [1,00] and s,s" € R" such that the following conditions hold:
e s € sup (2—1qm, %(b +d) + %q,m’) + (R%)";
o st einf(b—i—d——m (b—i—d)——qm) — (RY)";
o ALG(D) = ALG(D):;
° A;II:))J,rqd s—s’/ O( ) Alp;jrqd s—s’ O(D)

Then, Ps induces an endomorphism of LG (D).

Proof. By Theorem .25, we know that Py induces a continuous linear mapping of L% ’q(D) into L9(D).

In addition, Proposition .18 implies that s € (2p ) m’+R" . Sinces+s’ € (b+d) m'— (R%)"
by assumption, this implies that s’ € (b +d) — —m — (R%)". Therefore, it is readlly seen that
Py (Ce(D)) € LZG(D) (cf. Propositionm whence the result. O

We now provide some explicit conditions for the boundedness of Py on L29(D). This result covers [49,
Theorems 2.2 and 2.3|, which deal with the case s’ = —gs + b + d with a different proof.

Corollary 5.27. Take p,q € [1,00] and s,s" € R" such that the following conditions hold:
° sEsup( m+(mf2_1q)+ m’ %(b+d) /)+(]Ri)r’,

: s+s’einf(b+d—2+fm—(m—%)mcamm—z—zm') - ms)

Then, Ps induces a endomorphisms of LG (D) and LE9(D).
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Proof. This follows from Corollaries B.11] and [5.26] Proposition (.21l and Theorem O

The following result completes the equivalences of Corollary (.16 in the case p, ¢ € [1, o0].

Corollary 5.28. Take p,q € [1,00] and s € (b+d) —m + (R%L)" such that s € 3 m+ (RL)"™ (resp.
s € RY if ¢ =00). Then, the following condztzons are equwalent

(1) AV§ = ABg (resp. AD4 = Ap);
(2) Py induces an endomorphism of L2'§(D) (resp. Ly?(D)) for every s' in a translate of —R'} .
Proof. (1) = (2). By Corollary 51Tl there is s € %(b +d)+ ﬁm’ — (R%)" such that

. 1 1 1 .y
s+ sp € inf (b+d— 2—(1/m’;(b+d)_2_qm/) — (R})
and such that
Af)ﬁd s—s’,0 Af)ﬁd s—s’,0

for every s’ € s; — R”.. Then, Corollary [5.26 (resp. Proposition [£.2I] and Theorem [5.25), implies that
Py induces an endomorphism of LZ'G(D) (resp. L2(D)) for every s’ € s5 — RY,..
(2) = (1). This follows from Corollary .16 and Proposition 5241 O

5.3 Notes and Further Results

5.3.1 With the notation of Theorem[3:21] the Bergman space AP*(D) is said to satisfy the interpolation
property if the mapping S is onto (hence an isomorphism for sufficiently fine lattices). Cf. [59, 14 [12]
for some results in this direction.

5.3.2 Recall that property (L)Y, implies property (L)2?

s,s’,+ s0,8g,+
sp € s’+s—so—R/,, thanks to Proposition[3.30 It would be interesting to investigate if the same happens
for properties (L)J’d, and (L')J’Z. This fact Would improve considerably the statement of Corollary 5161

s,s’

Analogous considerations hold for the boundedness of the Bergman projectors Py, in view of Propo-
sition

for every sg € s + R’ and for every

5.3.3 In connection with the discussion of 5.3.2, it would be interesting to understand whether the
equality A29(D) = AP9(D) implies the equality AZ?(D) = A% (D) for every s’ € s+ R’,. This problem
is closely related to the boundedness of Riemann-Liouville operators between the spaces A29(D). In

Corollary [B28, we proved that convolution with I,,;* maps A?4(D) into A” ! (D) continuously when

s’ € Ng. Nonetheless, in the case of general s’ € R’_, the assertion is less clear.

As observed in [8], the fact that 155/ induces an isomorphism of A%9(D) onto ALY, (D) can be
considered as a generalized Hardy’s inequality.

5.3.4 In Proposition (.12 we showed that one may define a continuous sesquilinear form on Afs’*q(D) X

~ 1 1
qu

(bd)/ min(1,p)—s—s’ (D) which extends the mapping

(f.9) = /D 162G AT (32— B(0)) dup ((, 2)

on AP1(D) x AP

(btd)/ min(1 p)_s_s,(D), and which induces an antilinear isomorphism

A?ber )/ min(1,p)—s—s’ (D) - AS:g (D>/

Thus, we have canonical injective continuous linear mappings

p'd
A(b-‘,—d)/ min(1,p)—s—s’

(D) = A(b+d)/mm(1,p) _e_e(D) = AZE(D),
none of which is an isomorphism, in general.

In a similar way, for every s”,s"" € N such that s+s”, (b+d)/ min(1,p) —s—s'+s"" € 1—17(b+d) +
21q, m’ 4 (R%)" one may also define a sesquilinear form on As 2,(D) x A(b+d)/mm(1,p) s_s g (D) which

induces an antilinear isomorphism of the space A( (D) onto the space As,s”’,O(D)/'

b+d)/m1n(1 p)—s—s’,s"
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5.3.5 When D = C,, the dual of A}!(C;) has been identified with the classical Bloch space (modulo
constants) 280 1°°(C4) by Coifman and Rochberg in [28]. In a series of papers, Békollé, Temgoua Kagou,
and Zhu extended this characterization to Bergman spaces of type LP, p €]0, 1] on more general domains
(cf. [T, 67, [76] [77, 6] and the references therein). With the previous notation, the dual of AZP(D) for
p €]0,1] has been identified with ES?S’?O(D) by means of the sesquilinear form indicated in 5.3.4 above
(for every s’ € NN (%m’ + (]Rj)r) ). In addition to that, observe that Corollary .27 easily implies that
Py induces a (unique) continuous linear mapping Cy(D) — 28?5,?0(19> ifs” € b+d—1im— (R%)". This
mapping can be, in turn, suitably extended to a continuous linear mapping of L°°(D) onto XS?;,’O(D)E
This latter fact extends to general homogeneous Siegel domains of type II the results of the papers cited
above.

Notice that the generalized Bloch space defined above is different from the generalized Bloch space B
initially introduced by Timoney in [68], when r > 1. If D’ is a bounded homogeneous domain, the space
B(D') is defined in [68] as the space of holomorphic functions on D’ which are Lipschitz for the distance
induced by the Bergman metric (modulo constants). Since this space is then invariant under composition
with holomorphic automorphisms of D’, a similar space may be defined also on the homogeneous Siegel
domain D. When D = C4 x Cy, then the function

£ (21, 22) = log(z1) log(z2),

where log denotes the unique holomorphic function on C \ R_ which coincides with the usual logarithm

on R, clearly belongs to ESOiZO(D) (more precisely, 0102 f = f * 1&11*2)2 € A7)7°(D), so that f induces
’ +

an elements of ngizo (D)). Nonetheless, it is not hard to prove that there are no holomorphic functions
g on D such that 01029 = 0 and f + g € B(D), that is (cf. [68] the proof of the equivalence (1) < (3)
of Theorem 3.4]),

( su;)) . ((%21)2|81(f +9)(21, 22) |2 + (S20)2|0a(f +g)(z1,22)|2) < 0.
z1,22)€

Consequently, the spaces ES?{ZO(D) and B(D) are not canonically isomorphic.

5.3.6 If one is only interested in the Bergman spaces A2P(D), then the problems considered in Chapter[3]
and in this one are completely solved when p €]0,1] in view of Theorem B33 and Corollary BETT] and
partially solved for p €]0,2] in view of Corollaries BI1l .16 and For p > 2, Theorem shows

that Py induces a continuous linear mapping of LL'f(D) into Zpgyp (D), provided that some necessary
conditions on s and s’ are satisfied. In full generality, we do not know whether AP?(D) = AZ?(D),
hence we do not know whether Py is bounded on LE'P(D). Cf. [9] for a sharper discussion when D is a
tube domain over a light cone.

3This is due to the fact that (Ps/ f) * IESI = ¢y 511 Psr_g/ (f(A;ZS/ o p)) for every f € Cc(D), where p: D 5 ((,2) —
Sz — &(¢) € 2 and ¢y ¢ is a suitable constant.



Appendix A

Mixed Norm Spaces

In this chapter we collect some results on mixed norm spaces LP'%(u, v), p,q €]0,00]. Our main focus
is in the correspondences between LP(u,v) and L?(v; LP(u)) and between LY (p,v) and Li(v; L ()
(Propositions [A7 and [A8) and in the characterization of the dual of L (u,v) (Propositions [A-10]
and [ATT]).

We begin with recalling some notions on locally bounded F'-spaces.

Definition A.1. An F-space is a complete metrizable topological vector space. An F-space is called
locally bounded if it admits a bounded neighbourhood of 0.

Recall that an F-space Z is locally bounded if and only if there are p € [1,00[ and an absolutely
homogeneous function || -||: Z — R4 such that the mapping

(z,2") = llz = 2"|IP

is a distance compatible with the topology of Z (cf. [60, Theorem 3.2.1]). In particular, || - || is a continuous
quasi-norm on Z. In addition, if ¢ € [1,00[ and ||-||': Z — Ry is another absolutely homogeneous
function such that the mapping (z, z") — ||z — 2’||'? is a distance compatible with the topology of Z, then
there is a constant C' > 0 such that

1
alzl <l=l" < Cl=ll

for every z € Z (cf. [60, Theorem 3.2.13]). For this reason, we shall sometimes denote by || - ||z one such
quasi-norm, even though it is not uniquely defined.

Definition A.2. If x4 is a measure on a locally compact space X, Z is a locally bounded F-space, and
f: X — Z is a (not necessarily v-measurable) mapping, by an abuse of notation we shall defin

* 1/p
T ( Juste du)

for every p €]0, 0o, and we shall denote by || f||e(y;z) the essential supremum of || f||z. We define
LP(p; Z) == { f: X — C: [ is p-measurable, || || Lr(u;2) < 00 } .
Denote by L?(u; Z) the Hausdorff space associated with £ (u; Z). Analogously, define
P

loc

(u; Z) ={ f: xxf € LP(u; Z) for every compact subset K of X }.

Denote by L (u; Z) the Hausdorff space associated with £V (u; Z).

loc loc

We define L (p; Z) and L . (11; Z) as the closure of Co(X; Z) in LP(u; Z) and Ly, (u; Z), respectively.

Notice that, if Z is not a locally convex space, then the mapping f — [ + [ du, defined on the set
of p-measurable step function in L!(u; Z), is not continuous for the norm || - |1 (us2), in general. In
particular, it need not extend to a continuous linear mapping on L!(u; Z).

With standard techniques one then proves the following results.

1Recall that, for every positive function g on X, the symbol f; gdp denotes the upper integral of g, that is, the greatest
lower bound of the upper integrals f;( hdp, where h is a lower semi-continuous function and h > g. The symbol f; hdpu,
in turn, denotes the smallest upper bound of the integrals fX pdu, where ¢ € Ce(X) and ¢ < h.

115
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Proposition A.3. Let p be a measure on a locally compact space X, Z a locally bounded F-space, and
take p €]0,00]. Then, LP(u; Z) is a locally bounded F-space.

Proposition A.4. Let u be a measure on a locally compact space X, Z a locally bounded F-space, and
take p €]0,00[. Then,

L Z2) = LP(: Z2)  and Lo (15 Z) = Liyo(p; Z),

while
Lg®(u; Z) = Co(Supp (1) ; Z)  and  Liec(p; Z) = C(Supp (1) ; Z).

We now pass to mixed norm spaces.

Definition A.5. If © and v are two Radon measures on two locally compact spaces X and Y, respectively,
then for every p, ¢ €]0, co] we define the mixed norm space

LP(p,v) = { f: fis (u ® v)-measurable, Hy = f( ’y)HLp(u)HLq(u) < 00 } ,

endowed with the corresponding topology. We denote by LP-?(yu, ) the Hausdorfl space associated with
LP9(p,v), and by L{?(pu,v) the closure of Co(X x Y) in LP9(u,v).

Proposition A.6. Let X and Y be two locally compact spaces, and u,v two Radon measures on X and
Y, respectively. Take p,q €]0,00]. Then, LP*9(p,v) is a locally bounded F-space.

We now discuss the relationship between LP9(u,v) and L9(v; LP(u)). Notice that, even though
L9, v) is canonically isomorphic to L (v; LE(u)), the space LP(p, v) fails to be canonically isomorphic
to LY(v; LP(p)), in general, for a lack of measurability. Indeed, if f € L°%(u,v), then the mapping
y = f(-,y) € L>=(p) is not v-measurable, in general. Roughly speaking, the best one can say is that
the mapping y — [ f(2,y)g(x)du(z) is v-measurable for every g € L'(u) (compare this fact with
the Dunford—Pettis theorem). These results can be proved with standard techniques. The proofs are
omitted.

Proposition A.7. Let X and Y be two locally compact spaces, and pu,v two Radon measures on X and
Y, respectively. Take p,q €]0,00]. Then, there is an isometry

T: LI(v; LP(p)) — LP9(p,v)

such that
(TH(y) = fy)

for v-almost every y € Y. If p < oo or v is atomic, then T is onto.

Recall that a Radon measure 4 is discrete or atomic if u(K) = >, pu({ = }) for every compact set
K, and that p is diffuse if u({ « }) = 0 for every z. Then, every Radon measure can be written in a
unique way as the sum of an atomic and a diffuse measure, cf. [22, Proposition 15 of Chapter V, §5, No.
10

Proposition A.8. Keep the hypotheses and the notation of Proposition [A4. Then, T induces an
isometry of Li(v; Ly (p)) onto Ly (u, v).
If, in addition, ¢ < oo and X has a countable base, then

L% vyp) = { f € L*Uv,p): f(-,y) € Co(Supp (n)) for v-almost every y € Y }.

We now characterize the dual of L{?(p1, v). For the sake of simplicity, we shall not present a general
result, but we shall content ourselves with the cases we are concerned with (namely, the cases in which
both u and v are diffuse measures or counting measures).

Definition A.9. Define p’ := (max(1,p))’ for p €]0, 00|, so that p’ = co when p €]0, 1] while % + % =1
when p € [1, o0].

Proposition A.10. Let X and Y be two locally compact spaces and p, v two diffuse Radon measures on
X and Y, respectively. Take p,q €]0,00[. Then, the following hold:

(1) ¢f min(p,q) <1, then LP9(u,v) ={0};
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(2) if p,q = 1, then the bilinear mapping

LP9(p,v) x LP (u,v) 3 (f, g) v fod(p®v)
XxY

induces an isometry of L?4 (u,v) onto LP%(u,v) .

The first assertion is proved as in the case p = ¢ (cf. [29]). The second assertion is a particular case
of [I5, Theorem 1 of §3].

Proposition A.11. Let X and Y be two discrete spaces, and u,v the counting measures on X and Y,
respectively. Take p,q €]0,00]. Then, the bilinear mapping

LB (pov) x P9 (u,v) 3 (f) = > fla,)g(,y)
(z,y)EX XY

induces an isometry of LP"7 (ju,v) onto Ly (p,v).

When p,q > 1, this is a particular case of [15, Theorem 1 of §3]. The general case is treated with a
similar proof.
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PAGE | LINE | ERRATA CORRIGE

6 17 (Sw)s 1 (Sw)?s 1

6 21 28 >s42 25" > s

6 24 2¢" > s+1+1/min(1,p) 28 >s+(1/p—1)4

11 9 investigate investigated

18 22| (¢ —i(¢iC) i(Cri¢ — ¢i()

42 25 delete this line

42 27 (t,x) — tat* and (¢, x) — t*at (t,x) — (ta)t* — x(t*t*) + (xt*)t* and
(t,x) — t*(xt) — (t**)x + t*(t*x)

46 13 add the clarification ‘(where the prod-
uct in the last two terms is the ordinary
product of matrices)’

56 —8,-7 tj €j

58 -10 r — +00 p — 400

58 -6,-4 lim lim

r——400 p—r—+o00
64 4 (=1 (tat*) = | 70Dt 2) =7V () . 7=V ()
7.‘.(’r—l) (t)ﬂ_('r—l) (ZC)W(T_l) (t)*

64 14 there is g € GL(E) such that ¢ - @ and for every t' € T, such that
7r=D(t') = t there is g € GL(E) such
that t' - @

65 -13 there are constants R,C > 0 for every R > 0 there is a constant C' >
0

67 2 = [tat*| < CF[tl]al[t] = CF||lt]? < 3CF|a[tf?

77 13 (resp. ...); or...;

77 12 add the assumption ‘s’ € b+d — %m —
(R?)"

7 -8,-7 delete this sentence

83 -9 f )i

83 -7 B(GQ B_Q(e_Q

83 -3 f fwe

86 -2 =Sz — () =82 —-d")=1t-eq, witht' € T}

86 -1 h'=t-h t=1.h

88 -8 Co Cs

90 14, (b+d) (b+d)/p

18,
20

94 10 delete this line

96 -8 rk ra

100 10 s’eb+d——m (]R*) s’ € §(b+d) (]R* )"

100 11 s+s' e mm(1 ™) (b+d)— —(R3)" | s+s' € mm(l 7 (b+d) —(R%)"
ors+s’ € mm(l o) (b+d)— IRT if¢ = o0

100 -11 for every Ry > 1 if p,q > 1, then for every Ry > 1

12 | -11 drmy ™

140 -4 S S sup (2—1(111'1 4+ (ﬁ(;ﬂ,p/) S € %m 4+ (ﬁ(;ﬂ,p/) — %)er/ +

2—{1)+m’,%(b+d)+im’) + Ry | RY)

141 | 7,15 | A% A% (bt

147 -9 s € (3(b+d)+gm'+ (R%)") € 5(b+d)+zm’ + (R%)"

151 -2,-1 | b+d—-s—¢ b+d-s—5¢¢

We observe explicitly that, even though (3) of Proposition 3.39 has been weakened, Corollary 3.40
holds in full generality, as a consequence of [CP| Corollaries 4.7 and 4.14].

In addition, the formulae for ¢ - x and z - ¢ may be found in [Gel (1.2)].

Finally, it does not seem that the reference cited in Page 101, line -3 be sufficient to prove the stated
assertion. Cf. Proposition 4.6 and Theorem 4.8] for the proof of a more general fact.
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