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Abstract The capture of scintillation light emitted by lig-
uid Argon and Xenon under molecular excitations by charged
particles is still a challenging task. Here we present a first
attempt to design a device able to have a sufficiently high
photon detection efficiency, in order to reconstruct the path
of ionizing particles. The study is based on the use of masks to
encode the light signal combined with single-photon detec-
tors, showing the capability to detect tracks over focal dis-
tances of about tens of centimeters. From numerical simula-
tions it emerges that it is possible to successfully decode and
recognize signals, even of rather complex topology, with a

4 e-mail: mihai.iliescu @Inf.infn.it

b e-mail: luigi.martina@le.infn.it (corresponding author)

relatively limited number of acquisition channels. Thus, the
main aim is to elucidate a proof of principle of a technology
developed in very different contexts, but which has poten-
tial applications in liquid argon detectors that require a fast
reading. The findings support us to think that such innova-
tive technique could be very fruitful in a new generation of
detectors devoted to neutrino physics.

1 Introduction
This work is aimed at introducing a new and more efficient

collection method of prompt photons emitted by charged
particle in noble liquid filling Time Projection Chambers
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(TPCs), in order to obtain track images, instead of simple
triggering signals. As it is known, noble elements in the lig-
uid phase (LAr, LXe) are used as target and detector in high
energy physics. In these liquid gases, relativistic charged par-
ticles produce large amount of scintillation light in the Vac-
uum UltraViolet (VUV) range. However, in TPCs the event
reconstruction is just based on the collection of drift elec-
trons and the fast light signal is exploited only to set the
trigger time #y for the data acquisition. The benefits of this
novel technique are several, as rate capability, especially rel-
evant for accelerator based experiments, and possibility to
work in magnetic field. On the other side, such an imaging
detector presents also critical issues. For example, perfor-
mance of conventional optics in VUV range is very poor and
readout electronics must be operated in cryogenic conditions
with single-photon detection capability.

In order to face these new challenges we are conceiving
a system where the light signal is filtered by Coded Masks
and read by Silicon Photomultipliers (SiPMs). The latters
guarantee the required performances and offer the advantage
of robustness, large number of densely packed small pixels
and strong reduction of dark noise at low temperature. The
coded masks should have a sufficiently high photon detection
efficiency without the use of special materials and complex
designs. They provide a sufficiently wide and deep field of
view and a large aperture, in such a way to minimize the
number of SiPMs.

As proof of principle of the above quoted imaging method,
we assume the Near Detector [ 1] of the DUNE experiment [2]
as an inspiring situation, without entering into a full realistic
modeling of it. Taking into account that the detector will be hit
by the most intense high-energy neutrino beam, the high-rate
capability is mandatory. In particular we plan to have a LAr
volume in the SAND apparatus (System for on-Axis Neutrino
Detection) where a 0.6 T’ magnetic field is present, equipped
with coded masks and SiPM arrays. The typical energies of
the particles (mainly muons) produced in neutrino interac-
tions are sufficiently high to generate ~ 10* photons/sr/cm
atthe Ayyy =~ 128 nm wavelength. The imaging reconstruc-
tion of neutrino events in the LAr target will be exploited not
only to continuously monitor the neutrino-beam spectrum
but also to measure neutrino fluxes and cross-section in LAr
in order to constrain nuclear effects. However, for the spe-
cific application described above, the designers will face the
problem of balancing the beam spill length and the long time
scintillation constant, leading to possible multiple interac-
tions. This aspect is outside the scope of the present paper
and it will concern an evaluation of: the effective probabil-
ity of events occurring in the fiducial volume “seen” by the
masks, the electronic timing, the filtering of the diffused light
background and the optical effects of mixture of noble liquids
on the light transmission.

@ Springer

In this work, the basic principles of the imaging technique
with coded masks are presented. The exploitation of other
optical schemes for VUV photons is also under consideration
and they will be the topic of future papers.

2 Imaging by coded masks

Itis well understood that a small pinhole is required to achieve
high spatial resolution. But a single pinhole also dims the
light in the image, so much that it may be below the sensitiv-
ity of light-sensors. A matrix of multiple pinholes increases
light collection, but the source reconstruction from multiple
superimposed images becomes more convoluted, and this
approach requires to exploit fast numerical methods [3,4].
Each bright point of the light source deposits an image of the
pinhole array on the viewing screen. Knowledge of the geom-
etry of the pinholes arrangement (the coded mask) allows
for an efficient numerical reconstruction of the source [5].
Initially, random arrays of pinholes, used in X-ray astron-
omy [6,7], were replaced by binary Uniformly Redundant
Arrays (URAs) [8,9], which were shown to be optimal for
imaging [10-21]. The peculiar autocorrelated distribution of
pinholes allows to contain a quasi-uniform amount of all
possible spatial frequencies. Thereby, allowing high spatial
resolution without limiting the image brightness. Further-
more, more information about the source object is encoded
in the scaling of the shadow image of the object points, so
leading to a stereographic effect. In particular, hard X-ray
astronomy commonly uses URA-based coded masks [22—
24] and their generalizations, like MURA matrices (Modi-
fied URASs), which will be described in the next sections, as
well as spectroscopy [25], medical imaging [26-28], plasma
physics [29] and homeland security [30]. In the type of appli-
cations we are interested in, the light sources are posited
at length scales of the optical apparata (from meters down
to centimeters), then we are mainly concerned with the so-
called Near Field settings. They imply important geometri-
cal effects, leading to distortions in the collected data and the
presence of artifacts in reconstruction of the image. Thus, this
situation has to be carefully considered, in order to improve
the reconstruction technique.

2.1 General geometrical settings

By scanning the literature, we notice that several simplify-
ing approximations adopted elsewhere, say in astronomy, do
not apply in the experimental conditions we assume here.
More precisely, specific features/requirements of our setup
are listed in the following:

— Near Field sources, that is their typical spatial extension
and distance from the detector are of the same order of
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Source

Fig. 1 Geometry of a ray emitted by the source point S at (r, z) and
absorbed by the detector at r” after passing through the coded mask in
I./

magnitude as the optical apparatus (typically tens of cen-
timeters),

— non-planar sources,

— filiform sources,

— weak sources (= 10* photons /sr/cm)

— non-static sources,

— limited detector information capacity ( 10> — 103 elec-
tronic digital channels),

— need for a 3-D reconstruction.

These settings are mathematically described by a function
O (r, z, K}, t ) that denotes the light density of the source to
be detected. The variable ¢ is the time and the other ones are
drawn in Fig. 1 and discussed in the following. Each point
of the source is labeled by the coordinates (r, z) = (x, y, 2).
The mask and detector planes are parallel to each other and
are placed along the z-axis. A source point S, emitting in the
direction £2, leaves a projection on the mask plane, whose
coordinates are labeled as r” = (x/, y’), and a projection on
the detector plane, whose coordinates are labeled as r” =
(x//’ y//).

Moreover, we assume that the diffraction effects can be
neglected, as the aperture size p,, of the single mask pixel
is sufficiently large (p,, > Ayyy) to make the geometrical
optics approximation still good. Also, interference effects
of light coming from the different apertures are neglected.
These strong assumptions will be verified in future works,
distinguishing them from genuine noise effects. Further, we
assume light to be monochromatic, disregarding at the first
stage the effects of finite band width in the spectrum of the
emitted light.

In an approximate modeling of the imaging phenomenon
in a perfectly transparent medium (for instance see [31]),
we further assume a planar, isotropic and time-independent
averaged density of the emitted photons at (r, z), thus

Oy (r)
4

O(rz@.1) = 5(2). @1
This source provides an image on a plane detector placed at
the distance a + b from the reference frame origin, where a
is the focal plane-mask distance and b is the detector-mask
distance. At the point r”” on the detector plane z = a + b,
the image is described by the collected density of photons

P (r”) and it is provided by the integral linear mapping
P o</ O(s)A( a r”+.§>
( ) Source a+b ( )

|l'”—§,-'§|2 -
1 0
x|: + @t b :| dg

[SI[%)

(2.2)

where the scaled variable source density O (§) = Oy (%£)
is filtered by a kernel, which is the product of a geometrical
projective factor and the transmission aperture mask function
A (1), where v’ = 4 (r” + &) denotes the points belong-
ing to the mask plane at z = a. Typically, A (r/ ) is a function
taking values on {0, 1} on the mask plane (supposed to be
parallel to the detector plane), whose domain is the union of
non intersecting squares of equal side length p,,, defining the
apertures of the mask. The values 1 correspond to apertures
and the values 0 to blind regions.

Ultimately, the function A (r') is completely defined by
a binary matrix, denoted by a(i, j), of suitable dimensions
qx X qy (not necessarily equal to each other) corresponding to
the optically useful region. Thus, a point-like source located
inr on the z = 0 plane contributes to the image, if the vector
r’ is such that A (r/ ) = 1. Moreover, if a whole mask aperture
is illuminated by a point source, the projected image on the
sensor screen will have the size p,,(a + b)/a.

The expression (2.2) further simplifies in the Far Field
approximation, i. e. |r " r| < a + b, and accordingly the
geometrical projective factor reduces to 1. Thus, one obtains
the image function in the Far Field form as

po (r//) —(0®A) (r//)
a /
B /s 0@ A (m (" + E)) de. (2.3)

When %‘lf—,/ll = % < 0.1 the paraxial approximation still
holds and, in (2.2), one can resort to a truncated Taylor
series expansion of the geometrical projective factor around
||rL”‘\ = 0. In most of the applications, the expansion up to
second-order [32] is considered, but we will limit ourselves
to the zero-order, thus providing a &-independent distortion
of the image. Thus, due to the finite source/detector distance,

the geometrically distorted density can be approximated by

@ Springer
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a corrected correlation (2.3) according to

|r//|2 3/2
P = (1 Tar b)2> e

which can be used in the reconstruction with the same proce-
dure. In the setting we are going to consider, the correction
introduced by the prefactor in (2.4) is a function of r”, radi-
ally increasing its value up to 5-6% at the border of the mask
with respect to the value at its centre. This geometric distor-
tion of the collected intensity of the image may be of some
relevance in the case of long tracks, crossing the field of view.
Otherwise, for paraxial sources of angular apertures < 10°,
the correction may be completely discarded.

2.4)

2.2 Focal plane

The quality of the imaging process is critically determined
by the technological characteristics of the photodetectors,
intended for the capture and recording of photons arriving at
the detector. Without going into further details, let us assume
that the sensitive region is covered by a square grid of pixels,
each with a py side.

A crucial aspect of the coded mask imaging is the exis-
tence of a special plane, called focal plane, parallel to both
the mask and the detector planes. It emerges by observing
that, in general, the projection of a mask aperture does not
cover exactly an integer number of pixels. In fact, the size of
the aperture shadow depends on the factor (a + b)/a and it
is projected on a number

a+b pm
o= —=£m
a  pd
of detector pixels. Because of the discrete character of the
coding procedure, in order to avoid generic fractional cover-
ing of the photosensors, which will lead to defocusing and
artificial effects in the reconstruction, it is clear that « has
to take only integer values. Thus, a focal plane corresponds
totake @ = 1, 2, ... and, correspondingly, it determines the
distance source-mask a, if all the other parameters are fixed
by technological requirements. On the other hand, a is con-
strained by the physics we are interested in. Typically, we
will privilege the plane corresponding to o = 1.

The aspect to outline in this context is that the process of
reconstruction provides a representation of the light source
on the focal plane. Thus, for our research, the particle fila-
mentary tracks are directly reproduced only when they lay on
the focal plane, or cross it at a small angle. Then, a question
to be answered is how to estimate the focal depth of the coded
system and which are the corrections to be implemented, to
obtain a suitable reconstruction.

A further consequence of this geometrical setting is the
concept of Field of View (FoV), defined as the portion of
the focal plane that projects the entire pattern of the mask

(2.5)

@ Springer

on a finite size detector. Equivalently, one may consider the
counterimage on the focal plane seen by a single aperture.
That will be a square of side length /,,, = p,,(a+b)/b. Hence
the FoV is simply a rectangle of area (g X L) X (qy X In),
where g, and g, are the number of rows and columns in
the coded mask matrix, respectively. In this perspective, the
focal plane is a covering of a set of squares (cells) of minimal
side length /,..; = pg a/b, each of them projected one-to-
one on a detector pixel of area p; X pg. Thus, [..5 is the
resolution length of the system, whose evaluation for b/a <
11is lyes =~ I,,. The parameter /.. is particularly relevant,
since it predicts the ability to distinguish different sources in
the FoV. Furthermore, 6r,y is the angle under which [, is
seen by the detector plane.

3 Decoding: general aspects

Our aim is to decode the experimental image P (r H), also
in the corrected form (2.4), in order to reconstruct the source
function O (r). To this purpose, if formula (2.3) still holds,
we need to find a suitable kernel function for the decoding
operator G, such that (A ® G) (r) = § (r). Thus, the recon-
struction problem of the source function in terms of the given
image is ruled by

(PRG)E)=0®A)(r")®G(E) x 0 *(ARQG)
E-m=0m*sE-—m=0(&), G

where * is convolution product.

As seen above, the mask function A (r ) naturally intro-
duces a discretization, described by the matrix a (i, j) and
the scale parameter p,,. Therefore one has to look for a dis-
crete version g (i, j) of the decoding kernel G, accompanied
with suitable correlation conditions of the form

gx—14qy—1

YD at. g+l j+k)~sd.k.

i=0 j=0

(3.2)

To this aim, it was shown in [10,12] that an optimal com-
promise between the reduction of coding noise (or artifacts)
and the amplification of coherent effects, known also as dis-
cretization noise, is obtained if the periodic autocorrelation
function (PACF) of the aperture array has constant sidelobes,
ie.
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gx—1gy—1
¢ k)= > a( ja(i+Imodqy,j+kmodgy)
i=0 j=0

K (,k)=(,0)
- { A otherwise (3-3)
where the peak K and the sidelobe parameter A are numbers
to be determined. Therefore, by combining (3.3) and (3.2) it
is very easy to compute the decoding kernel of G, which will
be of the form g (i, j) = "I?’_Jl) — m Arrays with this
property are commonly referred to as Uniformly Redundant
Arrays (URAs), as originally introduced by Fenimore and
Cannon [10] for the special case ¢, = ¢, +2 both prime inte-
gers. The construction of such a family of matrices is based
upon quadratic residues in Galois fields GF(p1, ..., pn)
(pi are integer powers of prime integers) [9]. We consider
here a slight variation of URAsS, called Modified Uniformly
Redundant Arrays (MURAS) [9,20], which is a family of
arrays obtained by the method of the quadratic residues for
qy = qx = q prime integer, but possessing a PACF with two-
valued sidelobes, i. e. A1 and A, instead of a single one.! For
large g it can be proved that the ratio (called the open frac-
tion) of the apertures with respect to the total number of the

matrix elements rapidly tends to 50%.

MURASs offer the advantage to be square matrices with
open fraction ~ 50%, furthermore the algorithmic construc-
tion and the decoding kernel of G are simple modifications of
the URA’s case. Since the construction method of the MURA
masks is well known from the literature, here we report only
the basic formulas for a ¢ x g matrix,

0 i=0
1 i#0j=0
CGD=V1 i £0a () =a ()

0 i,j#0a (i) #a(j)

1 [=k=0
g(l’k)_{2a(l,k)—l I4+k+£0" (3:4)
where a; is a Legendre sequence of order ¢, given by
0 i=0
ai(i) =14 +1 i=mod,u* (3.5)

—1 i =modyp?*!

for a generating element p of G F(g) (see Fig.2). To enlarge
the FoV, we will consider combinations (mosaic) of masks,
assembled side by side in juxtaposition and possibly with
rows and columns cyclically permuted, which do not change
the PACF function.

Once obtained the image of a source on the detector screen
P, it will be decodified by using a suitable discretization
of the formula in (3.1) and the deconvolution matrix in (3.4),
we

Lag=a=1.

]

110

10F

20 120

34r

20 3;1
Fig. 2 A mosaic of four MURA 17 x 17 matrices, after global permu-
tations both of raws and columms. Black dashed lines delimit a basic

central mask, the other three are spread in the remaining sectors. The
orange pads correspond to entry 1 and the white ones correspond to 0

q—1¢-1
Otk =YY Paer (i, /) & ((i + DImoda , + 1,
i=0 j=0

X (j 4 Kmod , + 1) - (3.6)

Using such a general procedure, one may manage simula-
tions, up to now only geometrical but meaningful (Sect.6),
of several light signals for testing the general properties of
the coded mask technique.

3.1 Integer affine transformations

In order to extract the basic properties of the imaging process
via coding masks, we introduce here an algebraic approach,
based on the observation that the image of a point-like source
S on the detector can be represented as an inhomogeneous
affine mapping, from the mask points to the detector points,
parametrically dependent on the S coordinates. After a suit-
able change of the reference frame, the source is coordinated
by S = (s pm, Vs Pm, 8s a), in terms of the aperture pitch
pm on the mask plane and the focal distance a. Specifically,
along the axis orthogonal to the mask, the third coordinate
7z = &g a is expressed by the relative distance §g of the source
from the focal plane. Thus, the source is located between
this plane and the mask for 0 < §s < 1, otherwise it lies
beyonditfords > 1.Initsturn, S; = p,, (s, vs) expresses
the orthogonal projection of the source position on the mask
plane. Likewise, the mask apertures will be denoted by the
set of coordinates H = p,,’H, where H is a list of ordered

@ Springer
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pairs of integers (i, v) only, identifying a lattice of point-like
apertures on the mask. Thus, assuming the point-like source
S on the focal plane, we can represent the discretized image
density as the affine transformation over a ¢-dimensional
vector space (from the mask lattice) by

b b
TsH=—-S,+|1+-)H
a a

b b
= Pm [—— (s, vs) + (1 + —) H} ;
a a

which singles out a lattice of points on the detector plane.
Since the blind pixels in the mask are excluded from the
mapping, actually only a number, equal to the peak value

3.7

of the mask K = L;], of correspondences is needed to be
computed.

Since the above mapping is equivalent to projecting only
one light ray from the source to the detector through a single
point (for instance its center) of the aperture, it is more real-
istic to consider more of such points, in particular, closer to
the aperture sides. Then, one may consider p + 1 crossing
points for each aperture, generating the set of coordinates

Hy [<u+af,v+0£),

.. P, k=1,2}.

A

logl < 3. (3.8)
Moreover, as mentioned above, in order to widen the Field of
View (FoV), amosaic of four masks can be implemented, fur-
ther enlarging the set H,. Hence, the previous mapping (3.7)
can be modified for sources in generic positions and rescaled
by the pitch py of the detector pixel as follows

~ Pm b b

TsH = ——(us,v)+ 1+ —)Hs|. (B9
pa L dsa dsa

Finally, since the detector pixels are also quantized and iden-

tified by a lattice of pairs of integers (in p; units), each pro-

jected point Ts H is properly assigned to a specific pixel by

rounding up

TsHyevice = [TsH] . (3.10)

which is a nonlinear and not invertible operation. Thus, part
of the complete information will be lost and an intrinsic
discretization noise is introduced. So, a statistical analy-
sis may be required to deal with the detected data. Thus,
the representation (3.9)—(3.10) of the coded mask action
allows us to algebraically study some of the main prop-
erties of the acquisition and reconstruction algorithms. In
particular, one can obtain a dual spectral description of the
masks. To this aim, let us observe that: (1) the individually
resolved sources belong to the lattice of points on the FoV
{Sh,j} = lres X {(i, j)}, with i, j running over 1 — ¢, and
(2) the relation (3.9) is linear in S| . Thus the q2 X q2 matrix
of columns @ = {TS\IH e ,ﬁq\zH } represents a linear
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application from the ¢2-dimensional space of the discretized
light distribution, where {S| r};— .2 forms a basis in that
space. The target discretized image space Y represents the
pixel measurements on the discretized device plane. Thus,
one handles with a fully discretized version of the coded
mask transfer matrix for the linear mapping

Y=®S +E (3.11)

possibly encoding the intrinsic and extrinsic noise into the
vector E. Multiple point-like sources superimpose their
images which, because of the limited resolution power or by
the discretization, are defocused on two or more surround-
ing device pixels. Moreover, here it is important to notice
from (3.9) that the dependency of @ on the relative distance
ds is non linear and needs a separate discussion. Actually,
in the on-focal-plane case the relations (3.9)—(3.10) provide
the transfer matrix @, which could be algebraically derived
from its very definition in terms of the MURA mask. It turns
out that @ is a binary symmetric non degenerate matrix, its
inverse represents the action of the corresponding decoding
operator G, and its spectrum is real and by induction can be
proved to be

=
o (@) = = K (deg=1),
i% (deg = K/2), i? (deg = K/Z)} ,

(3.12)

where the eigenvalue degeneracy is given. As a consequence,
any combination of sources in the focal plane is decomposed
in the sum of ¢ eigenvectors

{é;, reo (@), i= 1,...deg(x)}

of @. Their images are simply scaled, or reflected-scaled,
only by the two distinct, but very close, factors i% (a
quasi-flat spectrum is a remarkable property allowing for
good reconstructions), except for the non-degenerate eigen-
value K. The corresponding eigenvector, say ¢y, has all equal
components, without specific information about the details of
a generic source. However, since the other eigenvectors con-
tain negative components, implying “unphysical” sources, €g
is needed to correctly reconstruct the source.

On the contrary, out of the focal plane (§5 # 1), numerics
is needed to deal with the prescribed relations (3.9)—(3.10).
By using the same lattice of single sources as above, the
matrix @ loses the previous simple structure: it is not sym-
metric anymore and its elements take values over a finite set
of real positive numbers. However, at least for the explored
values 6s & 1, these matrices are still diagonalizable, but
their eigenvalues take complex values and are not degen-
erate. Still, there exists a maximal isolated real eigenvalue,
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the others appear in conjugated pairs, whose absolute values
fill a band, extending from the degenerated values indicated
in (3.12) to 0. So, the spectrum is not longer quasi-flat and
the phases make the eigenvalues migrate in the disk around
the origin of the complex plane of radius ~ ¢ /2. This cor-
responds to a superposition of many scalings and rotations
of the image around the axes of the optical system. Even if
at the moment we do not have any analytic tool to describe
such a situation, remarkably a §s-dependent rescaling of the
source lattice allows to find a pure real spectrum for @, which
becomes symmetric, but still the eigenvalues range over a
band of the order ¢ near 0. The rescaling is of the order of &g,
evenifits exact expression for restoring the ideal simple spec-
trum (3.12) is not achieved yet. Several different techniques
to calibrate such a factor are actively under investigation with
the aim to realize a numerical focusing method.

4 Design specifications

Since the photosensors will be arranged in a square matrix,
we will consider MURA coded masks. Even if conceptu-
ally this is not necessary, the below defined geometries are a
compromise among the technological limitations (available
matrices of SiPM photosensors, electronic and mechanical
constraints, allowed heat dissipation rate in the scintillation
liquid) and the image reconstruction requirements. In other
terms, we would explore here imaging systems involving few
sensor channels, which in a more generic context may be an
arbitrarily scalable factor. As mentioned above, to enlarge the
FoV, we consider a mosaic of masks. After inspecting sev-
eral types of assembling, we arrived at the conclusion that
the best solution consists of four cyclically arranged masks.
By exploiting the cyclic shift property of the MURAS, we
periodically permute columns and rows also on the mosaic
to optimize the resolution of the paraxial light sources. Sim-
ply, the so built mosaic allows us to expand the region of
light collection with the same basic pattern. Thus, sources
at large angular position with respect to the normal at the
mask can project on the detector screen their images coming
from different apertures. We have to stress that the detector
array keeps the same number of rows and columns as a sin-
gle mask. Furthermore, after a restriction of the image on the
effective detector matrix, the deconvolution procedure will
proceed as usual.

4.1 The 6 detectors setup

Most of the previous considerations on the use of the coded
masks of small rank and in the near field conditions suggest
that their stereographic properties are partially shadowed in
the reconstruction of a source. Thus, the obvious solution
is to expand the detector dimensions or, alternatively, try to

detector C

coded mask

focal distance = a

focal plane C

focal plane D

T
focal plane A
focal plane B

..........

_______
~~~~~~~~~

Fig. 3 Possible setup with couples of parallel devices (mask-mosaics
and detectors). The distances a and b are for mask-focal plane and mask
- detector, respectively. In this work the setup with s = O (coincident
focal planes) is used for the simulation. Also a setup with s < 0 could
be designed

dispose more of them in different configurations, allowing to
detect the true spatial extension of the tracks we are looking
for. Thus, we arrive at the concept of a spatially distributed
system of coded masks. In particular, in the present paper
we propose to consider a Stage of Observation, bounded by
pairs of coaxial parallel coded mask devices, as schematically
represented in Fig. 3. The main features of such a setup are:

1. 6 mask mosaics define a cubic Stage for the physics of
interest;

2. the masks are identical in a 2 x 2 mosaic;

3. each pair of parallel mosaics shares the same symmetry
axis;

4. the 6 SiPM detectors are coplanar to the mosaics, at the
same distance b from the coupled mask;

5. the center of the Stage is the origin of an orthogonal ref-
erence system;

6. the masks are as far apart from the origin exactly as
the focal distance a, thus the coordinate planes passing
through the origin are themselves focal planes.

Furthermore, one can outline several details, namely:

1. the detectors will provide redundant information, which
has to be simplified/exploited;

2. alower number of devices can be used, exploiting more
efficiently the performed measurements;

3. a primary interest will be to study the possible measure-
ments by means of couples of parallel coded masks;
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Table 1 Features of a single device (mask-mosaic and detector)

MURA mask 17 x 17
Mosaic of masks 2x2
Mask aperture side length (p,,) 3.15 mm
Mask — focal plane distance (a) 250 mm
Mask — detector distance (b) 20.0 mm
Detector (SiPM) matrix 17 x 17
Acquisition channels 289
SiPM pixel pitch (pg) 3.4 mm
Focal plane separation (s) 0 mm
Magnification on the focal plane («) 1
Detection efficiency 100%

Resolution length (/,¢5)
Field of view (FoV)

Angular aperture (6r,y )

~13.5 p,, = 42.5 mm
~ 723 x 723 mm?>
~ 8.9°

4. asecond step is to exploit the performances of couples of
orthogonal masks;

5. since presently the geometry of the specific experimen-
tal imaging-system cannot be fully determined, the cubic
setup can be deformed in a more general parallelepiped
structure, with non-coincident focal planes and shifted
masks.

Following the previous prescriptions, many different exper-
imental setups have been studied, taking into account actual
technical requirements, related to the intensity of light emis-
sion, number of electronic channels per detector array and
geometry of the Stage of Observation. However the analy-
ses presented in this paper are based on the simulation per-
formed according to just one design. The parameters of a
single device are reported in Table 1.

5 The single pinhole camera approximation

The problem of the spatial localization of the source is hardly
solved by using only one coded small-order mask, then we
need to use more than one. The simplest considered mask
arrangement is made up by two parallel coded systems, shar-
ing the same focal plane. For sake of simplicity, we suppose
that the apertures of the two masks result to be co-axial, that
is, any orthogonal line to mask planes intersects the corre-
sponding apertures on both of them. However the results we
are going to present can be extended also to non-aligned
masks.

In order to obtain simple formulas to reconstruct the
image, we approximate each coded mask with a single pin-
hole camera. Such an effective (point-like) aperture is set at
the center of each mask, in the origin of the reference frame

@ Springer

of the mask (see Fig. 4, left). Let us call O 4 and O p the center
points of the masks on the left (A) and on the right (B), respec-
tively, with the coinciding axes. In this scheme the imaging
process is reduced to a projective application of the source
points on the focal plane through the poles O4 and Op. For
the stipulated approximation to be valid, the source must be
sufficiently far from the mask and the angle subtended by
two different apertures of the mask has to be small. Then,
taking into account the existence of a preferred focal plane,
the approximation validity interval can be expressed as
a2
L« ——,
q Pm

where ¢ as above is the dimension of the mask and L is a
typical transverse distance of the source from the center of
the FoV.

In practice, let us fix a point-like source S located in the
space between the two masks, with coordinates (xs, ys, zs)
with respect to aright-handed frame of reference (O, x, y, 2).
We denote by y4 = |ys —al| and yp = |ys + a| the length of
the projections on the y-axis of the segments O 4 S and O3S
with the restriction

S.D

ya +yg =2a. (5.2)

The projection of S on the focal plane is done by the
intersection of two straight lines of the bundle through S
and Oy p, respectively. These intersections are denoted by
Py = (xa,a,z4), Pp = (xB,a,zp), which belong to
a line passing through the intersection of the axis system
O with the focal plane. This can be proved by elementary
geometry. Of course, the reconstruction of sources closer to
a mask is seen more far apart on the focal plane, but closer to
the center O when seen from the opposite side. The Cartesian
equations of these two lines are

XA ZA
X=——y+xga z=——Yy+z4,
a a
XB ZB
x=4+—y+xp z=+—y+ 2B (5.3)
a a
and their intersections are readly found to be
2xAxB ZZAZB
xS = —’ ZS = —7
XA +xp Za+ 2B
XA — XB Z{A —ZB
R —a . (5.4)
Y XA+ xp Za+2zB

The first two previous equations represent the harmonic mean
of the A and B coordinates. Such elementary formulas are
of great help in localizing sources. In fact, it is enough to
compute for the same point-like source the x, z coordinates
on the focal plane seen by the two masks and compute their
harmonic mean, providing the correct value.

In the more general case of non co-focal masks, in the
same approximation (see Fig.4, right) analogous formulas
hold, namely
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Fig. 4 Left— A source S seen
by a pair of single-pinhole
cameras sharing the focal plane

(fa = fB). P4 and Pp are the o %S/ ‘ Js 08l

apparent positions observed by

04 and Op, respectively. Right

— A source S seen by a pair of ;
single-pinhole cameras with /
distinct focal planes (f4 # fB), YA
separated by a supplementary ‘
distance s. Again, P4 and Pp \

are the apparent positions ‘

observed by O4 and Op, ; /
respectively Ja=fz fi

W
o
\
\
\
N
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N
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x5 = (2 + f) _XAXB 75 = (2 + f) _RAZB (5.5) where 6 = ly¢5/+/12. Same formula can be used for the

s

a’ xa+xp a’ za+zm second coordinate (zg in this example).
ys = (a + %) BT XA <a + %) BT A (5.6) However, it is necessary to stress that a larger error can be
XA +xp zatzs introduced by wrong association of pixels on opposite detec-

where s is the separation distance of the focal planes. Thisis  tors. This association can be driven by topological criteria
a significant design parameter, because the photon collection  case-by-case. Here we want to stress that the associated pix-

and the spatial resolution depend on it. Also, the configura-  els must be on the same Cartesian quadrant and on the same
tion with s < O (focal plane closer to the opposite mask) can  line with respect to the system origin (look at the position of
be implemented. P, and Pp in Fig. 4, left).

Several configurations of non planar sources have been
simulated and successfully analyzed by calculating the har- 5.1 3-D reconstruction in the single-pinhole camera
monic mean. These checks are partially reported in the fol- approximation

lowing (Sect.6.1).

Finally, the method is not particularly useful in the numer- By using the single-pinhole approximation, it is quite simple
ical evaluation of the third coordinate (ys in this case) since  to prove how to reconstruct single linear tracks in the space
its estimate is affected by large uncertainty. This behaviour by means of two parallel co-focal masks and a third one,
can be understood (disregarding the effect of the quadratic this latter placed orthogonally with respect to the other ones
intensity falling off with the distance) by noticing that the  (Fig.5). The basic idea rests upon the elementary projective
localization procedure of a point-like source performed here  geometry.

is equivalent to establishing a one-to-one correspondence A physical track, represented by a segment Py Py, will be
between the set of sequences of 297 bits and the set of  stereographically projected by the three line bundles emerg-
adjacent convex 3-polytopes, generated by the planes emerg- ing from the pinholes Oy, O, onto the common focal plane

ing from the sensor devices and tangentially intersecting the ~ y—z and from Og onto y — x, respectively. The three pro-
mask apertures. The polytopes tile the space in front of the  jected segments belong to straight lines with equations
mask, but their shape is not regular, nor their sizes. In particu-
lar, in correspondence with the focal plane, there is a stratum
of polytopes, which are elongated in the orthogonal direc- Y =p z+0, ony—z from O,
tion about ten times the transversal section size ~ [,.;. Thus, y=pLx+0o,, ony—x from Og (5.8)
they allow us to determine pretty well the coordinates of the
sources in that plane, but very roughly in the direction of the
mask axes.

Assuming that the association of pixels on different par-
allel detectors is correct, the error on xg is given by the fol-
lowing formula?

y=pz+0o, ony—z from O

where p, p, p. arethe angular coefficientsand o, 6, o the
intersections with the y axis obtained from the 2-dimensional
reconstructed images (see Fig.5). These six quantities are
related to the parameters of the physical track in the space, i. e.
its direction and one of its points. More precisely, parametriz-
ing the track line by the line unit vector M = (n x> My, nz)

Y xi + x4B and one of its point Py = (xo, Yo, Z0), one can analytically
Oxg = ( + —) ———— 0, (5.7)  derive the equations of the projected lines on the chosen
a’ (xa+xp)

planes. Thus, one obtains the parameters in (5.8) in terms
2 According to this result, we observe that this uncertainty is lower of hne.ar. fract19na1 combinations of M anfl Po Compone.nts.
in the configuration with s < 0 but in this case the single-pinhole Thus, it is possible to solve such an algebraic overdetermined
approximation can be not suitable. system, together with certain consistency conditions. For
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Fig. 5 Stereographic projections of a given segment (in red) from three
different poles 01, Oz, Og. O1 and O; are on the same x-axis, sym-
metrically placed at the distance £a from the origin. The third pole Og
is at —a on the z-axis. The red segment Py P indicates a light track,
whose projections are indicated in green and orange on the plane z—y
and in pink on the plane x —y. The other visual poles have been indicated
for future reference

instance, looking at the first two equations in (5.8) and from
the observed projected segments on the y—z plane (detected
by O; and 0»), it is easy to calculate the intercept with the
y-axis and one of the slope

oo po + po

* =9 . ny/n, = 5.9
y nyfn; =" (5.9)

o+o
Thus, the angular coefficient of the track projected on the y—z
plane is the mean value of p, p, weighted with the inverted
intersections (p weighted with o, p with o). Remarkably, this
result can be also simply deduced taking into account that the
projected line intercepts the y axis in the point (z*, y*) and
the z axis in the point with coordinates

¥ 200 ¥
'=—— y' =0
op+op
On the other hand, the information connected with the pro-
jected segments on the y—z plane allows to estimate the other
component of the line unit vector along the perpendicular
axis, accordingly with the analytic formula, namely

@ Springer

p—p
o+a5

(5.10)

ny/n; =a

But, as remarked in the previous section for the last equation
in (5.4), we expect that the collected data will provide quite
inaccurate evaluations of such a parameter. In any case, three
pairs of parallel masks allow to use equation (5.9) cyclically
permuting the oriented planes and obtaining:

{y —zview} — z* =0,y",ny/n,
{x—zview} — z" = 0,x", ny/n.,
{y—x view} — x* =0, y", ny/ny.

Of course, one may apply similar considerations from the
images projected onto pairs of orthogonal planes. For the
pair {y—z}o, , {y — x} ¢, in (5.8), one obtains

a’pp) +60,

) = , 5.11
"I = TG +apD) oD
a,5 — 0]

Also in this case, we expect that (5.11) will be very useful in
determining the slope of the line, while (5.12) will be affected
by large uncertainty. But, in the perpendicular-mask setup we
can invert the role of the detectors in Eq. (5.11) in order to
get the slope in the y — x view. So it results

a’pip+oia

) 5.13
a(oL +ap) 619

ny/ ny =
Of course, consistency relations arise when comparing vari-
ous formulas among themselves. Specifically, the following
identities hold

@’ (p—p)pL+ @ +o)oy
=a(po+po), a(c—o)pL+ (0 +0o)oL =200.

(5.14)

These relations can be exploited not only to check the con-
sistency of the data, but also to remove the dependence of
the formulas on p and o . So, two perpendicular detectors are
good enough to get the intercepts on y axis

ap; —o] _ 0 —0L
x=0—>y= 7=0—>y=———ua
apL +o apyL +o
(5.15)

Therefore, a couple of perpendicular detectors are the mini-
mal setup for the 3-D reconstruction of a linear track and we
expect that similar algorithms can be implemented also for
second-degree curves. It is evident that the procedure here
presented does not take into account the actual experimental
obstacles. Then, many detectors in parallel and perpendicu-
lar configuration are mandatory to make redundant measure-
ments in large volumes.
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6 Simulation and signal reconstruction

In order to quantitatively study strength and weakness of
the coded mask system so far described and to get a more
realistic understanding of the coded masks performance, a
toy Monte Carlo has been implemented. The light rays are
emitted uniformly along the simulated track and propagate
linearly according to the direction extracted isotropically on
the full solid angle.

At this stage of investigation, we are concerned mainly
with the effect of coded masks on the light signal by looking
for simple formulas to decode it. In order to reach this goal
we did not simulate the actual physical effects (light yield
from LAr [33,34], light absorption, light scattering, SiPM
efficiency and so on). In the future a full Monte Carlo simu-
lation will be implemented.

light source on the y-z plane
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The simulation has been performed with different parame-
ters (mask rank, pixel sizes, values of a and b lengths) in order
to verify the correctness of the formulas presented in this
paper. Here we present the results obtained with the experi-
mental setup made by 6 coded masks and 6 SiPM matrices
(see Table 1 and Fig. 3) with coincident focal planes (s = 0).
The full optimisation of the detector setup will be defined by
also taking into account mechanical and cryogenic require-
ment (see Sect. 1).

A reference example of the projection/reconstruction proce-
dure applied in the present work is reported in Fig. 6, where a
simulated linear light-track crosses the Stage of Observation.
In the left column the original track is plotted in the different
views. In central and right columns the track is reconstructed
using the photon signal collected by the SiPM detectors. At
this step we did not apply any kind of filter on the recon-

y-z view, O2
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Fig. 6 Left column The light track crossing is shown in real dimensions in three different views. Central and right columns Reconstruction of the
light track on three couples of parallel detectors. The experimental setup is that in Fig.3
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light sources on the x-z plane
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Fig. 7 Simulation of the four light-points. The left frame represents
the actual sources in the x—z view. The other two frames represent
the reconstructed signal by means of two different detectors. Detector

structed image, we simply take the absolute value of the con-
tent of each bin (as an effect of the decoding also negative
values are possible, but significantly lower in absolute value
than the signal). We would like to stress that the track does
not lay on focal planes. Then, as expected, the shape of the
reconstructed track in the same view is different because of
the point-by-point distance of the track from each detector.
Indeed the measurement with only one mask reproduces a
distorted image of the track. A true image can be recon-
structed combining the information from different masks, as
explained in previous sections and verified in the following
ones.

6.1 Application of the harmonic-mean method and signal
filter

Simple light signals were studied to evaluate the effective-
ness of the harmonic-mean method. Four point-sources have
been simulated at the vertices of a square (12 cm size) on
the x, z plane (Fig.7). The signal is collected by a couple
of parallel detectors. The first one (A) is at 17 cm from the
light-sources, the second one at 33 cm. The left frame in
Fig.7 shows the “true” positions of the light-sources. The
signal reconstruction on the detector A is shown in the central
frame. The right frame represents the signal on the opposite
detector (B). From these figures, it is apparent that the recon-
structed positions are subjected to a homogeneous scaling
effect, due to the different perspective projection. Indeed the
reconstructed image is larger for the closer detector (A) and
smaller for the farther detector (B). By calculating the har-
monic mean (Eq.(5.4)) and estimating the error (Eq.(5.7))
one gets the reconstructed coordinates +(5.5 £ 1.2) cm of
the light sources. They are compatible within 0.42 o with
the actual coordinates £6.0 cm. Moreover, we verified that
also the third coordinate yg can be correctly estimated by the
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A (central frame) is closer to the sources, detector B (right frame) is
farther. For detail on the image reconstruction see Sect. 6.1

third equation in (5.4). However, we stress that this is just a
particular case as this formula for yg is not in general reliable.

For the analysis of signals more complex than 4 light-
points, a preliminary procedure was implemented in order
to follow the track and extract the spatial extent (i.e., the
distance between the end-points) of the signal from the noise.
Based on a careful investigation of the image histograms, we
adopted the following step procedure:

— when anegative content is associated to a bin of the recon-
structed signal, this content is substituted with its absolute
value;

— aGaussian low-pass filter is applied to the two-dimensional
distribution in order to get a better separation between
noise and signal;

— the distribution of the values of all bins is studied and
fitted with a Gaussian;

— a threshold is fixed on such a distribution: typically we
accept as signal the bins with a separation from the Gaus-
sian center larger than 4o.

We know that this selection method has not been tested on
a full Monte Carlo. The application of this method and the
threshold choice for fully simulated neutrino interactions are
necessary. However, we will use this preliminary signal selec-
tion as a provisional instrument to check the formulas found
in this work.

In Fig. 8, left frame, the tracks generated by a simulated
neutrino interaction are shown in the x—z view. Obviously
the tracks donot lay on a single plane. The light signal emitted
by the tracks is collected and reconstructed by two parallel
masks sharing the same focal plane (Fig. 8, center and right).
The position of the end-points (¢, § and y) has been recon-
structed by means of the harmonic mean applied to the edge
signal pixels. The measured coordinates are compared with
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light source on the x-z plane
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Fig. 8 Left frame — simulation of a neutrino interaction. The three
tracks do not lay on the same plane. Central and Right frames show
the reconstructed image in the x —z view. The superimposed green dots

Table 2 Reconstruction of the edge points in a neutrino-event (Fig. 8).
The reconstruction errors are calculated according to formula (5.7)

“Truth” (cm) Reconstruction (cm) Discrepancy (1)

« z-coordinate -5.0 —4.25+0.87 0.86
a x-coordinate +1.5 +2.10+£1.23 0.49
B z-coordinate +16.0 +14.58 £0.92 1.54
B x-coordinate +6.0 +4.25 +0.87 2.01
y z-coordinate +16.0 +15.95£1.02 0.05
y x-coordinate —-10.5 —10.21 £0.97 0.30

the “true” ones in Table 2 assuming the error of formula (5.7).
The agreement is fairly good. The largest discrepancy (20°)
is due to the vanishing of the reconstructed track when the
original one is too far from a detector (on the y-axis, perpen-
dicular to the analysed view).

There are at least two comments concerning the presented
reconstruction. First of all it does not represent a realistic sim-
ulation of a generic event that may occur in DUNE experi-
ment, but it is a proof of principle of how the coded mask
technology may be applied in the context of the high energy
Physics. On the other hand, it is clear that the chosen set
up (dimensions of the mask matrix, magnification ratio in
particular) leads to a resolution power, which limits the pos-
sibility to discriminate among high complex topologies. But,
in principle one may scale the number of pixels in order to
significantly improve the resolution, without distorting the
basic concepts involved in our considerations.

6.2 Image 3-D analysis

The signal due to a linear light-track has been simulated to
check the estimates of Sect.5.1. The track is described in the
space by the following cosine directors and by an arbitrary
point

reconstructed image - detector A

reconstructed image - detector B

x-coordinate (cm)

10 20 30
z-coordinate (cm)

0 10 20 30
z-coordinate (cm)

characterize the pixels selected as signal. The position of the points «, 8
and y is estimated by means of the harmonic mean. To compare “truth”
and reconstruction look at Table 2

M = (0.67, 0.67, —0.33) Py = (-3, 0, —1.5) (6.1)
In the Cartesian notation
y=-2z-3; y=+x+3. (6.2)

The signal has been analyzed by means of the detectors Oy,
0> and Og. The detected images are shown in Fig. 9 where a
linear fit is superimposed on the selected pixels (black dots).
The parameters of the fit are also reported in Fig. 9. The detec-
tors in O and O; are parallel and the final track in the y—z
view can be reconstructed according to formulas 5.9. The
result is comparable with the first Eq. (6.2)

y=-195z-3.03 (6.3)

Detectors O and Og are perpendicular and allow to recon-
struct the light track in the space. The fit parameters have
been used in the formulas (5.11), (5.13) and (5.15) to get

M = (0.72, 0.63, —0.30) Py = (-3, 0, —1.5) (6.4)
Neglecting the errors due to the pixel size, the errors on the fit
parameters are enough to claim that the calculated equations
are in good agreement with the original ones. Then the results

of Sect.5.1 are confirmed in the frame of the single-pinhole
approximation.

7 Conclusions

In the present work, we have reported a study concerning
the application of the method of coded masks as detectors
of tracks of charged particles in scintillating media. It has
been shown that the system actually allows for the detec-
tion of tracks over focal distances of the order of tens of
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y-z view, O2 y-z view, O1 y-X view, O6
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Fig. 9 Reconstruction of a linear track on three different detectors (01,
0> and Og). The linear fit is applied to the pixels (black dots) selected
according to the preliminary algorithm of signal recognition. The fit

centimeters. From theoretical arguments and numerical sim-
ulations, it emerges that it is possible to implement decod-
ing and recognition procedures for signals, even complex
ones such as neutrino interactions, with a relatively limited
number of channels (few hundreds for each SiPM array). By
using a preliminary procedure of noise reduction and signal
clustering, it has been shown the possibility to make mea-
surements in agreement with the theoretical evaluations. If
opposite and/or orthogonally arranged masks are used, the
measurements can be correlated, by using simple geomet-
rical formulas. A 3-dimensional reconstruction is possible,
even for sources out of the focal planes. An alternative image
reconstruction method is being pursued, based on the calcu-
lation of deconvolution matrices depending on the depth of
field. This approach, which is intrinsically 3-D, might solve
the problem of the limited depth of field due to the near field
conditions. Other critical issues must be yet carefully studied,
as intensity of the photon signal, detection efficiency, rejec-
tion of noise and artifacts. Therefore we are developing a full
Monte Carlo in order to complete the design of a real detec-
tor. The implementation of such Monte Carlo is in progress
in parallel with the design and construction of prototypes of
the detector for the imaging of neutrino interactions in LAr.
Also the feasibility to complement the reconstruction of such
events with the timing information is under analysis.
Finally, complete validation of high complex signal recon-
struction will require other deep considerations. In this
regard, recently in [35] points of interest in particle trajec-
tories, such as the initial point of electromagnetic particles,
from straight line-like tracks to branching tree-like electro-
magnetic showers, have been studied by means of Neural
Network, significantly improving the efficiency of finding
candidate interaction vertices, and hence candidate neutrino
interactions, which may be used in high-level physics infer-
ence, for instance in the context of the DUNE and SBND
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parameters shown in the frames have been used to reconstruct the orig-
inal track in 3-D. See Sect. 6.2 for details

experiments. Those developments merit our attention in fur-
ther dedicated efforts.
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