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Abstract

In recent years probabilistic model checking has be-
come an important area of research because of the
diffusion of computational systems of stochastic na-
ture. Despite its great success, standard probabilistic
model checking suffers the limitation of requiring a
sharp specification of the probabilities governing the
model behaviour. The theory of imprecise probabilities
offers a natural approach to overcome such limitation
by a sensitivity analysis with respect to the values of
these parameters. However, only extensions based on
discrete-time imprecise Markov chains have been con-
sidered so far for such a robust approach to model
checking. We present a further extension based on
imprecise Markov reward models. In particular, we
derive efficient algorithms to compute lower and upper
bounds of the expected cumulative reward and proba-
bilistic bounded rewards based on existing results for
imprecise Markov chains. These ideas are tested on
a real case study involving the spend-down costs of
geriatric medicine departments.

Keywords: Probabilistic Computational Tree Logic,
Model-Checking, Imprecise Markov Chains, Impre-
cise Markov Reward Models.

1. Introduction

Model checking is a fully-automatic logic-based technique
to decide whether a model satisfies some given require-
ments. As such, it has been mostly applied as a tool to
decide correctness and compliance in systems design. Rel-
evant examples are software verification (e.g., Bérard et al.,
2001), system communication and also computational bi-
ology (e.g., Brim et al., 2013; Benes et al., 2019). During
the last decades, the spread of stochastic computational sys-
tems led to the development of appropriate formal models
and logical languages. A notable success has been achieved
by probabilistic computational tree logic (PCTL, Hans-
son and Jonsson, 1994), and its extensions (e.g., PCTL*,
PRCTL, PCTLK), that are conceived to specify properties
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of Markov processes. Standard PCTL and PCTL?, in partic-
ular, are the reference languages for discrete-time Markov
chains (Baier and Katoen, 2008) and Markov decision pro-
cesses (Henriques et al., 2012), whereas PRCTL and CSL
are used, respectively, for Markov reward models (Andova
et al., 2003) and continuous-time Markov chains (Baier
et al., 2000). Other extensions have been also proposed to
cope with hidden Markov models (Zhang et al., 2005) and
probabilistic interpreted systems (Chen et al., 2016).

Despite their wide applicability, PCTL and its extensions
suffer from a significant limitation: the probabilities govern-
ing the model behaviour require a sharp quantification. This
is a serious issue in many real-case scenarios. In computa-
tional biology, for instance, non-homogeneous processes
are quite common (Benes et al., 2019). Similarly, ignorance
about probabilities represents an important challenge for
epistemic multi-agent systems. To overcome these limita-
tions, different approaches have been proposed. Parametric
Markov chains (Daws, 2004, Ilie and Worrell, 2020) model
such ignorance by treating transition probabilities as param-
eters. The applicability of these models is however limited
because of the computational complexity of the relative
model-checking procedures, which is exponential with re-
spect to the number of states of the model, even for the
most advanced procedures based on fraction-free Gaussian
elimination (Baier et al., 2020).

An alternative and less demanding approach is provided
by the theory of imprecise probabilities (Walley, 1991) and,
in particular, by the most recent works on imprecise Marko-
vian processes, which provide a robust approach to the
modelling of non-homogeneous Markov processes, as well
as to the modelling of partial ignorance about transition
probabilities (e.g., de Cooman et al., 2016). Troffaes and
Skulj (2013) have outlined the first attempt to extend the
framework of probabilistic model checking to imprecise
probability models. On the side of properties specification,
they replace the standard PCTL probability operator with a
new one weighted by an interval whose bounds correspond
to the respective lower and upper bounds of probabilistic
inferences in an imprecise Markov chain. On the semantic
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side, they prove that relevant model-checking tasks concern-
ing probabilistic formulae can be reduced to well-known
marginalization tasks in imprecise Markov chains. Finally,
they provide specific algorithms that exploit marginaliza-
tion to check whether a model satisfy a given imprecise
probabilistic formula.

The contribution of Troffaes and gkulj (2013) is focused
on discrete-time Markov chains. A very natural way to ex-
tend such seminal work is to consider an imprecise version
of Markov reward models. The present work explores this
extension. Imprecise Markov reward models are simply
intended as imprecise Markov chains provided with a la-
belling function that assigns a numerical reward to each
state in the model. Two new robust inference tasks are con-
sidered, these being the computation of the bounds of ex-
pected cumulative reward and of the reward-bounded prob-
abilities. The IPCTL language proposed by Troffaes and
Skulj (2013) is therefore extended here including new oper-
ators to represent those inferences. We call the language we
obtain IPRCTL. We provide the new language with a proper
semantics and define satisfiability conditions for the new
operators. Hence, we present specific algorithms to com-
pute the relevant inferences specified by those operators.
These algorithms are derived by the schema introduced
by T’Joens et al. (2019) to compute robust inferences in
imprecise Markov chains. Finally, we outline some con-
siderations about the computational complexity of those
new algorithms. Notably shifting from precise to impre-
cise probabilities does not affect the overall computational
complexity of the relevant model-checking procedures.

The paper is organized as follows. In Section 2 we re-
view some basic material. The definitions and algorithms
for, respectively, precise and imprecise Markov chains are
discussed in Sections 3.1 and 3.2. Section 4 contains the
syntax and semantics of both PCTL and PRCTL, while the
imprecise-probabilistic extensions are discussed in Section
5. Before the conclusions in Section 7, we validate these
algorithms in Section 6 with a case study about the spend-
down costs of geriatric medicine departments based on a
sensitivity analysis of the results in McClean et al. (1998).

2. Background

We first review the necessary background material and
notation about the theory of imprecise probability. Let S
be a variable taking its values from a finite non-empty
set of states . whose generic elements are denoted by
s € <. A probability mass function (PMF, for short) over S,
denoted by P(S), is defined as a non-negative normalized
real map over .. Given a real-valued function f of S,
ie., f:.¥ — R, its expectation based on P is defined as
E[f] :=Y .o f(s)P(s). Notation P(S'|s) := {P(5'|5) }se.o
and P(S'|S) := {P(S'|s) }se.~ is used instead for conditional
probabilities.
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A credal set (CS) over S, denoted as K(S), is a collection
of PMFs over S. We consider here only finitely generated
CSs, i.e., CSs whose convex hull has only a finite number
of extreme points. Given a real-valued function f of .7,
the upper expectation of f with respect to K(S) is defined
as E[f] := supp(s)ck(s) Ep[f]. The lower expectation E is
similarly defined. Suprema (infima) of upper (lower) expec-
tations can be equivalently reduced to maxima (mimima)
over the extreme points of the CS convexification. Conse-
quently, we can identify a CS with the extreme points of
its convex hull. Conditional expectations can be similarly
considered.

3. Markovian Models

Les us first discuss how discrete-time Markov chains can
model the behaviour of stochastic, time-homogeneous and
memory-less, agents with a finite number of possible states.

3.1. (Precise) Markov Chains

Consider an agent defined over a finite non-empty set of
possible states .. The agent evolves from a state s € . to
another state s’ € .. Any possible temporal evolution of
the agent across time is described by a countable sequence
of states that is called a path and denoted by 7. Similarly,
we use IT to denote the set of all possible paths, whereas
we use 7(¢) to denote the generic state of the path 7 at
time ¢ € N. The agent is stochastic, meaning that there is a
certain degree of uncertainty about which path describes
its actual evolution. This uncertainty can be measured. To
do so, we endow IT with a 5-algebra o (IT) and augment it
to a probability space (IT,5(IT), P). ! Over this probability
space, we define a family {S; };cw of categorical stochastic
variables S; such that, forall# € N, S; : & — 7(¢). For each
t € N, P(S;) denotes a PMF that assigns to each s € .
the probability of s to be the state of the agent at time
¢ € N. Similarly, for eachz € N, P(S;4+1 = | S; = s) are the
conditional probabilities modelling, for each pair of states
s,s' € .72, the probability of the agent to reach s’ at time
t+ 1 given that it is in state s at time ¢. Because the agent
is memory-less, it satisfies the Markov property, i.e.,

P(Si41[St,---,80) = P(Sr+151). ey
Furthermore, we assume the behaviour of the agent to be
time-homogeneous, i.e., P(S;11|S;) is the same for all 7 € N.
Given the Markov property and the time-homogeneity, a
compact specification of the agent behaviour is possible in
terms of an initial PMF P(Sy) and a transition matrix 7 :
2+ [0, 1], whose elements are the values in P(S,;1]S;)

1. In particular, o(IT) is the o-algebra generated by the cylinder sets,
also called cylinder c-algebra (Revuz, 2008). This allows all the
functions we introduce to be measurable.
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and where the choice of ¢ is arbitrary because of time-
homogeneity. Such a model is called here a precise Markov
chain (PMC) and denoted by M.

Typical inferential tasks in PMCs can be computed by
means of a transition operator T mapping a real-valued
function f of . to its (left) scalar product by T, i.e.,

= Z T(s')s)- f(s'

ses

(@)

for each s € .. The dual TT of this linear operator is
obtained by a right scalar product as follows:

ZTss

ses

(T7f)(s A3)

for each s € .. By total probability it is easy to check that
TP(S;) = P(S;+1) and hence T'P(Sy) = P(S;). By the no-
tion of conditional expectation, TYF(S)) = Ep[f(Si41)|S:]s
and hence ((77)"£(S0))(s) = Ep[f(S:)|So = s].

We similarly compute the hitting probability vector hfé
for a finite time-horizon ¢ € N. For each s € ., and &/ C
S, h;’ (s) is defined as the probability of having at least a
state s; € .o for some T < ¢, provided that Sy = 5. Clearly,

E{O =1, i.e., the indicator function of <7 gives the hitting
vector for t = 0 being one for states consistent with .7 and
zero otherwise. We say that a state s € . is absorbing if
T(s,s') = 0 for each s’ # s, i.e., once the model is in an
absorbing state, the transition probabilities to other states
are all zero. Let T,; denote the transition matrix obtained
from 7 by making absorbing all states s € 7. We can
obtain the hitting probability as:

hys) =Y Ty(s,s) = [T 1)), @
s'eof
for s € &7¢ := %\ o/, while, trivially, hf,f (s)=1forse

/. The dual of the above computation corresponds to the
recursion:

WSl =T+ 1y TR, (5)

for each r > 0, where sums and products by indicator func-
tions are intended as element-wise operations on arrays.

The unbounded hitting probability vector /., whose ele-
ments are the values of the probability of the agent to reach
at least a state s € .o evetually in the future computed for
each s € ., can be achieved as lim,_,., hfj. Proves of the
existence of this limit are available in literature see Re-
vuz (2008). Here, simply note that limy o0 h=! ~, corresponds
to the fixed point of Equation (5). We remind the reader
to classical references, e.g., Revuz (2008), for the formal
proofs of these results.

Finally, following Katoen et al. (2005), we define a
Markov reward model (MRM) as a PMC paired with a
reward function rew : . — N. We call the natural number
rew(s), the reward of state s € ., while rew also denotes
the array of all the rewards for the different values of .7
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The cumulative reward of the ¢-th state of a path 7 in the
time range [0,¢] is intended as:

Z rew

Rew 7z:t

(6)

3.2. Imprecise Markov Chains

The generalization of PMCs to imprecise probability can be
achieved in different ways, possibly leading to different in-
ferential results on specific tasks (Krak et al., 2019). The ap-
proach we adopt here, also called model-theoretic, is based
on a direct sensitivity analysis interpretation approach): an
IMC is intended as a family of PMCs all compatible with
the assessments about the system uncertain behaviour. Un-
der this interpretation, a generalization of a PMC to an IMC
can be achieved by replacing P(Sp) with a CS K(So) and
the transition matrix T with a credal transition matrix
made of conditional CSs, i.e., 7 :={K(S'|s) }sc.~ and char-
acterizing the transitions from S to §’. Time-homogeneity
consists instead in assuming the specification of the (collec-
tions of) CSs K(S;+1|S;) independent of 7. The dual (linear)
transition operator in Equation (3) admits the following
(non-linear) extension to IMCs:

(Zf)s):= sup Y T(s,;s) f(s),

T(s,S")eK(S']s) s’ .7

)

to be considered for each s € .7, with K(§'|s) € .7 (Trof-
faes and Skulj, 2013). An analogous lower operator .7
can be defined by replacing the supremum in Equation (7)
with an infimum. Note that the optimization in Equation
(7) is a linear programming task whose feasible region is
the convex hull of K(S'|s), that in our assumptions can be
described by a finite number of linear constraints. It is easy
to check that:

(T £)(s) =E(£(5)1S0 =), ®)

for each s € .. A similar relation holds for the lower
operator and the lower expectation. As recently shown
by T Joens et al. (2019), the recursion in Equation (5) to
compute the hitting probabilities in a PMC can be easily
generalized to IMC:s as follows:

—<t—1

hﬂ_]lof—i-]lpﬂﬁhd , 9)
with starting point Efjo = I,,. The upper hitting probability
vector ﬁf/t is intended as the upper bound, computed with
respect to the joint CS induced by the IMC, of the hitting
probability vector defined in Section 3.2. A similar recur-
sion, involving the lower operator and giving the lower
hitting probability also holds. As shown by Troffaes and
Skulj (2013), those recursions can equivalently provide a
generalization of Equation (4):

(Tl )(s),

—<t

ey (s) = (10)
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for each s € 27 being instead one for s € .27, where .7 ; is
such that 7 ./ f(s) = f(s) fors € o and T o/ f(s) = T £ (s5)
for s € &/°. When paired with a reward function rew, the
IMC is called imprecise MRM (IMRM). The problem of
computing lower and upper expectations of the cumulative
reward of a path as in Equation (6) is one of the algorithmic
challenges we want to address in the rest of the paper.

4. Probabilistic Computational Tree Logic

We open the discussion by reviewing the syntax (Section
4.1) and semantics (Section 4.2) of PCTL, the reference
language for MC based on PMCs. A demonstrative model-
checking task involving PCTL is in Section 4.3. Afterwards,
we show how the PCTL syntax has been extended to take
into account reward functions in PRCTL (Section 4.4),
whose semantics is reduced to MRM queries (Section 4.5).

4.1. PCTL Syntax

The PCTL syntax is recursively defined as follows:

O:=T|p|[-¢ |01 At | Py, (11)

<t

v:=00¢ |0 oo Je. (12)
The language includes the standard notation T for true,
atoms (such as p) and standard Boolean formulae, whose
meaning is the same as in standard propositional logic. It
also includes path formulae denoted by y and representing
properties of paths with the following informal reading
(Baier and Katoen, 2008):

* (O¢ means that in the next state of the path ¢ hold,

o ¢ U~ ¢, means that ¢, holds at a certain time T < t
and @1 holds in all the previous states of the path;

* ¢ U@, means that ¢, holds eventually along the path
and @y holds in all the previous states of the path.

Finally, for the probability formulae, where b € [0, 1] and
Ve {<,<,=,>,>}, Py, W means that there is a probabil-
ity Vb to reach a path satisfying y.

4.2. PCTL Semantics

To present PCTL semantics we first augment standard
PMCs (Section 3.1) with a finite non-empty set of atomic
propositions AP and a labelling function [ : .7+ 24P that
assigns to each state s € . a set of propositions /(s) C AP.
The resulting model is called labelled PMC. In the follow-
ing, by PMC we always denote a labelled PMC.
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Boolean Formulae. Given PMC M and state s € ., the
semantics for Boolean formulae is as follows:

MsETVse Y, (13)
M, sE=piffpel(s); (14)
M,sl= ¢ A iff M,s = ¢ and M,s = ¢o;  (15)
M,sl=—iff M,sl£¢. (16)

Path Formulae.
conditions hold:

Given PMC M and path 7, the following

M, =O¢iff M, n(1) = ¢ a7
<t M,TE(T)':(])Q,
Mmoo iff It <r: M, n(7) ¢, (18)
Vo' 0< 17 < 1]
M,7(7) = ¢,

M, =¢ o iff 31>0: M 2(7) =9, (19)
v 0<1t <71

The check of the models with respect to Boolean formu-
lae can be achieved by SAT solvers (Davis and Putnam,
1960), while the parsing-tree technique is used instead for
path formulae (Baier and Katoen, 2008).

Probability Formulae. Given PMC M and state s € .
the following condition holds:

M,s = Pop W iff P(s = w) Vb,

provided that P(s |= ) is the probability of the PMC to
reach a path 7w € IT such that @ |= y given that Sy = s (Baier
and Katoen, 2008). For each one of the possible values of
v, the computation of P(s |= y) can be reduced to a PMC
inference as in the following. Let us begin by considering
the case ¥ := (O¢. The computation of P(s = ) can be
achieved simply defining @ :={s' € ¥ : M,s' E ¢} and
computing the trivial inference:

(20)

P(S) € ®|Sy =) := (T"Ip)(s (1)

ZTss

s'ed

We now consider the case v := ¢; U=’ ¢,. To compute
P(s = ¢ U= ¢,), we first define @ and ®; as the subsets
of . satisfying, respectively, ¢; and ¢,. The probability
in Equation (20), hence, can be computed as the hitting
probability of event ®,|®, that is the set of all s € . such
that s € ®, and all the states s’ € . visited before reaching
s are in @;. We denote such hitting probability as h¢ @,
A recursion analogous to that in Equation (5) is obtamed
by multiplying the complement of the hitting event ®, by
the indicator of @1, thus obtaining the indicator of the set
difference , i.e.,

h <7

@[, ° (22)

= lo, +H‘1>1\¢2T hcb \<I> J

foreacht=1,...,t, with h§>2|<1>1 =lo,. Case Y :=¢1 U

is analogous to ¢; =" ¢, when t — oo, The value of P(s |=
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01U @), indeed, corresponds to lim;_e hgtzl @, Remind
that, this limit exists and it corresponds to the fixed point of
the schema in Equation (22) (Revuz, 2008). For this reason,
an easy way to approximate lim;_, o hé; @ consists in iterat-
ing the schema in Equation (22) until convergence. Notice
that, limited to PMCs, there exist other procedures that al-
low to directly compute the value of P(s = ¢ | ¢2) solving
a system of linear equations through linear programming
(Baier and Katoen, 2008, pp. 761-762).

4.3. A PCTL Example

Example 1 (Baier and Katoen (2008)) Consider a sim-
ple communication model operating with a single channel.
The channel is error-prone, meaning that messages can be
lost. In this particular example, the (four) states of such
model M are in one-to-one correspondence with the atomic
propositions, i.e., . = AP := {start,try,lost,delivered}.
Transition probabilities are shown in Figure I as label ar-
rows, impossible transitions correspond to missing edges.

Figure 1: Transitions in a four-state PMC.

M is compliant if and only if “the probability of a mes-
sage to be lost within seven time steps is smaller than or
equal to 0.25”. As the starting state for M is by construction
s = start, this corresponds to the following PCTL formula:

<7

M, {start} |= P<oos T | J({lost}),

whose semantics is such as in Equation (20). Yet, the task
reduces to compute h{élz)st} (& |{start}). Its computation can
be achieved either by the recursion in Equation (5) or
by the matrix product in Equation (4), both leading to
the numerical values in Table 1. Since the corresponding
values is hﬁgst}(start) = 0.190 < 0.25, the system satisfies
the requirement and can be considered compliant.

(23)

4.4. PRCTL Syntax

PRCTL (Katoen et al., 2005) is a PCTL extension achieved
by augmenting Equations (11) and (12) as follows:

¢:=--|Ev:9, (24)
yo=|oJo2, (25)
<r
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N

t start  deliv. try lost

0 0.000 0.000 0.000 1.000
1 0.000 0.000 0.100 1.000
2 0.100 0.000 0.100 1.000
3 0.100 0.100 0.100 1.000
4 0.100 0.100 0.190 1.000
5 0.190 0.100 0.190 1.000
6 0.190 0.190 0.190 1.000
7 0190 0.190 0.271 1.000

Table 1: Hitting probabilities h{Sll }(s) fort <7.

ost

where V := {<,<,=,>,>} and r € N. 2 The informal
reading of the state formula Ev, ¢ is that the expected cumu-
lative reward earned until reaching a state that satisfies ¢
is Vr. The bounded reward path formula ¢, |, ¢ means
instead that there exists t > 0 such that ©(t) satisfies ¢
while all the previous states along the path satisfy ¢ and
the cumulative reward of path & from Q to t is less than or
equaltor.

4.5. PRCTL Semantics

To define the PRCTL semantics we add three new satisfia-
bility conditions to those in Section 4.2.

Bounded Reward. Given MRM (M, rew) and path 7,
the following condition holds:

(M,rew),ﬂ:(’t) E ¢27
(M,rew), 7 |= g1 J o2 iff 32 (M, rew), n(7) F 1,97 <7,
<r Rew(m,T) <r

(26)
The procedure for this formula is analogous to that of the
PCTL path formulae.

Expected Cumulative Reward. Given MRM (M, rew)
and state s € ., the following condition holds:

(M,rew),s = Ev,¢ iffE[Rewg} (s)Vr. 27

Notice that, when ¢ — oo, i.e., when no state satisfy-
ing ¢ is reached until a finite time ¢ € N, by definition
E[Rew3](s) = +oo. Instead, for each r € Nand s € . the
expected cumulative reward is defined as follows:

Y Rew(m,1)-P(n),
mwePaths(s):
Jr<r:n(t)=¢

E[Rewg](s) : (28)

That is, an expected value for paths starting in So = s and
reaching ® at some time step T < ¢. A recursion analogous

2. Following Baier and Katoen (2008), we assume rewards to be natural
instead of real numbers. This assumption is very common in the field
of model checking because it aids to avoid possible issues concerning
the overall computational complexity of the main tasks.
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to that in Equation (5) for the hitting event & can be there-
fore derived for the quantity in Equation (28). The only
difference is that, if event & is achieved for Sy = s, the
value one in the indicator function should be multiplied
by the corresponding reward for s. If this is not the case,
the expected rewards of the previous time step should be
propagated by the transition operator, and increased by the
original rewards, i.e.,

E[Rewg"] = L - rew +Lge (rew + TTE[Rew3 " ']), (29)
and hence:
E[Rew3"] = rew +IacTTE[Rew3 '], (30)

where both equations are array relations to be considered
foreach T =1,...,r, sums and products should be intended
as element-wise operations on arrays, and rew is the array
of (state) rewards defined in Section 3.1. Note that, when
rew = I, Equation (30) becomes Equation (5), i.e., if re-
wards are one on the hitting event and zero otherwise, the
expected cumulative reward equals the hitting probability.

Bounded-Reward Probability. Given MRM (M, rew)
and state s € ., the following condition holds:

(M, rew),s = Popty | ) 2 iff P(s = 01 J92)VD, (31

where, as in Equation (20), P(s = ¢; U<, ¢2) is the prob-
ability of the PMC to reach a path 7 |= ¢; -, ¢> given
that Sy = 5. This can be intended as a hitting probability
for event @, with respect to state s € .& provided that all
the states visited before reaching ®, satisfy ¢, and the
expected cumulative reward earned before reaching ®; is
less than or equal to r. This remark allows to derive a re-
cursion analogous to that in Equation (22), that also takes
into account the reward earned after any iteration. For each
7>0,p <rands €., we denote by xé;\gl (s) the hitting
probability of reaching ®; for some 7 > 0 provided that
all the states visited before reaching ®; are in ®; and the
expected cumulative reward earned until reaching ®; is
< r. Trivially, for 7 =0:

lif s € ®, and rew(s) < p,

<0.p
§) = . (32)
CDZ“I"( ) {0 otherwise.
In array notation, this rewrites as follows:
<0p ._7_
x®2\®1 = Hyprew -Hq;z y (33)

where 7" 1= {5 € /" : rew(s) < p}. For 7 > 0, the fol-
lowing recursion holds (Baier and Katoen, 2008):

Lif s € @, and rew(s) < p,
Oif rew(s) >p,

N <t—1,p—rew(s")
Zs'ecbl T(s,s )‘xq:az‘cpl

<t,p
=5
D, |@

(s):=

(s") otherwise,
(34)
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ie.,

<7, . B
ShP = ]Iy{;‘ew (Hq>2 +H‘1>1\<I>2 . TTXST Lp) :

Xy |, - 35

where, for each s € .7
{ 1

xgr—l,p—rew(s)
. . S <
This defines a simple algorithmic scheme where xg,

ifp < rew(s),
otherwise.

XTI s)

D, [Py (s)

(36)
()
should be computed as in Equation (34) for each s € .
and p < r before moving to the subsequent value of .
According to Equation (34), the recursion is blocked for
each s € ®,, with the final probability being equal to one,
and for each s € . : rew(s) > p, with the final probability
being equal to zero. The recursion is eventually blocked
when, for all the reached states s € . it holds that either
s € ®; or rew(s) > p. This always happens within a finite
time horizon 7 € N because, at each further recursive step,
the reward threshold p is reduced, for each s’ € .7, of a
value rew(s’) as specified by Equation (36). The final value
of P(s = ¢1 U<, ¢2) is then equal to xéz";l where T € Nis

the time step at which (35) is eventually blocked.

5. Towards an Imprecise PRCTL

In this section we discuss how both PCTL and PRCTL can
be extended to an imprecise-probabilistic setting. An im-
precise PCTL (IPCTL) syntax can be obtained by replacing
PCTL probability operator Py, with its lower (upper) vari-
ant Py,, (Py;) (Section 5.1). The semantics (Section 5.2) is
consequently defined as in Section 4.2 with the checking
tasks performed in the corresponding IMCs by means of
the inference algorithms described in Section 3.2.

IPCTL has been proposed by Troffaes and Skulj (2013).
Here, we take advantage of the alternative approaches to
the computation of the lower and upper hitting probabili-
ties recently proposed by T Joens et al. (2019) and corre-
sponding to Equation (9). Compared to the absorbing-state
approach in Equation (10), proposed by Troffaes and Skulj
(2013), the more recent approach allows to easily achieve
an analogous computation for the lower and upper expected
cumulative rewards in the underlying IMRM, thus provid-
ing an imprecise-probabilistic version of Equation (30).
This is the key to define an imprecise PRCTL (IPRCTL)
whose syntax (Section 5.4), semantics and model checking
(Section 5.5) represent the main contribution of this work.

5.1. IPCTL Syntax

The non-probabilistic syntax of [PCTL coincides with that
of PCTL. Accordingly, to define IPCTL syntax, we keep
the non-probabilistic specification in Equation (12) and, in
Equation (11), replace Py, ¢ with:

Pyyy | Py, y. 37
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The informal reading of Py, is the upper bound of the
probability to reach a path that satisfies Y is Vb. A similar
reading for the lower bound is associated with Py, y. Note
that IPCTL coincides with PCTL for P = P.

5.2. IPCTL Semantics

The only difference between IPCTL and PCTL semantics
is in the probability formulae. Given labelled IMC .# and
state s € ., Equation (20) becomes:

%,S ): ﬁv[,l]/lffﬁ(s ): l[l)Vb, (38)
and analogously for P. As in Section 4.2 for PCTL, the
satisfiability check in Equation (38) leads to different infer-
ential tasks in .# depending on y.

For v := ()¢, following Equation (21), the lower and
upper bounds of P(S; € ®|Sy = s) should be computed. An
imprecise-probabilistic version of this equation is achieved
by replacing the linear operator in Equation (3) with its
non-linear analogous in Equation (7), i.e.,

P(S1 € @[Sy =5) = (T1a)(s), (39)
and analogously for P and .7. The case y := ¢; U~ ¢,
requires instead the computation of the lower and upper
bounds of the conditional hitting probability vector hé;‘ o,
Exactly as Equation (22) was obtained as a conditional
version of Equation (5), from Equation (9) we can obtain
the recursion:

-1

—<1 — <1
h(bz‘q)l = H<1>2 +H¢l\¢29h©2|¢1 , (40)
for each 7 = 1,...,t, and analogously for the upper bound,
with the same initialization for both cases, i.e.,
<0 _7s0
hq)z‘q)l —hq)z‘q)l —]Iq;z. (41)

As for PMCs, case y := ¢ |J ¢ can be treated analogously
to ¢ U= ¢ when t — co. The value of P(s = ¢;U¢»)

. —<t .. .
hence corresponds to limy e fig,|p, - Proposition 16 in
(Krak et al., 2019) proves that such limit exists and corre-
sponds to the fixed point of hféy. Notice that, the result
can be considered valid also for the recursion in Equation
(40) because the additional condition that all the states
visited before reaching ®, are in ®; does not alter the
validity of the proof. Notice also that the result by Krak
et al. (2019) is obtained within a game-theoretic approach
to IMCs, which is different from the sensitivity-analysis
approach we adopt here. However, as the author clearly
points out, the result is to be considered valid for all the
foundational approaches to IMCs (Krak et al., 2019).
Regarding computational complexity, the linear program-
ming tasks in Equation (40) take only polynomial time with
respect to ||, while the maximum number of iterations is
t. This shows that shifting to imprecise probabilities does
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not affect the overall computational complexity of the task.
The only computational issue with computing P(s = ¢)
(as well as P(s |= ¢)) concerns the nesting depth of ¢, i.e.,
the number of iterated nested formulae in ¢. The overall
complexity of computing P(s |= ¢ ), indeed, is exponential
with respect to the nesting depth of ¢. However, the same
holds in the precise case and this does not significantly af-
fect applications, where small nesting depths are typically
considered.

5.3. AIPCTL Example

Example 2 Consider an imprecise probabilistic version
of the model M discussed in Example 1. The same, precise,
transition probabilities are kept as in Figure 1 apart from
P(S;+1|s; = try). For a sensitivity analysis parametrized by
€ € [0,1], we replace such (conditional) PMF with the CS
induced by the linear constraint:

P(delivered|try) € [(1—¢€)0.9—¢,(1 —€)0.9+¢€]. (42)

with the impossible transitions remaining impossible.> This
makes the model a IMC to be used to answer IPCTL queries,
such as “the upper probability to lose a message within
seven time steps is less than or equal to 0.25”. Having this
formula for the upper probability satisfied ensures that any
MC consistent with the IMC would satisfy the analogous
Sformula in Example 1, thus providing the desired sensitivity
analysis. Figure 2 shows the corresponding (upper) hitting
probabilities for increasing values of € computed by means
of the recursion in Equation (9) and two different time hori-
zons. Even for the higher perturbation level we consider
(€ = 0.03) within seven time steps the hitting probability
remains under the threshold level. In the limit of longer
chains, for this model, both bounds converge to one.

5.4. IPRCTL Syntax

We are now in the condition of extending IPCTL syntax
in order to cope with IMRMs. We call the corresponding
language IPRCTL. The IPRCTL syntax is obtained by aug-
menting the [PCTL syntax in Section 5.1 with the PRCTL
path formulae in Equation (25), while expression Ey,¢ in
Equation (24) is replaced by:

EVr¢ | EVr¢ )

whose informal reading is as for PRCTL in Section 4.4.

(43)

5.5. IPRCTL Semantics

The IPRCTL semantics is obtained extending the IPCTL
semantics with respective satisfiability conditions for ex-
pected reward and reward-bounded probabilities.

3. As only two states are possible, the bounds on the probability of
{lost} can be also induced by e-contamination. Deterministic PMFs
are unaffected by the contamination.
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Figure 2: Hitting probability ranges for increasing pertur-
bation levels. Red, orange and yellow plots cor-
respond to € € {0.01,0.02,0.03}.

Expected Cumulative Reward. Given an IMRM
(A ,rew) and state s € ., the analogous of Equation (27)
corresponds to condition:

(M ,rew),s |= Ev, ¢ iff E[Rewg'|(s)Vr,  (44)

and analogously for Ey, and E [Rewg ]. Those lower and
upper expected cumulative reward arrays E [Rewg ] and
E[Rewé’ | represent the lower and upper bounds of the pre-
cise expectations in Equation (28) with respect to the CSs
in the specification of .# (see Section 3.2).

Exactly as for the derivation of Equation (40), we rely on
the results by T’Joens et al. (2019) to achieve an imprecise-
probabilistic version of the recursion in Equation (30). This
simply corresponds to:

E[Rewg] := rew +lgc 7 E[Rewgy" '], (45)
for each 7 = 1,...,t, and analogously for the lower expec-
tation, with initialization for both cases:

E[Rew3’] = E[Rewg] = rew. (46)

The recursion in Equation (45), exactly as that in Equation
(9), requires ¢ € N iterative applications of the non-linear
transition operator in Equation (7). As for Equation (40),
each further iterative application of (45) requires to solve
|| linear programming tasks. Also in this case, hence,
shifting to imprecise probabilities does not increases the
overall computational complexity with respect to |.#|. No-
tice that, the complexity with respect to the nesting depth
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of ¢ results to be exponential also in this case, but the same
practical considerations stated for Equations (40) hold.

Bounded-Reward Probability. Given IMRM (.Z , rew)
and state s € .7, the following condition holds:

(M, rew),s =Py, 8iff P(s = o1 o) Ve, (47)
<r

where the event on the right-hand side is as in Equation (31)
and an analogous condition holds for the lower probability.
By a discussion similar to that in Section 4.5, we obtain a
recursive relation analogous to Equation (35) for the upper
probabilities, denoted here as Xizf[gl , by simply replacing
the linear operator with its non-linear, upper, version, i.e.,

<1, — <o
x&)zrlygn = I[’yﬁew (Hq’z "H[(I’l\‘bz ’ yxgr l,p) )

(48)
where 7=""1" is obtained as in Equation (36) but from the
upper probabilities for the same time step. An analogous
derivation holds for the lower bound. Both the initializa-
tions are as in the precise case in Equation (33). Notice
that, Equation (48) can be obtained from Equation (40) by
simply including the indicator vector I Sy which blocks
the recursion for each s € . : rew(s) > p, and by replac-
ing the upper hitting probability with the function 737*17”.
Note that 7=7""* coincides with Xi;’g)l_mw(s)
ther iteration hence, the reward threshold p is reduced, for
each s € ., of a value rew(s). The recursion is eventually
blocked when all the reached states s’ € .% are either such
that s € @, or such that rew(s") > p. Also in this case this
always happens for a finite time horizon ¢t € N because the
reward threshold p is reduced at each further iteration.

Concerning computational complexity, since Equation
(48) also requires an application of the dual imprecise tran-
sition operator .7 T for each further recursive step, the same
considerations stated for Equation (40) hold. The overall
computational complexity of (48) is therefore polynomial
with respect to || - £, where ¢ is the total number of itera-
tions occured until any further iteration is blocked.

. For each fur-

6. A Case Study on IPRCTL

As a very first IPRCTL application we perform a sensitivity
analysis in the MRM originally proposed by McClean et al.
(1998). In that paper expected cumulative rewards are used
to estimate the cost of annual recovery of geriatric patients.
Let us briefly describe their model and report the results of
our IPRCTL-based sensitivity analysis.*

In the considered geriatric departments, there are two
kinds of recovery: short-term recoveries for acute cares
have a daily cost estimated as £100, while long-term recov-
eries cost £50. From a cumulative perspective, long-term
recoveries are more expensive, since those patients typically

4. Code available at github.com/IDSIA-papers/2021-ISIPTA-IPRCTL.
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(100£)

Figure 3: Transitions in a three-state MRM.

remain in the hospitals for longer periods. The scenario can
be naturally described as a PMC M whose three states are
in one-to-one correspondence with the singletons of the
three atomic propositions: A (acute care), L (long stay), and
D (discharge or death). The first two states represent short
and long-term recoveries, while the latter represents the
end of a recovery. D should be regarded as an absorbing
state and a parametrized version of the transition matrix
for this model is in Figure 3. The parameters have the fol-
lowing interpretation: the conversion rate v corresponds to
the probability of passing from a short-term to a long-term
recovery, while the dismissing rates y and & correspond to
the probability of being discharged/die, respectively, in a
short- and long-term recovery. Rates ¥, v and 6 vary de-
pending on the patient and disease. An assessment of these
parameters for different departments is in Table 2.

Rate (%) Dep.1 Dep.2 Dep.3
Y 1.750  3.540 2.810
\ 0.031 0.187 0.149
1) 0.120  0.130 0.180

Table 2: Conversion and dismissing rates.

The reward rew associated with each state represents
the daily cost per patient. In a scale where one corre-
sponds to one pound, we already assumed rew(A) = 100,
rew(L) = 50, while the reward of D is set to zero. Un-
der these assumption, the corresponding MRM (M, rew) is
used to predict the expected annual cumulated cost of each
department. This is obtained from the initial numbers k(A)
and k(L) of patients in acute care and long stay:

cost:= Y. k(s)-E[Rew;"](s).
se{A,L}

(49)

This cost can be therefore computed separately for each
department. A sensitivity analysis with respect to the tran-
sition probabilities in Table 2 consists in considering the
interval spanned by the extreme values of each one of these
parameters and consequently define a credal transition ma-
trix. The corresponding IMRM can be used to compute
the lower and upper cumulative costs for different values
of s, to be eventually combined as in Equation (49) with
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the aggregated numbers about the patients of the three de-
partments. Figure 4 show the result for a horizon of 20
years.

-107

1000k£

800k£

600k£

cost

400k£

200k£

O£

T T T T
50 100 150 200 250

t (months)

Figure 4: Aggregated cumulative costs and bounds.

Finally, assume that departments are sustainable if and
only if the total cumulative cost per patient until the pa-
tient is discharged or dies is less than or equal to a given
threshold r := 15’000 in a time horizon of one year. This
corresponds to E<s900{ D} in PRCTL and E < 51090 {D} in
IPRCTL. Following Equations (27) and (44) we can check
this formula by computing the corresponding expected cu-
mulative rewards, whose values for the different starting
states are depicted in Table 3.

s E [Rew{ggfs} (s) E E
Dep. 1 2 3

A 5'832 3372 4’009 2/910 6'421

L 14’850 14’600 13437 13/437 14’850

Table 3: Yearly cumulative costs for single patients.

Both formulae are satisfied, thus making the sustain-
ability of each department robust even with respect to an
imprecise evaluation of the conversion and dismissing rates.

7. Conclusions

An imprecise-probabilistic generalization of PRCTL, called
IPRCTL, has been presented together with inference al-
gorithms to compute expected cumulative rewards and
bounded-reward probabilities. [IPRCTL represent a first
step toward the development of an imprecise PCTL based
on imprecise Markov decision processes. Although such
processes have been already considered (e.g., Delgado et al.
(2011)) their application to model checking is an open area
of investigation. The same holds for imprecise continuous-
time Markov chains, that have been subject of intense re-
search in the very last years (e.g., Krak et al. (2017)) and
whose application to model checking represent an open
challenge we want to explore as a necessary future work.
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