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Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; and 22Department of Internal Medicine, University of Texas Medical School in Houston, Houston,
TX, USA

Received 23 December 2020; editorial decision 9 June 2021; accepted 9 June 2021; online publish-ahead-of-print 12 June 2021

Abstract The pandemic of coronavirus disease (COVID)-19 is a global threat, causing high mortality, especially in the elderly.
The main symptoms and the primary cause of death are related to interstitial pneumonia. Viral entry also into myo-
cardial cells mainly via the angiotensin converting enzyme type 2 (ACE2) receptor and excessive production of
pro-inflammatory cytokines, however, also make the heart susceptible to injury. In addition to the immediate dam-
age caused by the acute inflammatory response, the heart may also suffer from long-term consequences of
COVID-19, potentially causing a post-pandemic increase in cardiac complications. Although the main cause of car-
diac damage in COVID-19 remains coagulopathy with micro- (and to a lesser extent macro-) vascular occlusion,
open questions remain about other possible modalities of cardiac dysfunction, such as direct infection of myocardial
cells, effects of cytokines storm, and mechanisms related to enhanced coagulopathy. In this opinion paper, we focus
on these lesser appreciated possibilities and propose experimental approaches that could provide a more compre-
hensive understanding of the cellular and molecular bases of cardiac injury in COVID-19 patients. We first discuss
approaches to characterize cardiac damage caused by possible direct viral infection of cardiac cells, followed by

* Corresponding authors. Tel: þ39 02 5800 2019, E-mail: maurizio.pesce@ccfm.it (M.P.); Tel: þ39 050995500 and þ39 050996478; fax: þ39 050992362, E-mail: rosalinda.madonna@
unipi.it (R.M.)
Published on behalf of the European Society of Cardiology. All rights reserved. VC The Author(s) 2021. For permissions, please email: journals.permissions@oup.com.

Cardiovascular Research (2021) 117, 2148–2160 OPINION PAPER OF ESC WORKING GROUP
doi:10.1093/cvr/cvab201

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/117/10/2148/6297395 by U

niversity degli Studi M
ilano user on 08 O

ctober 2021

https://orcid.org/0000-0002-3097-8961
https://orcid.org/0000-0002-8345-6382
https://orcid.org/0000-0002-4768-234X
https://orcid.org/0000-0001-5182-4980
https://orcid.org/0000-0002-6424-6806
https://orcid.org/0000-0002-5786-8447
https://orcid.org/0000-0003-1942-8974
https://orcid.org/0000-0002-2274-0048
https://orcid.org/0000-0003-3017-0476
https://orcid.org/0000-0003-2088-9102
https://orcid.org/0000-0002-6892-9751


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

formulating hypotheses on how to reproduce and investigate the hyperinflammatory and pro-thrombotic conditions
observed in the heart of COVID-19 patients using experimental in vitro systems. Finally, we elaborate on strategies
to discover novel pathology biomarkers using omics platforms.
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1. Introduction

Since the onset of the COVID-19 pandemic outbreak in Wuhan, China,
patients with severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection exhibited signs of severe acute myocardial injury,
proven by significantly elevation in circulating cardiac troponin (cTn) T
and –I levels, occasional heart failure with acute decrease in ejection frac-
tion, arrhythmias, and high in-hospital mortality.1–5 It is well known that
elderly patients presenting with comorbidities or cardiovascular risk fac-
tors are more prone to cardiac complications of SARS-CoV-2 infection.6

There are several possible links between COVID-19 and cardiac dys-
function. These include diffuse coagulopathy causing micro/macro-
vascular occlusions and hypoxia, which may unmask underlying coronary
artery disease; reduced lung compliance (the ‘stiff lung’7) which impairs
right and left ventricular function8; direct cytotoxicity due to infection of
myocardial and/or endothelial cells or exposure to the so-called cyto-
kine storm. Despite the prevalent causes of cardiac injury appear to be
well characterized at present,9 the cause–effect relationships existing be-
tween the severity of COVID-19 cardiac injury and cardiovascular risk
factors remain elusive.10 Indeed, the expression of various viral entry
receptors (the so-called coronavirus-associated receptors and factors—
SCARFs) in myocardial cells11 suggests that exposure of the heart to the
virus might, directly or indirectly, determine cytopathic effects even in
healthy individuals. In line with this hypothesis, retrospective analyses in
cohorts of COVID-19 patients have shown that the impact of infection
on myocardial damage is not limited only to patients with pre-existing
risk conditions (e.g. ischaemic heart disease, heart failure), but it is also
relevant in individuals with apparently healthy hearts suffering potentially
persistent consequences.12–14 Furthermore, in various autopsy
reports,15–20 SARS-CoV-2 infection has been associated with signs of
cardiomyocyte toxicity either directly, that is associated with the pres-
ence of viral particles, or indirectly, without detection of viral particles
and apparently mediated by systemic inflammation.21,22 Finally, the first
prospective study aimed at identifying potential long-term cardiopulmo-
nary damage after acute COVID-19 has described a high rate of diastolic
dysfunction in moderate-to-severely ill COVID-19 patients, persisting
months after the infection, similar to what has been observed after infec-
tion with the phylogenetically related SARS-CoV-1.14 Together, this evi-
dence suggests that SARS-CoV-2 damages myocardial cells by direct
infection, and that for a better understanding of the relationships be-
tween cardiovascular risk factors, comorbidities, and COVID-19-related
cardiac complications, it is critical also to consider direct cytotoxicity
effects.23

This Opinion Paper from the Working Group on Cellular Biology of
the Heart of the European Society of Cardiology will highlight possible
experimental approaches that may be implemented to understand the
direct and indirect modalities of cardiac damage due to SARS-CoV-2, to
unravel the short- and long-term effects of the virus on myocardial cells,
and to discuss potential biomarkers to stage the degree of cardiac dam-
age. This contribution parallels and integrates recent reports focussing
on other aspects of the pathophysiology of COVID-19, such as

endothelial dysfunction,24,25 to which interested readers are referred for
more extensive information.

2. Modelling cardiac damage
due to direct susceptibility of
cardiomyocyte/non-cardiomyocyte
cells to SARS-CoV-2 infection

Despite the multiple clinical manifestations and the complexity of the un-
derlying mechanisms, which are still not completely understood,26–28

myocardial injury in COVID-19 could be also mediated by direct infec-
tion of myocardial cells. In fact, according to recent data produced with
single-cell RNA sequencing, various cardiac cell types (cardiomyocytes,
endothelial cells, smooth muscle cells, and fibroblasts) have been found
to express the angiotensin-converting enzyme-2 (ACE2) transmem-
brane protein,29,30 one of the two major host cell receptors that mediate
SARS-CoV-2 infection via interaction with the viral spike protein.31

Although the transmembrane serine protease 2 (TMPRSS2), crucial for
spike protein priming and viral entry, is not expressed at significant levels
in cardiac cells,32 other receptors and peptidases, such as cathepsin-L
(CTSL), furin, and SCARFs, are expressed in cardiomyocytes,11,33 and
neuropilin-1 [a vascular endothelial growth factor (VEGF) receptor] is
expressed in endothelial cells.34,35 These can compensate for the lack of
TMPRSS2 and facilitate SARS-CoV-2 infection and replication in the
myocardium. This picture is further complicated in case of concomitant
cardiac diseases, such as aortic stenosis and heart failure, or in patients
treated with antihypertensive therapies affecting the renin–angiotensin
system, such as ACE inhibitors, which have been shown to increase myo-
cardial susceptibility to the virus due to ACE2 upregulation.29,30,36–39

Collectively, these findings prompt the modelling of SARS-CoV-2 infec-
tion using primary or stem-cell-derived myocardial cells with genetically
controlled levels of ACE2 and other SARS-CoV-2 coreceptors in order
to reveal the likely complex interaction of the different molecular path-
ways involved in acute cardiac injury and, potentially, in post-infection
myocardial fibrosis.

2.1 Suggested pathways for SARS-CoV-2
direct damage to the heart
The myocardium may be directly affected by SARS-CoV-2 by various
modalities that might occur separately or in concert.40 These different
modalities are represented in Figure 1.

a. The cytotoxic effect of SARS-CoV-2 on the endothelium41 (Figure 1A)
may result in a pro-thrombotic status leading to diffuse micro-
thrombosis in the heart, and conditions resembling type 2 myocardial in-
farction (MI),28 or the Takotsubo syndrome.42,43 The hypothesis on the
role of endothelial dysfunction and SARS-CoV-2 infection has been ex-
tensively discussed elsewhere24 and is supported, at least in part, by the
direct observations of thrombi in the microcirculation of myocardial tis-
sues in patients with COVID-19.44
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..b. Although there are relatively few reports of confirmed cardiomyocyte
infection and myocarditis in COVID-19 patients,40 ultrastructural and
molecular studies have shown the presence of SARS-CoV-2 in the
myocardial tissue of patients with COVID-1917 (Figure 1B). On the
other hand, exposure of induced pluripotent stem cell (iPSCs)-derived
cardiomyocytes to the virus showed the ability of SARS-CoV-2 to
cause cytotoxicity, cell death, and cessation of cell contraction due to

the ability of the virus to bind cardiomyocytes.20,33,39,45 Of course,
in vitro uptake does not imply in vivo entrance of the virus into cardio-
myocytes. Even more important, although the use of the anti-viral
remdesivir was able to block damage to cardiomyocytes in culture,20

the efficacy of the drug for treating COVID-19 patients has been ques-
tioned.46,47 This is a clear caveat in extending the implications of in vitro
results to the clinical scenario.

Figure 1 Proposed mechanisms of myocardial damage by SARS-CoV-2. (A) Infection of endothelial cells and exposure to circulating cytokines may cause
increased platelet activation and micro-thrombosis. In the heart, this can lead to diffuse clotting, causing conditions similar to type-2 myocardial infarction.24

(B) Direct damage of cardiomyocytes may occur as a result of ACE2 receptor expression. Direct infection of these cells may cause decreased cardiac con-
tractility and cell death due to cardiotoxicity.16 (C, D) Infection of stromal cells, recently demonstrated in vitro,52 could damage the heart through infection-in-
dependent differentiation into myofibroblasts and ACE2-dependent intracellular replication. In addition to the release of the virus in the intercellular space
by infected and death cells, the possibility of spreading the virus to adjacent cells by the so-called viral synapse43 is discussed as a further modality of virus
propagation in cardiac tissue and myocardial injury. (E) Formation of multinucleated syncytia59 might cause extensive cardiac damage due to the fusion of
contractile and non-contractile myocardial cells, both of which express ACE2 receptor. This is still an experimentally unsupported mechanism of cardiac
damage that could be addressed with in vitro studies using patient-derived and iPSCs-derived cardiac cells.
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c. A third, relatively unexplored hypothesis is that, besides being exposed

to viral cytotoxicity, the myocardium is a site for SARS-CoV-2 infection
and replication within multiple non-contractile myocardial cell types such
as endothelial cells, fibroblasts and pericytes (Figure 1C and D). This aspect
is particularly relevant for a systematic modelling of cardiac damage de-
termined by infection, given the relevance of these cell types for myocar-
dial inflammation.48–51 In support of this hypothesis, a recently published
report has suggested that cardiac fibroblasts can be infected by the virus
and increase its replication with an efficiency related to the level of ex-
pression of the ACE2 receptor. On the other hand, exposure to the virus
also resulted in an ACE2-independent, sustained pro-inflammatory re-
sponse, leading to upregulation of genes encoding inflammatory cyto-
kines and extracellular matrix components involved in cardiac fibrosis.52

More controversial is, to date, the possibility that endothelial cells be-
come infected by SARS-CoV-2. In fact, while initial reports showed the
presence of the virus in the endothelial cells of COVID-19 patients,41

very recently the direct exposure of primary vascular endothelial cells to
the virus did not give rise to productive infection, likely correlated to the
absence of ACE2 expression in the tested cell lines.53

d. An important point that must be addressed concerns the possible modal-
ity of transmission of the virus in the heart. This aspect appears particu-
larly relevant considering that viral infection could progress through the
mode of direct diffusion from cell to cell (the so-called viral synapse54)
other than the release of the virus in the extracellular compartment. It
should also be considered that cells exposed to the virus could raise or
induce a strong innate immune response through the activation of the
nuclear factor-jB (NF-jB) pathway, due to the interaction of the spike
protein with cellular receptors such as the Toll-like receptors
(TLRs).55,56 Whether a synaptic-like intercellular viral propagation exists
in the heart (Figure 1C and D) and infection independent activation of
pro-inflammatory pathways occurs in the myocardium57 (see also section
below) is thus far only a matter of speculation and should be further in-
vestigated in vitro and in vivo.

e. A final possibility, so far only speculative, but supported by evidence
emerged from the autopsy reports on the lung as the primary target or-
gan of SARS-CoV-2,58 and from in vitro reports on cell lines,59 is that ex-
pression of the viral Spike protein on the surface of infected cells might
promote cell fusion of contractile and non-contractile cells (Figure 1E)
and the formation of syncytia with extensive cardiac damage. If a similar
pathologic mechanism is experimentally confirmed in cardiac cells, the
use of anti-syncytial drugs60 could be an option to prevent cardiac dam-
age in COVID-19.

2.2 Towards a further systematic
understanding of direct myocardial injury
by SARS-CoV-2
In order to explore how SARS-CoV-2 directly damages the myocardial
tissue, we suggest the use of advanced in vitro systems, in which virus-
exposed myocardial cells are mixed with non-exposed cells, both in
physical connection and separated by barriers permeable to the virus
and/or secreted factor (Figure 2). Using this setting, the ability of infected
cells to ‘pass’ the virus or viral particles to neighbouring uninfected cells
via membrane contacts, such as adherens junctions-associated pores and/
or tunnelling nanotubes (TNT), might be assessed and quantified using
methods for re-isolation of cells from mixed cultures, followed by analy-
sis of the intracellular viral bioprocess with conventional or single-cell
transcriptomics and/or proteomics. This approach is ideally tackled
within an ‘organoid’ system, in which primary cells (e.g. fibroblasts, peri-
cytes) from human cardiac explants are mixed with human iPSC-derived
cardiomyocytes after in vitro infection, or vice-versa (Figure 2). A similar
approach has been successfully applied to demonstrate the cellular
effects of SARS-CoV-2 infection in human enterocytes,61 or iPSC-

derived hepatic/pancreatic organoids,62 and at least partially in cardiac
organoids.20 With the latter approach, infected and uninfected cells are
cocultured in bioreactors enabling medium exchange by fluidic connec-
tions. These systems, set to assess and quantify the delivery of drugs and/
or metabolites to cells,63 enable monitoring of trans-infection between
different types of myocardial cell, or even in cocultured lung-cardiac
organoids. The proposed systems can also be exploited to screen drugs
that inhibit viral entry and intracellular replication directly into cardiac
cells, thus contributing to assess the efficacy of cardioprotective strate-
gies (Figure 2).

Finally, since post-acute evolution of the infection may also result in
chronic activation of pro-fibrotic pathways in the heart, it is of impor-
tance to assess matrix remodelling activity (e.g. expression of matrix
metalloproteinases) and the electromechanical coupling of cells exposed
to the virus (e.g. cardiac fibroblasts and myocytes) alone or within orga-
noids. This approach enables evaluation of the impact of the viral infec-
tion on matrix compaction, composition and remodelling, and their
readout on the propagation of the action potentials that are required to
maintain a synchronized heartbeat. In this regard, the combination of ma-
trix components with cardiac cells exposed to virus or to recombinant
SARS-CoV-2 proteins likely represent highly standardizable
approaches,64,65 also amenable to high-throughput screening of drugs
with antiviral action or antifibrotic/antiarrhythmic effects. This approach
can optimally benefit from the use of biological material (cardiomyo-
cytes, fibroblasts) obtained by iPSC reprogramming of cells from patients
carrying genetic mutations for arrhythmic syndromes such as the long-
QT syndrome,66 one of the conditions associated with severe arrhyth-
mias caused by various COVID-19 medications, that is hydroxychloro-
quine with azithromycin,67,68 and the use of conventional or pathological
experimental settings mimicking some common effects of the disease,
such as electrolyte imbalance, altered pH, or hypoxemia.69

3. Indirect effects of SARS-CoV-2
infection on pro-inflammatory
and pro-fibrotic pathways in the
cardiovascular system

Several mechanisms have been proposed for how SARS-CoV-2 could in-
directly affect the cardiovascular system, that is without involving direct
infection of cardiovascular cells (Figure 1A and B). These include ACE2
downregulation/shedding, a SARS-CoV-2-elicited cytokine storm, activa-
tion of thrombotic mechanisms, that is the activation of platelets70 and
of the so-called neutrophil extracellular traps (NETs),71 and profound
changes in the immune profile.40,72 These phenomena triggered by the
virus can occur in parallel in case of viral damage and interact with each
other, exacerbating their effect.

3.1 ACE2 downregulation and shedding
After the initial interaction between SARS-CoV-2 spike protein and
ACE2, the expression of ACE2 in the epithelial cells of the lung alve-
oli is strikingly reduced.73 Loss of ACE2 leads to the accumulation of
angiotensin (Ang) II in the circulatory system, which plays a central
role in the activation of the interleukin (IL)-6 amplifier, with the coac-
tivation of NF-jB and the Janus kinases�(JAK)/signal transducer and ac-
tivator of transcription signal transducer and activator of transcription
3 (STAT3) pathways. Therefore, SARS-CoV-2-infected patients fail to
exert a robust, interferon (IFN)-mediated antiviral response, and
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exhibit exuberant inflammatory cytokine production.74 Ang II may fur-
ther induce tumour necrosis factor (TNF) convertase (ADAM17),
which leads to shedding of membrane-bound ACE275 and the release
of soluble ACE2. Of interest, the expression of ADAM17 is negatively
regulated by microRNA-145 and the administration of specific antago-
mirs targeting microRNA-145 has been found to increase the level of
circulating ACE2, thereby reducing viral entry into cells.76 Beyond the
local renin–angiotensin–aldosterone system (RAAS) activation in the
lung, there is evidence that patients suffering from a severe course of
SARS-CoV-2 infection have elevated levels of plasma Ang II, which
correlate with total viral load and the degree of lung injury.77 Loss of
ACE2 and activation of the RAAS also result in a widespread endo-
thelial dysfunction and multiple organ injury, including the heart, the
kidney, and the lung.78

In summary, the susceptibility of the heart and the vasculature to the
hyperactive RAAS and pro-inflammatory cytokines appear to be the
prevalent modality by which SARS-CoV-2 can indirectly affect the car-
diovascular system.

3.2 Cytokine storm
SARS-CoV-2 infection induces a strong activation of the innate immune
system, leading to elevated levels of several pro-inflammatory cytokines,
including IL-6, IL-1, IL-2, TNF-a, and IFN-c. Besides a direct impact of
SARS-CoV-2 on ACE2 and Ang II, the activation of the innate immune
system is in part due to the activation of the IL-6 amplifier via TLR4.79

The resulting ‘cytokine storm-related hyper-inflammation syndrome’
underlies many of the severe manifestations of COVID-19 and is sug-
gested to contribute to COVID-19-associated cardiovascular disease

Figure 2 Experimental algorithm and bottom-up approach proposed to limit cardiac damage induced by SARS-CoV-2 infection. The disease caused by
SARS-CoV-2 infection leads to a sharp elevation in the level of circulating inflammatory cytokines and to an increase in thrombotic events, especially in the
microcirculation. The left box describes materials that could be combined in vitro to systematically approach the problem of cardiac damage from direct in-
fection of myocardial cells, or by mimicking the pro-inflammatory effects of the cytokine storm. This approach aims to (i) clarify the cardiotoxicity and intra-
cardiac viral replication of the virus, (ii) assess the pro-inflammatory/pro-fibrotic responses in the heart due to direct/indirect effects, and (iii) dissect cardiac
remodelling and arrhythmic events. The box on the right indicate materials and tools that could be used to investigate in vitro the problem of the hypercoagu-
lation found in COVID-19 patients with reference to (i) neutrophil activation and release of the neutrophil extracellular traps, (ii) mechanisms of platelet
and coagulation cascades activation, and (iii) the effects of shear forces in COVID-19-dependent diffuse cardiac thrombosis. The results emerging from these
two experimental research areas should be finally integrated (arrows) with results from ‘omics research performed directly with patient samples, and with
results of epidemiologic/genetic studies and clinical trials. The aims of this bottom-up approach are (i) to define new markers to assess the severity of cardiac
damage, (ii) to understand the relevance of modifiable/non-modifiable risk conditions, comorbidities and drugs in the severity of cardiac damages, and (iii) to
validate treatments reducing the impact of COVID-19 on cardiac health.
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and death. IL-6 appears to play a central role here, with increased serum
levels correlating with the onset of acute respiratory distress syndrome
(ARDS) and with adverse clinical outcome. Besides elevated circulating
IL-6, COVID-19 patients exhibit increased plasma levels of the soluble
IL-6 receptor (sIL-6R) in plasma, reflecting its enhanced cleavage from
the cell surface during infection.80 By binding to ubiquitously expressed
cellular gp130, circulating IL-6/sIL-6R complexes can directly activate
JAK-STAT signalling throughout the body. Such activation in endothelial
cells may cause secretion of VEGF, a reduction of E-cadherin expression,
and defective pericyte coverage,81 contributing to vascular permeability
and leakage.82 Beyond these effects, which participate in the pathophysi-
ology of hypotension and pulmonary dysfunction in ARDS, IL-6 induces
oxidative stress and endothelial dysfunction through overexpression of
the Ang II type-1 receptor.83 In a highly interdependent relationship with
Ang II signalling, IL-6 further promotes vascular hypertrophy, vascular in-
flammation and stiffness, involving induction of matrix expansion.84,85 In
the heart, both protective and harmful effects of IL-6 have been
reported.86 Myocarditis is a striking example of the dysregulation of the
IL-6 response leading to a detrimental outcome. IL-6 is protective in the
heart as far as it limits viral replication and thus cardiac damage,87 but
long exposure to IL-6 can contribute to heart failure.88 IL-6 receptor an-
tagonism with tocilizumab in experimental myocarditis has been shown
to reduce cardiac inflammation and cardiac fibrosis, and to improve car-
diomyocyte titin phosphorylation and thus myocardial stiffness.89

In summary, IL-6 appears to be a central player in the hyperinflamma-
tory response to SARS-CoV-2. The efficacy of anti-IL-6R agent tocilizu-
mab for the treatment of severe cases of COVID-19 is debated, due to
the lack of confirmation of the efficacy of this drug in three randomized
trials,90 initially demonstrated in small observational studies,91,92 and two
large positive trials.93,94 The effect of anti-IL-6R agents is likely to depend
on the severity of the inflammatory/cytokine storm response. The key
factors that could play an important role in the effect of anti-IL-6R agents
may be the timing [given before admission to the intensive care unit
(ICU)], and also the combination with other drugs, such as high-dose
corticosteroid, which is being evaluated in several ongoing trials95 (Figure
2).

3.3 Immunothrombosis
Negative COVID-19 outcomes are associated with increased levels of fi-
brin degradation products (D-dimers) and lower platelet counts,
which are markers for an activation of haemostatic pathways.90

Hypercoagulation is considered the main cause of organ failure in severe
cases of COVID-19, supported by recent observations of micro-
thrombi in the lungs, brain, heart, and other organs.96–99 Not only is the
endothelium damaged in response to viral infection, but hyperactivated
monocytes, platelets, and neutrophils may also play a pathophysiological
role in this process. The coagulation cascade is induced by tissue factor,
which is mainly expressed by circulating monocytes, but also exposed
on activated endothelial cells, leading to fibrin deposition and blood clot-
ting.70,100 Neutrophils are recruited from activated endothelial cells and
release NETs, consisting of DNA, histones, and granule protein.101 NETs
may serve as a scaffold for thrombus formation by capturing and activat-
ing platelets, red blood cells, and procoagulant molecules.102,103

COVID-19 patients have elevated circulating levels of NETs, measured
as myeloperoxidase–DNA complexes, and their levels correlate with
both the severity of disease and the occurrence of myocardial infarc-
tion.71 The presence of platelets, neutrophils, and NET-like structures in
the lung and in cardiac microthrombi has been confirmed in COVID-19
autopsies and potentially contributes to organ fibrosis.104 In support of

enhanced immunothrombotic status in severe COVID-19 patients, se-
rum or plasma from COVID-19 patients has been shown to trigger ex-
cessive NET formation in neutrophils in vitro, with enhanced NETosis
found in neutrophils from COVID-19 patients.98,105,106 Finally, NETs re-
leased by SARS-CoV-2-activated neutrophils have been shown to pro-
mote lung epithelial cell death in vitro.107 Also, autoantibodies that
recognize phospholipids could trigger NETs activation,108 thus exposing
patients to risks of hyper-coagulation, similar to that occurring in the
antiphospholipid antibody syndrome.109 Taken together, these data sup-
port NETs as potential effectors of thrombosis in organs affected by
SARS-CoV-2, including the heart, where NETs activation could affect
the microcirculation,110 determining diffuse ischaemic conditions. So far,
NETs formation can only be assessed indirectly, based on the detection
of circulating DNA, histone H3, and myeloperoxidase.105,107 In this re-
gard, while neutrophil activation can be monitored using conventional
techniques, such as antibody-based multiparametric flow cytometry,111

there is still a lack of validated assays to reveal the activity of enzymes
linked to NET release (e.g. elastase, myeloperoxidase) directly on the
cell surface. The use of enzymatic activity-sensitive probes112 would be
an advantage to unravel the relationships between neutrophil activation
and NETs release upon stimulation of the cells with, for example,
COVID-19 patient sera, or to readily detect circulating activated neutro-
phils at different times after infection or during recovery. This approach
could finally benefit from the adoption of microfluidic devices to unravel
whether the excessive NETosis in the microcirculation observed in sev-
eral organs, including the heart, depends on an exacerbation of the shear
forces action on hyper-activated neutrophils113 (Figure 2). This can be
useful also for testing the efficacy of conventional and experimental strat-
egies to reduce neutrophil activation and NETs release114 during the
acute phase of infection, as well as the emerging post-COVID-19
syndrome.115

3.4 Altered immune cell profile
Emerging findings from the peripheral blood mononuclear cell immune
profile comparing mild and moderate versus severe COVID-19 reveal
profound changes in innate and adaptive immune cell compartments.
Regardless of the severity of the disease, COVID-19 is associated with
increased numbers of neutrophils and reduced number of T-lympho-
cytes, as well as a selective depletion of non-classical monocytes.116

Since patrolling, non-classical monocytes play a crucial role in endothelial
cell homeostasis and repair, the loss of this monocyte population may
contribute to micro-thrombosis and associated complications.
Moreover, a COVID-19-specific alternative activation pattern of classical
monocytes correlating with disease severity has been identified.116 It
remains merely speculative, however, whether an altered monocytes
phenotype promotes enhanced cardiac infiltration of this leukocyte sub-
set and subsequent cardiac damage.

Severe COVID-19 is associated with emergency granulopoiesis and
increased frequency of immature and dysfunctional neutrophils. These
immature myeloid cells may have immunosuppressive functions, as pre-
viously observed in cancer and sepsis.117–119 Moreover, a cluster of ma-
ture neutrophils expressing CD274 [Programmed Death-Ligand 1
((PDL1)] was only detected in severe COVID-19 cases, suggesting that
this receptor acts as an immune ‘checkpoint’, blocking T-cell activa-
tion.116 Additional studies are necessary to clarify the role of these sub-
sets of immature, potentially immunosuppressive neutrophils in cardiac
inflammation following COVID-19.

It has been recognized that life-threatening COVID-19 conditions can
result from the presence of anti-IFN autoantibodies, which trigger
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.
reduction of innate immune response to SARS-CoV-2.120 Since neutrali-
zation by autoantibodies in response to SARS-CoV-2 infection affects
IFN-a but not the IFN-b subtypes, it is tempting to speculate that treat-
ing patients with IFN-b may ameliorate the disease. This latter conclu-
sion also bears an important cardioprotective readout, given the
beneficial effect of IFN-b on reduction of fibrosis-associated factors in
cardiac fibroblasts.121

4. Novel biomarkers associated with
SARS-Cov-2 infection

Since the beginning of the pandemic, several reports have investigated
the important prognostic value of markers of acute cardiac injury [mainly
cTn, pro-thrombotic state (D-dimer, fibrinogen), increased inflammatory
response (C-reactive protein, lactate dehydrogenase, IL-6, procalcitonin,
ferritin), and heart failure [brain natriuretic peptide (BNP) and its N-ter-
minal pro-peptide, NT-proBNP] in patients with COVID-191,4,6,27,122,123

Although multiple studies consistently demonstrate that several cardiac
biomarkers correlate with the severity and prognosis of COVID-19 in-
fection in critically ill patients, whether established cardiovascular bio-
markers might provide additional prognostic information over clinical or
physiological information in unselected patients hospitalized for COVID-
19 with various degrees of disease severity has been recently ques-
tioned.124 Indeed, the levels of biomarker and the interpretation of the
data depend on the severity of COVID-19, sex, age, and the condition of
new versus pre-existing cardiac disease.124 Importantly, the prognostic
value of some of these blood-based biomarkers in the context of
COVID-19 might differ from commonly used reference standards.125

Additional circulating biomarkers potentially associated with SARS-
CoV-2 infection have been identified and proposed for future clinical use
in COVID-19. For example, it has been recently shown that growth dif-
ferentiation factor 15 (GDF-15) may represent a potential biomarker.
GDF-15 is a member of the transforming growth factor b superfamily,
which is induced by ageing and several diseases, including cardiovascular
diseases, sepsis, and cancer. GDF-15 has improved prognostic value
compared to various cardiovascular and inflammatory biomarkers in un-
selected patients hospitalized with COVID-19.126 GDF-15 levels were
elevated in the majority of COVID-19-hospitalized patients, and higher
concentrations were associated with ICU admission and death during
hospitalization, as well as SARS-CoV-2 viremia and hypoxemia.126

Although the precise mechanisms underlying the latter association are
not yet completely understood, these results suggest that GDF-15 may
provide important pathophysiological information in hospitalized
patients with COVID-19 while contributing to risk stratification. SARS-
CoV-2 binding to ACE2 leads to its internalization and cleavage to solu-
ble ACE2 (sACE2), decreasing ACE2 tissue levels.127 It has been pro-
posed that sACE2 levels might reflect a higher cellular content of ACE2
and thus greater susceptibility to COVID-19128,129 In addition, sACE2
might be a marker of the RAAS dysregulation.130 Consistent with this
possibility, in two large, independent cohorts of elderly patients with
atrial fibrillation and increased risk of stroke, higher levels of sACE2
were associated with male sex, cardiovascular disease, diabetes, and
older age, which are also the main risk factors for complications and
mortality of COVID-19 patients.131 Interestingly, levels of GDF-15, NT-
proBNP, and high-sensitivity cTn had the strongest associations with
sACE2 levels and the risk of death and cardiovascular complications.131

More recently, in a large, prospective, global, community-based cohort
of patients, increased levels of circulating sACE2 have been associated

with a higher increased risk of total death, myocardial infarction, incident
heart failure, stroke, and diabetes.130 However, to what extent sACE2
levels in blood samples of COVID-19 patients reveal a prognostic role
remains to be established. Also, further research is warranted to dissect
the relationships between circulating sACE2 levels and ACE2 expression
in various organs, and whether ACE2 and/or sACE2 levels might affect
the risk of SARS-CoV-2 infection or severity132 (Figure 2).

Large-scale targeted/untargeted molecular screening technologies can
also help to find novel measurable markers of cardiovascular risk in
COVID-19 patients. For example, genome-wide association studies
(GWASs) and Mendelian randomization can help identify host genetic
variants associated with critical illness that enable identification of novel
mechanistic targets for therapeutic development. Very recently, the
Genetics Of Mortality In Critical Care (GenOMICC) study has discov-
ered new variants in patients admitted to ICUs in the United Kingdom,
plausibly associated with the immune-mediated phase of COVID-19,
such as activated IFN signalling, monocyte activation, and infiltration.133

Moreover, transcriptomic studies have identified a specific transcrip-
tional signature induced by viral infection in cardiomyocytes, character-
ized by the induction of genes involved in IFN signalling, apoptotic cell
death, reactive oxygen species production, and disruption of structural
proteins associated with myofibrillar fragmentation.20,134 In this regard,
non-coding RNA expression (especially miRNAs) may have prognostic
value for their involvement in the regulation of the replication cycle/viral
genome translation of RNA viruses, including COVID-19135,136 and in
the control of risk conditions associated with a worse COVID-19 prog-
nosis. Finally, COVID-19 may alter the expression pattern of circulating
miRNAs.137 If confirmed, this will suggest the existence of specific
miRNA signatures characterizing the disease and possibly correlated to
its severity in the heart and other organs138 (Figure 2). On the other
hand, it should be noted that there are currently substantial diagnostic
challenges with miRNA expression pattern analysis, for example non-
standardized test formats, lack of knowledge about normal miRNA lev-
els, and how they may be affected by confounding factors.139

Proteomic profiling of sera from COVID-19 patients is of interest as it
provides valuable and novel information on disease progression and
prognosis, leading to the identification of novel biomarkers or targets dis-
criminating cardiovascular involvement.140–142 In addition, the definition
of SARS-CoV-2-encoded proteome in relation to human genetics ena-
bles the unmasking of risk factors for adverse outcome in patients, as
well as possible therapeutic interventions that may prevent infection.143

Untargeted proteomics may be utilized to identify key molecular effec-
tors associated with viral infection in cells exposed to the virus in vitro. By
using proteomics, an exhaustive map of the cellular pathways affected by
the virus can be derived and crucial components of mRNA maturation,
protein translation, and metabolic control machineries can be identified,
producing useful information for potential targeting key intracellular cas-
cades implicated in viral replication.144 In line with these results, metabo-
lomic and lipidomic serum profiling has shown that COVID-19 exerts
remarkable effects on the metabolism by increasing, for example, the lev-
els of ketone bodies and 2-hydroxybutyric acid, indicating altered hepatic
glutathione synthesis and oxidative stress, and promoting a redistribution
of serum lipoproteins potentially enhancing atherosclerotic risk.145,146

Finally, it has been suggested that COVID-19 may also exacerbate age-
related mitochondrial dysfunction with detrimental effects on inflamma-
tion, oxidative phosphorylation metabolism, and anti-viral response.147

Exposure of myocardial-derived cells to sera of patients, ideally sampled
at various stages of the disease, could be an answer to the problem of
potential alterations in cardiac metabolism leading to damage and
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.
cytotoxicity. Considering that molecular targets identified by omics anal-
yses are an integral part of the pathophysiology in several diseases, the
use of omics in COVID-19 can help in the identification of new possible
therapeutic strategies for targeting, for example, i) viral proteins essential
for virus entry into the host cell, ii) proteins involved in virus-host inter-
action, and iii) pathways involved in intracellular signalling elicited by vi-
rus entry or virus/cell interactions (Figure 2).

5. Conclusions

The quest for immediate answers to SARS-CoV-2 pandemic outbreak
has prompted scientists around the world to make an unprecedented ef-
fort to understand the pathophysiological basis of the infection and its
consequences for a systemic disease affecting various organs and organ
systems. According to the fast-growing availability of scientific literature
on this topic, with unprecedented speed, and daily clinical experience,
the heart appears as one of the elective targets of the virus, even if, to
date, the nature of the damage and the persistence of long-term compli-
cations are unclear. A possible consequence of COVID-19 in the post-
pandemic period could be an increase in heart failure,148 with social costs
additive to those already sustained for combatting the impact of the
disease.

The introduction of SARS-CoV-2 experimental model systems may
help understand the interplay between systemically acting factors (e.g.
the cytokine storm) and tissue-specific responses that determine the
multi-organ failure often observed in most severe cases.149,150 Finally, an
aspect that should be taken into account in this scenario is the relevance,
in addition to age, of risk factors, including sex and frequently associated
comorbidities, in ACE2 regulation, inflammatory responses, and throm-
bosis.151–158 In line with our recent recommendations for ischaemic
heart disease,159 it will be thus important to address the interaction of
confounders such as sex and comorbidities in COVID-19 experimental
settings, by including, for example, individuals and cells from both sexes.
Moreover, in the event that sexual dimorphic phenotypes are observed,
it should be determined experimentally whether they are dependent on
the hormonal status, and if they are specific, or modified by genetics and
sex. In this regard, in vivo preclinical models will be extremely helpful for
addressing the role of sex by combining COVID-19 experimental condi-
tions with specific comorbidity models in male and female animals, also
including the most prevalent and relevant risk conditions for COVID-19,
and the effects of their comedications (Figure 2). Together with the
results from in vitro modelling with human cells, integrated with unbiased
multi-omics approaches and molecular network analyses, these efforts
will contribute to a decisive advancement in precision medicine and ge-
netic surveillance to predict new genetic variants of SARS-CoV-2, and to
improve prevention, diagnosis, and treatment of COVID-19 cardiac
complications more effectively. In this regard, the creation of a global ge-
netic surveillance system for the virus appears necessary for the effective
control of the pandemic.
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101. Döring Y, Libby P, Soehnlein O. Neutrophil extracellular traps participate in cardio-
vascular diseases. Circ Res 2020;126:1228–1241.

102. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD,
Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps
promote thrombosis. Proc Natl Acad Sci USA 2010;107:15880–15885.

103. von Brühl M-L, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga
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M, Sander LE, Ralser M, Kurth F. A time-resolved proteomic and diagnostic map
characterizes COVID-19 disease progression and predicts outcome. medRxiv 2020.
doi:10.1101/2020.11.09.20228015.

143. Sirpilla O, Bauss J, Gupta R, Underwood A, Qutob D, Freeland T, Bupp C, Carcillo
J, Hartog N, Rajasekaran S, Prokop JW. SARS-CoV-2-encoded proteome and hu-
man genetics: from interaction-based to ribosomal biology impact on disease and
risk processes. J Proteome Res 2020;19:4275–4290.

144. Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, Cinatl J, Munch C.
Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 2020;
583:469–472.

145. Blasco H, Bessy C, Plantier L, Lefevre A, Piver E, Bernard L, Marlet J, Stefic K, Benz-
de Bretagne I, Cannet P, Lumbu H, Morel T, Boulard P, Andres CR, Vourc’h P,
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