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Abstract
Let E ⊂ R

N be a compact set and C ⊂ R
N be a convex body with 0 ∈ int C . We prove

that the topological boundary of the anisotropic enlargement E + rC is contained in a
finite union of Lipschitz surfaces. We also investigate the regularity of the volume function
VE (r) := |E+rC | proving a formula for the right and the left derivatives at any r > 0 which
implies that VE is of classC1 up to a countable set completely characterized. Moreover, some
properties on the second derivative of VE are proved.

Keywords Rectifiability · anisotropic outer Minkowski content · viscosity solutions

Mathematics Subject Classification 28A75 · 35D40

1 Introduction

The study of the tubular neighborhood Er := {x ∈ R
N : dist(x, E) ≤ r} of a convex set E in

R
N plays a crucial role in convex geometry. Of course, is not without interest to investigate

the tubular neighborhood also for non convex sets, and it turns out that the boundary of Er

becomes more regular than the boundary of E , which could be very irregular: more precisely,
in 1985 Fu [11] proves that ∂Er is a Lipschitz manifold whenever E is compact in R

N and
r > r0 for some r0 > 0. The approach of Fu is essentially based on the fact that the sublevels
of regular values of a proper and semiconcave function are sets of positive reach: this argument
can be applied since the distance function is semiconcave far from E . The semiconcavity of
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1258 A. Chambolle et al.

the distance is strongly related with the smoothness of the ball in R
N : notice indeed that Er

can also be written as Er = E + r B, where B is the unit closed ball centered in the origin.
In this paper first of all we investigate the extension of such results to the anisotropic case,
that is in the case Er = E + rC where C is a prescribed convex body, i.e. a compact convex
set in R

N with 0 ∈ int C . In this case the appropriate anisotropic distance to E , which we
denote by dE , could not be semiconcave outside E , since we are not assuming any kind of
regularity of the boundary of C , unless locally Lipschitz coming from convexity: notice that
we are really interested in enlarging E with a convex bodyC , since this case recovers also the
crystalline anisotropy where C is convex but not necessarily strictly convex nor smooth. We
will prove (see Thm. 3.1) that for any r > 0 the boundary of Er is contained in a finite union
of Lipschitz surfaces when E is bounded and C is Lipschitz with 0 ∈ int C . Of course since
C is not sufficiently smooth we cannot use the Fu’s approach, but the key idea of our proof is
very easy: we first prove that enlarging C by a very small set, like εK with ε > 0 small and
K ⊂ B, we still obtain a Lipschitz domain, and then we use the same idea of Rataj and Winter
[17] covering ∂Er by a finite union of sets with small diameter. The rectifiability of ∂Er is
an independent interesting result, but actually we need to prove the regularity of ∂Er in order
to study the regularity of the volume function VE (r) := |Er | (see [21,22] for the isotropic
case). We therefore characterize the set, at most countable, where VE is not differentiable
(see Thm. 5.2) and we find explicit formulae for left and right derivatives of VE . Moreover,
VE is of class C1 whenever it is differentiable (see Thm. 5.3). We mention that such a result
finds application also in different fields, for example, in Stochastic Geometry, where V ′E is
strictly related to the notion of covariogram and of contact distribution function associated
to a random closed set (e.g. , see [23, Sec. 4] for the isotropic case, and the recent paper [15]
where dilation by finite sets is considered). Finally, an easy characterization of V ′′E is proved
(see Thm. 5.4). Our result is a generalization of the isotropic case [14] and our proof is
partially based on the so called anisotropic outer Minkowski content (see [6] and [16] for
details). We also need to base our argument on the existence of a so called Cahn-Hoffmann
vector field for C with divergence measure bounded from above (see Prop. 4.1), and this is,
in our opinion, an interesting result independent on the rest, since we are not assuming the
strict convexity of C , so that such an existence result holds true also in the crystalline case.

2 Notation and preliminaries

2.1 Notation

For any A subset of RN we will denote by |A| the Lebesgue measure of A while Hk(A)

stands for the k-dimensional Hausdorff measure of A, where k ∈ {0, . . . , N }; of course HN

is the Lebesgue measure. For any x ∈ R
N the euclidean norm of x will be denoted by |x |

while x · y stands for the euclidean scalar product in R
N between x and y. For any r > 0

and x ∈ R
N the closed ball centered in x with radius r will be denoted by Br (x); we let

Br := Br (0) and SN−1 := ∂B1. We finally denote by ωk the volume of the k-dimensional
unit ball in R

k .

2.2 Convex analysis

Here we recall some basic notions of convex analysis; for all details we refer to [18]. In this
paragraph C will be a convex body in R

N , that is a compact convex subset of RN with 0 ∈
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Anisotropic tubular neighborhoods of sets 1259

int C . We denote by hC : RN → R the support function of C , that is hC (v) := maxx∈C x · v.
We will use also the polar of hC , denoted by h◦C and defined by h◦C (v) := maxhC (x)≤1 x · v
for each v ∈ R

N ; it turns out that both hC and h◦C are convex and positively 1-homogeneous.
We will need also to consider convex sets for which the support function and its polar are
more regular. Let C be of class C2. We say that C is elliptic if the curvature of ∂C is bounded
from below by some positive constant. It turns out that if C is C2 and elliptic then both hC
and h◦C are in C2(RN\{0}).

A very useful notion related with convexity is given by semiconcavity. Let A be a subset
of RN and let f : A→ R. We say that f is concave if the inequality

λ f (x)+ (1− λ) f (y) ≤ f (λx + (1− λ)y)

holds true whenever x, y ∈ A, λ ∈ [0, 1] and {λx + (1− λ)y : λ ∈ [0, 1]} ⊂ A. A function
f ∈ C0(A) is said to be semiconcave if there exists α > 0 such that for any x, y ∈ A and
for any λ ∈ [0, 1] with {λx + (1− λ)y : λ ∈ [0, 1]} ⊂ A it holds

λ f (x)+ (1− λ) f (y) ≤ f (λx + (1− λ)y)+ α

2
λ(1− λ)|x − y|2. (2.1)

Notice that if f is semiconcave and smooth enough, for instance of classC2, then D2 f ≤ α I ,
where I is the identity matrix and the inequality holds in the sense of matrices. A useful class
of semiconcave functions can be constructed; we have the following well known proposition,
see for instance [9].

Proposition 2.1 Let A ⊂ R
N and let S ⊂ R

M be compact. Let F ∈ C0(S × A). Then the
function f : A → R defined by f (x) := infs∈S F(s, x) is semiconcave provided F(s, ·)
satisfies (2.1) uniformly with respect to s.

2.3 Geometric measure theory

In this paragraph we recall some notions of Geometric Measure Theory we will need; for all
details we refer the reader to [2], [10] and [20]. Let N ≥ 1 be integer and let k ∈ N with
k ≤ N . Let S ⊂ R

N . We say that S is k-rectifiable if there exist a bounded set B ⊂ R
k and

a Lipschitz function f : B → R
N such that S = f (B); equivalently, by the Kirszbraun’s

extension Theorem, we can say that S is k-rectifiable if S is contained in a finite union of
Lipschitz surfaces in R

N . We say that S ⊂ R
n is countably Hk-rectifiable if there exist

countably many Lipschitz functions fh : Rk → R
N such that

Hk
(
S\

+∞⋃
h=0

fh(R
k)

)
= 0.

A useful characterization of rectifiability is the Besicovitch–Marstrand–Mattila’s Theorem
(see, for instance, [2, Thm. 2.63]): a Borel set S ⊂ R

N with Hk(S) < +∞ is countably
Hk-rectifiable if and only if for Hk-a.e. x ∈ S we have

lim
ρ→0+

Hk(S ∩ Bρ(x))

ωkρk
= 1. (2.2)

It turns out that if S is countably Hk-rectifiable then for Hk-almost any point x0 ∈ S it is
well defined the approximate tangent space Tank(S, x0), that is

lim
ρ→0+

1

ρk

∫
S
φ

(
x − x0

ρ

)
dHk(x) =

∫
Tank (S,x0)

φ(y) dHk(y), ∀φ ∈ C∞c (RN ).
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1260 A. Chambolle et al.

In particular, if k = N − 1 then TanN−1(S, x0)
⊥ is generated by some unit vector denoted

by νS .
Let now E ⊂ R

N be a measurable set and 
 ⊂ R
N be an open domain; we denote by

χE the characteristic function of E . We say that E has finite perimeter in 
 if χE ∈ BV (
);
the perimeter of E in 
 is defined by P(E;
) := |DχE |(
), where |DχE | denotes the
total variation of DχE ; we also let P(E) := P(E;RN ). For sufficiently smooth boundaries
the perimeter coincides with the (N − 1)-dimensional Hausdorff measure of the topological
boundary. The upper and lower N -dimensional densities of E at x are respectively defined
by

�∗N (E, x) := lim sup
ρ→0

|E ∩ Bρ(x)|
ωNρN

, �∗N (E, x) := lim inf
ρ→0

|E ∩ Bρ(x)|
ωNρN

.

If �∗N (E, x) = �∗N (E, x) their common value is denoted by �N (E, x). For every
t ∈ [0, 1] we define Et := {x ∈ R

N : �N (E, x) = t}. The essential boundary of E
is defined as ∂∗E := R

N\(E0 ∪ E1). It turns out that if E has finite perimeter in 
, then
HN−1(∂∗E\E1/2) = 0, andP(E;
) = HN−1(∂∗E∩
). Moreover, one can define a subset
of E1/2 as the set of points x where there exists a unit vector νE (x) such that

E − x

ρ
→ {y ∈ R

N : y · νE (x) ≤ 0}, inL1
loc(R

N )asρ → 0+,

and which is referred to as the outer normal to E at x . The set where νE (x) exists is called
the reduced boundary and is denoted by FE . One can show that HN−1(∂∗E\FE) = 0,
moreover, one has the decomposition DχE = (−νE )HN−1 FE . Let us collect some
elementary properties of sets with countably HN−1-rectifiable boundary and with finite
perimeter in 
; for any E ⊆ R

N we let Ec := R
N\E . Assume that E has finite perime-

ter in 
 and ∂E is countably HN−1-rectifiable. Then the following relations hold true:
HN−1(FE) = HN−1(FEc) and νEc (x) = −νE (x) for any x ∈ FE .

We finally recall an anisotropic version of the coarea formula which we will need; for
details see [13, Thm. 3]. Let u ∈ BV (
) and let α : RN → (0,+∞) be a convex and
positively one-homogeneous function with c−1|v| ≤ α(v) ≤ c|v| for any v ∈ R

N and for
some constant c > 0. Then the following formula holds true:

∫
α(Du) =

∫ +∞

−∞

∫

∩F{u≤t}

α(ν{u≤t}) dHN−1 dt . (2.3)

2.4 Anisotropic outer Minkowski content

We now briefly recall the notion of outer Minkowski content; for details see [1] and [22]
(isotropic case), [6] and [16] (anisotropic case). Let C ⊂ R

N be a convex body. For each
closed set E ⊂ R

N we also define the anisotropic outer Minkowski content of E as

SMC (E) := lim
ε→0+

|(E + εC)\E |
ε

whenever such a limit exists.
The following existence and characterization result for SMC holds true.

Theorem 2.2 [16, Thm. 4.4] Let E ⊂ R
N be a closed set such that:

(a) ∂E is a countably HN−1-rectifiable bounded set;
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Anisotropic tubular neighborhoods of sets 1261

(b) there exist γ > 0 and a probability measure η in RN absolutely continuous with respect
to HN−1 such that η(Br (x)) ≥ γ r N−1 for all x ∈ ∂E and for all r ∈ (0, 1).

Then

SMC (E) =
∫
FE

hC (νE ) dHN−1 + 2
∫

∂E∩E0
φC (νE ) dHN−1 (2.4)

where

φC (v) := hC (v)+ hC (−v)

2
.

Notice that any compact set in R
N whose boundary is contained in a finite union of Lipschitz

surfaces satisfies property (b): see for instance [1, Rem. 1]. We also observe that even if νE
is not well defined on ∂E ∩ E0, the expression φC (νE ) turns out to be well defined.

2.5 Anisotropic tubular neighborhoods

In this paragraph we will introduce all the objects we want to investigate. Let N ≥ 1 be
integer. Let E ⊂ R

N be compact and C ⊂ R
N be a compact Lipschitz set with 0 ∈ int C .

For any r > 0 denote Er := E + rC . Moreover, let

E ′r :=
⋃
s<r

Es .

It is convenient to introduce the anisotropic distance from E , that is

dE (x) := inf
y∈E h

◦
C (x − y).

Notice that Er = {dE ≤ r} and E ′r = {dE < r}. It turns out (for details see [6]) that dE is
Lipschitz continuous and, if C is a convex body,

hC (∇dE ) = 1 a.e. on {dE > 0}. (2.5)

Finally, let VE : [0,+∞) → R be given by VE (r) := |Er |. Note that for C = B1, it is also
named volume function of E (see also [21,22]). It is easy to see that VE is continuous.

3 Regularity of the boundaries

In this section we prove that ∂Er and ∂E ′r are sufficiently smooth, in the sense of geometric
measure theory.

Theorem 3.1 For any r > 0 the sets ∂Er , ∂E ′r are finite union of Lipschitz surfaces.

Proof We divide the proof in two steps.

Step 1: Let K ⊂ R
N be a bounded set. We claim that for ε positive and sufficiently small the

set C + εK is a Lipschitz set.
Without loss of generality we can assume K ⊂ B1. For any ξ ∈ R

N , ξ �= 0, we let

ξ⊥ := {x ∈ R
N : x · ξ = 0} and Sξ

η := {x ∈ R
N : |πξ (x)| < η and x · ξ > 0}

where πξ denotes the orthogonal projection on ξ⊥. Since C is Lipschitz and compact we
can write its boundary locally as a graph of a Lipschitz function in a uniform way: precisely,
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1262 A. Chambolle et al.

we can find r > 0 such that Br ⊂ C and such that for any z ∈ ∂C there exists a Lipschitz
function fz : Br ∩ z⊥ → R with

{x + fz(x)ẑ : x ∈ Br ∩ z⊥} = ∂C ∩ Szr , ẑ := z/|z|.
Let ε < r/2 and fix x0 ∈ ∂(C + εK ). There exists k0 ∈ K such that x0 ∈ ∂C + εk0, thus
x0 = z0 + εk0 for some z0 ∈ ∂C . For any x ∈ Br/2 ∩ z⊥0 and any k ∈ K let:

g(x) := sup{ fz0(πz0(x − εk))+ εk · ẑ0 : k ∈ K }.
For ξ ∈ ∂(C + εK ) ∩ Sz0

r/2, writing ξ = η + εk, η ∈ ∂C , k ∈ K , we observe that for
y = πz0(η) one has η = y + fz0(y)ẑ0 with |y| ≤ r . Thus, one finds that ξ decomposes as
x + t ẑ0 with x = πz0(ξ) and t ≤ g(x). On the other hand, if t < g(x) then there exists
k ∈ K with t < fz0(y) + εk · ẑ0, but then one would have η · ẑ0 = t − εk · ẑ0 < fz0(y), a
contradiction since η /∈ C̊ . Hence t = g(x) and it follows that:

∂(C + εK ) ∩ Sz0
r/2 ⊂ {x + g(x)ẑ0 : x ∈ Br/2 ∩ z⊥0 }.

Conversely, if ξ = x+g(x)ẑ0 for x ∈ Br/2∩z⊥0 , first it is clear that ξ ∈ ∂C+εK by definition
of g (as there exist kn ∈ K , n ≥ 1, with limn→∞ fz0(πz0(x − εkn)+ εkn · ẑ0) = g(x), and
then ηn = ξ − εkn ∈ ∂C). On the other hand if one lets now ξn := x + (g(x) + 1

n )ẑ0

then for any k ∈ K , (ξn − εk) · ẑ0 > g(x) ≥ f (πz0(x − εk)) = f (πz0(ξn − εk)), hence
(ξn−εK )∩C = ∅. This shows that ξ is not in the interior of C+εK , hence ξ ∈ ∂(C+εK ).
We deduce:

{x + g(x)ẑ0 : x ∈ Br/2 ∩ z⊥0 } = ∂(C + εK ) ∩ Sz0
r/2.

We notice eventually that g is Lipschitz continuous with the same Lipschitz constant L
of fz0 , which achieves the proof that ∂(C + εK ) is locally a Lipschitz graph: indeed for any
x, y ∈ Br/2 ∩ z⊥0 it holds

g(x)− g(y) ≤ sup
k∈K
{ fz0(πz0(x − εk))− fz0(πz0(y − εk))} ≤ L|x − y|.

Step 2: Now it is relatively easy to conclude the proof for ∂E ′r ; the rectifiablity of ∂Er follows
since ∂Er ⊆ ∂E ′r . The idea is to use the same argument as in the proof of [17, Prop. 2.3]. If
r > 0 by step 1 we can say that for any x ∈ R

N the set rC + (Br ′(x) ∩ E) has Lipschitz
boundary for r ′ < r sufficiently small (apply step 1 to rC instead of C). We cover now E ,
which has compact closure, with balls Br ′(x1), . . . , Br ′(xd) and we let Ei := E ∩ Br ′(xi ).
Then

∂E ′r ⊆
d⋃

i=1

∂(Ei )r

that is ∂E ′r is contained in a finite union of Lipschitz surfaces, and this yields the conclusion.
��

4 Construction of a Cahn–Hoffmann vector field for C

First of all, we recall some basic results of the theory of viscosity solutions; for details we
refer to [8]. Let SymN (R) be the set of all symmetric N × N matrices with real entries, let
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 be a subset of RN and let F : 
 × R × R
n × SymN (R) → R be a continuous function

such that the following monotonicity condition holds:

F(x, r , p, X) ≤ F(x, s, p, Y )

whenever r ≤ s andY ≤ X in the sense of matrices. Let u : 
 → R be upper semicontinuous.
We say that u is a viscosity subsolution of the equation F(x, u, Du, D2u) = 0 on 
 if for
any φ ∈ C2(
) and for any x̄ ∈ 
 local maximum point of u − φ it holds

F(x̄, u(x̄), Dφ(x̄), D2φ(x̄)) ≤ 0.

Let now u : 
 → R be lower semicontinuous. We say that u is a viscosity supersolution of
the equation F(x, u, Du, D2u) = 0 on 
 if for any φ ∈ C2(
) and for any x̄ ∈ 
 local
minimum point of u − φ it holds

F(x̄, u(x̄), Dφ(x̄), D2φ(x̄)) ≥ 0.

If u is both a viscosity subsolution and supersolution then u is called viscosity solution of
F(x, u, Du, D2u) = 0 on 
.

We are ready to start the construction of a Cahn-Hoffmann vector field forC in the smooth
case.

Proposition 4.1 Assume thatC is a convex body of classC2 and elliptic. Let n := ∇hC (∇dE ).
Then n ∈ L∞(RN ;RN ),

‖n‖∞ ≤ max
z∈C |z| (4.1)

and div n is a Radon measure on RN\E with

div n ≤ N − 1

r
(4.2)

in the distributional sense out of Er .

Proof First of all we point out that the assumptions on C guarantee that both hC and h◦C are
in C2(RN\{0}). From the standard fact that h2

C/2 and (h◦C )2/2 are Legendre-Fenchel convex
conjugates, so that their gradients hC∇hC and h◦C∇h◦C are inverse mappings, we deduce that
for any z ∈ R

N\{0}
∇hC (∇h◦C (z)) = z

h◦C (z)
. (4.3)

For the sake of simplicity we will denote d := dE .

Step 1. The proof of (4.1) is easy: indeed, if we fix x ∈ R
N with d(x) > 0 and y ∈ E1 is

such that d(x) = h◦C (x − y) then formula (4.3) reads as

n(x) = x − y

h◦C (x − y)

from which we immediately get (4.1) since C = {x ∈ R
N : h◦C (x) ≤ 1}.

Step 2. We prove (4.2). First of all, it turns out that d is a viscosity supersolution of

− div∇hC (∇d) = −N − 1

r
(4.4)
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in R
N\Er . This is a variant of a classical result, see [3]. The proof is quite straightforward.

Indeed, if φ is a smooth function which touches the graph of d from below at a point
x̄ /∈ Er (that is, φ ≤ d , φ(x̄) = d(x̄)) then by definition of d , φ also touches the graph of
x �→ h◦C (x− ȳ) from below at x̄ , where ȳ ∈ E is a point of minimal distance to x̄ . Being both
functions smooth at x̄ , it follows that ∇φ(x̄) = ∇h◦C (x̄ − ȳ) and D2φ(x̄) ≤ D2h◦C (x̄ − ȳ).
In particular,

−div∇hC (∇φ)(x̄) = −D2hC (∇φ(x̄)) : D2φ(x̄)

≥ −D2hC (∇h◦C (x̄ − ȳ)) : D2h◦C (x̄ − ȳ)

= −div∇hC (∇h◦C )(x̄ − ȳ).

Combining (4.3) with the Euler’s identity, for any z ∈ R
N\{0} we obtain, also by direct

computation,

div∇hC (∇h◦C (z)) = div
z

h◦C (z)
= Nh◦C (z)− z · ∇h◦C (z)

|h◦C (z)|2 = N − 1

h◦C (z)

and therefore finally

−div∇hC (∇φ)(x̄) ≥ − N − 1

h◦C (x̄ − ȳ)
.

We find that not only d is a viscosity supersolution of (4.4) out of Er , but the more precise
inequality

−div∇hC (∇φ)(x̄) ≥ −N − 1

d(x̄)

holds. Since h◦C ∈ C2(RN\{0}) by Proposition 2.1 we can say that d is (locally) semiconcave
out of Er , and in particular D2d ≤ c in both the viscosity and distributional sense. It is not
obvious however to deduce from these facts that

−div∇hC (∇d) = D2hC (∇d) : D2d ≤ (N − 1)/r

out of Er in the sense of distributions, as the left-hand side is the product of a L∞, yet
discontinuous function, and a Radon measure.

We pick now R > r , λ > 0, and we introduce uλ a solution of the problem

min

{∫
ER\Er

hC (Du)+
(
N − 1

r
+ λ

) ∫
ER\Er

u(x)dx :

u ∈ BV (E2R\Er/2), u ≥ d, u = d if d ≥ R or d ≤ r

}
. (4.5)

Notice that we can easily apply on the functional in (4.5) direct method of the Calculus
of Variations: we have lower semicontinuity in the strong convergence of L1 essentially
by Reshetnyak’s lower semicontinuity and we have strong L1-compactness of sequences
bounded in energy since hC (v) ≥ c|v| for some c > 0. Moreover, observe that by truncation
arguments we clearly have r ≤ uλ ≤ R in ER\Er . Standard density estimates for the level
sets of uλ show also that uλ is a.e. equal to a lower and a upper-semicontinuous function.
We assume that uλ is upper-semicontinuous, and is a.e. equal to its lower-semicontinuous
envelope. We check then that uλ is a strict viscosity subsolution of (4.4) in {uλ > d}, in the
following sense: if φ ≥ uλ, φ smooth, φ(x̄) = uλ(x̄), then if ∇φ(x̄) �= 0 one has

−div∇hC (∇φ)(x̄) ≤ −N − 1

r
− λ.
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The proof is easy and quite standard. Possibly replacing φ with φ+η| ·−x̄ |2, η small, we may
assume that x̄ is the only contact point. Then, one checks that {φ − δ < uλ} has nonempty
interior and goes to {x̄} in the Hausdorff distance as δ → 0. We denote Hλ = (N −1)/r +λ.
For δ > 0 small we have∫

ER\Er

hC (Duλ)+ Hλ

∫
ER\Er

uλdx ≤
∫
ER\Er

hC (D(uλ ∧ (φ − δ)))

+Hλ

∫
ER\Er

(uλ ∧ (φ − δ))dx .

Moreover, since for any open set A the functional

u �→
∫
A
hC (Du)

satisfies the generalized coarea formula (2.3) and it is convex, we get submodularity (see [5,
Prop. 3.2]), which reads as∫

A
hC (D(uλ ∧ (φ − δ)))+

∫
A
hC (D(uλ ∨ (φ − δ))) ≤

∫
A
hC (Duλ)+

∫
A
hC (∇φ)dx .

Therefore, we obtain that (letting A a small open set containing {φ − δ < uλ}, for δ small)

−Hλ

∫
{φ−δ<uλ}

(φ − δ − uλ) dx ≤
∫
A
hC (∇φ)dx −

∫
A
hC (D(uλ ∨ (φ − δ))).

If ∇φ(x̄) �= 0 then one may assume that ∇φ �= 0 in A, so that it follows

Hλ

∫
{φ−δ<uλ}

(uλ − (φ − δ)) dx ≤
∫
A
∇hC (∇φ) · (D(φ − δ − (uλ ∨ (φ − δ))))

=
∫
A

div∇hC (∇φ)(uλ − (φ − δ))+dx

=
∫
{φ−δ<uλ}

div∇hC (∇φ)(uλ − (φ − δ))dx .

We deduce that div∇hC (∇φ)(x̄) ≥ Hλ, as claimed, otherwise one reaches a contradiction
for small δ.

Now, we can deduce that uλ ≤ d (so that in particular uλ = d), using a standard compar-
ison result for viscosity sub and supersolution (with one possibly discontinuous). We sketch
the argument, see [4] and [8] for details. Let m := max{uλ−d} and assume by contradiction
that m > 0. For δ > 0 small, we consider

mδ := max
x,y

{
uλ(y)− d(x)− |x − y|

2δ

2}
≥ m

which is reached at (xδ, yδ). We have that xδ is a point of maximum of uλ
δ − d where

uλ
δ (x) := max

y

{
uλ(y)− |x − y|

2δ

2}
≥ uλ(x) (4.6)

is a sup-convolution. In particular, if x ∈ {uλ
δ > d + m/2}, a point ȳ which reaches the

maximum in (4.6) is such that uλ(ȳ) > d(ȳ) as soon as δ < m/L2 (L denoting the Lipschitz
constant of d), and in this case uλ

δ is still a strict subsolution of (4.4) in {uλ
δ > d + m/2}:
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take φ smooth with φ ≥ uλ
δ on {uλ

δ > d +m/2} and with φ(x̄) = uλ
δ (x̄) for some x̄ ∈ {uλ

δ >

d + m/2}, and use

ψ(y) := φ(y + x̄ − ȳ)+ |x̄ − ȳ|2
2δ

as a test function in the definition of strict subsolution of (4.4) applied to uλ. Now, since uλ
δ

is (near xδ) semiconvex while d is semiconcave, we can invoke Jensen’s Lemma (see [8] for
details), and find that there are points xn → xδ which are local maximum points of

x �→ uλ
δ (x)− d(x)+ pn · x − αn

|x − xδ|2
2

,

with pn → 0, αn → 0, uλ
δ (xn) > d(xn)+m/2; notice that we have to add the term αn

|x−xδ |2
2

since, in order to apply Jensen’s Lemma, we need xδ be a strict local maximum of the function
we perturb with the linear term pn · x . By Aleksandrov’s Theorem (see again [8] for details)
we can also assume that uλ

δ and d are both twice differentiable at xn . In particular, for n large

∇uλ
δ (xn) = ∇d(xn)− pn + αn(xn − xδ) �= 0

and D2uλ
δ (xn) ≤ D2d(xn)+ αn I so that

N − 1

r
+ λ ≤ D2hC (∇uλ

δ (xn)) : D2uλ
δ (xn)

≤ D2hC (∇d(xn)− pn + αn(xn − xδ)) : D2d(xn)

+αnTr(D2hC (∇d(xn)− pn + αn(xn − xδ))) ≤ N − 1

r
+ o(1)

where o(1) → 0 as n →∞. Since λ > 0 this yields a contradiction. Hence uλ = d for any
λ > 0, and it follows that d is the only minimizer of (4.5) for any λ > 0, and in the limit is
also a minimizer for λ = 0.

Finally, we have shown that the functional in (4.5) is minimized by d , including for λ = 0.
But then, the Euler–Lagrange equation for the problem is easily derived: using perturbations
d+δφ with δ > 0 small, φ smooth, nonnegative, with compact support in ER\Er , we readily
find ∫

ER\Er

(
∇hC (∇d) · ∇φ + N − 1

r
φ

)
dx ≥ 0,

that is precisely (4.2) in the distributional sense. ��
We are ready to prove essentially the same result stated in Proposition 4.1 for a general

convex body C .

Theorem 4.2 Let C be a convex body. There exists n ∈ L∞(RN ;RN ) such that a.e.on R
N

we have

n ∈ ∂hC (∇dE ) (4.7)

and div n is a Radon measure on RN\E with

div n ≤ N − 1

r
(4.8)

in the distributional sense out of Er .
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Proof We use again the notation d = dE . We prove (4.7) and (4.8) approximating C by
smooth, elliptic, uniformly bounded and convex setsCσ , withCσ ⊇ C , and using Proposition
4.1. Let Eσ

r := E + rCσ and denote by dσ the anisotropic distance from Cσ . Then nσ :=
∇hCσ (∇dσ ) ∈ Cσ is well defined a.e.,and (4.2) reads

div nσ ≤ N − 1

r
(4.9)

out of Eσ
r . As σ → 0+ we can assume, up to a subsequence, since ||nσ ||∞ remains bounded

by (4.1), that nσ ∗
⇀ n in L∞(RN ;RN ) and we have for any nonnegative C1 function φ with

compact support in R
N\Er , for σ small enough (using the Hausdorff convergence of Eσ

r to
Er ),

−N − 1

r

∫
φ dx ≤

∫
nσ · ∇φ dx →

∫
n · ∇φ dx

as σ → 0+, showing that in R
N\Er , div n is a measure bounded from above by (N − 1)/r ,

so that we get (4.8). On the other hand, if η : R+ → R is any smooth nonincreas-
ing function with η(t) = 1 for t ≤ r , η(t) = 0 for t large, one has (since nσ =
∇hCσ (∇dσ ) ∈ ∂hCσ (−η′(dσ )∇dσ ), using that ∇hCσ is zero-homogeneous and always
contained in ∂hCσ (0)):∫

nσ · (−∇(η ◦ dσ )) dx =
∫

hCσ (−∇(η ◦ dσ )) dx

Since hCσ ≥ hC , we easily see that, from η ◦ dσ → η ◦ d in any L p and using standard
lower semicontinuity results for integral functionals,∫

hC (−∇(η ◦ d)) dx ≤ lim inf
σ→0+

∫
hC (−∇(η ◦ dσ )) dx ≤ lim inf

σ→0+

∫
hCσ (−∇(η ◦ dσ )) dx,

that is ∫
hC (−∇(η ◦ d)) dx ≤ lim inf

σ→0+

∫
nσ · (−∇(η ◦ dσ )) dx . (4.10)

On the other hand (using (4.9)),∫
nσ · (−∇(η ◦ dσ )) dx =

∫
nσ · (−∇(η ◦ d)) dx −

∫
nσ · ∇(η ◦ dσ − η ◦ d) dx

≤
∫

nσ · (−∇(η ◦ d)) dx + N − 1

r

∫
(η ◦ dσ − η ◦ d) dx

since we have assumed that Cσ ⊇ C , so that dσ ≤ d and η ◦ dσ − η ◦ d ≥ 0. Since dσ → d

uniformly, nσ ∗
⇀ n and ∇(η ◦ d) ∈ L1(RN ;RN ), we deduce that

lim sup
σ→0+

∫
nσ · (−∇(η ◦ dσ )) dx ≤

∫
n · (−∇(η ◦ d)) dx

which together with (4.10) yields∫
hC (−∇(η ◦ d)) dx ≤

∫
n · (−∇(η ◦ d)) dx .

Since n ∈ C a.e. we obtain (4.7) and this ends the proof. ��
Remark 4.3 It turns out that div n is absolutely continuous with respect to HN−1 (RN\E)

(see, for instance, [19, Thm. 3.2-b]).
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Remark 4.4 Recently Giga and Pozar [12] provided a construction of an n satisfying (4.7)
with minimal

∫ |div n|2. Also, an alternative way to build a Cahn-Hoffmann field satisfying
(4.7) can be deduced from the construction in Chambolle, Morini and Ponsiglione [7], in
addition this should also provide a field with minimal curvature.

5 Regularity of the volume function

In this section we investigate the regularity of the volume function VE . Our result extends
[14, Eq. (2.20)], where an expression for V ′E has been given whenever C is strictly convex.
In what follows n is given as in Theorem 4.2.

Let

J := {r > 0 : HN−1(∂E ′r ∩ E1
r ) > 0}

Remark 5.1 We will prove (see (5.7)) that for any r > 0, HN−1(∂E ′r ∩ E1
r ) � |div n| so that

J is at most countable.

In what follow we denote by V ′E (r+) and V ′E (r−) respectively the right and the left
derivative of VE .

Theorem 5.2 For any r > 0 we have

V ′E (r+) =
∫
FEr

hC (νEr ) dHN−1 (5.1)

and

V ′E (r−) =
∫
FEr

hC (νEr ) dHN−1 + 2
∫

∂E ′r∩E1
r

φC (νE ′r ) dHN−1. (5.2)

In particular, VE is differentiable at r if and only if r /∈ J .

Proof Notice that from the fact that ∂C is locally Lipschitz and compact we easily deduce
that

θC := inf{�∗N (C, x) : x ∈ ∂C} > 0.

As a consequence, we obtain ∂Er ∩ E0
r = ∅: indeed, if x ∈ ∂Er then x ∈ y+ r∂C for some

y ∈ ∂E , hence �∗N (Er , x) ≥ θC > 0. By Theorem 3.1 and Theorem 2.2 it follows that for
any r > 0

lim
s→0+

VE (r + s)− VE (r)

s
= SMC (Er ) =

∫
FEr

hC (νEr ) dHN−1

that is formula (5.1). It remains to compute the left derivative of VE . We divide the rest of
the proof in some steps.

Step 1. Let C∗ := −C , that is the symmetrical of C with respect to the origin; notice that
h◦C∗(−v) = h◦C (v) for all v ∈ R

N . We also introduce the corresponding anisotropic distance
to E ′r

c:

d∗(x) := inf
z∈E ′r c

h◦C∗(x − z)
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where we have denoted E ′r
c := (E ′r )c. Let s ∈ (0, r). Notice that

Er\Er−s = {x : r − s < dE (x) ≤ r}.
Let x ∈ R

N with d∗(x) < s. By definition there exist ε > 0 and zε ∈ E ′r
c such that

h◦C∗(x − zε) = s − ε. Then, for any y ∈ E we obtain, by the subadditivity of h◦C ,

h◦C (x − y) ≥ h◦C (zε − y)− h◦C (zε − x)

= h◦C (zε − y)− h◦C∗(x − zε) ≥ r − s + ε

that is dE (x) > r − s. Thus {d∗(x) < s, dE (x) ≤ r} ⊆ Er\Er−s . Taking into account
Lemma 3.1 we can say that |{d∗ = s}| = 0 and |Ec

r | = |E ′r c|, hence

|(E ′r c + sC∗)\E ′r c| = |{d∗(x) < s, dE (x) ≤ r}| ≤ |Er\Er−s |.
Passing to the limit as s → 0+ we deduce that

SMC∗(E
′
r
c
) ≤ lim inf

s→0+
|Er\Er−s |

s
. (5.3)

Using Theorem 2.2 we get

SMC∗(E
′
r
c
) =

∫
FE ′r c

hC∗(νE ′r c ) dH
N−1 + 2

∫
∂E ′r c∩(E ′r c)0

φC∗(νE ′r c ) dH
N−1.

From FEr = FE ′cr , νE ′cr = −νEr , ∂E ′cr = ∂E ′r and (E ′cr )0 = E ′1r = E1
r it follows

SMC∗(E
′c
r ) =

∫
FEr

hC (νEr ) dHN−1 + 2
∫

∂E ′r∩E1
r

φC (νE ′r ) dHN−1. (5.4)

Notice now that if r /∈ J then HN−1(∂E ′r ∩ E1
r ) = 0. We obtain that for any r ∈ (0,+∞)\J∫

FEr

hC (νEr ) dHN−1 ≤ lim inf
s→0+

|Er\Er−s |
s

. (5.5)

Step 2. We prove now that for any r > 0

lim sup
s→0+

|Er\Er−s |
s

≤
∫
FEr

hC (νEr ) dHN−1 − div n(Er\E ′r ). (5.6)

For any s ∈ (0, r) we have, using the coarea formula and (5.15),

|Er\Er−s | =
∫ r

r−s

∫
FEt

hC (νEt ) dHN−1 dt

=
∫ s

0

∫
FEr−s+u

hC (νEr−s+u ) dHN−1 du

≤
∫ s

0

∫
FEr−s

hC (νEr−s ) dHN−1 du +
∫ s

0

N − 1

r − s
|Er−s+u\Er−s | du

= s
∫
FEr−s

hC (νEr−s ) dHN−1 + o(s).

Therefore, by (5.9) we obtain

lim sup
s→0+

|Er\Er−s |
s

≤ lim
t→r−

∫
FEt

hC (νEt ) dHN−1

=
∫
FEr

hC (νEr ) dHN−1 − div n(Er\E ′r )
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which is (5.6).

Step 3. We now conclude the proof showing that for any r > 0 it holds

− div n(Er\E ′r ) = 2
∫

∂E ′r∩E1
r

φC (νE ′r ) dHN−1. (5.7)

The inequality “≥” in (5.7) follows combining (5.3) with (5.6). We prove “≤”. We have

Er\E ′r = Er ∩ E ′r
c =

⋂
s>0

[
(E ′r

c + sC∗) ∩ Er+s
]

so that

−div n(Er\E ′r ) = lim
s→0

−div n
(
(E ′r

c + sC∗) ∩ Er+s
)

= lim
s→0

1

s

∫
0S − div n

(
(E ′r

c + tC∗) ∩ Er+t
)
dt .

Using Fubini’s Theorem, we write this as

−1

s

∫
0S

∫
(χE ′r c+tC∗ − χEc

r+t ) d(div n)dt

= −
∫

1

s

∫
0S(χE ′r c+tC∗ − χEc

r+t ) dt d(div n)

= −
∫ (

1− d∗

s

)+
−

((
d − r

s

)+
∧ 1

)
d(div n)

=
∫

n · ∇
(

1− d∗

s

)+
− n · ∇

((
d − r

s

)+
∧ 1

)
dx

where d∗ is defined as in Step 1. Now

n · ∇
(

1− d∗

s

)+
= −n · ∇d∗ 1

s
χ{0<d∗<s} ≤ 1

s
χ(E ′r c+sC∗)\E ′r c

since −n · ∇d∗ ≤ hC∗(∇d∗) = 1, when d∗ > 0. Next, using n · ∇d = 1 a.e.,

n · ∇
((

d − r

s

)+
∧ 1

)
= n · ∇d 1

s
χ{r<d≤r+s} = 1

s
χEr+s\Er .

Hence,

lim
s→0

1

s

∫
0S − div n

(
(E ′r

c + tC∗) ∩ Er+t
)
dt ≤ lim

s→0

|(E ′r c + sC∗)\E ′r c| − |Er+s\Er |
s

= SMC∗(E
′
r
c
)− SMC (Er ) = 2

∫
∂E ′r∩E1

r

φC (νE ′r ) dHN−1

thanks to (5.4), and this ends the proof. ��
Proposition 5.3 For any r > 0

lim
s→r+

∫
FEs

hC (νEs ) dHN−1 =
∫
FEr

hC (νEr ) dHN−1 (5.8)
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and

lim
s→r−

∫
FEs

hC (νEs ) dHN−1 =
∫
FEr

hC (νEr ) dHN−1 + 2
∫

∂E ′r∩E1
r

φC (νE ′r ) dHN−1.

(5.9)

In particular, VE is C1 in (0,+∞)\J .
Proof Let us prove (5.8). The easy part is the estimate from below: since DχEs⇀

∗DχEr , as
measures as s → r+, applying Reshetnyak’s lower semicontinuity we have∫

FEr

hC (νEr ) dHN−1 =
∫

hC

(
dDχEr

d|DχEr |
)

d|DχEr |

≤ lim inf
s→r+

∫
hC

(
dDχEs

d|DχEs |
)

d|DχEs | = lim inf
s→r+

∫
FEs

hC (νEs ) dHN−1.

Now we divide the rest of the proof in some steps.

Step 1. We claim that for each continuous function ψ : [0, 1] → R we have

lim
k→+∞

∫ 1

0
ψ(t)

∫
FEr+t/k

hC (νEr+t/k ) dHN−1 dt =
∫
FEr

hC (νEr ) dHN−1
∫ 1

0
ψ(t) dt .

(5.10)

For simplicity of notation we set

f (t) :=
∫
FEt

hC (νEt ) dHN−1.

First of all, combining (2.5) with the coarea formula, for any positive integer k we obtain
∫ 1

0
f (r + t/k) dt =

∫ 1

0

∫
{r<dE<r+t/k}

hC (∇dE ) dHN−1 dt = |Er + 1/kC | − |Er |
1/k

and therefore using Theorem 3.1 we are able to pass to the limit applying [6, Thm. 3.4] and
thus

lim
k→+∞

∫ 1

0
f (r + t/k) dt = f (r).

Of course, for any c > 0 we also have, by a simple change of variable,

lim
k→+∞

∫ c

0
f (r + t/k) dt = c f (r)

from which, for each bounded open interval I ,

lim
k→+∞

∫
I
f (r + t/k) dt = |I | f (r). (5.11)

Now using (5.11) it is easy to get (5.10) whenever ψ ≥ 0. Indeed, by Fubini’s Theorem
∫ 1

0
ψ(t) f (r + t/k) dt =

∫ 1

0
dt

∫ ψ(t)

0
ds f (r + t/k) =

∫ max ψ

0
ds

∫
{ψ>s}

dt f (r + t/k)

→
∫ max ψ

0
ds|{ψ > s}| f (r) = f (r)

∫ 1

0
ψ(t) dt .

123



1272 A. Chambolle et al.

For a general continuous function ψ it is sufficient to apply the previous argument to ψ+ and
ψ−.

Step 2: Consider η : R → R a smooth nondecreasing function with η ≡ 1 on R− and
η(t) = 0 for t ≥ 1. Then, letting, for k ≥ 0, ψk(x) := η(k(dE (x) − r)) and ψε

k (x) :=
η(k(dE (x)− r − ε)), one has, using (4.8),∫

n · ∇(ψk − ψε
k )dx ≤

N − 1

r

∫
|ψε

k − ψk | dx → N − 1

r
|Er+ε\Er | (5.12)

as k →+∞. On the other hand, using the definition of n and the coarea formula,∫
n · ∇ψk dx =

∫
kη′(k(dE − r)) n · ∇dE dx

=
∫

kη′(k(dE − r)) hC (∇dE ) dx

=
∫ r+1/k

r
kη′(k(s − r))

∫
FEs

hC (νEs ) dHN−1 ds

=
∫ 1

0
η′(s)

∫
FEr+t/k

hC (νEr+t/k ) dHN−1 ds

and since (5.10) it follows, by definition of η,

lim
k→+∞

∫
n · ∇ψk dx = −

∫
FEr

hC (νEr ) dHN−1. (5.13)

Similarly,

lim
k→+∞

∫
n · ∇ψε

k dx = −
∫
FEr+ε

hC (νEr+ε ) dHN−1.

Using (5.13) and definition of div n we easily get∫
FEr

hC (νEr ) dHN−1 −
∫
FEs

hC (νEs ) dHN−1 = div n (Er\Es) (5.14)

while passing to the limit in (5.12) as k →+∞ we deduce∫
FEr+ε

hC (νEr+ε ) dHN−1 ≤
∫
FEr

hC (νEr ) dHN−1 + N − 1

r
|Er+ε\Er |. (5.15)

Passing to the limit in (5.15) as ε → 0+ we get

lim sup
ε→0+

∫
FEr+ε

hC (νEr+ε ) dHN−1 ≤
∫
FEr

hC (νEr ) dHN−1

so that the proof of (5.8) is complete. Finally, (5.9) follows from (5.14) and from (5.7) since
div n is a measure, Er\Es ↘ Er\E ′r as s → r−. ��

We next investigate further regularity properties of VE .

Theorem 5.4 The second derivative V ′′E is a Radon measure on (0,+∞) given by

〈V ′′E , ψ〉 =
∫

ψ(dE )d(div n), ∀ψ ∈ C∞c (0,+∞).
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In particular,

V ′′E ≤
N − 1

r
V ′E (r)dr (5.16)

in the sense of distributions.

Proof We have, by coarea formula,

−
∫ +∞

0
ψ ′(r)V ′E (r) dr = −

∫ +∞

0
ψ ′(r)

∫
FEr

hC (νEr ) dHN−1 dr

= −
∫ +∞

0
ψ ′(dE )n · ∇dE dx

= −
∫ +∞

0
n · ∇(ψ ◦ dE ) dx

=
∫

ψ(dE )d(div n)

from which the conclusion. ��
Corollary 5.5 For any t, r ∈ (0,+∞)\J with t < r we have

1

r N−1

∫
FEr

hC (νEr ) dHN−1 ≤ 1

t N−1

∫
FEt

hC (νEt ) dHN−1. (5.17)

Moreover,

lim
r→+∞

1

r N−1

∫
FEr

hC (νEr ) dHN−1 = N |C | =
∫

∂C
hC (νC ) dHN−1. (5.18)

Monotonicity (5.17) follows from (5.16) while (5.18) follows from

lim
r→+∞

1

r N−1

∫
FEr

hC (νEr ) dHN−1 = N lim
r→+∞

|E + rC |
r N

= N lim
r→+∞

∣∣∣∣ Er + C

∣∣∣∣ .
Remark 5.6 Obviously from Theorem 5.2 the jump part of V ′′E is given by

∑
r∈J

(
2

∫
∂E ′r∩E1

r

φC (νE ′r ) dHN−1

)
δr .

In addition we have that for any r > ε > 0

(div n)−(Er\Eε) ≤ N − 1

ε
|Er\Eε| +

∫
FEε

hC (νEε ) dHN−1.

As soon as r0 is such that Er0 ⊃ conv(E) ⊃⋃
r∈J (∂E ′r ∩ E1

r ) we have

∑
r∈J , r>ε

2
∫

∂E ′r∩E1
r

φC (νE ′r ) dHN−1 ≤ N − 1

ε
|Er0\Eε| +

∫
FEε

hC (νEε ) dHN−1.
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