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Abstract
Wedevelop a functional analytic approach for the study of nonlocal minimal graphs. Through
this, we establish existence and uniqueness results, a priori estimates, comparison principles,
rearrangement inequalities, and the equivalence of several notions of minimizers and solu-
tions.
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1 Introduction

Given an integer n � 1 and a real number s ∈ (0, 1), the fractional or nonlocal s-perimeter
of a measurable set E ⊆ R

n+1 in an open set O ⊆ R
n+1 is defined as the quantity

Pers(E,O) := Ls(E ∩ O, CE ∩ O) + Ls(E ∩ O, CE\O) + Ls(E\O, CE ∩ O),

where, for two measurable and disjoint sets A, B ⊆ R
n+1, we write

Ls(A, B) :=
∫
A

∫
B

dX dY

|X − Y |n+1+s

and CE := R
n+1\E denotes the complement of E .

Nonlocal perimeters have been introduced in 2010 in the seminal paper [10] of Caffarelli,
Roquejoffre & Savin. Since then, there has been a growing interest in their study and, in
particular, in the understanding of the properties enjoyed by their minimizers. For more
information, we refer the reader to the surveys contained in [38], [6, Chapter 6], [24], and
[15, Section 7].

Very recently, several articles have focused on the class of minimizers of Pers that can be
written as entire subgraphs ofmeasurable functions.These sets—or, better, their boundaries—
are often called nonlocal s-minimal graphs. The main source of inspiration for the present
paper is the work [22], where Dipierro, Savin & Valdinoci showed that a set E which min-
imizes the s-fractional perimeter in a cylinder O = � × R and which is the subgraph of a
continuous function ϕ outside ofO, must be a subgraph also insideO. The existence of such
a minimizing set E was later proved in [34] by the second author, while its regularity was
fully established in [8] by Cabré and the first author. Concerning the qualitative properties of
nonlocal minimal graphs, we also mention [20,21,23] for results on their boundary behavior
in low dimension and [14] for Bernstein-type theorems.

The aim of this work consists in developing an appropriate functional analytic setting for
studying nonlocal minimal graphs. Thanks to the introduction of the functionalFs , constitut-
ing a fractional and nonlocal version of the classical area functional, we will establish some
new results, summarized here below.

(a) We study the relationship between Fs and the fractional s-perimeter of subgraphs.
(b) We prove the existence and uniqueness of minimizers of the functional Fs , under very

mild assumptions on the exterior data.
(c) We obtain a priori estimates for minimizers: an integral estimate in a suitable fractional

Sobolev space, as well as local and global L∞ bounds.
(d) We study weak and viscosity solutions of the nonlocal mean curvature equation Hs =

0—the Euler–Lagrange equation associated to Fs .
(e) We obtain a vertical rearrangement inequality, by means of which we show that the

subgraph of a minimizer of Fs is also a minimizer of the fractional s-perimeter. In
particular, this leads us to conclude that graphs with vanishing s-mean curvature are
minimizers of the s-perimeter and enables us to extend [22, Theorem 1] to a wider class
of exterior data.

(f) We establish the equivalence of minimizers of the functional Fs , nonlocal minimal
graphs, and weak, viscosity, and smooth pointwise solutions of the fractional mean
curvature equation.

We will provide the rigorous statements of these results in the remainder of the introduc-
tion. First, however, we spend a few words on the motivations that lie behind the definition
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of the nonlocal area functionalFs as well as its relationship with the fractional perimeter and
nonlocal minimal graphs.

1.1 Geometric motivations

Our general goal is to define a functional Fs = Fs(u,�), associated to an open set � ⊆ R
n

and acting on ameasurable function u: Rn → R, whoseminimization essentially corresponds
to the minimization of the s-perimeter of the subgraph

Su :=
{
(x, t) ∈ R

n × R: t < u(x)
}

in the cylinder � × R. We start by recalling a couple of standard notions of minimality for
the nonlocal perimeter Pers .

Definition 1.1 Ameasurable set E ⊆ R
n+1 is said to be s-minimal in an open setO ⊆ R

n+1

if Pers(E,O) < ∞ and

Pers(E,O) � Pers(F,O) for every F ⊆ R
n+1 s.t. F\O = E\O.

We also say that E is locally s-minimal in O if E is s-minimal in every open set O′ � O.

Note that, in order to be locally s-minimal, a set is only required to havefinite s-perimeter in
every boundedopen set compactly contained inO, and not in thewholeO.WhenO is bounded
and Lipschitz, the two concepts of s-minimality are equivalent—see [34, Theorem 1.7].
Conversely, this distinction becomes especially important when dealing with unbounded
sets, such as an infinite cylinder O = � × R. In this case and when the base set � ⊆ R

n is
bounded and Lipschitz, local s-minimality is equivalent to s-minimality in every truncated
cylinder�×(−M, M)with M > 0—this follows from [34, Remark 4.2]. On the other hand,
it turns out that the notion of s-minimality in the whole � × R makes no sense in general,
since even for a globally bounded function u: Rn → R it holds

Pers(Su,� × R) = ∞,

no matter how regular � and u are—see [34, Theorem 1.14 and Corollary 4.5].
This issue constitutes the main difficulty that one encounters while seeking a good def-

inition of Fs . In order to circumvent it, it is beneficial to split the s-perimeter functional
into different pieces, and investigate which one is really responsible for its blow-up. Hence,
following the notation introduced in [28] we write the s-perimeter as the sum

Pers(E,O) = PerLs (E,O) + PerNLs (E,O), (1.1)

of the local part

PerLs (E,O) := Ls(E ∩ O, CE ∩ O) = 1

2
[χE ]Ws,1(O),

which only reads the interactions occurring inside the open set O, and the nonlocal part

PerNLs (E,O) := Ls(E ∩ O, CE\O) + Ls(E\O, CE ∩ O)

=
∫
O

∫
CO

|χE (X) − χE (Y )|
|X − Y |n+1+s

d X dY , (1.2)

which takes into account all the remaining interactions. It turns out that PerNLs (Su,�×R) =
+∞, even when u ∈ C∞

c (Rn), while PerLs (Su,�×R) is finite, provided u is regular enough
inside �.
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Our analysis here starts from the following observations. Let � ⊆ R
n be a bounded open

set and let u:� → R be a measurable function. Then,

PerLs (Su,� × R) < ∞ if and only if u ∈ Ws,1(�). (1.3)

Moreover, it holds

PerLs (Su,� × R) = As(u,�) + κs,�, (1.4)

where

As(u,�) :=
∫

�

∫
�

Gs
(
u(x) − u(y)

|x − y|
)

dx dy

|x − y|n−1+s

with

Gs(t) :=
∫ t

0

(∫ τ

0

dσ

(1 + σ 2)
n+1+s

2

)
dτ,

and where κs,� is an explicit constant that does not depend on u—see Sect. 2.3 for the
computation.

Formula (1.4) should be compared with the well-known identity between the standard
perimeter of a subgraph inside an open infinite vertical cylinder and the area functional of its
defining function—see, e.g., [30,32]. This prompts us to interpretAs as a fractional version of
the classical area functional. However,As only accounts for interactions occurring inside �.
In order to have a reasonable nonlocal functional it is then quite natural to add toAs the term

Ns(u,�) := 2
∫

�

∫
C�

Gs
(
u(x) − u(y)

|x − y|
)

dx dy

|x − y|n−1+s
,

and define the fractional s-area functional as

Fs(u,�) := As(u,�) + Ns(u,�) =
∫∫

Q(�)

Gs
(
u(x) − u(y)

|x − y|
)

dx dy

|x − y|n−1+s
,

with Q(�) := R
2n\(C�)2. The functional Ns gathers part of the interactions contained

in PerNLs . It should be compared with the L1(∂�) term that arises when computing the stan-
dard perimeter of a subgraph having jump discontinuities on ∂�—see, e.g., [31, Chapter 14].
See also [35, Theorem 1.8] (and, in particular, identity (1.9) there], where a similar analogy
is observed in the limit s → 1.

Interestingly enough, we can arrive to the functional Fs from a different starting point,
involving the fractional mean curvature. The fractional s-mean curvature of a measurable
set E ⊆ R

n+1 at a point X ∈ ∂E is defined as the principal value integral

Hs[E](X) := P.V.
∫
Rn+1

χCE (Y ) − χE (Y )

|X − Y |n+1+s
dY .

As shown in [10], this quantity arises when taking the first variation of the s-perimeter. Note
that it is well-defined provided the boundary of E is regular enough around x—see, e.g., [1].

In [13]—see also [1,3] and [5, Appendix B.1]—it has been observed that if E = Su is the
subgraph of a measurable function u: Rn → R, then its s-mean curvature can be written as
an integro-differential operator acting on u. Indeed, the identity

Hs[Su](x, u(x)) = 2 P.V.
∫
Rn

Gs

(
u(x) − u(y)

|x − y|
)

dy

|x − y|n+s
=: Hsu(x) (1.5)
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holds true at every point x ∈ R
n around which u is sufficiently smooth, with

Gs(t) := G′
s(t) =

∫ t

0

dτ

(1 + τ 2)
n+1+s

2

.

Now, it is easy to see that Fs is the energy corresponding to Hs . Indeed, it holds

d

dε

∣∣∣∣
ε=0

Fs(u + εv,�) = 〈Hsu, v〉 for every v ∈ C∞
c (�),

where we indicate with

〈Hsu, v〉 :=
∫
Rn

∫
Rn

Gs

(
u(x) − u(y)

|x − y|
) (

v(x) − v(y)
) dx dy

|x − y|n+s
for v ∈ Ws,1(Rn)

(1.6)

the continuous linear functional induced by Hsu on Ws,1(Rn) via the L2(Rn) pairing.
Remarkably, the boundedness of Gs grants that definition (1.6) is well-posed under no
assumption on the function u, besides measurability.

We have therefore traced a connection between the nonlocal perimeter Pers and the frac-
tional area functional Fs . From this, one can easily see that nonlocal minimal graphs are in
particular minimizers of Fs . One of the main contributions of the present paper consists in
verifying that the converse is also true. Note that the difficulty here lies in the fact that, to
establish the s-minimality of a given subgraph Su , one has to compare its s-perimeter to those
of all its compact perturbations, not only the ones that come in the form of a subgraph, as is
natural for Fs . We solve this issue by means of a suitable rearrangement inequality, which
shows that the s-perimeter decreases under vertical rearrangements—which transform non-
graphical perturbations into graphical ones.

In viewof these remarks, to generate nonlocalminimal graphs one can proceed tominimize
the nonlocal area functional Fs . However, in the above discussion we have overlooked an
important issue: the conditions on the function u needed to ensure that Fs(u,�) < ∞.
As we already observed in (1.3)–(1.4), the finiteness of As(u,�) is equivalent to having
that u|� ∈ Ws,1(�). On the other hand, to have Ns(u,�) finite, one is led to impose some
condition on the exterior datum ϕ = u|C�, such as

∫
�

(∫
C�

|ϕ(y)|
|x − y|n+s

dy

)
dx < ∞. (1.7)

Note that (1.7) is rather restrictive, in particular as it essentially forces ϕ(x) to grow slower
than |x |s at infinity.

Differently to what happens with homogeneous operators like the fractional Laplacian,
conditions that pose limitations on the behavior at infinity are typically unnatural in the
context of nonlocal perimeters. Indeed, the fractional mean curvature Hsu solely requires
local regularity assumptions on u to be well-defined, the minimization problem for Pers has
a solution regardless of any assumption on the outside datum (see [10, Theorem 3.2] and [34,
Corollary 1.11]), the gradient estimate of [8, Theorem 1.1] only involves local L∞ norms,
etc.

As we shall see in the next subsection, most of our results avoid the imposition of unnec-
essary global conditions such as (1.7). To do this, we will introduce a notion of minimality
for Fs that does not require the finiteness of Fs—see Definition 1.2 here below.
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1.2 Definitions andmain results

We begin by addressing the existence and uniqueness of minimizers of Fs with a given
outside datum. Since this result and a few others that will follow are somewhat independent
of the underlying geometric structure, wewill state them for amore general class of fractional
area-type functionals, no longer related to nonlocal perimeters.

Let g: R → (0, 1] be an even continuous function such that
∫
R
g(t)|t | dt is finite and

consider its first and second antiderivatives

G(t) :=
∫ t

0
g(τ ) dτ and G(t) :=

∫ t

0
G(τ ) dτ =

∫ t

0

(∫ τ

0
g(σ ) dσ

)
dτ.

Given anopen set� ⊆ R
n , a real number s ∈ (0, 1), and anymeasurable functionu: Rn → R,

we define

F(u,�) :=
∫∫

Q(�)

G
(
u(x) − u(y)

|x − y|
)

dx dy

|x − y|n−1+s
, (1.8)

where Q(�) := R
2n\(C�)2.

Of course, by choosing g equal to

gs(t) := 1

(1 + t2)
n+1+s

2

, (1.9)

we recover the functions Gs , Gs , and the functional Fs introduced earlier. Throughout the
paper, we will sometimes refer to this choice as the geometric framework—given its connec-
tion with the s-perimeter.

We consider the linear space

Ws(�) :=
{
u: Rn → R measurable: u|� ∈ Ws,1(�)

}
(1.10)

and, for a given measurable function ϕ: C� → R, its affine subset

Ws
ϕ(�) :=

{
v ∈ Ws(�): v = ϕ a.e. in C�

}
. (1.11)

Our aim is to minimize the functional F within Ws
ϕ(�), given a function ϕ as exterior

datum. As commented before, to avoid the imposition of restrictive assumptions on ϕ—such
as (1.7)—, we consider the following definition of minimizer, which is well-posed thanks to
the fractional Hardy inequality of Proposition A.2—see Lemma 2.8.

Definition 1.2 Let � ⊆ R
n be a bounded open set with Lipschitz boundary. A func-

tion u: Rn → R is a minimizer of F in � if u ∈ Ws(�) and∫∫
Q(�)

{
G
(
u(x) − u(y)

|x − y|
)

− G
(

v(x) − v(y)

|x − y|
)}

dx dy

|x − y|n−1+s
� 0

for every v ∈ Ws(�) such that v = u a.e. in C�.
Given a measurable function ϕ: C� → R, we say that u: Rn → R is a minimizer of F

within Ws
ϕ(�) if u is a minimizer of F in � which belongs to Ws

ϕ(�).

Whenϕ satisfies theglobal integrability condition (1.7), it canbe checked thatF(u,�) < ∞
for every u ∈ Ws

ϕ(�) and therefore Definition 1.2 is equivalent to more standard ones—see
Sect. 5.1.1. Of course, Definition 1.2 allows a much higher degree of generality. The down-
side is that proving the existence of a minimizer becomes a more delicate issue, as one cannot
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blindly use the direct method of the Calculus of Variations. To overcome this problem, we
exploit a “truncation procedure” for F and introduce the family of functionals {FM }M>0.
In the geometric framework, these correspond to the s-perimeter in the truncated cylin-
der � × (−M, M)—we refer to Sect. 2.2 for the precise definition of the FM ’s and to
Sect. 2.3 for their relationship with the s-perimeter.

The idea consists in proving that each functional FM has a unique minimizer uM within
its natural domain and to exploit the a priori estimate of Proposition 3.2—which holds under
the very mild assumption (1.13) on the exterior datum—to prove that the minimizers uM ’s
converge to a function u. This limit function is then shown to be a minimizer in the sense
of Definition 1.2. We refer to Sect. 5 for the detailed presentation of the argument and to
Remark 5.4 for some further comments about this strategy.

In order to state our first result, we need to introduce some further terminology. Given a
set � ⊆ R

n and 
 > 0, we introduce its exterior 
-neighborhood

�
 :=
{
x ∈ R

n : dist(x,�) < 

}
.

Given a bounded open set � ⊆ R
n and a function ϕ: C� → R, we define the tail of u

restricted to a measurable set O ⊆ C� and evaluated at a point x ∈ � as

Tails(ϕ,O; x) :=
∫
O

|ϕ(y)|
|x − y|n+s

dy. (1.12)

Similar notions of tails were introduced in [17,18] to study the regularity properties of solu-
tions of homogeneous nonlinear nonlocal equations. We stress that, in contrast to those
works, the tails considered here will almost always be restricted to a bounded O (typically,
an exterior neighborhood of �), a reflection of the different behavior at infinity allowed by
the non-homogeneous operator Hs—recall the discussion at the end of Sect. 1.1.

Theorem 1.3 Let � ⊆ R
n be a bounded open set with Lipschitz boundary. Then, there exists

a constant � > 0, depending only on n, s, and g, such that, given any function ϕ: C� → R

with

Tails(ϕ,�� diam(�)\�; · ) ∈ L1(�), (1.13)

there exists a unique minimizer u of F within Ws
ϕ(�). Moreover, u satisfies

‖u‖Ws,1(�) � C
(∥∥Tails(ϕ,�� diam(�)\�; · )∥∥L1(�)

+ 1
)

, (1.14)

for some constant C > 0 depending only on n, s, g, and �.

Theorem 1.3 provides the existence and uniqueness of a minimizer of F having a pre-
scribed outside datum ϕ satisfying assumption (1.13). The uniqueness of said minimizer is
particularly noteworthy, since it marks an interesting difference with the classical theory of
minimal graphs. Indeed, (generalized) minimizers of the area functional need not be unique,
unless one restricts oneself to continuous boundary data—see [31, Chapter 15] and, in partic-
ular, Example 15.12 there. This higher rigidity of nonlocal minimizers comes from the fact
that F (along with its truncations {FM }) is strictly convex in Ws

ϕ(�), whereas the classical

area functional (corresponding to the perimeter in the closed cylinder � × R) is in general
only convex.

Note that Theorem 1.3 holds under hypothesis (1.13) on the outside datum ϕ. This require-
ment is much weaker than (1.7), since it poses no restriction on ϕ outside of �� diam(�). For
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instance, any bounded function in �� diam(�)\� satisfies it, and a mild blow-up near ∂� is
allowed as well—see Lemma 5.5 for more information.

The existence of minimizers of F comes with the natural energy estimate (1.14). In the
following result, we establish instead a global L∞ estimate. It applies in particular to the
minimizers obtained inTheorem1.3, provided the outside datumϕ is bounded in a sufficiently
large neighborhood of �.

Theorem 1.4 Let � ⊆ R
n be a bounded open set with Lipschitz boundary. There exists a

constant � > 0, depending only on n, s, and g, such that if u ∈ Ws(�) is a minimizer of F
in �, bounded in �� diam(�)\�, then u is also bounded in � and satisfies

‖u‖L∞(�) � diam(�) + ‖u‖L∞(�� diam(�)\�).

Theorem 1.4 generalizes an L∞ estimate obtained in [22, Section 3] for nonlocal minimal
graphs.

The strategy of the proof of Theorem 1.4 consists in showing that, by truncating the
minimizer u inside � at height ±N , the energy decreases—provided N is big enough. Then,
the conclusion follows from the uniqueness of minimizers. We refer to Proposition 3.5 for
the precise argument.

When the exterior datum of the minimizer u is not bounded in a neighborhood of �, one
can still obtain that u is locally bounded inside �—see Proposition 3.3. We stress that the
local boundedness of minimizers is important to show that the subgraphs of minimizers of
the fractional area functional Fs are nonlocal minimal graphs, as it allows us to make use of
the rearrangement inequality of the forthcoming Theorem 1.9.

We also point out that, to obtain the global boundedness of the minimizer u ∈ Ws
ϕ(�)

inside �, it is actually enough to require the function ϕ to be bounded only in a neighbor-
hood�r\�, with r > 0 arbitrarily small—see Proposition 3.6. However, in this case the L∞
bound is not as clean as the one of Theorem 1.4.

We now focus our attention on the Euler–Lagrange operator associated with F , which is
the nonlinear integro-differential operator

H u(x) := 2 P.V.
∫
Rn

G

(
u(x) − u(y)

|x − y|
)

dy

|x − y|n+s
.

In order forH u(x) to be well-defined in the pointwise sense, the function u must be regular
enough (e.g., C1,α for some α > s) in a neighborhood x . Regardless, when u is merely
measurable we can still understand H u in a distributional sense, setting

〈H u, v〉 :=
∫
Rn

∫
Rn

G

(
u(x) − u(y)

|x − y|
) (

v(x) − v(y)
) dx dy

|x − y|n+s
for v ∈ Ws,1(Rn).

This observation prompts us to give the following definition of weak solutions.

Definition 1.5 Let � ⊆ R
n be an open set and let f ∈ L1

loc(�). A measurable func-
tion u: Rn → R is a weak subsolution of H u = f in � if

〈H u, v〉 �
∫

�

f v dx for every v ∈ C∞
c (�) such that v � 0.

We say that u is a weak supersolution of H u = f in � if −u is a weak subsolution
ofH (−u) = − f in �. If u is both a weak sub- and supersolution ofH u = f in �, we call
it a weak solution.

123



On nonlocal minimal graphs Page 9 of 72   136 

We refer to Sect. 2.4 for comments on the space of the test functions v.
It is immediate to verify that minimizers of F are weak solutions of H u = 0. By the

convexity ofF , the converse is also true, provided u is known a priori to belong to the energy
spaceWs(�). As can be easily checked (again, see Sect. 2.4), this requirement is not needed
to make sense of the quantity 〈H u, v〉, and is therefore not included in Definition 1.5. We
believe that it would be interesting to understand whether weak solutions of H u = 0 have
necessarily (locally) finite Ws,1 energy or not.

Furthermore, again by exploiting the convexity of the functionalF , it is easy to verify that
weak sub- and supersolutions of H u = 0 belonging to the energy space Ws(�) satisfy a
comparison principle—see Proposition 2.26. This enables us to prove an alternative, Perron-
type, existence result for minimizers of F .

In order to state it, we need some additional terminology.

Definition 1.6 Given an open set � ⊆ R
n , we define the space

Ws
loc(�) :=

{
u: Rn → R measurable: u|� ∈ Ws,1

loc (�)
}

and say that a function u: Rn → R is a local minimizer ofF in� if it belongs toWs
loc(�) and

it is a minimizer of F in �′ (as per Definition 1.2) for every open set �′ � � with Lipschitz
boundary.

We then have the following result.

Theorem 1.7 Let � ⊆ R
n be an open set and ϕ: C� → R be a measurable function. The

following statements are equivalent:

(i) There exists a local minimizer u ∈ Ws
loc(�) of F in � such that u = ϕ a.e. in C�;

(ii) There exist two measurable functions u, u ∈ Ws
loc(�), locally bounded in �, which are

respectively a weak sub- and supersolution of H u = 0 in � and such that

u � u a.e. in R
n and u � ϕ � u a.e. in C�.

Another way to interpret H u = f is via the notion of viscosity solution, a concept that
has proven to be very powerful in the context of integro-differential operators. We mention
the highly influential papers [11,12] by Caffarelli & Silvestre, which developed the regularity
theory for viscosity solutions of a vast class of fully nonlinear, uniformly elliptic integro-
differential equations. The operators H considered here do not belong to such class, due
to their lack of homogeneity and uniform ellipticity. Nevertheless, a natural definition of
viscosity solution can be formulated for them—see Definition 4.2 in Sect. 4. The next result
investigates their relationship with weak solutions.

Theorem 1.8 Let � ⊆ R
n be an open set, f ∈ C(�), and u be a viscosity subsolution

of H u = f in �. Then, u is a weak subsolution of the same equation and max{u, k} ∈
Ws,1

loc (�) for every k ∈ R. Moreover, if � is bounded with Lipschitz boundary and u+ ∈
L∞(�), then max{u, k} ∈ Ws,1(�) for every k ∈ R.

Of course, a similar result can be stated for weak and viscosity supersolutions—and conse-
quently for solutions. Interestingly, this shows that viscosity solutions are weak solutions that
(locally) belong to the energy space Ws,1—and therefore, when f = 0, (local) minimizers
of the functional F .

We also point out that, using Theorem 1.7 in conjunction with Theorem 1.8, in order to
obtain a local minimizer of F in an open set � it is enough to construct an ordered pair of
locally bounded viscosity sub- and supersolutions of H u = 0 in �.
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1.2.1 Geometric framework

We already commented in Sect. 1.1 on the (essential) equivalence of the s-perimeter and
the functional Fs—corresponding to the choice g = gs with gs as in (1.9). In particular,
we mentioned how nonlocal minimal graphs are minimizers of Fs . Here, we prove that the
converse is true aswell. Of course, the subgraph of aminimizer ofFs has less s-perimeter than
any of its graphical perturbations. The main difficulty in showing that it is indeed s-minimal
rests in verifying that this is true also for perturbations that are not themselves subgraphs.

To establish this fact, we show that, when suitably rearranging a set in the vertical direction
to turn it into a subgraph, the nonlocal perimeter decreases. Given a set E ⊆ R

n+1, we
consider the function wE : Rn → [−∞,+∞] defined by

wE (x) := lim
R→+∞

(∫ R

−R
χE (x, t) dt − R

)
for all x ∈ R

n . (1.15)

The subgraphSwE is then the vertical rearrangement of E . Roughly speaking, it is obtained by
translating down each connected component (segment) of E ∩ ({x} × R), for a fixed x ∈ R

n ,
until they are joined together to form a connected set.

Theorem 1.9 Let � ⊆ R
n be a bounded open set. Let E ⊆ R

n+1 be such that E\(� × R) is
a subgraph and

� × (−∞,−M) ⊆ E ∩ (� × R) ⊆ � × (−∞, M), (1.16)

for some M > 0. Then,

Pers
(SwE ,� × (−M, M)

)
� Pers

(
E,� × (−M, M)

)
.

Furthermore, if Pers
(
E,�×(−M, M)

)
is finite, then the inequality is strict unless E = SwE

up to a set of measure zero.

From this result, it easily follows thatminimizers ofFs are s-minimal graphs.We formalize
this in the following theorem, which brings together all notions of minimizers and solutions
discussed earlier. Recall that the definitions of locally s-minimal sets and local minimizers
of Fs are respectively given in Definitions 1.1 and 1.6.

Theorem 1.10 Let � ⊆ R
n be an open set and u: Rn → R be a measurable function. Then,

the following are equivalent:

(i) u is a viscosity solution of Hsu = 0 in �;
(ii) u ∈ Ws

loc(�) and u is a weak solution of Hsu = 0 in �;
(iii) u is a local minimizer of Fs in �;
(iv) Su is locally s-minimal in � × R;
(v) u|� ∈ C∞(�) and u is a pointwise solution of Hsu = 0 in �.

If � is bounded with Lipschitz boundary and u|� ∈ L∞(�), then all the above are also
equivalent to:

(ii)′ u ∈ Ws(�) and u is a weak solution of Hsu = 0 in �;
(iii)′ u is a minimizer of Fs in �.

If u is continuous in � and Su is a geometric viscosity solution of Hs[Su] = 0 on ∂Su ∩
(� × R) in the sense of [10, Section 5], then u is a viscosity solution of Hsu = 0 in �.
Thus, Theorem 1.10 also yields the equivalence between the concepts of geometric viscosity
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solution and minimizer for continuous graphs.We point out that a similar result has also been
established by Cabré [7] by means of a suitable notion of calibration.

Note that thefirst part ofTheorem1.10does not require the boundedness of�. In particular,
it holds with � = R

n and thus provides a characterization for entire solutions of Hsu = 0.
On the other hand, by combining Theorems 1.10 and 1.3, we may conclude that, if � is

a bounded, Lipschitz set and ϕ: C� → R is a sufficiently regular outside datum (satisfying
hypothesis (1.13) with� given by Theorem 1.3), then there exists a unique locally s-minimal
graph Su in �×R such that u = ϕ a.e. in C�. Observe that this does not rule out a priori the
existence of a different set E (not a subgraph) which also locally minimizes the s-perimeter
in �×R and agrees with {t < ϕ(x)} outside of it. In view of Theorem 1.9 (see, in particular,
hypothesis (1.16) there), this non-graphical minimizer E could not be “vertically bounded”
within � × R. Hence, taking advantage of the “L∞ bound” of [22, Lemma 3.3], we can find
sufficient conditions on � and ϕ which exclude the existence of such a set E .

Theorem 1.11 Let� ⊆ R
n be an open set with boundary of class C2 and such that� ⊆ BR0

for some R0 > 0. There exists a radius R > R0, depending only on n, s, and �, such
that, if ϕ: C� → R is a measurable function, bounded in BR\�, then there exists a unique
locally s-minimal set E in � × R such that

E\ (� × R) =
{
(x, t) ∈ C� × R: t < ϕ(x)

}
.

The set E is the subgraph Su of a measurable function u: Rn → R with u|� ∈ L∞(�) ∩
C∞(�). If in addition ϕ ∈ C(�r\�) for some r > 0, then u|� ∈ C(�).

Theorem 1.11 extends [22, Theorem 1.1] to a larger family of exterior data and represents
one of the few uniqueness results available for s-minimal surfaces.

The interior regularity of the minimizer u is a consequence of the results of [8]. Its
continuity up to the boundary—established in Proposition 8.2—mainly follows from the
regularity theory for the obstacle problem for the s-perimeter developed by Caffarelli et
al. [9]. We stress that u is in general not continuous across the boundary of �, as so-called
boundary stickiness phenomena may occur—see the works [20,21,23] by Dipierro, Savin
& Valdinoci for examples and comments on the genericity of this circumstance. We also
mention the forthcoming paper [4], where this behavior will be investigated in the case of a
small fractional parameter s and in the presence of obstacles.

1.3 Organization of the paper

The rest of the paper is structured as follows.
In Sect. 2 we collect some ancillary results to be used throughout the paper. They con-

cern the functions g,G,G, the functional F and its first variation H , and the relationship
between the fractional area functional Fs and the fractional perimeter of subgraphs. In the
final Sect. 2.5 we show that weak sub- and supersolutions having finite energy satisfy a
comparison principle.

Section 3 contains the proofs of a few a priori estimates. In Sect. 3.1 we establish theWs,1

estimatementioned in Theorem 1.3—see Proposition 3.2. The other two Sects. 3.2 and 3.3 are
respectively devoted to local and global L∞ bounds—leading in particular to Theorem 1.4.

Section 4 is concernedwith the study of viscosity solutions of the equationH u = f . After
introducing their definition and discussing their properties, we will address their relationship
with weak solutions—thus proving Theorem 1.8.
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In Sect. 5 we deal with the existence of minimizers of F in � with prescribed outside
data ϕ. In Sect. 5.1 we deal with the case of a bounded Lipschitz � and ϕ satisfying con-
dition (1.13). We study the truncated functionals FM and use the Direct Method of the
Calculus of Variations to show that they have a unique minimizer uM—see Proposition 5.3.
Thanks to the estimate of Proposition 3.2, we then have the necessary compactness to obtain
a minimizer of F and conclude the proof of Theorem 1.3. Section 5.1.1 briefly considers
the simpler case in which the exterior datum satisfies the global integrability condition (1.7).
In Sect. 5.2 we instead consider a general open set � and measurable function ϕ. We prove
Theorem 1.7, concerning the possibility of establishing the existence of a local minimizer
via the construction of an ordered pair of weak sub- and supersolutions of H u = 0.

Section 6 contains the proof of the rearrangement inequality of Theorem 1.9, carried out
in Sect. 6.2. For this, we first need a one-dimensional rearrangement inequality, which we
prove in a rather general setting in Sect. 6.1.

In the short Sect. 7 we use several results addressed earlier to establish the equivalence of
minimizers and weak/viscosity/pointwise solutions, as claimed by Theorem 1.10.

Section 8 is devoted to the proof of Theorem 1.11.
Finally, AppendixA contains some known results which are used in the paper.Wemention

in particular the fractional Hardy-type inequality of Proposition A.2, which guarantees that
the notion of minimality considered in Definition 1.2 is well-posed.

2 Auxiliary results

We gather here some preliminary results on the functions g,G,G, on truncated versions of
the fractional area functionalF , on their relationship (when g = gs) with the s-perimeter, and
on the associated Euler–Lagrange operatorH . All these topics will be dealt with in separate
subsections. To conclude the section, we will obtain a comparison principle for minimizers
of the functional F .

2.1 Elementary properties of the functions g, G, andG

We begin by recalling the following definitions given in the Introduction. We consider a
continuous function g: R → R satisfying

g(t) = g(−t) for every t ∈ R, (2.1)

0 < g � 1 in R, (2.2)

and

λ :=
∫ +∞

0
tg(t) dt < ∞. (2.3)

In light of these requirements, we have that

� :=
∫
R

g(t) dt � 2(λ + 1) < ∞. (2.4)

As remarked in the Introduction, it is easily seen that the function gs defined in (1.9) satisfies
these assumptions. When considering gs , we will write �s := ∫

R
gs(t) dt .
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Associated to a general g, we have the functions

G(t) :=
∫ t

0
g(τ ) dτ, G(t) :=

∫ t

0
G(τ ) dτ =

∫ t

0

(∫ τ

0
g(σ ) dσ

)
dτ, (2.5)

and

G(t) :=
∫ t

−∞
g(τ ) dτ =

∫ +∞

−t
g(τ ) dτ, (2.6)

defined for every t ∈ R. Notice that

G(t) = �

2
+ G(t) for every t ∈ R. (2.7)

It is also convenient to introduce here the following notation for cylinders, which will be
consistently used throughout the paper:

�M := � × (−M, M) for M > 0 and �∞ := � × R. (2.8)

The following lemma collects the main properties of these functions that will be used in
the forthcoming sections.

Lemma 2.1 The functions G and G are respectively of class C1 and C2. Furthermore, the
following facts hold true.

(i) The function G is odd, increasing, satisfies G(0) = 0 and

c� min{1, |t |} � |G(t)| � min

{
�

2
, |t |
}

for every t ∈ R, (2.9)

where

c� = c�(g) := inf
t∈[0,1] g(t) > 0. (2.10)

Moreover,

|G(t) − G(τ )| � |t − τ | for every t, τ ∈ R. (2.11)

(ii) The function G is even, increasing on [0,∞), strictly convex, and such that G(0) = 0. It
satisfies

c�

2
min

{|t |, t2} � G(t) � t2

2
, (2.12)

�

2
|t | − λ � G(t) � �

2
|t |, (2.13)

for every t ∈ R, and

|G(t) − G(τ )| � �

2
|t − τ | for every t, τ ∈ R. (2.14)

Proof Almost all the statements follow immediately from definitions (2.5) and (2.6). The
only properties that require an explicit proof are the lower bounds on |G| and G.

To obtain the left-hand inequality in (2.9) we assume without loss of generality that t � 0
and compute, using (2.10),

G(t) �
∫ min{1,t}

0
g(t) dt � c� min{1, t}.
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To get the lower bound in (2.12), we first notice that we can restrict ourselves to t � 1,
since the case t ∈ [0, 1] can be deduced straightaway from (2.9) and the definition of G.
For t � 1 we apply (2.9) to compute

G(t) =
∫ 1

0
G(τ ) dτ +

∫ t

1
G(τ ) dτ � c�

(∫ 1

0
τ dτ +

∫ t

1
dτ

)
= c�

2

(
1 + 2(t − 1)

)
� c�

2
t .

Finally, to establish the first inequality in (2.13), we recall definitions (2.3)–(2.5) and
compute, for t � 0,

G(t) − �

2
t =

∫ t

0

(∫ τ

0
g(σ ) dσ

)
dτ −

(∫ +∞

0
g(σ ) dσ

)
t = −

∫ t

0

(∫ +∞

τ

g(σ ) dσ

)
dτ

= −
∫ t

0

(∫ σ

0
g(σ ) dτ

)
dσ −

∫ +∞

t

(∫ t

0
g(σ ) dτ

)
dσ

= −
∫ t

0
σ g(σ ) dσ − t

∫ +∞

t
g(σ ) dσ = −λ +

∫ +∞

t
(σ − t)g(σ ) dσ � −λ.

Note that the third identity follows by Fubini’s theorem. The proof of the lemma is thus
complete. ��

We stress that hypothesis (2.3) has only been used to deduce the left-hand inequality
in (2.13). If one drops it, the weaker lower bound

G(t) � c�

2
|t | − c�

2
for every t ∈ R (2.15)

can still be easily deduced from (2.12). This estimate is indeed sufficient for most of the
applications presented in the remainder of the paper. However, we will make crucial use of
the finer bound (2.13) at some point in the proof of Proposition 3.3. Therefore, such result
and all those that rely on it need assumption (2.3) to hold.

Note that the function g(t) = 1/(1+t2) fulfills hypotheses (2.1), (2.2), (2.4), but not (2.3).
Also, the corresponding second antiderivative G does not satisfy the lower bound in (2.13)
or any bound of the form G(t) � �|t |/2 − C for some constant C > 0.

2.2 Functional analytic properties of the fractional area functionals

In this subsection we introduce the area-type functionals FM and determine some basic
properties of the local part A and nonlocal part N M .

First of all, we observe that we can split the functional F defined in (1.8) into the two
components

F(u,�) = A(u,�) + N (u,�),

with

A(u,�) :=
∫

�

∫
�

G
(
u(x) − u(y)

|x − y|
)

dx dy

|x − y|n−1+s
(2.16)

and

N (u,�) := 2
∫

�

∫
C�

G
(
u(x) − u(y)

|x − y|
)

dx dy

|x − y|n−1+s
.
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As will be shown in Lemma 2.3, in order for the local partA(u,�) to be finite, it is necessary
and sufficient that u ∈ Ws,1(�). On the other hand, to have N (u,�) finite, one needs to
impose some very restrictive condition on the behavior of u in the whole R

n , such as (1.7).
For this reason, given any real number M � 0 we define for a function u: Rn → R the

truncated nonlocal part

N M (u,�) :=
∫

�

{∫
C�

(∫ u(x)−u(y)
|x−y|

−M−u(y)
|x−y|

G(t) dt +
∫ M−u(y)

|x−y|
u(x)−u(y)

|x−y|
G(−t) dt

)
dy

|x − y|n−1+s

}
dx,

(2.17)

and the truncated nonlocal area-type functional

FM (u,�) := A(u,�) + N M (u,�). (2.18)

As we shall see shortly, this functional no longer requires extra conditions on u for its
finiteness.

We will use the subscript ·s to indicate the functionals corresponding to the choice g =
gs—that is, we will write As, N M

s , and FM
s . Note that, in this geometric case, the

quantity FM
s (u,�) corresponds to the s-perimeter of the subgraph of u in the truncated

cylinder �M = � × (−M, M). See Sect. 2.3 for more information on this.
We now proceed to analyze the functionalsA,N M ,FM and investigate in particular their

domains of definitions. In order to this, the following simple estimate turns out to be useful.

Lemma 2.2 Let A, B ⊆ R
n be bounded measurable sets. Then

∫
A

∫
B

dx dy

|x − y|n−1+s
� Hn−1(Sn−1)

1 − s
min

{|A|, |B|} diam(A ∪ B)1−s .

Proof Suppose without loss of generality that |A| � |B| and set D := diam(A ∪ B). Then,
by changing variables conveniently we estimate

∫
A

∫
B

dx dy

|x − y|n−1+s
�
∫
A

( ∫
BD

dz

|z|n−1+s

)
dx = Hn−1(Sn−1)|A|

∫ D

0

d



s
,

which directly leads to the conclusion. ��
Thanks to this, we can easily find the natural domain of definition of the local part A.

Notice that for A to be well-defined (albeit possibly infinite) one needs u to be defined only
in �.

Lemma 2.3 Let � ⊆ R
n be a bounded open set and u:� → R be a measurable function.

Then,

c�

2

(
[u]Ws,1(�) − cs(�)

)
� A(u,�) � �

2
[u]Ws,1(�), (2.19)

where c� > 0 is the constant defined in (2.10) and

cs(�) := Hn−1(Sn−1)

1 − s
|�| diam(�)1−s . (2.20)

Therefore,

u ∈ Ws,1(�) if and only if A(u,�) < ∞.
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Proof The upper bound in (2.19) immediately follows by observing that G(t) � �|t |/2 for
all t ∈ R, thanks to the right-hand inequality in formula (2.13) of Lemma 2.1. To get the
lower bound, we recall (2.15) and compute

A(u,�) � c�

2

(∫
�

∫
�

|u(x) − u(y)|
|x − y|n+s

dx dy −
∫

�

∫
�

dx dy

|x − y|n−1+s

)
.

The conclusion follows now from Lemma 2.2. Finally, we observe that if u is a measurable
function with [u]Ws,1(�) < ∞, then u ∈ L1(�)—see, e.g., [36, Lemma D.1.2]. ��

In the following result we present an equivalent representation for N M (u,�), given in
terms of the function G. We also establish its finiteness when u belongs to the spaceWs(�)—
recall (1.10) for its definition. Interestingly, no assumption on the behavior of u outside of �

is needed.

Lemma 2.4 Let � ⊆ R
n be a bounded open set with Lipschitz boundary, M � 0,

and u: Rn → R be a measurable function. Then,∣∣∣N M (u,�)

∣∣∣ � C �
(‖u‖Ws,1(�) + M

)
, (2.21)

where � is the positive constant defined in (2.4) and C > 0 is a constant depending only
on n, s, and �. Hence, ∣∣∣N M (u,�)

∣∣∣ < ∞ if u ∈ Ws(�).

Furthermore, we have the identity

N M (u,�) =
∫

�

{∫
C�

{
2G
(
u(x) − u(y)

|x − y|
)

− G
(
M + u(y)

|x − y|
)

−G
(
M − u(y)

|x − y|
)}

dy

|x − y|n−1+s

}
dx + M�

∫
�

∫
C�

dx dy

|x − y|n+s
.

(2.22)

Proof We can assume that u|� ∈ Ws,1(�), as otherwise (2.21) is trivially satisfied. Taking
advantage of (2.7) and of the right-hand inequality in (2.9), we get that

∣∣∣N M (u,�)

∣∣∣�2�

{∫
�

(
|u(x)|

∫
C�

dy

|x−y|n+s
)
dx+M

∫
�

∫
C�

dx dy

|x−y|n+s

}
. (2.23)

We remark that the last double integral in the previous formula is the s-fractional perimeter
of � in R

n , which is finite, since � is bounded and has Lipschitz boundary. Then, (2.21)
follows from Corollary A.3.

On the other hand, identity (2.22) is a simple consequence of definition (2.17), for-
mula (2.7), and the symmetry properties of G and G. ��

We stress that, in order to have N M (u,�) finite, the requirement u|� ∈ Ws,1(�) is far
from being optimal. In fact, as the previous proof showed, it suffices for u|� to lie in a
suitable weighted L1 space over �, which contains for instance L∞(�). Nevertheless, the
requirement on the finiteness of [u]Ws,1(�) does not limit our analysis, since it is needed to
have A(u,�) finite, according to Lemma 2.3. We inform the interested reader that a more
precise result on the natural domain of definition of N M

s i.e., for g = gs) will be provided
by Lemma 2.11 in the forthcoming Sect. 2.3.

Furthermore, we observe that if u: Rn → R is such that u|� ∈ L∞(�) and M �
‖u‖L∞(�), then N M (u,�) � 0—this immediately follows from representation (2.17). On
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the other hand, in general the nonlocal part N M ( ·,�) can assume also negative values, as
showed in the following example.

Example 2.5 Let � ⊆ R
n be a bounded open set with Lipschitz boundary and M � 0. There

exists a positive constant T0 = T0(n, s,�, g, M) > 0 such that, if u: Rn → R is the constant
function u ≡ T , for some T � T0, then

FM (u,�) = N M (u,�) < 0.

To see this, let R > 0 be fixed in such a way that � � BR . By this, identity (2.22), and
the fact that G � 0, we have

N M (u,�) � −
∫

�

∫
BR\�

G
(
M + T

|x − y|
)

dx dy

|x − y|n−1+s
+ M�

∫
�

∫
C�

dx dy

|x − y|n+s
.

By exploiting (2.15), the fact that � has finite s-perimeter (being bounded and Lipschitz),
and Lemma 2.2, we find that

∫
�

∫
BR\�

G
(
M + T

|x − y|
)

dx dy

|x − y|n−1+s

� c�

2

∫
�

∫
BR\�

(
M + T

|x − y| − 1

)
dx dy

|x − y|n−1+s
� M + T

C
− C,

with C � 1 depending only on n, s, �, and g. Therefore,

N M (u,�) � −M + T

C
+ C + M�

∫
�

∫
C�

dx dy

|x − y|n+s
,

which is negative, provided T is large enough (in dependence of n, s, �, g, and M only).

We collect the results of Lemmas 2.3 and 2.4 in the following unifying statement.

Lemma 2.6 Let � ⊆ R
n be a bounded open set with Lipschitz boundary, M � 0, and u ∈

Ws(�). Then, FM (u,�) is finite and it holds
∣∣∣FM (u,�)

∣∣∣ � C �
(‖u‖Ws,1(�) + M

)
,

for some constant C > 0 depending only on n, s, and �.

We conclude this subsection by specifying the convexity properties enjoyed by the func-
tionals A, N M , and FM . Recall (1.11) for the definition of the energy space Ws

ϕ(�)

corresponding to a given outside datum ϕ.

Lemma 2.7 Let � ⊆ R
n be a bounded open set with Lipschitz boundary. The following facts

hold true:

(i) The functional A( ·,�) is convex on Ws,1(�).
(ii) Given any M � 0 and ϕ: C� → R, the functionals N M ( ·,�) and FM ( ·,�) are

strictly convex on Ws
ϕ(�).

Proof The convexity of the functionals is an immediate consequence of the (strict) convexity
of G warranted by Lemma 2.1. We point out that the convexity of N M ( ·,�) also depends
on the fact that the second and third summands appearing inside square brackets in the
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representation (2.22) are constant on Ws
ϕ(�). Indeed, given u, v ∈ Ws

ϕ(�) and t ∈ (0, 1),
we have the identity

N M (tu + (1 − t)v,�) − t N M (u,�) − (1 − t)N M (v,�)

= 2
∫

�

{∫
C�

[
G
(
t
u(x) − ϕ(y)

|x − y| + (1 − t)
v(x) − ϕ(y)

|x − y|
)

− t G
(
u(x) − ϕ(y)

|x − y|
)

−(1 − t)G
(

v(x) − ϕ(y)

|x − y|
)]

dy

|x − y|n−1+s

}
dx, (2.24)

and the convexity of G yields that the integrand in the double integral above is non-positive.
Furthermore, the strict convexity of G gives that the quantity on the right-hand side of (2.24)
is equal to zero if and only if

u(x) − ϕ(y)

|x − y| = v(x) − ϕ(y)

|x − y| for a.e. (x, y) ∈ � × C�,

i.e., if and only if u = v almost everywhere in �—and hence in R
n . ��

It is now worth pointing out the following result, which can be easily obtained by arguing
as in the proof of Lemma 2.4, exploiting formula (2.22) and the global Lipschitzianity of G
given by (2.14).

Lemma 2.8 Let � ⊆ R
n be a bounded open set with Lipschitz boundary, M � 0,

and ϕ: C� → R. Then, there exists a constant C > 0, depending only on n, s, and �,
such that∫∫

Q(�)

∣∣∣∣G
(
u(x) − u(y)

|x − y|
)

− G
(

v(x) − v(y)

|x − y|
)∣∣∣∣ dx dy

|x − y|n−1+s
� C �‖u − v‖Ws,1(�),

for every u, v ∈ Ws
ϕ(�), with � as defined in (2.4). Moreover, we have the identity

FM (u,�) − FM (v,�) =
∫∫

Q(�)

{
G
(
u(x) − u(y)

|x − y|
)

− G
(

v(x) − v(y)

|x − y|
)}

dx dy

|x − y|n−1+s
.

As a consequence, if u, uk ∈ Ws
ϕ(�) are such that ‖u − uk‖Ws,1(�) → 0 as k → ∞, then

lim
k→∞FM (uk,�) = FM (u,�).

Remark 2.9 Here are some straightforward but important consequences of Lemma 2.8.

(i) It guarantees that Definition 1.2 of minimizers of F is well-posed.
(ii) It provides an equivalent characterization for a minimizer of F in Ws

ϕ(�) as a func-
tion u ∈ Ws

ϕ(�) that minimizes FM ( ·,�) within Ws
ϕ(�) for some M � 0, i.e., that

satisfies

FM (u,�) = inf
{
FM (v,�): v ∈ Ws

ϕ(�)
}
.

(iii) By (ii) and the strict convexity of FM—see point (ii) of Lemma 2.7—, we obtain that
a minimizer of F in Ws

ϕ(�), if it exists, is unique.
(iv) As a consequence of the density of C∞

c (�) in Ws,1(�)—see, e.g., Proposition A.1 in
Appendix A—, Lemma 2.8 implies that to verify the minimality of u ∈ Ws

ϕ(�) we can
limit ourselves to consider competitors v ∈ Ws

ϕ(�) such that v|� ∈ C∞
c (�).
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2.3 Geometric properties of the fractional area functionals

This subsection is devoted to the description of some key geometric properties enjoyed
by As , N M

s , and FM
s . More specifically, we consider the case g = gs and we show the con-

nection existing between the fractional perimeter Pers and these functionals, which ultimately
motivates their introduction.

Recall the splitting (1.1)–(1.2) of the s-perimeter into its local part PerLs and nonlocal
part PerNLs . We begin with a result relating PerLs andAs . Note that we indicate points inR

n+1

with capital letters, writing X = (x, Xn+1), with x ∈ R
n and Xn+1 ∈ R. Also recall the

notation for cylinders introduced in (2.8).

Lemma 2.10 Let � ⊆ R
n be a bounded open set and u:� → R be a measurable function.

Then,

u ∈ Ws,1(�) if and only if PerLs
(Su,�∞) < ∞. (2.25)

In particular, it holds

PerLs
(Su,�∞) = As(u,�) + PerLs

({Xn+1 < 0},�∞) . (2.26)

Proof Using Lebesgue’s monotone convergence theorem, we write

PerLs
(Su,�∞) = lim

δ↘0

∫∫
Dδ

dx dy
∫ u(x)

−∞
dXn+1

∫ +∞

u(y)

dYn+1

|X − Y |n+1+s
,

where Dδ := {
(x, y) ∈ � × �: |u(x)| < δ−1, |u(y)| < δ−1, and |x − y| > δ

}
. Fix any

small δ > 0 and let (x, y) ∈ Dδ . Shifting variables, we see that
∫ u(x)

−∞
dXn+1

∫ +∞

u(y)

dYn+1

|X − Y |n+1+s
=
∫ u(x)−u(y)

−∞
dXn+1

∫ +∞

0

dYn+1

|X − Y |n+1+s
,

so that

PerLs
(Su,�∞) = lim

δ↘0

∫∫
Dδ

dx dy
∫ u(x)−u(y)

0
dXn+1

∫ +∞

0

dYn+1

|X − Y |n+1+s
+ PerLs

({Xn+1 < 0},�∞) .
After a renormalization of both variables Xn+1 and Yn+1, we have

∫ u(x)−u(y)

0
dXn+1

∫ +∞

0

dYn+1

|X − Y |n+1+s

= 1

|x − y|n−1+s

∫ u(x)−u(y)
|x−y|

0
dt
∫ +∞

0

dr[
1 + (r − t)2

] n+1+s
2

.

Changing coordinates once again and recalling definition (1.9), we obtain that
∫ u(x)−u(y)

0
dXn+1

∫ +∞

0

dYn+1

|X − Y |n+1+s

= 1

|x − y|n−1+s

∫ u(x)−u(y)
|x−y|

0

⎛
⎝
∫ +∞

−t

dτ ′
[
1 + (τ ′)2

] n+1+s
2

⎞
⎠ dt
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= 1

|x − y|n−1+s

∫ u(x)−u(y)
|x−y|

0

(∫ t

−∞
gs(τ ) dτ

)
dt .

By (2.5) and (2.4), we get

∫ u(x)−u(y)
|x−y|

0

(∫ t

−∞
gs(τ ) dτ

)
dt = �s

2

u(x) − u(y)

|x − y| + Gs
(
u(x) − u(y)

|x − y|
)

.

Since, by symmetry, ∫∫
Dδ

u(x) − u(y)

|x − y|
dx dy

|x − y|n−1+s
= 0,

we conclude that

PerLs
(Su,�∞) = lim

δ↘0

∫∫
Dδ

Gs
(
u(x) − u(y)

|x − y|
)

dx dy

|x − y|n−1+s
+ PerLs

({Xn+1 < 0},�∞) .
Claim (2.26) now follows by taking advantage once again of Lebesgue’s monotone con-
vergence theorem and recalling definition (2.16). Note that (2.25) immediately follows
from (2.26) and Lemma 2.3 (also recall [36, Lemma D.1.2]). ��

Next is a lemma that gives a geometric interpretation of the truncated nonlocal part N M
s .

Lemma 2.11 Let � ⊆ R
n be a bounded open set with Lipschitz boundary and u: Rn → R

be such that u|� ∈ L∞(�). Then, for any M � ‖u‖L∞(�), the quantity N M
s (u,�) is finite

and it holds

N M
s (u,�) = Ls

(
Su ∩ �M , CSu\�∞)+ Ls

(
CSu ∩ �M ,Su\�∞) . (2.27)

Proof Thanks to the fact that M � ‖u‖L∞(�), we write

Ls

(
Su ∩ �M , CSu\�∞) =

∫
�

dx
∫
C�

dy
∫ u(x)

−M
dXn+1

∫ +∞

u(y)

dYn+1

|X − Y |n+1+s
,

Ls

(
CSu ∩ �M ,Su\�∞) =

∫
�

dx
∫
C�

dy
∫ M

u(x)
dXn+1

∫ u(y)

−∞
dYn+1

|X − Y |n+1+s
.

By arguing as in the proof of Lemma 2.10 and recalling definitions (1.9) and (2.6), we have
∫ u(x)

−M
dXn+1

∫ +∞

u(y)

dYn+1

|X − Y |n+1+s
=
∫ u(x)−u(y)

−M−u(y)
dXn+1

∫ +∞

0

dYn+1

|X − Y |n+1+s

= 1

|x − y|n−1+s

∫ u(x)−u(y)
|x−y|

−M−u(y)
|x−y|

Gs(t) dt

for every x ∈ � and y ∈ C�. Hence,

Ls

(
Su ∩ �M , CSu\�∞) =

∫
�

dx
∫
C�

dy

(
1

|x − y|n−1+s

∫ u(x)−u(y)
|x−y|

−M−u(y)
|x−y|

Gs(t) dt

)
.

Similarly,

Ls

(
CSu ∩ �M ,Su\�∞) =

∫
�

dx
∫
C�

dy

(
1

|x − y|n+1+s

∫ M−u(y)
|x−y|

u(x)−u(y)
|x−y|

Gs(−t) dt

)
.

By combining the last two identities and recalling definition (2.17), we are led to (2.27). ��
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Putting the last two results together, we obtain a description of the s-perimeter of the
subgraph of u in �M in terms of the functional FM

s .

Proposition 2.12 Let� ⊆ R
n be a bounded open set with Lipschitz boundary. Let u: Rn → R

be such that u|� ∈ L∞(�) and take M � ‖u‖L∞(�). Then,

u|� ∈ Ws,1(�) if and only if Pers
(
Su,�M

)
< ∞.

In particular, it holds

Pers
(
Su,�M

)
= FM

s (u,�) + κ�,M , (2.28)

where κ�,M is the (positive) constant

κ�,M := PerLs
({Xn+1 < 0},�∞)− PerLs

(
{Xn+1 < 0},�∞\�M

)
.

Proof The proposition is an almost immediate consequence of Lemmas 2.10 and 2.11. First,
we observe that the following identities are true:

Ls

(
Su ∩ �M ,�M\Su

)
=
∫

�

dx
∫

�

dy
∫ u(x)

−M
dXn+1

∫ M

u(y)

dYn+1

|X − Y |n+1+s
,

Ls

(
Su ∩ �M , CSu\�M

)
=
∫

�

dx
∫

�

dy
∫ u(x)

−M
dXn+1

∫ +∞

M

dYn+1

|X − Y |n+1+s

+
∫

�

dx
∫
C�

dy
∫ u(x)

−M
dXn+1

∫ +∞

u(y)

dYn+1

|X − Y |n+1+s
,

Ls

(
�M\Su,Su\�M

)
=
∫

�

dx
∫

�

dy
∫ M

u(x)
dXn+1

∫ −M

−∞
dYn+1

|X − Y |n+1+s

+
∫

�

dx
∫
C�

dy
∫ M

u(x)
dXn+1

∫ u(y)

−∞
dYn+1

|X − Y |n+1+s
.

Note that we took advantage of the fact that M � ‖u‖L∞(�) in order to obtain the above
formulas. In light of this, it is not hard to see that

Pers
(
Su,�M

)
= PerLs

(Su,�∞)− PerLs
(
{Xn+1 < 0},�∞\�M

)

+ Ls

(
Su ∩ �M , CSu\�∞)+ Ls

(
CSu ∩ �M ,Su\�∞) .

Identity (2.28) follows by recalling definition (2.18) and applying (2.26) and (2.27). ��

2.4 Some facts about the Euler–Lagrange operator

We collect here some observations about the nonlocal integro-differential operatorH , which
is formally defined on a function u: Rn → R at a point x ∈ R

n by

H u(x) := 2 P.V.
∫
Rn

G

(
u(x) − u(y)

|x − y|
)

dy

|x − y|n+s
.

We begin by introducing the following useful notation

δg(u, x; ξ) := G

(
u(x) − u(x + ξ)

|ξ |
)

− G

(
u(x − ξ) − u(x)

|ξ |
)

, (2.29)
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and we observe that, by symmetry, we can write

H u(x) = P.V.
∫
Rn

δg(u, x; ξ)

|ξ |n+s
dξ. (2.30)

From now on, unless otherwise stated, wewill understandH u(x) as given by (2.30). For r >

0, we also define

H �r u(x) :=
∫
Rn\Br

δg(u, x; ξ)

|ξ |n+s
dξ and H <r u(x) :=

∫
Br

δg(u, x; ξ)

|ξ |n+s
dξ. (2.31)

By definition of principal value, it holds

H u(x) = lim
r↘0

H �r u(x).

Remark 2.13 Note thatH �r u(x) is finite for every x ∈ R
n and r > 0, under no assumptions

on u. Indeed, by the right-hand bound in (2.9) we have
∣∣∣∣δg(u, x; ξ)

|ξ |n+s

∣∣∣∣ � �

|ξ |n+s
,

which is integrable in R
n\Br . In particular, |H �r u(x)| � �Hn−1(Sn−1)/(srs).

One of the main advantages of writing the nonlocal operator H u(x) as in (2.30) is that
the integral is well-defined in the Lebesgue sense, provided u is regular enough around x .

Lemma 2.14 Let u: Rn → R be such that u ∈ C1,γ (Br (x)), for some x ∈ R
n, r > 0,

and γ ∈ (s, 1]. Then, H <
u(x) is finite for every 
 > 0 and it holds

H u(x) = H <
u(x) + H �
u(x) =
∫
Rn

δg(u, x; ξ)

|ξ |n+s
dξ. (2.32)

Proof The lemma is an immediate consequence of the estimate
∣∣δg(u, x; ξ)

∣∣ � 2γ ‖u‖C1,γ (Br (x))|ξ |γ for all ξ ∈ Br\{0}. (2.33)

Indeed, (2.33) easily implies thatH <
u(x) is well-defined (as γ > s), whereas Remark 2.13
gives the finiteness of H �
u(x) and (2.32) trivially follows.

To verify (2.33), we first notice that, by (2.11) and (2.29) we have

∣∣δg(u, x; ξ)
∣∣ �

∣∣∣∣u(x + ξ) + u(x − ξ) − 2u(x)

|ξ |
∣∣∣∣ . (2.34)

Then, by the mean value theorem we have

u(x + ξ) − u(x) = ∇u(x + tξ) · ξ and u(x − ξ) − u(x) = ∇u(x − τξ) · (−ξ),

for some t, τ ∈ [0, 1], and thus∣∣∣∣u(x + ξ) + u(x − ξ) − 2u(x)

|ξ |
∣∣∣∣ =

∣∣∣∣∇u(x + tξ) · ξ − ∇u(x − τξ) · ξ

|ξ |
∣∣∣∣

� |∇u(x + tξ) − ∇u(x − τξ)| � 2γ ‖u‖C1,γ (Br (x))|ξ |γ .

Estimate (2.33) then follows at once. ��
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We stress that the right hand side of (2.32) is defined in the standard Lebesgue sense, not
as a principal value. Also notice that, thanks to Remark 2.13, we need not ask any growth
condition for u at infinity.

When u is not regular enough around x , the quantityH u(x) is in general not well-defined.
Nevertheless, as already observed in the Introduction, we can understand the operatorH as
defined in the following weak (distributional) sense. Given a function u: Rn → R, we set

〈H u, v〉 :=
∫
Rn

∫
Rn

G

(
u(x) − u(y)

|x − y|
) (

v(x) − v(y)
) dx dy

|x − y|n+s
(2.35)

for every v ∈ C∞
c (Rn). More generally, it is immediate to see that (2.35) is well-defined for

every v: Rn → R such that [v]Ws,1(Rn) < ∞. Indeed, taking advantage of the boundedness
of G, one has that

|〈H u, v〉| � �

2
[v]Ws,1(Rn), (2.36)

with � as in (2.4). Hence, H u induces a continuous linear functional on Ws,1(Rn), that is

〈H u, · 〉 ∈ (Ws,1(Rn)
)∗

.

Remarkably, this holds for every measurable function u: Rn → R, regardless of its regularity
or integrability.

Estimate (2.36) says that the pairing (u, v) �→ 〈H u, v〉 is continuous in the second
component v, with respect to the Ws,1(Rn) topology. The next lemma shows that we also
have continuity in u with respect to almost everywhere convergence.

Lemma 2.15 Let uk, u: Rn → R be such that uk → u a.e. in R
n and let v ∈ Ws,1(Rn).

Then,

lim
k→∞〈H uk, v〉 = 〈H u, v〉.

Lemma 2.15 is a simple consequence of Lebesgue’s dominated convergence theorem,
thanks once again to the boundedness of G.

The next result shows that the nonlocal mean curvature operatorH naturally arises when
computing the Euler–Lagrange equation associated to the fractional area functional.

Lemma 2.16 Let � ⊆ R
n be a bounded open set with Lipschitz boundary, M � 0, and u ∈

Ws(�). Then,

d

dε

∣∣∣∣
ε=0

FM (u + εv,�) = 〈H u, v〉 for every v ∈ Ws
0(�).

Proof First, notice that u + εv ∈ Ws(�) for every ε ∈ R. Hence, by Lemma 2.6,
both FM (u,�) and FM (u + εv,�) are finite. Now, by the mean value theorem, there
is a function τ̃ ε: R × R → [0, 1] such that G (A + εB) −G (A) = ε G (A + ετ̃ ε(A, B)B) B
for every A, B ∈ R. As v = 0 in C�, calling

τε(x, y) := τ̃ ε

(
u(x) − u(y)

|x − y| ,
v(x) − v(y)

|x − y|
)

for every x, y ∈ R
n,
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we have

FM (u + εv,�) − FM (u,�)

= ε

∫
Rn

∫
Rn

G

(
u(x) − u(y)

|x − y| + ετε(x, y)
v(x) − v(y)

|x − y|
) (

v(x) − v(y)
) dx dy

|x − y|n+s
.

Since G is bounded, v ∈ Ws
0(�), and |τε| � 1, we may conclude the proof using Lebesgue’s

dominated convergence theorem. ��
Lemma 2.16 says in particular that minimizers of F solve H u = 0 in the weak sense

made precise by Definition 1.5. However, notice that Definition 1.5 is a priori weaker than
the conclusion of Lemma 2.16, as it requires the test functions v to lie in C∞

c (�) � Ws
0(�).

Actually, if � is bounded and has Lipschitz boundary, then the two notions are equivalent.

Lemma 2.17 Let � ⊆ R
n be a bounded open set with Lipschitz boundary, f ∈ L∞(�),

and u: Rn → R a measurable function. Then, the following are equivalent:

(i) u is a weak subsolution of H u = f in � in the sense of Definition 1.5;
(ii) It holds

〈H u, v〉 �
∫

�

f v dx for every v ∈ Ws
0(�) such that v � 0 a.e. in R

n .

Proof The implication (ii) ⇒ (i) is obvious. As for the converse implication, let v ∈ Ws
0(�)

such that v � 0 almost everywhere. Then, there exists a sequence {vk} ⊆ C∞
c (�) such

that vk � 0 and vk → v in Ws,1(�)—see, e.g., Proposition A.1. Also notice that, by
Corollary A.3,

‖v − vk‖Ws,1(Rn) � C‖v − vk‖Ws,1(�) for every k ∈ N,

for some constant C > 0 depending only on n, s, and �. Hence, vk → v in Ws,1(Rn), and
exploiting the continuity ensured by (2.36) we have

〈H u, v〉 = lim
k→∞〈H u, vk〉 � lim

k→∞

∫
�

f vk dx =
∫

�

f v dx, (2.37)

concluding the proof. ��
Corollary 2.18 Let � ⊆ R

n be a bounded open set with Lipschitz boundary, f ∈ L∞(�),
and u: Rn → R a measurable function. Then, the following are equivalent:

(i) u is a weak solution of H u = f in � in the sense of Definition 1.5;
(ii) It holds

〈H u, v〉 =
∫

�

f v dx for every v ∈ Ws
0(�).

Proof We only need to prove the implication (i) ⇒ (ii). For this, given v ∈ Ws
0(�), let

us write v as the sum of its positive and negative parts, i.e., v = v+ − v−. Since u is a
weak subsolution and v+, v− ∈ Ws

0(�) are such that v+, v− � 0 almost everywhere, by
Lemma 2.17 we have

〈H u, v+〉 �
∫

�

f v+ dx and 〈H u, v−〉 �
∫

�

f v− dx .
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In the same way, since u is also a weak supersolution, it holds

〈H u, v+〉 �
∫

�

f v+ dx and 〈H u, v−〉 �
∫

�

f v− dx .

Thus, by linearity we obtain

〈H u, v〉 = 〈H u, v+〉 − 〈H u, v−〉 =
∫

�

f v+ dx −
∫

�

f v− dx =
∫

�

f v dx,

which proves the claim. ��
Taking advantage of the convexity of the functionals FM , we can prove the equivalence

between weak solutions having “finite energy” and minimizers. Actually, we can also prove
that weak subsolutions are equivalent to subminimizers—in the sense defined here below.

Definition 2.19 Let � ⊆ R
n be a bounded open set with Lipschitz boundary. A measurable

function u: Rn → R is a subminimizer of F in � if u ∈ Ws(�) and∫∫
Q(�)

{
G
(
u(x) − u(y)

|x − y|
)

− G
(

v(x) − v(y)

|x − y|
)}

dx dy

|x − y|n−1+s
� 0 (2.38)

for every v ∈ Ws(�) such that v = u a.e. in C� and v � u a.e. in �. Symmetrically, u
is a superminimizer of F in � if u ∈ Ws(�) and (2.38) holds for every v ∈ Ws(�) such
that v = u a.e. in C� and v � u a.e. in �.

Remark 2.20 In light of Lemma 2.8, we can equivalently characterize a subminimizer of F
in � as a function u ∈ Ws(�), such that

FM (u,�) = inf
{
FM (v,�) : v ∈ Ws

u(�) s.t. v � u a.e. in �
}
,

for some M � 0—and similarly for a superminimizer.

Lemma 2.21 Let � ⊆ R
n be a bounded open set with Lipschitz boundary and u ∈ Ws(�).

Then, u is a subminimizer of F in � if and only if it is a weak subsolution of H u = 0 in �.

Proof Fix a non-negative number M � 0. Assume first that u is a subminimizer of F in �,
and let v ∈ C∞

c (�) such that v � 0. Then, by Remark 2.20, we have that

1

ε

(
FM (u − εv,�) − FM (u,�)

)
� 0 for every ε > 0.

The conclusion then follows by passing to the limit ε ↘ 0 and recalling Lemma 2.16, as
indeed

0 � lim
ε↘0

1

ε

(
FM (u − εv,�) − FM (u,�)

)
= −〈H u, v〉,

for every v ∈ C∞
c (�) such that v � 0. Conversely, suppose that u is a weak subsolution

of H u = 0 in �, and let v ∈ Ws(�) be such that v = u a.e. in C� and v � u a.e. in �.
Thus,w := u−v ∈ Ws

0(�) andw � 0 a.e. inR
n . Lemma 2.17 then ensures that 〈H u, w〉 �

0. Now, we observe that the convexity of G implies that

G(t) − G(τ ) � G(τ )(t − τ) for every t, τ ∈ R.

Thus, by Lemma 2.8 and definition (2.35), we obtain

FM (v,�) − FM (u,�) � 〈H u, v − u〉 = −〈H u, w〉 � 0,

which—by Remark 2.20—implies that u is a subminimizer of F in �. ��
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We then have the following comprehensive result connectingminimizers, sub-/supermini-
mizers, and weak solutions.

Corollary 2.22 Let � ⊆ R
n be a bounded open set with Lipschitz boundary and u ∈ Ws(�).

Then, the following are equivalent:

(i) u is a minimizer of F in �,
(ii) u is both a subminimizer and a superminimizer of F in �,
(iii) u is a weak solution of H u = 0 in �.

Proof The implication (i) ⇒ (ii) simply follows from the definitions. The equivalence of (ii)
and (iii) is the content of Lemma 2.21. As for the implication (iii) ⇒ (i), we can argue as in
the proof of Lemma 2.21. Indeed, given v ∈ Ws

u(�), let w := v − u ∈ Ws
0(�) and recall

that by Corollary 2.18 we know that 〈H u, w〉 = 0. Then, by convexity we obtain

FM (v,�) − FM (u,�) � 〈H u, w〉 = 0.

Recalling Lemma 2.8, this concludes the proof. ��
It is worth observing that Lemma 2.15 and Corollary 2.22 yield straightaway that the set

of minimizers of F is closed in Ws(�), with respect to almost everywhere convergence.

Proposition 2.23 Let � ⊆ R
n be a bounded open set with Lipschitz boundary and {uk} ⊆

Ws(�) be such that each uk is a minimizer of F in �. If uk → u a.e. in R
n, for some

function u ∈ Ws(�), then u is a minimizer of F in �.

2.5 Comparison principle

This subsection is devoted to theproof of a comparisonprinciple for sub- and superminimizers—
and thus for weak sub- and supersolutions belonging to Ws(�), by Lemma 2.21. To obtain
this result, we need a couple of preliminary lemmas. First, we have the following elementary
result on convex functions.

Lemma 2.24 Let φ: R → R be a convex function. Then, for every A, B,C, D ∈ R satisfy-
ing min{C, D} � A, B � max{C, D} and A + B = C + D, it holds

φ(A) + φ(B) � φ(C) + φ(D).

Proof Without loss of generality, we may suppose that A � B and C � D. Since we have
that C � A � B � D, there exist two values λ,μ ∈ [0, 1] such that

A = λC + (1 − λ)D and B = μC + (1 − μ)D.

In view of the convexity of φ, it holds

φ(A) + φ(B) = φ(λC + (1 − λ)D) + φ(μC + (1 − μ)D)

� λφ(C) + (1 − λ)φ(D) + μφ(C) + (1 − μ)φ(D)

= (λ + μ) φ(C) + (2 − λ − μ) φ(D).

(2.39)

By taking advantage of the fact that A + B = C + D, we now observe that

λC + (1 − λ)D + μC + (1 − μ)D = C + D,
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or, equivalently,

(1 − λ − μ)(C − D) = 0.

Consequently, either C = D or λ + μ = 1 (or both). In any case, we conclude that the
right-hand side of (2.39) is equal to φ(C) + φ(D), and from this the thesis follows. ��

We use Lemma 2.24 to obtain the following inequality for rather general convex function-
als. For our applications—both here and in Sect. 3.3—, we will apply it with �(U ; x, y) :=
G(U/|x − y|).
Lemma 2.25 Let � : R × R

n × R
n → R be a measurable function, convex with respect to

the first variable, i.e., satisfying

�(λU + (1 − λ)V ; x, y) � λ�(U ; x, y) + (1 − λ)�(V ; x, y) (2.40)

for every λ ∈ (0, 1), U , V ∈ R, and for a.e. x, y ∈ R
n. Given ameasurable setU ⊆ R

n×R
n,

consider the functional F defined by

F(w) :=
∫∫

U
�(w(x) − w(y); x, y) dx dy

for every w: Rn → R. Then, for every u, v: Rn → R, it holds

F(min{u, v}) + F(max{u, v}) � F(u) + F(v). (2.41)

Proof We define the two functions m := min{u, v} and M := max{u, v}. For fixed (x, y) ∈
U , we write

A := m(x) − m(y), B := M(x) − M(y), C := u(x) − u(y), D := v(x) − v(y),

and

φ(t) = φx,y(t) := �(t; x, y) for every t ∈ R.

Thanks to (2.40), the function φ is convex. Also, we claim that

min{C, D} � A, B � max{C, D} (2.42)

and

A + B = C + D. (2.43)

Indeed, identity (2.43) is immediate since m + M ≡ u + v. The inequalities in (2.42) are
also obvious if u(x) � v(x) and u(y) � v(y) or if u(x) > v(x) and u(y) > v(y). On the
other hand, when for example u(x) � v(x) and u(y) > v(y), we have

A = u(x) − v(y) and B = v(x) − u(y).

Accordingly,

C = u(x) − u(y) < u(x) − v(y) = A = u(x) − v(y) � v(x) − v(y) = D

and

C = u(x) − u(y) � v(x) − u(y) = B = v(x) − u(y) < v(x) − v(y) = D.

Hence, (2.42) is proved in this case. Arguing analogously, one can check that (2.42) also
holds when u(x) > v(x) and u(y) � v(y).
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Thanks to (2.42) and (2.43), we may apply Lemma 2.24 and deduce that

φ(A) + φ(B) � φ(C) + φ(D).

That is,

�(m(x) − m(y); x, y) + �(M(x) − M(y); x, y)
� �(u(x) − u(y); x, y) + �(v(x) − v(y); x, y).

Inequality (2.41) then plainly follows by integrating the last formula in x and y. ��

We are now in position to prove our comparison principle for sub- and superminimizers.
Note that it is a consequence of the strict convexity of the functional F .

Proposition 2.26 Let � ⊆ R
n be a bounded open set with Lipshitz boundary. Let u, u be

respectively a sub- and a superminimizer ofF in�. If u � u a.e. in C�, then u � u a.e. inR
n.

Proof Consider the two functions min{u, u},max{u, u} ∈ Ws(�) and let M � 0 be fixed.
By Lemma 2.25, representation (2.22) for N M , and the fact that u � u in C�, it is easy to
see that

FM (min{u, u},�) + FM (max{u, u},�) � FM (u,�) + FM (u,�). (2.44)

From the sub- and superminimality of u and u respectively, recalling Remark 2.20 we get
that

FM (u,�) � FM (min{u, u},�) and FM (u,�) � FM (max{u, u},�).

By the second inequality and (2.44), we conclude that FM (u,�) = FM (min{u, u},�).
Now, either u = min{u, u} a.e. inR

n or, by the strict convexity ofFM (recall Lemma 2.7),

FM
(
min{u, u} + u

2
,�

)
<

1

2
FM (u,�) + 1

2
FM (min{u, u},�) = FM (u,�).

Since (min{u, u} + u)/2 � u a.e. in � and (min{u, u} + u)/2 = u a.e. in C�, the latter
possibility is excluded by the subminimality of u. Thus, u = min{u, u} a.e. in R

n , i.e., u � u
a.e. in R

n . ��

3 A priori bounds

We collect in this section a few a priori estimates for weak solutions and minimizers.

3.1 Ws,1 estimates

We establish here a couple of bounds for the Ws,1 norm of solutions and minimizers. We
begin with an estimate valid for weak subsolutions of H u = f which are bounded from
above. We will use it later in Sect. 4 to prove that viscosity solutions have finite energy. The
result is stated for the positive part of the subsolution u, but of course analogous estimates
hold for all truncations (u − k)+ with k ∈ R.

123



On nonlocal minimal graphs Page 29 of 72   136 

Proposition 3.1 Let� ⊆ R
n be a bounded open set with Lipschitz boundary, f :� → R such

that f+ ∈ L1(�), and u be a weak subsolution ofH u = f in �. If u+ ∈ Ws(�) ∩ L∞(�),
then

[u+]Ws,1(�) � C
(
1 + (1 + ‖ f+‖L1(�)

) ‖u+‖L∞(�)

)
, (3.1)

for a constant C > 0 depending only on n, s, g, and on upper bounds on |�|, diam(�),
and Pers(�).

Proof First of all, as f � f+, we have that

〈H u, v〉 �
∫

�

f+v dx for every v ∈ C∞
c (�) such that v � 0. (3.2)

We now apply (3.2) with v := χ�u+ ∈ Ws
0(�). This can be done even though v might not

belong to C∞
c (�), thanks to the same considerations made in the proof of Lemma 2.17. Note

that the convergence of the right-hand side in (2.37) follows from Lebesgue’s dominated
convergence theorem, as the approximating sequence {vk} is now uniformly bounded by
the L∞(�) norm of u+—see Proposition A.1.

Recalling definition (2.35), we get∫
�

∫
�

G

(
u(x) − u(y)

|x − y|
) (

u+(x) − u+(y)
) dx dy

|x − y|n+s

� −2
∫

�

{∫
C�

G

(
u(x) − u(y)

|x − y|
)

dy

|x − y|n+s

}
u+(x) dx +

∫
�

f+(x)u+(x) dx .

From the monotonicity of G, it is not hard to see that

G

(
u(x) − u(y)

|x − y|
) (

u+(x) − u+(y)
)

� G

(
u+(x) − u+(y)

|x − y|
) (

u+(x) − u+(y)
)

for a.e. x, y ∈ �.

Combining this with the fact that G(t)t � c�(|t | − 1) for all t ∈ R—which follows from the
properties of G, in particular the left-hand inequality in (2.9)—and Lemma 2.2, we obtain∫

�

∫
�

G

(
u(x) − u(y)

|x − y|
) (

u+(x) − u+(y)
) dx dy

|x − y|n+s
� c�

([u+]Ws,1(�) − cs(�)
)
,

with cs(�) as in (2.20). On the other hand, using the right-hand bound in (2.9), we have that

−2
∫

�

{∫
C�

G

(
u(x) − u(y)

|x − y|
)

dy

|x − y|n+s

}
u+(x) dx � �Pers(�) ‖u+‖L∞(�)

and ∫
�

f+(x)u+(x) dx � ‖ f+‖L1(�)‖u+‖L∞(�).

Estimate (3.1) then plainly follows. ��
Next is aWs,1 bound for minimizers ofF . Wewill use it in Sect. 5 to gain the compactness

needed to obtain the existence of solutions to the Dirichlet problem and prove Theorem 1.3.
We stress that, althoughwewill apply it to the family of boundedminimizers {uM }, no bound-
edness assumption on the minimizer is required for its validity. Recall the definition (1.12)
of Tails .
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Proposition 3.2 There exist two positive constants � and C, depending only on n, s, and g,
such that the following holds true. If � ⊆ R

n is a bounded open set with Lipschitz bound-
ary, ϕ: C� → R is such that Tails(ϕ,�� diam(�)\�; · ) ∈ L1(�), and u ∈ Ws

ϕ(�) is such
that

FM (u,�) � FM (v,�) for every v ∈ Ws
ϕ(�) s.t. |v| � M a.e. in �,

for some M � 0, then

diam(�)−s‖u‖L1(�) + [u]Ws,1(�)

� C
(∥∥Tails(ϕ,�� diam(�)\�; · )∥∥L1(�)

+ diam(�)1−s |�|
)

.

Proof We use the function v := χC�u as a competitor for u. We get

0 � FM (v,�) − FM (u,�) = −A(u,�) + 2
∫

�

∫
C�

I(x, y)

|x − y|n−1+s
dx dy, (3.3)

with

I(x, y) := G
(

v(x) − v(y)

|x − y|
)

− G
(
u(x) − u(y)

|x − y|
)

.

Write d := diam(�). On the one hand, by Lemma 2.3,

A(u,�) � c�

2

∫
�

∫
�

|u(x) − u(y)|
|x − y|n+s

dx dy − c� Hn−1(Sn−1)

2(1 − s)
|�|d1−s, (3.4)

with c� > 0 as defined in (2.10). On the other hand, let R := �d , with � � 1 to be chosen
later. Recalling the definition of v and taking advantage of point (ii) of Lemma 2.1, we obtain

I(x, y) � �

2

|ϕ(y)|
|x − y| + c�

2
− c�

2

|u(x) − u(y)|
|x − y| for every x ∈ �, y ∈ �R\�

and

I(x, y) � �

2

|u(x)|
|x − y| for every x ∈ �, y ∈ C�R .

Hence, using Lemma 2.2, that c� � �, and that C�R ⊆ CBR(x) for every x ∈ �, we get

2
∫

�

∫
C�

I(x, y)

|x − y|n−1+s
dx dy

�
∫

�

(∫
�R\�

�|ϕ(y)| − c�|u(x) − u(y)|
|x − y|n+s

dy

)
dx

+ c�

∫
�

∫
�R\�

dx dy

|x − y|n−1+s
+ �

∫
�

|u(x)|
(∫

C�R

dy

|x − y|n+s

)
dx

� �

(
‖Tails(ϕ,��d\�; · )‖L1(�) + Hn−1(Sn−1)

1 − s
(1 + 2�)1−sd1−s |�|

+ Hn−1(Sn−1)

s�sds
‖u‖L1(�)

)
− c�

∫
�

∫
��d\�

|u(x) − u(y)|
|x − y|n+s

dx dy.
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Putting together this estimate with (3.3) and (3.4), and recalling that � � 1, we find that∫
�

∫
��d

|u(x) − u(y)|
|x − y|n+s

dx dy

� C1

(
‖Tails(ϕ,��d\�; · )‖L1(�) + �1−sd1−s |�| + ‖u‖L1(�)

�sds

)
(3.5)

for some constant C1 > 0 depending only on n, s, and g.
Observe now that diam(�d) = 3d and |�d\�| � cndn , for a dimensional constant cn > 0.

Indeed, the equality is an immediate consequence of the definition of �d , while the measure
estimate follows from the fact that Bd/2(x0) ⊆ �d\� for every x0 ∈ ∂�d/2. Using these
two facts, we estimate∫

�d\�
dy

|x − y|n+s
� |�d\�|

diam(�d)n+s
� cn

3n+sds
for every x ∈ �.

By this and the triangular inequality, we have

‖u‖L1(�) � 3n+sds

cn

∫
�

|u(x)|
(∫

�d\�
dy

|x − y|n+s

)
dx

� 3n+sds

cn

(∫
�

∫
�d\�

|u(x) − u(y)|
|x − y|n+s

dx dy + ‖Tails(ϕ,�d\�; · )‖L1(�)

)
.

(3.6)

Using this estimate together with (3.5) and recalling that � � 1, we get

‖u‖L1(�) � C2
(
ds ‖Tails(ϕ,��d\�; · )‖L1(�) + �1−sd|�| + �−s‖u‖L1(�)

)
,

with C2 > 0 depending only on n, s, and g. By taking � sufficiently large (in dependence
of n, s, and g only), we can reabsorb the L1 norm of u on the left-hand side and obtain that

‖u‖L1(�) � C2
(
ds ‖Tails(ϕ,��d\�; · )‖L1(�) + d|�|) ,

for possibly a larger C2. The conclusion follows by combining this estimate with (3.5). ��

3.2 Interior L∞ estimates

In this subsection, we establish some interior boundedness results for minimizers of F
and Pers . First, through a rather standard De Giorgi-type iteration, we prove the following
proposition. It is stated for subminimizers—recall Definition 2.19—and provides a bound
from above. Of course, a two-sided L∞ estimate can then be deduced for minimizers.

Proposition 3.3 Let R > 0 and u be a subminimizer of F in B2R. Then,

sup
BR

u � C

(
R + −

∫
B2R

u+(x) dx

)
, (3.7)

for some constant C > 0 depending only on n, s, and g.

Proof Let 0 < 
 < τ � 2R andη ∈ C∞
c (Rn) be a cutoff function acting between the balls B


and Bτ , i.e., satisfying 0 � η � 1 in R
n , supp(η) � Bτ , η = 1 in B
 and |∇η| � 2/(τ − 
)

in R
n . For k � 0, we consider the functions w = wk := (u − k)+ and v := u − ηw.

Clearly, v � u in R
n and v = u in CBτ . Therefore,∫∫

Q(Bτ )

I(x, y)

|x − y|n−1+s
dx dy � 0, (3.8)
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with

I(x, y) := G
(

v(x) − v(y)

|x − y|
)

− G
(
u(x) − u(y)

|x − y|
)

.

We consider the sets A(k) := {x ∈ R
n : u > k} and A(k, t) := Bt ∩ A(k), for t > 0. First

of all, we claim that

I(x, y) � −�

2

|w(x) − w(y)|
|x − y| + λχB2


\(B
\A(k,
))2(x, y) for x, y ∈ B
, (3.9)

with λ and � as defined in (2.3) and (2.4) respectively. Clearly, (3.9) holds for every x, y ∈
CA(k), since I(x, y) = 0 for these points and w = 0 in CA(k). Furthermore, it is also valid
for x, y ∈ A(k, 
), as, indeed, by (2.13) we have

I(x, y) = −G
(
u(x) − u(y)

|x − y|
)

= −G
(

w(x) − w(y)

|x − y|
)

� −�

2

|w(x) − w(y)|
|x − y| + λ.

By symmetry, we are left to check (3.9) for x ∈ A(k, 
) and y ∈ B
\A(k, 
). In this case,
using u(x) > k � u(y) along with (2.13), we get

I(x, y) = G
(
k − u(y)

|x − y|
)

− G
(
u(x) − u(y)

|x − y|
)

� �

2

(
k − u(y)

|x − y| − u(x) − u(y)

|x − y|
)

+ λ

= −�

2

u(x) − k

|x − y| + λ = −�

2

|w(x) − w(y)|
|x − y| + λ.

Hence, (3.9) is verified.
We now claim that

I(x, y)��

(
χBτ (y)

|w(x) − w(y)|
|x − y| + w(x)

max{τ − 
, |x − y|}
)

for x ∈ Bτ , y ∈ CB
.

(3.10)

We already observed that I(x, y) = 0 for every x, y ∈ CA(k). When x ∈ Bτ\A(k, τ )

and y ∈ A(k),

u(y) − u(x) � u(y) − u(x) − η(y)(u(y) − k) = (1 − η(y))u(y) + kη(y) − u(x)

� (1 − η(y))u(y) + kη(y) − k = (1 − η(y))(u(y) − k) � 0

and therefore

I(x, y) = G
(
u(y) − u(x) − η(y)(u(y) − k)

|x − y|
)

− G
(
u(y) − u(x)

|x − y|
)

� 0,

by the symmetry and monotonicity properties of G. We are thus left to deal with x ∈ A(k, τ )

and y ∈ CB
. In this case, by the Lipschitz character of G and the properties of η,

I(x, y) � �

2

|η(x)w(x) − η(y)w(y)|
|x − y| � �

2

η(y)|w(x) − w(y)| + w(x)|η(x) − η(y)|
|x − y|

� �

2

(
χBτ (y)

|w(x) − w(y)|
|x − y| + min

{
2

τ − 

,

1

|x − y|
}

w(x)

)
,

and (3.10) follows.
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By taking advantage of estimates (3.9) and (3.10) in (3.8), by symmetry we deduce that∫∫
B2




|w(x) − w(y)|
|x − y|n+s

dx dy

� C

{∫∫
B2

τ \B2



|w(x) − w(y)|
|x − y|n+s

dx dy +
∫
A(k,
)

∫
B


dx dy

|x − y|n−1+s

+
∫
Bτ

w(x)

(
1

τ − 


∫
Bτ−


dz

|z|n−1+s
+
∫
CBτ−


dz

|z|n+s

)
dx

}

� C

{∫∫
B2

τ \B2



|w(x) − w(y)|
|x − y|n+s

dx dy + |A(k, 
)|
1−s + ‖w‖L1(Bτ )

(τ − 
)s

}
,

for some constantC > 0 depending only on n, s, and g. Note that for the second inequality we
also used Lemma 2.2. Adding to both sides C times the left-hand side and dividing by 1+C ,
we get that

[w]Ws,1(B
) � θ

(
[w]Ws,1(Bτ ) + |A(k, τ )|τ 1−s + ‖w‖L1(Bτ )

(τ − 
)s

)

for every 0 < 
 < τ � 2R and for some constant θ ∈ (0, 1) depending only on n, s, and g.
Applying, e.g, [29, Lemma 1.1], we infer that

[w]Ws,1(B(
+τ)/2)
� C

(
|A(k, τ )|τ 1−s + ‖w‖L1(Bτ )

(τ − 
)s

)
.

Let η be a new cutoff acting between the balls B
 and B(3
+τ)/4. Then, by the fractional
Sobolev inequality (see, e.g., [37, Theorem1] or [19, Theorem6.5]) and computations similar
to other made previously, we have that

‖w‖
L

n
n−s (B
)

� ‖ηw‖
L

n
n−s (Rn)

� C
∫
Rn

∫
Rn

|η(x)w(x) − η(y)w(y)|
|x − y|n+s

dx dy

� C

(
[w]Ws,1(B(
+τ)/2)

+ ‖w‖L1(Bτ )

(τ − 
)s

)
.

Combining the last two inequalities and recalling that w = wk , we arrive at

‖wk‖L n
n−s (B
)

� C

(
|A(k, τ )|τ 1−s + ‖wk‖L1(Bτ )

(τ − 
)s

)
(3.11)

for every 0 < 
 < τ � 2R and k � 0.
Take now k > h � 0. We have

‖wh‖L1(Bτ ) �
∫
A(k,τ )

(u(x) − h) dx � (k − h)|A(k, τ )|

and

‖wh‖L1(Bτ ) �
∫
A(k,τ )

(u(x) − h) dx �
∫
A(k,τ )

(u(x) − k) dx = ‖wk‖L1(Bτ ).

Thanks to these relations, (3.11), and Hölder’s inequality, it is easy to see that

ϕ(k, 
)� C

(k − h)s/n

(
τ 1−s

k − h
+ 1

(τ − 
)s

)
ϕ(h, τ )1+

s
n , (3.12)
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where we set ϕ(�, t) := ‖w�‖L1(Bt ).
Consider the two sequences {k j } and {r j } defined by k j := M(1− 2− j ) and r j := R(1+

2− j ) for every non-negative integer j and with M > 0 to be chosen later. By applying (3.12)
with k = k j+1, 
 = r j+1, h = k j , and τ = r j , setting ϕ j := ϕ(k j , r j ), and taking M � R,
we find

ϕ j+1 � C(2 jϕ j )
1+ s

n

(R n
√
M)s

.

Applying now, e.g., [31, Lemma 7.1], we conclude that ϕ j converges to 0—i.e., u � M
in BR—, provided we choose M in such a way that

‖u+‖L1(B2R) = ϕ0 � c�R
nM,

for a sufficiently small constant c� > 0 depending only on n, s, and g. This concludes the
proof. ��

The counterpart of Proposition 3.3 for subgraphs that (locally) minimize Pers is contained
in the next result, which easily follows from the density estimates of [10].

Proposition 3.4 Let � ⊆ R
n be an open set and E ⊆ R

n+1 be a locally s-minimal set
in � × R satisfying

E ∩ (� × R) =
{
(x, t) ∈ � × R: t < u(x)

}
,

for some measurable function u:� → R. Then, u ∈ L∞
loc(�).

Proof The claim is equivalent to proving that, for every ball B := Br (x0) with 4B :=
B4r (x0) ⊆ �, there exists a constant M > 0 such that, up to sets of measure zero,

B × (−∞,−M) ⊆ E ∩ (B × R) ⊆ B × (−∞, M).

We only establish the rightmost inclusion, the other one being analogous.
We argue by contradiction and suppose that

|E ∩ (B × (k,+∞))| > 0,

for every k ∈ N. Notice that, for every k ∈ N, it holds

|(B × (k,+∞)) \E | > 0,

as otherwise wewould have u ≡ +∞ in B. These two facts imply that there exists a sequence
of points Xk = (xk, tk) ∈ ∂E ∩ (B × R) such that tk > k. As E is s-minimal in the (n + 1)-
dimensional ball Br (Xk) := {

Y ∈ R
n+1: |Y − Xk | < r

}
� � × R, the clean ball condition

[10, Corollary 4.3] ensures the existence of a point Zk = (zk, τk) such that

B2cr (Zk) ⊆ E ∩ Br (Xk),

for some constant c ∈ (0, 1/2) depending only on n and s. This yields that u � τk > k − r
in Bcr (zk).

Now, up to passing to a subsequence, the points zk converge to some z0 ∈ 3B := B3r (x0).
Hence, Bcr (z0) ⊆ B2cr (zk) for every large enough k. As a result, u � k − d in Bcr (z0) for
every large k. Since this is a contradiction, the proof of the proposition is complete. ��
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Proposition 3.4 establishes that the function u defining a locally s-minimal subgraph is
necessarily locally bounded. We point out that, by suitably modifying the proof we just
presented, one can also obtain a quantitative L∞ bound in terms of the L1 norm of u—such
as (3.7). For our aims, the statement of Proposition 3.4 is however more powerful, since it
does not require a priori u to be integrable, but merely measurable.

3.3 Global L∞ estimates

When the outside datum is bounded in a suitably large neighborhood of �, we can establish
the boundedness ofminimizers ofF up to the boundary of�—as claimed in Theorem1.4.We
obtain this result by showing that, if u : R

n → R is bounded in�R\� for some large R > 0,
the value of FM decreases when u is truncated at a high enough level—namely considering

u(N ) :=
{
min{u, N } in �,

u in C�,
(3.13)

for N � 0. The precise formulation of this fact is as follows.

Proposition 3.5 There exists a positive constant �, depending only on n, s, and g, such that
the following holds true. If � ⊆ R

n is a bounded open set with Lipschitz boundary, M � 0,
and u: Rn → R is a function bounded from above in �� diam(�)\�, then it holds

A(u(N ), �) � A(u,�) and N M (u(N ), �) � N M (u,�) (3.14)

for every

N � diam(�) + sup
�� diam(�)\�

u. (3.15)

In particular,

FM (u(N ), �) � FM (u,�)

for every N satisfying (3.15).

Observe that Proposition 3.5 directly implies Theorem 1.4, thanks to the uniqueness of
the minimizer ofF in�with respect to its own outside datum—see point (iii) of Remark 2.9.

Proof of Proposition 3.5 Write v := u(N ), R0 := diam(�), and R := �R0, with � � 1 to be
chosen later sufficiently large, in dependence of n, s, and g only. From Lemma 2.25, it clearly
follows that A(v,�) � A(u,�). Hence, we can focus on the inequality for the nonlocal
part N M .

Thanks to representation (2.22), we have

NM (v,�) − NM (u, �) = 2
∫
�

∫
C�

{
G
(

v(x) − v(y)

|x − y|
)

− G
(
u(x) − u(y)

|x − y|
)}

dx dy

|x − y|n−1+s
.

Setting �+ := {x ∈ �: u(x) > N } and writing C� = A1 ∪ A2, with A1 := �R\�
and A2 := C�R , we infer from the above identity that the second inequality in (3.14) is
equivalent to

α1 + α2 � 0, (3.16)
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where we set

αi :=
∫

�+

{∫
Ai

{
G
(
N − u(y)

|x − y|
)

− G
(
u(x) − u(y)

|x − y|
)}

dy

|x − y|n−1+s

}
dx for i = 1, 2.

First, we establish a (negative) upper bound for α1. Let x ∈ �+ and y ∈ A1. Since, by
hypothesis (3.15), u(y) � N < u(x) and G is increasing, we have

G
(
N − u(y)

|x − y|
)

− G
(
u(x) − u(y)

|x − y|
)

= −
∫ u(x)−u(y)

|x−y|
N−u(y)
|x−y|

G(t) dt

� −G

(
N − u(y)

|x − y|
)
u(x) − N

|x − y| ,

(3.17)

and consequently

α1 � −
∫

�

(u(x) − N )+
{∫

A1

G

(
N − u(y)

|x − y|
)

dy

|x − y|n+s

}
dx .

Let D1 ⊆ �R0\� ⊆ A1 be a measurable set with |D1| � c�Rn
0 for some dimensional

constant c� > 0. To obtain such a set, we can select a point x0 ∈ ∂� for which � lies on one
side of a supporting hyperplane for ∂� at x0—the existence of such a point follows from the
boundedness of �. Calling H+ the half-space bounded by this hyperplane which does not
contain �, we can simply set D1 := H+ ∩ BR0(x0). Using (3.15) and the monotonicity of G,
we estimate∫

A1

G

(
N − u(y)

|x − y|
)

dy

|x − y|n+s
�
∫
D1

G

(
R0

R0 + R0

)
dy

(R0 + R0)n+s

= G(1/2)|D1|
(2R0)n+s

� c1
Rs
0

for every x ∈ � and for some constant c1 > 0 depending only on n, s, and g. Accordingly,

α1 � − c1
Rs
0

∫
�

(u(x) − N )+ dx . (3.18)

On the other hand, to control α2 we simply use that G is a globally Lipschitz function,
by (2.14), and compute

α2 � �

2

∫
�

(u(x) − N )+
(∫

C�R

dy

|x − y|n+s

)
dx

� �

2

∫
�

(u(x) − N )+
(∫

CBR

dz

|z|n+s

)
dx � C2

�s Rs
0

∫
�

(u(x) − N )+ dx,

for some constant C2 > 0 depending only on n, s, and g. Notice that to get the second
inequality we changed variables and took advantage of the inclusion BR(x) ⊆ �R , which
holds for all x ∈ �. Combining this last estimate with (3.18), we obtain

α1 + α2 � − 1

Rs
0

(
c1 − C2

�s

)∫
�

(u(x) − N )+ dx,

and (3.16) follows provided we take � � (C2/c1)1/s . ��
Through an appropriate modification of the proof of Proposition 3.5 and the interior L∞

bound of Proposition 3.3, we can actually improve Theorem 1.4, establishing the global
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boundedness of minimizers of F which have exterior data bounded only in an arbitrarily
small neighborhood of �.

We indicate with d̄� the signed distance function from ∂�, negative inside �, and write

�
 :=
{
x ∈ R

n : d̄�(x) < 

}

for 
 ∈ R. (3.19)

Proposition 3.6 Let � ⊆ R
n be a bounded open set with Lipschitz boundary. If u is a

minimizer of F in � and u ∈ L∞(�d\�) for some d > 0, then u ∈ L∞(�) and it holds

‖u‖L∞(�\�−θd ) � d + max
{‖u‖L∞(�−θd ), ‖u‖L∞(�d\�)

}
,

for some constant θ ∈ (0, 1) depending only on n, s, �, and g.

We stress that the L∞ norm of u in �−θd � � is finite thanks to the interior L∞ estimate
of Proposition 3.3 and a simple covering argument. Also, note that if we further assume
that Tails(u,�� diam(�)\�; · ) ∈ L1(�) for � > 0 sufficiently large, then the combination
of the L1 estimate of Proposition 3.2, the L∞ one of Proposition 3.3, and the bound of
Proposition 3.6 leads to an estimate on ‖u‖L∞(�) purely in terms of the exterior data and of
the geometry of �.

Proof of Proposition 3.6 Without loss of generality, we only prove the bound from above.
Pick any

N � d + max

{
sup
�−θd

u, sup
�d\�

u

}
, (3.20)

with θ ∈ (0, 1/4] to be chosen suitably small later, and let u(N ) be defined by (3.13). By
taking u(N ) as a competitor in Definition 1.2 and using Lemma 2.25 as in the proof of
Proposition 3.5, we easily deduce that

β1 + β2 � 0, (3.21)

where, setting �+ := {x ∈ �: u(x) > N },

β1 :=
∫

�+

{∫
CBd (x)\�

{
G
(
N − u(y)

|x − y|
)

− G
(
u(x) − u(y)

|x − y|
)}

dy

|x − y|n−1+s

}
dx,

β2 :=
∫

�+

{∫
Bd (x)\�

{
G
(
N − u(y)

|x − y|
)

− G
(
u(x) − u(y)

|x − y|
)}

dy

|x − y|n−1+s

}
dx .

On the one hand, by the Lipschitz character of G—see (2.14)—we compute

β1 � �

2

∫
�+

(u(x) − N )

(∫
CBd (x)

dy

|x − y|n+s

)
dx � C1

ds

∫
�

(u(x) − N )+ dx, (3.22)

for some constant C1 > 0 depending only on n, s, and g.
We now address β2. First, notice that, in view of hypothesis (3.20), we have that u(y) �

N < u(x) for every x ∈ �+ and y ∈ Bd(x)\�. Hence, applying inequality (3.17) we get

β2 � −
∫

�+
(u(x) − N )

{∫
Bd (x)\�

G

(
N − u(y)

|x − y|
)

dy

|x − y|n+s

}
dx .

As � is bounded and Lipschitz, there exists a small constant δ > 0, depending only on n
and �, such that |Br (p)\�| � δrn for every p ∈ ∂� and r > 0. Given x ∈ �\�−θd ,
let px be any point on ∂� such that |x − px | = dist(x, ∂�). Then, x ∈ Bθd(px ) ⊆ Bd(x)
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and |Bθd(px )\�| � δθndn . Since, by (3.20), �+ ⊆ �\�−θd , this holds in particular
for every x ∈ �+. By virtue of this and the fact that, by the monotonicity of G and

again (3.20), G
(
N−u(y)
|x−y|

)
� G(1) > 0 for every x ∈ �+ and y ∈ Bd(x)\�, we further

estimate

β2 � −G(1)
∫

�+
(u(x) − N )

(∫
Bθd (px )\�

dy

|x − y|n+s

)
dx � − c2

θ sds

∫
�

(u(x) − N )+ dx,

for some constant c2 > 0 depending only on n, s, �, and g.
By combining this estimate, (3.22), and (3.21), we find that

0 � − 1

ds

( c2
θ s

− C1

) ∫
�

(u(x) − N )+ dx .

If θ < (c2/C1)
1/s , this is a contradiction, unless u � N a.e. in�. The proof is thus complete.

��

4 Viscosity solutions of fractional mean curvature-type equations

In Sect. 2.4 we have seen how weak solutions of H u = 0 naturally arise when dealing
with the fractional area-type functional FM . Here, we focus instead on a different notion of
solution, based on the viscosity approach developed by Caffarelli and Silvestre [11,12] for
a different class of integro-differential operators. In the geometric case g = gs , this notion
is strongly related to the one considered in [10]. The final aim of the section will be to
show that viscosity (sub)solutions are also weak distributional (sub)solutions, thus proving
Theorem 1.8.

4.1 Viscosity (sub)solutions

The starting point of our analysis is the following simple remark about an important mono-
tonicity property enjoyed by the operator H .

Remark 4.1 Let x0 ∈ R
n and u, v: Rn → R be such that

u(x0) = v(x0) and u(x) � v(x) for all x ∈ R
n .

Then, recalling definition (2.29) and the monotonicity of the function G, we infer that

δg(u, x0; ξ) � δg(v, x0; ξ) for all ξ ∈ R
n .

In particular, it follows that

H u(x0) � H v(x0),

provided the quantities H u(x0) and H v(x0) are well-defined.

In light of the above remark, it is reasonable to consider the following definition.

Definition 4.2 Let� ⊆ R
n be an open set and f ∈ C(�). We say that a function u: Rn → R

is a viscosity subsolution of H u = f in �, and we write

H u � f in �,

if u is upper semicontinuous in � and the following happens: if
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(i) x0 ∈ �,
(ii) v ∈ C1,1(Br (x0)) for some r < dist(x0, ∂�),
(iii) v(x0) = u(x0) and v(y) � u(y) for every y ∈ Br (x0),

then the function

ṽ(x) :=
{

v(x) if x ∈ Br (x0),

u(x) if x ∈ R
n\Br (x0), (4.1)

satisfies

H ṽ(x0) � f (x0).

A function u is a viscosity supersolution of H u = f in �, and we write H u � f in �,
if −u is a viscosity subsolution of H (−u) = − f in �. A viscosity solution of H u = f
in � is a function u: Rn → R which is continuous in � and is both a viscosity subsolution
and supersolution of H u = f in �.

From now on, we will mostly focus on subsolutions, as corresponding statements for
supersolutions can be easily obtained by symmetry arguments. Also, unless otherwise spec-
ified, � always denotes a bounded open subset of R

n and f a continuous function in �.
A first, useful observation on viscosity subsolutions is contained in the following result.

Proposition 4.3 Let u be a viscosity subsolution ofH u = f in �. Assume that u is touched
from above at a point x0 ∈ � by a C1,1 function v, namely that points (ii) and (iii) of
Definition 4.2 hold true. Then, H u(x0) is well-defined in the Lebesgue sense, is finite, and
satisfies

H u(x0) � f (x0).

Proof We begin by showing that δg(u, x0; ξ)|ξ |−n−s is integrable in R
n , so that H u(x0) is

well-defined as a Lebesgue integral. Our argument follows that of [33, Proposition 1].
For every 
 ∈ (0, r ], we consider the functions

v
(y) :=
{

v(y) if y ∈ B
(x0),

u(y) if y ∈ R
n\B
(x0).

As v ∈ C1,1(Br (x0)), the function ξ �→ δg(v
, x0; ξ)|ξ |−n−s is integrable in R
n , that is

∫
Rn

δ+
g (v
, x0; ξ) + δ−

g (v
, x0; ξ)

|ξ |n+s
dξ =

∫
Rn

|δg(v
, x0; ξ)|
|ξ |n+s

dξ < +∞,

where, for a general function ψ , we write

δ+
g (ψ, x0; ξ) := max{δg(ψ, x0; ξ), 0} and δ−

g (ψ, x0; ξ) := max{−δg(ψ, x0; ξ), 0}.
Moreover, by Remark 4.1,

δg(u, x0; ξ) � δg(v
1 , x0; ξ) � δg(v
2 , x0; ξ) for every 0 < 
1 � 
2 � r , (4.2)

and hence
∫
Rn

δ−
g (u, x0; ξ)

|ξ |n+s
dξ �

∫
Rn

|δg(vr , x0; ξ)|
|ξ |n+s

dξ < +∞. (4.3)
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Also, δ+
g (v
, x0; ξ) ↗ δ+

g (u, x0; ξ) as 
 ↘ 0, and therefore the monotone convergence
theorem gives that

∫
Rn

δ+
g (u, x0; ξ)

|ξ |n+s
dξ = lim


→0+

∫
Rn

δ+
g (v
, x0; ξ)

|ξ |n+s
dξ.

Now, since u is a subsolution, we have
∫
Rn

δ+
g (v
1 , x0; ξ)

|ξ |n+s
dξ −

∫
Rn

δ−
g (v
1 , x0; ξ)

|ξ |n+s
dξ =

∫
Rn

δg(v
1 , x0; ξ)

|ξ |n+s
dξ � f (x0),

and thus, recalling (4.2),
∫
Rn

δ+
g (v
1 , x0; ξ)

|ξ |n+s
dξ �

∫
Rn

δ−
g (v
1 , x0; ξ)

|ξ |n+s
dξ + f (x0) �

∫
Rn

δ−
g (v
2 , x0; ξ)

|ξ |n+s
dξ + f (x0),

for every 0 < 
1 � 
2 � r . Letting 
1 → 0 and taking 
2 = 
, we obtain that
∫
Rn

δ+
g (u, x0; ξ)

|ξ |n+s
dξ �

∫
Rn

δ−
g (v
, x0; ξ)

|ξ |n+s
dξ + f (x0) < +∞, (4.4)

for every 
 ∈ (0, r ]. Combining (4.3) and (4.4), we conclude that δg(u, x0; ξ)|ξ |−n−s is
integrable in R

n and hence H u(x0) is well-defined and finite.
To check that H u(x0) � f (x0), notice that, by (4.2),

δ−
g (v
, x0; ξ)

|ξ |n+s
�

δ−
g (vr , x0; ξ)

|ξ |n+s
for every 
 ∈ (0, r ].

As the function on the right-hand side is integrable in R
n , by Lebesgue’s dominated conver-

gence theorem we can let 
 → 0 in (4.4), obtaining
∫
Rn

δ+
g (u, x0; ξ)

|ξ |n+s
dξ �

∫
Rn

δ−
g (u, x0; ξ)

|ξ |n+s
dξ + f (x0),

which is the claim. ��
For later use, it is convenient to introduce the following definition.

Definition 4.4 A function u: Rn → R is said to be C1,1 at a point x0 ∈ R
n , and we write u ∈

C1,1(x0), if there exist � ∈ R
n and M, r > 0 such that

|u(x0 + ξ) − u(x0) − � · ξ | � M |ξ |2 for all ξ ∈ Br . (4.5)

Clearly, if u ∈ C1,1(BR(x0)) for some R > 0, then u ∈ C1,1(x0). Geometrically, u isC1,1

at x0 if there exist both an interior and an exterior tangent paraboloid to the subgraph of u at
the point (x0, u(x0)).

As a consequence of Proposition 4.3, we obtain the following corollary.

Corollary 4.5 Let u be a viscosity subsolution of H u = f in � and assume that u is C1,1

at some point x0 ∈ �. Then, H u(x0) is well-defined in the Lebesgue sense, is finite, and
satisfies

H u(x0) � f (x0).

Proof Consider the paraboloid

q(x) := u(x0) + � · (x − x0) + M |x − x0|2 for all x ∈ Br (x0),

with �, M and r as in Definition 4.4. Obviously, q ∈ C1,1(Br (x0)). Also, by (4.5) we know
that q touches u from above at x0. The conclusion then follows from Proposition 4.3. ��

123



On nonlocal minimal graphs Page 41 of 72   136 

4.2 Sup-convolutions

Here, we introduce and study the so-called sup-convolutions uε of a viscosity subsolution u—
namely, a sequence of subsolutions of approximating equations which converge to u and
enjoy nice regularity properties. For simplicity, we will consider only subsolutions which are
bounded in the whole of R

n .

Definition 4.6 Let u: Rn → R be a bounded function and ε > 0. We define the sup-
convolution uε of u as

uε(x) := sup
y∈Rn

{
u(y) − 1

ε
|y − x |2

}
for x ∈ R

n .

Nowwe point out some easy properties of sup-convolutions. From the definition, it imme-
diately follows that

uε � u in R
n . (4.6)

Moreover, setting M := supRn |u| < +∞, we see that uε can be equivalently written as

uε(x) = sup
|y−x |�√

2Mε

{
u(y) − 1

ε
|y − x |2

}
. (4.7)

Indeed, if |y − x | >
√
2Mε, then u(y) − |y − x |2/ε < −M � u(x), and (4.7) follows

from (4.6).

Remark 4.7 Given an open set � ⊆ R
n , we define

�ε :=
{
x ∈ �: d(x, ∂�) > 2

√
2Mε

}
. (4.8)

If u is upper semicontinuous in �, then for every x ∈ �ε there exists y0 ∈ B√
2Mε(x) ⊆ �

such that

uε(x) = u(y0) − 1

ε
|y0 − x |2 = max

|y−x |�√
2Mε

{
u(y) − 1

ε
|y − x |2

}
.

This is a straightforward consequence of (4.7) and the upper semicontinuity of u.

In the next theorem we collect some important properties of sup-convolutions, whose
proofs canbe found, for instance, in [2]. First,we recall the definition of semiconvex functions.

Definition 4.8 Let � ⊆ R
n be an open set and let u:� → R. We say that u is semiconvex in

� if there exists a constant c � 0 such that

x �→ u(x) + c

2
|x |2

is convex in every ball B ⊆ �. The smallest constant c � 0 for which this happens is called
the semiconvexity constant of u and is denoted by sc(u,�).

Proposition 4.9 Let u: Rn → R be a bounded function and ε > 0. Then, uε is semiconvex
in R

n and sc(uε, R
n) � 2

ε
. Also, uε ∈ W 1,∞

loc (Rn), ∇uε ∈ BVloc(R
n, R

n), and uε ∈ C1,1(x)
for a.e. x ∈ R

n.
Furthermore, if u is upper semicontinuous in an open set � ⊆ R

n, then, for every x ∈ �,

uε(x) ↘ u(x) as ε ↘ 0.

The convergence is locally uniform if u is continuous in �.
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Proof The semiconvexity of uε follows from [2, Proposition 4(i)]. By [2, Theorems 15
and 16], this gives in turn that uε ∈ W 1,∞

loc (Rn) and∇uε ∈ BVloc(R
n, R

n). That uε ∈ C1,1(x)
for a.e. x ∈ R

n follows from the Taylor expansion of [2, Theorem 16(ii)]. Finally, the
convergence of uε to u can be obtained by arguing as in the proof of [2, Proposition 4(ii)]. ��

Sup-convolutions are particularly useful since they preserve the subsolution property,
eventually up to a small error. We deal with this in the next result.

Proposition 4.10 Let � ⊆ R
n be a bounded open set, f ∈ C(�), and u be a viscosity

subsolution of H u = f in �, bounded in R
n. Then,

H uε(x) � f (x) + cε for a.e. x ∈ �ε,

where �ε is defined by (4.8), with M := supRn |u|, and
cε := sup

x,y∈�

|x−y|�√
2Mε

| f (x) − f (y)|. (4.9)

Notice in particular that

cε ↘ 0 as ε ↘ 0 and cε = 0 if f is constant. (4.10)

Proof Observe that, in view of Proposition 4.9, uε is C1,1 at a.e. point of �ε . Thanks to this
and Corollary 4.5, it then suffices to show that uε is a viscosity subsolution ofH uε = f +cε

in �ε .
Let x0 ∈ �ε and suppose that there exist r ∈ (0, dist(x0, ∂�ε)) and v ∈ C1,1(Br (x0))

such that

v(x0) = uε(x0) and v(x) � uε(x) for all x ∈ Br (x0).

Defining ṽ as in (4.1), we need to show that

H ṽ(x0) � f (x0) + cε, (4.11)

with cε as in (4.9).
Thanks to Remark 4.7, we can find y0 ∈ � in such a way that |y0 − x0| �

√
2Mε and

uε(x0) = u(y0) − 1

ε
|y0 − x0|2.

Then, we define

ψ(x) := v(x + x0 − y0) + 1

ε
|y0 − x0|2 for all x ∈ Br (y0).

Clearly, ψ ∈ C1,1(Br (y0)). Moreover,

ψ(y0) = v(x0) + 1

ε
|y0 − x0|2 = uε(x0) + 1

ε
|y0 − x0|2 = u(y0).

As v � uε in Br (x0), by definition of uε we also have that

u(y) − 1

ε
|y − x |2 � uε(x) � v(x) for all y ∈ R

n and x ∈ Br (x0).

Taking y ∈ Br (y0) and x := y + x0 − y0, we get

u(y) � ψ(y) for all y ∈ Br (y0).
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Thus, ψ touches u from above at y0 and hence

H ψ̃(y0) � f (y0), (4.12)

where, again, ψ̃ is defined as in (4.1) around the point y0, starting from ψ .
Recalling definition (2.31) and changing variables appropriately, we compute

H <r ψ̃(y0) = 2 P.V.
∫
Br (y0)

G

(
ψ(y0) − ψ(y)

|y − y0|
)

dy

|y − y0|n+s

= 2 P.V.
∫
Br (x0)

G

(
v(x0) − v(x)

|x − x0|
)

dx

|x − x0|n+s
= H <r ṽ(x0).

(4.13)

On the other hand,

H �r ψ̃(y0) = 2
∫
Rn\Br (y0)

G

(
uε(x0) + ε−1|y0 − x0|2 − u(y)

|y − y0|
)

dy

|y − y0|n+s

= 2
∫
Rn\Br (x0)

G

(
uε(x0) + ε−1|y0 − x0|2 − u(x + y0 − x0)

|x − x0|
)

dx

|x − x0|n+s
.

Plugging y := x + y0 − x0 in the definition of uε(x) yields

ε−1|y0 − x0|2 − u(x + y0 − x0) � −uε(x) for all x ∈ R
n .

Hence, by the monotonicity of G,

H �r ψ̃(y0) � 2
∫
Rn\Br (x0)

G

(
uε(x0) − uε(x)

|x − x0|
)

dx

|x − x0|n+s
= H �r ṽ(x0).

By combining this with (4.13) and (4.12), we obtain that

H ṽ(x0) � H ψ̃(y0) � f (y0) � f (x0) + cε,

which is (4.11). This concludes the proof. ��

4.3 Relationship with weak (sub)solutions

In this subsection, we explore the connection existing between viscosity and weak
subsolutions—recall Definition 1.5. In particular, we will show the validity of Theorem 1.8.

To do this, we use a perturbative approach based on the sup-convolutions introduced
in the previous subsection. Observe that, by Proposition 4.10, we already know that sup-
convolutions are pointwise a.e. subsolutions of approximating equations. To improve this
result to an inequality holding in the weak sense of Definition 1.5, it is convenient to consider
the space of functions with bounded Hessian in �, defined as

BH(�) :=
{
u ∈ W 1,1(�): ∇u ∈ BV(�, R

n)
}

=
{
u ∈ W 1,1(�): ∂ j u ∈ BV(�) for every j = 1, . . . , n

}

and endowed with the norm

‖u‖BH(�) := ‖u‖W 1,1(�) + |D2u|(�),

where |D2u|(�) indicates the total variation of D2u in �, i.e., the BV seminorm of ∇u in �.
For the properties of the space BH(�), we refer the interested reader to [16]. We only

recall the following useful density property—see [16, Proposition 1.4] for a proof.
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Proposition 4.11 LetO ⊆ R
n be a bounded open set with C2 boundary and let u ∈ BH(O).

Then, there exist a sequence of functions {uk} ⊆ C2(O) ∩ W 2,1(O) such that

lim
k→∞

{‖u − uk‖W 1,1(O) + ∣∣|D2u|(O) − |D2uk |(O)
∣∣} = 0.

Exploiting this density property, we can prove the following result.

Lemma 4.12 Let �′ � � ⊆ R
n be bounded open sets and u ∈ BH(�). Then,

∫
�′

|u(x + ξ) + u(x − ξ) − 2u(x)| dx � 2|ξ |2|D2u|(�) for every ξ ∈ Bd . (4.14)

where we set d := dist(�′, ∂�)/2.

Proof Let O ⊆ � be a bounded open set with C2 boundary such that

�′ � O and d(�′, ∂O) > d. (4.15)

By Proposition 4.11, we can find a sequence {uk} ⊆ C2(O) ∩ W 2,1(O) such that

lim
k→∞

{‖u − uk‖W 1,1(O) + ∣∣|D2u|(O) − |D2uk |(O)
∣∣} = 0. (4.16)

Now, let ξ ∈ Bd be fixed and notice that

|uk(x + ξ) + uk(x − ξ) − 2uk(x)| � |uk(x + ξ) − uk(x) − ∇uk(x) · ξ |
+ |uk(x − ξ) − uk(x) − ∇uk(x) · (−ξ)|.

By Taylor’s theorem with integral remainder, we have

|uk(x ± ξ) − uk(x) − ∇uk(x) · (±ξ)| � |ξ |2
∫ 1

0
|D2uk(x ± tξ)| dt,

so that, integrating as x ranges over �′ and using Fubini’s theorem, we get
∫

�′
|uk(x + ξ) + uk(x − ξ) − 2uk(x)| dx � |ξ |2

∫ 1

−1

(∫
�′

|D2uk(x + tξ)| dx
)
dt

� 2|ξ |2|D2uk |(O),

since |ξ | < d and O satisfies (4.15). Then, Fatou’s Lemma and (4.16) yield
∫

�′
|u(x + ξ) + u(x − ξ) − 2u(x)| dx

� 2|ξ |2 lim
k→∞ |D2uk |(O) = 2|ξ |2|D2u|(O) � 2|ξ |2|D2u|(�),

which is the desired bound (4.14). ��
Thanks to the previous lemma, we can prove the following crucial result.

Proposition 4.13 Let � ⊆ R
n be a bounded open set and u ∈ BH(�). Then,H u ∈ L1

loc(�)

and

〈H u, v〉 =
∫

�

H u(x)v(x) dx for every v ∈ C∞
c (�). (4.17)
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Proof Let �′ � � and d := dist(�′, ∂�)/2. Taking advantage of Remark 2.13, (2.34),
and (4.14), we estimate∫

�′
|H u(x)| dx

�
∫

�′

(∫
Rn

|δg(u, x; ξ)|
|ξ |n+s

dξ

)
dx

� �Hn−1(Sn−1)

s

|�′|
ds

+
∫
Bd

(∫
�′

|u(x + ξ) + u(x − ξ) − 2u(x)| dx
)

dξ

|ξ |n+1+s

� �Hn−1(Sn−1)

s

|�′|
ds

+ 2|D2u|(�)
Hn−1(Sn−1)

1 − s
d1−s < +∞.

This proves that H u ∈ L1
loc(�).

We now head to the proof of (4.17). Notice that

|H �
u(x)| �
∫
Rn

|δg(u, x; ξ)|
|ξ |n+s

dξ for every 
 > 0

and that the right-hand side of the above formula is locally integrable in � as a function of x ,
thanks to the previous computation. Therefore, given v ∈ C∞

c (�) we can apply Lebesgue’s
dominated convergence theorem to obtain that

lim

↘0

∫
Rn

H �
u(x)v(x) dx =
∫
Rn

H u(x)v(x) dx .

Now notice that, by symmetry,∫
Rn

H �
u(x)v(x) dx =
∫
Rn

∫
Rn

G

(
u(x) − u(y)

|x − y|
)(

v(x) − v(y)
)
χCB
 (x − y)

dx dy

|x − y|n+s
.

Hence, sincev ∈ C∞
c (�) ⊆ Ws,1(Rn) andG is bounded,Lebesgue’s dominated convergence

theorem can be used once again to deduce that

lim

↘0

∫
Rn

∫
Rn

G

(
u(x) − u(y)

|x − y|
)(

v(x) − v(y)
)
χCB
 (x − y)

dx dy

|x − y|n+s
= 〈H u, v〉.

The combination of the last three identities leads us to (4.17). ��
By putting together Propositions 4.10, 4.9, and 4.13, we immediately obtain the following

result.

Corollary 4.14 Let � ⊆ R
n be a bounded open set, f ∈ C(�), and u be a viscosity subso-

lution of H u = f in �, bounded in R
n. Then, uε is a weak subsolution of H uε = f + cε

in �ε , with cε as in (4.9).

An easy consequence of the previous corollary is the next result, which already provides
a proof of Theorem 1.8 in the case of bounded, (semi)continuous outside data. Indeed, in
the following statement we require the subsolution u to be upper semicontinuous outside of
a set S ⊆ C� having vanishing Lebesgue measure. Note that, when � is well-behaved, one
may take S to contain ∂�, thus allowing u to be discontinuous across ∂�.

Proposition 4.15 Let � ⊆ R
n be a bounded open set with Lipschitz boundary, f ∈ C(�),

and u be a viscosity subsolution of H u = f in �, bounded in R
n. Assume that there exists

a closed set S ⊆ R
n\� such that |S| = 0 and that u is upper semicontinuous in R

n\S.
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Then, u is a weak subsolution ofH u = f in �. In addition, u+ ∈ Ws,1(�) and it holds

[u+]Ws,1(�) � C, (4.18)

for some constant C > 0 depending only on n, s, g, �, ‖u+‖L∞(�), and ‖ f+‖L1(�).

Proof The hypotheses on u and Proposition 4.9 give that, as ε → 0, the sup-convolutions {uε}
converge to u pointwise outside of S and hence a.e. in R

n . Let v ∈ C∞
c (�) be a non-negative

function. Note that supp(v) ⊆ �ε provided ε is small enough. Thus, using Lemma 2.15,
Corollary 4.14, and property (4.10), we obtain

〈H u, v〉 = lim
ε↘0

〈H uε, v〉 � lim
ε↘0

∫
�

( f + cε)v dx =
∫

�

f v dx .

Hence, u is a weak solution of H u = f in �.
To check the validity of (4.18), let �′ � � be any open set with Lipschitz boundary

such that Pers(�′) � Pers(�) + 1. For all ε sufficiently small, uε is a weak subsolution
ofH uε = f +cε in�′ lying inWs

loc(R
n)∩L∞(Rn). Thus, wemay apply to it Proposition 3.1

and deduce that

[uε+]Ws,1(�′) � C
(
1 + (1 + ‖ f+‖L1(�′) + cε|�′|) ‖uε+‖L∞(�′)

)

� C
(
1 + (2 + ‖ f+‖L1(�)

) ‖u+‖L∞(�)

)

for some constantC > 0 depending only on n, s, g, and�. For the second inequality, we also
took advantage of expression (4.7) for uε, property (4.10) for cε, and assumed ε to be suitably
small. Letting ε ↘ 0 in the above inequality, by Fatou’s lemma one gets a Ws,1(�′) bound
for u+ with constant independent of �′. Estimate (4.18) then follows by the arbitrariness
of �′ � �, using again Fatou’s lemma. ��

In order to extend Proposition 4.15 to the case of general exterior data, and thus prove
Theorem 1.8 in its full generality, we will use a particular approximation procedure. The
crucial point is represented by the following observation, which follows essentially from the
fact that H �du(x) can be bounded independently of both u and x—see Remark 2.13.

Lemma 4.16 Let �′ � � ⊆ R
n be bounded open sets, f ∈ C(�), and u be a viscosity

subsolution of H u = f in �, locally integrable in R
n. Let {uk} ⊆ L1

loc(R
n) be a sequence

of functions converging to u in L1
loc(R

n). Define

ūk(x) :=
{
u(x) if x ∈ �,

uk(x) if x ∈ R
n\�,

Then, ūk is a viscosity subsolution ofH ūk = f +ek in�′, for some non-negative constant ek
such that ek → 0 as k → +∞.

Proof We write d := dist(�′, ∂�) > 0 and observe that, for every x ∈ �′,

δg(ūk, x; ξ) = δg(u, x; ξ) for all ξ ∈ Bd . (4.19)

On the other hand, set

ωk(x) := H �d ūk(x) − H �du(x) for every x ∈ �′
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and let R0 > 0 be such that � ⊆ BR0 . Then, for every x ∈ �′ and R � d we have

|ωk(x)| � 2
∫
Rn\Bd (x)

∣∣∣∣G
(
u(x) − ūk(y)

|x − y|
)

− G

(
u(x) − u(y)

|x − y|
)∣∣∣∣ dy

|x − y|n+s

� 2
∫
BR(x)\Bd (x)

|ūk(y) − u(y)|
|x − y|n+1+s

dy + 2�
∫
Rn\BR(x)

dy

|x − y|n+s

� 2

dn+1+s
‖uk − u‖L1(BR+R0 ) + 2�Hn−1(Sn−1)

sRs
,

where for the second inequality we took advantage of (2.11) and (2.9). Hence, setting

ek := inf
R�d

(
2

dn+1+s
‖uk − u‖L1(BR+R0 ) + 2�Hn−1(Sn−1)

sRs

)
,

we obtained that

sup
�′

|ωk | � ek for every k ∈ N. (4.20)

Notice that, as uk → u in L1
loc(R

n) by assumption, it holds

lim sup
k→∞

ek � 2

dn+1+s
lim
k→∞ ‖uk − u‖L1(BR+R0 ) + 2�Hn−1(Sn−1)

sRs
= 2�Hn−1(Sn−1)

sRs
,

for every R � d . Since R can be taken arbitrarily large, it follows that ek → 0.
Let now x0 ∈ �′ and suppose that there exist r ∈ (0, dist(x0, ∂�′)) and v ∈ C1,1(Br (x0))

such that

v(x0) = ūk(x0) = u(x0) and v(x) � ūk(x) = u(x) for all x ∈ Br (x0).

ByProposition 4.3,we then infer thatH u(x0) iswell-defined and satisfiesH u(x0) � f (x0).
Hence, H ūk(x0) is well-defined too and, taking into account (4.19) and (4.20), we get

H ūk(x0) = H <du(x0) + H �d ūk(x0) = H u(x0) + ωk(x0) � f (x0) + ek .

The conclusion of the theorem is then an immediate consequence of Remark 4.1. ��
With this approximation tool at hand, we are ready to tackle Theorem 1.8 in its full

generality.

Proof of Theorem 1.8 We only prove the second (global) statement, as the first (local) one is
then an immediate consequence—to this aim, notice that a viscosity subsolution u is always
locally bounded from above in �, thanks to its upper semicontinuity.

Thus, we assume � ⊆ R
n to be open, bounded, and Lipschitz, and u to be a viscosity

subsolution ofH u = f in�, bounded from above in the whole�. Recalling Definition 1.5,
we only need to prove that, for every open set �′ � � with Lipschitz boundary,

u is a weak subsolution of H u = f in �′ and u+ ∈ Ws(�′). (4.21)

Notice that this would also yield that max{u, k} ∈ Ws(�) for every k ∈ R, thanks to
Proposition 3.1, Fatou’s lemma, and the fact that u is a subsolution bounded from above if
and only if u − k is.

We prove (4.21) in three steps, of increasing degree of generality.
Step 1 We first establish (4.21) under the additional assumption that

u ∈ L∞(Rn). (4.22)
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As u satisfies (4.22), there exists a sequence {uk} ⊆ C(Rn) ∩ L∞(Rn) converging to u
in L1

loc(R
n) and a.e. in R

n . Let now ūk and ek be as in the statement of Lemma 4.16. Notice
that the functions ūk are globally bounded. Moreover, since u is upper semicontinuous in �

and uk is continuous in R
n , the functions ūk are upper semicontinuous in R

n\∂�.
In light of this and of the fact that ∂� has zero Lebesgue measure (being Lipschitz),

we can apply Lemma 4.16 and Proposition 4.15, deducing that ūk is a weak subsolution
of H ūk = f + ek in �′ and that u+|�′ = (ūk)+|�′ ∈ Ws,1(�′). Then, since ūk → u
a.e. in R

n and ek → 0, by Lemma 2.15 we easily deduce that u is a weak subsolution
of H u = f in �′.

This concludes the proof of claim (4.21) under the extra hypothesis (4.22).
Step 2 We now prove (4.21) assuming only that

u ∈ L∞(�). (4.23)

Take k > ‖u‖L∞(�) and set

uk :=

⎧⎪⎨
⎪⎩
k in {u � k},
u in {−k < u < k},
−k in {u � −k}.

Notice that uk coincides with u in � and is thus upper semicontinuous in �. Let x0 ∈ �′
and suppose that uk is touched from above by a C1,1 function at x0. Then, this function also
touches u from above at x0 and, by Proposition 4.3, the quantityH u(x0) is well-defined and
satisfies H u(x0) � f (x0). Clearly, H uk(x0) is also well-defined and we have

H uk(x0) � f (x0) +
∫

{|u|>k}

{
G

(
u(x0) − uk(y)

|x0 − y|
)

− G

(
u(x0) − u(y)

|x0 − y|
)}

dy

|x0 − y|n+s

� f (x0) + �

∫
{|u|>k}

dy

|x0 − y|n+s
,

where the second inequality follows from (2.9). From the boundedness of �′ it is easy to
deduce the existence of a constantC > 0, depending only onn, s, diam(�′), and dist(�′, ∂�),
such that

|x0 − y|−n−s � C(1 + |y|)−n−s for all y ∈ C�.

Observing that {|u| > k} ⊆ C�, we get

H uk(x0) � f (x0) + C�

∫
Rn

χ{|u|>k}(y)
(1 + |y|)n+s

dy =: f (x0) + δk .

Recalling Remark 4.1, uk is a viscosity subsolution ofH uk = f +δk in�′. By dominated
convergence and the fact that χ{|u|>k} → 0 a.e. in R

n , we have that δk ↘ 0 as k → +∞.
As uk ∈ L∞(Rn) and f + δk ∈ C(�), we may apply what we proved in Step 1, obtaining
that uk is a weak subsolution ofH uk = f +δk in�′ such that u+|�′ = (uk)+|�′ ∈ Ws(�′).
By Lemma 2.15 and the fact that uk → u a.e. in R

n , we immediately conclude the validity
of (4.21) under assumption (4.23).

Step 3We now show that (4.21) holds true for a general viscosity subsolution u bounded
from above in �. Note that, up to a partition of unity argument, it suffices to prove (4.21)
for �′ equal to any ball B = B
(x̄) � � of radius 
 > 0 arbitrarily small.
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For k > 0, consider the function ϕk := −k − χB2
(x̄). If 
 ∈ (0, 1) is small enough, ϕk

satisfies

H ϕk � f in B. (4.24)

Indeed, changing variables appropriately and taking advantage of the oddness and mono-
tonicity of G, for every x ∈ B we have

H ϕk(x) = −
∫
CB2
(x̄)

G

(
1

|y − x |
)

dy

|y − x |n+s

� −
−s
∫
B3\B2

G

(
1

|
z − (x − x̄)|
)

dz

|z − (x − x̄)/
|n+s

� −|B3\B2|G(1/4)

4n+s

−s,

which is smaller than −‖ f−‖L∞(�), provided 
 is sufficiently small. Hence, (4.24) holds
true.

Let now ûk := max{u, ϕk}. Clearly, ûk is bounded and upper semicontinuous in B.
Suppose now that ûk is touched from above by aC1,1 function v at some point x ∈ B. Then, v
also touches either u or ϕk from above at x . In both cases, using (4.24), themonotonicity ofG,
and Proposition 4.3, we easily deduce that H ûk(x) � f (x). Accordingly, ûk is a viscosity
subsolution ofH ûk = f in B, bounded in B. By Step 2, ûk is then also a weak subsolution of
the same equation and its positive part belongs toWs(B). As ûk → u a.e. inR

n as k → +∞,
by Lemma 2.15 we conclude that u is a weak subsolution as well. Using Proposition 3.1 and
Fatou’s lemma, we also obtain that u+ ∈ Ws(B).

The proof of Theorem 1.8 is thus complete. ��

5 Existence of minimizers. Proofs of Theorems 1.3 and 1.7

In this section, we deal with the existence of minimizers and local minimizers of F in an
open set, with respect to a given outside datum.

5.1 Existence of minimizers via the direct method

We begin by establishing the existence of minimizers of F in a bounded Lipschitz set �

among all functions which agree with a given function ϕ outside of �. That is, we prove
Theorem 1.3.

As anticipated in the Introduction, we prove the existence of minimizers through an
approximation procedure that makes use of the truncated functionals FM and of their mini-
mizers within an appropriate family of spaces, that we define as follows.

Given a bounded open set � ⊆ R
n and M � 0, we consider the spaces

BWs(�) :=
{
u ∈ Ws(�): u|� ∈ L∞(�)

}

and

BMWs(�) :=
{
u ∈ BWs(�): ‖u‖L∞(�) � M

}
.
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Moreover, given a function ϕ: C� → R, we define

BWs
ϕ(�) :=

{
u ∈ BWs(�): u = ϕ a.e. in C�

}

and

BMWs
ϕ(�) :=

{
u ∈ BMWs(�): u = ϕ a.e. in C�

}
.

Our notion ofminimality for theDirichlet problem havingϕ as outside datum is essentially
that of Definition 1.2. Namely, a function u ∈ Ws

ϕ is a minimizer of F in Ws
ϕ(�) if

∫∫
Q(�)

{
G
(
u(x) − u(y)

|x − y|
)

− G
(

v(x) − v(y)

|x − y|
)}

dx dy

|x − y|n−1+s
� 0,

for every v ∈ Ws
ϕ(�). To obtain Theorem 1.3, we first solve the Dirichlet problem

in BMWs
ϕ(�), for a fixed M > 0. This is achieved easily with the aid of the following

two results.
First, we observe thatFM is lower semicontinuous inBMWs(�)with respect to pointwise

convergence almost everywhere.

Lemma 5.1 Let � ⊆ R
n be an open set and M > 0. Let {uk} ⊆ BMWs(�) be a sequence

of functions converging to some u: Rn → R a.e. in R
n. Then,

FM (u,�) � lim inf
k→∞ FM (uk,�).

Proof The proof is a consequence of Fatou’s lemma, applied separately to the functionalsA
andN M . Notice that, in order to use this result withN M , the uniform bound ‖uk‖L∞(�) � M
is important to guarantee that the quantity inside square brackets in (2.17) is non-negative—
recall that G � 0 by definition (2.6). ��

Next is a compactness result for sequences uniformly bounded with respect to A.

Lemma 5.2 Let � ⊆ R
n be a bounded open set with Lipschitz boundary. Let {uk} be a

sequence of functions uk : � → R satisfying

sup
k∈N

(
‖uk‖L1(�) + A(uk,�)

)
< ∞.

Then, up to a subsequence, {uk} converges to a function u ∈ Ws,1(�) in L1(�) and a.e. in�.

Lemma 5.2 follows at once from the coercivity ofAwith respect to theWs,1(�) seminorm
observed in Lemma 2.3 and the compact embedding Ws,1(�) ↪→↪→ L1(�)—see, e.g., [19,
Theorem 7.1].

By combining these two results, we easily obtain the existence of a (unique)minimizer uM

of FM among all functions inBMWs(�) with fixed values outside of �.

Proposition 5.3 Let� ⊆ R
n be a bounded open set with Lipschitz boundary and ϕ: C� → R

be a given function. For every M > 0, there exists a unique minimizer uM of FM ( ·,�)

in BMWs
ϕ(�), i.e., a unique uM ∈ BMWs

ϕ(�) for which

FM (uM ,�) = inf
{
FM (v,�): v ∈ BMWs

ϕ(�)
}
. (5.1)
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Proof Since BMWs
ϕ(�) is a convex subset of Ws

ϕ(�), the uniqueness of the minimizer
of FM ( ·,�) within BMWs

ϕ(�) is a consequence of the strict convexity of FM ( ·,�)—see
point (ii) of Lemma 2.7. Therefore, we are only left to establish its existence.

Let {u(k)} ⊆ BMWs
ϕ(�) be a minimizing sequence, that is

lim
k→∞FM (u(k), �) = inf

{
FM (v,�): v ∈ BMWs

ϕ(�)
}

=: m.

Observe that both A and N M are non-negative in BMWs
ϕ(�)—recall definitions (2.16)

and (2.17). Hence, m � 0 and A(u(k), �) � FM (u(k), �) � m + 1 for k large enough.
In light of Lemma 5.2, we then deduce that {u(k)} converges (up to a subsequence) to a
function uM ∈ BMWs

ϕ(�) a.e. in R
n . Identity (5.1) follows by applying Lemma 5.1. ��

Proposition 5.3 shows that, for eachM > 0, there exists a uniqueminimizer uM within the
spaceBMWs

ϕ(�). To establish the existence of a minimizer of F in the wholeWs
ϕ(�)—and

thus prove Theorem 1.3—, we need uM to stabilize as M → ∞. This is achieved through
the uniform Ws,1 estimate of Proposition 3.2, at the price of assuming some (weighted)
integrability on the exterior datum in a sufficiently large neighborhood of �.

Proof of Theorem 1.3 Let � > 0 be the constant given by Proposition 3.2. For any M > 0,
the minimizer uM satisfies the hypotheses of Proposition 3.2. Therefore,

‖uM‖Ws,1(�) � C
(∥∥Tails(ϕ,�� diam(�)\�; · )∥∥L1(�)

+ 1
)

, (5.2)

for some constant C > 0 depending only on n, s, g, and �—in particular, C is independent
of M .

By the compact fractional Sobolev embedding (see, e.g., [19, Theorem 7.1]), we conclude
that there exists a function u ∈ Ws

ϕ(�) to which {uMj } converges in L1(�) and a.e. in �, for
some diverging sequence {Mj } j∈N. LettingM = Mj → +∞ in (5.2), by Fatou’s Lemmawe
see that u satisfies (1.14). We are therefore left to show that u is a minimizer forF inWs

ϕ(�).
Take v ∈ BWs

ϕ(�). Then, for j large enough we have Mj � ‖v‖L∞(�), and hence, by
the minimality of uMj we get FMj (uMj ,�) � FMj (v,�). Equivalently,

0 � A(uMj ,�) + 2
∫

�

{∫
�R\�

G
(
uMj (x) − ϕ(y)

|x − y|
)

dy

|x − y|n−1+s

}
dx

− A(v,�) − 2
∫

�

{∫
�R\�

G
(

v(x) − ϕ(y)

|x − y|
)

dy

|x − y|n−1+s

}
dx

+ 2
∫

�

{∫
C�R

{
G
(
uMj (x) − ϕ(y)

|x − y|
)

− G
(

v(x) − ϕ(y)

|x − y|
)}

dy

|x − y|n−1+s

}
dx,

(5.3)

for any fixed R ∈ (0,� diam(�)]. Note that such a choice for R guarantees the finite-
ness of all the quantities appearing in (5.3), taking advantage of the properties of G and of
hypothesis (1.13).

We now claim that letting j → +∞ in (5.3), we obtain the same inequality with uMj

replaced by u. Indeed, the quantities on the first line can be dealt with by using Fatou’s lemma.
Moreover, the Lipschitz character of G—see (2.14)—and the fact that uMj → u in L1(�)

ensure that

lim
j→+∞

∫
�

{∫
C�R

∣∣∣∣G
(
uMj (x) − ϕ(y)

|x − y|
)

− G
(
u(x) − ϕ(y)

|x − y|
)∣∣∣∣ dy

|x − y|n−1+s

}
dx
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� �

2
lim

j→+∞

∫
�

|uMj (x) − u(x)|
(∫

CBR(x)

dy

|x − y|n+s

)
dx

� �Hn−1(Sn−1)

2sRs
lim

j→+∞ ‖uMj − u‖L1(�) = 0.

Hence, the third line passes to the limit as well. All in all, we have proved that u minimizesF
inBWs

ϕ(�). The minimality of u within the larger classWs
ϕ(�) follows from density argu-

ments, using, e.g., Proposition A.1 and Lemma 2.8. See also point (iv) of Remark 2.9.
Finally, the uniqueness of the minimizer follows by point (iii) of Remark 2.9. ��

Remark 5.4 Here are some mostly technical observations on Theorem 1.3 and its proof.

(i) The strategy just displayed is inspired by the one employed in [34] by the second author
to obtain the existence of s-minimal surfaces in general open sets—thus extending [10,
Theorem 3.2] to the case of unbounded or irregular �. However, there is a striking
difference between Theorem 1.3 here and, say, [34, Corollary 1.11]: there, the existence
of a (locally) s-minimal set is obtained under no restriction on the outside datum, whereas
here we need to limit ourselves to data satisfying (1.13).
We believe that it would be interesting to understand whether Theorem 1.3 could be
proved under weaker or even no assumptions on ϕ (obtaining perhaps only a local mini-
mizer of F), or whether, in the geometric case g = gs , the local minimizers constructed
in [34] are necessarily subgraphs inside �∞.

(ii) In light of point (ii) of Remark 2.9, we could have proceeded to directly minimize the
functional FM in Ws

ϕ(�), for some fixed M � 0, instead of considering a family of
approximating problems. This approach works as well, but brings in its own difficul-
ties, first and foremost the fact that the functional FM may assume negative values
in Ws(�)\BMWs(�), as shown by Example 2.5. In addition, we preferred the use of
several FM ’s in order to maintain an analogy with the argument of [34] and keep a
connection with the underlying geometry, as motivated by the results of Sect. 2.3.

(iii) A different strategy to obtain Theorem 1.3—similar to the one employed in [32, Sec-
tion 12]—is to show that the L∞(�) norm, and not the Ws,1(�) norm, of uM stabilizes
for large M . This can be done, depending on the exterior data, using the L∞ estimates
of Sects. 3.2 and 3.3 in place of Proposition 3.2. This approach will be exploited in order
to establish the existence of a solution to the obstacle problem in [4].

(iv) When the exterior datum ϕ satisfies the global integrability condition (1.7), the proof of
Theorem 1.3 can be simplified considerably. Indeed, in this case the functional (1.8) is
well defined in Ws

ϕ(�) and one can minimize it directly, with no need to consider the
approximate minimizers uM or the truncated functionals FM—see Sect. 5.1.1 for the
rigorous arguments.

However, although natural to deal with functional (1.8), condition (1.7) is quite restrictive
on the behavior of ϕ at infinity and does not play any role in the well-posedness of the
operatorH , which corresponds to the first variation of F or FM—recall the end of Sect. 1.1
for a more detailed discussion.

As shown in the following Lemma, the integrability of the restricted tail prescribed
by (1.13) is equivalent to plain integrability of the datum in the exterior neighbor-
hood �� diam(�)\� plus weighted integrability arbitrarily close to the boundary of �.

Lemma 5.5 Let � � O ⊆ R
n be two bounded open sets, with ∂� Lipschitz. Let r ∈

(0, dist(�, ∂O)) and ϕ: C� → R.
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Then, Tails(ϕ,O\�; · ) ∈ L1(�) if and only if ϕ ∈ L1(O\�) and Tails(ϕ,�r\�; · ) ∈
L1(�\�−r ). Moreover,

(i) if ϕ ∈ L1(O\�) ∩ Ws,1(�r\�), then Tails(ϕ,O\�; · ) ∈ L1(�);
(ii) if ϕ ∈ L1(O\�) ∩ L∞(�r\�), then Tailσ (ϕ,O\�; · ) ∈ L1(�) for every σ ∈ (0, 1).

Proof To begin, assume that Tails(ϕ,O\�; · ) ∈ L1(�). Note that |x − y| � diam(O) for
every (x, y) ∈ � × (O\�). Hence,

‖ϕ‖L1(O\�) � diam(O)n+s

|�| ‖Tails(ϕ,O\�; · )‖L1(�) .

Moreover, we clearly have

‖Tails(ϕ,�r\�; · )‖L1(�\�−r )
� ‖Tails(ϕ,O\�; · )‖L1(�)

for every r ∈ (0, dist(�, ∂O)). Accordingly, ϕ ∈ L1(O\�) and Tails(ϕ,�r\�; · ) ∈
L1(�\�−r ).

Next, let ϕ ∈ L1(O\�) be such that Tails(ϕ,�r\�; · ) ∈ L1(�\�−r ) for some r ∈
(0, dist(�, ∂O)). We verify that Tails(ϕ,O\�; · ) ∈ L1(�). Indeed, since |x − y| � r for
every (x, y) ∈ � × O\�r and (x, y) ∈ �−r × �r\�, we have

‖Tails(ϕ,O\�r ; · )‖L1(�) � |�|
rn+s

‖ϕ‖L1(O\�r )
(5.4)

and

‖Tails(ϕ,�r\�; · )‖L1(�−r )
� |�−r |

rn+s
‖ϕ‖L1(�r \�) � |�|

rn+s
‖ϕ‖L1(�r \�).

Therefore,

‖Tails(ϕ,O\�; · )‖L1(�) = ‖Tails(ϕ,O\�r ; · )‖L1(�) + ‖Tails(ϕ,�r\�; · )‖L1(�−r )

+ ‖Tails(ϕ,�r\�; · )‖L1(�\�−r )

� |�|
rn+s

‖ϕ‖L1(O\�) + ‖Tails(ϕ,�r\�; · )‖L1(�\�−r )
< ∞.

We now address point (i). Without loss of generality, we assume r to be small enough
for ∂�r to be Lipschitz. As ϕ ∈ Ws,1(�r\�), Corollary A.3 (applied in the Lipschitz
set �r\�) yields

‖Tails(ϕ,�r\�; · )‖L1(�) � C‖ϕ‖Ws,1(�r \�),

for some constant C > 0. The fact that Tails(ϕ,O\�; · ) ∈ L1(�) follows then from this
and (5.4).

Finally, we deal with point (ii). If ϕ ∈ L∞(�r\�), then

‖Tailσ (ϕ,�r\�; · )‖L1(�) � ‖ϕ‖L∞(�r \�) Perσ (�),

for every σ ∈ (0, 1). Thus, we obtain (ii) by using again (5.4). This concludes the proof. ��

5.1.1 Integrable global tail

We briefly present here an alternative approach to the existence of minimizers of F , valid
when the exterior datum ϕ satisfies the global summability condition (1.7). We begin by
showing that in this situation the functional F is well-defined on Ws

ϕ(�).

123



  136 Page 54 of 72 M. Cozzi, L. Lombardini

Lemma 5.6 Let � ⊆ R
n be a bounded open set with Lipschitz boundary and ϕ: C� → R be

a measurable function satisfying (1.7). Then, F(u) ∈ [0,+∞) for every u ∈ Ws
ϕ(�).

Proof In view of Lemma 2.3, we only need to prove that the nonlocal part N is finite. For
this, by (2.13), the triangle inequality, and Corollary A.3, given any function u ∈ Ws

ϕ(�) we
have

N (u,�) = 2
∫

�

∫
C�

G
(
u(x) − u(y)

|x − y|
)

dx dy

|x − y|n−1+s
� �

∫
�

∫
C�

|u(x) − u(y)|
|x − y|n+s

dx dy

� C
(‖u‖Ws,1(�) + ‖Tails(ϕ, C�; · )‖L1(�)

)
< +∞.

The non-negativity of F is an immediate consequence of its definition. ��
The existence of a unique minimizer can then be obtained via the Direct Method of the

Calculus of Variations.

Proposition 5.7 Let � ⊆ R
n a bounded open set with Lipschitz boundary and ϕ: C� → R

be a measurable function satisfying (1.7). Then, there exists a unique function u ∈ Ws
ϕ(�)

such that

F(u,�) = inf
{
F(v,�): v ∈ Ws

ϕ(�)
}
. (5.5)

Proof First of all, we observe that, by Lemma 5.6, the infimum of F in Ws
ϕ(�) is finite and

non-negative. Now, consider a minimizing sequence uk ∈ Ws
ϕ(�), i.e.,

lim
k→∞F(uk,�) = inf

{
F(v,�): v ∈ Ws

ϕ(�)
}

=: m.

Since the nonlocal part N is non-negative, by (2.19) we have the uniform estimate

[uk]Ws,1(�) � 2

c�

A(uk,�)+cs(�)� 2

c�

F(uk,�) + cs(�) � 2

c�

(m + 1) + cs(�),

(5.6)

for every k large enough. Moreover, arguing as for (3.6) we easily obtain that

‖uk‖L1(�) � C1

(∫
�

∫
�1\�

|uk(x) − uk(y)|
|x − y|n+s

dx dy + ‖Tails(ϕ, C�; · )‖L1(�)

)
, (5.7)

with C1 := diam(�1)
n+s/|�1\�|. Now, we observe that, by (2.13) and Lemma 2.2, it holds∫

�

∫
�1\�

|uk(x) − uk(y)|
|x − y|n+s

dx dy

� 2

�

∫
�

∫
�1\�

{
G
( |uk(x) − uk(y)|

|x − y|
)

+ λ

}
dx dy

|x − y|n−1+s

� 2

�

(
N (uk,�) + λ

Hn−1(Sn−1)

1 − s
|�| diam(�1)

1−s
)

� C2(m + 1),

for some constantC2 > 0 depending only on n, s, g, and�. Note that, for the third inequality
we also took advantage of the non-negativity of A. Adding together (5.6), (5.7), and the last
estimate, we obtain that there exists a constant C3 > 0, depending only on n, s, g, and �,
such that

‖uk‖Ws,1(�) � C3
(
m + 1 + ‖Tails(ϕ, C�; · )‖L1(�)

)
,
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for every k large enough. By the compactness of the embedding of Ws,1(�) into L1(�), we
find that, up to a subsequence, uk converges to some function ũ ∈ Ws,1(�) a.e. in � and
in L1(�). Then, if we define the function u ∈ Ws

ϕ(�) by setting u := ũ in � and u := ϕ

in C�, by Fatou’s Lemma we conclude that

m � F(u,�) � lim inf
k→∞ F(uk,�) = m.

The uniqueness of the minimizer u follows from the strict convexity of the functional F
on Ws

ϕ(�)—which can be proved by arguing as in Lemma 2.7. ��

We stress that a function u ∈ Ws
ϕ(�) which minimizes F in the sense of (5.5) is clearly

also a minimizer in the sense of Definition 1.2. Hence, all the results satisfied by minimizers
apply also tominimizers in the sense of (5.5). This is true in particular for the a priori estimates
of Sect. 3 and for the results on the relationship existing in the geometric framework with
nonlocal minimal graphs, which will be fully explored in Sect. 6.

5.2 Existence of local minimizers via a Perron-type result

We present here a proof of Theorem 1.7, which claims that the existence of local minimizers
of F is equivalent to the existence of an ordered pair of locally bounded weak sub- and
supersolutions of H u = 0.

Proof of Theorem 1.7 Implication (i) ⇒ (ii) is an immediate consequence of Proposition 3.3
and Corollary 2.22. By these results, u is locally bounded in � and weakly solves H u = 0
in �. Hence, we can consider u = u = u.

We now show that (ii)⇒ (i). Let u0 ∈ Ws
loc(�) be the function defined by setting u0|� :=

u+u
2 and u0|C� := ϕ. Consider a regular exhaustion of �, i.e., a sequence {�h} of bounded

open sets with Lipschitz boundaries such that

�h � �h+1 � � and
∞⋃
h=1

�h = �.

We first solve an auxiliary minimization problem in each �h . Set

Mh := max
{
‖u‖L∞(�h), ‖u‖L∞(�h)

}
.

By appropriately modifying the proof of Proposition 5.3, we easily find that there exists a
unique function uh ∈ BMhWs

u0(�h) such that

FMh (uh,�h) = inf
{
FMh (v,�h): v ∈ Ws

u0(�h) and u � v � u a.e. in �h

}
.

We then claim that, up to a subsequence, the functions uh’s converge in L1
loc(�) and

a.e. in � to a function u ∈ Ws
loc(�) such that u = ϕ a.e. in C�. To this aim, we estimate

[uh]Ws,1(�k )
� C

(A(uh,�k) + 1
)

� C
(FMk (uh,�k) + 1

)
,

for every integer h � k and for some constant C > 0 depending only on n, s, g, and �k .
Note that the first inequality follows from Lemma 2.3, while the second one from the non-
negativity of N Mk (uh,�k)—this is an immediate consequence of definition (2.17) and
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the fact that |uh | � Mk a.e. in �k . Now let ũh ∈ Ws
uh (�k) be defined by ũh |�k := u0

and ũh |C�k := uh . By the minimality of uh and Lemma 2.8, we have that

FMk (uh,�k) − FMk (ũh,�k) = FMh (uh,�h) − FMh (ũh,�h) � 0,

for every h � k. Next, using (2.23) to estimate the term N Mk (ũh,�k), we have the bound

FMk (ũh,�k) = A(u0,�k) + N Mk (ũh,�k) � A(u0,�k) + 4�Mk Pers(�k, R
n) =: ck .

Combining these three estimates, we obtain

[uh]Ws,1(�k )
� C(ck + 1),

for every h � k. Since we also have that ‖uh‖L∞(�k ) � Mk , by the compact embedding
of Ws,1(�k) into L1(�k) and a diagonal argument we conclude that the claim holds true.

Weare left to show the localminimality ofu. First,weprove that, given anyopen setO � �

with Lipschitz boundary, u is the unique minimizer of F among all functions v in Ws
u(O)

such that u � v � u a.e. in O. To see this, let � be the smallest integer for which O � ��.
For h � �, define then vh by setting vh |O := v and vh |CO := uh . Observe that vh is a
competitor for uh . Hence, FM� (uh,O) � FM� (vh,O) and, by Lemma 5.1,

FM� (u,O) � lim inf
h→∞ FM� (uh,O) � lim inf

h→∞ FM� (vh,O) = A(v,O) + lim inf
h→∞ N M� (vh,O).

Note that, by the global Lipschitzianity of G, for every (x, y) ∈ O × CO we have
∣∣∣∣2G

(
v(x) − uh(y)

|x − y|
)

− G
(
M� + uh(y)

|x − y|
)

− G
(
M� − uh(y)

|x − y|
)∣∣∣∣ 1

|x − y|n−1+s

� �
|v(x)| + M�

|x − y|n+s � 2�
M�

|x − y|n+s .

As the function on the last line is integrable inO×CO, we may apply Lebesgue’s dominated
convergence theorem and deduce, using representation (2.22), that

lim
h→∞N M� (vh,O) = N M� (v,O).

Accordingly, FM� (u,O) � FM� (v,O). This shows that u has the desired minimality prop-
erties. Its uniqueness is an immediate consequence of the strict convexity of FM� .

Finally, we prove that u is a true local minimizer of F—i.e., not only with respect to
competitors constrained between u and u. Let � = �(n, s) be the positive constant of
Theorem 1.3. For x ∈ � fixed, let 
x := dist(x,∂�)

2�+2 . Since u ∈ Ws
loc(�), by Lemma 5.5

we have that Tails(u, B(1+2�)
x (x)\B
x (x); · ) ∈ L1(B
x (x)). Hence, Theorem 1.3 ensures
the existence of a unique minimizer ũ of F within Ws

u(B
x (x)). Since, by the comparison
principle of Proposition 2.26, we have that u � ũ � u a.e. in R

n , by the uniqueness of u we
conclude that u = ũ a.e. in R

n . In particular, u is a weak solution ofH u = 0 in B
x (x). By
the arbitrariness of x ∈ � and a partition of unity argument, we find that u is a weak solution
ofH u = 0 in the whole �. In light of Corollary 2.22, u is then a local minimizer of F in �.

��

6 Minimizers ofFs versus minimizers of Pers. Proof of Theorem 1.9

We continue here the analysis, started in Sect. 2.3, of the geometric properties enjoyed by the
functional FM

s and of its relation with the s-perimeter. In particular, we prove Theorem 1.9,
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i.e., we show that the nonlocal perimeter decreases under the vertical rearrangement (1.15).
This fact will be a consequence of a rearrangement inequality for a rather general class
of 1-dimensional integral set functions, that we establish in the next subsection.

6.1 A one-dimensional rearrangement inequality

Let K : R → R be a non-negative function. Given twomeasurable sets A, B ⊆ R, we define

IK (A, B) :=
∫
A

∫
B
dμ, where dμ = dμK (x, y) := K (x − y) dx dy, (6.1)

whenever this quantity is finite.
Fix two real numbers α, β and consider two sets A, B ⊆ R satisfying

(−∞, α) ⊆ A and (β,+∞) ⊆ B.

We define the decreasing rearrangement A∗ of A as

A∗ := (−∞, a∗), with a∗ := lim
R→+∞

(∫ R

−R
χA(t) dt − R

)
. (6.2)

Similarly, the increasing rearrangement B∗ of B is given by

B∗ := (b∗,+∞), with b∗ := lim
R→+∞

(
R −

∫ R

−R
χB(t) dt

)
. (6.3)

Notice that, up to a set of vanishing measure—actually, a point—it holds

B∗ = C(CB)∗. (6.4)

The next result shows that the value of IK decreases when its arguments are appropriately
rearranged.

Proposition 6.1 Let A, B ⊆ R be two measurable sets satisfying

(−∞, ¯α] ⊆ A◦ ⊆ A ⊆ (−∞, ᾱ) and [β̄,+∞) ⊆ B◦ ⊆ B ⊆ (
¯
β,+∞),

for some real numbers ¯α < ᾱ and
¯
β < β̄. Let K : R → R be a measurable, non-negative

function and suppose that

IK
(
(−∞, ᾱ), (

¯
β,+∞)

)
< ∞. (6.5)

Then,

IK (A∗, B∗) � IK (A, B). (6.6)

In addition, if K is locally bounded frombelowby positive constants and A = A∗ (or B = B∗)
up to sets ofmeasure zero, then the inequality in (6.6) is strict unless also B = B∗ (or A = A∗)
up to sets of measure zero.

Westrongly believe that,more generally, the strict inequality is valid in (6.6) for all couples
of sets A and B for which at least one of the two does not coincide with its rearrangement.
However, we will not investigate the validity of this stronger statement, as it would not play
any role for our applications to the s-perimeter.
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Proof of Proposition 6.1 First of all, we observe that we can restrict ourselves to assume that A
and B are both open sets. Indeed, if A and B are merely measurable, by the outer regularity
of the Lebesgue measure there exist two sequences of open sets {Ak}, {Bk} with A ⊆ Ak ⊆
(−∞, ᾱ) and B ⊆ Bk ⊆ (

¯
β,+∞) for every k ∈ N, and such that |Ak\A|, |Bk\B| → 0

as k → +∞. Suppose now that (6.6) holds with Ak and Bk respectively in place of A
and B. By this and the fact that, by definitions (6.2)–(6.3), it clearly holds A∗ ⊆ (Ak)∗
and B∗ ⊆ (Bk)

∗ for any k, we deduce that

IK (A∗, B∗) � lim
k→+∞ IK ((Ak)∗, (Bk)

∗) � lim
k→+∞ IK (Ak, Bk) = IK (A, B).

The last identity follows from Lebesgue’s dominated convergence theorem, which can be
used thanks to (6.5). In light of this, it suffices to prove (6.6) when A and B are open sets.

Next, we recall that each open subset of the real line can be written as the union of
countably many disjoint open intervals. In our setting, we have

A =
+∞⋃
k=0

A(k), with A(k) :=
k⋃

i=0

Ai ,

and

B =
+∞⋃
k=0

B(k), with B(k) :=
k⋃
j=0

Bj ,

for two sequences {Ai }, {Bj } of open intervals satisfying Ai1 ∩ Ai2 = ∅ for every i1 �= i2
and Bj1 ∩ Bj2 = ∅ for every j1 �= j2, and such that (−∞, ¯α) ⊆ A0 and (β̄,+∞) ⊆ B0,
Suppose now that (6.6) holds when A and B are the unions of finitely many disjoint open
intervals. In particular, (6.6) is true with A(k) and B(k) in place of A and B, respectively.
Hence,

IK ((A(k))∗, (B(k))∗) � IK (A(k), B(k)) � IK (A, B) (6.7)

for every k ∈ N. On the other hand, it is easy to see that

(−∞, ¯α) ⊆ (A(k−1))∗ ⊆ (A(k))∗ ⊆ A∗ and (β̄,+∞) ⊆ (B(k−1))∗ ⊆ (B(k))∗ ⊆ B∗

for every k ∈ N. Since both |A∗\(A(k))∗| and |B∗\(B(k))∗| go to 0 as k → +∞, Lebesgue’s
monotone convergence theorem yields that

IK (A∗, B∗) = lim
k→+∞ IK ((A(k))∗, (B(k))∗).

The combination of this and (6.7) gives (6.6).
In light of the above considerations, we are left to prove (6.6) when A and B are unions

of finitely many disjoint open intervals. Thus, we fix M, N ∈ N ∪ {0} and assume that

A =
M⋃
i=0

Ai and B =
N⋃
j=0

Bj ,

with

A0 := (−∞, a0) and Ai := (a2i−1, a2i ) for i = 1, . . . , M,

B0 := (b0,+∞) and Bj := (b2 j , b2 j−1) for j = 1, . . . , N ,
(6.8)
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where {ai }2Mi=0, {b j }2Nj=0 ⊆ R are two sets of points satisfying ai−1 < ai and b j < b j−1, for
every i = 1, . . . , 2M and j = 1, . . . , 2N . In this framework, inequality (6.6) takes the form

∑
i=0,...,M
j=0,...,N

∫
Ai

∫
Bj

dμ �
∫
A∗

∫
B∗

dμ. (6.9)

Clearly, when M = N = 0 there is nothing to prove, as it holds A∗ = A and B∗ = B.
In case either M = 0 or N = 0, the verification of (6.9) is also simple. Indeed, suppose
for instance that N = 0 and M � 1. Then, B∗ = B = (b0,+∞) and A∗ = (−∞, a∗)
for some a∗ ∈ R. Up to a set of measure zero we may write A∗ as the union of M + 1
disjoint adjacent intervals {Ci }Mi=0 given by Ci = Ai − āi , for some āi � 0 and for every i .
Accordingly,

∫
A∗

∫
B∗

dμ =
M∑
i=0

∫
Ci

∫ +∞

b0
dμ

=
M∑
i=0

∫
Ai

∫ +∞

b0+āi
dμ �

M∑
i=0

∫
Ai

∫ +∞

b0
dμ =

∫
A

∫
B
dμ, (6.10)

that is (6.9). Note that the second identity follows by adding to both variables of the double
integral the same quantity āi . That is, we applied the change of coordinates x = w − āi , y =
z − āi and got∫
Ci

∫ +∞

b0
dμ=

∫
Ci

∫ +∞

b0
K (x − y) dx dy=

∫
Ai

∫ +∞

b0+āi
K (w − z) dw dz=

∫
Ai

∫ +∞

b0+āi
dμ.

As the case M = 0, N � 1 is completely analogous, we can now address the validity
of (6.9) when M, N � 1. Recalling definitions (6.2)–(6.3), it is immediate to see that

A∗ = (−∞, a∗) , with a∗ = a0 +
M∑

�=1

|A�| = a0 +
M∑

�=1

(a2� − a2�−1)

and

B∗ = (b∗,+∞) , with b∗ = b0 −
N∑

�=1

|Bj | = b0 −
N∑

�=1

(b2�−1 − b2�).

Set

Ci := Ai − āi , with āi :=
i−1∑
�=0

(a2�+1 − a2�) for i = 1, . . . , M and ā0 := 0, (6.11)

Dj := Bj + b̄ j , with b̄ j :=
j−1∑
�=0

(b2� − b2�+1) for j = 1, . . . , N and b̄0 := 0. (6.12)

The families {Ci }Mi=0 and {Dj }Nj=0 are both made up of consecutive open intervals. Moreover,
up to sets of measure zero, we have

A∗ =
M⋃
i=0

Ci and B∗ =
N⋃
j=0

Dj . (6.13)
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Consequently, we can equivalently express (6.9) as

∑
i=0,...,M
j=0,...,N

∫
Ai

∫
Bj

dμ �
∑

i=0,...,M
j=0,...,N

∫
Ci

∫
Dj

dμ. (6.14)

Let j = 1, . . . , N be fixed. We compute∫
A0

∫
Bj

dμ =
∫
C0

∫
Dj−b̄ j

dμ =
∫
C0+b̄ j

∫
Dj

dμ =
∫
(C0+b̄ j)\C0

∫
Dj

dμ +
∫
C0

∫
Dj

dμ.

Notice that the first identity follows from definitions (6.11)–(6.12), the second by applying
to both variables of the double integral a shift of length b̄ j , and the third since C0 ⊆ C0 + b̄ j .
Similarly, ∫

Ai

∫
B0

dμ =
∫
Ci

∫
(D0−āi )\D0

dμ +
∫
Ci

∫
D0

dμ

for every i = 1, . . . , M . Furthermore, by a translation of size b̄ j − āi , we may also write
∫
Ai

∫
Bj

dμ =
∫
Ci+āi

∫
Dj−b̄ j

dμ =
∫
Ci+b̄ j

∫
Dj−āi

dμ

for every i = 1, . . . , M and j = 1, . . . , N . Finally, as A0 = C0 and B0 = D0, we have∫
A0

∫
B0

dμ =
∫
C0

∫
D0

dμ.

Applying the last four identities together with (6.13), formula (6.14) becomes

∑
i=0,...,M
j=0,...,N

∫
Ei; j

∫
Fj;i

dμ �
∫ a∗

a0

∫ b0

b∗
dμ, (6.15)

where we put

E0;0 := {a0}, F0;0 := {b0},
Ei;0 := Ci , F0;i := (D0 − āi ) \D0, for i = 1, . . . , M,

E0; j := (C0 + b̄ j
) \C0, Fj;0 := Dj , for j = 1, . . . , N ,

Ei; j := Ci + b̄ j , Fj;i := Dj − āi , for i = 1, . . . , M, j = 1, . . . , N .

(6.16)

We now claim that

[a0, a∗] × [b∗, b0] ⊆
⋃

i=0,...,M
j=0,...,N

Ei; j × Fj;i . (6.17)

Observe that (6.17) is stronger than (6.15), and therefore that its validity would lead us to the
conclusion of the proof (Fig. 1).

Before showing that (6.17) is true, we make some considerations on the intervals Ei; j ’s
and Fj;i ’s. Given a bounded non-empty interval I ⊆ R, we indicate with �(I ) and r(I ) its
left and right endpoint, respectively. We have that

r(Ei−1; j ) = �(Ei; j ), for i = 1, . . . , M, j = 0, . . . , N , (6.18)

r(Fj;i ) = �(Fj−1;i ), for i = 0, . . . , M, j = 1, . . . , N , (6.19)
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Fig. 1 An example illustrating the validity of (6.17). On the left, we have drawn in solid blue background the
rectangles corresponding to the initial configuration given by the intervals A0 = (−∞, 2), A1 = (3, 6), A2 =
(8, 13), A3 = (16, 17)—on the horizontal axis—and B0 = (−1,+∞), B1 = (−7,−3), B2 = (−12, −8)—
on the vertical axis. The rearranged set A∗ × B∗ = (−∞, 11) × (−9,+∞) is represented in red diagonal
pattern. On the right, we translated the blue rectangles Ai × B j along the direction (1, 1), following the rules
outlined above, to obtain the sets Ei; j × Fi; j . The new configuration covers completely the region shaded in
red (color figure online)

r(EM; j ) � a∗, for j = 0, . . . , N , (6.20)

�(FN ;i ) � b∗, for i = 0, . . . , M . (6.21)

To check (6.18), we recall definitions (6.16), (6.11), (6.8), and notice that

r(Ei−1; j ) = r(Ai−1) − āi−1 + b̄ j = a2i−2 − āi + (a2i−1 − a2i−2) + b̄ j

= �(Ai ) − āi + b̄ j = �(Ei; j )

for every i = 1, . . . , M and j = 0, . . . , N . On the other hand, it holds

r(EM; j ) = r(AM ) − āM + b̄ j = a2M −
M−1∑
�=0

(a2�+1 − a2�) + b̄ j

= a0 +
M∑

�=1

(a2� − a2�−1) + b̄ j � a∗,

which gives (6.20). Items (6.19) and (6.21) follow analogously.
In view of formulas (6.18)–(6.21), we immediately deduce that

[a0, a∗] ⊆
M⋃
i=0

Ei; j for every j = 0, . . . , N (6.22)

and

[b∗, b0] ⊆
N⋃
j=0

Fj;i for every i = 0, . . . , M .

On top of the previous facts, we also claim that

�(Ei; j ) > �(Ei; j−1) for every i = 1, . . . , M, j = 1, . . . , N (6.23)
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and

r(Fj;i ) < r(Fj;i−1) for every i = 1, . . . , M, j = 1, . . . , N . (6.24)

Indeed, for i = 1, . . . , M and j = 1, . . . , N we have

r(Fj;i ) = r(Dj ) − āi = r(Dj ) − āi−1 − (a2i−1 − a2i−2) < r(Dj ) − āi−1 = r(Fj;i−1).

This proves (6.24), while (6.23) can be checked in a similar fashion.
Thanks to the previous remarks, we can now address the proof of (6.17). Let

p = (x, y) ∈ [a0, a∗] × [b∗, b0] (6.25)

and suppose by contradiction that p does not belong to the right-hand side of (6.17). I.e.,

p /∈ Ei; j × Fj;i for every i = 0, . . . , M and j = 0, . . . , N . (6.26)

By virtue of (6.22), in correspondence to every j = 0, . . . , N we can pick an i j ∈ {0, . . . , M}
in such a way that

x ∈ Ei j ; j . (6.27)

We claim that

{i j }Nj=0 is non-increasing. (6.28)

Indeed, suppose that we have constructed the (finite) sequence {i�} up to the index � = j −1,
with j ∈ {1, . . . , N }. Of course, when i j−1 = M we necessarily have i j � i j−1. On the
other hand, if i j−1 � M − 1, using (6.23) and (6.18), we infer that

�(Ei j−1+1; j ) > �(Ei j−1+1; j−1) = r(Ei j−1; j−1) � x .

Hence, also in this case i j falls within the set {0, . . . , i j−1} and (6.28) is established.
Next, by comparing (6.27) and (6.26), we notice that y /∈ ∪N

j=0Fj;i j . This amounts to say
that, for every index j = 0, . . . , N ,

either y < �(Fj;i j ) or y > r(Fj;i j ). (6.29)

We now claim that the latter possibility cannot occur, i.e., that

y < �(Fj;i j ) (6.30)

for every j = 0, . . . , N . Note that (6.30) would lead us to a contradiction. Indeed, by using
it with j = N and in combination with (6.25) and (6.21), we would get

b∗ � y < �(FN ;iN ) � b∗,

which is clearly impossible. Therefore, to finish the proof we are only left to show that (6.30)
holds true for every j = 0, . . . , N . To achieve this, we argue inductively. First, we check
that (6.30) is verified for j = 0. Indeed, by (6.25) and (6.16),

y � b0 = r(F0;i0),

and thus (6.29) yields that y < �(F0;i0)—i.e., (6.30) for j = 0. Secondly, we pick
any j ∈ {1, . . . , N } and assume that (6.30) is valid with j − 1 in place of j . Then, recall-
ing (6.19), (6.28), and possibly (6.24) (applied i j−1 − i j times), we get that

y < �(Fj−1;i j−1) = r(Fj;i j−1) � r(Fj;i j ).
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By comparing this with (6.29), we finally deduce that claim (6.30) holds true. Thus, the proof
of (6.6) is complete.

We now assume the kernel K to satisfy inf I K > 0 for every compact set I ⊆ R and show
that inequality (6.6) is strict when one between A and B coincides with its rearrangement
and the other does not. Without loss of generality, we suppose that B = B∗ = (b0,+∞)

and d := |A�A∗| > 0. We claim that

δ(A, B) := IK (A, B) − IK (A∗, B∗) � c d2, (6.31)

for some constant c > 0 depending only on α, α, β, β, and K .
Thanks to the same approximation procedure considered in the first part of the proof, it

suffices to establish (6.31) in the case when A can be written as

A =
M⋃
i=0

Ai , with A0 = (−∞, a0) and Ai = (a2i−1, a2i ) for i = 1, . . . , M,

for some M ∈ N and α � ai−1 < ai � α for every i = 1, . . . , 2M . Recalling (6.10), we
have that

δ(A, B) =
M∑
i=1

∫ a2i

a2i−1

∫ b0+āi

b0
K (x − y) dx dy �

⎛
⎝ inf[

α−β, α−β
] K
⎞
⎠ M∑

i=1

(a2i − a2i−1) āi ,

(6.32)

with āi as in (6.11).
Consider the indexm := min

{
i ∈ {1, . . . , M}: a2i � a∗

}
. A straightforward computation

gives

|A\A∗| =
M∑

i=m

(
a2i − a2i−1

)− (a∗ − a2m−1
)
+

=
m−1∑
�=0

(
a2�+1 − a2�

)− (a∗ − a2m−1
)
− = |A∗\A|.

Consequently, all these quantities are equal to d/2 and therefore

M∑
i=1

(a2i − a2i−1) āi =
M∑
i=1

(a2i − a2i−1)

i−1∑
�=0

(a2�+1 − a2�)

=
M−1∑
�=0

(a2�+1 − a2�)
M∑

i=�+1

(a2i − a2i−1)

�
m−1∑
�=0

(a2�+1 − a2�)
M∑

i=m

(a2i − a2i−1)

� |A∗\A||A\A∗| = d2

4
.

Claim (6.31) follows from this and (6.32). This concludes the proof of Proposition 6.1. ��
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6.2 Vertical rearrangements and the s-perimeter

We now take advantage of Proposition 6.1 to show that Pers decreases under vertical
rearrangements—that is, we prove Theorem 1.9.

Proof of Theorem 1.9 Given ε > 0, consider the nonlocal perimeter Perεs corresponding to
the truncated kernel K ε(r) := max{r , ε}−n−1−s for r = |Z | and Z ∈ R

n+1. That is, given a
measurable F ⊆ R

n+1 and O ⊆ R
n+1 open, we define

Perεs (F,O) := Lε
s (F ∩ O, CF ∩ O) + Lε

s (F ∩ O, CF\O) + Lε
s (F\O, CF ∩ O),

where, for any two measurable sets A, B ⊆ R
n+1,

Lε
s (A, B) :=

∫
A

∫
B
K ε(|X − Y |) dX dY =

∫
A

∫
B

dX dY

max{|X − Y |, ε}n+1+s
.

Let E be as in the statement of the theorem, wE be the function introduced in (1.15),
and write E� := SwE for the vertical rearrangement of E . Denote with F either the set E
or its rearrangement E�. Observe that, outside of �∞, both sets E and E� coincide with the
subgraph of the same function v : C� → R. Hence,

F\�∞ =
{
(x, t) ∈ (C�) × R: t < v(x)

}
. (6.33)

It is also clear that E� satisfies (1.16). Accordingly,

� × (−∞,−M) ⊆ F ∩ �∞ ⊆ � × (−∞, M). (6.34)

We compute

Perεs (F,�M ) = Lε
s (F ∩ �M , CF ∩ �M )

+ Lε
s (F ∩ �M , CF ∩ (�∞\�M )) + Lε

s (F ∩ �M , CF\�∞)

+ Lε
s (F ∩ (�∞\�M ), CF ∩ �M ) + Lε

s (F\�∞, CF ∩ �M )

= Lε
s (F ∩ �∞, CF ∩ �∞) − Lε

s (F ∩ (�∞\�M ), CF ∩ (�∞\�M ))

+ Lε
s (F ∩ �M , CF\�∞) + Lε

s (F\�∞, CF ∩ �M ).

Observe that all the above terms are finite, thanks to the boundedness of both � and Kε, the
decay of Kε at infinity, and property (6.34). By this identity and again (6.34),

Perεs (E�,�
M ) − Perεs (E,�M ) = Lε

s (E� ∩ �∞, CE� ∩ �∞) − Lε
s (E ∩ �∞, CE ∩ �∞)

+ Lε
s (E� ∩ �M , CE�\�∞) − Lε

s (E ∩ �M , CE\�∞)

+ Lε
s (E�\�∞, CE� ∩ �M ) − Lε

s (E\�∞, CE ∩ �M ).

(6.35)

Set

F(x) :=
{
t ∈ R: (x, t) ∈ F

}
for x ∈ R

n

and

K ε
a (t) := K ε

(√
a2 + t2

)
for a, t ∈ R.

Using the notation of (6.1), by (6.33), (6.34), and Fubini’s theorem, identity (6.35) becomes

Perεs (E�,�
M ) − Perεs (E,�M )
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=
∫

�

∫
�

{
IK ε|x−y|(E�(x), CE�(y)) − IK ε|x−y|(E(x), CE(y))

}
dx dy

+
∫

�

∫
C�

{
IK ε|x−y|(E�(x), CE�(y)) − IK ε|x−y|(E(x), CE(y))

}
dx dy

+
∫
C�

∫
�

{
IK ε|x−y|(E�(x), CE�(y)) − IK ε|x−y|(E(x), CE(y))

}
dx dy.

Recalling the definition of decreasing rearrangement of a subset of the real line introduced
in (6.2), we observe that E(x)∗ = (−∞, wE (x)) = E�(x) for all x ∈ R

n . Also note
that, for every α, β ∈ R, we have IK ε

a
((−∞, α), (β,+∞)) < ∞. Hence, we can apply

Proposition 6.1 and deduce that

IK ε|x−y|(E�(x), CE�(y)) − IK ε|x−y|(E(x), CE(y)) � 0 for a.e. x, y ∈ R
n,

where we also took advantage of property (6.4). Using this inequality in the previous identity,
we get that Perεs (E�,�

M ) � Perεs (E,�M ). Letting ε ↘ 0, we conclude that (1.9) holds true.
To finish the proof, we are left to show that, if Pers(E,�M ) < ∞, then the inequality

in (1.9) is strict unless E = E� up to a negligible set. Indeed, suppose that (1.9) holds as an
identity. By letting ε ↘ 0 in the last two formulas, it is easy to see that

IK|x−y|(E�(x), CE�(y)) − IK|x−y|(E(x), CE(y)) = 0 for a.e. x, y ∈ R
n,

where Ka(t) := (a2+ t2)− n+1+s
2 . But then, since Ka is positive and continuous for every a >

0, the second part of the statement of Proposition 6.1 yields that |E(x)�E�(x)| = 0 for
a.e. x ∈ �—note that we also exploited the fact that CE(y) = CE�(y) for a.e. y ∈ C�,
thanks to (6.33). From this, it follows that |E�E�| = 0. The proof of Theorem 1.9 is thus
complete. ��

7 Proof of Theorem 1.10

We begin by showing the equivalence of (i)–(v), assuming � to be merely an open set.
Implication (i) ⇒ (ii) is an immediate consequence of the first part of Theorem 1.8.
Next, (ii) ⇒ (iii) can be easily deduced from Corollary 2.22.
As for (iii)⇒ (iv), by Proposition 3.3we know that u ∈ L∞

loc(�). Let {�k} be a sequence of
open subsets of�with Lipschitz boundary, such that�k � �k+1 for all k and

⋃
k∈N �k = �.

Let {Mk} be a diverging sequence for which

Mk > ‖u‖L∞(�k ), (7.1)

and consider the cylinders Ok := �k × (−Mk, Mk). We claim that Su is s-minimal in
each Ok . Since Ok ↗ �∞, this would readily give that Su is locally s-minimal in �∞, as
desired.

Let E ⊆ R
n+1 be such that E\Ok = Su\Ok and let wE be the function defined in (1.15).

We can suppose that Pers(E,Ok) < ∞, otherwise there is nothing to prove. By (7.1), we
know that E satisfies (1.16) and hence Theorem 1.9 yields that

Pers(SwE ,Ok) � Pers(E,Ok). (7.2)

Notice that, thanks to Proposition 2.12, we know that wE ∈ BMkWs
u(�k)—recall the ter-

minology introduced at the beginning of Sect. 5. By this, the fact that u ∈ BMkWs(�k)

minimizes Fs in �k , identity (2.28) (with � = �k and M = Mk), and (7.2), we get
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Pers(Su,Ok) � Pers(SwE ,Ok) � Pers(E,Ok).

The arbitrariness of the set E implies that Su is s-minimal in Ok , as claimed.
We now prove that (iv) ⇒ (v). First, by Proposition 3.4 we have that u ∈ L∞

loc(�).
Then, [8, Theorem 1.1] actually yields that u ∈ C∞(�). Hence, given any x ∈ �, we can
find both an interior and an exterior tangent ball to Su at (x, u(x)) ∈ ∂Su ∩ �∞. The Euler–
Lagrange equation satisfied by s-minimal sets—see [10, Theorem 5.1]—and (1.5) then imply
that Hsu(x) = Hs[Su](x, u(x)) = 0.

Finally, implication (v) ⇒ (i) holds thanks to Definition 4.2 and Remark 4.1.
Assume now� to be a bounded open set with Lipschitz boundary. Under this assumption,

Corollary 2.22 ensures that (ii)
′ ⇔ (iii)

′
. Also, (iii)

′ ⇒ (iii) is always trivially verified. To
conclude, observe for instance that, when u ∈ L∞(�), the implication (i) ⇒ (ii)

′
easily

follows from Theorem 1.8.

8 Proof of Theorem 1.11

In this brief section, we establish the validity of Theorem 1.11. This will be a consequence
of the next two propositions.

First, we address the existence and uniqueness of s-minimal graphs. Before heading to
our statement, we make the following observation.

Let� be a bounded open set withC2 boundary and ϕ : R
n → R be ameasurable function,

bounded in BR\� for some R > 0 and such that ϕ = 0 a.e. in C�. In [22] it is proved that
there exists a radius R̃ > 0, depending only on n, s, and �, such that if R � R̃ and E is a
locally s-minimal set in �∞ such that E\�∞ = Sϕ\�∞, then

� × (−∞,−M0) ⊆ E ∩ �∞ ⊆ � × (−∞, M0), (8.1)

with M0 = C
(
R + ‖ϕ‖L∞(BR)

)
for some numerical constant C > 0. Roughly speaking,

this is a global “L∞ estimate” for nonlocal minimal surfaces (not necessarily graphs) in
terms of their (graphical) exterior data, and can be thought of as a geometric counterpart of
our Theorem 1.4. Its validity can be inferred from a careful inspection of the proof of [22,
Lemma 3.2].

With this in hand, we can easily establish the following result.

Proposition 8.1 Let� ⊆ R
n be an open set with boundary of classC2 and such that� ⊆ BR0

for some R0 > 0. There exists a radius R > R0, depending only on n, s, and �, such that the
following holds true. If ϕ: C� → R is a measurable function, bounded in BR\�, then there
exists a unique locally s-minimal set E in�∞ which coincides with the subgraph of ϕ outside
of �∞. The set E is the subgraph Su of a function u: Rn → R with u|� ∈ L∞(�)∩C∞(�).

Proof Let R be larger than the radius R̃ considered earlier and such that �� diam(�) ⊆ BR ,
with � being the maximum between the two constants found in Theorems 1.3 and 1.4.
Note that, thanks to Lemma 5.5(ii), we know that condition (1.13) holds true. Consequently,
Theorem 1.3 yields the existence of a unique minimizer u of Fs in � such that u = ϕ

a.e. in C�. By Theorem 1.4 we have that u ∈ L∞(�), while Theorem 1.10 gives that u is
smooth inside � and that its subgraph Su is locally s-minimal in �∞.

Let now E ⊆ R
n+1 be a locally s-minimal set in�∞ such that E\�∞ = Sϕ\�∞. In view

of our previous remark, E satisfies (8.1) for some M0 > 0. Consequently, we may apply to
it Theorem 1.9 and infer that E is the subgraph of a function v ∈ BM0Ws

ϕ(�). Since, by
Theorem 1.10, v is a minimizer of Fs in �, we conclude that u = v a.e. in R

n . The proof is
thus complete. ��
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To conclude the proof of Theorem1.11, we are only left to deal with the uniform continuity
of the minimizer u in �.

Proposition 8.2 Let � ⊆ R
n be a bounded open set with boundary of class C2 and u be

a minimizer of Fs in �. If u = ϕ in C�, with ϕ: C� → R such that ϕ ∈ C(�r\�) for
some r > 0, then u|� can be extended to a function ū ∈ C(�).

Proof First of all, since u is a minimizer of Fs in �, Theorem 1.10 ensures that u ∈ C∞(�).
To obtain that u is continuous up to the boundary of �, we thus only need to show that

for every x ∈ ∂�, the limit �(x) := lim
��y→x

u(y) exists and is finite. (8.2)

Indeed, if this is the case, then it is easy to see that � ∈ C(∂�) and thus that the extension
of u|� by � defines a continuous function in the whole �.

To prove (8.2), we first observe that u ∈ L∞(�), thanks to Propositions 3.3 and 3.6.
Hence,

�−(x) := lim inf
��y→x

u(y) ∈ R and �+(x) := lim sup
��y→x

u(y) ∈ R,

for every x ∈ ∂�. Claim (8.2) boils down to showing that �−(x) = �+(x).
We argue by contradiction and suppose that �−(x0) < �+(x0) at some x0 ∈ ∂�. Then,

at least one between �−(x0) and �+(x0) is different from ϕ(x0). Without loss of generality,
we assume that �−(x0) < ϕ(x0). By this and the continuity of ϕ, there exists δ > 0 such
that �−(x0) < ϕ(x) for every x ∈ Bδ(x0)\�. Thus, setting X0 := (x0, �−(x0)), we have
that

B
(X0)\�∞ ⊆ Su,
for a small 
 > 0. Also observe that, as a consequence of the definition of �−(x0), we
have X0 ∈ ∂Su . Therefore, we can apply [22, Theorem 5.1], which gives that ∂Su is of

class C1, 1+s
2 in B
(X0), up to taking a smaller 
.

Write Xt := X0 + ten+1. We claim that

Xt ∈ ∂Su and Hs[Su](Xt ) = 0 for every t ∈
[
0,




2

]
. (8.3)

To see that Xt ∈ ∂Su , it suffices to observe that for every � ∈ [�−(x0), �+(x0)], there exists
a sequence of points {yk} ⊆ � converging to x0 and such that u(yk) = � for all k ∈ N. This
last fact can be easily deduced from the continuity of u inside � and the regularity of ∂�.

That Hs[Su](Xt ) = 0 also follows from this and the C1, 1+s
2 regularity of ∂Su in B
(X0),

thanks to [22, Lemma 3.4].
Claim (8.2) is now a consequence of the strong comparison principle. Indeed, using (8.3)

and a suitable change of variables, we get that

0 = Hs[Su](Xt ) − Hs[Su](X0)

= P.V.
∫
Rn+1

χCSu (Xt + Z) − χSu (Xt + Z) − χCSu (X0 + Z) + χSu (X0 + Z)

|Z |n+1+s
d Z

= 2 P.V.
∫
Rn+1

χSu\Su−t (X0 + Z)

|Z |n+1+s
d Z ,

for all t ∈ [0, 
/2]. Since this is impossible, we conclude that (8.2) must hold true and the
proof is thus complete. ��
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Appendix A. A density result and a Hardy-type inequality

We include here a few auxiliary results that have been used throughout the previous sections.
First, we have the following known result about the density of smooth functions in fractional
Sobolev spaces.

Proposition A.1 Let s ∈ (0, 1)and p � 1be such that sp < 1. Let� ⊆ R
n be aboundedopen

set with Lipschitz boundary and u ∈ Ws,p(�). Then, there exists a sequence {uk} ⊆ C∞
c (�)

which converges to u in Ws,p(�). Furthermore, if a � u � b a.e. in � for some −∞ � a �
0 � b � +∞, then we can choose the uk’s in such a way that also a � uk � b in � for
every k ∈ N.

Proof First of all, we observe that it suffices to consider the case of a bounded u, as the
statement in its generality can then be proved easily via truncations. Hence, we assume that

a � u � b a.e. in �, for some a ∈ (−∞, 0] and b ∈ [0,+∞). (A.1)

Secondly, we may further restrict to u’s with support compactly contained in �. Indeed,
suppose that the result holds true for all such functions. Then, given any general u ∈ Ws,p(�),
we take δ > 0 small and define vδ := uχ�−δ—recall (3.19). Clearly, supp(vδ) ⊆ �−δ � �,
and thus we can find uδ ∈ C∞

c (�) such that a � uδ � b in � and ‖vδ − uδ‖Ws,p(�) � δ.
We claim that limδ→0 ‖u − vδ‖Ws,p(�) = 0. To see this, notice that ‖u − vδ‖L p(�) �
‖u‖L∞(�)|�\�−δ| → 0 as δ ↘ 0, thanks to the boundedness � and the Lipschitz regularity
of its boundary. On the other hand,

[u − vδ]pWs,p(�) =
∫

�\�−δ

∫
�\�−δ

|u(x) − u(y)|p
|x − y|n+sp

dx dy

+ 2
∫

�\�−δ

|u(x)|p
(∫

�−δ

dy

|x − y|n+sp

)
dx

�
∫

�\�−δ

∫
�\�−δ

|u(x) − u(y)|p
|x − y|n+sp

dx dy

+ 2‖u‖p
L∞(�)

∫
�\�−δ

∫
�−δ

dx dy

|x − y|n+sp
.

Both summands converge to zero as δ ↘ 0: the first by the continuity of the Lebesgue
integral, the second by [34, Lemma 2.7(i)] and the fact that sp < 1.

We thus take u ∈ Ws,p(�) satisfying (A.1) and supp(u) ⊆ �′ for some open set �′ � �.
We also call u its extension to 0 outside of �—it is easy to see that u ∈ Ws,p(Rn). Let η

be a standard mollifier, i.e., a non-negative function η ∈ C∞
c (Rn) such that supp(η) ⊆ B1
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and ‖η‖L1(Rn) = 1. For ε > 0, define ηε(x) := ε−nη(x/ε) and uε(x) := (u ∗ ηε)(x)
for every x ∈ R

n . We have that uε ∈ C∞
c (Rn), a � uε � b in R

n , and supp(uε) � �,
provided ε � dist(�′, ∂�)/2. It is well-known that uε → u in L p(�) as ε ↘ 0, and
the convergence is actually in Ws,p(�). This is probably well-known too. Nevertheless,
we reproduce here the argument of [26, Lemma 11] for the convenience of the reader. By
Hölder’s inequality, we estimate

[u − uε]pWs,p(�)
�
∫
Rn

∫
Rn

|u(x) − uε(x) − u(y) + uε(y)|p
|x − y|n+sp dx dy

�
∫
Rn

∫
Rn

(∫
B1

|u(x) − u(y) − u(x − εz) + u(y − εz)| η(z) dz

)p dx dy

|x − y|n+sp

� |B1|p−1
∫
B1

η(z)pψε(z) dz,

with

ψε(z) := ‖τεzV − V ‖p
L p(Rn×Rn)

,

V (x, y) := u(x) − u(y)

|x − y| n+sp
p

, and τwV (x, y) := V (x − w, y − w).

Since V ∈ L p(Rn × R
n), by the continuity of translations in L p we have that ψε(z) → 0

as ε ↘ 0, for every z ∈ B1. As |ψε| � 2p[u]Ws,p(Rn) in B1, using Lebesgue’s dominated
convergence theorem we conclude that uε → u in Ws,p(�). ��

Next, we have the following fractional Hardy-type inequality. This inequality is probably
well-known to the expert reader—it is stated for instance in [25], see formula (17) there.
However, since its proof does not seem easily accessible in the literature, we provide a
simple argument based on the fractional Hardy inequality on half-spaces established in [27].

Proposition A.2 Let s ∈ (0, 1) and p � 1 be such that sp < 1. Let � ⊆ R
n be a bounded

open set with Lipschitz boundary. Then, there exists a constant C > 0, depending only
on n, s, p, and �, such that∫

�

|u(x)|p
dist(x, ∂�)sp

dx � C‖u‖p
Ws,p(�) (A.2)

for every u ∈ Ws,p(�).

Proof In light of Proposition A.1, we can restrict ourselves to consider u ∈ C∞
c (�).

Let {B( j)}Nj=1 be a sequence of balls of the form B( j) = Br (x ( j)), with N ∈ N, x ( j) ∈ ∂�,
and r > 0, for which there exist bi-Lipschitz homeomorphisms

Tj : B ′
2 × (−2, 2) −→ 2B( j) := B2r (x

( j))

satisfying

Tj (U2) = 2B( j), with U2 := B ′
2 × (−2, 2),

Tj (U
+
2 ) = � ∩ 2B( j), with U+

2 := B ′
2 × (0, 2),

Tj (U
0
2 ) = ∂� ∩ 2B( j), with U 0

2 := B ′
2 × {0},

and such that ∂� ⊆ ∪N
j=1B

( j). Here, for 
 > 0 we write B ′

 := {x ′ ∈ R

n−1: |x ′| < 

}
.
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Let ε > 0 be such that �\ ∪N
j=1 B( j) � �−ε and set B(0) := �−ε . Clearly,

∫
B(0)

|u(x)|p
d∂�(x)sp

dx � ε−sp
∫
B(0)

|u(x)|p dx � C‖u‖p
L p(�), (A.3)

where d∂�(x) := dist(x, ∂�) for every x ∈ � and, from now on, C denotes any constant
larger than 1, whose value depends at most on n, s, p, and �.

Notice that {B( j)}Nj=0 is an oper cover of � and let {η j }Nj=0 be a smooth partition of unity

on � subordinate to {B( j)}Nj=0. For j = 1, . . . , N , we define v j := η j u ∈ C∞
c (� ∩ B( j)).

Changing variables through Tj , we have∫
�∩B( j)

|v j (x)|p
d∂�(x)sp

dx =
∫
T−1
j (�∩B( j))

|v j (Tj (x̄))|p
d∂�(Tj (x̄))sp

∣∣det DTj (x̄)
∣∣ dx̄ .

Notice that for every x ∈ � ∩ B( j) there exists Dj (x) ∈ ∂� ∩ 2B( j) such that d∂�(x) =∣∣x − Dj (x)
∣∣. Since Tj is bi-Lipschitz and T−1

j (Dj (x)) ∈ B ′
2 × {0}, we have

d∂�(Tj (x̄)) = |Tj (x̄) − Dj (Tj (x̄))| = |Tj (x̄) − Tj (T
−1
j (Dj (Tj (x̄))))|

� C−1|x̄ − T−1
j (Dj (Tj (x̄)))| � C−1 x̄n

for every x̄ ∈ T−1
j (� ∩ B( j)). Accordingly, writing w j := v j ◦ Tj we get

∫
�∩B( j)

|v j (x)|p
d∂�(x)sp

dx � C
∫
U+
2

|w j (x̄))|p
x̄ spn

d x̄ .

Let us observe that w j is supported inside T
−1
j (� ∩ B( j)). We now employ the fractional

Hardy inequality on half-spaces of [27, Theorem 1.1] and deduce that∫
�∩B( j)

|v j (x)|p
d∂�(x)sp

dx � C
∫
R
n+

∫
R
n+

|w j (x̄) − w j (ȳ)|p
|x̄ − ȳ|n+sp

d x̄ d ȳ, (A.4)

where R
n+ = {z ∈ R

n | zn > 0} and it is understood that w j is extended by 0 in R
n+\U+

2 . We
point out that—since T−1

j (B( j)) � U2 and T−1
j (� ∩ B( j)) ⊆ U+

2 —we have

dist
(
T−1
j (� ∩ B( j)), R

n+\U+
2

)
> 0.

Thus, using that w j is supported inside T−1
j (� ∩ B( j)), we estimate

∫
R
n+

∫
R
n+

|w j (x̄) − w j (ȳ)|p
|x̄ − ȳ|n+sp

d x̄ d ȳ �
∫
U+
2

∫
U+
2

|w j (x̄) − w j (ȳ)|p
|x̄ − ȳ|n+sp

d x̄ d ȳ

+ 2
∫
T−1
j (�∩B( j))

(∫
R
n+\U+

2

|w j (x̄)|p
|x̄ − ȳ|n+sp

d ȳ

)
dx̄

�
∫
U+
2

∫
U+
2

|w j (x̄) − w j (ȳ)|p
|x̄ − ȳ|n+sp

d x̄ d ȳ + C‖w j‖p
L p(U+

2 )
.

(A.5)

By combining (A.4) with (A.5) and switching back to the variables in �, we easily find
that∫

�∩B( j)

|v j (x)|p
d∂�(x)sp

dx � C

(∫
�∩2B( j)

∫
�∩2B( j)

|v j (x) − v j (y)|p
|x − y|n+sp

dx dy + ‖v j‖p
L p(�∩2B( j))

)
.
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Recalling that v j = η j u and η j is Lipschitz, a simple computation then leads us to
∫

�∩B( j)

|v j (x)|p
d∂�(x)sp

dx � C‖u‖p
Ws,p(�) for all j = 1, . . . , N .

Estimate (A.2) follows by putting together this with (A.3) and using that {η j } is a partition
of unity. ��

A simple consequence of the previous Hardy inequality is the following estimate, which
actually gives that ‖ · ‖Ws,1(Rn) and ‖ · ‖Ws,1(�) are equivalent norms for the space Ws

0(�)

introduced in (1.11).

Corollary A.3 Let s ∈ (0, 1) and p � 1 be such that sp < 1. Let � ⊆ R
n be a bounded open

set with Lipschitz boundary. Then, there exists a constant C > 0, depending only on n, s, p,
and �, such that ∫

�

(
|u(x)|p

∫
C�

dy

|x − y|n+sp

)
dx � C‖u‖p

Ws,p(�),

for every u ∈ Ws,p(�).

Proof The inequality follows immediately from the estimate
∫
C�

dy

|x − y|n+sp
�
∫
CBdist(x,∂�)

dz

|z|n+sp
= Hn−1(Sn−1)

sp
dist(x, ∂�)−sp,

which holds for every x ∈ �, and Proposition A.2. ��
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