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ABSTRACT
Machine learning algorithms have recently emerged as a tool
to generate force fields which display accuracies approaching
the ones of the ab-initio calculations they are trained on, but
are much faster to compute. The enhanced computational
speed of machine learning force fields results key for modelling
metallic nanoparticles, as their fluxionality and multi-funneled
energy landscape needs to be sampled over long time scales.
In this review, we first formally introduce the most commonly
used machine learning algorithms for force field generation,
briefly outlining their structure and properties. We then
address the core issue of training database selection, reporting
methodologies both already used and yet unused in literature.
We finally report and discuss the recent literature regarding
machine learning force fields to sample the energy landscape
and study the catalytic activity of metallic nanoparticles.
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I. Introduction

Metallic nanoparticles (MNPs) are finite objects, containing up to several
thousands of atoms. Being 0D, MNPs can display a very diverse and
complex configurational space with many local minima, often very close
in energy. [1–3] MNPs’ chemical and physical properties – different from
their single atom or bulk counterparts – depend strongly on the MNPs’
architecture (i.e., their size, shape, chemical composition and chemical
ordering). Therefore, harnessing the full potential of MNPs for practical
applications in catalysis, plasmonics, optics, memory-storage, and biome-
dicine, hinges on the understanding and control of the dependence
between the variety of accessible/available isomers over time and hence
of MNPs’ properties [4–8].

In the past two decades, many efforts have been carried out to sample
the multi-funnelled energy landscape of MNPs, mainly to identify MNPs’
putative global minima. [9] To this end, various sampling methods have
been employed, such as Monte Carlo schemes [10], basin hopping [11–15],
hyperspatial optimization [16], and evolutionary algorithms [17–21] to
name a few.

While prediction from global minimum or archetypical structures may
be helpful in deciphering structure–property relationship, only the accu-
rate estimate of the finite-temperature population of relevant isomer
enables to obtain accurate predictions of the ensemble properties. From
a numerical point of view, molecular dynamics, path sampling [22,23],
metadynamics [24–28], and finite-temperature partition function evalua-
tion approaches [29–33] offer a dramatically effective way to account for
structural changes and fluxional behaviours, and thus to estimate faithful
population distributions. The evaluation of converged results is however
expensive, i.e., it necessitates of thousands if not millions of energy and
force calculations [27,31].

In the recent years, the advent of machine learning (ML) techniques
paved the way towards establishing a novel paradigm in the computational
studies of nanoparticles’ structural and chemophysical properties. Together
with big-data techniques that easily and better characterize nanoparticles’
geometries during simulations [34–36] and experiments [37–39] machine
learning force fields (ML-FFs) represent the most ground-breaking appli-
cation of artificial intelligence models to further the breath and scope of
numerical prediction and design of MNPs.

Machine learning force fields’ (FFs) accuracy is comparable to the one of
the electronic structure methods they are trained on, but their speed can
approach the one of semi-empirical methods. Their use in algorithms to
sample minima and transition states in nanoparticles’ energy landscapes
thus promises to reduce the computational cost of sampling schemes and
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in turn to establish them as routine, comprehensive and exhaustive pro-
cedures that enable to bridge simulations and real systems used in experi-
mental investigations.

The aim of this review is to offer a representative and pedagogical
overview of the state-of-the-art of ML-FFs for MNPs, while also presenting
a discussion on the open questions related to the subject. The review is
organized as follows: in Section II the local atomic environment represen-
tations most commonly employed in ML-FF generation will be discussed
and presented to the reader. In Section III three supervised ML algorithms
for ML-FF generation will be formally introduced and briefly explained:
linear regression, artificial neural networks (ANN), and Gaussian process
regression (GPR). Section IV will discuss the issue of training database
selection, presenting some methods that have been already used in litera-
ture together with algorithms that have not already been used in the field.
Subsequently, Section V will present examples from literature on the
application of ML to the study of nanoparticles, together with figures
extracted from selected works. Finally, the conclusion will summarize the
earlier presented discussion.

II. Descriptors of local atomic environments

A force field establishes a mapping between atomic coordinates and the
corresponding total energy of the system. The construction of a force field
can therefore be framed as a supervised learning problem where the
objective is to find a function that yields a total energy E (and/or forces
Fi) given the coordinates and species of atoms in a system R. The total
energy EðRÞ of the system R can be learnt as a function of the global
coordinates of the system, but this leads to computational costs which scale
non-linearly with the size of the system [40–42]. Therefore, in order to
improve the computational scaling, and to construct force fields which can
be used on systems with arbitrary number of atoms, the total energy EðRÞ
of a system can be approximated as a sum of local energy contributions
�ðρiÞ, each pertaining to an atom i surrounded by its local atomic environ-
ment ρi: [43]

EðRÞ �
X
i2R

�ðρiÞ; (1)

where the local atomic environment ρi refers to a vector or higher-
dimensional object that contains information regarding the positions and
atomic species of atoms contained in a sphere of radius rc centred on atom
i. The approximation of Equation (1) is based on the near-sightedness
principle, i.e. on the fact that forces acting on atoms are not strongly
dependant on the positions and species of atoms very far away. [44] The
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near-sightedness assumption does not hold for interactions which are
inherently long-ranged, i.e. electrostatic interactions; and these have to
be treated separately.

The force vectors Fi can be calculated using the definition:

Fi ¼ � @E
@ri

(2)

where ri is the vector containing the Cartesian coordinates of atom i.
A data set D composed of N input-output pairs D ¼ fRn; Eng,

whichn 2 f1; � � � ;Ng is required for supervised learning problems.
A fraction of such data set is used to train the model (training set Dtr),
and the remaining part to test its accuracy (validation set Dval).

We will now assume the learning problem to be focused on predicting
local energies �ðρiÞ, since total energies and forces can be derived from
local energies (Equations (1,2)). This assumption is made mainly for
educational purposes, as machine learning force fields can be trained
using total energies, forces, or a combination of the two.

In general, a local energy �ðρiÞ of a given atom i is not learned directly as
a function of the atomic Cartesian coordinates. On the contrary, the
coordinates of the atoms in the vicinity of atom i (within a chosen cutoff
rc) are usually first transformed to a vector qi, commonly called
a descriptor, and then a regression model is used to learn the map �ðqiÞ
from the descriptor to the sought local energy function. This procedure is
highly beneficial to the transferability of the generated force field as well as
to the learning speed of the ML algorithm used, provided that the chosen
descriptor possesses some key properties.

A. Descriptor’s properties

A suitable representation of the local environment around an atom is
encoded in a descriptor, which must possess the following key properties.
Firstly, in order to strictly constrain the learned force field to respect
fundamental physical invariances, any descriptor should be invariant
upon rigid translations, rotations and reflections of the local environment,
as well as invariant upon any permutation of atoms of the same chemical
species. Arguably, invariance properties could be learned automatically by
any sufficiently flexible algorithm when provided with enough data. Even
so, their strict imposition through an invariant representation has been
found to be extremely beneficial both for the learning speed and for the
transferability of the force field [45–48]. Secondly, it is fundamental for
a descriptor to be differentiable with respect to the atomic coordinates, as
this is required for an analytic computation of the atomic forces after the
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interpolation of an energy function. Thirdly, a descriptor should contain
enough information to well capture the relevant physics of the system. As
an illustrative example, the total mass of a local atomic environment ρi is
a perfectly invariant function, but can hardly provide enough information
for constructing a useful interaction model. Moreover, it would be desir-
able for a descriptor not only to contain enough information but also to
capture, to some extent, important features of the sought energy or force
function as this will make learning process faster and resulting force field
potentially more accurate. Finally, in addition to all other properties,
a descriptor should also be computationally inexpensive w.r.t. the reference
method (e.g. DFT). Indeed, as an extreme example, the density functional
theory (DFT) force predicted on a given atom fulfils all the conditions
given above while still being a useless descriptor in practice.

The requirements listed above leave a large freedom of choosing a single
descriptor among countless options. For this reason, many local atomic
environment descriptors have been developed and applied to build ML-FFs
[49–51], and in some occurrences such descriptors have been left for
an ML algorithm to learn and optimize [52] In the following two para-
graphs, we focus on the two descriptors that have been used the most for
building atomistic force fields for nanoclusters: atomic symmetry functions
[43] and power spectrum [53]. Afterwards, we will point out the common
features possessed by these successful descriptors. Their remarkable simi-
larity will then naturally bring to the exploration of another class of
descriptors, simply encompassing explicit n-body degrees of freedom,
which have recently been used successfully to build force fields for
nanoclusters [54].

B. Atomic symmetry functions

The first descriptor used in the context of ML-FF fitting consists in a set of
functions of the local environment which are invariant by construction
over the physical symmetries mentioned earlier. These functions are called
atomic symmetry functions (ASF) and, since they were introduced by
Behler and Parrinello in their pioneer work on neural networks force fields
[43], they are also often referred to as Behler-Parrinello functions. ASFs
form a basis set for the expansion of two-body (radial) and three-body
(angular) distribution functions [43]. Over the years, variations on the
structure of ASFs have been developed, e.g. using Chebyshev polynomials
to improve their spatial resolution’s efficiency [55]. A brief description of
their initial formulation [43] follows.

Given a local atomic environment ρi defined by the positions frijgMj¼1 of
M atoms within a cutoff radius rc of a central atom located at the origin of
the reference frame, the 2 and 3-body ASFs take the form, respectively:

ADVANCES IN PHYSICS: X 5



Gi
2 ¼

X
j2ρ

e�ηðrij�rsÞ2 fcðrijÞ (3)

Gi
3 ¼

X
j�k2ρ

21�ζð1þ λ cos θjkÞζ e�ηðr2ijþr2ikþr2jkÞfcðrijÞfcðrikÞfcðrjkÞ: (4)

where fcðrÞ is a cutoff function smoothly approaching zero as rij
approaches the cutoff radius rc. Its presence in the symmetry functions
ensures that the descriptor smoothly varies when atoms transit through the
radial cutoff, thus avoiding any discontinuity in the learned energy or force
function.

Both Gi
2 and Gi

3 depend on some parameters, namely θ2 ¼ ðη; rsÞ and
θ3 ¼ ðη; ζ; λÞ (with λ 2 f�1; 1g), and the descriptor vector qiASF is built by
evaluating these functions (Equations (3,4)) for a large number of these
parameters. The ASF descriptor, therefore, requires a selection of relevant
parameters for the θ2 and θ3; this can be achieved via fingerprint optimiza-
tions as recently discussed by Imbalzano et al. [56].

The function Gi
2 can be seen to provide information about all the

distances from the central atom to its M neighbours. On the other hand,
Gi
3 encompasses information on every triplet of atoms which include the

central atom, meaning that they capture respectively two- and three-body
information about the local environment ρi. It is important to note that
using a two- or three-body descriptor does not limit the generated ML-FF
to be low order, since an arbitrary non-linear function of such a descriptor
will be able to model higher-order interactions as well [57].

The relative simplicity of implementation, the low computation cost,
and perhaps the large body of research demonstrating the effectiveness of
this descriptor, have made it the preferred choice for many practical
applications in nanoparticle science [58–69].

C. Spherical harmonics power spectrum

The power spectrum of a spherical harmonics (SH) expansion is another
popular choice for atomic descriptors. It was first introduced to fit energies
with GPR [53,70], but has later found applications also for ANN FFs
[71,72]. The power spectrum descriptor has been proven to be equivalent
to the widely used ‘Smooth Overlap of Atomic Orbitals’ (SOAP) represen-
tation when using a dot product kernel within GPR. [53]

To build a power spectrum descriptor, it is customary to first write the
local environment as a sum of Gaussian functions, each centred on one of
the M atoms within the local environment ρi defined by the cutoff
radius rc:

6 C. ZENI ET AL.



ρiðrÞ ¼
X
j2ρi

e�ðr�rijÞ2=2σ2 : (5)

Then, the key idea is that of expanding the angular part the above function
in an SH basis fYlmðr̂Þg, in order to easily build a rotationally invariant
descriptor as the power spectrum of this expansion. [53] Since SH can only
retain the angular information of the above function (Equation (5)), the
radial part is expanded in another basis, gnðrÞ. The specific choice of the
radial basis is not crucial to the descriptor, common choices are polyno-
mials or equispaced Gaussian functions. Altogether, the function ρiðrÞ can
hence be formally rewritten as:

ρiðrÞ ¼
X1
n¼0

X1
l¼0

Xl
m¼�l

cinlm gnðrÞYlmðr̂Þ: (6)

The coefficients cinlm of the above SH expansion are not rotationally
invariant. However, the power spectrum of the expansion can easily be
written down in terms of the SH coefficients as:

pinn0l ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2l þ 1
p

Xl
m¼�l

cinlmc
i�
n0lm: (7)

The power spectrum descriptor qiPS is defined as the vector containing the
power spectrum coefficients described above. It is rotationally invariant
and can hence be effectively used to represent atomic environments. The
power spectrum is more expensive to compute than the ASF descriptor,
but it requires the user to choose only the width σ of the Gaussian
functions in Equation (5) and where to truncate the expansion in
Equation (6), instead of the full range of ASF parameters. Recently,
a more efficient variant of the power spectrum descriptor which reduces
its computational cost has been proposed. The interested reader is referred
to Thompson2016 for more detailed information on such variant.

D. Explicit n-body features

In spite of the apparent differences between the mathematical expressions
of the two descriptors discussed above, the power spectrum (Equation (7))
and the ASF representation (Equations (3) and (4)) are very similar at
a fundamental level. Indeed, both can be considered as symmetric repre-
sentations of the two- or three-body information present in the atomic
environment. This is particularly clear in the case of the ASFs (Equation
(4)), which are seen to depend rather explicitly on distances and angles.
The n-body nature of the power spectrum descriptor is instead less obvious
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from its mathematical formulation (Equations (6) and (7)), but it follows
from the analysis reported in Ref [57–73]. later formulated also in Ref
[74].–that the power spectrum is a three-body descriptor, meaning that
any linear regression built on such a descriptor will give rise to a three-
body force field. This fact can be intuitively understood considering that
the Gaussian expansion in Equation (5) is made of contributions coming
from pairs of atoms, and can thus be seen as a two-body descriptor. The
power spectrum is then constructed by mixing rotationally invariant
information coming from pairs of such two-body descriptors (Equation
(7)), making the final descriptor three-body.

It is not a surprising fact that both of the descriptors mentioned so far
(which are indeed among the most used in practical applications) are
constructed using two- and/or three-body features. Low order descriptors
can in fact be expected to capture well the ionic and covalent nature of
chemical bonds, thus representing a rather natural choice. Moreover, while
the absence of any angular information in a two-body descriptor will
always prevent a correct characterization of higher-order interactions, a
three-body descriptor does not present the same problem, meaning that
a nonlinear function of a three-body descriptor (e.g., a neural network or
a Gaussian process model) can in principle capture well also higher-order
interactions.

Building on these ideas, one can think of explicitly using the two- and
three-body degrees of freedom present in a given environment directly as
descriptors. For instance, a two-body descriptor can be simply given by the
unordered set of distances from the central atom to all other atoms within
the configurations,

qi2 ¼ frijgj2ρi ; (8)

while a three-body descriptor can be given by the unordered set of triplets
of distances between a central atom and any two neighbours

qi3 ¼ fðrij; rik; rjkÞgj;k2ρi : (9)

The above descriptors contain by construction the full two- and three-
body information about the local environment. They are moreover com-
putationally efficient, simple to interpret, and do not require any choice of
parameters or truncation approximation. These advantages come at a cost.
Indeed, the requirement that the above sets are unordered is strictly
needed to preserve permutational invariance, and such a condition must
be imposed to the ML algorithm processing the inputs. This can be done
rather straightforwardly when using a Gaussian process regression model
(see Section III C), and in fact, explicit n-body features as the one provided
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above have been extensively used in this framework [57,75,76], also for
building force fields for nanoclusters [54].

III. Machine learning algorithms to generate force fields

The three most commonly used methods to learn the local energy function
�ðqiÞ are linear regression, artificial neural networks and Gaussian process
regression. These methods are schematically compared in Figure 1. In the
following, these three algorithms are briefly presented.

A. Linear regression

A straightforward way to model the local energy function �i is via linear
regression:

�̂ðqiÞ ¼ wTϕðqiÞ; (10)

where w are the weights, �̂ðqiÞ indicates the modelled energy function and
ϕ is a function chosen a priori (e.g. polynomial function, sinusoidal
function, etc.). The weights that minimize the squared error loss L2:

L2 ¼
XNtr

n¼1

jjÊn � Enjj2 (11)

q 1
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Figure 1. Schematic comparison of linear regression, two-layer ANN, and GPR for the local
energy prediction task. The symbols in the figure mirror the ones used in the main text. All
three algorithms have been depicted in a similar manner so to ease the recognition of
parallelisms and differences between the methods. Gaussian processes can be imagined to
be equivalent to a fully connected ANN with a single infinite layer, this analogy has been
proven rigorously in Refs. Neal [77] and Rasmussen [78].
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can be found analytically. In Equation (11), the predicted and real total
energies Ên, En of each system are calculated per Equation (1), and Ntr

indicates the number of training points used. In the linear regression case,
the solution to the learning problem is fast to compute, and the predictions
the model yields are computationally cheap. Despite the simplicity of the
learning model, a variation of this method has been proven to yield
interesting results, for example, in aiding the prediction of adsorption
energies for RhAu nanoparticles. [79,80]

Nonetheless, in most applications, linear regression models lack the
complexity needed to construct an accurate force field.

B. Artificial neural networks

a. Structure ANNs are composed of nodes organized in layers which
connect the input qi to an output �ðqiÞ. Networks with few hidden layers
are called ‘shallow’, whereas the term ‘deep’ is used to indicate networks
with a high number of hidden layers. Nodes are connected by weights w
which are optimized during training, and biases b, also optimized, are
added at every layer of the ANN.

ANNs are universal approximators [81,82], meaning that in the limit of
an infinite hidden layer they can approximate any continuous function to
arbitrary precision. ANNs have recently been used to predict total energies
of MNP [63,71,72], study their thermodynamic stability [62], explore their
phase diagram [63], aid the search for minima structures [60,67,69], and
run molecular dynamics (MD) simulations [59,61,83]. The price to pay for
such flexibility and expressive power is that ANNs are very data-hungry,
and typically require orders of magnitude more training points than linear
regression or GPR methods to reach the desired accuracy. In the specific
case of an ANN with two hidden layers, the prediction for a local energy
�ðqnÞ is given by:

�̂ðqnÞ ¼ ϕ b3 þ
X
j2

wj2
23ϕ bj22 þ

X
j1

wj1j2
12 ϕ bj11 þ

X
i

wij1
01 ðqnÞi

 !" #( )
;

(12)

where ϕ is an activation function (sigmoid, hyperbolic tangent, etc.), the jl
indices run over all nodes of layer l (here l ¼ 1; 2), the wl;l0 ’s are the
weights connecting the nodes of layer l to the nodes of layer l0, bl are the
biases added to the nodes of layer l. The structure of the artificial neural
network just described can be visualzsed in Figure 1 and it is easy to see
how Equation (12) generalizes to networks containing more than two
hidden layers.
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b. Training The training of an ANN consists in the search of weights w
and biases b which minimize a loss function L on a training set containing
Ntr points. Typically, the squared error loss (Equation (11)) is chosen for
regression problems such as energy and/or force fit. The parameter space
fw; bg contains from thousands to millions of parameters, and the opti-
mization task is not trivial as the loss function is highly non-convex,
presenting many local minima. For this reason, non-stochastic gradient
descent on the loss landscape induced by the full training set would be
non-optimal. Therefore, batch training is typically used to introduce sto-
chasticity into the optimization: a subset of training points is selected and
a number of gradient descent steps is taken; this process is then iterated.
Typically, the training process is stopped once the error on the validation
set starts increasing, indicating that the neural network has reached the
point when it is starting to over-fit on the training data.

c. Beyond feed-forward artificial neural networks While only feed-
forward ANNs are covered in this section, a plethora of variations on
neural networks have been developed in recent years: recurrent neural
networks, convolutional neural networks, variational autoencoders, and
generative adversarial networks to name a few. [84] These methods share
the same principles of weight and bias optimization via batch training, but
contain differences (e.g. in layer structure) which substantially modify the
tasks each method excels at. To the authors’ knowledge, there is no existing
literature where beyond-feed-forward neural networks are applied to the
generation of force fields for MNPs specifically, but they have been
employed for other systems [52,85].

C. Gaussian process regression

a. Formalism GPR is a Bayesian technique used for supervised learning
tasks. Typically, GPR can require orders of magnitude less data points than
ANNs to train, which makes it a suitable choice when data is expensive to
generate and/or scarce. Another advantage of GPR techniques is that,
being a fully Bayesian approach to regression, it is possible to estimate
an uncertainty associated to every prediction.

As for the two previously described algorithms, here too the local energy
function is learnt (instead of the total energy), and then summed according
to Equation (1) to obtain the total energy. For educational purposes, in the
following we assume that a database of local energies pertaining to local
atomic environments is available. This is of course not the case in reality,
and the interested reader is referred to Bartók and Csányi 70 and Glielmo
et al. 86 for more details on how a local energy can be learnt using
a database of total energies and forces.
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GPR assumes that outputs are distributed like a Gaussian stochastic
process. Given a training data set containing Ntr local atomic environment
descriptors fqig, i ¼ 1; . . . ;Ntr, and a local energy kernel function kðqi; qjÞ,
the prediction yielded by the trained GPR on a new local atomic environ-
ment descriptor q� is:

�̂ðq�Þ ¼
XNtr

i¼1

kðq�; qiÞαi (13)

where αi are the weights computed during training via a straightforward
matrix inversion. As already mentioned, we can also compute the uncer-
tainty VARðq�Þ associated with a prediction �̂ðq�Þ:

VARðq�Þ ¼ kðq�; q�Þ þ σ2n � kTðK þ Iσ2nÞ�1k; (14)

where k indicates the vector containing the local energy kernel function
evaluated between q� and qi for i ¼ 1; � � � ;Ntr, K is the Gram matrix
containing the kernel function evaluated between every pair of inputs
ðqi; qjÞ, with i; j ¼ 1; � � � ;Ntr, and σn is a hyperparameter that governs

the noise associated with the training data. This uncertainty (Equation
(14)) is such that the error incurred by our GPR when predicting the total
energy �ðq�Þ is expected to be normally distributed with mean zero and

standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðq�Þp

.
It is possible to learn from atomic forces instead of, or in conjunction

with, total energies; this requires the construction of a kernel function for
forces. In order to preserve energy conservation of the force field, such
a force kernel function can be obtained by differentiation of an energy
kernel function:

KFFðqi; qjÞ ¼
@2kðqi; qjÞ
@ri@rTj

; (15)

where ri; rj indicate the Cartesian coordinates of the central atom in the
local atomic environments i and j respectively.

b. The kernel function The structure of the kernel function k is of great
importance in GPR since its properties directly affect the properties of the
force field it generates. The kernel function acts as a similarity function
between pairs of descriptors of local atomic environments ðqi; qjÞ. Kernel
functions also allow for the use of descriptors which do not inherently
posses all the required invariance properties, since these can be imposed
on the kernel function itself. For instance, invariance over the rotations can
be enforced by performing a Haar integration over the Oð3Þ group [47,57],
invariance over translations can be enforced by integrating over R3, [74]
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and invariance over permutations can be enforced by direct sum over the
permutation group 57,76.

Some kernels commonly used in literature for ML-FF generation will
now be described.

The SOAP energy-energy kernel kSOAP can be straightforwardly built
from the power spectrum descriptor derived in Equation (7): the dot
product between normalized power spectrum descriptors of two local
atomic environments (q̂nPS, q̂

m
PS) is elevated to a power to obtain:

kSOAPðqnPS; qmPSÞ ¼ q̂nPS � q̂mPS
� �ζ

(16)

where ζ is a positive integer [53].
The n-body energy-energy kernel for any finite n can be built from the

n-body explicit descriptors (Equation (8,9)) by, for example, taking the
Gaussian difference of the descriptors summed over the relevant permuta-
tion groups and over each dimension of the descriptor. In the case of the
two-body kernel, this results in:

k2ðqn2; qm2 Þ ¼
X
i2ρn

X
j2ρm

e�
ðrni�rmjÞ2

2σ2 ; (17)

where σ is the characteristic lengthscale of the kernel. The three-body
kernel instead reads:

k3ðqn3; qm3 Þ ¼
X
i > j2ρn

X
k> l2ρm

X
P2Pc

e�
kðrni ;rnj ;rijÞT�Pðrmk ;rml ;rklÞTk2

2σ2 ; (18)

where Pc (jPcj ¼ 6) is the set of permutations of three elements.
c. Mapping force fields One of the main drawbacks of GPR FFs is that,

despite being computationally faster than ab-initio methods to evaluate,
they scale linearly with the number of training points, Ntr (see Equation
(13)). This burden can be avoided for a particular sub-class of kernel
functions, and the computational cost of the so-derived mapped force
fields (MFFs) is comparable to classical tabulated force fields. [54] The
constraint that must be imposed on the kernel function in order for the FF
to be mappable is that its order must be finite [57] or, in other words, that
the kernel function is not many-body.

The mapping procedure starts with the identification of the maximum
order of the kernel function used, for example two-body for kernels which
only depend on interatomic distances from central atoms, three-body for
kernels that use angles, four-body for kernels that use torsion angles, and
so on. Subsequently, the local energy prediction made by the GP is
calculated and stored on an array of values. For example, for a two-body
kernel, the bond energy can be calculated and stored on an array of
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distances between 1 Å and the cutoff radius rc. This process yields
a tabulated force field of the same order of the kernel. Predictions during
MD runs can then be obtained by using an interpolator on the stored
values for every pair, triplet, or quadruplet (when using, respectively, 2-, 3-
or four-body kernels) of atoms in the system. This method has been shown
to increase computational speed by a factor 104 with respect to traditional
GPR without incurring in any additional accuracy loss. 54,57 The inter-
ested reader is directed to MFF, a Python package that implements the
above method within the framework of GPR FFs: https://github.com/kcl-
tscm/mff [87].

IV. Database selection

The accuracy of an ML-FF depends on whether the predictions are made
in an extrapolation or interpolation region. Without giving a formal defi-
nition, it can be helpful to think of an interpolation region as that region of
the descriptor space which is ‘close’ to the training database. Generally
speaking, accuracy is higher, and predicted variance (in the case of GPR) is
lower, when predictions are made in an interpolation regime. Therefore, it
is preferable to always work in interpolation and, if possible, detect when
and where the algorithm is extrapolating. Enforcing the force field to work
in an interpolation regime becomes crucial in the case of nanoparticles and
nanoalloys, where the number of competing isomers, even at small sizes, is
very large. Due to this inherent complexity of the configuration landscape,
it would be desirable to include in the initial training set a diverse array of
isomers which yield accurate predictions also on never-seen-before geo-
metries and/or chemical orderings. Two example cases extracted from the
literature may help set this problem into practical scenarios.

In a study on Ni19, it was shown that force prediction error was
substantially lower if training and testing on the same morphology rather
than training and testing on two different MNP morphologies [54].
Furthermore, training on structurally heterogeneous databases was
shown to lead to a balanced trade-off between versatility and overall
accuracy. By the same token, training on low-symmetry or defected struc-
tures, which present very different local atomic environments, resulted in
a more accurate machine learning model. This is caused by the higher
variety of local atomic environments present is low-symmetry morpholo-
gies, which allow the convex hull spanned by the training inputs to
encompass a larger phase space.

In Figure 2 it can be seen how training on low-symmetry structures
(4HCP) yields force fields that are more accurate on a target morphology
w.r.t. training on high-symmetry structures (3HCP, DIH, BIP).
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In the case of a work focusing on AuRh nanoparticles, it was also
reported that regression models predict binding energies of N, O,
C molecules correctly or not depending on the size of the nanoparticles
and surfaces in the training set. [79] Figure 3 shows how training sets
which contained only single-crystal training points incur in high errors
when predicting binding energies on nanoparticles, and vice-versa. On the
other hand, training sets which contain both the nanoparticle and the
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Figure 2. Mean absolute error on the DFT force vector incurred by a three-body GPR
algorithm trained on five isomers of Ni19 and tested on the defected double icosahedron
(dDIH) isomer. Figure adapted with permission from Zeni et al.[54].

Figure 3. Mean absolute errors on the binding energies of O; the Rh1�xAux single crystals and
particles are predicted using DFT data of single-crystal surfaces, small clusters, or both; using
cutoff radii of (a) 6 and (b) 8 Å. Figure reprinted with permission from Jinnouchi and Asahi
[79] . Copyright (2017) American Chemical Society.

ADVANCES IN PHYSICS: X 15



single-crystal morphologies consistently incur in low binding energy mean
absolute errors for MNPs ranging from diameter 0.5 nm to bulk.

A diverse set of strategies has therefore been developed in the machine
learning community to build non-biased and automatically comprehensive
training databases. These databases must be such that the machine learning
force field generates predictions in an interpolation regime for the study of
interest, andmust assure that redundant, costly, information is not gathered for
small regions of the phase space with respect to the investigation of interest.

Training database selection algorithms can be broadly classified into two
categories: either the database needs to be generated ad-hoc (active learning),
or it must be sub-sampled from a larger, already existent database (sparsifica-
tion). In the following sections, we introduce the aforementioned concepts
and extract some examples from literature to better inform the reader.

A. Active learning

If there is no sufficient pre-existent ab-initio training database for the task
of interest, one convenient way to minimize the computational effort in
building it is active learning. Active learning indicates a framework where
the ML algorithm is iteratively trained on structures where the algorithm’s
predictions are deemed uncertain. If this is the case, forces and energies are
computed with ab-initio methods on the structures where the ML predic-
tions were not accurate enough, and finally inserted into the training
database. While GPR can naturally return a predicted variance (Equation
(14)), in the case of ANNs an uncertainty estimate can be obtained as the
variance of the predictions made by multiple ANNs trained for the same
task [58,88].

An example use of this approach can be found in conjunction with
a genetic algorithm and a basin-hopping scheme in Jennings et al. [89].
Here, ML-FFs are used as a computationally inexpensive energy predictor
so to fast-screen for energetically relevant isomers and thus facilitating the
quick convergence of the optimization algorithms driving the energetic
landscape exploration as well as the surrogate machine learning model
training.

In a similar fashion, surrogate machine learning force fields can be also
used to first quickly explore energetically relevant portions of the confor-
mational space and rearrangement pathways via molecular dynamics and
gather diverse ensembles of nanoparticle structures for which electronic
structure calculations are executed. These are then fed as novel energy and
force training points to the machine learning model in an iterative fashion
until convergence of the model in the region of interest [64,67].
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B. Database sparsification

If a database which is considered comprehensive for the system of interest
is available, it can be useful to sub-sample a smaller training set from the
full dataset, in order to reduce the computational cost of training and using
an ML algorithm. This is especially beneficial in the case of GPR, where the
training computational cost scales as OðN3

trÞ and the prediction cost scales
with OðNtrÞ, where Ntr is the number of training points. Many database
sparsification methods exist, but up to now, only a few applications relative
to the construction of ML-FFs can be found in the literature. Nonetheless,
we will briefly present some database sparsification methods for ML-FFs,
namely: farthest point sampling, measured error sampling, CUR decom-
position, and descriptor-space sampling.

a. Farthest point sampling Farthest point sampling (FPS) is a database
selection method where points are iteratively added to a training set based
on their distance, according to a pre-selected metric, from the points
already present in the training set. At each iteration, distances between
the points inside and the points outside of the training set are computed,
and the point furthest away from the training set, according to the chosen
distance metric, is included. The computational cost of this method is
OðNtr � NÞ, where N is the total size of the database to sub-sample from.
FPS sampling has been employed in literature to reduce training set size
for Gaussian Process regression methods [90,91]. While using GPR, pre-
dicted variance can be used instead of distance from training set as a way
to measure diversity. In this framework, points are iteratively added to the
training set based on the value yielded by Equation (14).

b. Measured error sampling Another class of iterative methods, which
can be used independently of the ML framework employed, is based on the
measured error incurred by the ML algorithm. The starting training
database contains a small number of randomly sampled data points, and
is then progressively expanded by inclusion of data points on which the
measured incurred error is maximum. This method should be effective in
reducing the maximum error incurred on the global database at the cost of
an increased computational complexity w.r.t. other similar methods,
e.g. FPS.

c. CUR decomposition CUR decomposition is a matrix-approximation
technique that decomposes a matrix A into a product of three matrices C,
U, R. [92] The method is similar to a low-rank single value decomposition
approximation, but is built so that C is composed of columns of the
original A, and R from rows of the same A. CUR decomposition can be
applied to GPR by first building the Gram matrix K between all the points
in the full dataset, and then reducing its rank by selecting the N columns
(or rows) that compose C (or R). The method has a computational scaling
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of OðN2Þ; this can be reduced by subdividing the entire datasets into
batches of size Nbatch � N, thus introducing an approximation but redu-
cing the scaling to OðN2

batch � BÞ where B is the number of batches. Note
that this method is not only helpful in identifying a sparse but informa-
tion-rich database, but also in determining non-redundant sets of descrip-
tors [56].

d. Descriptor-space sampling The following sampling method is inspired
by the database sparsification algorithm used in Bernstein, Csányi, and
Deringer [93], but more general in its formulation. First, a physical
descriptor must be chosen, e.g. distance from, or angle w.r.t., the central
atom of local atomic environments. Secondly, a set of discrete bins span-
ning the possible values the chosen descriptor can take must be built (e.g.
a 1-D histogram containing distances from 1.5 Å to 5 Å binned every 0.05
Å). Local atomic environments in the total database are then shuffled and
accepted into the training set if they contain at least one occurrence of
a binned descriptor’s value which is not already present in the training data
set. This simple method assures that the final training set contains envir-
onments which are as diverse at possible in the descriptor’s space. This
method is very computationally efficient, as only a single pass over the
database is required.

Figure 4 shows a comparison of the mean absolute error on force
vectors of three of the aforementioned sampling methods when building
an ML-FF using GPR on a database containing a total of 13,000 (PtCu)13
structures, it is evident how descriptor-space sampling is the best perform-
ing algorithm for this system. For tests done with the measured error,
predicted variance and CUR database selection methods, the total database
was subdivided into batches and training sets were built by grouping the
points selected in each of these batches. This was done in order to reduce
the computational cost of such methods. It is interesting to note how, for

Figure 4. Log mean absolute error on force vectors incurred by a two-body (left) and a three-
body (right) GPR algorithm as a function of the log number of training points Ntr when trained
and tested on a total database of (PtCu)13 local atomic environments, with N = 13,000. The
training points have been selected according to the three algorithms described above, and
also with random sampling. The black-dashed line indicates an estimate of the convergence
error, obtained by training the algorithm on 2000 randomly selected training points. The error
bars display the standard deviation of the error, obtained by repeating the process five times.
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this particular system, GPR algorithms trained using databases selected by
methods other than descriptor-space sampling incur in errors similar to
the ones yielded by randomly chosen training datasets. Such poor perfor-
mance could be caused by the batch approximation used. In any case, the
descriptor-space sampling method has a better scaling than any other
method presented, is overall faster to compute even on small datasets,
and shows a good performance on the analysed dataset.

V. Applications of ML-FFs for metallic nanoparticles

After having introduced the formalisms behind the machine learning
algorithms for generating fast and accurate energy predictions, we focus
on their applications to understand structural properties of metallic nano-
particles. This section is divided into two parts. The first subsection reports
applications where ML-FFs were used to supplement or substitute ab initio
calculations for energy calculations, e.g. for global minima structure search
or estimations and mapping of activation energies. The second subsection
focuses on applications of ML-FFs to finite-temperature simulations over
several tens of ns, carried out, e.g. to estimate phase diagrams and/or
thermal properties of metallic nanoparticles.

A. ML-FFs for energy calculations

Machine learning force fields can be used as a surrogate for DFT when
exploring the configurational space of nanoparticles. These ML-FFs must
exhibit good accuracy especially when predicting energies, and can be
trained either a priori or on-the-fly, depending on the size of the available
database. In this section, we briefly resume the state-of-the-art on energy
prediction yielded by ML-FFs to sample local minima, including chemical
re-ordering, and to estimate adsorption energies.

a. Monometallic nanoparticles The first application of machine learning
to speed up the sampling of monometallic nanoparticles’ energetic land-
scape consisted in the use of an ANN employing ASFs (Equations (3,4)) as
descriptors to search for global minima of gold nanoclusters within the
basin-hopping method by Ouyang, Xie and Jiang. A new putative global
minimum which has a core-shell structure of Au10@Au48 and C4 symme-
try was found, highlighting the benefit of comprehensive and fast explora-
tion powered by neural network force fields [65].

Subsequently, Zhai and Alexandrova employed a GPU accelerated ANN
for sampling the potential energy surface of Pt9 and Pt13. The authors used
a four-body descriptor as input to the ANN, and carried out global minima
searches where the ML-FF was used to complement the DFT calculations
and speed up the process. Finite-temperature effects were also included
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a posteriori to probe the population distributions of such systems. This
comprehensive study showed that the ensemble-averaged vertical ioniza-
tion potential of the sytems under investigation changes when temperature
increases, and that the catalytic property under operando conditions can be
different from that evaluated at the global minimum structure. [94]

More recently, Sun and Sautet presented an application of a genetic
algorithm coupled with a high-dimensional neural network potential using
ASFs as descriptors to accelerate the comprehensive search for low-energy
metastable structures of Pt13 under different H pressures. The presence and
influence of these Pt13 structures during catalysis were discussed for
hydrogen evolution reaction and methane activation. Although the ensem-
ble of accessible metastable structures is relatively small under reaction
condition, these structures can strongly influence the experimentally
observed activity[68]. Figure 5 reports the lowest energy isomers found
for Pt13 in the presence of H, together with the thermodynamic stability
diagram of Pt13Hx clusters.

The same year, Kolsbjerg et al. looked at putative global minimum
structures for Pt13 on a MgO support. The authors used an on-the-fly
trained ANN force field to relax structures to local minima during evolu-
tionary algorithm searches; here, ASFs were the descriptors of choice. The
computational speed-up inherent to the framework most importantly
enabled the screening of hundreds of kinetic rearrangement pathways
connecting different low-energy conformers [67]. Figure 6 is shown to
highlight the decrease in the number of ab-initio calculations performed
thanks to the use of an ANN during the minima structure search.

b. Nanoalloys The computational speed-up offered by ML-FFs to global
minima search is key in the study of nanoalloys, as the extra degree of
freedom given by the number of possible homotops increases the dimen-
sionality of the space that has to be explored.

Figure 5. (a), (b), (c) Relative energies (eV) of the 20 Pt13H18 isomers in the low energy
metastable ensemble (zero represents the energy of the global minimum) and structures of
the three most stable ones. Grey spheres indicate Pt atoms while red ones indicate H atoms.
(d) Thermodynamics stability of Pt13Hx clusters (x = 0, 18, 26) as a function of temperature
and hydrogen pressure. Figure adapted with permission from Sun and Sautet [68] . Copyright
(2018) American Chemical Society.

20 C. ZENI ET AL.



Jennings and co-workers employed GPR force fields using a built-for-
purpose local atomic environment descriptor to search for stable, compo-
sitionally variant, geometrically similar PtAu nanoalloys. The machine
learning approach yielded a 50-fold reduction in the number of required
energy calculations compared to a traditional brute force genetic algo-
rithm. [89] Figure 7 shows how the ML-based genetic algorithm was able
to faithfully reproduce the convex hull for the excess energy of a (PtAu)147
nanoparticle (left) while reducing by orders of magnitude the number of
energy calculations required (right).

Figure 6. (a) The atomistic model of a Pt3Ag3 nanoparticle supported on a Pt(111). Ag and Pt
atoms colored green and blue, respectively, the slab Pt atoms are white. (b) (c) The success
rate of locating the global minimum as a function of the number of candidates evaluated and
the number of needed parent calculations, respectively. (d) Graph highlighting the significant
reduction in the average parent calculations needed. Figure reprinted with permission from
Kolsbjerg, Peterson, and Hammer [67] . Copyright 2018 by the American Physical Society.

Figure 7. (a) Excess energy of a (PtAu)147 nanoparticle as a function of its chemical composi-
tion, located with an ML-accelerated genetic algorithm employing effective-medium theory
calculations. (b) Number of energy calculations as a function of the nanoparticle’s composi-
tion. The four lines correspond to traditional genetic algorithms (GA), machine learning
accelerated GA (MLaGA), serialized MLaGA and MLaGA utilizing uncertainty (uMLaGA); aver-
age and standard deviation over five searches are shown. Figure reprinted with permission
from Jennings et al.[89].
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One of the latest applications of machine learning force fields for
nanoalloys involved the study of a trimetallic system, Cu–Pd–Ag. The
fast and accurate ANN force field, powered by a stratified training scheme,
was used to define a force field which, together with multi-tribe evolu-
tionary searches, improved the efficiency in identifying stable elemental
(30–80 atoms), binary (50, 55, and 80 atoms), and ternary (50, 55, and 80
atoms) Cu–Pd–Ag clusters. The best candidate structures identified with
the neural network model, which used ASFs as local atomic environment
descriptor, were showcased to have consistently lower energy at the density
functional theory level compared with those found with searches employ-
ing an initial layer of inter-atomic potentials search [69].

c. Nanocatalysts Machine learning energy predictions not only aid the
search for the ensemble of energetically relevant nanoparticles’ isomers but
also greatly enhance the scope for high throughput probing of active sites
properties for catalytic reactions.

One of the first applications of machine learning algorithms to speed up
the high throughput characterization of the adsoprtion properties of avail-
able sites in a nanoparticle was developed by Ulissi et al. Active sites for
every stable low-index facet of a NiGa bimetallic crystal were enumerated
and catalogued while the activity of these sites with respect to CO2

adsorption was explored using a neural network-based surrogate model.
This approach, which used ASFs as the local atomic environment descrip-
tor of choice, reduced the number of explicit DFT calculations required for
activity estimates by an order of magnitude. While most facets had similar
activity to Ni surfaces, a few exposed Ni sites showed a very favourable on-
top CO configuration [64]. Figure 8 reports the training scheme adopted in
their work, along with a scatter plot displaying the increasing accuracy of
the ANN model for the CO adsorption energies.

Jinnouchi et al. used linear regression in conjunction with the SOAP
similarity function (Equation (17)) to interrogate catalytic activities for the
direct NO decomposition on RhAu alloy nanoparticles. The employed
method efficiently and accurately predicted the energetics of catalytic
reactions on nanoparticles while providing information on structure–prop-
erty relationships when combined with kinetic analysis [79].

The same authors later predicted the binding energies of N, O, and NO
with RhAu surfaces and particles using the same approach. Kinetic ana-
lyses of the direct decomposition of NO on RhAu nanoparticles were
carried on to demonstrate that catalytic activity increases with a decrease
in the particle diameter to 2.0 nm. Below a diameter of 1.5 nm, a drop in
the catalytic activity is registered and rationalized in terms of the disap-
pearance of active-alloyed corner sites on the small nanoparticles [80].

AuCu nanoalloys’ adsorption properties have also been investigated, as
reported by Jäger et al. Potential energy scans of hydrogen on AuCu
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clusters and on MoS2 surfaces were conducted to compare and assess the
accuracy of the Smooth Overlap of Atomic Positions, Many-Body Tensor
Representation [95], Couloumb matrix [96] and Atom-Centered Symmetry
Functions in a kernel ridge regression framework. [97]

B. ML-FFs for finite-temperature simulations

Beyond sampling local minima in the energetic landscape of MNPs, MD-
based studies of kinetic rearrangements and thermodynamic stability of
MNPs are also of great interest. [1] With this in mind, employing ML-FFs
to run fast MD simulations becomes more and more enticing. At the
nanoscale, this allows to predict the dynamical and thermodynamical

Figure 8. (a) Scheme used for training and use of the model. New training data is acquired via
DFT single-point calculations. (b) Scatter plot for three iterations of the convergence system,
starting from very poor predictions and converging to more accurate predictions of adsorp-
tion energy. (c) Convergence of the accuracy of the CO adsorption energies with respect to
the training set size. Points possess some inherent noise due to the stochastic nature of the
neural network training algorithms. Figure adapted with permission from Ulissi et al. [64].
Copyright (2017) American Chemical Society.
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properties of MNPs. In this section, we discuss the state-of-the-art of ML-
FFs for MD simulations of MNPs and nanoalloys.

a. Monometallic nanoparticles Artrith et al. investigated the structural
and energetic properties of copper clusters when supported on zinc oxide
in the first-ever application of neural network force fields for metallic
nanoparticles. In their seminal work, the authors assess the accuracy of
ANN potentials employing the ASF descriptors. The manuscript builds on
top of a previous paper by Artrith and Behler where a defected Cu surface
was used as a benchmark for ANN force fields [58] providing an estima-
tion of the accuracy and speed possible when using ML-FFs for metallic
nanoparticles. The training of heterogeneous ensembles of structures was
demonstrated to be transferable to complex large-scale simulations of
several defected stepped surfaces and nanoparticles, such as the one dis-
played in Figure 9.[59]

ANN force fields developed in the group of Bulusu, which used the ASF
descriptor, were employed to sample local and global minima in the
potential energy surface of Na nanoparticles of size 16–40, where transi-
tions were also thoroughly probed using a Monte Carlo scheme. The
accuracy of the force field, and the timescale probed, allowed to establish

Figure 9. (a) Bottom-view of a snapshot of an MD simulation at 1000 K of a Cu612 cluster at
the ZnO(1010) surface; five copper atoms have been selected to compare the ANN-predicted
forces with the DFT forces (in d). (b) Side view of the cluster. (c) A top view of the ZnO(1010)
surface is shown. Five oxygen and five zinc atoms have been chosen for a closer investigation
of the forces (in (d)). (d) Comparison of the force modulus of two DFT force evaluations using
atoms within 6 Å and 9 Å from the central one, and the neural network force field on the
whole slab for the atoms highlighted in (a) and (c). Figure adapted with permission from
Artrith, Hiller, and Behler [59] . Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim.
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the presence of a characteristic premelting peak in the heat capacity curve,
preceding a main melting peak, for clusters in the 20–40 atoms size range,
[62], corroborating the observations of stepwise melting in small Na
clusters first reported by Aguado and coworkers [98].

The same group later studied Au nanoclusters’ energetic and thermody-
namic properties. ANN force fields were employed to probe the potential
energy landscape and thermodynamical behaviour of Au17, Au34, Au58. Here
too, ASFs were the local atomic descriptors of choice to generate inputs for the
ANN. Canonical and microcanonical molecular dynamics sampling was per-
formed for a total simulation time of around 3 ns for each nanoparticle. The
study used such data to demonstrate the presence of a dynamical coexistence
of solid-like and liquid-like phases near melting transition. The investigation
further encompassed the estimation of the probability at finite temperatures
for a set of isomers lying less than 0.5 eV from the global minimum structure.
For Au34, in particular, the global minimum structure resulted far from being
the most dominant structure, even at low temperatures. [63]

Later, ANN force fields trained by first-principles density functional
theory total energies were applied to search for global minima of gold
nanoclusters within the basin-hopping method. In this case, the same
authors decided to employ a descriptor based on the spherical harmonics
expansion (Equation (6)), reporting its increased efficiency w.r.t. ASFs.
A study on the fluxionality in Au147 was performed, and it was concluded
that the system presents a dynamic surface. Such observation was con-
cluded to be highly relevant in understanding reaction dynamics catalysed
by Au nanoparticles. The putative global minimum of Au147 found by the
authors using an ANN force field is reported in Figure 10, alongside the
perfect icosahedron structure. [71]

Figure 10. (a) Geometry of an Au147 icosahedron. (b) Geometry of the putative ground
minimum for Au147 found using an ANN force field. Figure (b) is colour coded so to highlight
the three shells of Au atoms. Figure reprinted from Jindal, Chiriki, and Bulusu [71], with the
permission of AIP Publishing.
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The use of Gaussian process regression with 2-body, 3-body, and many-
body descriptors (Equations (8,9)) and kernel functions (Equations
(18,19)) was instead reported for the first time by Zeni et al., which
modelled interatomic forces in Ni19 nanoclusters. Thermodynamical prop-
erties as the melting point were probed thoroughly as the cost of the
simulations carried out was 100,000 times lower than DFT calculations.
Fluxionality at temperature below melting was observed along such time-
scales[54].

b. Nanoalloys Also for the case of nanoalloys, machine learning force
fields represent a highly helpful technology enabling thorough assessment
of energetic and thermodynamic properties.

The first application of neural networks to build force fields of nanoal-
loys was carried on by Arthrith and Behler. They employed shallow
artificial neural networks with Behler-Parrinello symmetry function
descriptors (Equation (4)) for the prediction of the composition and
atomic ordering equilibrium architecture of AuCu alloy nanoparticles.
Site-based Monte Carlo simulations were used to sample the composition
space while molecular dynamics simulations simultaneously enabled to
sample the structure space. An extensive set of equilibrium properties for
many temperatures and chemical potentials were thus assessed. Consistent
with previous studies, the most stable structures were found to exhibit
Cu(core)Au(shell) configurations. Temperature-dependent favourable
alloy arrangement was also observed, with enhanced Au concentration at
the particle core for increasing temperatures. [61]

Other alloys of Au were investigated by the groups of Bulusu, by means
of neural network force fields with ASF as descriptors to predict global
minimum structures of (AgAu)55 nanoalloys across different compositions.
Pure Au and Au rich compositions minima resulted lower in energy
compared to previous reports. Thermodynamical and energetic properties
were also thoroughly assessed (c-T phase diagram, surface area, surface
charge, probability of isomers, and Landau free energies) to rationalize the
enhancement of the catalytic property of AgAu nanoalloys by incorpora-
tion of Ag up to 24 by composition in AgAu nanoparticles. This result was
found to match previous experimental data. [66] The development of novel
methods for fast and accurate force and energy calculations is of even
greater importance for the study of nanoparticles in conditions closer to
the operando one.

High-dimensional neural network force fields using the ASFs were also
incorporated with Monte Carlo and MD simulations by Kang et al. to
identify not only active but also electrochemically stable PtNiCu nanoca-
talysts for oxygen reduction reaction in acidic solution. The computation-
ally efficient and precise approach proposed a promising oxygen reduction
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reaction candidate: a 2.6 nm diameter icosahedron comprising a 60% of Pt
and a remaining equal mixture of Ni and Cu. [83]

VI. Conclusions

In this review, we showcase how machine learning force fields offer the
possibility to predict energies and forces with accuracy close to ab-initio
methods, but at a much lower computational cost. The approaches to
building machine learning force fields are multiple, and this review pre-
sents the major algorithms used so far in literature: linear regression,
artificial neural networks and Gaussian process regression. Their advent
and exploitation allow to tackle the complexity of the energy landscape of
metallic nanoparticles, even in the case of operando conditions, for exam-
ple, when an oxide substrate is included and explicitly modelled. Accurate
but expensive algorithms to sample the free and potential energy land-
scapes of metallic nanoparticles (e.g. molecular dynamics, metadynamics,
transition path sampling, basin hopping, harmonic approaches, nested
sampling) will all greatly benefit from the deployment of machine learn-
ing-derived fast and accurate force fields. Particular care must be placed on
training database selection to ensure that the relevant parts of phase space
are included without redundancy. For this reason, a section of this review
focuses entirely on describing the major algorithms for database selection.

The core of this review is, however, to provide the state-of-the-art of
machine learning force fields to model metallic nanoparticles and nanoal-
loys. Inspired by the ongoing process of designing optimal metallic nano-
particles for target applications, and moving towards a numerical driven
search, accurate estimates of how structural changes affect metallic nano-
particles’ properties are in high need. To achieve this result, fast and
accurate force fields, that allow the exploration of long time scales without
the caveat of fitted parameters, are required.
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