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Abstract: Hearing loss (HL) is the most common sensory disorder in the world population. One 

common cause of HL is the presence of vestibular schwannoma (VS), a benign tumor of the VIII 

cranial nerve, arising from Schwann cell (SC) transformation. In the last decade, the increasing in-

cidence of VS has been correlated to electromagnetic field (EMF) exposure, which might be consid-

ered a pathogenic cause of VS development and HL. Here, we explore the molecular mechanisms 

underlying the biologic changes of human SCs and/or their oncogenic transformation following 

EMF exposure. Through NGS technology and RNA-Seq transcriptomic analysis, we investigated 

the genomic profile and the differential display of HL-related genes after chronic EMF. We found 

that chronic EMF exposure modified the cell proliferation, in parallel with intracellular signaling 

and metabolic pathways changes, mostly related to translation and mitochondrial activities. Im-

portantly, the expression of HL-related genes such as NEFL, TPRN, OTOGL, GJB2, and REST ap-

peared to be deregulated in chronic EMF exposure. In conclusion, we suggest that, at a preclinical 

stage, EMF exposure might promote the transformation of VS cells and contribute to HL. 
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1. Introduction 

Vestibular schwannoma (VS), also known as acoustic neuroma, is a benign tumor of 

the VIII cranial nerve, which arises from myelin-forming Schwann cells (SCs), most com-

monly in the superior branch of the vestibular nerve [1]. About 90% of VSs are sporadic 

and unilateral, for which pathogenic causes are still poorly understood [2]. However, 

about 5% of VS is bilateral and occurs in neurofibromatosis type 2 (NF2), an autosomal 

dominant genetic disease [3]. The NF2 tumor suppressor gene, coding for the protein mer-

lin, is inactivated in both sporadic and NF2-associated VS [4]. Merlin is a tumor suppres-

sor, able to integrate different mechanisms and deputed to regulate signaling pathways 

contributing to cell proliferation, adhesion, motility, and survival [5,6]; therefore, muta-

tions in NF2 are strongly associated with SC oncotransformation [7,8]. 
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VSs are slow-growing brain tumors that negatively impact quality of life. More than 

90% of NF2 patients demonstrate hearing impairments on the side of a VS [2], with audi-

ogram assessment revealing a high-frequency slope in more than 60%. The mechanisms 

underlying hearing loss (HL) in NF2 are still unclear and are presumed to be multifacto-

rial. HL is the most common sensory disorder in the world population, affecting around 

40 million people in the U.S. Among causes of sensorineural HL, the structural and phys-

iological dysfunction of VIII cranial nerve has a high prevalence [9]. Hence, it is conceiv-

able that changes in the biological and/or pro-oncogenic properties of SCs may affect VS 

onset and related HL. 

Several studies have reported an increasing incidence of VSs over the last decades 

[10], likely due to improved diagnostic capability. However, increased exposure to possi-

ble risk factors including non-ionizing radiation and electromagnetic field (EMF) have 

also been considered as pathogenic causes. Thus, rapid and wide increases in the use of 

mobile and cordless phones raised concerns about the increased risk for VS and subse-

quent HL [11,12]. Data collected from case-control and case-case studies corroborated this 

pathogenic association [12,13]. 

In this light, our findings indicated that EMF-exposed SCs changed their biological 

features (e.g., morphology, proliferation, migration, and myelinating capability), modify-

ing their phenotype toward a proliferative/migrating state [7,14]. In these cells, the on-

cosuppressor merlin is downregulated, leading to activation of the intracellular 

MAPK/ERK-PI3/Akt and Hippo signaling pathways. We propose that these SC changes 

might be pathologically relevant for the development of VS, as a cause of HL. We suggest 

that the EMF exposure represents a second hit, affecting SC development in predisposed 

and susceptible human subjects (specifically, those bearing NF2 mutations or changes in 

merlin expression) prone to developing VS and subsequent HL. 

Here, we analyzed the molecular mechanisms underlying human SC biologic 

changes and/or oncogenic transformation following EMF exposure, which might be po-

tentially responsible for VS development and HL. Using NGS and differential display 

transcriptomic analyses, we characterized the gene profiles of VS cells and asked whether 

novel or HL-related genes may be differentially affected by EMF. We found that chronic 

exposure to EMF altered some important intracellular and metabolic pathways, suggest-

ing an impact on the transformation of VS cells and progression to HL. 

2. Materials and Methods 

2.1. Cell Cultures 

HEI-193 is a human VS cell line derived from a NF2 patient [15,16]. These cells have 

a mutation in the NF2 gene that results in defective splicing of the NF2 mRNA, leading to 

the production of a C-terminally truncated merlin protein, so that no or very low levels of 

merlin protein is produced. The cells were plated in Dulbecco’s modified Eagle’s medium 

(DMEM, Euroclone, Pero, Italy) with 10% fetal bovine serum (FBS; Gibco-Life Technolo-

gies, Milan, Italy), ± forskolin (fsk; Sigma-Aldrich, Milan, Italy), at different concentrations 

and times. 

Human nerves were isolated from a patient participant undergoing reconstructive 

surgery at Wythenshawe Hospital, Manchester University NHS Foundation Trust, the 

UK, after informed consent was obtained from all subjects involved in the study. All pro-

cedures were approved by the National Research Ethics Committee, the UK (NRES 

18/NW/0847) and conformed with the World Medical Association Declaration of Helsinki. 

Primary naïve human SC were obtained as per Piovesana et al. [17]. Briefly, nerves were 

dissected, and single extracted fibers were cut into small pieces, then cultured in 60 cm2 

dishes with SC media supplemented with 10 µM fsk and 100 ng/mL glial growth factor 2 

(GGF-2, Acorda Therapeutics, Ardsley, NY, USA) for two weeks. Nerves were digested 

with dispase (Life Technologies, Carlsbad, CA, USA) and collagenase IV (Life Technolo-

gies) for 24 h, then the solution was gently triturated and passed through a sterile 70 µm 
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mesh. After centrifugation, the cell pellet was gently resuspended in SC media supple-

mented with 10 µM fsk + 100 ng/mL GGF-2 and seeded onto poly-D-lysine-coated (Sigma-

Aldrich) plates for the experiments. Overall, the appearance and growth characteristics of 

all cells used in this study were compared with published information to ensure their au-

thenticity. 

2.2. EMF Treatment 

Cells were exposed to 50 Hz 0.1 T EMF (at 37 °C) for different protocols: (1) one 10-

min single treatment, mimicking the acute exposure; and (2) 10-min treatment per day for 

5 days (every 24 h at the same time) mimicking the chronic exposure. The EMF was pro-

duced by the magnetic field generator (Ugo Basile, Gemonio, Italy). The cells were then 

analyzed at different time points according to the specific assays. Cells used as controls 

were plated in the same culture conditions without EMF exposure. 

2.3. Immunofluorescence (IFL) and Cell Characterization 

Microscopy and IFL were used for SC morphologic characterization. An antibody for 

the specific SC marker S100 (Dako Agilent, Santa Clara, CA, USA) was used. S100 stains 

cells of neural origin and is characteristic of SCs in their early stages of development/dif-

ferentiation. SC cytoskeletons were stained with phalloidin (Sigma-Aldrich). Cells were 

plated on coverslips, then fixed 20 min in 4% paraformaldehyde (Sigma-Aldrich) and 

washed in phosphate buffer saline (PBS, Euroclone, Pero, Italy). Cells were permeabilized 

with 0.2% Triton X-100 (Sigma-Aldrich) and blocked for 1 h with 0.25% BSA (Sigma-Al-

drich), depending on the host species of the secondary antibody. Primary antibodies to 

S100 (1:150) and phalloidin (1:300) were applied overnight at 4 °C in a humidified cham-

ber. The following day, slides were rinsed in PBS and incubated in the FITC Alexa-488-

conjugated secondary antibody (Thermo Fisher Scientific, Monza, Italy), washed, and 

mounted using VectashieldTM plus DAPI for nuclear staining (Vector Laboratories, Ox-

fordshire, UK). Negative controls lacking primary antibodies were also performed. Con-

focal laser scanner microscopy was performed by the Zeiss Confocal System and Zen soft-

ware analysis (Zeiss, Oberkochen, Germany). 

2.4. In Vitro Cell Proliferation, Viability, and Migration Assays 

Cells were plated in Petri dishes and analyzed for viability, proliferation, and migra-

tion. All measurements were done by using ImageJ 1.51 (NIH, Bethesda, MD, USA) soft-

ware. Approximately 6 × 104 cells were plated into 35 mm Petri dishes and analyzed after 

6, 24, 48, 72, 96, and 120 h. To assess proliferation, the cells collected with Trypsin 0.05%-

EDTA 0.02% in PBS were then resuspended in DMEM and counted with a hemocytome-

ter. Viability was tested by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide; Sigma-Aldrich) assay. Cells were seeded in 35 mm Petri dishes, then stained 

with MTT solution (0.5 mg/mL) for 30 min at 37 °C. Absorbance was measured at 570 nm. 

Each experimental point was in quadruplicate and experiments were replicated at least 

three times; data were expressed as absorbance ± SEM of the mean. The migration assay 

was performed by the wound healing assay, making a wound scratch on the cell mono-

layer. Cells were cultured with very low serum concentration to avoid the effect of cell 

proliferation. Cells were photographed with a light microscope (Axiovert 200 Zeiss) at 

different time points (6, 24, 48, and 72 h) after the scratch at the final magnification of 600×. 

Images were acquired using MetaVue software and the 2D area covered by the cell mi-

gration was measured. Each experimental point was in triplicate. Each data point was 

calculated as the difference of the 2D scratched area (at time 0) minus the 2D remaining 

area at each time point. Data were expressed in μm2 ± SEM of the mean. 

2.5. RNA Preparation and qRT-PCR Analysis 
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RNA was extracted using Trizol (Gibco-Life Technologies) according to the manu-

facturer’s protocol, then quantified with Nano-Drop2000 (Thermo Scientific, Waltham, 

MA, USA). Pure RNA was obtained after DNase I treatment (Sigma-Aldrich). The RT-

reaction was carried on with RT iScript Supermix 5× (Bio-Rad, Segrate, Italy) on 1 μg of 

purified RNA. The product was used to perform qRT-PCR assays using gene specific pri-

mers: P0, 5′-CCTGCTCTTCTCTTCTTTG-3′ and 5′-CACAGCACCATAGACTTC-3′; 

PMP22: 5′-TCCTGTTCCTTCACATCG-3′ and 5′-TGCCAGAGATCAGTCCTG-3′; NF2: 5′-

ACGATGGCCAATGAAGCTCTGATG-3′ and 5′-TGGCCTTGATTCGCTGCATCTC-3′; 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the housekeeping 

gene. qRT-PCR was performed by measuring the incorporation of SYBR Green dye (Bio-

Rad) on a CFX 96 Real Time System-C1000 touch thermal cycler (Bio-Rad). Data analysis 

was performed by the CFX Manager 2.0 software (Bio-Rad) using the 2−ΔΔCt method for 

relative quantification. The Pfaffl method was used to compare the experimental samples, 

normalized to the mean levels of the housekeeping gene [18]. 

2.6. Statistical Analysis 

Data were statistically evaluated by GraphPad Prism 8.00 (San Diego, CA, USA), us-

ing the parametric t-test and two-way ANOVA with Sidak’s post-test. 

2.7. NGS Technology RNA-Seq 

RNA-Seq was performed on HEI-193 cells chronically exposed to EMF and control 

cells (CTRL) that were not exposed to EMF. For each condition, experiments were done in 

triplicate in order to perform statistics for differential expression studies. For each sample, 

quantity control was performed using an Agilent Bioanalyzer (Santa Clara, CA, USA) to 

validate RNA integrity. Each sample of 500 ng total RNA was processed to obtain a library 

of indexed fragments using an Illumina Stranded mRNA Kit (San Diego, CA, USA). 

Equimolar quantities of indexed libraries for each sample were loaded for sequencing on 

two flow cells, Illumina MidOutput 150 cycles, and sequenced using Illumina 

NextSeq550dx (RUO mode). About 40–60 × 106 fragments of each sample were sequenced 

in paired-end (PE) modality, which characterized 75 nucleotides of both ends of each frag-

ment of the library. The raw data were generated as fasta.gz. For quality control of se-

quencing, two rounds of reading generated optimal metrics, with >85% of reads passing 

the filtering and 93% of reads with Q score > 30; technical error rate was 0.32%. Thus, no 

problems in sequencing occurred. Another quality control of reads was done using the 

tool FastQC (v 0.11.8, Babraham Bioinformatics, Babraham Institute, Cambridge, CB22 

3AT, UK), which analyzed some of the other parameters including the multiplex balance 

of samples, distribution of specific characteristics of each base, representativeness of nu-

cleotides, mean size of reads, and presence of adapters. 

2.8. Bioinformatic Analysis of Transcriptome 

The sequence reads were aligned with the human genome (Build GRCh38) to be con-

verted into quantifications of different transcripts present in the samples. The software 

Salmon (v.0.13.1) [19] was utilized. Pairing percentage was around 90%. The outputs from 

Salmon represented a quantification of the transcript expression present in the reference 

genome, which must be then normalized for analysis. The transcriptional analysis was 

performed with DeSeq2 software using the library R DESeq2 (v.1.24.0) [20]. At the begin-

ning, a selection of all transcripts was performed to exclude those not expressed in our 

conditions and selecting only the transcripts where the sum of six expression values pro-

duced more than 20 reads. Consequently, the analyzed dataset was reduced to 20,190 tran-

scripts. The box plot analysis revealed the expression values (in log2 scale) for each sam-

ple, which did not produce false data. We also performed GSEA analysis, which is a com-

monly used statistical method that analyzes a lengthy list of deregulated genes and takes 

into consideration small, though coordinated, changes in expression. 
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RNA-Seq files (Fastq data and quantitation matrix) were deposited in the GEO (gene 

expression omnibus) database. The access number is GSE174389, and the security token 

is ixovwimkrlebdkf. 

3. Results 

3.1. Characterization of Human Schwannoma-Derived Cells 

The HEI-193 human VS cell line [15], derived from an NF2 patient, was used for the 

experiments. These cells showed a SC-like morphology, with the characteristic spindle-

shape in vitro, resembling naïve primary hSCs (Figure 1A). Treatment of HEI-193 cells 

with fsk (4 or 10 M) induced a pronounced morphologic differentiation toward the naïve 

SC phenotype after five days in culture (Figure 1A). The HEI-193 cells were characterized 

for immunopositivity against S100 (typical SC marker) and phalloidin labelling (Figure 

1B), corroborating a previous publication [21] and confirming the SC-like morphology. 

Basal gene expression of typical myelin proteins P0 and PMP22 (characteristic of SCs) in-

dicated that HEI-193 maintains the SC-like phenotype (Figure 1C). Interestingly, the HEI-

193 VS genotype, being defective NF2 cells, should not express consistent levels of the 

tumor suppressor merlin. As expected, indeed, these cells expressed very low levels of the 

NF2 transcript (nearby zero), about 10–2 orders of magnitude (p < 0.01) less than naïve 

hSCs (Figure 1D). 

 

Figure 1. Characterization of HEI-193 cells. (A) Representative phase-contrast images of primary human SCs (hSC) and 

HEI-193 cells in culture at 7 div (day in vitro), following treatment with 4 and 10 M forskolin (fsk). Scale bar 10 m. (B) 

IFL microscopy images of HEI-193 characterized by immunopositivity for the S100 marker (anti-s100-488, in green), show-

ing a cell purity more than 98%. Cells were typically spindle-shaped. The actin cytoskeleton was assessed by labelling for 

f-actin (phalloidin-FITC, in green). Nuclei were stained with Dapi, in blue. Scale bar 10 µm. (C) Relative quantification by 

qRT-PCR of mRNAs levels, coding for proteins P0 and PMP22, respectively, in HEI-193 cells. Data were normalized to the 

housekeeping gene GAPDH and expressed as 2-ΔΔCt. The columns were expressed as fold changes. The values are means 

± S.D. (n = 4). (D) Merlin (NF2) mRNA levels were assayed by qRT-PCR, showing a significant decrease (** p < 0.01) in 

HEI-193 cells versus hSCs. Data were normalized to the housekeeping gene GAPDH and expressed as 2−ΔΔCt. The columns 

were expressed as fold changes. The values are means ± S.D. (n = 4). 

3.2. Chronic Exposure to EMF Induces Proliferative Changes in VS Cells 
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To test the effects of EMF on HEI-193 biological features, we applied either an acute 

EMF treatment of 50 Hz, 0.1 T for 10 min or a chronic treatment consisting of the same 

treatment repeated for five consecutive days (Figure 2A). When cell proliferation was as-

sessed, the acute EMF exposure did not induce any significant difference in HEI-193 cell 

proliferation compared to the untreated control cells (Figure 2B). However, when the cells 

were subjected to chronic EMF, we observed increased HEI-193 cell proliferation at 72 and 

96 h (p < 0.05), then found a higher significant rise in proliferation at 120 h (p < 0.0001) 

following the first exposure (Figure 2C). These results indicate that multiple EMF expo-

sures are associated with increased proliferation rates in these NF2-deficient cells. 

 

Figure 2. Proliferation effects on HEI-193 cells exposed to acute and chronic EMF. (A) Scheme of the experimental protocol 

applied. HEI-193 cells were exposed to EMF of 50 Hz, 0.1 T, for one 10-min single treatment (acute protocol) or for 10-min 

treatment/per day for five days (every 24 h at the same time; chronic protocol). Then, the cells were assayed for prolifera-

tion, migration, vitality, and NGS sequencing. (B) Proliferation was assessed at 6, 24, 48, 72, and 96 h, following a single 

acute EMF exposure. Experiments were repeated at least three times and data expressed as cell number ± SEM of the mean. 

(C) Proliferation was assessed at 24, 48, 72, 96, and 120 h, following a five day chronic EMF exposure. EMFs produced a 

significant increase in cell proliferation at 96 (* p < 0.05) and 120 (**** p < 0.0001) h. Experiments were repeated at least 

three times and data expressed as cell number ± SEM of the mean. Two-way ANOVA using Sidak’s post-hoc test was used 

for statistical analysis. 

3.3. Chronic EMF Exposure Effect on Viability and Migration of VS Cells 

We next tested the effects of acute or chronic EMF exposure on HEI-193 cell viability 

and migration. HEI-193 cells remained viable and increased in number after either acute 

(Figure 3A) or chronic (Figure 3B) exposure to the same degree as the control unchal-

lenged cells. 

Interestingly, migration of HEI-193 cells was significantly reduced (starting from 24 

and lasting to 72 h) after acute EMF (Figure 3C), but not after chronic exposure (Figure 

3D). 
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Figure 3. Migration and viability effects on HEI-193 cells exposed to acute and chronic EMF. (A) Cell viability was assessed 

by the MTT assay at 6, 24, 48, 72 and 96 h following a single acute EMF exposure. Each experimental point was in quad-

ruplicate and experiments replicated at least three times; data were expressed as absorbance ± SEM of the mean. (B) Cell 

viability was assessed at 24, 48, 72, 96, and 120 h, following completion of a 5-day chronic EMF exposure. Each experi-

mental point was in quadruplicate and experiments replicated at least three times; data were expressed as absorbance ± 

SEM of the mean. (C) Cell migration was assessed at 6, 24, 48, and 72 h, following a single acute EMF exposure. EMF 

treatment was associated with a significant decrease in cell migration at 24 (* p < 0.05), 48 (** p < 0.01), and 72 (* p < 0.05) h. 

Experiments were repeated at least three times. Each data point was calculated as the difference of the 2D scratched area 

(at time 0) minus the 2D remaining area at each specific time point, representing the 2D area covered by the cell migration. 

Data were expressed in μm2 ± SEM of the mean. (D) Cell migration was assessed at 6, 24, and 48 following a chronic EMF 

exposure. Experiments were repeated at least three times. Each data point was calculated as the difference of the 2D 

scratched area (at time 0) minus the 2D remaining area at each specific time point, representing the 2D area covered by 

the cell migration. Data were expressed in μm2 ± SEM of the mean. Two-way ANOVA using Sidaki’s post-hoc test was 

used for statistical analysis. 

3.4. Identification of Differentially Expression Genes (DEG) in HEI-193 Cells Following Chronic 

EMF Exposure 

The HEI-193 cells were next analyzed for transcriptomic changes after chronic EMF 

exposure by NGS RNA-Seq. Principal component analysis (PCA), a computational tech-

nique based on complexity reduction and maximization of differences among samples, 

tested the quality of the data and the distribution of samples based on their transcriptomic 

profiles (Figure 4A). Higher plotted distances between the different experimental condi-

tions (EMF versus control) would be the difference in terms of transcriptional profile; 

again, the more the replicates are similar (reproducibility), the dots would plot even more 

in the same PCA region. It is evident that PC#1 included 51% of system variability (Figure 

4A), and this tends to separate the sample replicates of EMF condition (left side) from 

replicates of the control condition (CTRL, right side). 

Sample replicates of each condition (CTRL vs. EMF) were then used to identify DEG. 

This analysis was performed on 20,190 transcripts above the defined detection limit (sum > 

20), then normalized and compared between the control and EMF treated groups. A fold-

change based t-test was used for statistical analysis. To increase the number of differentially 
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expressed transcripts, two lists, one with fold change 2 and the other setting with fold change 

1.5, were considered (Supplementary Figures S1 and S2, respectively). Changing the detection 

limit (sum > 15), normalized, and compared per groups control vs. EMF, we found 19,881 

transcripts changed. The differentially expressed transcripts were then selected setting a 1.5 

fold change with a p-value of 0.01. A VolcanoPlot analysis was performed, comparing EMF 

vs. the control samples (Figure 4B). Many transcripts appeared significantly downregulated 

(red dots, left side) following chronic EMF, whereas other transcripts were significantly up-

regulated (red dots, right side). On a hierarchical clustering plot, the identified top 1000 DEG 

distinguished the control from the EMF-exposed samples (Figure 4C). In particular, setting 

the 1.5 fold change with a p-value of 0.01, we found 55 DEGs. Interestingly, dynein heavy 

chain 17, proprotein convertase subtilisin/kexin type 1 (PCSK1), and thyroglobulin were up-

regulated in the EMF-exposed samples, while transforming growth factor alpha (TGFalpha), 

and Prader Willi/Angelman region RNA 5 (PWAR5) were downregulated in the EMF cells. 

  

Figure 4. Identification of DEG in HEI-193 cells following chronic EMF. (A) Principal component analysis (PCA) indicated 

that PC#1 included 51% of system variability and this tends to separate the sample replicates of EMF condition. Indeed, 

PC#2 included 26% of system variability. (B) Volcano plot displaying DEGs between the control (CTRL) and EMF-exposed 

cells. The vertical axis (y-axis) corresponds to the mean expression value of log 10 (q-value), and the horizontal axis (x-

axis) displays the log 2 (fold change) value. The red dots represent the upregulated expressed transcripts; the blue dots 

represent the transcripts whose expression is downregulated. Positive x-values represent upregulation and negative x-

values represent downregulation. (C) Heat map of the 1000 top upregulated genes in VS cells from CTRL versus EMF 

exposed. DEGs were selected setting a 1.5 fold change with a p-value of 0.01. 
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3.5. Chronic EMF Exposure Changed Metabolic Pathways of HEI-193 Cells 

The bioinformatic analysis of RNA-Seq raw data was performed with the gene set 

enrichment analysis (GSEA) plot, giving score curves. GSEA was performed with the ca-

nonical pathways and biological process gene sets in the GSEA Molecular Signatures Da-

tabase. “Signal-to-noise” ratio (SNR) statistic was used to rank the genes as per their cor-

relation with either the EMF exposure or the control groups. GSEA analysis produced a 

full list of the rank-ordered group of genes participating in the top positively or negatively 

enriched pathways. The whole analysis indicated that following chronic EMF exposure, 

about 40 complex and important intracellular signaling and metabolic pathways were 

changed in HEI-193 cells. In detail, the pathway analysis highlights the major biological 

processes altered with the chronic EMF exposure (CTRL VS EMF). The higher the normal-

ized enrichment score (NES), the higher the ranking and the statistical significance of the 

pathway. The class of genes clustered for each pathway are reported in Table 1. Transla-

tional and ribosomal pathways were the most significantly changed in HEI-193 cells 

chronically exposed to EMF; for instance, protein targeting to ER or translational termina-

tion as well as ribosomal assembly were upregulated (blue arrows in Table 1). In addition, 

mitochondrial translational elongation and termination were upregulated by EMF (red 

arrows in Table 1). Interestingly, all these pathways are complex systems controlling the 

fundamental biologic mechanisms for cell metabolism. A further detailed investigation is 

on-going to confirm these changes. 

Table 1. Major signaling pathways upregulated in HEI-193 cells following chronic EMF exposure. 

Pathway Direction NES P adj 

Cotranslational protein targeting to membrane Up 7.859 5.30 × 10−10 

Protein targeting to ER Up 7.807 5.30 × 10−10 

SRP dependent cotranslational protein targeting to membrane Up 7.797 5.30 × 10−10 

Establishment of protein localization to endoplasmic reticulum Up 7.585 5.30 × 10−10 

Mitochondrial translational elongation Up 6.081 6.10 × 10−6 

Mitochondrial translational termination Up 6.022 6.70 × 10−6 

Translational termination Up 5.668 1.50 × 10−5 

Mitochondrial respiratory chain complex assembly Up 4.546 9.00 × 10−4 

Mitochondrial ATP synthesis coupled electron transport Up 4.404 1.20 × 10−3 

Cytoplasmic translation Up 4.360 1.50 × 10−3 

ATP synthesis coupled electron transport Up 4.234 1.90 × 10−3 

NADH dehydrogenase complex assembly Up 3.955 6.60 × 10−3 

Mitochondrial respiratory chain complex I assembly Up 3.955 6.60 × 10−3 

Ribosomal large subunit biogenesis Up 3.920 6.60 × 10−3 

Respiratory electron transport chain Up 3.858 6.60 × 10−3 

Ribosome assembly Up 3.414 3.10 × 10−2 

3.6. Hippo Pathway- and HL-Related Gene Expression Changes in HEI-193 Cells Following 

Chronic EMF Exposure 

Previously, we demonstrated that Hippo signaling, which is important for SC onco-

transformation, and some of the regulatory proteins belonging to this pathway are tar-

geted by EMF [7]. Indeed, at least 21 genes encoding upstream or downstream mediators 

of Hippo signaling were altered, mostly downregulated. Herein, we confirmed that some 

proteins of the Hippo signaling pathway were altered in HEI-193 cells following chronic 

EMF exposure (Figure 5A). The heatmap visualizes the genes contributing to the Hippo 

pathway enrichment, which are mostly downregulated by the chronic EMF (Figure 5A). 

Genes coding for proteins involved in cell polarity such as angiomotin like protein 

(Amotl), or involved in cell adhesion and myelinogenesis such as the cadherin protein 

(Fat), displayed decreased expression following chronic EMF exposure (blue square) ver-

sus the controls (CTRL, brownish squares). In addition, Yes-associated protein 1 (Yap1), 

which mediates apoptotic and proliferative effects in SCs, was found to be downregulated 
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in HEI-193 cells, following chronic EMF exposure (Figure 5A). Overall, this analysis con-

firmed that some regulatory proteins of the Hippo pathway regulate VS cell fate following 

chronic EMF exposure. 

Finally, we found that several DEGs detected in our EMF-induced differential ex-

pression profile matched with a set of genes known to be involved in the most important 

HL and sensorineural HL diseases [22,23] (Figure 5B). NEFL (a neuron-specific interme-

diate filament essential for the radial growth of axons), TPRN (taperin), HMOX1 (heme 

oxygenase1), and OTOGL (otogelin-like protein) were upregulated, while GJB2 (con-

nexin32, Cx32) and REST (a DNA-binding protein that complexes the histone deacety-

lases) were downregulated following chronic EMF exposure. 

 

Figure 5. Identification of Hippo and HL-related DEGs in HEI-193 cells following chronic EMF. (A) Clustering of the 

Hippo-related genes that are deregulated in VS cells from control (CTRL) versus EMF exposed. (B) Clustering of the HL-

related genes that are deregulated in VS cells from CTRL versus EMF exposed. 

4. Discussion 

Our findings show that chronic EMF exposure has a strong impact on VS cells, af-

fecting their biomolecular characteristics. The EMF exposure induced a differential ex-

pression of several genes and biochemical pathways, mostly related to ribosomal and 

translational activation. Importantly, several HL-related genes were among those altered 

by the EMF exposure, although the physiological significance of these changes require 

further investigation. 

The reliability of our NF2 defective cellular model was supported by the HEI-193 

phenotype, which is in accordance with the cell characteristics already published by Hung 

et al. [15,16]. Indeed, these cells are a good paradigm of SCs phenotype, bearing the char-

acteristic spindle-shaped morphology and expression of known SC markers [21,24]. 

Among all genes found to be dysregulated in VS cells following EMF chronic expo-

sure, dynein, proprotein convertase subtilisin/kexin type 1 (PCSK1), and thyroglobulin 

were upregulated, while TGFα and the Prader Willi/Angelman region 5 (PWAR5) 

lncRNA gene were downregulated. Proteins involved in microtubule dynamics and ax-

onal transport such as dynein are essential for the bidirectional transport of cargos includ-

ing organelles and mRNA between soma and synaptic terminals. In this light, dynein is 

important in nerve regeneration [25,26] as well as in regulating injury-induced SC remod-

eling and myelination [27]. However, a direct role for dynein in SC transformation has not 

been elucidated. One hypothesis for dynein involvement in the mechanobiology of VS 

cells and remodeling is strengthened by the observation that dynein drives nuclear local-

ization of Yap, and regulation of myofibroblast differentiation [28]. PCSK1 belongs to the 
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pro-protein convertase family of proteases that are involved in the processing of precursor 

proteins into their diverse active end-products. PCSK1 is strongly induced in injured 

nerves and in SCs [29]. Although TGFα does not have a clear function in PNS cells, its role 

in VS and immune mediated HL has recently been described [30]. TGFα has been identi-

fied as an ototoxic molecule [31], thereby its decrease might also be protective. 

Our findings also corroborate some findings of another transcriptomic analysis per-

formed on VS [32], which identified mTOR and PI3K as the principal signaling pathways 

implicated in schwannoma onset [33–35]. Changes in the expression of components of the 

Hippo signaling pathway also corroborate our previous observations [7], showing the pu-

tative involvement of this pathway in SC oncotransformation to VS, likely contributing to 

HL. Previously, we showed that acute exposure of rat SCs to EMF contributes to onco-

transformation. EMFs induced changes in SC NF2/merlin expression, cell migration, 

chemotactic responsivity, and cytoskeleton reorganization [7]. We showed MAPK/Erk ac-

tivation involved in SC proliferation as well as activation of Hippo/YAP signaling, which 

are commonly altered during tumorigenesis. We also found that some genes, known to 

be upstream or downstream mediators of Hippo (Amotl2, Dchs, Fat, Wnt1), were 

changed. Genes coding for proteins involved in cell polarity such as Amotl, or involved 

in cell adhesion and myelinogenesis such as cadherin protein Fat, or mediating apoptotic 

and proliferative effect in SCs such as Yap, decreased their expression following chronic 

EMF exposure. 

In the present paper, NF2 expression is increased by chronic EMF exposure. This ef-

fect, opposite to what was previously observed in rat, is quite intriguing and might be 

ascribed to the different species and/or to the different exposure protocol (acute vs. 

chronic). The HEI-193 cell line was established from a NF2 patient with a specific mutation 

leading to a truncated merlin form that is distinct from that of naïve rat SCs. It is feasible 

that VS undergoes a kind of compensatory protective mechanism, trying to restore the 

oncosupressor merlin in response to the chronic EMF exposure. However, it is evident 

that chronic EMF exposure differently regulates the expression of some genes related to 

HL. In particular, genes such as NEFL, TPRN, HMOX1, and OTOGL as well as GJB2 and 

REST were up- or downregulated, respectively, following chronic EMF. The protein ta-

perin, a sensory epithelia protein encoded by the TPRN gene as well as the protein en-

coded by OTOGL, are characteristic of the nonsyndromic HL [36]. Similarly, GJB2, coding 

for the Cx32 protein expressed by SCs and present at the paranodal location [37] and REST 

are involved in nonsyndromic HL [38,39]. Interestingly, HMOX1, coding for the protein 

heme oxygenase1, possesses an emerging role in regulating oxidative stress in SCs during 

nerve degeneration [40]. Overall, these data provide intriguing insights into differential 

gene expression associated to EMF exposure in an established cell model of VS and justify 

further analysis to confirm changes in HL genes. 

Herein, we hypothesize that EMF exposure represents a second hit, affecting SC de-

velopment in pre-constituted susceptible human subjects (bearing NF2 mutations or 

changes in merlin expression) prone to developing VS and subsequent HL. The impact of 

EMF on cells and organisms has long been discussed. Data collected from case–control 

and case–case studies suggested the pathogenic association of EMF exposure with the in-

creased risk to develop VS and HL [12,41–43]. Specific EMF effects on several cellular pa-

rameters such as cell migration, cytoskeleton reorganization, ion channel regulation, and 

oxidative balance have been proposed [44–46]. However, due to differences in the exper-

imental protocols used for EMF exposure, these data are difficult to compare. Non-ioniz-

ing radiation by mobile phones showed a slight increase in brain tissue temperature 

[47,48] and has been associated with an imbalance of reactive oxygen species production 

[44]. This toxic mechanism might produce an increase in the blood–brain barrier permea-

bility, leading to a deregulation of several signaling pathways [44]. However, to our 

knowledge, no consistent experimental data on the mechanisms linking EMF exposure to 

VS induction has been published. One study analyzing putative biological changes in SCs 

exposed to EMF suggested a weak increase in the proliferation rate, but not substantial 
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morphological alterations [49]. Unfortunately, these authors did not consider any other 

parameter related to SC differentiation and/or myelinating capability. We used an estab-

lished protocol [50], which showed that the application of 50 Hz, 1 mT EMF for different 

exposure times, induced some effects on brain cell functions. This protocol was adapted 

to our VS cell cultures. The EMF intensity utilized in our study was higher than those 

produced by common electronic devices or household electrical equipment (see for refer-

ence www.emf-portal.org, access on July 16th, 2021), thus compelling cells to their maxi-

mal adaptive response. We should also consider that population is simultaneously ex-

posed to multiple EMF sources. Nonetheless, it is noteworthy that very-low frequency 

EMFs have been proposed as helpful tools to promote the nerve regeneration [51,52]; how-

ever, there is inadequate data on the potential risks of low frequency EMFs for human 

health. 

In conclusion, our findings suggest that chronic EMF exposure might be deleterious 

for VS at a pre-clinical stage, and could promote the transformation of VS cells toward an 

HL phenotype. It should be highlighted that about 50% of patients develop VS on the right 

side, whereas the overall population is represented by 70% right-handed. We do not ex-

clude that other pathogenic mechanisms should be considered, or might be involved in 

the EMF exposure. Although further experiments are needed to explore a more direct 

cause–effect correlation between mobile exposure and VS pathogenesis, for precautionary 

purposes, subjects potentially predisposed to developing VS should pay more attention 

to low frequency EMF exposure. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/cells10071840/s1, Figure S1: Heat map of the up- and downregulated genes in HEI193 

cells from CTRL versus EMF exposed cells. DEGs were selected setting a 2-fold change, Figure S2: 

Heat map of the up- and downregulated genes in HEI193 cells from CTRL versus EMF exposed 

cells. DEGs were selected setting a 1.5-fold change. 
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