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Abstract: Selenium is both an essential nutrient and a highly toxic element, depending on its dose
and chemical forms. We aimed to quantify urinary selenium excretion and dietary selenium intake
in 137 healthy non-smoking blood donors living in the northern Italian province of Reggio Emilia.
We assessed selenium status by determining urinary selenium levels (mean 26.77 µg/L), and by
estimating dietary selenium intake (mean 84.09 µg/day) using a validated semi-quantitative food
frequency questionnaire. Fasting blood levels of glucose, lipids and thyroid-stimulating hormone
were measured using automatized laboratory procedures. Dietary and urinary selenium were
correlated (beta coefficient (β) = 0.19). Despite this, the association of the two indicators with health
endpoints tended to diverge. Using linear regression analysis adjusted for age, sex, body mass index,
cotinine levels and alcohol intake, we observed a positive association between urinary selenium
and blood triglyceride (β = 0.14), LDL-cholesterol (β = 0.07) and glucose levels (β = 0.08), and an
inverse one with HDL-cholesterol (β = −0.12). Concerning dietary selenium, a slightly positive
association could be found with glycemic levels only (β = 0.02), while a negative one emerged for
other endpoints. The two selenium indicators showed conflicting and statistically highly imprecise
associations with circulating TSH levels. Our findings suggest that higher selenium exposure is
adversely associated with blood glucose levels and lipid profile. This is the case even at selenium
exposures not exceeding tolerable upper intake levels according to current guidelines.

Keywords: dietary selenium; urinary selenium; biomarkers of exposure; glucose levels; lipid
blood profile

1. Introduction

Over the last decades, a number of studies have tried to elucidate the controversial
and intriguing role of the trace element selenium in human health. Selenium has a large
spectrum of both nutritional and toxicological properties in humans [1], animals [2,3] and
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plants [4], with a still uncertain balance between the two. In fact, the safe range of intake
is not well defined and is still debated. Different choices have been made by different
agencies based on very different rationales, while there is increasing awareness of the
potential for low-dose selenium toxicity [5,6].

Several diseases and conditions have been linked to selenium deficiency and excess [6].
Over time, emphasis has been laid on suspected adverse effects on cancer risk and on the
signs and symptoms of selenosis. A purported protective effect for cancer and cardiovas-
cular disease was stressed at the turn of the century. However, the lack of evidence of
a clear beneficial effect of selenium supplementation did not confirm such a preventive
role [7]. In fact, more recent studies have linked selenium overexposure with excess risk
of metabolic diseases such as type 2 diabetes [8], hyperlipidemia [9], non-alcoholic fatty
liver disease [10] and neurodegenerative disease [5,11]. The possibility that selenium exerts
adverse effects on human metabolism, in particular, is supported by converging evidence
for type 2 diabetes from both experimental [12] and non-experimental [8] epidemiologic
studies. However, the exact amount of selenium exposure that needs to be reached to
increase metabolic adverse effects is still partly unclear [6,8]. In addition, evidence suggests
the impact of selenium exposure on the thyroid gland, with indications of both adverse
and beneficial effects depending on the amount and chemical form of selenium, study
population and the thyroid-related endpoint investigated [13–15].

In humans, selenium exposure occurs in many different chemical forms [16–19]. More-
over, because selenium is ubiquitous to the environment, exposure is linked to different
sources [5]. This causes it to influence related health effects and underlying biological prop-
erties, which are also modified by other dietary constituents [6,7]. However, the main route
of exposure for most individuals is diet [20,21]. On the other hand, water, dietary supple-
ments and exposure to environmental sources such as smoking [22] and motorized traffic
exhaust [23] may be considered essentially trivial sources [6,20], with the exception of the
rare occurrence of occupational exposure [24]. Different biomarkers have been proposed to
assess selenium exposure, but the most commonly used and reliable ones are circulating
selenium levels in serum, plasma and whole blood [25]. These biomarkers also allow for the
assessment of the various selenium chemical species [6]. Other biomarkers that have been
adopted to assess selenium contents are nails, toenails and hair [26]. These have several
advantages. To begin with, they are informative about long-term selenium exposure. In ad-
dition, their sampling and collection are less invasive and, therefore, better tolerated by
participants. Nonetheless, they are not suitable for speciation analysis and show a limited
correlation with blood selenium levels and dietary selenium intake. For these reasons,
they may not be adequate to monitor selenium overexposure [27], possibly owing to their
inability to retain some circulating selenium species, such as inorganic ones [28]. Two more
suitable indicators have been proposed to assess selenium exposure, i.e., dietary intake and
urinary excretion levels. The first can be derived from validated semi-quantitative food
frequency questionnaires and may allow us to evaluate selenium intake independently
of metabolism and excretion [6]. The second is thought to be an appropriate indicator of
recent exposure only [29].

In a group of healthy adults, we investigated the relation between selenium exposure,
as assessed through dietary intake and urinary excretion levels, and metabolic endpoints,
including blood levels of glucose, total cholesterol, high-density lipoprotein (HDL) cholesterol,
low-density lipoprotein (LDL) cholesterol, triglycerides and thyroid-stimulating hormone.

2. Materials and Methods
2.1. Study Population

We recruited blood donors from the Transfusion Medicine Center ‘Casa del Dono’ of
AUSL-IRCCS of Reggio Emilia, Northern Italy, from April 2017 to April 2019. Recruitment
followed approval from the Reggio Emilia Ethics Committee (approval no. 2016/0022799)
and written informed consent from participants. To be enrolled in the study, all subjects
had to be living in the province of Reggio Emilia, be aged 30–60 and be non-smokers.
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A final number of 148 eligible subjects were accepted to participate in the study. Four
participants later withdrew from the study, and an additional seven were excluded because
of high urinary cotinine levels (>30 µg/L), inconsistent with the self-declared non-smoker
status [30,31]. The final study population was eventually composed of 137 subjects.

After written informed consent was obtained, participants were asked to give a fasting
blood and a urine sample. Participants also compiled a detailed questionnaire concerning
lifestyle and habits. This included information on height and weight, marital status, ed-
ucation, occupational and residency history, smoking history (never or former smokers)
and selenium-containing dietary supplement use. In addition, they were asked to fill in a
validated semi-quantitative food frequency questionnaire (European Prospective Inves-
tigation into Cancer and Nutrition Food Frequency Questionnaire—EPIC FFQ) already
used in previous studies [32,33]. Briefly, the EPIC FFQ allows one to assess dietary habits
in the considered population. In particular, it investigates the frequency and amount
(selected among three portion sizes) of 188 food items. The related intake of nutrients
was calculated using a previously developed ad hoc software. We estimated daily dietary
selenium intake by combining the trace-element average in food within the study area and
food consumption patterns assessed through the FFQ.

2.2. Laboratory Analyses
2.2.1. Analytical Determination of Biochemical Parameters in Blood and Urine

Blood venous and urine samples were collected in a plastic tube and stored at −20 ◦C
until use. Automatized laboratory procedures were used to quantify the following param-
eters: total cholesterol, HDL-cholesterol, triglycerides, glucose and thyroid-stimulating
hormone, while LDL-cholesterol was calculated through the Friedewald formula [34]. Uri-
nary cotinine, a biomarker of tobacco smoking, was measured by Liquid Chromatography
with tandem mass spectrometry (LC/MS/MS) (TSQ Quantum Access, Thermo Scientific,
Rodano, Italy) [31]. Subjects with mean urinary cotinine ≥ 100 µg/L were classified as
active daily smokers. The use of the mean value of urinary cotinine to classify subjects
is supported by the relatively long half-life of urinary cotinine (6–22 h) which makes this
biomarker quite stable over the day in regular daily smokers.

2.2.2. Analytical Determination of Selenium in Urine

Before analysis, urine samples were thawed at room temperature for 2 h. Each sam-
ple was mixed and heated at 37 ◦C for 30 min to dissolve the sediment. An aliquot of
600 µL was transferred into a 10 mL polyethylene tube and added to 2.4 mL of an aqueous
solution of nitric acid 0.05% v/v prepared by diluting ultrapure nitric acid (69% TraceS-
elect, Fluka, France), containing 7.5 µg/L of Scandium-45 (45Sc), Yttrium-89 (89Y) and
Indium-111 (111In) as internal standards (Inorganic Ventures, Inc., Lakewood, NJ, USA).
All solutions were prepared using Milli-Q® ultrapure water (conductivity 0.056 µS/cm)
(Merck, Darmstadt, Germany). The urine samples were analyzed by inductively coupled
plasma mass spectrometry (ICP-MS) X Series II (Thermo Electron Corporation, Rodano,
Italy). The instrument was operated in collision cell mode (CCT-Ked), with 3.7 mL/min
of helium used to reduce interference. For each sample, three replicates were run. The
calibration curve was in the range of 0.2–70 µg/L. The calibration solutions were obtained
by diluting a selenous acid standard solution containing selenium at 1 mg/mL (BDH, VWR
International, Milano) with an aqueous solution of nitric acid 0.05% v/v in the presence of
internal standards. The calibration curve was linear with a correlation coefficient ≥0.999.
The limits of quantification (LOQs), calculated as ten times the standard deviation of the
blank, amounted to 1.2 µg/L. Internal quality assurance was performed using two quality
controls (QCs) for metals in urine: Lyphocheck Urine Metals Control, Level-1 (Bio-Rad
Laboratories, Anaheim, CA, USA), and Seronorm® Level-1 (Sero AS, Billingstad, Norway).
Before analysis, QCs were reconstituted in accordance with manufacturers’ instructions.
QC accuracy was between 90% and 110% and precision ranged between 7% and 11%.
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2.3. Data Analysis

We reported the percentile distribution of urinary selenium concentrations and di-
etary selenium intake, as well as fasting hematological parameters and urinary cotinine
levels. Concerning the occurrence of extreme values, we found a subject with very high
triglycerides, 574 mg/dL, and one with very high thyroid-stimulating hormone levels,
15.64 mU/mL, both of which we considered outliers and therefore winsorized at the 99th
percentile. Only these two values were changed.

We assessed the association between urinary and dietary selenium concentrations, and
between these selenium status indicators and the blood metabolic endpoints of glycemia
and HDL-, LDL- and total cholesterol as well as triglycerides, by using crude and mul-
tivariable linear regression analyses. For the latter, age, sex, body mass index (BMI—as
a continuous variable), cotinine levels and alcohol intake were included in the model as
potential confounders. We used linear regression fitted on a restricted cubic spline model
and based on three knots at fixed percentiles (10th, 50th and 90th). Moreover, we assessed
the statistical precision of the estimates by computing their 95% confidence interval (CI).
We used the ‘mkspline’, ‘regress’, ‘xbcrsplinei’ and ‘winsor’ routines of the Stata 17.1
software (Stata Corp., College Station, TX 2021, USA).

3. Results

This study included 137 participants, 62 men and 75 women, aged 30–60. Table 1 sum-
marizes the main characteristics of the study population, i.e., sex, age, BMI, smoking habits,
consumption of selenium-containing supplements, marital status, educational attainment
levels and occupational group, according to the international standard classification of
occupations (ISCO). The study population was mainly composed of men and women aged
less than 50 years, who were normal weight and had never smoked in their lifetime.

Table 2 shows the distribution of the blood parameters in the study participants and
the urinary and dietary selenium concentrations. Median urinary selenium excretion was
22.02 µg/L (interquartile range (IQR) 14.64–37.15 µg/L), while the median daily dietary
intake was 78.74 µg (IQR 62.62–101.48 µg/day), with higher values in men compared with
women. Men also exhibited higher blood glucose and higher triglyceride levels, along with
higher levels of thyroid-stimulating hormone. Conversely, they had lower levels of LDL-,
HDL- and total cholesterol.

Using urinary selenium as a dependent variable and dietary selenium intake as an
independent one, the linear regression estimate (β coefficient) was 0.19 (95% CI 0.10, 0.27)
and 0.18 (95% CI 0.10, 0.27) in the crude and multivariable adjusted models, respectively.
Both in the crude and multivariable spline regression analysis, which was adjusted for
sex, age, BMI, cotinine levels and alcohol intake, we found a positive and almost linear
correlation between urinary and dietary selenium. However, the strength of the association
tended to increase at around 100 µg of daily selenium intake and above (Figure 1 and
Figure S1).
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Table 1. Characteristics of the study population and mean urinary and dietary selenium (Se) concentrations for each subgroup.

Characteristics
All Men Women

N % Urinary
Se (µg/L)

Dietary
Se (µg/day) N % Urinary

Se (µg/L)
Dietary

Se (µg/day) N % Urinary
Se (µg/L)

Dietary
Se (µg/day)

Overall 137 100 26.77 84.09 62 45.3 29.0 89.97 75 54.7 24.92 79.23
Age

<50 years 80 58.4 27.23 86.13 39 62.9 30.17 90.94 41 54.7 24.44 81.55
≥50 years 57 41.6 26.12 81.24 23 37.1 27.04 88.32 34 45.3 25.50 76.44

BMI
<25 kg/m2 74 54.0 25.59 82.21 32 51.6 28.47 91.10 42 56.0 23.39 75.44

≥25 kg/m2–<30 kg/m2 50 36.5 28.58 84.22 27 43.6 29.49 87.04 23 30.7 27.52 80.92
≥30 kg/m2 13 9.5 26.52 94.31 3 4.8 30.40 104.27 10 13.3 25.36 91.32

Smoking habits
Never 101 73.7 26.10 83.95 45 72.6 28.77 88.60 56 74.7 23.95 80.21

Former 36 26.3 28.66 84.50 17 27.4 29.64 93.60 19 25.3 27.79 76.36
Selenium supplement users

No 94 68.6 25.06 87.56 46 74.2 29.80 94.65 48 64.0 22.46 80.76
Yes 23 16.8 29.08 80.14 6 9.7 27.75 72.37 17 22.7 29.55 82.88

Former 20 14.6 27.48 72.34 10 16.1 26.11 78.97 10 13.3 28.85 65.71
Marital status

Married/unmarried partner 97 70.8 26.78 83.10 44 71.0 29.72 87.69 53 70.7 24.34 79.28
Single 26 19.0 27.65 87.72 12 19.4 28.80 104.28 14 18.7 26.66 73.52

Separated/divorced 14 10.2 25.07 84.26 6 9.6 24.20 78.05 8 10.7 25.73 88.91
Educational level

Elementary school 2 1.5 37.26 146.96 2 3.2 37.26 146.96 - - - -
Middle school 20 14.6 25.99 84.79 8 12.9 29.46 80.08 12 16.0 23.67 87.92
High school 66 48.2 23.87 82.73 28 45.2 24.98 90.92 38 50.7 23.05 76.70

College or more 49 35.8 30.57 83.07 24 38.7 32.87 87.40 25 33.3 28.37 78.92
Occupation (ISCO)

Managers 9 6.6 21.30 84.83 6 9.7 21.42 80.45 3 4.0 21.04 93.60
Professionals 26 19.0 30.16 91.07 12 19.4 33.81 104.05 14 18.7 27.03 79.93

Technicians/associate professionals 21 15.3 25.96 82.74 11 17.7 23.41 89.03 10 13.3 28.75 75.82
Clerical support workers 43 31.4 25.78 79.34 12 19.4 32.10 82.18 31 41.3 22.99 78.24
Service and sales workers 11 8.0 26.65 71.98 2 3.2 22.71 81.07 9 12.0 27.52 69.96

Craft and related trade workers 10 7.3 22.16 80.73 8 12.9 24.80 82.40 2 2.7 11.61 74.09
Plant and machine operators 11 8.0 35.63 94.40 8 12.9 36.22 100.51 3 4.0 34.05 78.12

Elementary occupations 6 4.4 21.92 100.44 3 4.8 25.78 85.25 3 4.0 18.07 115.63

Abbreviations: ISCO, International Standard Classification of Occupations.
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Table 2. Median, 25th and 75th percentile of urinary and dietary selenium distribution and fasting
blood parameters in the study population (n = 137).

Parameter 25th Median 75th

All participants
Selenium

Dietary intake (µg/day) 62.62 78.74 101.48
Urinary concentration (µg/L) 14.64 22.02 37.15

Blood parameter
Glycemia (mg/dL) 81 86 91

Total cholesterol (mg/dL) 184 204 224
HDL-cholesterol (mg/dL) 51 59 69
LDL-cholesterol (mg/dL) 109 124 144

Triglycerides (mg/dL) 62 78 112
Thyroid-stimulating hormone (mU/mL) 1.18 1.59 2.21

Urinary cotinine levels (µg/L) 0.05 0.27 0.86
Men

Selenium
Dietary intake (µg/day) 69.77 88.37 108.28

Urinary concentration (µg/L) 16.72 24.21 39.20
Blood parameter

Glycemia (mg/dL) 82 88 94
Total cholesterol (mg/dL) 177 192 219
HDL-cholesterol (mg/dL) 46 52 58
LDL-cholesterol (mg/dL) 101 120 142

Triglycerides (mg/dL) 67 85 135
Thyroid-stimulating hormone (mU/mL) 1.16 1.75 2.34

Urinary cotinine levels (µg/L) 0.05 0.20 0.77
Women

Selenium
Dietary intake (µg/day) 54.77 71.06 91.68

Urinary concentration (µg/L) 13.30 21.30 34.66
Blood parameter

Glycemia (mg/dL) 79 85 89
Total cholesterol (mg/dL) 192 210 227
HDL-cholesterol (mg/dL) 57 67 73
LDL-cholesterol (mg/dL) 112 125 146

Triglycerides (mg/dL) 58 73 106
Thyroid-stimulating hormone (mU/mL) 1.18 1.54 2.16

Urinary cotinine levels (µg/L) 0.05 0.32 0.94

Figure 1. Spline regression analysis of urinary and dietary selenium (Se) levels. Solid line represents multivariable analysis
(adjusted for age, sex, body mass index, cotinine levels and alcohol intake) and shaded area indicates upper and lower
confidence interval limits.
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In the linear regression analysis, urinary selenium excretion was positively associated
with blood glucose, LDL-cholesterol, triglyceride and (slightly and very imprecisely)
thyroid-stimulating hormone levels, in both the crude and the multivariable models.
The relation was negative with HDL-cholesterol (Table 3). These results were generally
confirmed in multivariable spline regression analyses (Figure 2), with limited evidence of
any threshold or non-linear shape of the association.

Table 3. Linear regression analysis of glycemia, lipid profile variables and thyroid-stimulating
hormone versus urinary selenium (Se) concentration and dietary Se intake biomarkers as independent
variables. Crude model and adjusted for age, sex, body mass index (BMI), cotinine levels and alcohol
intake along with their 95% confidence interval (CI).

Linear Regression Analysis Crude Adjusted

Urinary Se concentration (µg/L) β (95% CI) β (95% CI)
Glycemia (mg/dL) 0.08 (−0.01, 0.18) 0.08 (−0.02, 0.16)

Total cholesterol (mg/dL) −0.10 (−0.43, 0.22) −0.01 (−0.32, 0.32)
HDL-cholesterol (mg/dL) −0.18 (−0.33, −0.04) −0.12 (−0.25, 0.003)
LDL-cholesterol (mg/dL) 0.03 (−0.25, 0.32) 0.07 (−0.21, 0.36)
Triglycerides (mg/dL) * 0.16 (−0.35, 0.67) 0.14 (−0.35, 0.62)

Thyroid-stimulating hormone (mU/mL) * 0.005 (−0.005, 0.015) 0.005 (−0.005, 0.015)
Dietary Se intake (µg/day) β (95% CI) β (95% CI)

Glycemia (mg/dL) 0.04 (−0.01, 0.09) 0.02 (−0.02, 0.07)
Total cholesterol (mg/dL) −0.22 (−0.39, −0.05) −0.20 (−0.37, −0.03)
HDL-cholesterol (mg/dL) −0.07 (−0.15, 0.01) −0.02 (−0.09, 0.05)
LDL-cholesterol (mg/dL) −0.11 (−0.26, 0.04) −0.11 (−0.27, 0.04)
Triglycerides (mg/dL) * −0.16 (−0.43, 0.11) −0.27 (−0.53, −0.02)

Thyroid-stimulating hormone (mU/mL) * −0.001 (−0.007, 0.004) −0.001 (−0.007, 0.004)
* Linear regression estimates calculated using winsorized values.

As regards the correlation between dietary selenium intake and the endpoints, we
found a positive association with glycemia in the linear regression analysis. In the spline
regression analysis, furthermore, the shape of the association resembled an inverted U,
changing its direction around 90 µg/day (Figure 3). Dietary selenium intake was also
slightly inversely correlated with HDL-, LDL- and total cholesterol and with triglycerides in
both crude and multivariable analyses (Table 3). In the spline regression analysis, there was
an indication of a U-shaped association with blood glucose and of a U-shaped curve with
HDL-cholesterol. At the same time, the remaining associations were smoothly negative
with the exception of a substantially null association with thyroid-stimulating hormone,
with highly scattered intersection points (Figure 3). Concerning thyroid-stimulating hor-
mone, this showed a slightly positive association with urinary selenium in the linear
regression analysis, while a negative one was observed with dietary intake. However,
all regression estimates for TSH were statistically most unstable, as shown by the wide
confidence intervals. In addition, spline regression analysis added limited evidence of a
relation of selenium (urinary and particularly dietary) with the blood concentrations of
this hormone.

Sex-stratified analyses showed some differences for the male and female population,
as reported in Tables S1 and S2. In the linear regression analysis, in men we found a
strong positive association between urinary selenium concentration and triglycerides and
a weaker but still positive association with glucose, and LDL- and total cholesterol levels.
A negative one was observed with HDL-cholesterol. Subgroup analyses in women showed
the same positive and negative associations with glucose and HDL-cholesterol levels,
respectively, while the association was null with LDL-cholesterol levels, and negative with
total cholesterol and triglyceride levels. A negative and very imprecise association was
observed with thyroid-stimulating hormone levels. As regards dietary selenium intake, we
found slightly positive associations with glucose levels in both men and women, although
stronger in the latter, while negative associations emerged with triglycerides as well as
HDL-, LDL- and total cholesterol. The association between urinary selenium and thyroid-
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stimulating hormone levels was found to be slightly negative in men and weakly positive
in women, although both estimates were statistically very unstable.

Additionally, the sex-specific spline regression analyses showed differences from the
slopes computed for the overall population. Concerning urinary selenium concentration,
both men and women experienced the same slightly positive association with blood glucose
levels and LDL-cholesterol. Total cholesterol was slightly positively associated with urinary
selenium in men, while a negative association was observed in women above 30 µg/L.
The association with HDL-cholesterol was different in the two sexes, since we found a
U-shaped curve in men, with clear evidence of a decrease up to 30 µg/L and higher values
above this apparent threshold. The pattern was almost the opposite in women, with a
decreasing trend above a 30 µg/L concentration of urinary selenium. The association with
triglycerides was generally positive in men, although a plateau was reached at around
40 µg/L, while in women the relation was negative up to 20 µg/L and then became positive
above that value. As in the linear regression analyses, the association between urinary
selenium and thyroid-stimulating hormone was different for the two sexes. In fact, an
entirely positive and almost linear pattern was observed in men. In women, on the other
hand, the positive association flattened around 30 µg/L and the curve then started to
decrease, thus showing an inverted U-shaped pattern (Figures S2 and S3).

Furthermore, regarding the associations between dietary selenium intake and health-
related endpoints, we found several sex-related differences. Glucose levels were uniformly
and positively associated in men, while an inverted U-shaped curve was observed in
women above 100 µg/day. The relation with total cholesterol was negative in both sub-
groups, although its shape was less linear in men. The curve for HDL-cholesterol was
similarly U-shaped in men and women, although more flattened in the former subgroup.
The association with LDL-cholesterol was U-shaped and inverted U-shaped in men and
women, respectively, in both cases changing its direction above 100 µg/day. Triglyc-
erides were negatively related to dietary selenium in both subgroups, although the curves
decreased at different intake levels. Concerning the relation with thyroid-stimulating
hormone, an almost null association was reported for women, while a negative association
was observed in men up to 100 µg/day; above that value, the curve inverted its direction
and slightly increased, showing a U-shaped pattern (Figures S4 and S5).
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Figure 2. Spline regression analysis of urinary selenium (Se) levels, glycemic and lipid profile variables and thyroid-
stimulating hormone (TSH). Solid lines represent multivariable analysis (adjusted for age, sex, body mass index, cotinine
levels and alcohol intake) and the shaded area indicates upper and lower confidence interval limits.
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Figure 3. Spline regression analysis of dietary selenium (Se) levels, glycemic and lipid profile variables and thyroid-
stimulating hormone (TSH). Solid lines represent multivariable analysis (adjusted for age, sex, body mass index, cotinine
levels and alcohol intake) and the shaded area indicates upper and lower confidence interval limits.
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4. Discussion

While there is much uncertainty about the role of selenium in human health, con-
vincing evidence has been provided to support its ability to increase the risk of metabolic
disease even at unexpectedly low exposure levels. This is clearly the case for type 2 diabetes
based on randomized controlled trials [12] and observational studies [8], but it could also
be true for hypertension and non-alcoholic fatty liver disease [10,35,36]. An association,
either adverse or beneficial, between selenium status and lipid profile is considerably more
controversial, due to conflicting findings from both experimental and non-experimental
human studies [37–42]. In addition, there is still considerable uncertainty about what
threshold of selenium exposure can trigger such adverse metabolic effects. Overall, these
issues bear on the identification of a safe range of selenium intake, which has generated
considerable interest and led to different approaches and standards across countries and
the scientific community [6,43–46].

In this study, evidence appears to substantially validate the assessment of selenium
intake through questionnaires on urinary excretion of the element, although such relation
has not always been found [24,25,47,48]. It should also be noted that this relation was
evident despite the non-irrelevant number of study participants reporting occasional
use of selenium-containing dietary supplements. This tends to reduce the reliability
of assessments of selenium intake based only on a food frequency questionnaire, as in
this case.

Given the positive association between urinary and dietary selenium we detected, it
appears surprising that most relations between exposure and health endpoints observed
through multivariable regression analysis highlighted an inconsistency between these two
indicators of selenium exposure in terms of the direction, strength and statistical precision
of the associations. At the same time, it must be noted that the correlation between these
two indicators of selenium exposure was positive, but not very strong. The reasons for
such partial lack of association could be twofold: first, the different exposure timeframe
implied by the two methods, which is longer for dietary selenium intake (approximately
one year); secondly, the uncertainty inherent in the dietary assessment methodologies, i.e.,
an inaccurate evaluation of both participants’ food intake and the selenium content of food
items. In addition, such a discrepancy, as well as a lower capacity to correlate with the
health endpoints of estimated dietary selenium intake compared with the biomarker, could
be due to differences across study participants at two levels: first of all, in terms of diet
composition, due to other dietary constituents influencing selenium absorption; secondly,
in gastrointestinal absorption capacity. In this study population, therefore, we assume
that the biomarker, i.e., urinary selenium concentrations, provides a better estimate of the
bioavailable selenium pool in the study participants.

Evidence suggests a detrimental effect of selenium exposure on glucose and lipid
metabolism. This is supported by two elements. The first is the positive association be-
tween urinary selenium concentrations and both blood glucose and two lipid parameters,
such as LDL-cholesterol and triglycerides. The second is the negative association with
HDL-cholesterol in both crude and adjusted analyses. This was the case despite the overall
amount of selenium exposure falling in the expected range for both the Italian and more
generally the European populations [21,26,49], and despite the fact that these associations
were weak and generally statistically imprecise. The possibility that selenium may in-
crease glycemia has been suggested by some prospective [50,51] and cross-sectional or
case-control studies [50,52–54], although not all cohort studies are consistent [6,55]. In addi-
tion, a positive association between selenium exposure and glycemia is strongly supported
by experimental and non-experimental studies on selenium and type 2 diabetes, with
randomized controlled trials consistently showing a relation between selenium supplemen-
tation and disease risk [12]. The association was further supported by observational studies
providing evidence of increasing diabetes risk above a threshold of selenium exposure at
around 80 µg of daily intake [8].
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The association of adverse lipid profile endpoints with urinary selenium is not en-
tirely surprising, given the dose–response association between higher blood selenium
concentrations and metabolic syndrome, higher triglycerides and LDL-cholesterol, as well
as the lower HDL-cholesterol consistently found in the National Health and Nutrition
Examination Surveys (NHANES) and other studies [39,52,54,56–58]. Conversely, random-
ized controlled trials have shown little if any effect of selenium supplementation on the
lipid profile [38,40]. In those studies, however, high-selenium yeast was used to increase
selenium intake, and the specific selenium species released by that source may be different
from those characterizing the usual diet. It must also be noted that the other indicator
of selenium exposure in our study, namely the assessment of the dietary intake of the
element, showed neither a clear nor a consistent association with the lipid profiles. The
only exception to this was the inverse association with HDL-cholesterol, which was also
the lipid variable most strongly associated with urinary selenium concentrations. Overall,
the inverse and almost linear association between urinary selenium exposure and HDL-
cholesterol, as well as the positive association with triglyceride levels, can be considered
the most relevant and consistent finding of our study with reference to the lipid profile.
Moreover, it suggests the deleterious effect of selenium even at the rather low amounts of
exposure characterizing the study population, which has so far been considered to be safe
according to current recommended dietary values [49,59].

To the metabolic endpoints we also added an endocrine parameter, thyroid-stimulating
hormone, whose association with selenium was conflicted across the two exposure indica-
tors used in the study and is substantially unclear. The interaction between selenium intake
and thyroid hormone status appears to be complex and largely depends on the amount
of exposure, the chemical forms of selenium involved, the specific thyroid hormones un-
der investigation and possible abnormalities in thyroid gland function and disease [6,46].
Selenium administered as selenized yeast (therefore presumably as selenomethionine)
decreased thyroid-stimulating hormone levels compared with placebo in a randomized
controlled trial [60] and in a subgroup of pregnant women with mild to moderate iodine
deficiency [61]. On the other hand, little evidence of any effect emerged from another trial
in the UK [19] and a small trial in the US [62]. It must be noted that an inhibitory effect of se-
lenium administration on triiodothyronine and thyroxine and a rise in thyroid-stimulating
hormone have been noted in some human studies. However, the exact amount of selenium
exposure at which this may occur is unclear [15]. Unfortunately, we did not assess the full
spectrum of thyroid hormones in this study. Therefore, we could not test the possibility
that the slightly positive and statistically imprecise association between urinary selenium
and thyroid-stimulating hormone may be due to a slight inhibitory effect of selenium on
triiodothyronine and thyroxine synthesis.

In our study, we also assessed the sex-related differences between selenium and the
metabolic endpoints, finding some evidence of a stronger and more adverse association
between selenium and metabolic endpoints in men compared with women. In recent
years, new evidence has emerged in relation to sexual dimorphism in glucose and lipid
metabolism [63,64]. As their molecular mechanisms start to be revealed, some animal
and laboratory studies suggest that the tissue distribution of selenium may be affected by
hormone levels, and that interactions exist between sex hormones, particularly estrogens,
and selenium metabolism and activity parameters [65–69]. This supports the possibility
that the effects of selenium differ according to sex, which should be noted with reference
to its capacity to alter metabolic disease risk [70,71]. Both in the present study and in
previous reports, however, the effect estimates were too statistically unstable to allow for
a meaningful assessment of sex as an effect modifier of the adverse metabolic effects of
selenium and selenium species.

Among the limitations of this study is its non-experimental design. This precludes the
possibility of selectively attributing the trends and changes in health endpoints to variation
in selenium exposure, given the potential for confounding due to unmeasured dietary and
lifestyle factors. On the other hand, the presence of clinical and subclinical disease biasing
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both selenium intake and metabolism is very unlikely to have occurred in a substantial
way in our study population. In fact, our carefully selected ‘healthy’ volunteers were also
closely monitored with reference to their blood donation. Another limitation is that in this
report we did not consider the chemical species of selenium found in foods and in the body
(blood and urine). This should be assessed in the context of the limited information about
selenium speciation in food, and bearing in mind that the determination of the chemical
form of the element in urine is very rarely performed. The specificity of both nutritional and
toxic properties of selenium critically depends on their chemical species [16,17,72,73], and
this may also be true for the adverse effects on metabolic parameters. Finally, the potential
mechanisms underpinning the adverse metabolic effects of selenium should be investigated
in a more in-depth fashion, focusing on the possible influence of selenium species on redox
status [74–76], protein integrity [77] and the microbiome—a less investigated but potentially
interesting lead due to its connection with metabolic and chronic diseases [78,79].

5. Conclusions

In conclusion, our findings provide evidence for a positive and almost linear asso-
ciations between urinary selenium and glycemic and triglyceride levels, and a negative
relation with LDL-cholesterol concentrations. On the other hand, dietary selenium intake
was more weakly and non-linearly associated with most of the endpoints considered.
If confirmed by further studies, our results may add to the available evidence at two
levels: first of all in reconsidering the safer levels of selenium intake, and secondly in
establishing which indicators of selenium exposure are more suitable for the assessment of
its toxic effects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10081193/s1.

Author Contributions: Conceptualization, T.F. and M.V.; methodology, T.F., M.V. and S.F.; formal
analysis, T.U., T.F., S.S. and E.P.; resources and recruitment, D.L. and T.D.L.; data curation, T.U., T.F.,
M.M., F.B., C.B. and T.A.P.; writing—original draft preparation, T.U.; writing—review and editing, all
authors; supervision, A.S. and R.B.; project administration, M.V.; funding acquisition, R.B. and M.V.
All authors have read and agreed to the published version of the manuscript.

Funding: Filippini, Malavolti, Urbano and Vinceti were supported by the grant “Dipartimenti di
Eccellenza 2018–2022” to the UNIMORE Department of Biomedical, Metabolic and Neural Sciences
from the Italian Ministry of Education, University and Research. Filippini was supported by the
grant ‘UNIMORE FAR IMPULSO 2020′ (no. 494/2020) from the University of Modena and Reggio
Emilia. Vinceti was supported by the Reggio Emilia Health Authority of the National Health Service.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Reggio Emilia Ethics Committee (approval no. approval
no. 2016/0022799).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study may be available on reasonable
request from the corresponding author. The data are not publicly available due to privacy and
legal restrictions.

Acknowledgments: We acknowledge the collaboration of the personnel of Transfusion Medicine
Unit of AUSL-IRCCS of Reggio Emilia, staff and volunteers of AVIS-Section of Reggio Emilia and all
blood donors who participated in this study.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/antiox10081193/s1
https://www.mdpi.com/article/10.3390/antiox10081193/s1


Antioxidants 2021, 10, 1193 14 of 17

References
1. Jablonska, E.; Vinceti, M. Selenium and human health: Witnessing a Copernican revolution? J. Environ. Sci. Health C Environ.

Carcinog. Ecotoxicol. Rev. 2015, 33, 328–368. [CrossRef]
2. Kasaikina, M.V.; Turanov, A.A.; Avanesov, A.; Schweizer, U.; Seeher, S.; Bronson, R.T.; Novoselov, S.N.; Carlson, B.A.; Hatfield,

D.L.; Gladyshev, V.N. Contrasting roles of dietary selenium and selenoproteins in chemically induced hepatocarcinogenesis.
Carcinogenesis 2013, 34, 1089–1095. [CrossRef]

3. Varlamova, E.G.; Cheremushkina, I.V. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J. Trace
Elem. Med. Biol. 2017, 39, 76–85. [CrossRef]

4. Kolbert, Z.; Molnar, A.; Feigl, G.; Van Hoewyk, D. Plant selenium toxicity: Proteome in the crosshairs. J. Plant Physiol. 2019, 232,
291–300. [CrossRef]

5. Vinceti, M.; Filippini, T.; Cilloni, S.; Crespi, C.M. The epidemiology of selenium and human cancer. Adv. Cancer Res. 2017, 136,
1–48. [CrossRef]

6. Vinceti, M.; Filippini, T.; Wise, L.A. Environmental selenium and human health: An update. Curr. Environ. Health Rep. 2018, 5,
464–485. [CrossRef]

7. Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.A.; Horneber, M.; D’Amico, R.;
Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2018, 2018, CD005195. [CrossRef] [PubMed]

8. Vinceti, M.; Filippini, T.; Wise, L.A.; Rothman, K.J. A systematic review and dose-response meta-analysis of exposure to
environmental selenium and the risk of type 2 diabetes in nonexperimental studies. Environ. Res. 2021, 197, 111210. [CrossRef]
[PubMed]

9. Ju, W.; Ji, M.; Li, X.; Li, Z.; Wu, G.; Fu, X.; Yang, X.; Gao, X. Relationship between higher serum selenium level and adverse blood
lipid profile. Clin. Nutr. 2018, 37, 1512–1517. [CrossRef] [PubMed]

10. Wang, X.; Seo, Y.A.; Park, S.K. Serum selenium and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National Health and
Nutrition Examination Survey (NHANES) 2011–2016. Environ. Res. 2021, 197, 111190. [CrossRef] [PubMed]

11. Vinceti, M.; Chiari, A.; Eichmuller, M.; Rothman, K.J.; Filippini, T.; Malagoli, C.; Weuve, J.; Tondelli, M.; Zamboni, G.; Nichelli,
P.F.; et al. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer’s dementia in persons with mild cognitive
impairment. Alzheimers Res. Ther. 2017, 9, 100. [CrossRef]

12. Vinceti, M.; Filippini, T.; Rothman, K.J. Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis.
Eur. J. Epidemiol. 2018, 33, 789–810. [CrossRef] [PubMed]

13. Hegedus, L.; Bonnema, S.J.; Winther, K.H. Selenium in the treatment of thyroid diseases: An element in search of the relevant
indications? Eur. Thyroid J. 2016, 5, 149–151. [CrossRef]

14. Negro, R.; Attanasio, R.; Grimaldi, F.; Marcocci, C.; Guglielmi, R.; Papini, E. A 2016 Italian survey about the clinical use of
selenium in thyroid disease. Eur. Thyroid J. 2016, 5, 164–170. [CrossRef]

15. Vinceti, M.; Wei, E.T.; Malagoli, C.; Bergomi, M.; Vivoli, G. Adverse health effects of selenium in humans. Rev. Environ. Health
2001, 16, 233–251. [CrossRef]

16. Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am.
J. Clin. Nutr. 2010, 91, 1484S–1491S. [CrossRef]

17. Fan, A.M.; Vinceti, M. Selenium and its Compounds. In Hamilton & Hardy’s Industrial Toxicology; Wiley-Blackwell: Hoboken, NJ,
USA, 2015; pp. 205–228.

18. Michalke, B.; Berthele, A. Contribution to selenium speciation in cerebrospinal fluid samples. J. Anal. At. Spectrom. 2011, 26,
165–170. [CrossRef]

19. Rayman, M.P.; Thompson, A.J.; Bekaert, B.; Catterick, J.; Galassini, R.; Hall, E.; Warren-Perry, M.; Beckett, G.J. Randomized
controlled trial of the effect of selenium supplementation on thyroid function in the elderly in the United Kingdom. Am. J. Clin.
Nutr. 2008, 87, 370–378. [CrossRef] [PubMed]

20. Filippini, T.; Michalke, B.; Wise, L.A.; Malagoli, C.; Malavolti, M.; Vescovi, L.; Salvia, C.; Bargellini, A.; Sieri, S.; Krogh, V.; et al.
Diet composition and serum levels of selenium species: A cross-sectional study. Food Chem. Toxicol. 2018, 115, 482–490. [CrossRef]
[PubMed]

21. Filippini, T.; Cilloni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Bottecchi, I.; Ferrari, A.; Vescovi, L.; Vinceti, M. Dietary
intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. J. Trace Elem. Med. Biol.
2018, 50, 508–517. [CrossRef]

22. Bogden, J.D.; Kemp, F.W.; Buse, M.; Thind, I.S.; Louria, D.B.; Forgacs, J.; Llanos, G.; Moncoya Terrones, I. Composition of tobaccos
from countries with high and low incidences of lung cancer. I. Selenium, polonium-210, Alternaria, tar, and nicotine. J. Natl.
Cancer Inst. 1981, 66, 27–31. [CrossRef]

23. Heck, J.E.; Park, A.S.; Qiu, J.; Cockburn, M.; Ritz, B. Risk of leukemia in relation to exposure to ambient air toxics in pregnancy
and early childhood. Int. J. Hyg. Environ. Health 2014, 217, 662–668. [CrossRef]

24. Goen, T.; Schaller, B.; Jager, T.; Brau-Dumler, C.; Schaller, K.H.; Drexler, H. Biological monitoring of exposure and effects in
workers employed in a selenium-processing plant. Int. Arch. Occup. Environ. Health 2015, 88, 623–630. [CrossRef]

25. Ashton, K.; Hooper, L.; Harvey, L.J.; Hurst, R.; Casgrain, A.; Fairweather-Tait, S.J. Methods of assessment of selenium status in
humans: A systematic review. Am. J. Clin. Nutr. 2009, 89, 2025S–2039S. [CrossRef] [PubMed]

http://doi.org/10.1080/10590501.2015.1055163
http://doi.org/10.1093/carcin/bgt011
http://doi.org/10.1016/j.jtemb.2016.08.004
http://doi.org/10.1016/j.jplph.2018.11.003
http://doi.org/10.1016/bs.acr.2017.07.001
http://doi.org/10.1007/s40572-018-0213-0
http://doi.org/10.1002/14651858.CD005195.pub4
http://www.ncbi.nlm.nih.gov/pubmed/29376219
http://doi.org/10.1016/j.envres.2021.111210
http://www.ncbi.nlm.nih.gov/pubmed/33895112
http://doi.org/10.1016/j.clnu.2017.08.025
http://www.ncbi.nlm.nih.gov/pubmed/28943111
http://doi.org/10.1016/j.envres.2021.111190
http://www.ncbi.nlm.nih.gov/pubmed/33872646
http://doi.org/10.1186/s13195-017-0323-1
http://doi.org/10.1007/s10654-018-0422-8
http://www.ncbi.nlm.nih.gov/pubmed/29974401
http://doi.org/10.1159/000448002
http://doi.org/10.1159/000447667
http://doi.org/10.1515/REVEH.2001.16.4.233
http://doi.org/10.3945/ajcn.2010.28674J
http://doi.org/10.1039/C0JA00106F
http://doi.org/10.1093/ajcn/87.2.370
http://www.ncbi.nlm.nih.gov/pubmed/18258627
http://doi.org/10.1016/j.fct.2018.03.048
http://www.ncbi.nlm.nih.gov/pubmed/29621579
http://doi.org/10.1016/j.jtemb.2018.03.001
http://doi.org/10.1093/jnci/66.1.27
http://doi.org/10.1016/j.ijheh.2013.12.003
http://doi.org/10.1007/s00420-014-0989-7
http://doi.org/10.3945/ajcn.2009.27230F
http://www.ncbi.nlm.nih.gov/pubmed/19420095


Antioxidants 2021, 10, 1193 15 of 17

26. Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease.
Antioxid. Redox Signal. 2011, 14, 1337–1383. [CrossRef]

27. Chawla, R.; Filippini, T.; Loomba, R.; Cilloni, S.; Dhillon, K.S.; Vinceti, M. Exposure to a high selenium environment in Punjab,
India: Biomarkers and health conditions. Sci. Total Environ. 2020, 719, 134541. [CrossRef] [PubMed]

28. Filippini, T.; Ferrari, A.; Michalke, B.; Grill, P.; Vescovi, L.; Salvia, C.; Malagoli, C.; Malavolti, M.; Sieri, S.; Krogh, V.; et al. Toenail
selenium as an indicator of environmental exposure: A cross-sectional study. Mol. Med. Rep. 2017, 15, 3405–3412. [CrossRef]

29. Hawkes, W.C.; Richter, B.D.; Alkan, Z.; Souza, E.C.; Derricote, M.; Mackey, B.E.; Bonnel, E.L. Response of selenium status
indicators to supplementation of healthy North American men with high-selenium yeast. Biol. Trace Elem. Res. 2008, 122, 107–121.
[CrossRef] [PubMed]

30. Campo, L.; Polledri, E.; Bechtold, P.; Gatti, G.; Ranzi, A.; Lauriola, P.; Goldoni, C.A.; Bertazzi, P.A.; Fustinoni, S. Determinants of
active and environmental exposure to tobacco smoke and upper reference value of urinary cotinine in not exposed individuals.
Environ. Res. 2016, 148, 154–163. [CrossRef] [PubMed]

31. Fustinoni, S.; Campo, L.; Polledri, E.; Mercadante, R.; Erspamer, L.; Ranzi, A.; Lauriola, P.; Goldoni, C.A.; Bertazzi, P. A validated
method for urinary cotinine quantification used to classify active and environmental tobacco smoke exposure. Curr. Anal. Chem.
2013, 9, 447–456. [CrossRef]

32. Filippini, T.; Malavolti, M.; Cilloni, S.; Wise, L.A.; Violi, F.; Malagoli, C.; Vescovi, L.; Vinceti, M. Intake of arsenic and mercury
from fish and seafood in a Northern Italy community. Food Chem. Toxicol. 2018, 116, 20–26. [CrossRef]

33. Malavolti, M.; Fairweather-Tait, S.J.; Malagoli, C.; Vescovi, L.; Vinceti, M.; Filippini, T. Lead exposure in an Italian population:
Food content, dietary intake and risk assessment. Food Res. Int. 2020, 137, 109370. [CrossRef]

34. Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma,
without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [CrossRef]

35. Su, L.; Jin, Y.; Unverzagt, F.W.; Liang, C.; Cheng, Y.; Hake, A.M.; Kuruppu, D.; Ma, F.; Liu, J.; Chen, C.; et al. Longitudinal
association between selenium levels and hypertension in a rural elderly Chinese cohort. J. Nutr. Health Aging 2016, 20, 983–988.
[CrossRef] [PubMed]

36. Vinceti, M.; Michalke, B.; Malagoli, C.; Eichmuller, M.; Filippini, T.; Tondelli, M.; Bargellini, A.; Vinceti, G.; Zamboni, G.; Chiari, A.
Selenium and selenium species in the etiology of Alzheimer’s dementia: The potential for bias of the case-control study design. J.
Trace Elem. Med. Biol. 2019, 53, 154–162. [CrossRef] [PubMed]

37. Bleys, J.; Navas-Acien, A.; Stranges, S.; Menke, A.; Miller, E.R., 3rd; Guallar, E. Serum selenium and serum lipids in US adults.
Am. J. Clin. Nutr. 2008, 88, 416–423. [CrossRef] [PubMed]

38. Cold, F.; Winther, K.H.; Pastor-Barriuso, R.; Rayman, M.P.; Guallar, E.; Nybo, M.; Griffin, B.A.; Stranges, S.; Cold, S. Randomised
controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br. J.
Nutr. 2015, 114, 1807–1818. [CrossRef] [PubMed]

39. Laclaustra, M.; Stranges, S.; Navas-Acien, A.; Ordovas, J.M.; Guallar, E. Serum selenium and serum lipids in US adults: National
Health and Nutrition Examination Survey (NHANES) 2003–2004. Atherosclerosis 2010, 210, 643–648. [CrossRef]

40. Rayman, M.P.; Stranges, S.; Griffin, B.A.; Pastor-Barriuso, R.; Guallar, E. Effect of supplementation with high-selenium yeast on
plasma lipids: A randomized trial. Ann. Intern. Med. 2011, 154, 656–665. [CrossRef]

41. Stranges, S.; Laclaustra, M.; Ji, C.; Cappuccio, F.P.; Navas-Acien, A.; Ordovas, J.M.; Rayman, M.; Guallar, E. Higher selenium
status is associated with adverse blood lipid profile in British adults. J. Nutr. 2010, 140, 81–87. [CrossRef]

42. Tinkov, A.A.; Bogdanski, P.; Skrypnik, D.; Skrypnik, K.; Skalny, A.V.; Aaseth, J.; Skalnaya, M.G.; Suliburska, J. Trace element
and mineral levels in serum, hair, and urine of obese women in relation to body composition, blood pressure, lipid profile, and
insulin resistance. Biomolecules 2021, 11, 689. [CrossRef] [PubMed]

43. Filippini, T.; Adani, G.; Malavolti, M.; Garuti, C.; Cilloni, S.; Vinceti, G.; Zamboni, G.; Tondelli, M.; Galli, C.; Costa, M.; et al.
Dietary habits and risk of early-onset dementia in an Italian case-control study. Nutrients 2020, 12, 3682. [CrossRef]

44. Saito, Y. Selenoprotein P as an in vivo redox regulator: Disorders related to its deficiency and excess. J. Clin. Biochem. Nutr. 2020,
66, 1–7. [CrossRef] [PubMed]

45. Tinkov, A.A.; Ajsuvakova, O.P.; Filippini, T.; Zhou, J.-C.; Lei, X.G.; Gatiatulina, E.R.; Michalke, B.; Skalnaya, M.G.; Vinceti, M.;
Aschner, M.; et al. Selenium and selenoproteins in adipose tissue physiology and obesity. Biomolecules 2020, 10, 658. [CrossRef]
[PubMed]

46. Vinceti, M.; Filippini, T.; Cilloni, S.; Bargellini, A.; Vergoni, A.V.; Tsatsakis, A.; Ferrante, M. Health risk assessment of environmental
selenium: Emerging evidence and challenges. Mol. Med. Rep. 2017, 15, 3323–3335. [CrossRef] [PubMed]

47. Gammelgaard, B.; Sturup, S.; Christensen, M.V. Human urinary excretion and metabolism of (82)Se-enriched selenite and selenate
determined by LC-ICP-MS. Metallomics 2012, 4, 149–155. [CrossRef]

48. Kokarnig, S.; Tsirigotaki, A.; Wiesenhofer, T.; Lackner, V.; Francesconi, K.A.; Pergantis, S.A.; Kuehnelt, D. Concurrent quantitative
HPLC-mass spectrometry profiling of small selenium species in human serum and urine after ingestion of selenium supplements.
J. Trace Elem. Med. Biol. 2015, 29, 83–90. [CrossRef] [PubMed]

49. EFSA. Scientific opinion on dietary reference values for selenium. EFSA J. 2014, 12, 3846. [CrossRef]
50. Gao, H.; Hagg, S.; Sjogren, P.; Lambert, P.C.; Ingelsson, E.; van Dam, R.M. Serum selenium in relation to measures of glucose

metabolism and incidence of type 2 diabetes in an older Swedish population. Diabet. Med. 2014, 31, 787–793. [CrossRef]

http://doi.org/10.1089/ars.2010.3275
http://doi.org/10.1016/j.scitotenv.2019.134541
http://www.ncbi.nlm.nih.gov/pubmed/31862262
http://doi.org/10.3892/mmr.2017.6388
http://doi.org/10.1007/s12011-007-8066-7
http://www.ncbi.nlm.nih.gov/pubmed/18193397
http://doi.org/10.1016/j.envres.2016.03.029
http://www.ncbi.nlm.nih.gov/pubmed/27060750
http://doi.org/10.2174/1573411011309030014
http://doi.org/10.1016/j.fct.2018.04.010
http://doi.org/10.1016/j.foodres.2020.109370
http://doi.org/10.1093/clinchem/18.6.499
http://doi.org/10.1007/s12603-016-0700-7
http://www.ncbi.nlm.nih.gov/pubmed/27925137
http://doi.org/10.1016/j.jtemb.2019.03.002
http://www.ncbi.nlm.nih.gov/pubmed/30910200
http://doi.org/10.1093/ajcn/88.2.416
http://www.ncbi.nlm.nih.gov/pubmed/18689378
http://doi.org/10.1017/S0007114515003499
http://www.ncbi.nlm.nih.gov/pubmed/26420334
http://doi.org/10.1016/j.atherosclerosis.2010.01.005
http://doi.org/10.7326/0003-4819-154-10-201105170-00005
http://doi.org/10.3945/jn.109.111252
http://doi.org/10.3390/biom11050689
http://www.ncbi.nlm.nih.gov/pubmed/34064348
http://doi.org/10.3390/nu12123682
http://doi.org/10.3164/jcbn.19-31
http://www.ncbi.nlm.nih.gov/pubmed/32001950
http://doi.org/10.3390/biom10040658
http://www.ncbi.nlm.nih.gov/pubmed/32344656
http://doi.org/10.3892/mmr.2017.6377
http://www.ncbi.nlm.nih.gov/pubmed/28339083
http://doi.org/10.1039/c2mt00163b
http://doi.org/10.1016/j.jtemb.2014.06.012
http://www.ncbi.nlm.nih.gov/pubmed/25063689
http://doi.org/10.2903/j.efsa.2014.3846
http://doi.org/10.1111/dme.12429


Antioxidants 2021, 10, 1193 16 of 17

51. Oo, S.M.; Misu, H.; Saito, Y.; Tanaka, M.; Kato, S.; Kita, Y.; Takayama, H.; Takeshita, Y.; Kanamori, T.; Nagano, T.; et al. Serum
selenoprotein P, but not selenium, predicts future hyperglycemia in a general Japanese population. Sci. Rep. 2018, 8, 16727.
[CrossRef] [PubMed]

52. Bulka, C.M.; Persky, V.W.; Daviglus, M.L.; Durazo-Arvizu, R.A.; Argos, M. Multiple metal exposures and metabolic syndrome: A
cross-sectional analysis of the National Health and Nutrition Examination Survey 2011-2014. Environ. Res. 2019, 168, 397–405.
[CrossRef]

53. Pounis, G.; Costanzo, S.; Persichillo, M.; de Curtis, A.; Sieri, S.; Vinceti, M.; Zito, F.; Di Castelnuovo, A.F.; Donati, M.B.; de Gaetano,
G.; et al. Mushroom and dietary selenium intakes in relation to fasting glucose levels in a free-living Italian adult population: The
Moli-sani Project. Diabetes Metab. 2014, 40, 34–42. [CrossRef]

54. Zhou, L.; Luo, C.; Yin, J.; Zhu, Y.; Li, P.; Chen, S.; Sun, T.; Xie, M.; Shan, Z.; Cao, B.; et al. Diverse associations of plasma selenium
concentrations and SELENOP gene polymorphism with metabolic syndrome and its components. Oxid. Med. Cell Longev. 2020,
2020, 5343014. [CrossRef] [PubMed]

55. Akbaraly, T.N.; Arnaud, J.; Rayman, M.P.; Hininger-Favier, I.; Roussel, A.M.; Berr, C.; Fontbonne, A. Plasma selenium and risk of
dysglycemia in an elderly French population: Results from the prospective Epidemiology of Vascular Ageing Study. Nutr. Metab.
2010, 7, 21. [CrossRef]

56. Christensen, K.; Werner, M.; Malecki, K. Serum selenium and lipid levels: Associations observed in the National Health and
Nutrition Examination Survey (NHANES) 2011–2012. Environ. Res. 2015, 140, 76–84. [CrossRef]

57. Fang, H.; He, X.; Wu, Y.; Chen, S.; Zhang, M.; Pan, F.; Huang, J.; Liu, A. Association Between Selenium Level in Blood and
Glycolipid Metabolism in Residents of Enshi Prefecture, China. Biol. Trace Elem. Res. 2021, 199, 2456–2466. [CrossRef]

58. Huang, Y.Q.; Shen, G.; Lo, K.; Huang, J.Y.; Liu, L.; Chen, C.L.; Yu, Y.L.; Sun, S.; Zhang, B.; Feng, Y.Q. Association of circulating
selenium concentration with dyslipidemia: Results from the NHANES. J. Trace Elem. Med. Biol. 2020, 58, 126438. [CrossRef]

59. National Research Council. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; Institute of Medicine:
Washington, DC, USA, 2000.

60. Winther, K.H.; Bonnema, S.J.; Cold, F.; Debrabant, B.; Nybo, M.; Cold, S.; Hegedus, L. Does selenium supplementation affect
thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur. J. Endocrinol. 2015,
172, 657–667. [CrossRef] [PubMed]

61. Mao, J.; Pop, V.J.; Bath, S.C.; Vader, H.L.; Redman, C.W.; Rayman, M.P. Effect of low-dose selenium on thyroid autoimmunity
and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency. Eur. J. Nutr. 2016, 55, 55–61. [CrossRef]
[PubMed]

62. Combs, G.F., Jr.; Midthune, D.N.; Patterson, K.Y.; Canfield, W.K.; Hill, A.D.; Levander, O.A.; Taylor, P.R.; Moler, J.E.; Patterson,
B.H. Effects of selenomethionine supplementation on selenium status and thyroid hormone concentrations in healthy adults. Am.
J. Clin. Nutr. 2009, 89, 1808–1814. [CrossRef] [PubMed]

63. Galan, P.; Viteri, F.E.; Bertrais, S.; Czernichow, S.; Faure, H.; Arnaud, J.; Ruffieux, D.; Chenal, S.; Arnault, N.; Favier, A.; et al.
Serum concentrations of beta-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status,
alcohol consumption and corpulence in a general French adult population. Eur. J. Clin. Nutr. 2005, 59, 1181–1190. [CrossRef]
[PubMed]

64. Morford, J.; Mauvais-Jarvis, F. Sex differences in the effects of androgens acting in the central nervous system on metabolism.
Dialogues Clin. Neurosci. 2016, 18, 415–424. [CrossRef]

65. Choe, S.Y.; Kim, S.J.; Kim, H.G.; Lee, J.H.; Choi, Y.; Lee, H.; Kim, Y. Evaluation of estrogenicity of major heavy metals. Sci. Total
Environ. 2003, 312, 15–21. [CrossRef]

66. Lee, S.O.; Nadiminty, N.; Wu, X.X.; Lou, W.; Dong, Y.; Ip, C.; Onate, S.A.; Gao, A.C. Selenium disrupts estrogen signaling by
altering estrogen receptor expression and ligand binding in human breast cancer cells. Cancer Res. 2005, 65, 3487–3492. [CrossRef]
[PubMed]

67. Schomburg, L.; Schweizer, U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim.
Biophys. Acta 2009, 1790, 1453–1462. [CrossRef]

68. Seale, L.A.; Ogawa-Wong, A.N.; Berry, M.J. Sexual dimorphism in selenium metabolism and selenoproteins. Free Radic. Biol. Med.
2018, 127, 198–205. [CrossRef]

69. Stoica, A.; Pentecost, E.; Martin, M.B. Effects of selenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer
cells. J. Cell. Biochem. 2000, 79, 282–292. [CrossRef]

70. Stranges, S.; Marshall, J.R.; Natarajan, R.; Donahue, R.P.; Trevisan, M.; Combs, G.F.; Cappuccio, F.P.; Ceriello, A.; Reid, M.E. Effects
of long-term selenium supplementation on the incidence of type 2 diabetes: A randomized trial. Ann. Intern. Med. 2007, 147,
217–223. [CrossRef]

71. Vinceti, M.; Bonaccio, M.; Filippini, T.; Costanzo, S.; Wise, L.A.; Di Castelnuovo, A.; Ruggiero, E.; Persichillo, M.; Cerletti, C.;
Donati, M.B.; et al. Dietary selenium intake and risk of hospitalization for type 2 diabetes in the Moli-sani study cohort. Nutr.
Metab. Cardiovasc. Dis. 2021, 31, 1738–1746. [CrossRef]

72. Michalke, B.; Halbach, S.; Nischwitz, V. JEM spotlight: Metal speciation related to neurotoxicity in humans. J. Environ. Monit.
2009, 11, 939–954. [CrossRef]

73. Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and
treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-018-35067-2
http://www.ncbi.nlm.nih.gov/pubmed/30425271
http://doi.org/10.1016/j.envres.2018.10.022
http://doi.org/10.1016/j.diabet.2013.09.007
http://doi.org/10.1155/2020/5343014
http://www.ncbi.nlm.nih.gov/pubmed/32377302
http://doi.org/10.1186/1743-7075-7-21
http://doi.org/10.1016/j.envres.2015.03.020
http://doi.org/10.1007/s12011-020-02372-9
http://doi.org/10.1016/j.jtemb.2019.126438
http://doi.org/10.1530/EJE-15-0069
http://www.ncbi.nlm.nih.gov/pubmed/25740851
http://doi.org/10.1007/s00394-014-0822-9
http://www.ncbi.nlm.nih.gov/pubmed/25524327
http://doi.org/10.3945/ajcn.2008.27356
http://www.ncbi.nlm.nih.gov/pubmed/19403637
http://doi.org/10.1038/sj.ejcn.1602230
http://www.ncbi.nlm.nih.gov/pubmed/16034362
http://doi.org/10.31887/DCNS.2016.18.4/fmauvais
http://doi.org/10.1016/S0048-9697(03)00190-6
http://doi.org/10.1158/0008-5472.CAN-04-3267
http://www.ncbi.nlm.nih.gov/pubmed/15833885
http://doi.org/10.1016/j.bbagen.2009.03.015
http://doi.org/10.1016/j.freeradbiomed.2018.03.036
http://doi.org/10.1002/1097-4644(20001101)79:2&lt;282::AID-JCB110&gt;3.0.CO;2-V
http://doi.org/10.7326/0003-4819-147-4-200708210-00175
http://doi.org/10.1016/j.numecd.2021.02.016
http://doi.org/10.1039/b817817h
http://doi.org/10.1039/c3cs60272a
http://www.ncbi.nlm.nih.gov/pubmed/24030774


Antioxidants 2021, 10, 1193 17 of 17

74. Dauplais, M.; Mahou, P.; Plateau, P.; Lazard, M. Exposure to the methylselenol precursor dimethyldiselenide induces a reductive
endoplasmic reticulum stress in Saccharomyces Cerevisiae. Int. J. Mol. Sci. 2021, 22, 5467. [CrossRef]

75. Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [CrossRef] [PubMed]
76. Kondaparthi, P.; Deore, M.; Naqvi, S.; Flora, S.J.S. Dose-dependent hepatic toxicity and oxidative stress on exposure to nano and

bulk selenium in mice. Environ. Sci. Pollut. Res. Int. 2021. [CrossRef] [PubMed]
77. Lazard, M.; Dauplais, M.; Blanquet, S.; Plateau, P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic

cells. Biomol. Concepts 2017, 8, 93–104. [CrossRef] [PubMed]
78. Vamanu, E.; Rai, S.N. The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases 2021, 9, 45.

[CrossRef]
79. Pereira, A.M.; Pinna, C.; Biagi, G.; Stefanelli, C.; Maia, M.R.G.; Matos, E.; Segundo, M.A.; Fonseca, A.J.M.; Cabrita, A.R.J.

Supplemental selenium source on gut health: Insights on fecal microbiome and fermentation products of growing puppies. FEMS
Microbiol. Ecol. 2020, 96, fiaa212. [CrossRef]

http://doi.org/10.3390/ijms22115467
http://doi.org/10.1007/s42000-019-00125-5
http://www.ncbi.nlm.nih.gov/pubmed/31388899
http://doi.org/10.1007/s11356-021-14400-9
http://www.ncbi.nlm.nih.gov/pubmed/34023997
http://doi.org/10.1515/bmc-2017-0007
http://www.ncbi.nlm.nih.gov/pubmed/28574376
http://doi.org/10.3390/diseases9030045
http://doi.org/10.1093/femsec/fiaa212

	Introduction 
	Materials and Methods 
	Study Population 
	Laboratory Analyses 
	Analytical Determination of Biochemical Parameters in Blood and Urine 
	Analytical Determination of Selenium in Urine 

	Data Analysis 

	Results 
	Discussion 
	Conclusions 
	References

