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Korteweg-de-Vries and Fermi-Pasta-Ulam-Tsingou:

asymptotic integrability of quasi unidirectional waves
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Abstract

In this paper we construct a higher order expansion of the manifold of quasi unidirectional waves in
the Fermi-Pasta-Ulam-Tsingou (FPUT) chain. We also approximate the dynamics on this manifold. As
perturbation parameter we use h2 = 1/n2, where n is the number of particles of the chain. It is well
known that the dynamics of quasi unidirectional waves is described to first order by the Korteweg-de Vries
(KdV) equation. Here we show that the dynamics to second order is governed by a combination of the
first two nontrivial equations in the KdV hierarchy – for any choice of parameters in the FPUT potential.
On the other hand, we find that only if the parameters of the FPUT potential satisfy a condition, then
a combination of the first three nontrivial equations in the KdV hierarchy determines the dynamics of
quasi unidirectional waves to third order. The required condition is satisfied by the Toda chain. Our
results suggest why the close-to-integrable behavior of the FPUT chain (the FPUT paradox) persists on
a time scale longer than explained by the KdV approximation, and also how a breakdown of integrability
(detachment from the KdV hierarchy) may be responsible for the eventual thermalization of the system.

Keywords: Fermi-Pasta-Ulam-Tsingou, Korteweg-de Vries, Near-integrability, Normal forms.

1 Introduction

In the early 1950s, Fermi, Pasta, Ulam and Tsingou (FPUT) set up a series of numerical experiments,
with the purpose to measure the time of approach to statistical equilibrium in non-integrable Hamiltonian
systems. Their experiments were motivated by the conviction of Fermi that generic, large size Hamiltonian
systems are ergodic. FPUT studied a simple family of models: chains of particles interacting with their
nearest neighbors through a force of simple polynomial type. The unexpected outcome of their numerical
study [15], namely the observed lack of ergodicity and mixing over the computational time then available,
was named after them – the FPUT problem, or FPUT paradox. Although a complete mathematical
understanding of the FPUT problem is still lacking, some deep insights into specific features have been
obtained. It is not the aim of this paper to review the history of the FPUT problem; the interested reader
is referred to the existing reviews [2, 11, 12, 16, 29].

Nowadays, we know that the FPUT paradox is a matter of quasi-integrability. By this we mean that the
dynamics of the FPUT chain over short timescales resembles that of a closeby integrable system, while the
approach to statistical equilibrium, in the long run, is due to the perturbation. A Hamiltonian dynamical
system is said to be integrable if, when viewed in the appropriate coordinate system, its solutions execute
trivial, straight line motion. Which integrable system should be considered “closest” to the FPUT chain,
depends both on the model and on initial conditions. In this paper, we focus on the generic FPUT chain,
or FPUT α-model, in which the inter-particle forces display quadratic nonlinearities to leading order – see
equation (2) below. For this model, the first explanation of the FPUT paradox in terms of integrability
goes back to the pioneering work of Zabusky and Kruskal [32]. These authors show that the dynamics
in the chain can be described, for short times and for smooth low energy initial conditions close to a
unidirectional wave, by the Korteweg-de Vries (KdV) equation. This partial differential equation was
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later proved to be integrable [18, 23, 25, 33]. The approach in [32] was later enforced by Zakharov [34],
who proved the integrability of the quadratic Boussinesq equation, which can be regarded a continuum
approximation of the full FPUT system. On the other hand, it is also well understood now that the low
energy short term dynamics of the FPUT chain follows that of the integrable Toda chain, for any initial
condition (even extracted in measure), as first pointed out in [14, 24] and more recently in [6, 8, 9, 10, 19].
Of course, when smooth initial data are considered, the two points of view connect, since the continuum
limit of the Toda chain consists of two KdV equations [3].

It was shown in recent studies [5, 7, 26] that the approximate description of the FPUT dynamics in
terms of PDEs can be cast within the theory of normal forms. In particular it was proved that, in a
certain regime of smooth low energy initial conditions, the leading order resonant normal form of the
FPUT system consists of two KdV equations – one describing almost-right traveling waves and the other
almost-left traveling waves [5]. This result agrees with the perspective sketched above: the dynamics of
the FPUT chain is integrable in the short term. On the other hand, the numerically observed FPUT
energy spectrum turns out to be stable over time scales much longer than that of the validity of the
KdV approximation. This in turn suggests that the normal form of the FPUT system may actually be
integrable even beyond the leading order KdV approximation.

We partially investigate this issue in the present paper. In fact, we will consider the FPUT chain with
periodic boundary conditions, and we will introduce smooth functions interpolating the positions of the
particles at any time. As small parameter we choose h2 := 1/n2, where n is the number of particles in
the chain. In a forthcoming paper [17] we will consider this problem for arbitrary smooth initial data.
In this paper, on the other hand, we shall investigate solutions that lie inside an invariant sub-manifold
consisting of quasi unidirectional waves. We construct this invariant manifold to high perturbative orders.
This method is among the standard techniques for finding invariant manifolds in hydrodynamics [30], and
was first introduced by Whitham [31], and extended e.g. in [13], to derive the KdV equation in the theory
of shallow water waves.

The evolution equation that we initially find for the dynamics of quasi unidirectional waves, is not
integrable beyond the KdV equation found at order h2. To investigate the asymptotic integrability of the
equation in more detail, we shall apply normal form transformations. The type of transformations that
we consider were introduced by Hiraoka and Kodama [21]; in this paper we adapt them for continuous
systems with periodic boundary conditions. Our results are the following. First of all, we find that to
order h4 the dynamics of quasi unidirectional waves is always governed by an integrable equation from
the KdV hierarchy. In contrast, to order h6 the dynamics is governed by a member of the KdV hierarchy
only for particular values of the parameters defining the nearest-neighbor interaction in the chain. The
Toda chain is an example of such a system that to order h6 possesses an integrable normal form. Thus,

the dynamics of quasi unidirectional waves in generic FPUT chains is
integrable over the timescale corresponding to the second order normal form;

the breakdown of integrability generally takes place at third order.

This agrees, qualitatively, with what is observed in numerical simulations. We also point out the recent
work [1], in which a somewhat similar result was proven in the theory of shallow water waves.

The remainder of this paper is organised as follows. In Section 2 we introduce the FPUT chain, as
well as an exact continuous system interpolating it. In this section we also informally present the main
result of this paper as Theorem 1. In Section 3 we provide higher order asymptotic expansions for the
interpolating system, in the form of partial differential equations (PDEs). In Section 4 we construct
and approximate the manifold of quasi unidirectional waves, and provide an asymptotic expansion of the
dynamics on this manifold, see Theorem 2. In Section 5 we prove Theorem 3, which provides the normal
form for the dynamics on the manifold of quasi unidirectional waves. Theorem 3 is a direct consequence
of Theorem 4, which is a spatially periodic version of a theorem by Hiraoka and Kodama. We prove
Theorem 4 in Section 6.

2 Formulation of the main result

In this section we give a brief description of the main result of this paper. We start by recalling that the
periodic FPUT chain with n particles is the n-degrees of freedom Hamiltonian dynamical system with
equations of motion

{
dqj
dt = pj ,
dpj

dt = W ′(qj+1 − qj)−W ′(qj − qj−1) ,
(1)
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satisfying the periodic boundary conditions

qj+n = qj , pj+n = pj for all j ∈ Z .

The function W in (1) is a potential energy determining the interaction between neighboring particles in
the chain. As usual, we assume that it admits the Taylor expansion

W (z) =
1

2
z2 +

α

3
z3 +

β

4
z4 +

γ

5
z5 +O(z6) . (2)

The non-linearity in the forces between neighboring particles is thus determined by the parameters α, β, γ,
etc. We assume α 6= 0 throughout this paper. As discussed above, a special role is played by the integrable
Toda chain, of which the potential energy is given by

W (z) = WT(z) =
1

2
z2 +

α

3
z3 +

α2

6
z4 +

α3

15
z5 + . . . , (3)

(see Remark 13) corresponding to a specific one-parameter family of potentials for which

β = βT :=
2

3
α2 , γ = γT :=

1

3
α3 , etc. (4)

To transform the FPUT equations of motion (1) into a continuous system of PDEs, we first replace (1)
by an exact evolution equation for an interpolating profile. To this end, let us denote h := 1/n and write
T := R/Z. Now consider a pair of smooth scalar functions

(u, v) = (u, v)(x, t) : T× R → R
2

and assume that these functions satisfy the evolution equations
{

ut(x, t) = v(x, t) ,
vt(x, t) = h−3 [W ′ (hu(x+ h, t)− hu(x, t))−W ′ (hu(x, t)− hu(x− h, t))] .

(5)

We informally think of (5) as an ODE on the space C∞(T,R2) of pairs of smooth scalar functions on T.
We correspondingly think of solutions to (5) as curves t 7→ (u, v)(·)(t) in C∞(T,R2).

Given any solution of (5), one can define, for j ∈ Z, the functions

{
qj(t) := hu(hj, ht) ,
pj(t) := h2 v(hj, ht) .

(6)

It is not hard to check that these qj(t), pj(t) then form solutions of the FPUT equations of motion (1).
This motivates us to study (5) instead of (1), the advantage being that (5) is defined on the same phase
space for each value of h; in fact, we may simply think of h as a continuous small parameter. As long as

u is a smooth function of x, we can Taylor expand u(x± h) = u(x)± hux(x) +
h2

2 uxx(x) + . . ., and write
(5) as the perturbed Boussinesq equation

{
ut = v ,
vt = uxx + h2

(
1
12uxxxx + 2αuxuxx

)
+O(h4) .

(7)

Here we have (with abuse of notation) denoted by ut and vt the derivatives of u and v with respect to
their second argument. In other words, we have rescaled time t 7→ ht. Next, instead of studying (5) or
(7) directly, we introduce a change of variables (u, v) 7→ (U, V ) in C∞(T,R2), that maps the functions
(u, v)(x) to the discrete Riemann invariants (U, V )(x) defined by

U := 2α(Dhu+ v) , V := 2α(Dhu− v) . (8)

Here Dh denotes the finite difference operator

(Dhu)(x) :=
u(x+ h/2)− u(x− h/2)

h
. (9)

This Dh is a discrete approximation of the derivative ∂x, because Dhu = ux+
h2

24u3x+O(h5) if u : T → R

is sufficiently smooth - again by Taylor’s theorem. The change of variables (u, v) 7→ (U, V ) transforms the
continuum equations (5) into a system of the form

{
Ut = F (U, V, h) ,
Vt = −F (V, U, h) .

(10)
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We again think of (10) as an ODE on C∞(T,R2). An exact expression for F (U, V, h) will be given in
Section 3. Here it suffices to know that F (U, V, h) admits an expansion

F (U, V, h) = Ux +
h2

24
(Uxxx + 6UUx + 6UVx + 6UxV + 6V Vx) +O(h4) ,

as long as (U, V ) are sufficiently smooth functions of x.
By setting V ≡ 0 in the evolution equation for U in (10) we recover the KdV equation

Ut = F (U, 0, h) = Ux +
h2

24
(Uxxx + 6UUx) +O(h4) .

Nevertheless, it should be clear that if V (x) ≡ 0 while U(x) 6≡ 0, then

Vt = −F (V, U, h) = −F (0, U, h) = −
1

4
h2UUx 6≡ 0 .

This means that, already to order h2, the subspace

{(U, V ) ∈ C∞(T,R2) |V ≡ 0} ⊂ C∞(T,R2)

of “unidirectional waves” is not invariant under the flow of (10). This may cast some doubt on the
validity of the above derivation of the KdV approximation, but we will show that nearby the subspace of
unidirectional waves one can formally construct a submanifold of quasi unidirectional waves of the form

{(U, V ) ∈ C∞(T,R2) |V = c(U, h) = O(h2)} ⊂ C∞(T,R2) .

This submanifold is invariant under (10) to high asymptotic orders. Moreover, the dynamics on the
manifold of quasi unidirectional waves is indeed governed to order h2 by the KdV equation.

More interestingly, we shall also derive higher order equations for the evolution of quasi unidirectional
waves. It turns out that, after a suitable change of variables, this evolution is determined to a large extent
by the “higher order versions” of the KdV equation, i.e., by the integrable KdV hierarchy. More precisely,
the main results of this paper are Theorems 2 and 3, which can be summarised as follows.

Theorem 1. Inside C∞(T,R2) there is a formal invariant manifold for the dynamics (10) of the discrete
Riemann invariants, consisting of quasi unidirectional waves, and defined by a slaving relation of the form

V = c(U, h) = h2c2(U) + h4c4(U) +O(h6) .

There also exists a formal near-identity transformation in C∞(T,R) of the form

U 7→ U + h2G̃2(U) + h4G̃4(U) + h6G̃6(U, t) +O(h8) ,

bringing the dynamics on the manifold of quasi unidirectional waves into the form

Ut = C1(U, h) K1(U)+

+ h2 C3(U, h) K3(U)+

+ h4 C5(U, h) K5(U)+

+ h6 C7(U, h) [K7(U) +R(U)] +O(h8) .

(11)

Here, K1(U),K3(U),K5(U),K7(U) are the first four commuting vector fields in the KdV hierarchy, and
the scalars C1(U, h), C3(U, h), C5(U, h), C7(U, h) are constants of motion of the KdV hierarchy (see also
Remark 1). The term R(U) can be chosen equal to zero in case

14α3 − 27βα+ 12γ = 0 . (12)

Theorem 1 shows that the evolution of quasi unidirectional waves is always integrable to order h4, and is
integrable to order h6 if the relation (12) holds. This relation holds in particular when β = βT = 2α2/3
and γ = γT = α3/3. The one-parameter family of Toda chains is thus part of a co-dimension one family
of FPUT chains whose dynamics is “more integrable” than that of generic FPUT chains.

Remark 1. The first four commuting vector fields in the KdV hierarchy are given by

K1(U) = Ux ,

K3(U) = U3x + 6UUx ,

K5(U) = U5x + 20UxU2x + 10UU3x + 30U2Ux ,

K7(U) = U7x + 70U2xU3x + 42UxU4x + 14UU5x+

+ 70U3
x + 280UUxU2x + 70U2U3x + 140U3Ux .

(13)
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See for instance [25]. We used the short-hand notation Umx := ∂mxU = ∂m
x U for the m-derivative of U .

The constants of motion C1(U, h), C3(U, h), C5(U, h), C7(U, h) in Theorem 3 turn out to be functions of
the first three integrals of the KdV hierarchy,

∫

T

U dx ,

∫

T

U2 dx and

∫

T

U2
x − 2U3 dx . (14)

Remark 2. If (6) holds for smooth functions u, v : T → R, then the total energy

E =

n∑

j=1

1

2
p2j +W (qj+1 − qj)

of the FPUT system (1) satisfies

E = h3

∫

T

1

2
v(x)2 +

1

2
ux(x)

2 dx+O(h4) .

In turn this implies that the “specific energy” (the energy per particle) 1
nE is of the order h4 = 1/n4.

This is far from the thermodynamic limit in which 1
nE would be of order 1. However, (6) is the unique

scaling limit in which dispersion and nonlinearity are of the same order, thus leading at lowest order to
a KdV equation for the evolution of quasi unidirectional waves. It is also the scaling limit in which the
Toda chain can be smoothly connected to the KdV equation [3] and topologically to the harmonic chain
[4].

Remark 3. Theorem 1 states that the evolution equation for unidirectional waves in the FPUT-chain is
asymptotically integrable up to and including order h5. This suggests that non-integrable effects can only
be observed over timescales of the order at least 1/h6 or, when the time rescaling t → ht discussed directly
below formula (7) is accounted for, timescales of the order 1/h7. This leads to the conjecture that the
timescale of thermalization of the FPUT-chain must be at least 1/h7 ∼ (E/n)−7/4. This is indeed shorter
than, and thus compatible with, the thermalization timescale (E/n)−9/4 that was numerically found for
generic FPUT-chains in [9]. Theorem 1 also suggests that the thermalization timescale is considerably
longer for FPUT-chains satisfying 14α3− 27βα+12γ = 0. However, we do not know of any rigorous way
to employ Theorem 1 to prove such lower bounds for the thermalization timescale.

Remark 4. The authors of [20] and [28] compute and analyse the Birkhoff-Gustavson normal form of
the finite FPUT-chain. This can be done, for example, by applying in (1) the rescaling

qj(t) := ǫ uj(t) and pj(t) := ǫ vj(t) for 1 ≤ j ≤ n ,

while leaving time unaffected. The small parameter ǫ is here assumed independent of the number of
particles n, and hence thought of as a fixed number. Under this rescaling, we have E = O(ǫ2). The
resulting evolution equations are of the form

d

dt
(u, v) = F1(u, v) + ǫF2(u, v) + ǫ2F3(u, v) +O(ǫ3) for (u, v) ∈ R

2n .

Here, F1 denotes the linear part of the equations, F2 the quadratic part of the equations before rescaling,
F3 the cubic part of the equations before rescaling, etc. It was shown in [20, 28] that, for every finite n,
appropriate symplectic transformations can bring these equations into a normal form

d

dt
(u, v) = F1(u, v) + ǫ2 F 3(u, v) +O(ǫ3) ,

where F 3 is a vector field of polynomial degree three. It was proved by the same authors that this normal
form is integrable to order ǫ2, i.e., if the O(ǫ3) term is ignored. By the same argument as in Remark 3,
this suggests that the thermalization time is at least ǫ−3 ∼ E−3/2.

For finite chains with n = 16, 32 and 64 particles, this result was improved in [27], using the so-called
weak turbulence formalism, to a near-integrability result of order ǫ3, and hence an estimated thermalisation
time of at least ǫ−4 ∼ E−2. A statistical argument was then used to explain the numerical evidence of a
much longer thermalization time, namely ǫ−8 ∼ E−4.

However, all these results strongly rely on the assumption that n is finite, as their proofs exploit the
nonresonance between the eigenvalues of the finite FPUT-chain (1). The domain of validity of the normal
form / weak turbulence approximation may shrink dramatically as n grows. This makes it highly nontrivial
to draw conclusions from the results in [20, 27, 28] for FPUT-chains with n growing to infinity. It also
makes it difficult to compare the results from [20, 27, 28] with the results of the present paper.
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3 PDE approximations of the FPUT dynamics

In this section we provide more details on the derivation of the evolution equations (10) for the discrete
Riemann invariants (U, V ) defined in (8). Our starting point is the evolution equation for the interpolating
profiles (u, v) given in (5):

{
ut(x, t) = v(x, t) ,
vt(x, t) = h−3 [W ′ (hu(x+ h, t)− hu(x, t))−W ′ (hu(x, t)− hu(x− h, t))] .

Assuming that u(x, t) and v(x, t) are smooth functions of x, one may Taylor expand u(x ± h, t) with
respect to h in the right hand side of (5). This yields a perturbed nonlinear wave equation which we
present here to high order:





ut = v ,

vt = uxx + h2

(
1

12
u4x + 2αuxuxx

)
+ h4

(
1

360
u6x +

α

3
uxxu3x +

α

6
uxu4x + 3βu2

xuxx

)

+ h6

(
1

20160
u8x +

α

36
u3xu4x +

α

60
u2xu5x +

α

180
uxu6x+

+
β

4
u3
2x + βuxuxxu3x +

β

4
u2
xu4x + 4γu3

xu2x

)
+ h8R(u, h) .

(15)

Note however that the assumption that u and v are smooth has no a priori justification: it is not guaranteed
that (5) admits nontrivial initial data leading to solutions that remain smooth over long times. In contrast
to this, we recall here that the dynamics of the KdV equation (and of its hierarchy) on T preserves the
Sobolev smoothness and analyticity of initial data for all times [22].

Remark 5. Equation (15) reveals that the FPUT equations (5) may be thought of as a weakly dispersive
and weakly nonlinear perturbation of the wave equation. The perturbation to order h2 is the so-called
Boussinesq equation. This equation was proven to be integrable by Zakharov [34] in order to explain the
FPUT paradox.

Remark 6. Using Taylor’s theorem, one may determine explicit bounds for the remainder h8R(u, h) in
terms of u. For example, one may easily get a conditional estimate of the form: for every integer k ≥ 0,
there exists a constant Ck independent of u and h, such that

‖R(u, h)‖Ck(T) ≤ Ck‖u‖Ck+10(T)

as long as ‖u‖C0(T) < 1 and |h| < 1. Similar estimates can be obtained for Sobolev norms. We will not
pursue such explicit bounds any further. Instead, from now on we shall simply write O(hm) for expressions
of the form hmR(u, h).

For the exact wave equation ut = v, vt = uxx it is common to make the change of variables (u, v) 7→ (U, V )
defined by U := 2a(ux + v) and V := 2a(ux − v), where a 6= 0 is any constant. These functions U and V
are called Riemann invariants, and their evolution is determined by the equations of motion

{
Ut = Ux ,

Vt = −Vx .

of which the solutions
U(x, t) = U0(x+ t) , V (x, t) = V0(x− t)

are unidirectional traveling waves. This motivates our definition (8) of the discrete Riemann invariants
for (5), with the particular choice a = α and ux replaced by Dhu:

U := 2α(Dhu+ v) , V := 2α(Dhu− v) .

We stress that our definition of the discrete Riemann invariants – choosing a = α and using Dhu instead
of ux – is such that the structure of their evolution equations is relatively simple. To see this, note that
(5) can also be written as {

ut = v ,
vt = h−2DhW

′(h2Dhu) .
(16)

Remark 7. This follows from the identity

F (G(x + h)−G(x)) − F (G(x) −G(x − h)) = hDhF (hDhG(x)) , (17)

which holds for any pair of functions F and G, applied to F = W ′ and G = u.
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Taking the time derivative of U and V as defined in (8), and using (16), we find

{
Ut = F (U, V, h) := Dh [U + f(U + V, h)] ,
Vt = −F (V, U, h) := −Dh [V + f(U + V, h)] .

(18)

Here

f(z, h) := 2αh−2

[
W ′

(
h2z

4α

)
−

h2z

4α

]
=

h2

8
z2 +

βh4

32α2
z3 +

γh6

128α3
z4 +O(h8) (19)

is the (rescaled) nonlinear part of the inter-particle force. Using that

Dh = ∂x +
h2

24
∂3x +

h4

1920
∂5x +

h6

322560
∂7x +O(h8) , (20)

one may expand F (U, V, h) in (18) to high order. This gives (when U, V are smooth):

Ut = F (U, V, h) = Ux + h2

(
1

24
U3x +

1

8
(U + V )2x

)

+ h4

(
1

1920
U5x +

1

192
(U + V )23x +

β

32α2
(U + V )3x

)

+ h6

(
1

322560
U7x +

1

15360
(U + V )25x +

β

768α2
(U + V )33x +

γ

128α3
(U + V )4x

)

+O(h8) .

(21)

Remark 8. Here and in the the sequel, it is understood that

Fn
mx := (Fn)mx

is short hand notation for the m-th derivative of the n-th power of the function F (and not the n-th power
of the m-th derivative).

Remark 9. Note that the evolution equation for V in (18) can be obtained from that for U in (18) by
exchanging the roles of U and V and adding a minus sign. This expresses the fact that (18) possesses the
time reversal symmetry

(U, V, t) 7→ (V, U,−t) ,

corresponding in turn to the time reversal symmetry

(u, v, t) 7→ (u,−v,−t)

of the original continuous FPUT system (5). It is therefore not restrictive, in what follows, to focus our
analysis on the evolution of U , since analogous results automatically hold for V .

4 Quasi unidirectional waves

The subspace
{(U, V ) ∈ C∞(T,R2) |V ≡ 0} ⊂ C∞(T,R2)

is invariant under the evolution of the wave equation

Ut = Ux , Vt = −Vx ,

and consists entirely of unidirectional traveling waves

U(x, t) = U0(x + t), V (x, t) = 0 .

The evolution of the discrete Riemann invariants of the FPUT chain is accurately described by the wave
equation to order h0 because Ut = F (U, V, h) = Ux + O(h2) and Vt = −F (V, U, h) = −Vx + O(h2).
Nevertheless, the subspace of unidirectional waves is already not invariant anymore to order h2 – see
Section 2.

It is therefore quite natural to search for an (at least asymptotically) invariant manifold for the
dynamics of (18) lying close to the subspace of unidirectional waves. We will try to find such a submanifold
in the form of the graph of a function c = c(U, h) = O(h2) over the subspace of unidirectional waves:

{(U, V ) ∈ C∞(T,R2) |V = c(U, h) = O(h2)} .
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We think of this graph {(U, V ) |V = c(U, h)} as a manifold of quasi unidirectional waves.

Remark 10. By Definition (8) we have that V = 2α(ux − v) +O(h2). The assumption that V = O(h2)
thus means that ux = v+O(h2). This in turn implies, by the equations of motion (5), that ut = ux+O(h2)
and vt = vx +O(h2). Thus we recover an approximate left traveling wave in the original variables.

Inserting the ansatz
V = c(U, h) (22)

into system (18) yields the following two equations:
{

Ut =F (U, c(U, h), h) ,

c(U, h)t =− F (c(U, h), U, h) .
(23)

The first of these equations states that solutions (U, V ) = (U, c(U, h)) inside the manifold of quasi unidi-
rectional waves are governed by a closed evolution equation

Ut = F(U, h) := F (U, c(U, h), h) . (24)

Once a solution U of (24) has been found, the solution V is completely determined by (22). We therefore
think of the functional relation (22) between U and V as a slaving relation: the free variable U completely
determines the behaviour of the slave variable V .

Using the chain rule at its left hand side, the second equation in (23) can be rewritten as

c′(U, h)F (U, c(U, h), h) = −F (c(U, h), U, h) . (25)

This equation can be thought of as an invariance equation. It states that a certain relation must hold
between the U -component and the V -component of the vector field in (18) restricted to the manifold of
quasi unidirectional waves. This relation guarantees the manifold to be invariant.

Remark 11. We denote by F ′(U) the Gateaux derivative (or directional derivative) of an operator F at
U ∈ C∞(T,R). In other words, given a smooth increment function H ∈ C∞(T,R), we have

F ′(U)H := lim
ε→0

F (U + εH)− F (U)

ε
.

The operators F = F (U) that we consider in this paper generally are maps from C∞(T,R) to C∞(T,R)
and may depend for example on U,Ux, Uxx, etc. but also on certain averages or even primitives of U .

The following result gives a formula for c(U, h) to order h4, and for the vector field F(U, h) to order h6.
We use the notation 〈F 〉 :=

∫
T
F (x) dx for F = F (x) : T → R, see also Remark 12.

Theorem 2. A formal invariant manifold of quasi unidirectional waves, defined by the invariance equation
(25), is given to order h4 as the graph of the function

c(U, h) := h2

{
1

16

(
〈U2〉 − U2

)}
+

+ h4

{(
5

384
−

β

64α2

)(
U3 − 〈U3〉

)
−

1

128
〈U2〉(U − 〈U〉)−

1

256

[
(Ux)

2 − 〈(Ux)
2〉
]}

+

+O(h6) .

(26)

The vector field defined in (24) that determines the evolution of quasi unidirectional waves, is given by

F(U, h) = Ux +
h2

24
{U3x + 6UUx}+

+
h4

1920

{
U5x + 60UxU2x + 20UU3x + 90

(
2β

α2
− 1

)
U2Ux + 30〈U2〉Ux

}
+

+
h6

322560

{
U7x + 420U2xU3x + 210UxU4x + 42UU5x + 315

(
8β

α2
− 5

)
(Ux)

3+

+ 630

(
12β

α2
− 7

)
UUxUxx + 630

(
2β

α2
− 1

)
U2U3x + 210

(
48γ

α3
−

60β

α2
+ 23

)
U3Ux+

+ 210〈U2〉

(
U3x +

(
18β

α2
− 9

)
UUx

)
+ 105

(
3〈U2

x〉+

(
12β

α2
− 10

)
〈U3〉+ 6〈U2〉〈U〉

)
Ux

}
+

+O(h8) .

(27)
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Proof. We shall look for an approximate solution of the invariance equation (25) of the form

c(U, h) = h2c2(U) + h4c4(U) +O(h6) . (28)

Combining (25) with the explicit expression for F given in (21), we get

[
h2c2(U) + h4c4(U) +O(h6)

]′
[
Ux + h2

(
1

24
U3x +

1

8
(U2)x

)
+O(h4)

]
=

−
[
h2c2(U) + h4c4(U) +O(h6)

]
x
− h2

[
1

8
(U2)x +

h2

24
(c2(U))3x +

h2

4
(Uc2)x +O(h4)

]

− h4

[
1

192
(U2)3x +

β

32α2
(U3)x

]
+O(h6) .

Collecting terms of orders h2 and h4 produces two equations:

c′2(U)Ux = −
1

8
UUx , (29)

c′4(U)Ux = −c′2(U)

(
1

24
U3x +

1

8
(U2)x

)
−

1

24
(c2(U))3x −

1

4
(Uc2(U))x −

1

192
(U2)3x −

β

32α2
(U3)x . (30)

A solution of equation (29) is easily found:

c2(U) =
1

16

(
〈U2〉 − U2

)
. (31)

Here, 〈U2〉 :=
∫
T
U2(x) dx denotes the average of the function U2. We could have omitted the term

1
16 〈U

2〉 in (31), but including this term in c2(U) guarantees that 〈c2(U)〉 = 0. See also Remark 12.
Inserting (31) into equation (30) for c4(U) gives

c′4(U)Ux =

(
5

128
−

3β

64α2

)
U2Ux −

1

128
〈U2〉Ux −

1

128
UxxUx ,

which admits as a solution

c4(U) =

(
5

384
−

β

64α2

)
U3 −

1

128
〈U2〉(U − 〈U〉)−

1

256
[(Ux)

2 − 〈(Ux)
2〉] . (32)

Again, we made sure that 〈c4(U)〉 = 0 by choosing an appropriate “integration constant”. Together, (28),
(31) and (32) produce (26).

The evolution equation for U is obtained from (24) by inserting the expansion (28) into (21), giving

Ut = F(U, h) := F (U, h2c2(U) + h4c4(U) +O(h6), h) =

= Ux + h2

(
1

24
U3x +

1

8
(U2)x

)
+ h4

[
1

1920
U5x +

1

192
(U2)3x +

β

32α2
(U3)x +

1

4
(Uc2(U))x

]
+

+ h6

[
1

322560
U7x +

1

15360
(U2)5x +

β

768α2
(U3)3x +

γ

128α3
(U4)x+

+
1

8
(c2(U)2)x +

1

96
(Uc2(U))3x +

3β

32α2
(U2c2(U))x +

1

4
(Uc4(U))x

]
+O(h8) .

Substituting the expression (31) and (32) that we found for c2(U) and c4(U) gives (27). This completes
the proof of the theorem.

Remark 12. For any (smooth) function F = F (x) : T → R we denote by

〈F 〉 :=

∫

T

F (x) dx ,

the average of F over T. In Theorem 2 we encounter averages of the functions F = U,U2, U3 and (Ux)
2.

By including such average terms as “integration constants” in our choice for c2 and c4, we make sure
that 〈c2(U)〉 = 〈c4(U)〉 = 0. This choice is of course somewhat arbitrary, but it makes that the solutions
c2 and c4 of (29) and (30) are unique.
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5 A normal form theorem

In (8) we defined the discrete Riemann invariants U and V in terms of the interpolating profiles u and v
that were introduced in Section 2. Our choice to define them as U = 2α(Dhu+ v) and V = 2α(Dhu− v)
helped us in obtaining a closed expression for the equations that govern their evolution, see (18), but was
otherwise somewhat arbitrary. For example, we could have equally well defined U as 2α(ux + v) and V
as 2α(ux − v), the difference between the former and the latter choices being only of the order h2.

Another definition of the variables U and V would have resulted in another expression for the slaving
relation V = c(U, h). More importantly, another choice of U would have given another – and perhaps
simpler – expression for the reduced vector field F(U, h) that determines the dynamics on the invariant
manifold of quasi unidirectional waves, see (24). This motivates us to look for a near-to-identity transfor-
mation U 7→ U +O(h2), i.e., a small change in the definition of U , that simplifies the evolution equation
Ut = F(U, h) as much as possible. It turns out that we can prove the following normal form theorem.

Theorem 3. Recall that F = F(U, h) : C∞(T,R) → C∞(T,R) admits the asymptotic expansion (27).
There exists a formal change of variables inside the space C∞(T,R) of the form

U 7→ U + h2G̃2(U) + h4G̃4(U) + h6G̃6(U, t) +O(h8) , (33)

that transforms the evolution equation Ut = F(U, h) into

Ut = F̃(U, h, t) = C1(U, h) K1(U)+

+ h2 C3(U, h) K3(U)+

+ h4 C5(U, h) K5(U)+

+ h6 C7(U, h) [K7(U) +R(U)] +O(h8) .

(34)

Here, K1(U),K3(U),K5(U),K7(U) are the first four commuting vector fields in the KdV hierarchy given in
Remark 1. The scalars C1(U, h), C3(U, h), C5(U, h), C7(U, h) are constants of motion of the KdV hierarchy.
They are given explicitly in Remark 15 below. The term R = R(U) can be chosen equal to zero when

14α3 − 27αβ + 12γ = 0 .

Remark 13. A Toda chain is an FPU chain with a potential energy of the form

W (z) = WT(z) :=
e2αz − (1 + 2αz)

4α2
=

1

2
z2 +

α

3
z3 +

α2

6
z4 +

α3

15
z5 + . . . . (35)

Toda chains thus define a specific one-parameter family of FPU chains, for which

β = βT :=
2

3
α2, γ = γT :=

1

3
α3, etc.

One readily checks that 14α3− 27αβT +12γT = 0. This means that for the Toda chains, the normal form
to order h6 given in Theorem 3 lies in the KdV hierarchy.

Theorem 3 follows from a more general result that we will state below as Theorem 4. A result comparable
to Theorem 4 was originally formulated by Hiraoka and Kodama in [21]. These authors consider evolution
equations similar to (27) for functions U ∈ C∞(R,R). In this paper we work with functions U ∈ C∞(T,R).
We thus need to adapt the proof of Hiraoka and Kodama.

Remark 14. The main new feature in our adaptation concerns the use of primitives F−x of functions F :
T → R. Primitives of functions F ∈ C∞(R,R) are always defined. In contrast, a function F ∈ C∞(T,R)
only possesses a well defined primitive F−x ∈ C∞(T,R) if 〈F 〉 =

∫
T
F (x) dx = 0. To deal with this

complication we shall only make use of transformations in C∞(T,R) that map the space of zero-average
functions on T into itself. This in turn forces us to add some extra “average” terms to the transformations
that were originally considered by Hiraoka and Kodama.

In particular, we shall agree that, if F has zero average, then F−x is the unique primitive of F that
has zero average itself. For a general F ∈ C∞(T,R), we will then have the formulas

〈(F − 〈F 〉)−x〉 = 0 and ((F − 〈F 〉)−x)x = F − 〈F 〉 .

Examples of transformations involving primitives occur in Theorem 4 below, which makes use of maps
G2, G4 : C∞(T,R) → C∞(T,R) given by formulas of the form

G2(U) :=
C5

C3

(
a1U2x + a2(U

2 − 〈U2〉) + a3(Ux(U − 〈U〉)−x + 〈U2〉 − 〈U〉2) + a4〈U〉(U − 〈U〉)
)

(36)
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and

G4(U) :=
C7

C3

(
b1U4x + b2((Ux)

2 − 〈(Ux)
2〉) + b3(UU2x + 〈(Ux)

2〉) + b4(U
3 − 〈U3〉)

+ b5(Ux(U
2 − 〈U2〉)−x + 〈U3〉 − 〈U〉〈U2〉)

+ b6((U3x + 6UUx)(U − 〈U〉)−x + 3〈U3〉 − 〈(Ux)
2〉 − 3〈U2〉〈U〉)

+ b7〈U〉Uxx + b8〈U〉(U2 − 〈U2〉)

+ b9〈U〉(Ux(U − 〈U〉)−x + 〈U2〉 − 〈U〉2) + b10〈U〉2(U − 〈U〉) + b11〈U
2〉(U − 〈U〉)

+ b12〈(Ux)
2〉+ b13〈U

3〉
)
.

(37)

Here, a1, . . . , a4, b1, . . . b13, C3, . . . , C7 ∈ R are constants that will be specified later. Formulas (36) and
(37) are such that 〈G2(U)〉 = 〈G4(U)〉 = 0 for every U ∈ C∞(T,R).

The following theorem is our version of the result of Hiraoka and Kodama.

Theorem 4 (Hiraoka–Kodama on T). Consider an evolution equation for U ∈ C∞(T,R) of the form

Ut = F(U, h) = C1 Ux

+ h2C3 (U3x + 6UUx)

+ h4C5

(
U5x +A1UxU2x +A2UU3x +A3U

2Ux +A4〈U
2〉Ux

)

+ h6C7

(
U7x +B1U2xU3x +B2UxU4x + B3UU5x + B4(Ux)

3 + B5UUxU2x+

+ B6U
2U3x +B7U

3Ux + 〈U〉
(
B8U5x +B9UxU2x +B10UU3x +B11U

2Ux

)

+ 〈U2〉(B12U3x +B13UUx) + 〈U〉2(B14U3x +B15UUx)

+ (B16〈U
3〉+B17〈(Ux)

2〉+B18〈U〉〈U2〉+B19〈U〉3)Ux +B20〈(Ux)
3〉
)

+ O(h8) .

(38)

Here A1, . . . , A4, B1, . . . , B20, C1, . . . , C7 are scalar coefficients.

i) By a normal form transformation of the form

U 7→ U + h2G2(U) +O(h4) , (39)

with G2 of the form (36), one can transform equation (38) into the form

Ut = C1(U, h)K1(U) + h2C3(U, h)K3(U) + h4C5(U, h)K5(U) +O(h6) . (40)

The scalars C1(U, h), . . . , C5(U, h) are constants of motion of the KdV hierarchy, explicitly given by

C1(U, h) = C1(1 + h4(Ã4〈U
2〉+ Ã5〈U〉2) ,

C3(U, h) = C3(1 + h2Ã6〈U〉) ,

C5(U, h) = C5 .

(41)

The scalars Ã4, Ã5, Ã6 in (46) depend on A1, A2, A3 and A4 as follows:

Ã4 = A3 +A4 − 4A2 + 10 ,

Ã5 = 20− 2A2 ,

Ã6 = A2 − 10 .

(42)

ii) By a further normal form transformation of the form

U 7→ U + h4G4(U) +O(h8) , (43)

with G4 of the form (37), one can subsequently transform equation (40) into the form

Ut = C1(U, h)K1(U) + h2C3(U, h)K3(U) + h4C5(U, h)K5(U)

+ h6C7(U, h)[K7(U) +R(U) + λ7〈(Ux)
3〉] +O(h8) .

(44)

The term R(U) can be chosen equal to zero when r = r(A,B,C) = 0, where

r := 1680− 72B1 + 180B2 − 510B3 − 72B3 + 27B5 − 72B4 + 27B5 + 24B6 − 9B7

+
C2

5

C3C7

{
−2400 + 6A2

1 + 670A2 − 30A1A2 − 4A2
2 − 60A3 + 3A1A3 −A2A3

}
.

(45)
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The scalars C1(U, h), . . . , C7(U, h) are constants of motion of the KdV hierarchy, explicitly given by

C1(U, h) = C1(1 + h4(Ã4〈U
2〉+ Ã5〈U〉2) + h6(λ4〈(Ux)

2 − 2U3〉+ λ5〈U〉〈U2〉+ λ6〈U〉3) ,

C3(U, h) = C3(1 + h2Ã6〈U〉+ h4(λ2〈U
2〉+ λ3〈U〉2)) ,

C5(U, h) = C5(1 + h2λ1〈U〉) ,

C7(U, h) = C7 .

(46)

Here, the Ã4, Ã5, Ã6 are as in (42), the scalar λ4 is a free parameter, and

λ1 = −14 +B3 +B8 ,

λ2 = 42 +B12 − 8B3 +B6 −
2C2

5

3C3C7
(A2 − 10)2 ,

λ3 = 28 +B10 +B14 − 2B3 − 10B8 +
2C2

5

3C3C7
(100− 20A2 +A2

2) ,

λ5 = 10B3 − 2B6 + 10B8 − 4B10 +B11 − 6B12 +B13 +B18

+
C2

5

C3C7
(−100 + 40A2 −A2

2 − 10A3 −
2

3
A2A3 +

1

3
A2

3 − 10A4 +
1

3
A3A4) ,

λ6 = −56 + 4B3 + 20B8 − 2B10 − 6B14 +B15 +B19

+
2C2

5

3C3C7
(−100 +A2

2 + 10A3 −A2A3 + 10A4 −A2A4) ,

λ7 =
28

3
+

B16

2
+ B17 +B20 −

7B3

3
+

B6

3

+
C2

5

18C3C7
(−300 + 70A2 −A2

2 −A2A3 − 3A1A4 + 6A2A4) .

(47)

We will postpone the proof of Theorem 4 to the next section, and conclude the current section by proving
Theorem 3 from Theorem 4.

Proof of Theorem 3. The vector field F(U, h) given in equation (27) is of the form of the vector field
F(U, h) in equation (38) with

A = (A1, A2, A3, A4) =

(
60, 20, 90

(
2β

α2
− 1

)
, 30

)
,

B = (B1, . . . , B20) =

(
420, 210, 42, 315

(
8β

α2
− 5

)
, 630

(
12β

α2
− 7

)
, 630

(
2β

α2
− 1

)
,

210

(
48γ

α3
−

60β

α2
+ 23

)
, 0, 0, 0, 0, 210, 210

(
18β

α2
− 9

)
, 0, 0, 105

(
12β

α2
− 10

)
, 315, 0, 0, 0

)
,

C = (C1, C3, C5, C7) =

(
1,

1

24
,

1

1920
,

1

322560

)
.

(48)

(NB: for clarity, we denote vectors with bold characters.) According to Theorem 4 it is thus possible to
transform (27) into (44) with two consecutive near-to-identity transformations of the form (39) and (43)
respectively. To remove the term h6C7(U, h)λ7〈(Ux)

3〉 = h6C7λ7〈(Ux)
3〉 in (44), it suffices to apply one

more time-dependent change of variables

U 7→ U + h6G̃6(U, t) := U − h6C7λ7

∫ t

0

〈U3
x(s)〉ds ,

which cancels this last term in (44), yielding precisely (34).
The quantity that determines whether the term R(U) in (34) and (44) can be chosen equal to zero, is

the constant r defined in (45). Substituting (48) in (45) gives

r = −
7560

α3

(
14α3 − 27αβ + 12γ

)
.

This finishes the proof of Theorem 3.
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Remark 15. Explicit expressions for the constants of motion C1(U, h), . . . , C7(U, h) in Theorem 3 can be
obtained by combining (46) with (42), (47) and (48). In the setting of Theorem 3 we have

Ã4 = −130 +
180β

α2
, Ã5 = −20 , Ã6 = 10 ,

so that (41) becomes

C1(U, h) = 1 + h4
(
(180βα2 − 130)〈U2〉 − 20〈U〉2

)
, C3(U, h) =

1

24

(
1 + 10 h2〈U〉

)
, C5(U, h) =

1

1920
. (49)

By combining (47) and (48) we obtain

λ1 = 28 , λ2 = −854 +
1260β

α2
, λ3 = 84 ,

λ5 = 420

(
16−

63β

α2
+

54β2

α4

)
, λ6 = 28

(
49−

90β

α2

)
, λ7 = −427 +

630β

α2
.

Recall that the scalar λ4 may be chosen freely, so let us choose λ4 = 0. Then (46) becomes

C1(U, h) = 1 + h4
(
(180βα2 − 130)〈U2〉 − 20〈U〉2

)
+

+ h6
(
420(16− 63β

α2 + 54β2

α4 )〈U〉〈U2〉+ 28(49− 90β
α2 )〈U〉3

)
,

C3(U, h) =
1

24

(
1 + 10 h2〈U〉+ h4

(
(1260βα2 − 854)〈U2〉+ 84〈U〉2

))
,

C5(U, h) =
1

1920

(
1 + 28 h2〈U〉

)
,

C7(U, h) =
1

322560
.

(50)

6 Proof of Theorem 4

In the proof of Theorem 4 that we provide in this section, we shall explicitly compute how coordinate
changes of the form U 7→ U + h2G2(U) + O(h4) and U 7→ U + h4G4(U) + O(h8), with G2(U) given by
(36) and G4(U) by (37), transform an evolution equation Ut = F(U, h) of the form (38). In particular,
we shall compute when exactly it is possible to transform (38) into a member of the KdV hierarchy, to
order h4 and to order h6, and which choices of G2(U) and G4(U) realise this transformation.

Our proof is divided in three steps: first we transform equation (38) into a normal form to order h4.
Next, we compute how this first transformation affects the evolution equation to order h6. And finally,
we normalise this new equation to order h6.

Before we give a more concise outline of this procedure, we recall the definition of the Lie bracket of
two operators f and g:

[f, g](U) := f ′(U)g(U)− g′(U)f(U) . (51)

Here f ′(U)g(U) denotes the Gateaux derivative (or directional derivative) of an operator f (evaluated at
U) in the direction of g(U). See also Remark 11. More explicitly,

f ′(U)g(U) :=
d

dε

∣∣∣∣
ε=0

f(U + εg(U)) .

In this paper, f and g will always be operators from C∞(T,R) to C∞(T,R).

Outline of the normal form procedure. Below we sketch the procedure by which we bring
equation (38) in Theorem 4 into normal form. For other settings in which normal form transformations
are applied to the FPUT chain, we refer to [5, 16, 20, 28]. Recall that equation (38) is of the form

Ut = F1(U) + h2F3(U) + h4F5(U) + h6F7(U) +O(h8) , (52)
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X [X,U3x + 6UUx, ]

U2x 12UxU2x

U2 − 〈U2〉 −6UxU2x − 6U2Ux + 6〈U2〉Ux

Ux(U − 〈U〉)
−x + 〈U2〉 − 〈U〉2 −3UxU2x − 3UU3x − 3U2Ux − 9〈U2〉Ux + 6〈U〉2Ux + 6〈U〉UUx + 3〈U〉U3x

〈U〉(U − 〈U〉) −6〈U〉UUx + 6〈U〉2Ux

Table 1: Lie brackets determining the first normalisation step.

in which

F1(U) = C1Ux ,

F3(U) = C3(U3x + 6UUx) ,

F5(U) = C5

(
U5x +A1UxU2x +A2UU3x +A3U

2Ux +A4〈U
2〉Ux

)
,

F7(U) = C7

(
U7x +B1U2xU3x +B2UxU4x +B3UU5x +B4(Ux)

3 +B5UUxU2x +B6U
2U3x

+B7U
3Ux + 〈U〉

(
B8U5x +B9UxU2x +B10UU3x +B11U

2Ux

)

+ 〈U2〉(B12U3x +B13UUx) + 〈U〉2(B14U3x +B15UUx)

+ (B16〈U
3〉+B17〈(Ux)

2〉+B18〈U〉〈U2〉+B19〈U〉3)Ux +B20〈(Ux)
3〉
)
.

(53)

We will transform this equation by a normal form procedure that consists of two separate transformation

steps. First we make a transformation of the form U 7→ eh
2G2(U) := U+h2G2(U)+h4

2 G′
2(U)G2(U)+O(h6)

where G2 is chosen in such a way that [G2,F1] = 0. This transforms the vector field F = F(U) into

eh
2[G2,·](F) := 1 + h2[G2,F] +

1

2
h4[G2, [G2,F]] +

1

6
h6[G2, [G2, [G2,F]]] +O(h8) .

Expanding F in powers of h in this equation, we obtain the expansion

Ut =F1(U) + h2F3(U)+

+h4
{
F5(U) + [G2,F3](U)︸ ︷︷ ︸

=:N5(U)

}
+ h6

{
F7(U) + [G2,F5](U) +

1

2
[G2, [G2,F3]](U)

︸ ︷︷ ︸
= 1

2
[G2,F5+N5](U)=:R6(U)

}
+O(h8) , (54)

for the transformed evolution equation. Note that the term h2F3(U) is unaffected because [G2,F1] = 0.
We now want to choose G2 in such a way that N5 = F5 + [G2,F3] is in the KdV hierarchy, see Remark
1. It turns out that this can always be arranged.

The next step is to make a further coordinate change U 7→ eh
4G4(U) = U + h4G4(U) +O(h8), again

choosing G4 so that [G4,F1] = 0. This transforms our evolution equation further into

Ut = F1(U) + h2F3(U) + h4N5(U) + h6
{
F7(U) +

1

2
[G2,F5 +N5](U) + [G4,F3](U)

︸ ︷︷ ︸
=F7(U)+R6(U)+[G4,F3](U)=:N7(U)

}
+O(h8) . (55)

The goal is to choose G4 so that N7 = F7 +
1
2 [G2,F5 + N5] + [G4,F3] is in the KdV hierarchy as well.

It turns out that this can only be arranged (within the class of transformations that we consider) if a
certain relation among the coefficients of F5 and F7 is satisfied.

Normalisation at lowest order. Inspired by Lemma 5.1 in [21] we choose G2 of the form (36).
We have that [G2,F1] = C1[G2, ∂x] = 0 because G2 = G2(U) does not explicitly depend on x.

We also remark that the authors of [21] use a simpler class of transformations of the form (C3/C5)G2(U) =
a1U2x + a2U

2 + a3UxU−x. This is not sufficient for us, on the one hand because equation (38) that we
try to bring into normal form, is more general than the equations considered in [21]. On the other hand,

we like to make sure that 〈G2(U)〉 = 0, so that eh
2G2 maps the space of zero-average functions into itself.

To compute the transformed vector field N5(U), we use the bracket relations in Table 1.
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Remark 16. The brackets in Table 1 can all be computed by hand, using formula (51). To illustrate,

[
U2 − 〈U2〉, U3x + 6UUx

]
=

d

dε

∣∣∣∣
ε=0

{
(U + ε (U3x + 6UUx))

2
− 〈(U + ε (U3x + 6UUx))

2
〉

−
(
U + ε

(
U2 − 〈U2〉

))
3x

− 6
(
U + ε

(
U2 − 〈U2〉

)) (
U + ε

(
U2 − 〈U2〉

))
x

}

= 2U(U3x + 6UUx)− 〈2U(U3x + 6UUx)〉

−
(
U2 − 〈U2〉

)
3x

− 6U
(
U2 − 〈U2〉

)
x
− 6

(
U2 − 〈U2〉

)
Ux .

Now observe that 〈UU3x〉 = −〈UxU2x〉 = −〈(12 (Ux)
2)x〉 = 0 (using integration by parts and the

fundamental theorem of calculus), that 〈U2Ux〉 = 〈(13U
3)x〉 = 0 (again by the fundamental theorem of

calculus), and that 〈U2〉3x = 〈U2〉x = 0 (because the average is not a function of x). Using these identities,
as well as the chain rule to rewrite the terms (U2)3x and U(U2)x, we can simplify our expression for the
bracket to −6UxU2x − 6U2Ux + 6〈U2〉Ux. The other brackets are computed in an analogous fashion.

Using (36), (53) and the table above, we compute that

[G2,F3](U) = [G2, C3(U3x + 6UUx)]

= C5

{
(12a1 − 6a2 − 3a3)UxU2x − 3a3UU3x − (6a2 + 3a3)U

2Ux+

(6a3 − 6a4)〈U〉UUx + 3a3〈U〉U3x + (6a2 − 9a3)〈U
2〉Ux + (6a3 + 6a4)〈U〉2Ux

}
.

(56)

Recall that we want to make our lowest order normal form a member of the KdV hierarchy, of the form

N5(U) = F5(U) + [G2,F3](U) =

C5(U5x + 20UxU2x + 10UU3x + 30U2Ux + Ã4〈U
2〉Ux + Ã5〈U〉2Ux + Ã6〈U〉(U3x + 6UUx)) .

(57)

This can be arranged if we can solve the system of linear equations




A1 + 12a1 − 6a2 − 3a3 = 20 ,
A2 − 3a3 = 10 ,
A3 − 6a2 − 3a3 = 30 ,
6a3 − 6a4 = 18a3 .

for the coefficients a1, . . . , a4 that define G2. It turns out that this system admits the unique solution

a1 =
1

12
(A3 −A1 − 10) ,

a2 =
1

6
(A3 −A2 − 20) ,

a3 =
1

3
(A2 − 10) ,

a4 =
2

3
(10−A2) .

(58)

Inserting (58) back into (56) and comparing with (57), we in fact obtain

Ã4 = A4 + 6a2 − 9a3 = A3 +A4 − 4A2 + 10 ,

Ã5 = 6a3 + 6a4 = 20− 2A2 ,

Ã6 = 3a3 = A2 − 10 .

This coincides with (42). Equations (41) follow from (57) combined with (42). This completes the proof
of part i) of Theorem 4.

A new higher order term. The normal form transformation generated by h2G2(U) simplifies our
evolution equation to order h4, but it adds new additional terms at order h6. From (54) we see that these
new terms are

R6(U) =
1

2
[G2,F5 +N5](U) .

Here G2 is as determined as in the previous paragraph, and we in fact have

F5(U) +N5(U) =C5

{
2U5x + (A1 + 20)UxU2x + (A2 + 10)UU3x + (A3 + 30)U2Ux+

(A3 + 2A4 − 4A2 + 10)〈U2〉Ux + (20− 2A2)〈U〉2Ux + (A2 − 10)〈U〉(U3x + 6UUx)
}
.
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X Y [X,Y ]

Uxx U5x 0

” UxU2x 2U2xU3x

” UU3x 2UxU4x

” U2Ux 2(Ux)
3 + 4UUxU2x

” 〈U2〉Ux 2〈(Ux)
2〉Ux

” 〈U〉2Ux 0

” 〈U〉(U3x + 6UUx) 12〈U〉UxU2x

U2 − 〈U2〉 U5x −20U2xU3x − 10UxU4x

” UxU2x −2(Ux)
3 − 2UUxUxx + 〈(Ux)

3〉

” UU3x −6UUxU2x − U2U3x − 2〈(Ux)
3〉+ 〈U2〉U3x

” U2Ux −2U3Ux + 2〈U2〉UUx

” 〈U2〉Ux −2〈U3〉Ux + 2〈U〉〈U2〉Ux

” 〈U〉2Ux 0

” 〈U〉(U3x + 6UUx) −6〈U〉UxU2x − 6〈U〉U2Ux + 6〈U〉〈U2〉Ux

Ux(U − 〈U〉)
−x + 〈U2〉 − 〈U〉2 U5x −15U2xU3x − 10UxU4x − 5UU5x + 5〈U〉U5x

” UxU2x −1

2
U3
x
− 3UUxU2x −

1

2
〈U2

x
〉Ux − 〈U3

x
〉+ 3〈U〉UxU2x

” UU3x −1

2
(Ux)

3 − 3UUxU2x − 3U2U3x +
3

2
〈(Ux)

2〉Ux+
2〈(Ux)

3〉 − 〈U2〉U3x + 〈U〉2U3x + 3〈U〉UU3x

” U2Ux −2

3
U3Ux −

1

3
〈U3〉Ux − 2〈U2〉UUx + 2〈U〉2UUx + 〈U〉U2Ux

” 〈U2〉Ux 〈U3〉Ux − 3〈U〉〈U2〉Ux + 2〈U〉3Ux

” 〈U〉2Ux 0

” 〈U〉(U3x + 6UUx) −3〈U〉UxU2x − 3〈U〉UU3x − 3〈U〉U2Ux

+3〈U〉2U3x + 6〈U〉2UUx + 6〈U〉3Ux − 9〈U〉〈U2〉Ux

〈U〉(U − 〈U〉) U5x 0

” UxU2x −〈U〉UxU2x

” UU3x 〈U〉2U3x − 〈U〉UU3x

” U2Ux 2〈U〉2UUx − 2〈U〉U2Ux

” 〈U2〉Ux 2〈U〉3Ux − 2〈U〉〈U2〉Ux

” 〈U〉2Ux 0

” 〈U〉(U3x + 6UUx) 6〈U〉3Ux − 6〈U〉2UUx

Table 2: Lie brackets determining the new higher order term.
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To compute R6(U) explicitly, we use the bracket relations listed in Table 2. Using Table 2, it is straight-
forward to compute that

R6(U) =
C2

5

C3

(
B̃1U2xU3x + B̃2UxU4x + B̃3UU5x + B̃4(Ux)

3 + B̃5UUxU2x + B̃6U
2U3x + B̃7U

3Ux+

〈U〉
(
B̃8U5x + B̃9UxU2x + B̃10UU3x + B̃11U

2Ux

)
+

〈U2〉
(
B̃12U3x + B̃13UUx

)
+ 〈U〉2

(
B̃14U3x + B̃15UUx

)
+

(
B̃16〈U

3〉+ B̃17〈(Ux)
2〉+ B̃18〈U〉〈U2〉+ B̃19〈U〉3

)
Ux + B̃20〈(Ux)

3〉
)
,

(59)

in which
B̃1 = a1(A1 + 20)− 20a2 − 15a3 ,

B̃2 = a1(A2 + 10)− 10a2 − 10a3 ,

B̃3 = −5a3 ,

B̃4 = a1(A3 + 30)− a2(A1 + 20)− (a3/4)(A1 +A2 + 30) ,

B̃5 = 2a1(A3 + 30)− a2(A1 + 3A2 + 50)− (3a3/2)(A1 +A2 + 30) ,

B̃6 = −(a2 + 3a3)(A2 + 10)/2 ,

B̃7 = −(a2 + a3/3)(A3 + 30) ,

B̃8 = 5a3 ,

B̃9 = (6a1 − 3a2)(A2 − 10) + 3a3(A1 −A2 + 30)/2− a4(A1 + 20)/2 ,

B̃10 = 30a3 − a4(A2 + 10)/2 ,

B̃11 = (6a2 + 3a3)(10−A2)/2 + (a3 − 2a4)(A3 + 30)/2 ,

B̃12 = (a2 − a3)(A2 + 10)/2 ,

B̃13 = (a2 − a3)(A3 + 30) ,

B̃14 = a3(2A2 − 10) + a4(A2 + 10)/2 ,

B̃15 = (a3 + a4)(A3 + 30) + 3(a3 − a4)(A2 − 10) ,

B̃16 = (a3/2− a2)(A3 + 2A4 − 4A2 + 10)− a3(A3 + 30)/6 ,

B̃17 = a1(A3 + 2A4 − 4A2 + 10) + a3(3A2 −A1 + 10)/4 ,

B̃18 = (a2 −
3
2a3 − a4)(A3 + 2A4 − 4A2 + 10) + (3a2 −

9
2a3)(A2 − 10) ,

B̃19 = (a3 + a4)(A3 + 2A4 −A2 − 20) ,

B̃20 = (a2 − a3)(A1 − 2A2)/2 .

(60)

Here the coefficients a1, a2, a3, a4 are as defined in (58). Note that B̃4 −
1
2 B̃5 + B̃6 + B̃20 = 0 because

R6(U) has zero average. To summarise, we now have that

F7(U) + R6(U) = C7

(
U7x +

(
B1 +

C2
5

C3C7
B̃1

)
U2xU3x +

(
B2 +

C2
5

C3C7
B̃2

)
UxU4x + . . .

)

is the new term of order h6, after the first normal form transformation.

Normalisation at second order. In this final paragraph we perform a second change of variables
U 7→ eh

2G4(U) = U + h4G4(U) +O(h8) to transform our evolution equation into an as simple as possible
form at order h6. In (55) we see that in this way we add the term [G4,F3] to the order h6 part of the
equation. Recall that the transformation generator G4(U) has the specific form (37).

To see what exactly the additional term [G4,F3] will look like, we present the relevant Lie brackets in
Table 3.

From now on we shall write

B = (B1, . . . , B20) , B̃ = (B̃1, . . . , B̃20) ,
˜̃
B = (

˜̃
B1, . . . ,

˜̃
B20) , and b = (b1, . . . , b13) .

(Again, we denote vectors with bold characters.) Here, the Bi are as in (53), the B̃j as in (60), and the
bk as in (37). From the bracket relations in Table 3, it follows that the new order h6 part of our evolution
equation reads

N7(U) := F7(U) + R6(U) + [G4,F3](U) =

C7

(
U7x +

˜̃
B1U2xU3x +

˜̃
B2UxU4x +

˜̃
B3UU5x +

˜̃
B4(Ux)

3 +
˜̃
B5UUxU2x +

˜̃
B6U

2U3x +
˜̃
B7U

3Ux + . . .

)
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X [X,U3x + 6UUx]

U4x 60U2xU3x + 24UxU4x

(Ux)
2 − 〈(Ux)

2〉 −6U2xU3x + 6(Ux)
3 − 6〈(Ux)

3〉+ 6〈(Ux)
2〉Ux

UU2x + 〈(Ux)
2〉 −3U2xU3x − 3UxU4x + 12UUxU2x + 6〈(Ux)

3〉 − 6〈(Ux)
2〉Ux

U3 − 〈U3〉 −6(Ux)
3 − 18UUxU2x − 6U3Ux − 3〈(Ux)

3〉+ 6〈U3〉Ux

Ux(U
2 − 〈U2〉)

−x + 〈U3〉 − 〈U〉〈U2〉 −3(Ux)
3 − 6UUxU2x − 3U2U3x − 2U3Ux + 3〈U2〉U3x + 3〈(Ux)

2〉Ux

+6〈U2〉UUx − 10〈U3〉Ux + 3〈(Ux)
3〉+ 6〈U〉〈U2〉Ux

(U3x + 6UUx)(U − 〈U〉)
−x −3UxU4x − 3UU5x − 18(Ux)

3 − 72UUxU2x − 21U2U3x − 18U3Ux

+3〈U3〉 − 〈(Ux)
2〉 − 3〈U2〉〈U〉 −3〈U2〉U3x + 6〈(Ux)

2〉Ux + 3〈(Ux)
3〉 − 18〈U3〉Ux − 18〈U2〉UUx

+18〈U〉〈U2〉Ux + 3〈U〉(U5x + 18UxU2x + 8UU3x + 12U2Ux)

〈U〉Uxx 12〈U〉UxU2x

〈U〉(U2 − 〈U2〉) −6〈U〉UxU2x − 6〈U〉U2Ux + 6〈U〉〈U2〉Ux

〈U〉(Ux(U − 〈U〉)
−x + 〈U2〉 − 〈U〉2) −3〈U〉UxU2x − 3〈U〉UU3x − 3〈U〉U2Ux − 9〈U〉〈U2〉Ux

+6〈U〉3Ux + 6〈U〉2UUx + 3〈U〉2U3x

〈U〉2(U − 〈U〉) −6〈U〉2UUx + 6〈U〉3Ux

〈U2〉(U − 〈U〉) 6〈U2〉〈U〉Ux − 6〈U2〉UUx

〈(Ux)
2〉 −6〈(Ux)

2〉Ux + 6〈(Ux)
3〉

〈U3〉 −6〈U3〉Ux + 3〈(Ux)
3〉

Table 3: Lie brackets determining the second normalisation step.

– we use the notation as in (53) – in which

˜̃
B = B+

C2
5

C3C7
B̃+Mb ,

and M is the 20× 13 matrix

M =




60 −6 −3 0 0 0 0 0 0 0 0 0 0
24 0 −3 0 0 −3 0 0 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0 0 0 0
0 6 0 −6 −3 −18 0 0 0 0 0 0 0
0 0 12 −18 −6 −72 0 0 0 0 0 0 0
0 0 0 0 −3 −21 0 0 0 0 0 0 0
0 0 0 −6 −2 −18 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 54 12 −6 −3 0 0 0 0
0 0 0 0 0 24 0 0 −3 0 0 0 0
0 0 0 0 0 36 0 −6 −3 0 0 0 0
0 0 0 0 3 −3 0 0 0 0 0 0 0
0 0 0 0 6 −18 0 0 0 0 −6 0 0
0 0 0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 6 −6 0 0 0
0 0 0 6 −10 −18 0 0 0 0 0 0 −6
0 6 −6 0 3 6 0 0 0 0 0 −6 0
0 0 0 0 6 18 0 6 −9 0 6 0 0
0 0 0 0 0 0 0 0 6 6 0 0 0
0 −6 6 −3 3 3 0 0 0 0 0 6 3




.

Recall that we would like N7(U) to lie in the KdV hierarchy. More precisely, we want it to be of the form

C7 (U7x + 70U2xU3x + . . .)

+ λ1〈U〉(U5x + 20UxU2x + . . .) + λ2〈U
2〉(U3x + 6UUx) + λ3〈U〉2(U3x + 6UUx)

+ λ4(〈(Ux)
2〉 − 2〈U3〉)Ux + λ5〈U〉〈U2〉Ux + λ6〈U〉3Ux + λ7〈(Ux)

3〉 ,

(61)
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for certain scalars λ1, . . . , λ7. This can be arranged precisely when the system of algebraic equations

˜̃
B = B+

C2
5

C3C7
B̃+Mb = w (62)

can be solved for b, where w = w(λ) is defined as

w = (70, 42, 14, 70, 280, 70, 140, λ1, 20λ1, 10λ1, 30λ1, λ2, 6λ2, λ3, 6λ3,−2λ4, λ4, λ5, λ6, λ7) . (63)

In fact, the system (62) admits a solution b if and only if

w −
˜̃
B = w −

C2
5

C3C7
B̃−B ∈ ranM .

Now note that the orthogonal complement of ranM (with respect to the Euclidean inner product in R
20)

is (ranM)⊥ = span {v1,v2,v3,v4,v5,v6,v7} with

v1 = (0, 0,−14, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 0, 0, 6) ,

v2 = (0, 0, 32, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0) ,

v3 = (0, 0,−48, 0, 0, 4, 0, 0, 0,−4, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0) ,

v4 = (0, 0, 8, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) ,

v5 = (0, 0,−8, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) ,

v6 = (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

v7 = (24,−60, 170, 24,−9,−8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

(64)

Indeed, one may check that the vi span the kernel of the map v 7→ vTM . It is thus sufficient to require

that w −
˜̃
B is perpendicular to each of the vectors v1, . . . ,v7, i.e., that

(
B+

C2
5

C3C7
B̃−w

)
· vj = 0 for j = 1, . . . , 7 . (65)

After substituting (58) in (60) to obtain an expression for B̃ in terms of A and B, equations (65) for
j = 1, . . . , 6 become precisely equations (47). Equation (65) for j = 7 is equivalent to the equation
r(A,B,C) = 0, with r as defined in (45). This last equation thus constitutes the (only) constraint on the
parameters A1, . . . , B20 of the vector fields F5 and F7. Equations (46) follow from (57) combined with
(42) and (61) combined with (47). This concludes the proof of part ii) of Theorem 4.
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