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1 Introduction

Ever since the discovery of the Standard Model (SM) Higgs boson [1, 2], one of the main

objectives of the Large Hadron Collider (LHC) physics program has been to understand

its properties. This involves the measurements of the Higgs boson couplings to the SM

fermions and gauge bosons, its mass (mh), its CP properties etc. Among these, the Higgs

boson self couplings such as the trilinear (λSM
3 ) and quartic couplings (λSM

4 ) take promi-

nence, which in the SM, can be unambiguously obtained from the Higgs boson mass. The

SM Higgs potential, after the electro-weak symmetry breaking (EWSB), is given by

L ⊃ −
m2
h

2
φ2(x)− λSM

3 vφ3(x)− λSM
4 φ4(x), λSM

3 =
m2
h

2v2
, λSM

4 =
m2
h

8v2
, (1.1)

where φ(x) denotes the Higgs field. v ≈ 246 GeV is the vacuum expectation value (vev)

of the Higgs field and is fixed by the Fermi constant GF . The Higgs boson mass mh, is

found experimentally to be approximately equal to 125 GeV and hence, the SM values for

λSM
3 and λSM

4 are ∼ 0.13 and ∼ 0.03, respectively. However, presence of beyond the SM

(BSM) physics scenarios can modify these couplings, which, in turn, suggests indepen-

dent measurements of them. Any deviation from the SM values from the experimental
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measurements, could provide crucial information on the structure of the scalar potential

and thus could constrain BSM physics scenarios [3]. Moreover, the measurement of λSM
3

also provides a way to check that the EWSB follows from the simple Ginzburg-Landau

φ4 potential. The observable that can probe these couplings at the hadron colliders is the

production of multiple Higgs bosons [4]. More precisely, the production of a pair of Higgs

bosons can probe λSM
3 but it is difficult to measure due to the smallness of its production

cross section and the presence of a large QCD background. However, the study for the

high luminosity LHC indicate that the Higgs boson pair production due to gluon fusion

can predict λSM
3 with O(1) accuracy [5–8].

A pair of Higgs bosons can be produced through several partonic channels, viz gluon

fusion, vector boson fusion, associated production with a vector boson or a pair of heavy

quarks. Among these channels, the gluon fusion channel is the most dominant one at the

LHC. Being a loop-induced channel, gluon fusion gives a minuscule production cross section.

Additionally, the large background of this channel makes its measurement experimentally

challenging. Hence unless contributions from BSM physics enhance the production cross

section, a measurement of this channel will require a considerable integrated luminosity.

On the other hand, in such a scenario, the sub-dominant channels in the SM could possibly

become interesting as they would receive substantial contributions from new physics. One

such channel is the production of a pair of Higgs bosons in bottom quark annihilation. In

certain supersymmetric models, namely the Minimal Supersymmetric SM (MSSM) [9], the

bottom quark Yukawa coupling is enhanced w.r.t. the top quark Yukawa coupling, in the

large tan β region, where tan β is the ratio of vev ’s of up and down type Higgs fields in the

Higgs sector of the MSSM. Hence precise predictions for this channel is of high importance.

The dominant channel for Higgs boson pair production i.e. the gluon fusion channel,

is mediated by a top quark loop. This was evaluated at leading order (LO) in perturba-

tive QCD in [10–12] decades before. The next-to-leading order (NLO) contributions were

obtained in [13] only in the infinite top mass limit, i.e. the top quark loop is integrated out

resulting in an effective Lagrangian [13–16] of gluons and Higgs fields. There are several

NLO results [17–22] considering finite top quark mass effects which finally led to the full

NLO corrections with exact top quark mass dependence [23, 24]. In all these works, it has

been found that, with an inclusive K-factor close to 2, the QCD corrections at NLO level

are as large as that observed for a single Higgs boson production. Hence, the next-to-next-

to-leading order (NNLO) corrections were computed in [25], in the effective theory, followed

by a soft plus virtual (SV) approximated NNLO cross section in [26]. Consecutively, the

effect of leading top quark mass corrections also has been included in [27]. Finally a fully

differential distribution has been obtained at the NNLO level in [28, 29] and also threshold

resummation at next-to-next-to-leading logarithmic (NNLL) level in [30, 31]. In [32], a re-

weighting technique has been used to properly account for finite top mass effects at NNLO

level. Recently the virtual contributions relevant for next-to-next-to-next-to-leading order

(N3LO) QCD have also been computed in [33], within the effective theory.

While a plethora of work has been performed to reach ultimate precision for the gluon

channel, the sub-dominant channels have not received much attention. Although, as men-

tioned earlier, in certain BSM physics scenarios, they become consequential. We are partic-

– 2 –



J
H
E
P
0
5
(
2
0
1
9
)
0
3
0

ularly interested in the bottom quark annihilation channel where the Higgs boson couples

to bottom quarks through the Yukawa coupling (proportional to the mass of the bottom

quark), and the bottom quark is massless otherwise [34–36]. For single Higgs boson produc-

tion through this channel, various work is known up to NNLO [37–42] and N3LO [43–46]

level in the variable flavor scheme (VFS) [47–50]. For the production of a pair of Higgs

bosons, the NLO correction was first obtained in [51]. Later on, NLO corrections have

been obtained for this channel considering several BSM scenarios [52–54]. For the latter,

the bottom quark annihilation process dominates over the gluon fusion even at LO level.

In addition, their NLO QCD corrections are not only sizeable but also larger than the

supersymmetric QCD corrections. In order to stabilize the cross section with respect to

higher order radiative corrections, NNLO corrections to this channel are desirable. In this

paper, as a first step, we present full NNLO QCD corrections from certain class of dia-

grams to inclusive cross section for producing pair of Higgs bosons at the LHC and apply

soft plus virtual approximation for the other class of diagrams. We find that the latter is

sub-dominant and hence this approximation is good enough for phenomenological studies

at the LHC.

There are two classes of diagrams (we call them Class-A and Class-B, see section 2.4),

that contribute at two loops. The vertex type of diagrams which belong to Class-A are

already known up to three loops [44]. For the Class-B, the one-loop QCD corrections exist

in the literature [51]. Here we compute the two-loop QCD corrections. We have studied

the structure of infrared (IR) singularities and found that they are in agreement with the

predictions by Catani [55]. The finite results expressed in terms of classical polylogarithms

of weight up to 4 is used to study the numerical stability of the amplitudes over a wide

range of allowed kinematical variables. These amplitudes constitute important component

of NNLO predictions for the observables related to the production of a pair of Higgs bosons

at the LHC. In general, these amplitudes suitably combined with the universal soft gluon

contributions from the real emission diagrams can be used to obtain soft plus virtual

contributions up to NNLO level. We follow this approach [56] for the class B diagrams,

while for the class A diagrams we can suitably use results that are already available for the

single production up to NNLO level.

The paper is organized as follows. In section 2, we discuss the Lagrangian, kinematics

and the classes of diagrams that are relevant for our computation. Section 3 contains

details of the computation, the ultraviolet (UV) renormalization and the structure of IR

divergences. We devote section 4 for the numerical evaluation of the amplitude over a wide

kinematic region. In section 5, we present relevant analytic results that are required to

compute inclusive cross section for producing pair of Higgs bosons using the amplitudes

computed up to two-loop level. In section 6, we study their numerical impact at the LHC.

Finally, we conclude in section 7.

2 Theory

At the LHC, the dominant channel for the production of a pair of Higgs bosons is the

gluon fusion. In addition, there are several sub-leading channels that contribute to the
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production. We consider one of these channels, namely the production through the bottom

quark annihilation process. Since the LO and the NLO [51] QCD effects have already

been studied in the literature, as a first step towards the computation of the full NNLO

QCD corrections, we evaluate two-loop virtual contributions to the production of a pair

of Higgs bosons in this channel. Note that we further need to compute contributions from

real emission sub-processes to obtain IR safe observables at the NNLO level. These pure

virtual corrections contribute to both the inclusive as well as the differential observables.

These results along with the process independent soft gluon contributions, can give us the

first result at the NNLO level in the threshold limit, i.e., when the invariant mass of the

pair of Higgs bosons approaches the partonic center of mass energy.

We use the regularized version of the QCD Lagrangian throughout. The regularization

scheme that we use, is the dimensional regularization (DR), in which all the fields and

couplings of the Lagrangian and the loop integrals that appear in the Feynman diagrams

are analytically continued to d = 4 + ε space-time dimensions. In addition, we perform

traces of Dirac γ matrices in d-dimensions.

2.1 The Yukawa interaction

We begin by reviewing the theoretical framework for the production of a pair of Higgs

bosons via bottom quark annihilation at hadron colliders. The interaction part of the

Lagrangian that is responsible for the production is given by,

L = −λbφ(x)ψ̄b(x)ψb(x) , (2.1)

where ψb(x) is the bottom quark field. λb is the Yukawa coupling which after the EWSB

is found to be mb/v, where mb is the bottom quark mass and v the vev of the Higgs field.

In the SM, the ratio of the top quark Yukawa coupling (λt) and the bottom quark Yukawa

coupling (λb) is found to be approximately 35 i.e. λt/λb ≈ 35. In addition, the bottom

quark flux in the proton-proton collision is much smaller than the gluon flux. Hence, the

contribution from this channel is sub-dominant as compared to the gluon fusion channel.

However, in the MSSM [9], this ratio depends on the value of tan β which can increase the

contribution resulting from the bottom quark annihilation channel. At LO,

λMSSM
t

λMSSM
b

= fφ(α)
mt

mb

1

tanβ
, (2.2)

with

fφ(α) =


− cotα for φ = h,

tanα for φ = H,

cotβ for φ = A,

(2.3)

where h is the SM like light Higgs boson, H and A are the heavy and the pseudoscalar Higgs

bosons, respectively. The parameter α is the angle between weak and mass eigenstates of

the neutral Higgs bosons h and H. Since, the bottom quark mass is much smaller than the

other energy scales that appear at the partonic level, we set the former to zero except in

the Yukawa coupling in perturbation theory [34–36]. In particular, the finite mass effects
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from the bottom quarks are found to be suppressed by the inverse power of mass of the

Higgs boson. The number of active flavors is taken to be nf = 5 and we work in the

Feynman gauge.

2.2 Kinematics

We compute all the relevant one- and two-loop amplitudes in perturbative QCD that

contribute to the annihilation of bottom quarks into a pair of Higgs bosons. The scattering

process is given by

b(p1) + b̄(p2)→ H(p3) +H(p4) , (2.4)

where p1, p2 are the momenta of incoming bottom, anti-bottom quarks and p3, p4 are the

momenta of the final state Higgs bosons. The associated Mandelstam variables are,

s = (p1 + p2)2, t = (p1 − p3)2, u = (p2 − p3)2, (2.5)

which satisfy the relation s + t + u = 2m2
h. For convenience, we use the dimensionless

variables x, y and z defined [57] as follows

s = m2
h

(1 + x)2

x
, t = −m2

hy, u = −m2
hz . (2.6)

The variables x, y and z satisfy

(1 + x)2

x
− y − z = 2 . (2.7)

The final result will be expressed in term of logarithms and classical polylogarithms which

are functions of these scaling variables.

2.3 General structure of the amplitude

The external states for the process given in eq. (2.4) involve two fermions and two scalars,

hence the most general structure of the amplitude can be parameterized as

Aij = v̄(p2)
(
C1 + C2 /p3

)
u(p1)δij

≡ (C1T1 + C2T2) δij , (2.8)

where the coefficients Cm ≡ Cm(x, y, z) with m = 1, 2 are scalar functions. In color space,

the amplitude is diagonal in the indices (i, j) of the incoming quarks. Since, we are inter-

ested in higher order QCD corrections, we have used symmetries such as Lorentz covariance,

parity and time reversal invariances to parameterize the amplitude. In addition we have

dropped those terms that vanish when the bottom quarks are massless. The coefficients

Cm, m = 1, 2, can be determined from the amplitude Aij by using appropriate projection

operators denoted by P(Cm), i.e.,

Cm =
1

N

∑
P(Cm)Aijδij , (2.9)
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where the sum includes spin, flavors and colors of the external fermions; N is the number

of colors in SU(N) gauge theory. In d-space-time dimensions, the projectors that satisfy∑
P(Cm)Tm = 1 and

∑
P(Cm)Tn = 0 ∀m 6= n, are found to be

P(C1) =
1

2s
T †1 ,

P(C2) =
1

2[(m2
h − t)(m2

h − u)− sm2
h]
T †2 . (2.10)

Since the application of projection operators on the amplitude gives only Lorentz scalar

functions, the algebraic manipulations with loop integrals become straightforward. The

square of the amplitudes, that contributes to the total cross-section, can now be obtained

from the coefficients C1 and C2 using

|Aij |2 = N
[
|C1|2T1T †1 + |C2|2T2T †2 + C1C†2T1T †2 + C†1C2T2T †1

]
. (2.11)

Note that these coefficients are in general complex due to the Feynman loop integrals.

We expand the amplitude Aij as well as the coefficients Cm in powers of the strong cou-

pling constant defined by as = g2
s(µ

2
R)/16π2, where gs is the renormalized strong coupling

constant and µR is the renormalization scale:

Aij =
∞∑
l=0

als A
(l)
ij , Cm =

∞∑
l=0

als C(l)
m , (2.12)

and consequently

A(l)
ij =

(
C(l)

1 T1 + C(l)
2 T2

)
δij . (2.13)

Our next task is to compute these coefficients C(l)
m , m = 1, 2, up to two loop level, i.e., up

to O(a2
s) in perturbative QCD.

2.4 Classification of Feynman diagrams

At LO, only three Feynman diagrams contribute, out of which one contains single Yukawa

and trilinear couplings, and the remaining ones are quadratic in the Yukawa coupling. We

denote the former by Class-A and the latter diagrams by Class-B. The same classes of

diagrams contribute beyond LO. We elaborate on these classes of diagrams below:

• Class-A: it contains diagrams where an off-shell Higgs boson produced in the bottom

quark annihilation process decays to a final state containing a pair of on-shell Higgs

bosons (H∗ → HH) and is proportional to λSM
3 λb. They are shown in figure 1. Note

that the decay part of the amplitudes does not get any QCD corrections, however the

initial states do get. These corrections are identical to those that contribute to the

amplitudes for producing a single Higgs boson in bottom quark annihilation. The

latter is known up to three-loop level in QCD [44].

• Class-B: it contains diagrams where both the Higgs bosons couple directly to the

bottom quarks and hence they are proportional to λ2
b as shown in figure 2. At two

– 6 –
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b

b̄

H∗
H

H

b

b̄

H∗
H

H

b

b̄

H∗
H

H

Figure 1. Illustration of Class-A diagrams; Born, one and two-loop examples.

b

b̄

H

H

b

b̄

H

H

b

b̄

H

H

Figure 2. Illustration of Class-B diagrams; Born, one and two-loop examples.

b

b̄

H

H

b

b̄

HH

Figure 3. Illustration of special set of Class-B diagrams, the singlet contributions.

loops level, one encounters a new set of diagrams, the singlet contributions, where

both the Higgs bosons are produced from a closed bottom quark loop as shown in

figure 3. Here in this class of diagrams, we have dropped the dominant contributions

coming from the top quark loops and computed only those from bottom quark loops

as the former ones are already included in the gluon initiated subprocesses obtained

in the heavy top limit in [25] for the Higgs pair production at the LHC.

3 Methodology

3.1 Computational details

It is easy to see from the form of Ti in eq. (2.8), that only the Class-A diagrams contribute

to C1 and the Class-B to C2. Note that the Class-A diagrams are already computed to three

loops in QCD [44]. Hence in this section, we briefly discuss how the scalar function C2 in

eq. (2.9) is computed order by order in perturbation theory. As we mentioned, we use the

dimensional regularization, in which the space-time dimensions are taken to be d = 4 + ε

and perform traces of Dirac γ matrices, contraction of Lorentz indices in d-dimensions. For

convenience, we work with the bare form of the Lagrangian and evaluate the coefficient C2

in powers of bare coupling constant âs, where âs = ĝ2
s/16π2, ĝs being the dimensionless

strong coupling constant. Beyond LO, one- and two-loop amplitudes containing massless
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quarks, anti-quarks and gluons develop IR divergences in addition to UV ones. There are

two types of IR divergences, viz soft and collinear divergences. The soft ones are due to

soft gluons and the collinear ones arise due to massless quarks and gluons. Dimensional

regularization regulates both these divergences in addition to UV divergences.

We have used QGRAF [58] to generate the Feynman diagrams at every order in the

strong coupling constant. Beyond one-loop, large number of Feynman diagrams contributes

to the amplitude. We find that there are 2 diagrams at the Born level, 10 diagrams at

one-loop and 153 diagrams at two-loop level. We then multiply these amplitudes with the

projection operator P(C2) defined in eq. (2.10) to obtain the scalar function C2. Substitu-

tion of Feynman rules and computation of various traces involving Dirac and Gell-Mann

matrices, are done using in-house routines that use publicly available packages such as

FORM [59] and Mathematica. At this stage we end up with a large number of one- and

two-loop Feynman integrals. The projection operators guarantee that all the tensor inte-

grals are converted to scalar integrals. We rearrange all the Feynman integrals into a few

chosen integral families through shifting of loop momentum. To achieve this, we use the

package Reduze2 [60]. At one-loop, the following three integral families can accommodate

all the Feynman integrals

{P1,P1:i,P1:i,i+1,P1:i,i+1,i+2} , (3.1)

where, i takes one of the values {1, 2, 3} whose elements are arranged cyclically. A typical

two-loop topology contains at most seven propagators. However, there are nine different

Lorentz invariants (ki.kj , ki.pj) which can appear in the numerator of an integral. Hence,

we introduce two auxiliary propagators in each of the two-loop integral families. The

following two sets describe the six integral families that we use at two-loops,

{P0,P1,P2,P1:i,P2:i,P1:i,i+1,P2:i,i+1P1:i,i+1,i+2,P2:i,i+1,i+2} ,
{P0,P1,P2,P1:i,P2:i,P1:i,i+1,P2:i,i+1,P0:i+2,P1:i,i+1,i+2} . (3.2)

Here,

Pα = k2
α , Pα:i = (kα − pi)2 ,

Pα:ij = (kα − pi − pj)2 , Pα:ijk = (kα − pi − pj − pk)2 ,

P0 = (k1 − k2)2 , P0:i = (k1 − k2 − pi)2 .

This large number of Feynman integrals belonging to different integral families can be

written in terms of a smaller set of integrals, so-called master integrals (MIs). This can

be achieved by using the integration-by-parts (IBP) [61, 62] and the Lorentz Invariance

(LI) [63] identities, which are implemented in the Mathematica based package LiteRed [64].

Finally, we obtain 10 and 149 MIs at one- and two-loops, respectively. The resulting set

of MIs is systematically mapped on to those evaluated in [57, 65] as Laurent series in ε

up to the required order. Finally, substituting the results of MIs from [57, 65], we obtain

the two-loop result for the coefficient C2. Both UV and IR divergences appear as poles

in ε at every order in âs. In the next section, we demonstrate how the renormalization

of the strong and the Yukawa couplings render these coefficients UV finite leaving only

IR divergences.
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3.2 Ultraviolet renormalization

The scalar function C2 computed in powers of the bare coupling constant âs contains both

UV and IR divergences. Note that the entire amplitude is proportional to the square of

λ̂b, the bare Yukawa coupling. We use the modified minimal subtraction (MS) scheme

to perform the UV renormalization of the amplitudes. In this scheme, the renormalized

strong coupling constant as is related to the bare strong coupling constant, âs, through the

renormalization constant Z
(
as(µ

2
R), ε

)
at the renormalization scale µR as

âs
µε0
Sε =

as
µεR

Z
(
as(µ

2
R), ε

)
, (3.3)

where Z
(
as(µ

2
R), ε

)
up to two-loops is given by

Z
(
as(µ

2
R), ε

)
= 1 + as

(
2β0

ε

)
+ a2

s

(
4β2

0

ε2
+
β1

ε

)
+O(a3

s) . (3.4)

Here, Sε ≡ exp[(γE − ln 4π) ε2 ] is the phase-space factor in d-dimensions, γE = 0.5772 . . .

is the Euler-Mascheroni constant and µ0 is an arbitrary mass scale introduced to make ĝs
dimensionless in d-dimensions. The constants β0 and β1 are the coefficients of β function

which, for nf light quark flavors, are found [66–70] to be

β0 =
11

3
CA −

4

3
nfTF , β1 =

34

3
C2
A −

20

3
CAnfTF − 4CFnfTF , (3.5)

where CA = N , CF = (N2−1)/2N are the Casimirs of SU(N) group and TF = 1/2. Similar

to âs, the renormalization of the Yukawa coupling constant λ̂b leads to renormalized λb(µ
2
R)

at the renormalization scale µR through

λ̂b

µ
ε/2
0

Sε =
λb

µ
ε/2
R

Zλ
(
as(µ

2
R), ε

)
=

λb

µ
ε/2
R

[
1 + as

(
1

ε
Z

(1)
λ,1

)
+ a2

s

(
1

ε2
Z

(2)
λ,2 +

1

ε
Z

(2)
λ,1

)
+O(a3

s)

]
, (3.6)

where the coefficients Z
(i)
λ,j are given by

Z
(1)
λ,1 = 6CF , Z

(2)
λ,2 = 18C2

F + 6β0CF , Z
(2)
λ,1 =

3

2
C2
F +

97

6
CFCA −

10

3
CFnfTF . (3.7)

The perturbative expansion of the amplitude for the aforementioned process in terms of

the bare strong and Yukawa couplings is given by

Aij =

(
λ̂b

µ
ε/2
0

Sε

)2 [
Â(0)
ij +

(
âs
µε0
Sε

)
Â(1)
ij +

(
âs
µε0
Sε

)2

Â(2)
ij +O(â3

s)

]
, (3.8)

where Â(l)
ij is the lth loop unrenormalized amplitude. Similarly, the coefficient C2 replicates

similar perturbative expansion of the following form,

C2 =

(
λ̂b

µ
ε/2
0

Sε

)2 [
Ĉ(0)

2 +

(
âs
µε0
Sε

)
Ĉ(1)

2 +

(
âs
µε0
Sε

)2

Ĉ(2)
2 +O(â3

s)

]
. (3.9)
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In terms of the renormalized couplings, the coefficient C2 takes the form

C2 =

(
λb

µ
ε/2
R

)2 [
C(0)

2 + as C(1)
2 + a2

s C
(2)
2 +O(a3

s)
]
. (3.10)

We obtain the coefficients C(i)
2 using eq. (3.3) and (3.6) in eq. (3.9) and comparing with

eq. (3.10):

C(0)
2 = Ĉ(0)

2 ,

C(1)
2 =

12

ε
CF Ĉ(0)

2 +
1

µεR
Ĉ(1)

2 ,

C(2)
2 =

[
12

ε2

(
6C2

F + β0CF

)
+

1

ε

(
3C2

F +
97

3
CFCA −

20

3
CFnfTF

)]
Ĉ(0)

2

+
2

µεR

[
β0

ε
+

6CF
ε

]
Ĉ(1)

2 +
1

µ2ε
R

Ĉ(2)
2 . (3.11)

These constants C(l)
2 , l = 0, 1, 2, that result after performing the renormalization of the

strong and the Yukawa couplings, are UV finite. However they are sensitive to both soft

and collinear divergences which will be the topic of our next section. These soft and

collinear divergences show up in terms of poles in ε.

3.3 Infrared divergences and their factorization

The UV finite amplitudes still contain divergences resulting from soft and collinear regions

of the loop integrals. They result from soft gluons and massless collinear quarks and gluons

in the loops. In the physical observables, the soft and the collinear divergences coming from

the final states of the virtual diagrams cancel against those resulting from the phase space

integrals of the real emission processes. Due to the Kinoshita-Lee-Nauenberg (KLN) theo-

rem [71, 72], the cancellation takes place order by order in perturbation theory. While the

soft divergences cancel fully, the collinear divergences resulting from initial massless states,

do not cancel at the sub-process level. Thanks to the collinear factorization theorem [73]

these initial state collinear divergences can be factored out in a process independent way

and absorbed into the bare parton distribution functions. This procedure is called mass

factorization which is also a consequence of KLN theorem applied at the hadronic level.

While all these IR divergences that appear in the amplitudes do not pose any problem

for the physical observables, they provide valuable information about the universal struc-

ture of the infrared divergences in the QCD amplitudes. In fact, it can be shown that

these divergences systematically factor out from the amplitudes to all orders in perturba-

tion theory [74, 75]. These factored IR divergences demonstrate the universal structure

in terms of certain soft and collinear anomalous dimensions. An elegant proposal was put

forth by Catani who predicted IR pole structure of the amplitudes up to two-loop level

in non-abelian gauge theory [55]. He demonstrated that the n-particle QCD amplitudes

factorize in terms of the universal IR subtraction operator denoted by I. This I-operator

has a dipole structure [55] containing process independent universal cusp and collinear
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anomalous dimensions. Thanks to the wealth of results from two-loop calculations of the

three-parton qq̄g amplitudes [76] and 2→ 2 scattering amplitudes [77–79], that involve non-

trivial color structures [79, 80], the I-operator is completely known up to two-loop level.

In [81], the authors provide further insight on the factorization and resummation properties

of QCD amplitudes in the light of Catani’s proposal and demonstrate a connection between

divergences governed by soft and collinear anomalous dimensions, see also [82, 83]. There

have been several efforts [84, 85] to determine the structure of I-operator beyond two-loop

level. Following [55] we express one and two-loop UV renormalized amplitudes in terms of

the I-operator as

C(0)
2 (ε) = C(0),fin

2 (ε) ,

C(1)
2 (ε) = 2I(1)

b (ε)C(0)
2 (ε) + C(1),fin

2 (ε),

C(2)
2 (ε) = 4I(2)

b (ε)C(0)
2 (ε) + 2I(1)

b (ε)C(1)
2 (ε) + C(2),fin

2 (ε). (3.12)

The matrix elements of the subtraction operator for the bottom quark, Ib are given by

I(1)
b (ε) =

e−
ε
2
γE

Γ
(
1 + ε/2

)(− 4CF
ε2

+
3CF
ε

)(
− s

µ2
R

) ε
2

,

I(2)
b (ε) = −1

2
I(1)
b (ε)

(
I(1)
b (ε)− 2β0

ε

)
+
e
ε
2
γEΓ(1 + ε)

Γ(1 + ε/2)

(
− β0

ε
+K

)
I(1)
b (2ε) + 2H

(2)
b (ε),

(3.13)

with K [55] and H
(2)
b [81] given by as follows

K =

(
67

18
− π2

6

)
CA −

10

9
nfTF ,

H
(2)
b =

(
− s

µ2
R

)ε e−
ε
2
γE

Γ
(
1 + ε/2

) 1

ε

[
CACF

(
−245

432
+

23

16
ζ2 −

13

4
ζ3

)
+ C2

F

(
3

16
− 3

2
ζ2 + 3ζ3

)
+ CFnf

(
25

216
− 1

8
ζ2

)]
. (3.14)

According to the proposal by Catani, the coefficients C(i),fin
2 (ε) should be free of IR diver-

gences and hence are finite as ε → 0. Since the resulting expression at two-loops level,

C(2),fin
2 (ε) is quiet lengthy, we had to simplify the expression first at the color factor level

and then for each color factor, terms of uniform transcendentality were further simplified.

We find that our final result is in accordance with Catani’s predictions for the IR poles,

which serves as an important check on the correctness of our computation.

It is interesting to observe that the singlet contributions which are proportional to

the color factor CFnbTF , for nb = 1, develops IR divergences at the intermediate stages

of the computation. However at the end, all the IR singularities cancel among themselves

contributing only to the IR finite part. This is consistent with the IR pole structure

predicted by Catani. The resulting finite constant C(2),fin
2 that results after subtracting the

IR divergences using Catani’s I-operators is too lengthy to be presented here and hence

attached as supplementary material in Mathematica format.
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Figure 4. Behaviour of the real and the imaginary part of C(2),fin
2 as a function of the scaling

variable x for different values of cos(θ). The insets show the region close to x = 0.

4 Numerical evaluation of the amplitude

The finite coefficients, C(i),fin
2 , i = 1, 2, obtained in eq. (3.12) contain multiple classical

polylogarithms, which are functions of the scaling variables x and y. These polylogarithms

can be attributed to different transcendental weights, the property that we use to simplify

the two loop coefficient, C(2),fin
2 . Considering the complexity of our final result C(2),fin

2 , we

perform a numerical evaluation using Mathematica for a wide range of scaling variables.

More precisely, in figure 4 we plot the real and the imaginary parts of the coefficient C(2),fin
2

as functions of the scaling variable x for different values of cos(θ), where θ denotes the

angle between one of the initial state fermions and the Higgs boson in the center of mass

frame of incoming states. We consider mh = 125 GeV and the renormalization scale as

µ2
R = m2

h/2. In addition, we normalize the coefficient with the factor m2
h. The amplitude

is anti-symmetric under cos(θ) → − cos(θ), as expected for a purely fermionic amplitude.

Since this symmetry has not been used in the setup of the calculation, it serves as a strong

check on our results. Our expression contains polylogarithms that are multiplied by large

rational coefficients, hence we encounter numerical instabilities during the evaluation. To

avoid this, we evaluate the polylogarithms at double precision while setting the rational

coefficients at higher precision. From the figure 4, we observe a stable behaviour for

the real and imaginary parts for the range of parameters considered. In addition, the

dependence of the coefficient near the phase space boundary x = 0 is displayed in the

insets. The simplified analytical results and their numerical implementation are provided

as supplementary material.
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5 Inclusive cross section up to NNLO

In this section, we describe in detail the computation of inclusive cross section up to NNLO

level for producing a pair of Higgs bosons resulting class-A and class-B diagrams. The

hadronic cross section can be expressed in terms of partonic cross sections appropriately

convoluted with the corresponding bare parton distribution functions f̂ai(xi), i = 1, 2 as

σHH =
∑
a1,a2

∫
dx1f̂a1(x1)

∫
dx2f̂a2(x2)σ̂HHa1a2(x1, x2,m

2
h) , (5.1)

where xi are the momentum fractions of initial state partons and a1,2 = q, q, g. σ̂HHa1a2 is the

UV finite partonic cross section for producing a pair of Higgs bosons along with nX number

of colored particles (partons) through the reactions a1(p1)+a2(p2)→ H(q1)+H(q2)+X(kc)

and is obtained using

σ̂HHa1a2 =
1

2s

2∏
n=1

∫
dφ(qn)

nX∏
c=1

∫
dφ(kc)

∑
|Ma1a2 |2(2π)dδd

(
p1 +p2−

2∑
n=1

qn−
nX∑
c=1

kc

)
(5.2)

where pi, qi and kc are the momenta of incoming partons, final state Higgs bosons and

partons respectively. In d-dimensions, the phase space measure dφ(p) of a final state

particle with momentum p and mass m is given by

dφ(p) =
dd−1~p

(2π)d−12p0
(5.3)

where p0 =
√
m2 + |~p|2. Ma1a2 is the amplitude for the process a1(p1)+a2(p2)→ H(q1)+

H(q2) + X(kc) and is calculable order by order in perturbative QCD. The symbol
∑

indicates that we have to sum over all the quantum numbers of final states, average over

initial states and finally include the symmetry factor for final state identical particles. For

convenience, we classify the partonic channels that contribute to Ma1a2 into class-A and

class-B. We find that these channels do not interfere for the inclusive cross section as well

as for the invariant mass distribution of Higgs boson pairs. Hence, in the following we treat

them separately.

For the class-A diagrams, the amplitude Ma1a2 factorises into a product of two sub

amplitudes, where one of them describes the production of a single Higgs boson with virtu-

ality Q2 and the other encapsulates its decay to a pair of on-shell Higgs bosons. By suitably

factorising the phase space we can describe the entire reaction as a continuous process of

producing a single off-shell boson with different virtualities, subsequently decaying to a

pair of on-shell Higgs bosons. In other words, we can write σ̂HHa1a2 for class-A diagrams as

σ̂HHA,a1a2 =

∫
dQ2

2π
σ̂H

∗
A,a1a2(x1, x2, Q

2)
∣∣PH(Q2)

∣∣2 2QΓH
∗→HH

A (Q2) (5.4)

where the PH(Q2) is the Higgs boson propagator, given by

PH(Q2) =
i

Q2 −m2
h + iΓhmh

(5.5)
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with Γh, the decay width of the Higgs boson. The cross section that describes the produc-

tion of a Higgs boson with virtuality Q2 is given by

σ̂H
∗

A,a1a2(x1, x2, Q
2) =

1

2s

nX∏
c=1

∫
dφ(kc)

×
∫
dφ(Q)

∑
|MH∗

A,a1a2 |
2(2π)dδd

(
p1 + p2 −Q−

nX∑
c=1

kc

)
. (5.6)

Here MH∗
A,a1a2

is the amplitude for the production of an off-shell Higgs boson with the

virtuality Q2 and nX number of colored particles. The decay rate ΓH
∗→HH

A is given by

ΓH
∗→HH

A (Q2) =
1

2Q

2∏
n=1

∫
dφ(qn)

∑∣∣∣MH∗→HH
A

∣∣∣2 (2π)dδd
(
Q−

2∑
n=1

qn

)
, (5.7)

with MH∗→HH
A describing its decay into a pair of on-shell Higgs bosons. The decay rate

ΓH
∗→HH

A is straightforward to compute and in 4-dimensions it is found to be

ΓH
∗→HH

A (Q2) =
9β(Q2)m4

h

32πv2Q
, β(Q2) =

√
1−

4m2
h

Q2
. (5.8)

Substituting eq. (5.4) in eq. (5.1) and using eqs. (5.6), (5.7), we obtain σHHA , the contribu-

tion of class-A diagrams to σHH in eq. (5.2):

σHHA =

∫
dQ2

2π
DH(Q2)σH

∗
A (Q2) (5.9)

with

σH
∗

A (Q2) =
∑
a1,a2

∫
dx1f̂a1(x1)

∫
dx2f̂a2(x2)σ̂H

∗
A,a1a2(z,Q2) (5.10)

where the partonic scaling variable z = Q2/s and DH(Q2) = 2QΓH
∗→HH

A (Q2)
∣∣PH(Q2)

∣∣2.

Note that σH
∗

A is known exactly up to NNLO level [42] and N3LO level [45, 56] in the

soft plus virtual approximation for on-shell production of single Higgs boson. Hence, fol-

lowing [42], we can express σH
∗

A (Q2) in terms of IR finite coefficients convoluted with

renormalized parton distribution functions fc(x, µF ) as

σH
∗

A (Q2) = σH
∗

0 (Q2, µR)
∑
a1,a2

∫
dx1fa1(x1, µF )

∫
dx2fa2(x2, µF )z∆A,a1a2(z,Q2, µF , µR)

(5.11)

where σH
∗

0 (Q2, µR) = πm2
b(µ

2
R)/(6Q2v2). ∆A,a1a2 can be expanded in powers of strong

coupling constant as

∆A,a1a2(z,Q2, µF , µR) =

∞∑
i=0

ais(µ
2
R)∆

(i)
A,a1a2

(z,Q2, µF , µR) . (5.12)
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Substituting eq. (5.11) in eq. (5.9) and making suitable change of variables, we obtain

σHHA =
∑
a1a2

∫ 1

τ

dx

2π
Φa1a2(x, µF )

∫ 1

τ
x

dz
[
σH

∗
0 (Q2, µR)DH(Q2)∆A,a1a2(z,Q2, µF , µR)

]
Q2=xzS

(5.13)

where τ = 4m2
h/S, S = s/x1x2, the hadronic center of mass energy of incoming hadrons

and the partonic flux Φa1a2(x, µF ) is given by

Φa1a2(x, µF ) =

∫ 1

x

dy

y
fa1(y, µF )fa2

(
x

y
, µF

)
. (5.14)

In the next section, we use eq. (5.13) to obtain the numerical impact of class-A diagrams

to the inclusive production cross section.

We now describe how the contributions to eq. (5.1) from class-B diagrams can be

obtained. Since class-B diagrams contain, in addition, t and u channels, the corresponding

amplitudes do not factorise like class-A diagrams, making the computation technically more

challenging beyond NLO level. However, one can obtain certain dominant contributions of

class-B processes resulting from soft gluon emission as they are process independent. Using

the contributions from soft gluons, obtained in [56], and those from the two-loop virtual

processes computed in the previous sections, we can readily calculate the soft plus virtual

contribution up to NNLO level, a first step towards obtaining the full NNLO contribution

from class-B.

For the class-B, the leading order contribution results from the Born process b+ b→
H + H contain t and u channels. At NLO, one loop virtual corrections to Born and real

emission processes b+ b → H + H + g and b(b) + g → H + H + b(b) contribute. The UV

divergences that are present in the virtual processes to Born processes are removed using

MS renormalisation scheme. The soft and final state collinear divergences in both virtual

as well as real emission processes cancel among each other while the initial state collinear

divergences are factored out and absorbed into bare bottom quark densities in the MS

scheme through the mass factorization. For the sub-process b(b) + g → H + H + b(b),

we encounter only collinear divergences and they are removed by mass factorization. We

achieve this by using the semi analytical method, namely the two cut off phase space

slicing [86]. The first computation of NLO correction to production of a pair of Higgs bosons

in bottom quark annihilation process was achieved in [51] by using the same approach. In

the present article, we use this approach only for the class-B diagrams to compute NLO

contributions. In this method, for b + b → H + H + g, two slicing parameters δs and

δc are introduced to separate three body phase space into soft, hard collinear and hard

non-collinear regions, while for g + b(b) → H + H + b(b), we need to introduce only δc
as these are free from soft divergences. The slicing parameter δs divides the real emission

phase space into soft and hard regions. The soft region is the part of the phase space

where the energy of the gluon in the center-of-mass frame of incoming partons is required

to be less than δs
√
s/2 and the rest is called hard region. The later contains collinear

configurations where the two massless partons become collinear to each other leading to

collinear singularities. We use δc to divide the hard region into hard-collinear and hard non-

collinear regions, denoted respectively by HC and HC. Keeping these slicing parameters δs
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and δc infinitesimally small, the virtual loop integrals and the soft and collinear sensitive

phase space integrals are computed within the method of dimensional regularization. The

corresponding singularities show up as poles in dimensional regularization parameter ε.

We describe below the essential steps that are followed in dealing with IR singularities

in phase space slicing method. We start with UV finite hadronic cross section at NLO

level, denoted by dσHH+1. It gets contribution from real emission partonic sub-process

a1 + a2 → HH + a3 where the final state consists of a pair of Higgs bosons HH and a3, a

single partonic state. We divide the phase space of a3 into three regions using two slicing

parameters as

dσHH+1(δs, δc, ε) = dσHH,S(δs, ε) + dσHH,HC(δs, δc, ε) + dσHH,HC(δs, δc) . (5.15)

The soft (dσHH,S(δs, ε)) and hard-collinear (dσHH,HC(δs, δc, ε)) contributions can be com-

puted analytically when the slicing parameters are infinitesimally small within the dimen-

sional regularization. Soft and collinear singularities appear as poles in ε and are cancelled

against those resulting from the virtual diagrams as well as from the counter terms that are

used to perform mass factorization. In other words, the following sum, denoted by dσHHNLO

is finite as ε→ 0:

dσHHNLO(µF ) = dσHH,V(ε) + dσHH+1(δs, δc, ε) + dσHH,CT(δs, δc, ε, µF ) (5.16)

where dσHH,V(ε) is the contribution from virtual corrections to Born level processes. The

counter term dσHH,CT(δs, δc, ε, µF ) that removes the initial state collinear singularities is

defined at the factorization scale µF . While the sum given by

dσS+V+HC+CT(δs, δc, µF ) = dσHH,S(δs, ε) + dσHH,V(ε)

+dσHH,HC(δs, δc, ε) + dσHH,CT(δs, δc, ε, µF ) . (5.17)

is free from soft and collinear poles in ε, it depends on the slicing parameters. However,

when the above sum is added to the hard non-collinear contributions (dσHH,HC), that is,

dσHHNLO(µF ) = lim
δs,δc→0

(
dσS+V+HC+CT(δs, δc) + dσHH,HC(δs, δc)

)
(5.18)

the resulting contribution, eq. (5.18), is guaranteed to be independent of the slicing pa-

rameters in the limit when they are taken to be infinitesimally small. For the sub-process,

g + b(b) → H + H + b(b), we encounter only collinear divergences and hence we require a

single slicing parameter δc to obtain infrared safe observable.

For completeness, we present the individual contributions that are required in phase

space slicing method to obtain inclusive cross section up to NLO level from class B dia-

grams. The virtual contribution for the sub-process initiated by b and b̄ is found to be

dσHH,V = as(µ
2
F )

(
s

µ2
F

)ε
2 Γ(1 + ε

2)

Γ(1 + ε)
dx1dx2

[
CF

(
−16

ε2
+

12

ε

)
×dσHH,(0)

bb
(x1, x2, ε)

(
fb(x1)fb(x2) + (x1 ↔ x2)

)
+dσHH,V

bb,fin
(x1, x2, ε)

(
fb(x1)fb(x2) + (x1 ↔ x2)

)]
(5.19)
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after setting renormalization scale µR = µF . The finite part of the virtual corrections,

dσHH,V
bb,fin

can be obtained in terms of C2 given in eq. (2.13). The soft contribution is given by

dσHH,S ' as(µ
2
F )

(
s

µ2
F

)ε
2 Γ(1 + ε

2)

Γ(1 + ε)
CF

(
16

ε2
+

16 ln δs
ε

+ 8 ln2 δs

)
×
(
dσ

HH,(0)

bb
(x1, x2, ε)fb(x1)fb(x2) + (x1 ↔ x2)

)
dx1dx2 . (5.20)

The sum of hard-collinear and counter term contributions from both bb̄ annihilation and

gb(b̄) scattering processes, is found to be:

dσHC+CT = as(µ
2
F )

(
s

µ2
F

)ε
2 Γ(1 + ε

2)

Γ(1 + ε)
dx1dx2

×
[
dσ

HH,(0)

bb
(x1, x2, ε)

{
1

2
fb(x1, µF )f̃b(x2, µF ) +

1

2
f̃b(x1, µF )fb(x2, µF )

+2

(
−1

ε
+

1

2
ln

s

µ2
F

)
Ab→b+g fb(x1, µF )fb(x2, µF ) + (x1 ↔ x2)

}]
. (5.21)

Using the diagonal Altarelli-Parisi (AP) splitting function Pbb(z), we find

Ab→b+g ≡
∫ 1

1−δs

dz

z
Pbb(z) = 4CF

(
2 ln δs +

3

2

)
, (5.22)

and from the non-diagonal ones, we obtain

f̃b(x, µF ) =

∫ 1−δs

x

dz

z
fb

(x
z
, µF

)
P̃bb(z) +

∫ 1

x

dz

z
fg

(x
z
, µF

)
P̃bg(z), (5.23)

with

P̃ij(z) = Pij(z) ln

(
δc

1− z
z

s

µ2
F

)
+ 2P ′ij(z) , (5.24)

where P ′ij(z) [86] are ε dependent part of AP splitting functions, that is

Pij(z, ε) = Pij(z) + εP ′ij(z) . (5.25)

Adding all the order as pieces together: the virtual cross-section dσHH,V in eq. (5.19),

the soft piece dσHH,S in eq. (5.20) and the mass factorized hard-collinear contribution

dσHH,HC+CT as given in eq. (5.21), we find that the poles in ε cancel in the sum given in

eq. (5.18) giving IR finite NLO contribution from class-B diagrams. In the next section, we

use this semi-analytical result to study the numerical impact of class-B NLO contributions

on the inclusive cross section.

Going beyond NLO for the class-B diagrams requires a dedicated computation taking

into account pure virtual contributions presented in the present work, the double real and

single real-virtual contributions. The inclusion of the later contributions is beyond the

scope of this present work. However, we can compute the SV contribution resulting from

class-B diagrams using the two-loop virtual contributions computed in the present article
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and the universal soft and collinear parts. To achieve this, we follow the general formalism

presented in [56], which is applicable to both classes of diagrams.

We begin with the UV finite partonic cross section for producing a pair of Higgs bosons

and nX partons, namely for the process b(p1) + b(p2)→ H(q1) +H(q2) +X(kc),

σ̂bb =
1

2s

2∏
n=1

∫
dφ(qn)

nX∏
c=1

∫
dφ(kc)

∑
|Mbb|

2(2π)dδd
(
p1 + p2 −

2∑
n=1

qn −
nX∑
c=1

kc

)
(5.26)

where c counts the number of partons in the final state. The dominant soft gluon contribu-

tions to partonic reactions are proportional to terms such as δ(1− z) and + distributions:

Dj(z) =

(
logj(1− z)

1− z

)
+

. (5.27)

Such contributions result only from bottom quark annihilation sub processes. They them-

selves do not constitute infrared safe observables until we include pure virtual contributions

and mass factorization counter-terms. The resulting one is called SV contribution.

We briefly discuss how these contributions can be obtained. In the soft limit, it is

well known that the square of the real emission partonic matrix elements factorises into

hard and soft parts and similarly the phase space splits into their respective phase spaces.

The soft part when combined with the pure virtual corrections and the mass factorization

counter terms, will give infrared safe SV part of the cross section:

σ̂SV
bb

=

∫
dQ2

Q2

1

2s

2∏
n=1

∫
dφ(qn)

∑
|M(0)

bb
|2(2π)dδd

(
p1 + p2 −

∑
n

qn

)

×
∫
dφ(Q)

nX∏
c=1

∫
dφ(kc)

∑
|MSV|2(2π)dδd

(
p1 + p2 −Q−

∑
c

kc

)
(5.28)

where M(0)

bb
is the Born amplitude for producing a pair of Higgs bosons in bottom quark

annihilation and MSV is the SV part of amplitude Mbb. The second line of the above

equation can be computed order by order in perturbation theory for any colorless state

with momentum Q in a process independent way as the amplitude for the production of

a pair of Higgs bosons factorises out at every order. Beyond the leading order, virtual

corrections to Born amplitudes and multiple soft gluon emissions both from tree level

amplitudes as well as from the loop corrected amplitudes contribute to the SV. While the

singularities from soft gluons cancel between real and virtual amplitudes, the initial state

collinear singularities can be removed only after adding appropriate mass factorization

counter terms computed in the soft limit at the factorization scale µF . The resulting

hadronic cross section will be free of soft and collinear singularities:

σHH,SV =

∫
dQ2

Q2

∑
b,b

∫
dx1fb(x1, µF )

∫
dx2fb(x2, µF )

1

2s

2∏
n=1

∫
dφ(qn)

×(2π)dδd

(
p1 + p2 −

2∑
n=1

qn

)∑ ∑
i=A,B

∆SV
i,bb

(
{pj · qk}, z,Q2, µF , µR

)
(5.29)
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where z = Q2/s, i runs over both the classes of diagrams. Following [56], the finite

coefficients ∆SV
i,bb

can be computed order by order in perturbation theory using one and

two-loop virtual amplitudes, soft distribution function and diagonal mass factorization

kernels. We expand ∆SV
i,bb

in powers of strong coupling constant as,

∆SV
i,bb

=

∞∑
j=0

ajs(Q
2)∆

SV,(j)

i,bb
(Q2) (5.30)

where we have set µ2
R = µ2

F = Q2. The coefficients, ∆
SV,(j)

i,bb
for j = 0, 1, 2 can be expressed

in terms of the cusp Aqj , the soft f qj and the collinear Bq
j anomalous dimensions that are

present in the virtual amplitudes and in the soft distribution function [56]:

∆
SV,(0)

i,bb
= δ(1− z)|A(0)

i,0 |
2 ,

∆
SV,(1)

i,bb
= δ(1− z)

{
|A(0)

i,0 |
2
(

2Gq,(1)
1

)
+A(1)

i,0A
?(0)
i,0 +A(0)

i,0A
?(1)
i,0

}
+D0|A(0)

i,0 |
2 (−2f q1 )

+D1|A(0)
i,0 |

2 (4Aq1) ,

∆
SV,(2)

i,bb
= δ(1− z)

{
|A(1)

i,0 |
2 + |A(0)

i,0 |
2

(
Gq,(2)

1 + 2(Gq,(1)
1 )2 + 2β0G

q,(1)
2 − 8ζ3A

q
1f

q
1

−2ζ2(f q1 )2 − 4

5
ζ2

2 (Aq1)2

)
+A(2)

i,0A
?(0)
i,0 +A(1)

i,2A
?(1)
i,−2

+A(1)
i,2A

?(0)
i,0

(
4Aq1

)
+A(1)

i,1A
?(1)
i,−1 +A(1)

i,1A
?(0)
i,0

(
− 2f q1 − 4Bq

1

)
+A(1)

i,−1A
?(1)
i,1

+A(1)
i,−2A

?(1)
i,2 +A(1)

i,0A
?(0)
i,0

(
2Gq,(1)

1

)
+A(0)

i,0A
?(2)
i,0 +A(0)

i,0A
?(1)
i,2

(
4Aq1

)
+A(0)

i,0A
?(1)
i,1

(
− 2f q1 − 4Bq

1

)
+A(0)

i,0A
?(1)
i,0

(
2Gq,(1)

1

)}
+D0

{
|A(0)

i,0 |
2
(
− 2f q2 − 4f q1G

q,(1)
1 − 4β0G

q,(1)
1 + 16ζ3(Aq1)2 + 8ζ2A

q
1f

q
1

)
+A(1)

i,0A
?(0)
i,0

(
− 2f q1

)
+A(0)

i,0A
?(1)
i,0

(
− 2f q1

)}
+D1

{
|A(0)

i,0 |
2
(

4(f q1 )2 + 4Aq2 + 8Aq1G
q,(1)
1 + 4β0f

q
1 − 16ζ2(Aq1)2

)
+A(1)

i,0A
?(0)
i,0

(
4Aq1

)
+A(0)

i,0A
?(1)
i,0

(
4Aq1

)}
+D2|A(0)

i,0 |
2
{
− 12Aq1f

q
1 − 4β0A

q
1

}
+D3|A0

i,0|2
{

8(Aq1)2
}
, (5.31)

where ζ2 = 1.64493407 · · · , ζ3 = 1.20205690 · · · and A(j)
i,k are obtained from eq. (2.13) by

defining Amn = Aδmn and expanding in powers of ε as

A(j)
i (ε) =

∞∑
k=−2j

εkA(j)
i,k . (5.32)
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The cusp (Aqi ,i = 1, 2) and collinear anomalous dimensions (B1
q ) are given by

Aq1 = 4CF ,

Aq2 = 8CFCA

{
67

18
− ζ2

}
+ 8CFnf

{
− 5

9

}
,

Bq
1 = 3CF , (5.33)

and the soft anomalous dimensions are

f q1 = 0 ,

f q2 = CACF

{
− 22

3
ζ2 − 28ζ3 +

808

27

}
+ CFnfTF

{8

3
ζ2 −

224

27

}
. (5.34)

The universal constants Gq,(j)k are given by

Gq,(1)
1 = CF (−3ζ2) ,

Gq,(1)
2 = CF

(
7

3
ζ3

)
, (5.35)

Gq,(2)
1 = CFnf

(
−328

81
+

70

9
ζ2 +

32

3
ζ3

)
+ CACF

(
2428

81
− 469

9
ζ2 + 4ζ2

2 − 176

3
ζ3

)
.

Finally, defining ∆
SV
bb (z,Q2, µF , µR) by

∆
SV
bb (z,Q2, µF , µR) =

1

2s

2∏
n=1

∫
dφ(qn)(2π)dδd

(
p1 + p2 −

2∑
n=1

qn

)

×
∑
|M(0)

bb
|2

2∑
i=1

∆SV
i,bb

(
{pj · qk}, z,Q2, µF , µR

)
, (5.36)

we obtain σHH,SV:

σHH,SV =

∫ 1

τ
dx Φa1a2(x, µF )

∫ 1

τ
x

dz ∆
SV
a1a2(z,Q2, µF , µR)

)∣∣∣∣
Q2=xzS

. (5.37)

We have used the above formula to study the numerical impact of SV part of the partonic

cross section resulting from class-B diagrams up to NNLO level on the inclusive production

of a pair of Higgs bosons.

6 Phenomenology

In this section, we present in detail the numerical impact of our analytical results obtained

in the previous sections. We mainly focus on the inclusive cross section for producing a

pair of Higgs bosons at the LHC with the center-of-mass energy
√
S = 14 TeV. We use

MMHT2014(68cl) PDF set [87] and the corresponding as through the LHAPDF-6 [88]

interface at every order in perturbation theory. We use the running bottom quark mass

renormalized in MS (see eq. (13) in [42]) scheme with the boundary condition mb(mb) =
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4.7 GeV. Both as(µR) and mb(µR) at various orders in perturbation theory are evolved

using appropriate QCD β-function coefficients and quark mass anomalous dimensions.

Similarly, the PDFs are evolved to factorization scale µF using the splitting functions

computed to desired accuracy in the perturbation theory. We choose the Higgs boson

mass mh = 125 GeV and its total decay width Γh = 0.001 GeV. In our analysis, we have

included all the partonic channels upto NNLO level for the class-A diagrams while for the

class-B, we could do this only up to NLO level, however, at NNLO level we have included

SV contributions. We find that this approximation does not change our conclusion as the

dominant contribution results from class-A. To illustrate this point we state some of our

observations from our numerical results. We find that the LO contributions from class-A

diagrams are three orders of magnitude larger than those from class-B diagrams. We also

find that NLO contributions change the LO cross section by −1.096% and at the NNLO

level the change is about −8.095%. The numerical result manifests the fact that the SV

contribution presented in this paper not only gets the dominant contribution from class-A

but also the stability of our NNLO result for di-Higgs production from the bb̄ annihilation

channel. We find that the contribution from bottom quark annihilation processes is two

orders of magnitude smaller than from the gluon fusion processes. However, former ones

need to be included for the precision studies at the LHC.

Having studied the size of the corrections both at NLO and NNLO level, it is important

to quantify the uncertainties resulting from the mass scales introduced in our calculations.

Recall that the renormalisation of the ultra-violet and the initial state collinear diver-

gences enforces the introduction of mass scales namely µR and µF respectively. The µR
dependency shows up in the coupling constant as(µR), the mass mb(µR) and in the mass

factorised partonic cross sections at various orders in perturbations theory. The coupling

constants are evolved using the appropriate QCD β-function coefficients and quark mass

anomalous dimensions. The µF scale dependency comes from the PDFs that are evolved

using splitting functions computed in the perturbation series. But the cross section, like

every other physical observables, is expected to be independent of these arbitrary mass

scales. This crude fact manifests the scale independency if we sum the perturbative pre-

dictions to all orders in perturbation theory. Since we have truncated the series, there is a

residual scale dependency. In the following we aim to study this by varying both µR and

µF scales.

In figure 5, we show the variation of our fixed order predictions with respect to µR
(on the left panel) and µF (on the right panel) for a particular choice of central scale

µ0 = 250 GeV. We can see that except for the small µR and µF region, which is in the

region below µR = mh, there is an overall reduction of the scale dependency with increasing

order of perturbation theory. We observe that both NLO and NNLO results attain a much

faster stability against the variation of the scales than the LO cross-section. At the leading

order, there are no µR or µF scale dependent logarithms that can compensate those coming

from the Yukawa coupling and parton distribution functions, and hence LO has large

scale dependency. However, the inclusion of higher order terms that contain logarithms of

these scales provide partial cancellation at every order in perturbation theory. Hence the

inclusion of NLO and NNLO pieces reduces the dependency on the scales considerably. In
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Figure 5. The total cross section for di-Higgs production in bb̄ annihilation at various order in as
as a function of (µR/µ0) on left panel with µF = µ0 and as a function of (µF /µ0) on right panel

with µR = µ0 with central scale µ0 = 2mh and
√
s = 14 TeV.
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Figure 6. The total cross section for di-Higgs production in bb̄ annihilation at various order in as
as a function of the mass scale µ with (µF = µR = µ) for

√
s = 14 TeV.

figure 6, we have set µR = µF and varied the cross-section with respect to a single scale

µ. It can be observed that LO attains stability much faster compared to the case when µR
is not equal to µF . This can be comprehended from figure 5, where the LO contribution

behaves exactly in an opposite way with respect to the variation of both the mass scales.

So the stability in the leading order seen in figure 6 attributes to the fact that there is

a significant cancellation happening between the µR and µF scale variations of the cross

section. We also show the 7-point scale variation for the central scale at mh = 125 GeV in

table 1. This variation spans the entire region from µR, µF = mh/2 to µR, µF = 2mh and

hence captures the uncertainty in this region. The 7-point scale variation for a different

value of central scale is also shown in table 2. table 3 contains the % uncertainty from

the scale variation at two different central scales. It can be seen that the leading order
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(
µR

κmh
, µF

κmh

)
LO[fb]×10−1 NLO[fb]×10−1 NNLO[fb]×10−1

(2,2) 0.3587 0.3416 0.3119

(2,1) 0.2951 0.3191 0.3098

(1,2) 0.3994 0.3384 0.2976

(1,1) 0.3286 0.3250 0.3020

(1,1/2) 0.2502 0.3032 0.3031

(1/2,1) 0.3704 0.3246 0.2879

(1/2,1/2) 0.2821 0.3169 0.2970

Table 1. 7-point scale variation for central scale at mh = 125 GeV, κ = 1.(
µR

κmh
, µF

κmh

)
LO[fb]×10−1 NLO[fb]×10−1 NNLO[fb]×10−1

(2,2) 0.3765 0.3617 0.3256

(2,1) 0.3254 0.3384 0.3210

(1,2) 0.4150 0.3594 0.3110

(1,1) 0.3587 0.3416 0.3119

(1,1/2) 0.2951 0.3191 0.3098

(1/2,1) 0.3994 0.3384 0.2976

(1/2,1/2) 0.3286 0.3250 0.3020

Table 2. 7-point scale variation for central scale at mh = 125 GeV, κ = 2.

Central Scale (GeV) LO[fb]×10−1 NLO[fb]×10−1 NNLO[fb]×10−1

125 0.3286+21.546%
−23.859% 0.3250+5.108%

−6.708% 0.3020+3.278%
−4.669%

250 0.3587+15.696%
−17.731% 0.3416+5.210%

−6.587% 0.3119+4.392%
−4.585%

Table 3. % scale uncertainty at LO, NLO and NNLO.

cross-section has a huge scale uncertainty which implies the unreliability of the result. But

the scale dependency starts to reduce when we include the higher order corrections.

7 Conclusion

The extraction of the trilinear coupling of the Higgs bosons provides the valuable informa-

tion on the shape of the Higgs potential. One of the most important observables sensitive

to this coupling is the production of a pair of Higgs bosons at the LHC. Among various

partonic channels that contribute to this process, gluon fusion is the dominant one and is

well studied both in effective theory as well as in the full theory. In the effective theory, top

quarks are integrated out. As the precision at the hadron collider improves, it is important

to incorporate other sub-dominant channels to the production mechanism. In this paper,

we have considered one such channel, namely the production of a pair of Higgs bosons in the

bottom quark annihilation which is sensitive to the trilinear coupling. Both LO and NLO
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QCD contributions exist in the literature and hence we have computed the NNLO QCD

corrections to the inclusive cross section. There are two classes of diagrams that contribute

at two-loops as well as at real emission sub processes. The vertex type of virtual diagrams

that belongs to class-A is already known up to three loops and hence we evaluate only the

Class-B diagrams up to two loops in perturabative QCD for our NNLO predictions. Our

results are expressed in terms of classical polylogarithms of weight up to 4. We observe

that the infrared poles of the amplitudes are in agreement with the predictions by Catani.

We have studied the numerical stability of the coefficient C(2),fin
2 over the range of x and

cos(θ) required for further phenomenological studies.

Using these results at hand, we have computed full NNLO corrections from class-

A diagrams and SV contributions at NNLO level from class-B diagrams to the inclusive

cross section. We have shown how the NNLO results that are already available for the

single Higgs boson production can be used to obtain the full NNLO contributions for

the production of pair of Higgs bosons from class-A diagrams. Exploiting the universal

structure of the soft contributions and the two loop amplitudes computed in this paper, we

derive the SV contributions from class-B diagrams up to NNLO level. Our detailed study on

the numerical impact of these results at the LHC energy demonstrates that the inclusion of

higher order terms reduces the renormalization and factorization scale uncertainties making

the predictions more reliable.
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