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A B S T R A C T   

The SARS-CoV-2 pandemic is a worldwide public health emergency. Despite the beginning of a vaccination 
campaign, the search for new drugs to appropriately treat COVID-19 patients remains a priority. Drug repur-
posing represents a faster and cheaper method than de novo drug discovery. In this study, we examined three 
different network-based approaches to identify potentially repurposable drugs to treat COVID-19. We analyzed 
transcriptomic data from whole blood cells of patients with COVID-19 and 21 other related conditions, as 
compared with those of healthy subjects. In addition to conventionally used drugs (e.g., anticoagulants, anti-
histaminics, anti-TNFα antibodies, corticosteroids), unconventional candidate compounds, such as SCN5A in-
hibitors and drugs active in the central nervous system, were identified. Clinical judgment and validation 
through clinical trials are always mandatory before use of the identified drugs in a clinical setting.   

1. Introduction 

Drug repurposing consists of the use of an existing active pharma-
ceutical ingredient already on the market for a different indication [1]. 
This approach offers several advantages compared with the develop-
ment of a new drug, including a faster and cheaper process due to 
consolidated knowledge regarding the drug’s safety and toxicity and 
higher success rates in introducing the drug to the market since it has 
already been tested in clinical trials [1]. The pharmacological base of 
drug repurposing relies on the fact that some diseases share common 
biological targets and that one drug may have several targets and thus 
may be able to treat different diseases [1]. In this framework, compu-
tational approaches could offer valuable help in identifying potential 
candidates for systematic drug repurposing. Within this context, 
network medicine, which applies tools and concepts from network 
theory to elucidate the relation between molecular level perturbations 
and phenotypic disease manifestations, represents a highly promising 
approach [2–7]. Network medicine builds on the hypothesis that the 

human interactome (i.e., the network of all physical and functional 
molecular interactions within the cell) can be interpreted as a map and 
that diseases are local perturbations [8]. However, the molecular de-
terminants of a given disease are not randomly scattered, but tend to be 
co-localized and agglomerated in specific regions of the interactome, 
generating a disease module [3,9]. Network-based approaches allow the 
identification of the specific interactome neighborhood that is perturbed 
in a specific disease, thus unveiling disease-disease relationships and 
guiding the search for therapeutic targets [10–19]. This approach could 
also be used to identify repurposable drugs for human diseases, 
including COVID-19 [20–25]. 

COVID-19 has quickly been recognized as a worldwide public health 
emergency. To date, the World Health Organization (WHO) reports 
more than 170,000,000 confirmed cases of COVID-19 globally and more 
than three million deaths (World Health Organization, https://covid19. 
who.int/). 

Although a huge vaccination campaign is in progress worldwide, 
novel emerging variants limit the efficacy of the campaign and indicate 
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that patient management still remains a priority from a clinical 
perspective. As such, in addition to developing novel therapies targeting 
viral infection, drug repurposing represents a successful strategy to 
improve the identification of effective approaches. 

Many computational tools for drug repurposing in COVID-19 pa-
tients have been developed and most are based on three-dimensional 
analysis of the drug structure in relation to the viral and/or host tar-
gets and their binding affinities and interactions [26]. Among identified 
repurposable drugs, some target viral proteins, including antiviral drugs 
that inhibit viral RNA polymerase (e.g., favipiravir, remdesivir) or viral 
protease (e.g., lopinavir, prulifloxacin, tegobuvir, bictegravir, nelfina-
vir, and darunavir) [26]. Other drugs act on human cells and can block 
virus entry by several mechanisms, including inhibiting TMPRSS2 and 
other cell-surface proteases involved in SARS‑CoV-2 activation (e.g., 
camostat mesylate and bromhexine), blocking clathrin-mediated endo-
cytosis (e.g. chlorpromazine, baricitinib, and ruxolitinib), or preventing 
endocytosis by increasing endosomal pH (e.g., chloroquine and 
hydroxychloroquine). Although in vitro studies showed controversial 
results, these drugs have advanced to clinical trials either alone or in 
combination [27]. 

In parallel with targeting virus replication and cell entry, it is 
becoming evident that the host immune response plays a pivotal role in 
disease evolution. It has been reported that patients with severe COVID- 
19 disease present, in the early phases, hyperactivation of the innate 
immune response with cytokine storm resulting in a massive inflam-
matory response that later turns toward massive chronic basal inflam-
mation characterized by a refractory immune state [28]. However, 
inappropriate adaptive immune response seems to play a crucial role in 
the late phase of the disease [29,30], which is probably linked to im-
mune checkpoint activation and immune system exhaustion [29]. This 
massive immune response has paved the way for testing several 
immunomodulatory agents in parallel with antiviral drugs [28,31]. 

Several immunomodulatory and anti-inflammatory agents have been 
tested to control cytokine storm. Tocilizumab, a monoclonal antibody 
against IL-6 receptors normally used for the treatment of diseases such as 
rheumatoid arthritis, was promising at first, though subsequent clinical 
trials did not provide unequivocal results on the benefit of tocilizumab in 
COVID-19 patients [32]. Corticosteroids appear to be effective in the 
treatment of COVID-19 patients, and many trials have confirmed that 
dexamethasone may be used for hospitalized subjects with severe 
SARS-CoV-2 infection. Other drugs able to control inflammation, such as 
baricitinib, ruxolitinib, and eculizumab, are currently under clinical 
evaluation. Some anticoagulant and antiplatelet drugs have also been 
suggested to be effective in the treatment of COVID-19 patients. In 
particular, heparin was found to limit hypercoagulability in COVID-19 
patients, exert anti-inflammatory effects, and reduce mortality in hos-
pitalized patients. Several clinical trials are currently evaluating heparin 
treatment efficacy in hospitalized patients with COVID-19 [33]. 

Despite these findings, robust clinical evidence is currently only 
available for a very limited number of drugs. Therefore, the aim of this 
paper was to identify drugs that could be repurposed for the treatment of 
patients with COVID-19 through a network medicine approach. We 
exploited the computational power of network medicine to explore the 
different scenarios provided by three different in silico analyses. In fact, 
a single study might not be enough to cover the multiform clinical frame 
of the disease. We used transcriptomic data from whole blood cells, 
including all innate and adaptive immune system cells, of patients with 
COVID-19 and other inflammatory conditions, infections, or conditions 
with some clinical features in common with COVID-19. For each disease, 
we identified the genes that were most deregulated compared with 
healthy subjects. We then selected functionally related genes and veri-
fied that they were co-localized in the human interactome, thus gener-
ating a functional coherent disease module. This allowed us to identify 
drugs targeting proteins that were within or in proximity to the COVID- 
19 module. Moreover, we also identified drugs that could be potentially 
repositioned for COVID-19 among those with an original medical 

indication for a disease whose module was in the COVID-19 neighbor-
hood. Our in-silico analysis provided new pharmacological hypotheses 
to be explored and experimentally validated. 

2. Methods 

2.1. Data retrieval 

Whole blood transcriptomic data for COVID-19 and 21 other dis-
eases, including bacterial and viral infections, inflammatory diseases, 
immunodeficiency, primary lung, and coagulation disorders [34], were 
selected from the Gene Expression Omnibus (GEO) database. All data-
sets also included transcriptomic data of healthy controls. 

Notably, the COVID-19 dataset was only recently deposited and is 
the first available concerning whole-genome gene expression data on 
whole blood cells. All patients were hospitalized for community- 
acquired lower respiratory tract infection with SARS-CoV-2 within the 
first 24 h of hospital admission. Details for each dataset are reported in 
Supplementary Table 1. The human interactome was downloaded from 
Cheng et al. [20]. This version of the interactome is composed of 217, 
160 protein–protein interactions connecting 15,970 unique proteins. 
Drug-target interactions were downloaded from DrugBank [35], which 
contains 13,563 drug entries, including 2627 approved small molecule 
drugs, 1373 approved biologics, 131 nutraceuticals, and over 6370 
experimental drugs (released 22–04–2020) [35]. The target Uniprot IDs 
provided by DrugBank were mapped to Entrez gene IDs using the Bio-
Mart – Ensembl tool [36]. For our analysis, we selected a total of 1873 
Food and Drug Administration (FDA)-approved drugs with at least one 
annotated target. 

2.2. Disease-modulated genes and their localization in the human 
interactome 

In order to identify genes that were most modulated by the disease, 
we computed differentially expressed genes between pathological and 
healthy conditions for every dataset using the following R packages: 
limma [37], to analyze microarray data, and Deseq2 [38], to analyze 
RNA-seq data. The thresholds for p-value and Log2FC for each disease 
are reported in Supplementary Table 1. We mapped a list of the disease’s 
modulated genes on the human interactome to identify the ones in the 
same connected subnetwork (i.e., the largest connected component), 
and thus functionally related. In order to test whether this subnetwork 
forms a statistically significant disease module, for each analyzed dis-
ease we randomly selected groups of proteins in the human interactome 
with the same size and degree distribution as the original list of disease 
deregulated genes and the following three metrics were computed: 1) 
the size of the largest connected component (LCC); 2) the number of 
interactions in the LCC; and 3) the total number of interactions. The 
three metrics were then z-score normalized by applying a 
degree-preserving randomization procedure, expecting a p value ≤ 0.05 
for genes forming a statistically significant disease module [39]. Log2FC 
thresholds were chosen to guarantee the topological organization of 
disease deregulated genes in statistically significant modules. 

2.3. SAveRUNNER 

To predict and prioritize off-label drug indications for COVID-19, we 
used a novel network-based algorithm for drug repurposing called 
SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk) [40,41]. Spe-
cifically, SAveRUNNER predicts drug-disease associations by quanti-
fying the interplay between the drug targets and disease-associated 
proteins in the human interactome via a novel network-based similarity 
measure that rewards associations between drugs and diseases located in 
the same network neighborhoods. SAveRUNNER requires a list of dis-
ease genes, a list of drug targets, and a reference interactome. As disease 
genes, we used the genes falling in the COVID-19 module; as drug 
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targets, we assembled target information of the 1873 FDA-approved 
drugs obtained from DrugBank [35]; and as a reference interactome 
we used the version provided by Cheng et al. [20]. A comprehensive 
description of SAveRUNNER algorithm can be found in [40,41]. 

2.4. Network-based disease similarity 

2.4.1. Network module separation 
To measure the vicinity between the COVID-19 module and the other 

disease modules in the human interactome network, we used the non- 
Euclidean separation distance [9] defined in Eq. (1): 

s(A,B) = pAB −
pAA + pBB

2
(1)  

where p(A,B) is the network proximity defined in Eq. (2): 

p(A,B) =
1

|A| + |B|

[
∑

aϵA
d(a, b)+

∑

bϵB
d(b, a)

]

(2)  

and d(a, b) is the shortest distance between the element a of module A 
and the element b of module B. A negative value for the separation 
measure indicates that two disease modules are in the same neighbor-
hood of the human interactome, and thus they overlap; whereas a pos-
itive value for the separation measure indicates that two disease 
modules are topologically well separated. To evaluate the significance of 
module separation across two disease-specific modules (A, B), we built a 
reference distance distribution corresponding to the expected distance 
between two randomly selected groups of proteins with the same size 
and degree distribution as the original two disease-specific modules (A, 
B). The random selection was repeated 1000 times to build the reference 
distance distribution. The module separation measure was z-score 
normalized by using the mean and standard deviation of the reference 
distribution. Subsequently, the p value for the given z statistic was 
calculated. A p value ≤ 0.05 indicated that the separation between two 
disease-specific modules in the human interactome was more (or less) 
than that expected by chance. 

2.4.2. Random Walk with Restart 
The Random Walk with Restart (RWR) algorithm is another network- 

based approach to measure the closeness between the COVID-19 module 
and the other 19 disease modules in the human interactome network. 
RWR is an algorithm based on an intuitive concept that revolves around 
random walks. Given a random walker starting from a given node x, 
there are two different options at each iteration: either moving to one of 
its neighboring nodes or returning to x with a certain probability. 
Formally, the RWR algorithm can be described by Eq. (3): 

Rt = γWRt− 1 +(1 − γ)E (3)  

where W is the network adjacency matrix, representing the matrix of 
transitions between nodes, whose element W[i, j] denotes the transition 
probability of going from node j to node i; E is the starting point vector, 
whose element E[i] is equal to 1 if i is a starting node, 0 otherwise; Rt is a 
probabilities vector, whose element Rt [i] denotes the probability of being 
at node i at iteration t; γ is a number ranging in (0,1), and (1 − γ) ex-
presses the probability of “restarting” from the starting point node at 
each iteration. At iteration t = 0, the value of Rt− 1 is equal to E. The 
probabilities vector Rt will be iteratively calculated until the point of 
converge is reached (i.e., Rt = Rt− 1, or the difference between the 
probability to stay and the probability to move is lower than a given 
threshold). Eventually, the RWR returns the vector R of the steady-state 
probabilities for each node in the network as output. 

We ran RWR by considering the adjacency matrix Wmxm, built from 
the human interactome as a transition matrix, and the genes in the 
COVID-19 module as elements of the vector E. For each disease module, 
we averaged RWR steady-state probabilities corresponding with each 

module element and obtained a mean probability for each disease, i.e., 
the probability to reach it starting from COVID-19. This disease proba-
bility was then normalized by using the modified z-score defined in Eq. 
(4): 

zmod = c∙
x − x̂
MAD

(4)  

where x is the disease probability, x̂ is the median value of distribution 
of all disease probabilities, MAD is the median absolute deviation 
defined as the median of the absolute difference of the observation from 
the sample median (i.e., median(|x − x̂|), and c is a scale factor equal to 
0.6745, such that for normal distribution, zmod is equal to the standard z- 
score [42]. We termed this normalized disease probability ‘COVID-19 
closeness’. Values of COVID-19 closeness that were outside the overall 
distribution pattern of the normalized disease probabilities were defined 
as outliers. A commonly used rule is to define a data point as an outlier if 
it is more than 1.5∙IQR above the third quartile or below the first 
quartile. This means that low outliers are below 25th − 1.5∙IQR (i.e., the 
farthest diseases from COVID-19) and high outliers are above 
75th+1.5∙IQR (i.e., the closest diseases to COVID-19). Values of 
COVID-19 closeness that are outside the upper and lower quartiles are 
usually indicated as upper and lower whiskers, respectively. Diseases 
corresponding to high outliers as well as upper whiskers are more likely 
to be reached by the random walker starting from COVID-19. 

3. Results 

3.1. Functionally-related and co-localized disease-related genes in the 
human interactome 

In this study, we first compared the gene expression profile of 
COVID-19 and 21 diseases in which inflammatory and immune pro-
cesses are involved with the profile of healthy controls in order to 
identify the highest modulated genes under pathological conditions 
(Supplementary Table 1). We mapped these genes on the human inter-
actome, which is a network of proteins (nodes) in which the edges are 
the physical and functional interactions occurring between them, to 
evaluate whether they had the propensity to aggregate in local, disease- 
specific neighborhoods of the human interactome, thus making them 
functionally-related genes. For each disease, we extracted the largest 
connected component from the subnetwork composed of genes that 
were modulated in that specific disease condition and verified whether 
these genes presented a statistically significant ability to generate a 
disease module. For subsequent analyses, we selected only the diseases 
that satisfied this module hypothesis, in accordance with the organizing 
principles of network medicine [3,9,39]. Notably, we found that for all 
diseases analyzed (with the exception of ankylosing spondylitis and 
chronic spontaneous urticaria), the deregulated genes formed statisti-
cally significant modules (Table 1). Thus, we considered 20 diseases, 
including COVID-19, for subsequent analyses. 

3.2. Drug-disease module vicinity 

To discover novel repurposable drugs and evaluate the magnitude to 
which a given drug can be repositioned for COVID-19, we exploited the 
recently developed SAveRUNNER algorithm [40]. The rationale behind 
SAveRUNNER builds on the hypothesis that for a drug to be effective 
against a specific disease, its associated targets (drug module) and the 
disease-specific associated genes (disease module) should be located 
nearby in the human interactome [20] (Fig. 1A). 

Using SAveRUNNER, we computed the similarity between each drug 
module and the COVID-19 module together with the corresponding 
statistical significance obtained through a degree-preserving randomi-
zation procedure. We obtained a weighted bipartite drug-disease 
network, where the link between a drug and a disease is appreciated if 
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the corresponding drug targets and disease genes are located nearby in 
the interactome to a greater extent than what would be expected by 
chance (Fig. 1B). The weight of their interaction corresponds with the 
similarity measure between the corresponding drug and disease module. 
In our study, SAveRUNNER identified 399 repurposable drugs for 
COVID-19 (Supplementary Table 2). Focusing on the top-ranked pre-
dicted drugs (similarity greater than 0.8), we observed molecules 
involved in the modulation of the coagulation system (e.g., heparin and 
tranexamic acid), antihistaminic drugs, mast cell stabilizers (e.g., 
chlorzoxazone and chlorpheniramine), anti-proliferative drugs 
including tyrosine kinase (TRK) inhibitors and antibiotics (e.g., 

larotrectinib and ciprofloxacin), alpha-adrenergic receptor agents (e.g., 
clonidine and prazosin); drugs affecting the central nervous system (e.g., 
perfenazine and droperidol), and inhibitors of the sodium voltage-gated 
channel alpha subunit 5 (SCN5A), which is involved in cardiac rhythm 
control (e.g., propafenone and prilocaine), among others (Table 2, 
Supplementary Table 3, and Fig. 1B). 

3.3. Disease-disease module vicinity 

To find similarities between COVID-19 and the other 19 considered 
diseases, we implemented two network-based approaches: (1) network 

Table 1 
Module search results for the analyzed datasets. LCC = largest connected component.  

Disease name Number of LCC nodes Number of LCC edges Number of total interactions 

observation p-value observation p-value observation p-value 

Ankylosing spondylitis  216 0.6  825 0.005  827 0.008 
Crohn’s disease  399 2E-13  1120 3E-39  1147 2E-43 
Chronic obstructive pulmonary disease (COPD)  163 0.0002  409 0.0002  418 0.0003 
Chronic spontaneous urticaria  183 0.5  444 0.1  476 0.02 
Community-acquired pneumonia  421 0.01  1347 1E-11  1359 2E-11 
Common variable immunodeficiency  25 0.02  24 0.03  30 0.01 
COVID-19  314 0.00001  441 3E-9  514 5E-17 
Dermatomyositis  11 2E-11  23 2E-25  24 5E-17 
H3N2 flu  170 0.03  270 0.001  282 6E-4 
H1N1 flu  278 0.01  1309 2E-25  1331 5E-27 
Inflammatory bowel disease  412 5E-16  1139 9E-38  1161 7E-42 
Inclusion body myositis  3 0.01  4 0.01  5 0.007 
Infective endocarditis  202 0.05  359 0.003  373 0.001 
Primary lung cancer  333 0.0006  1185 2E-24  1192 2E-24 
Polymyositis  12 0.004  14 0.00004  16 0.0002 
Rheumatoid arthritis  178 0.03  321 1E-5  343 2E-7 
Sarcoidosis  476 0.04  1731 4E-22  1745 3E-22 
SARS  33 0.04  62 2E-6  65 3E-6 
Septic shock  363 0.001  1202 1E-13  1223 6E-15 
Tuberculosis  469 0.006  1829 8E-22  1843 7E-22 
Ulcerative colitis  329 0.05  488 0.04  508 0.05 
Venous thromboembolism  513 0.04  2975 0.00002  2977 0.00003  

Fig. 1. SAveRUNNER. A) The network-based algorithm used to identify off-label drug indications against COVID-19 [40]. B) The SAveRUNNER outcome network 
showing the high-confidence predicted drug-disease associations (p-value ≤ 0.05) connecting COVID-19 with 399 FDA-approved non-COVID-19 drugs. Drugs are 
colored according to the targeted pathways reported in the legend. 
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Table 2 
Potential Drug Repurposing for COVID-19. SAveRUNNER-identified repurposable drugs for SARS-CoV-2 showing a similarity greater than 0.8. * indicates drugs under 
investigation in clinical trials.  

Approved Therapeutic Use Drugs Potential application in COVID-19 

Antiplatelet/anticoagulant Heparin*    Reduce the risk of thrombosis 
Fibrinolytics Streptokinase     
Pro-coagulants Tranexamic acid* Aminocaproic Acid   Limit viral entry 
Polysulphates Pentosan 

polysulphate 
Chondroitin 
sulphate   

Histamine H1 - receptors 
antagonists 

Diphenylpyraline Chlorpheniramine   Limit cytokine storm 

Mast cells stabilizers Chlorzoxazone    
Tropomyosin receptor kinase B 

inhibitors 
Entrectinib Larotrectinib   Reduce immune cells proliferation 

Other Antiproliferatives D-Serine Podofillotoxin   
Fluoroquinolones Ofloxacin Ciprofloxacin   
α1-adrenergic receptors blockers Nicergoline Dapiprazole Moxisylyte Prazosin* Limit cytokine storm 

Silodosin Tamsulosin Alfuzosin Phenoxybenzamine 
Phentolamine    

α2-adrenergic receptors agonists Apraclonidine Guanabenz Guanfacine Levonordefrin 
Brimonidine Clonidine*   

α1-agonists Ergometrine Metaraminol Tetryzoline Methoxamine Sustain blood pressure in case of septic shock 
Midodrine Oxymetazoline Phenylephrine Phenylpropanolamine 
Xylometazoline Epinephrine Naphazoline  

Phenothiazines and 
Antipsychotics 

Perphenazine Thioridazine Thiothixene Periciazine Limit cytokine storm through modulation of 
Dopaminergic, Adrenergic and/or Serotoninergic 
receptors 

Pipotiazine Prochlorperazine Flupentixol  
Serotonin-norepinephrine 

reuptake Inhibitors (SNRI) 
Duloxetine Sibutramine Venlafaxine  

Serotonin antagonist and 
reuptake inhibitors (SARI) 

Nefazodone Lorpiprazole   

Dopaminergics Armodafinil Diethylpropion Modafinil Solriamfetol 
Benzphetamine Fenoldopam   

Antidopaminergics Droperidol Methylergometrine Acetophenazine Lumateperone 
Anti-epileptics Fosphenytoin Ethotoin Mephenytoin  Limit macrophages acrivation 
Antiarrhythmic agents Ajmaline Encainide Indecainide Moricizine 

Tocainide Propafenone Vernakalant  
Local anaesthetics Benzonatate Prilocaine    

Fig. 2. Network module separation. A) Schematic representation of disease-related gene modules and their topological distances in the human interactome. B) 
Radial plot reporting the network module separation measure(s) between COVID-19 and the other 19 diseases. Each disease is represented as a circle whose radius 
reflects the number of disease-related genes associated with it. The farther a disease is from the center, the more distant its module is from the COVID-19 module in 
the human interactome. 
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module separation, which quantified the topological distance between a 
disease module and the COVID-19 module in the human interactome 
network (Fig. 2A); (2) the RWR algorithm, which calculated the prob-
ability of a random walker reaching a disease module starting from the 
COVID-19 module (Fig. 3A). 

We observed that every separation value was statistically significant 
(see Methods), and we considered diseases whose separation values 
were less than the 15th percentile of the distribution of all separation 
values. We found H1N1 flu, Crohn’s disease, inflammatory bowel dis-
ease, and septic shock to be the closest diseases to COVID-19 (Supple-
mentary Table 2 and Fig. 2B). 

From the RWR algorithm, we selected only those diseases that 
ranked within the outliers or upper whiskers, i.e., diseases that were 
more likely to be reached by the random walker starting from COVID-19 
(see Methods). These diseases included dermatomyositis, polymyositis, 
and inclusion body myositis in the outlier category, whereas SARS, 
H1N1, and H3N2 flu appeared as upper whiskers (Supplementary 
Table 2 and Fig. 3B). 

Interestingly, the RWR approach confirmed the results obtained with 
network module separation, in which H1N1 flu resulted as one of the 
closest diseases to COVID-19 in the interactome, with respect to the 
other analyzed diseases. 

4. Discussion 

SARS-CoV-2 has become a pandemic infection with a global health 
priority. There is an urgent need to find more effective drugs to reduce 
disease burden and mortality. In this context, drug repurposing repre-
sents a strategy to be exploited. Since it is known that host immune 
response plays a pivotal role in disease evolution, we used a network 
medicine approach to analyze transcriptomic data from the blood cells 
of patients affected by COVID-19 or other inflammatory conditions, 
infections, or diseases sharing some clinical features with COVID-19 in 
order to find the most important pathways associated with immune 
system activation under these conditions. 

In particular, we first identified the most modulated genes in each 
disease condition and then verified whether they might be functionally 
related and co-localized in the human interactome, forming functional 
coherent disease modules that could include genes with a critical role in 

immune response regulation. Even though the cause-effect relationship 
cannot be directly inferred by expression data, it is reasonable to assume 
that disease co-modulated genes are functionally coordinated in 
response to an external stimulus, implying that they might be part of the 
same pathways or biological functions, and may influence each other or 
be influenced by the same underlying mechanism(s). Inspired by the 
organizing principles of the network medicine paradigm, we evaluated 
whether disease deregulated genes had the propensity to aggregate in 
local disease-specific neighborhoods of the human interactome, thus 
being functionally-related genes displaying a statistically significant 
tendency to form dense disease modules [3,9,39]. The accurate identi-
fication and localization of these disease modules represents the first 
step toward a systematic understanding of molecular-level pathological 
mechanisms, together with the prediction of novel disease-disease re-
lationships. Indeed, if two disease modules overlap or are in the im-
mediate vicinity within the interactome, local perturbations causing one 
disease can disrupt pathways of the other disease module as well, 
resulting in common clinical and pathobiological characteristics [9]. 

In order to analyze the multiform clinical frame of the disease from 
different scenarios, we used three different network medicine ap-
proaches to select drugs commonly used for the treatment of other 
conditions that could be repurposed for use in COVID-19 patients. 

It should be bear in mind that computational approaches are useful 
to generate new pharmacological hypotheses that need to be tested and 
validated experimentally. The potential use of the identified drugs for 
COVID-19 treatment will have to be carefully evaluated taking into 
account their possible side effects that can be found at DrugBank data-
base website (https://go.drugbank.com/)[35]. Being aware of this 
important limitation we discussed the different identified drug classes 
considering the available information from literature focusing on their 
possible effects on the immune response modulation and infection nat-
ural history in COVID-19 patients. 

SAveRUNNER algorithm was used to identify repurposable drugs 
from DrugBank that could target the COVID-19 module or its neigh-
borhood. Results show that drugs involved in the modulation of the 
coagulation system, histamine receptors, mast cell stability, immune cell 
proliferation, adrenergic receptors, serotonin receptors, or sodium 
channel SCN5A (sodium voltage-gated channel alpha subunit 5) func-
tion may have a great impact on immune system response in COVID-19 

Fig. 3. Random Walk with Restart (RWR). A) Sketch of the RWR algorithm applied on the human interactome. Red nodes represent the starting point nodes, light 
blue nodes represent all visited nodes at the end of the algorithm run, and black nodes represent the nodes of the human interactome that were not visited. B) 
Distribution of modified z-score-normalized probabilities (COVID-19 closeness) of nodes that were visited by the RWR algorithm starting from nodes belonging to the 
COVID-19 module. Diseases that are high outliers and upper whiskers are highlighted in the figure. 
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patients. 
SAveRUNNER identified drugs acting on COVID-19-related genes, 

regardless of their specific effects. As a consequence, some drugs iden-
tified may be beneficial while others might be detrimental, and a critical 
and clinical evaluation that also considers the stage of SARS-CoV-2 
infection is always essential [29]. Below we briefly discuss drug clas-
ses with a similarity greater than 0.8 (Table 2). 

4.1. Drugs active on the coagulation system 

SAveRUNNER analysis found different compounds with a mecha-
nism of action involving the modulation of the coagulation system that 
could be repurposed for COVID-19. This observation positively corre-
lates with SARS-CoV-2 infection, where a severe impairment in the 
coagulation system leading to thrombosis is frequently observed [43]. 
Indeed, heparin has been tested as a prophylactic treatment and was 
demonstrated to improve disease-specific mortality [44]. Heparin 
clearly emerged in our analysis, supporting the potential and accuracy of 
SAveRUNNER software in identifying repurposable drugs. Several clin-
ical trials testing the effect of different heparin formulations in 
COVID-19 are ongoing, including NEBUHEPA (NCT04530578), which is 
evaluating the effect of nebulized heparin in patients with 
COVID-19-related acute respiratory distress syndrome (ARDS). The 
same analysis identified chondroitin sulphate and pentosan poly-
sulphate, which showed a lower activity compared to heparin in 
inhibiting platelet aggregation inhibition and was also shown to interact 
with spike proteins, thus reducing virion internalization and blocking 
inflammation and the cytokine storm associated with antigenic epitope 
exposition [45]. Another drug that has emerged is streptokinase, a 
fibrinolytic drug used in severe acute thrombosis. A case series report 
showed that streptokinase is effective in COVID-19 patients [46]. 
Intriguingly, the analysis also identified tranexamic acid, which is nor-
mally used as a pro-coagulant agent during bleeding due to its ability to 
inhibit circulating plasminogen and other proteases, leading to 
thrombus stabilization [47]. Since plasminogen is one of the proteases 
necessary for spike-protein cleavage, thus allowing virion interaction 
with angiotensin-converting enzyme 2 (ACE2)-expressing cells [47], the 
possibility of using tranexamic acid in COVID-19 patients is currently 
being tested in clinical trials (NCT04338126). 

4.2. H1-inhibitors and mast cell stabilizers 

Histamine is a proinflammatory molecule produced by mast cells 
that mediates type I hypersensitivity reactions. Mast cell abundance in 
human airways supports the potential relevance of this mediator in 
SARS-CoV-2 infection. Short-term effects of mast cell degranulation and 
histamine release include increased vascular permeability, vasodilation, 
immune cell recruitment, and platelet activation [48,49]. Moreover, 
histamine release induces interleukin 6 (IL-6), leukotrienes, and the 
production of other inflammatory prostaglandins, thus triggering the 
activation of innate response [49]. Mast cell stabilization and blocking 
histamine signaling might be fundamental in controlling the cytokine 
storm, which is typical of the early stages of SARS-CoV-2 infection [49]. 
Indeed, our analysis highlighted a potential repurposing of chlorzox-
azone, a mast cell stabilizer that blocks calcium channels and inhibits 
degranulation as well as leukotriene and cytokine production [50]. 
Similarly, diphenylpyraline and chlorpheniramine, which are 
commonly used antihistaminic drugs, could potentially block the early 
phase of cytokine storm during SARS-CoV-2 infection [49]. Of note, 
emerging evidence currently supports a direct antiviral effect of tar-
geting the histamine pathway in SARS-CoV-2 in vitro [51]. 

4.3. Antiproliferative drugs and antibiotics with antiproliferative activity 

This category includes both tyrosine kinase inhibitors (TRK in-
hibitors) [Entrectinib, Larotrectinib] and drugs inhibiting the activity of 

human topoisomerase II, such as fluoroquinolones (ofloxacin, cipro-
floxacin) [52,53]. Due to their ability to act as antiproliferative mole-
cules, these drugs have emerged as promising antitumor repurposed 
compounds. We can reasonably expect that their inhibition of cell pro-
liferation might be useful to limit also the immune cell proliferation and 
consequent cytokine storm during SARS-CoV-2 infection [29,54,55]. 

Of note, the potential relevance of TRK inhibitor repurposing has 
been confirmed by other drug repurposing studies [56]. In addition, 
fluoroquinolones have been found to have antiviral activity in vitro, thus 
supporting a potential benefit in COVID-19 patients in limiting bacterial 
superinfection [57]. 

4.4. α-adrenergic receptor agents 

SAveRUNNER analysis found that α1-antagonists and α2-agonists 
could be repurposed for COVID-19. Indeed, data suggest that α1 
adrenergic receptor activation may induce pro-inflammatory cytokine 
secretion in innate cells, thus suggesting the possibility that blocking α1 
adrenergic receptors might limit the cytokine storm that characterizes 
severe COVID-19 patients [58]. Rose et al. found that men with a 
confirmed or suspected COVID-19 diagnosis who were on treatment 
with α1 adrenergic receptor antagonists prior to hospitalization had 
reduced in-hospital mortality (OR: − 36%) compared to those who were 
not taking α1 adrenergic receptor antagonist medications [59]. As such, 
blocking alpha-adrenergic signaling in the immune system might be 
successful, particularly in early-stage infection, and indeed prazosin 
(α1-antagonist) is now being tested in a clinical trial (NCT04365257). 
Similarly, α2-agonists such as clonidine could be repurposed during 
COVID-19 to limit ARDS and inflammatory response [60]. Intriguingly, 
α1-agonism could stimulate immune system response and could be 
considered in COVID-19 patients in case of septic shock [61]. 

4.5. Drugs active in the central nervous system 

Several drugs active in the central nervous system have been iden-
tified as repurposable for COVID-19 following SAveRUNNER analysis, 
particularly tricyclic compounds, drugs active in serotonin signaling (i.e. 
SNRI and SARI), and dopaminergics and dopamine antagonists. Inter-
estingly, Hoertel et al. [62] suggested a possible role of both SSRI and 
non-SSRI antidepressants in reducing the risk of death and intubation in 
patients hospitalized for SARS-CoV-2 infection. Recent evidence high-
lighted that these drugs may have an effect on both innate and adaptive 
immunity:  

- Phenotyazine and antipsychotic drugs have known effects on 
α-adrenergic and histaminergic receptors, and could therefore act as 
possible immune system modulators [49,63]. Moreover, different 
drugs belonging to this class were shown to possess antiviral prop-
erties, suggesting potential repurposing for COVID-19 [64].  

- SNRI and SARI might also have a modulatory effect on the immune 
system, particularly on lymphocytes, which express serotonin re-
ceptor 5-hydroxytriptamine 2 (5-HT2). In rat and mouse models, 
fluoxetine treatment produced a significant reduction in TNFα and 
IFNγ production. In SARS-CoV-2 infection, drugs modulating the 
serotonin signaling might be repurposed as cytokine storm regulators 
[65].  

- Dopamine receptors are expressed in different immune cell subtypes 
and their effect on immune response modulation is still debated. 
Dopaminergic stimulation reduces TNF-α and ROS production in 
neutrophils, though it stimulates mast cell degranulation and 
monocyte chemotaxis. In addition, dopamine stimulation appeared 
to be protective in a mouse model of peritonitis [66]. In this scenario, 
targeting the dopaminergic pathway emerged as a potential strategy 
to limit cytokine storm during COVID-19. However, a clear role of 
dopaminergic system activation in the context of immune response is 
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debated, and more research is necessary to better define the role of 
dopamine in immune system modulation [66,67]. 

4.6. Drugs acting on SCN5A sodium channels 

SCN5A sodium channels are commonly expressed in excitable tissue, 
particularly neurons and myocytes. Most identified SCN5A inhibitors 
are anti-arrhythmic drugs, local anesthetics, or anti-epileptics. Recent 
evidence highlighted that the SCN5A channel is involved in macrophage 
activation and plays a pivotal role in host antiviral response by inducing 
the phosphorylation and nuclear translocation of the transcription factor 
ATF2 [68]. Moreover, in LPS-activated macrophages, SCN5A regulates 
endosomal acidification and stimulates phagocytosis. Although this 
process protects the host during acute infections, it may also promote 
tissue injury [69]. Interestingly, endosomal and lysosomal acidification 
allow viral cellular entrance [29]. In this context, SCN5A inhibitors may 
contribute to controlling both systemic inflammation and viral infection. 
Other studies reported that macrophages present an anti-inflammatory 
phenotype in mice expressing human SCN5A [70]. 

Consistent with these observations, propafenone, a SCN5A inhibitor 
used for its anti-arrhythmic properties, was suggested as a possible in-
hibitor of spike protein cleavage and SARS-CoV-2 cellular penetration 
[71]. However, SCN5A inhibitors present a series of limitations that 
need to be taken into account, including arrhythmia. 

Among other drugs (Supplementary Table 3), SAveRUNNER also 
identified baclofen, a GABA-B agonist commonly used in neurodegen-
erative diseases as an antispastic. A recent computational analysis 
identified it as a TNFα inhibitor [72]. Since TNFα is one of the main 
inflammatory signals of innate immunity, baclofen might be repurposed 
as a mitigator of cytokine storm in SARS-CoV-2 infection [29]. Studies in 
mouse models found that FXR activation reduces the levels of circulating 
NF-KB and other proinflammatory cytokines, such as MCP-1. Obe-
ticholic acid, an FXR agonist mainly indicated for the treatment of bil-
iostasis, was shown to exert anti-inflammatory activities observed in the 
reduction of liver inflammation [73] and was identified by a computa-
tional study and proven in vitro to inhibit SARS-CoV-2 ligation to human 
ACE2 [74]. 

Network module separation was used to find diseases with a module 
close to that of COVID-19. Our hypothesis is that drugs used to treat 
these diseases may also be beneficial in COVID-19 patients. We found 
that septic shock, Crohn’s disease, inflammatory bowel disease (IBD), 
and H1N1 flu modules were very close to the COVID-19 module. 
Consistently, it was observed that COVID-19 patients with increased 
immune system activation present an elevated incidence of sepsis [29]. 
Moreover, the significative proximity between the COVID-19, IBD, and 
Crohn’s disease modules is not surprising since literature data support 
that COVID-19 and IBD immune system activation share several simi-
larities and that some drugs used for IBD appear to also be effective for 
COVID-19 patients [75]. Of the drugs reported in the DrugBank database 
for septic shock treatment, both epinephrine and norepinephrine were 
also identified by the SAveRUNNER algorithm, suggesting that 
SARS-CoV-2 infection and septic shock share common epinephrine or 
norepinephrine targets. Naloxone is another drug used to treat septic 
shock and is currently under investigation in COVID-19 patients. 
Mesalazine and sulfasalazine, two anti-inflammatory drugs, are used for 
Crohn’s disease treatment and have also been identified by the SAveR-
UNNER algorithm. 

Two monoclonal anti-tumor necrosis factor alpha antibodies (adali-
mumab and infliximab) and many corticosteroid drugs (budesonide, 
methotrexate, prednisolone, prednisone, and hydrocortisone) used for 
Crohn’s disease are currently being tested in COVID-19 in several clin-
ical trials. This is not surprising since the role of corticosteroids as anti- 
inflammatory drugs is well known. Of note, the RECOVERY randomized 
clinical trial showed that the use of dexamethasone resulted in lower 28- 
day mortality in those receiving either invasive mechanical ventilation 
or oxygen alone [76]. 

In addition, an increase in TNFα, a strong pro-inflammatory cyto-
kine, has been observed in patients affected by COVID-19 [31]. Some 
evidence suggests that TNFα inhibition may downregulate ACE2 
expression and shedding, thus reducing viral entry into cells [31]. 
Several drugs, including an antiviral drug (oseltamivir), 
anti-inflammatory drugs (naproxen and acetylsalicylic acid), a beta-2 
adrenergic receptor agonist (salbutamol), and an analgesic/antipyretic 
drug (acetaminophen), are used for flu treatment and are currently in 
clinical trials. However, several antiviral drugs, including oseltamivir, 
do not seem to exert a robust effect against the SARS-CoV-2 virus [27]. 

The immune system and the sympathetic nervous system are highly 
connected through post-ganglionic sympathetic nerve fibers, which 
secrete norepinephrine that innervates both primary and secondary 
lymphoid tissues. Both innate and adaptive immune system cells express 
adrenergic receptors, mainly β2. There is evidence that glucocorticoids 
and other β2-receptor agonists suppress macrophage secretion of TNFα 
and other inflammatory cytokines in response to lipopolysaccharide, 
reducing inflammatory damage. It has been shown that norepinephrine 
drives alternative M2 macrophage development, characterized by an 
anti-inflammatory phenotype [58], and that β2 adrenergic receptors 
modulate the activation of several innate immune cells and conse-
quently modulate T and B cell response. However, the role of β2 re-
ceptors on the immune system is still debated and some authors have 
reported a pro-inflammatory role [77]. 

The RWR algorithm was used to search for diseases whose drugs may 
also perturb the COVID-19 module. We identified H1N1 and H3N2 flu, 
SARS-CoV-1 infection, dermatomyositis, polymyositis, and inclusion 
body myositis. These findings support the documented similarity be-
tween SARS-CoV-2 and SARS-CoV-1 infections [29]. Interestingly, both 
the network module separation approach and the RWR highlighted the 
disease modules of H1N1 flu and SARS-CoV-2 infection. Several corti-
costeroids used for dermatomyositis and polymyositis (prednisolone, 
prednisone, hydrocortisone, methylprednisolone, betamethasone, and 
methylprednisolone hemisuccinate) and corticotropin are currently in 
clinical trials for COVID-19. Notably, triamcinolone is a corticosteroid 
drug that is used for diseases identified by both the network module 
separation approach and RWR (Table 3). 

In conclusion, we used a network medicine approach to generate 
new pharmacological hypotheses for the COVID-19 treatment. While 
some of the in-silico identified drugs are already under evaluation in 
clinical trials, others have been proposed by expert opinion or other 
computational studies to be potentially effective in COVID-19 patients. 
SAveRUNNER analysis also identified novel drug categories, including 
drugs known to be active in the central nervous system and sodium 
channel blockers, that could be repurposed in COVID-19 patients. 

The in-silico methodology has many limitations, including the need 
to test and validate the identified drugs. Indeed, the potential benefits as 
well as the risks of possible adverse reactions, mainly due to the multi- 
target action of many compounds, must be carefully evaluated and 
proved. Moreover, an efficient translation should also take into account 
pharmacokinetic aspects that could impact the clinical applicability of 
repurposed drugs. 
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shift in medicine: a comprehensive review of network-based approaches, Biochim. 
Biophys. Acta (BBA) Gene Regul. Mech. 1863 (6) (2020), 194416. 

[7] G. Fiscon, F. Conte, L. Farina, P. Paci, Network-based approaches to explore 
complex biological systems towards network medicine, Genes 9 (9) (2018) [cited 
2021 May 4], https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162385/. 

[8] M. Caldera, P. Buphamalai, F. Müller, J. Menche, Interactome-based approaches to 
human disease, Curr. Opin. Syst. Biol. 3 (2017) 88–94. 

[9] J. Menche, A. Sharma, M. Kitsak, S.D. Ghiassian, M. Vidal, J. Loscalzo, et al., 
Uncovering disease-disease relationships through the incomplete interactome, 

Science 347 (6224) (2015) [cited 2019 Nov 22], https://science.sciencemag.org 
/content/347/6224/1257601. 

[10] R. Falcone, F. Conte, G. Fiscon, V. Pecce, M. Sponziello, C. Durante, L. Farina, 
S. Filetti, P. Paci, A. Verrienti, BRAFV600E-mutant cancers display a variety of 
networks by SWIM analysis: prediction of vemurafenib clinical response, Endocrine 
64 (2) (2019) 406–413. 

[11] V. Pecce, A. Verrienti, G. Fiscon, M. Sponziello, F. Conte, L. Abballe, C. Durante, 
L. Farina, S. Filetti, P. Paci, The role of FOSL1 in stem-like cell reprogramming 
processes, Sci. Rep. 11 (2021) 14677. 

[12] P. Paci, T. Colombo, G. Fiscon, A. Gurtner, G. Pavesi, L. Farina, SWIM: a 
computational tool to unveiling crucial nodes in complex biological networks, Sci. 
Rep. 7 (2017), 44797. 

[13] P. Paci, G. Fiscon, F. Conte, V. Licursi, J. Morrow, C. Hersh, M. Cho, P. Castaldi, 
K. Glass, E.K. Silverman, L. Farina, Integrated transcriptomic correlation network 
analysis identifies COPD molecular determinants, Sci. Rep. 10 (1) (2020) 1–18. 

[14] G. Fiscon, F. Conte, P. Paci, SWIM tool application to expression data of 
glioblastoma stem-like cell lines, corresponding primary tumors and conventional 
glioma cell lines, BMC Bioinforma. 19 (Suppl 15) (2018) 436. 

[15] G. Fiscon, F. Conte, V. Licursi, S. Nasi, P. Paci, Computational identification of 
specific genes for glioblastoma stem-like cells identity, Sci. Rep. 8 (1) (2018) 7769. 

[16] G. Fiscon, S. Pegoraro, F. Conte, G. Manfioletti, P. Paci, Gene network analysis 
using SWIM reveals interplay between the transcription factor-encoding genes 
HMGA1, FOXM1, and MYBL2 in triple-negative breast cancer, FEBS Lett. 595 
(2021) 1569–1586 [cited 2021 May 3], https://febs.onlinelibrary.wiley.com/doi 
/abs/10.1002/1873-3468.14085. 

[17] A.M. Grimaldi, F. Conte, K. Pane, G. Fiscon, P. Mirabelli, S. Baselice, 
R. Giannatiempo, F. Messina, M. Franzese, M. Salvatore, P. Paci, M. Incoronato, 
The new paradigm of network medicine to analyze breast cancer phenotypes, Int. 
J. Mol. Sci. 21 (18) (2020) 6690. 

[18] V. Panebianco, M. Pecoraro, G. Fiscon, P. Paci, L. Farina, C. Catalano, Prostate 
cancer screening research can benefit from network medicine: an emerging 
awareness, Npj Syst. Biol. Appl. 6 (1) (2020) 1–6. 

[19] G. Fiscon, F. Conte, L. Farina, M. Pellegrini, F. Russo, P. Paci, Identification of 
disease–miRNA networks across different cancer types using SWIM, in: A. Laganà 
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Table 3 
Drugs used for the diseases identified by the network module separation approach and RWR. * indicates drugs identified by SAveRUNNER. Drugs currently under 
investigation in clinical trials, as reported in DrugBank, are highlighted in bold .  

Network module separation  Random Walk with Restart 

Septic shock Crohn’s disease H1N1 flu Dermatomyositis Polymyositis 

Epinephrine* Mesalazine* Acetaminophen*  Corticotropin 
Norepinephrine* Sulfasalazine* Cetirizine*  Methylprednisolone 
Naloxone Adalimumab Chlorpheniramine* Betamethasone  

Budesonide Phenylephrine* Bupivacaine  
Infliximab Pseudoephedrine* Methylprednisolone hemisuccinate   

Naproxen     
Oseltamivir     
Salbutamol     
Acetylsalicylic acid     
Ascorbic acid    

Methotrexate  Methotrexate  
Triamcinolone  Triamcinolone  
Prednisolone  Prednisolone   
Prednisone  Prednisone   
Hydrocortisone  Hydrocortisone   

P. Sibilio et al.                                                                                                                                                                                                                                   

https://github.com/sportingCode/SAveRUNNER.git
https://github.com/sportingCode/SAveRUNNER.git
https://doi.org/10.1016/j.biopha.2021.111954
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref1
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470635/
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref2
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref2
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref3
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref3
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref3
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref3
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref3
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref3
https://www.sciencedirect.com/science/article/pii/B9780128096338202902
https://www.sciencedirect.com/science/article/pii/B9780128096338202902
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref5
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref5
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162385/
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref7
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref7
https://science.sciencemag.org/content/347/6224/1257601
https://science.sciencemag.org/content/347/6224/1257601
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref9
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref9
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref9
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref9
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref10
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref10
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref10
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref11
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref11
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref11
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref12
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref12
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref12
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref13
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref13
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref13
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref14
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref14
https://febs.onlinelibrary.wiley.com/doi/abs/10.1002/1873-3468.14085
https://febs.onlinelibrary.wiley.com/doi/abs/10.1002/1873-3468.14085
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref16
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref16
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref16
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref16
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref17
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref17
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref17
https://doi.org/10.1007/978-1-4939-9207-2_10
https://doi.org/10.1007/978-1-4939-9207-2_10
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref19
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref19
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref19
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref20
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref20
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref20
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref21
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref21
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref21
http://arxiv.org/abs/2004.07229
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref22
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref22
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref23
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref23
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref23
http://refhub.elsevier.com/S0753-3322(21)00736-8/sbref23


Biomedicine & Pharmacotherapy 142 (2021) 111954

10

[27] G.M. Nitulescu, H. Paunescu, S.A. Moschos, D. Petrakis, G. Nitulescu, G.N.D. Ion, 
D.A. Spandidos, T.K. Nikolouzakis, N. Drakoulis, A. Tsatsakis, Comprehensive 
analysis of drugs to treat SARS‑CoV‑2 infection: mechanistic insights into current 
COVID‑19 therapies (Review), Int. J. Mol. Med. 46 (2) (2020) 467–488. 

[28] J.S. Kim, J.Y. Lee, J.W. Yang, K.H. Lee, M. Effenberger, W. Szpirt, A. Kronbichler, J. 
I. Shin, Immunopathogenesis and treatment of cytokine storm in COVID-19, 
Theranostics 11 (1) (2021) 316–329. 
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