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Abstract We present MadFlow, a first general multi-
purpose framework for Monte Carlo (MC) event simulation
of particle physics processes designed to take full advantage
of hardware accelerators, in particular, graphics processing
units (GPUs). The automation process of generating all the
required components for MC simulation of a generic physics
process and its deployment on hardware accelerator is still a
big challenge nowadays. In order to solve this challenge, we
design a workflow and code library which provides to the user
the possibility to simulate custom processes through the Mad-
Graph5_aMC@NLO framework and a plugin for the genera-
tion and exporting of specialized code in a GPU-like format.
The exported code includes analytic expressions for matrix
elements and phase space. The simulation is performed using
the VegasFlow and PDFFlow libraries which deploy auto-
matically the full simulation on systems with different hard-
ware acceleration capabilities, such as multi-threading CPU,
single-GPU and multi-GPU setups. The package also pro-
vides an asynchronous unweighted events procedure to store
simulation results. Crucially, although only Leading Order
is automatized, the library provides all ingredients necessary
to build full complex Monte Carlo simulators in a modern,
extensible and maintainable way. We show simulation results
at leading-order for multiple processes on different hardware
configurations.

1 Introduction

The popularity of hardware accelerators, such as graphics
processing units (GPU), has quickly increased in the last
years thanks to the exceptional performance benefits and effi-
ciency achieved in scientific and industrial applications. Fur-
thermore, new code frameworks based on hardware acceler-

a e-mail: stefano.carrazza@cern.ch (corresponding author)

ators have been designed in order to simplify the implemen-
tation of algorithms and models in particular in the context
of Artificial Intelligence applications.

If we consider the research domain of High Energy
Physics, we can observe several examples of applications that
could benefit from the conversion or systematic implementa-
tion of existing algorithms and code libraries on GPU. Some
examples have already been successfully published, such
as deep learning applications in experimental physics [1],
where astonishing performance improvements were obtained
thanks to the employment of GPUs.

Despite the HEP community interest in providing com-
putational tools for experimental setups, we still observe a
growing trend towards the increase of computational time
required to solve complex problems [2,3] in particular for
Monte Carlo (MC) simulation of particle physics processes.
Moreover, this growing trend is further increased by the
current state of the art implementations of MC simulation
libraries, which still today rely almost exclusively, on CPU
architecture [4–7]. This is despite the fact that the parallel
nature of MC simulations makes them the perfect target for
hardware accelerators. Attempts at porting MC simulation
libraries to GPUs have shown quite promising results, but
they have been limited in scope [8–12].

From a practical perspective, in order to write a competi-
tive GPU-capable full parton-level MC by any measure with
existing tools, there are at least five required ingredients: (i)
an integrator, able to parallelize over the number of events;
(ii) a GPU-capable parton distribution function (PDF) inter-
polation tool; (iii) an efficient phase space generator, which
should generate valid phase space points on GPU, apply any
fiducial cuts; (iv) finally evaluate the matrix element squared
for the target processes; (v) an efficient asynchronous output
storage system for observables, such as histograms and Les
Houches event files.
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In recent previous works, we have developed open-source
tools that provide the ground basis for the implementation
of an automatic Monte Carlo simulation framework for HEP
addressing some of the aforementioned issues: VegasFlow
[13,14] and PDFFlow [15,16]. The first package, VegasFlow,
is a new software for fast evaluation of high dimensional inte-
grals based on Monte Carlo integration techniques designed
for platforms with hardware accelerators. This project allows
developers to delegate all complicated aspects of hardware
or platform implementation to the library, reducing develop-
ment time due to maintainability and debugging. On the other
hand, PDFFlow is a library which provides fast evaluation
of parton distribution functions (PDFs) designed for plat-
forms with hardware accelerators following the design idea
inspired from VegasFlow. The availability of both packages
completes respectively points (i) and (ii) above.

The goal of this work is to address and propose an inte-
grated technical solution for all points above, following the
original idea presented in [17]. We call MadFlow [18] the
open-source software library which implements this auto-
matic pipeline for GPU deployment of Monte Carlo simula-
tion. It combines the matrix elements expressions generated
by the MadGraph5_aMC@NLO (MG5_aMC) [5,6] frame-
work with the VegasFlow and PDFFlow efficient simulation
tool for hardware accelerators. MadFlow by design, opens
the possibility to study and benchmark multiple approaches
to Monte Carlo integration based on distributed hardware,
and, in future, new algorithms based on deep learning tech-
niques.

This work is structured as follows. In Sect. 2 we describe
the technical implementation of MadFlow. In Sect. 3 we
compare and benchmark results. Finally, in Sect. 4 we present
our conclusion and future development roadmap.

2 Implementation

2.1 The MadFlow concept

MadFlow is an open-source python package [18], which
provides the user a simple tool for parton-level Monte Carlo
simulation on hardware accelerators. The original concept of
MadFlow is to keep usability and maintainability as simple
as possible thanks to the new technologies and frameworks
currently available today.

From the user’s point of view, the effort and time required
to start using Madflow and write a fully-working Leading
Order Monte Carlo simulation is limited to the installation
of the package and its dependencies. The library provides
a quick-start script which takes care of the generation of
all required modules and code dependencies for running the
simulation on the user’s hardware, including multi-threading

CPU, single GPU and multi-GPU setups for both NVIDIA
and AMD products.

On the other hand, from the developer perspective, the
MadFlow code is based on primitives actively maintained by
the community and its design is modular: all components pre-
sented in the next paragraphs can be modified and extended
with minor effort, thanks to an uniform standardization of
the frameworks and documentation.

2.2 The MadFlow code design

Nowadays many research groups rely on very extensive and
complex code bases, thus learning how to use an equally com-
plicated framework might require time and expertise which
may not be feasible for everyone. For example, consider the
investment in time required for training of new doctoral stu-
dents or researchers. Therefore, in order to accelerate the
adoption of hardware accelerators within the hep-ph commu-
nity we design the MadFlow Monte Carlo implementation
on GPU with maintainability and developer-friendliness as a
major target feature.

We consider the MG5_aMC framework as the entry point
of our procedure. MG5_aMC is a meta-code written in
Python, that generates automatically the code in a low-level
language to be employed for the simulation of arbitrary
scattering processes at colliders, in the Standard Model or
beyond. MG5_aMC relies on general procedures and meth-
ods, without being tailored to a specific process, class of pro-
cesses, or physics model. Besides the generation of tree-level
matrix elements, MG5_aMC gives also the possibility to the
user to include Next-to-Leading order corrections, both due
to strong and electroweak interactions (including matching
to parton-shower for the former). However, in this paper we
will limit ourselves to the case of tree-level matrix elements.

The workflow of MG5_aMC is the following: a model,
written in the Universal Feynrules Output (UFO) format [19],
is loaded, which contains all the informations on the under-
lying theory, including the Feynman rules. Starting from
the model, Feynman diagrams are generated, and the corre-
sponding expressions for the matrix elements are written in
process-specific files. The various parts of the Feynman dia-
grams (external wavefunctions, vertices, propagators, etc.)
are evaluated via the ALOHA routines [20] (with the intro-
duction of MadGraph5 [21] ALOHA supersedes the HELAS
routines [22]).

It is then natural to consider MG5_aMC, in particular
ALOHA, as a backend of matrix elements for GPU for a
future general purpose parton-level GPU MC generator. We
should note there is an independent effort dedicated to port-
ing MG5_aMC to GPU [23]. The MadFlow project differs
from “Madgraph 4 GPU” for two main reasons: the interest
in providing a full MC simulator based on modern software
which can automatically be deployed in different hardware
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Fig. 1 Schematic workflow for
the implementation of
MadFlow. The software
automates the generation of a
custom process using the
standard MG5_aMC framework
API and exports the relevant
code in a specific format for
VegasFlow and PDFFlow
integration

L(x1, x2) ⊗ σ̂({p})

Matrix Element generator

PDFFlow Unweighted Events

GPU Phase Space

AlohaMadFlow

PDF

RAMBO

VegasFlow

configurations and the need of a technical solution which
simplifies maintainability and does not require specialized
GPU knowledge from the developer and user point of view.
However, we must note CUDA-based libraries are compat-
ible with TensorFlow and thus it is technically possible to
use “Madgraph 4 GPU” matrix elements within MadFlow,
maximizing the advantages both codes provide.

In Fig. 1 we show the modules involved in the current
implementation of MadFlow. The process is driven by a
MadFlow script which generates a custom process using
the MG5_aMC standard framework API and exports the rel-
evant code for the analytic matrix elements and phase space
expressions in python, using the syntax defined by Vegas-
Flow. In terms of code implementation this step has required
the development of a MG5_aMC plugin, which consists of an
exporter module to write the matrix element and the ALOHA
routines in Python, fulfilling the requirements imposed by
VegasFlow and PDFFlow using TensorFlow [24] primitives.
The main difficulty consists in converting sequential func-
tions into vectorized functions. During the MadFlow devel-
opment we have performed several numerical and perfor-
mance benchmarks in order to avoid potential bugs.

After the conversion step into the specified format is per-
formed, the exported python code is incorporated into a Veg-
asFlow device-agnostic integration algorithm which executes
the event generation pipeline from the generation of random
numbers, computation of the phase space kinematics, matrix
element evaluation and histogram accumulation.

2.3 The evaluation of matrix elements routines

In MadFlow, the matrix elements evaluations follows the
original MG5_aMC implementation: a Matrix class is pro-
duced by the Python exporter plugin module. Its smatrix
method links together the needed Feynman rules to compute
the requested matrix element: it loops over initial and final
state particle helicities and aggregates their contribution to
the final squared amplitude.

The matrix element vectorization requires to replace the
ALOHA waveforms and vertices routines abiding by the Ten-

sorFlow ControlFlow rules. Although this process is straight-
forward for vertices Feynman rules, being mostly comprised
by elementary algebraic operations, the implementation of
particle waveforms functions is subject to several conditional
control statements that make the task harder as GPUs suffer
considerably from branching.

2.4 Phase-space generation

The integration phase-space is generated using a vectorized
implementation of the RAMBO algorithm [25] which makes
it suitable for hardware accelerators.

RAMBO maps the random variables of the integrator
library to a flat phase-space with which the smatrix
method of the matrix element can be evaluated. While this
means MadFlow can produce results for any number of par-
ticles, the generated phase space doesn’t take into account
the topology of the process. As a result, for a great number
of final-state particles the number of events required to get a
reasonably precise result is much larger than what would be
required with other Monte Carlos.

More complex and efficient phase-space generators will
be developed for future releases of MadFlow.

2.5 Unweighted events exporter

The Madflow event generator is equipped with a Les
Houches Event (LHE) writer module that provides a class to
store events in the LHE 3.0 file format [26]. The LHE writer
class operates asynchronously in a separated thread from the
VegasFlow integration, thus ensuring that the integrator com-
putational performance is not harmed by IO limitations. The
module works by collecting all the unweighed events gener-
ated by the integrator and applying an unweighting procedure
employing the module provided by MG5_aMC. The final
result is a (compressed) LHE file, with unweighted events.

We note that in this implementation, however, the unweight-
ing efficiency is rather low (around 5%) because of the non-
optimised phase space which relies on RAMBO.
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2.6 Scope

The goal of MadFlow is to provide the foundation for future
high precision Monte Carlo simulation (of higher orders or
otherwise) so they can efficiently take advantage of hardware
developments.

In its current form,MadFlow provides the necessary tools
for the computation of Leading Order (LO) calculations fully
automatically for any number of particles.1 Higher order cal-
culations can be implemented by building upon the provided
LO template. Parameters and model definitions are provided
by MG5_aMC-compatible parameters card and so the same
options and models can be used or defined.

An important caveat must be considered when trying to
integrate more complex processes. The provided phase-space
is flat and does not take into account the topology of the dia-
grams (see Sect. 2.4) and therefore becomes inefficient with
large multiplicities. As a result a very large number of events
might be necessary to reduce the Monte Carlo error, can-
celling the benefits of running on a GPU. Therefore, for pro-
cesses with many particles in the final state or when using the
tree level amplitudes for Next-to-Leading Order (NLO) cal-
culations writing an specialized phase-space is recommended
[27]. For some recent developments on this matter, see also
[28].

In summary, while due to some of its limitationsMadFlow
cannot provide yet efficient calculations, it can quickstart the
development of efficient fixed-order Monte Carlo simulators
in hardware accelerators.

3 Results

In this section we present accuracy and performance results
of MadFlow on consumer and professional grade GPU
and CPU devices. We focus on Leading Order calculation
for hadronic processes at

√
s = 13 TeV. For this exercise

we select 5 processes with growing number of diagrams
and channels in order to emulate the behaviour in terms of
complexity of a Next-to-Leading Order and Next-to-Next
to Leading Order computations. In particular, we consider:
gg → t t̄ (3 diagrams), pp → t t̄ (7 diagrams), pp → t t̄ g
(36 diagrams), pp → t t̄ gg (267 diagrams) and pp → t t̄ ggg
(2604 diagrams).

Note that all results presented in this section have
been computed using the matrix elements generated by
MG5_aMC in double precision without any further optimiza-
tion, thus further releases of MadFlow will address system-
atically memory and performance optimization in order to
achieve even better results.

1 The code is still in beta testing and some corner cases may fail due to
lack of tests.

Fig. 2 Leading Order cross section differential on pt,top (first row) and
ηtop (second row) for gg → t t̄ at

√
s = 13 TeV. We compare predictions

between MadFlow (blue) and MG5_aMC (orange). We observe that in
both cases the distributions are in statistical agreement

All results presented in this section are obtained with
madflow 0.1, vegasflow 1.2.1, pdfflow 1.2.1,
MG5_aMC 3.1.0, tensorflow 2.5.0 for NVIDIA/Intel/
EPYC systems with CUDA 11.3 drivers, and tensorflow
-rocm 2.4.1 with ROCm 4.2.0 drivers on Radeon/AMD sys-
tems.

3.1 Accuracy

In Fig. 2 we show an example of Leading Order cross section
differential on pt,top and ηtop for gg → t t̄ at

√
s = 13 TeV for

predictions obtained with the original MG5_aMC integration
procedure and the MadFlow approach based on VegasFlow
and PDFFlow. In the first row we show the differential dis-
tribution in pt,top using the absolute scale in fb/GeV and
the respective ratio between both MC predictions, while in
the second row we show the ηtop distribution, confirming a
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Fig. 3 Timings obtained with MadFlow to evaluate events at Leading
Order for gg → t t̄ (top left), pp → t t̄ (top right), pp → t t̄ g (bottom
left) and pp → t t̄ gg (bottom right). We show results for consumer

and professional grade GPUs (blue bars) and CPUs (red bars). For each
device we quote the available RAM memory. We observe a systematic
performance advantage for GPU devices

good level of agreement between both implementations for
the same level of target accuracy between 2-5% for each bin.

The results presented here are computed independently
from each framework in order to minimize communication
bottlenecks between CPU-GPU. The plots are constructed
from unweighted events stored using the LHE approach
described in Sect. 2.5.

3.2 Performance

In terms of performance, in particular evaluation time, in
Fig. 3 we compare the total amount of time required by
MadFlow for the computation of 1M events for the pro-
cesses described above: gg → t t̄ (3 diagrams), pp → t t̄ (7
diagrams), pp → t t̄ g (36 diagrams), pp → t t̄ gg (267 dia-
grams). For all simulations, we apply a pt > 30 GeV cut for
all out-going particles. We performed the simulation on mul-
tiple Intel and AMD CPU configurations (red bars), together

with NVIDIA and AMD GPUs (blue bars) ranging from con-
sumer to professional grade hardware. Blue bars show the
greatest performance of MadFlow when running on GPU
devices. We observe that NVIDIA GPUs with the Ampere
architecture, such as the RTX A6000, out-performs the previ-
ous Tesla generation. We have observed that the performance
of the AMD Radeon VII is comparable to most professional
grade GPUs presented in the plot. The red bars show the
timings for the same code evaluated on CPU using all avail-
able cores. We confirm that GPU timings are quite compet-
itive when compared to CPU performance, however some
top-level chips such as the AMD Epyc 7742, can get simi-
lar performance results when compared to general consumer
level GPUs, such as the Quadro T2000. Note that in order to
obtain good performance and going into production mode,
the MadFlow user should adjust the maximum number of
events per device, in order to occupy the maximum amount
of memory available. We conclude that the MadFlow imple-
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Fig. 4 Same as Fig. 3 for pp → t t̄ ggg at Leading Order. We confirm
that a large number of diagrams can be deployed on GPU and obtain
relevant performance improvements when compared to CPU results

Table 1 Comparison of event computation time for MadFlow and
MG5_aMC, using an Intel i9-9980XE with 18 cores and 128 GB of
RAM for CPU simulation and the NVIDIA Titan V 12 GB for GPU
simulation

Process MadFlow
CPU (µs)

MadFlow
GPU (µs)

MG5_aMC (µs)

gg → t t̄ 9.86 1.56 20.21

pp → t t̄ 14.99 2.20 45.74

pp → t t̄ g 57.84 7.54 93.23

pp → t t̄ gg 559.67 121.05 793.92

mentation confirms a great performance improvement when
running on GPU hardware, providing an interesting trade-off
in terms of price cost and generated events.

In Fig. 4 we present a preliminary example of simula-
tion timings for 100k events using MadFlow as described
above for pp → t t̄ ggg with 2604 diagrams. The code gener-
ated for this example follows the same procedure adopted for
processes shown in Fig. 3. We can remarkably confirm that
MadFlow results on GPU are competitive when compared
CPU results even for a such large number of diagrams (and
thus required GPU memory), taking into account that no cus-
tom code optimization has been included. It is certainly true
that the memory footprint and the overall performances of the
code can (and should) be improved, e.g. by considering the
Leading-Color approximation of the matrix element and/or
possibly by performing a Monte-Carlo over color and helic-
ity configurations, we believe that these results confirm that
GPU computation has a strong potential in HEP simulations
at higher orders.

3.3 Comparing to MG5_aMC

Finally, in Table 1 we measure and compare the required time
per event for the processes discussed above using MadFlow
and MG5_aMC simulations on a Intel i9-9980XE CPU with
18 cores and 128GB of RAM and a NVIDIA Titan V 12GB
GPU. As expected, we confirm that MadFlow on GPU
increases dramatically the evaluated number of events per
second.

Finally, as expected, the performance gain for GPUs when
compared to CPU decreases with the number of diagrams
included in a given process thanks to the amount of memory
required to hold the computation workload. Such limitation
could be partially improved by using GPU models with larger
memory, e.g. the new NVIDIA A100 with 80GB, by com-
pressing and optimizing the kernel codes before execution
[12,23], and by using multi-GPU configurations where por-
tions of diagrams are distributed across devices.

4 Outlook

In conclusion in this work we present MadFlow, a new
approach for the generalization of Monte Carlo simulation
on hardware accelerators. In particular, theMadFlow design
provides a fast and maintainable code which can quickly
port complex analytic expressions into hardware specific lan-
guages without complex operations involving several com-
puter languages, tools and compilers. Furthermore, we con-
firm the algorithm effectiveness when running simulation on
hardware accelerators.

The MadFlow code is open-source and public available
on GitHub2 [18]. The repository contains links to documen-
tation for installation, hardware setup, examples and devel-
opment.

As an outlook, we plan to continue the development
of MadFlow as an open-source library. Foreseen major
improvements include: to replace the RAMBO phase-space
with more efficient solutions based on the process topol-
ogy; to investigate the possibility to accelerate integration
using machine learning techniques; finally, to set the stage
for the implementation of all required changes to accommo-
date Next-to-Leading order computations.
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