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A1-contractibility of Koras–Russell threefolds

Marc Hoyois, Amalendu Krishna and Paul Arne Østvær

Abstract

Finite suspensions of Koras–Russell threefolds are shown to be contractible in A1-
homotopy theory.

1. Introduction

The cancellation problem in affine algebraic geometry asks whether the affine space AnC is can-
cellative, that is, is any smooth complex affine variety X with the property X × A1

C ' An+1
C

isomorphic to AnC? This problem is often referred to as the Zariski cancellation problem, based
on its birational version, which was raised by Zariski in 1949 (see [Nag67, § 5]).

This problem has been settled affirmatively for curves by Abhyankar, Eakin, and Heinzer
[AHE72], and for surfaces by Fujita [Fuj79], Miyanishi and Sugie [MS80]. Koras–Russell threefolds
are smooth complex contractible affine threefolds with a hyperbolic action of a one-dimensional
torus with a unique fixed point, such that the quotients of the threefold and the tangent space
of the fixed point by this action are isomorphic [KR97] (see Section 2 for a precise definition).
A vivid example is the Russell cubic hypersurface given by the equation x+ x2y+ z2 + t3 = 0 in
A4
C = Spec (C[x, y, z, t]) equipped with the C×-action λ · (x, y, z, t) = (λ6x, λ−6y, λ3z, λ2t).

The Koras–Russell threefolds enjoy remarkable geometric properties exploited in the solu-
tion [KKMLR97] of the linearization problem for C×-actions, and have for long been believed
to be counterexamples to the cancellation problem. Gupta [Gup14] showed that Asanuma three-
folds [Asa87] give counterexamples to the cancellation problem for algebraically closed fields of
positive characteristics. However, Gupta’s counterexamples do not include the Koras–Russell
threefolds.

In [ML96], Makar-Limanov used his eponymous invariant to distinguish A3
C from the Russell

cubic. Dubouloz [Dub09], on the other hand, showed that the same invariant is unable to distin-
guish between X ×A1

C and A4
C. The closely related Makar-Limanov and Derksen invariants (see,

for example, [Zăı00, § 7]) are the only known tools to distinguish smooth complex contractible
affine varieties of dimension at least three from affine spaces, and such varieties are topologically
indistinguishable from affine spaces because their underlying analytic spaces are diffeomorphic
to affine spaces, as shown independently by Dimca and Ramanujam (see [Zăı00, § 3]). We refer
the reader to [Kra84, Kra96] for further background and history on the cancellation problem.
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An ambitious program for showing that X is not A1-contractible and hence not stably isomor-
phic to an affine space was launched by Asok [Aso11]. He transformed the problem into the realm
of A1-homotopy theory [MV99] by asking for A1-homotopic obstructions to such a stable isomor-
phism. One motivation for Asok’s program comes from G-equivariant homotopy theory, for G
a compact group, where equivariant topological K-theory is representable. The corresponding
equivariant algebro-geometric results have just recently been established in a joint work with
Heller [HKØ15] (see also the antecedent work of Deligne and Voevodsky [Del09]).

Asok’s program for showing that X is not stably isomorphic to A4
C has received attention

from several workers in the field. It consists of the following steps:

(i) The group of roots of unity µp ( C× acts on X with fixed points Xµp = XC×
for all but

finitely many primes p.

(ii) If f : X → Y is a µp-equivariant map of smooth complex varieties with µp-action such that
X → Y as well as Xµp → Y µp are A1-weak equivalences (in the sense of [MV99]), then f
induces an isomorphism of µp-equivariant Grothendieck groups.

(iii) The group K
µp
0 (X) is nontrivial for all but finitely many primes p; that is, K

µp
0 (SpecC)→

K
µp
0 (X) is not an isomorphism.

The third step was motivated by Bell’s computation in [Bel01], which shows that KC×
0 (X)

is nontrivial. It follows from steps (i)–(iii) that X is not A1-contractible and hence not stably
isomorphic to A3

C (see Section 2). This would be the first example of a smooth affine A1-connected
variety that is topologically contractible, but not A1-contractible. In fact, the only known n-
dimensional complex affine A1-contractible variety is AnC itself. The results of this paper are
motivated by the quest of verifying all the steps of Asok’s program and its application to the
cancellation problem.

In Proposition 2.2, we use representation theory to show that step (i) holds. Step (ii) is known
to be false integrally [Her13]. However, one of the main results of [HKØ15] shows representability
of rationalized equivariant K-theory in the fixed point Nisnevich topology. It follows that step (ii)
holds rationally. Asok’s program will therefore go through provided step (iii) holds rationally.

In Theorem 2.6 we show, using elementary arguments, that the µp-equivariant Grothendieck
group of a Koras–Russell threefold is trivial for almost all primes p. Thus step (iii) cannot be true
even with integral coefficients, and the above program for showing that X is not A1-contractible,
and hence not stably isomorphic to an affine space, cannot succeed.

The failure of step (iii) strengthens the potential of Koras–Russell threefolds as counterex-
amples to the cancellation problem. From a K-theoretic viewpoint, our computation provides
strong evidence for X being A1-contractible. In Theorem 4.2, we show that the Russell cubic,
and more generally a large class of Koras–Russell threefolds, becomes A1-contractible after some
finite suspension with the pointed projective line (CP1,∞). This implies in particular that these
threefolds have trivial Borel equivariant cohomology. We generalize work of Murthy [Mur02,
Corollary 3.8] by showing that all vector bundles on such threefolds are trivial. Koras and Rus-
sell posed the question of triviality of such vector bundles in [KR97, § 17.2]. In the case of the
Russell cubic X, Theorem 3.6 states that for any smooth complex affine variety Y , the projection
map X × Y → Y induces an isomorphism of (bigraded) integral motivic cohomology rings

H∗,∗(Y,Z)
'→ H∗,∗(X × Y,Z) .

This is a very special property of X, making it look like an affine space in the eyes of motivic coho-
mology. By combining the above with the slice filtration technology and results of Levine [Lev13]
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and Voevodsky [Voe04], we deduce that the motivic suspension spectrum of X is A1-contractible.
We note that X is the first example of a smooth complex affine variety which is not isomorphic
to an affine space in spite of the fact that it is stably A1-contractible.

2. Equivariant K0 of Koras–Russell threefolds

We begin by briefly explaining how Asok’s program (i)–(iii) in the introduction implies that
a Koras–Russell threefold is not A1-contractible, and hence not stably isomorphic to an affine
space. Since X has a unique C×-fixed point, steps (i) and (iii) imply that there exists a prime p
such that Xµp is A1-contractible (being just a point) and K

µp
0 (X) is nontrivial. If X itself were

A1-contractible, step (ii) would thus contradict the nontriviality of K
µp
0 (X).

It follows that X cannot be stably isomorphic to an affine space by the implication (where
the symbol ∼ denotes A1-homotopy equivalence)

X × AmC ' Am+3
C ⇒ X ∼ X × AmC ∼ Am+3

C ∼ SpecC .

Next we verify step (i). See [Bri10, Lemma 1.9] and [Kra84, Chapter 2.5, Theorem 2] for
proofs of the following result.

Lemma 2.1. Let G be a linear algebraic group acting on a complex affine variety X. Then
there exist a rational representation V of G and a G-equivariant closed embedding X ↪→
Spec (Sym(V ∗)).

Proposition 2.2. Let C× act on a complex affine variety X. Then there exists a finite set of
positive integers S such that Xµn = XC×

whenever n > 0 is an integer relatively prime to all
elements of S.

Proof. By Lemma 2.1, we can find a C×-equivariant closed embedding i : X ↪→ V , where C× acts
linearly on V = ArC with weights (a1, . . . , ar). Since XH = V H ∩ X for every closed subgroup
H ⊆ C×, we may assume X = V . Now choose a C×-equivariant decomposition V = V1 × V2,
where V1 and V2 are C×-invariant linear subspaces of V such that (V1)

C×
= V1 and (V2)

C×
= {0}.

Set S = {a1, . . . , ar}\{0} and choose n > 0 as in the formulation of the proposition. We finish
the proof by showing V µn ⊆ V C×

: Let (x1, . . . , xm) and (xm+1, . . . , xr) be points in V1 and V2,
respectively. Suppose that x = (x1, . . . , xm, xm+1, . . . , xr) ∈ V is not fixed by C×, so that xi 6= 0
for some m + 1 6 i 6 r. If λ(x) = x for λ ∈ µn, then λaixi = xi. Now since xi 6= 0, we have
λai = 1. Since λn = 1 and n is relative prime to ai, it follows that λ = 1. In other words,
x /∈ V µn .

Our computation of µp-equivariant Grothendieck groups of Koras–Russell threefolds relies on
Proposition 2.5 and a few elementary lemmas, starting with [Dre12, Theorem 2].

Lemma 2.3. Let Φn(t) ∈ Z[t] be the cyclotomic polynomial whose roots are the primitive nth
roots of unity. Then the following hold for integers 0 < m < n:

(i) Z[t]/(Φm(t),Φn(t)) = 0 if n/m is not a prime power.

(ii) Z[t]/(Φm(t),Φn(t)) = Z/q if n/m = qi for some prime q and i > 1.

Lemma 2.4. Let p be a prime, and set g(t) =
∏r
i=1 Φai(t) for Φai(t) cyclotomic polynomials (not

necessarily distinct) such that ai > 2 and ai /∈ (p) for 1 6 i 6 r. Then Z[t]/(1− tpn, g(t)) is a
finite ring for every n > 1.
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Proof. Since g(t) is a monic polynomial (being a product of cyclotomic polynomials), it follows
that Z[t]/(g(t)) is integral over Z and hence is finite over Z. In particular, it is a finitely generated
abelian group. We conclude that A := Z[t]/(1− tpn, g(t)) is also a finitely generated abelian
group. By the structure theorem for such groups, it suffices to show that A is a torsion group.
Equivalently, we need to show that Q[t]/(1− tpn, g(t)) = 0.

It suffices to show that 1− tpn and g(t) are relatively prime in Q[t]. Suppose on the contrary
that they have a common irreducible factor f(t) ∈ Q[t]. We can write 1−tpn =

∏n
j=0 Φpj (t). Since

the cyclotomic polynomials are irreducible over Q, we conclude that there must exist 1 6 i 6 r
and 1 6 j 6 n such that f(t) = Φai(t) = Φpj (t). This contradicts our assumption and finishes
the proof.

For a complex variety X with action of an algebraic group G, let KG
0 (X) denote the Grothen-

dieck group of equivariant vector bundles on X, and let R(G) ' KG
0 (C) denote the representation

ring of G. If H ⊆ G is a closed subgroup, we note that there is a restriction map KG
0 (X) →

KH
0 (X).

Proposition 2.5. Let X be a smooth affine variety with C×-action, and let n > 0 be an integer.
There is a natural ring isomorphism φ : KC×

0 (X)⊗R(C×) R(µn)→ Kµn
0 (X).

Proof. The natural map ι : X ' X
µn
× µn ↪→ X

µn
× C× ' X × (C×/µn) induces an isomorphism

ι∗ : KC×
0 (X × (C×/µn))

'−→ Kµn
0 (X) [Tho87, Proposition 6.2]. The exact sequence (in the étale

topology) of algebraic groups

0→ µn → C× ψ−→ C× → 0

identifies C×/µn with C× which acts on itself by a ? b = ψ(a)b = anb. With this action,

ι∗ : KC×
0 (X × C×)

'−→ Kµn
0 (X) . (2.1)

If we let C× act on A1 with weight n, there is a localization exact sequence [Tho87, Theorems 2.7
and 5.7]

KC×
0 (X)→ KC×

0

(
X × A1

)
→ KC×

0 (X × C×)→ 0 . (2.2)

By equivariant homotopy invariance [Tho87, Theorem 4.7] and self-intersection [VV03, Theo-
rem 2.1], the above exact sequence can be recast as

KC×
0 (X)

1−tn−−−→ KC×
0 (X)→ KC×

0 (X × C×)→ 0 , (2.3)

where we identify R(C×) with Z[t, t−1]. Combining this with (2.1), we obtain the isomorphisms

KC×
0 (X) ⊗

R(C×)
R(µn)

'−→ KC×
0 (X) ⊗

R(C×)

R(C×)

(1− tn)

'−→ KC×
0 (X × C×)

'−→ Kµn
0 (X) .

This finishes the proof because φ is a ring map.

An algebraic action of Gm(C) ' C× on a smooth complex affine variety is called hyperbolic
if it has a unique fixed point and the weights of the induced linear action on the tangent space at
this fixed point are all nonzero and their product is negative. Recall from [KR97] that a Koras–
Russell threefold X is a smooth hypersurface in A4

C which

(i) is topologically contractible;

(ii) has a hyperbolic C×-action; and
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(iii) has quotient X//C× isomorphic to the quotient of the linear C×-action on the tangent space
at the fixed point (in the sense of GIT).

It is shown in [KR97, Theorem 4.1] that the coordinate ring of a threefold X satisfying (i)–(iii)
has the form

C[X] =
C[x, y, z, t]

(tα2 −G(x, yα1 , zα3))
. (2.4)

Here α1, α2, α3 are pairwise relatively prime positive integers. Let r denote the x-degree of the
polynomial G(x, yα1 , 0), and set εX = (r − 1)(α2 − 1)(α3 − 1). A Koras–Russell threefold X is
said to be nontrivial if εX 6= 0.

Next we compute the µp-equivariant Grothendieck groups of Koras–Russell threefolds.
Bell [Bel01] showed that the C×-equivariant Grothendieck group of X is of the form

KC×
0 (X) = R(C×)⊕

(
R(C×)

(f(t))

)ρ−1
= Z

[
t, t−1

]
⊕
(
Z[t, t−1]

(f(t))

)ρ−1
= Z

[
t, t−1

]
⊕ Z(α2−1)(α3−1) , (2.5)

where

f(t) =
(1− tα2α3)(1− t)
(1− tα2)(1− tα3)

(2.6)

is a polynomial of degree (α2 − 1)(α3 − 1) and ρ > 2 is the number of irreducible factors of
G(x, yα1 , 0) ∈ C[x, y]. In particular, KC×

0 (X) is nontrivial. We shall show that the µp-equivariant
Grothendieck group of X is trivial for almost all primes p. This proves that non-A1-contractibility
of a Koras–Russell threefold cannot be detected by µp-equivariant Grothendieck groups; cf. the
discussion of step (ii) in Asok’s program.

Theorem 2.6. Let p be a prime and n > 1 an integer. Let µpn act on a Koras–Russell threefold
X via the inclusion µpn ( C×. Let K

µpn
0 (X) denote the Grothendieck group of µpn-equivariant

vector bundles on X. Then the following hold:

(i) The structure map X → Spec (C) induces an isomorphism R(µpn)⊕ Fpn
'−→ K

µpn
0 (X).

(ii) The group Fpn is a finite abelian group which is nontrivial if and only if X is nontrivial and
p|α2α3.

Proof. When εX = 0, it is known by [KML97] that X ' A3 with a linear C×-action. Hence
homotopy invariance of equivariant Grothendieck groups (see [Tho87, Theorem 4.7]) shows that

R(µpn)
'−→ K

µpn
0 (X). Thus we may assume that X is nontrivial, so that α2, α3 > 2.

Recall that R(C×) ' Z[t, t−1], where t denotes the C×-action on A1 by scalar multiplication.
The monic polynomial f(t) (see (2.6)) is related to cyclotomic polynomials by the equality

f(t) =
∏

d|α2α3,d-α2,d-α3

Φd(t)

since 1− tn =
∏
d|n

Φd(t) and (α2, α3) = 1. Thus we can write

f(t) =
∏
a>2
a|α2

∏
b>2
b|α3

Φab(t) . (2.7)
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Let fpn(t) denote the image of f(t) inR(µpn). Proposition 2.5 and (2.5) imply the isomorphism

K
µpn
0 (X)

'−→ R(µpn)⊕
(
R(µpn)

(fpn(t))

)ρ−1
.

Let Fpn be the shorthand for(
R(µpn)

(fpn(t))

)ρ−1
=

(
Z[t]

(f(t), 1− tpn)

)ρ−1
.

Suppose p|α2α3, so that p divides either α2 or α3, but not both. If p|α2, let q 6= p be a prime
divisor of α3. Finiteness of Fpn follows from (2.7) and Lemma 2.4. Moreover, there are surjections
Fpn � Fp � Z[t]/(Φp(t),Φpq(t)) ' Z/q, by Lemma 2.3. If p|α3, then the same argument goes
through. We conclude that Fpn is finite and nontrivial if p|α2α3.

Now suppose that p does not divide α2α3. In this case we show

Z[t] =
(
f(t), 1− tpn

)
. (2.8)

It suffices to show (2.8) for each irreducible factor of f(t) and of 1 − tpn . We are done by (2.7)
and Lemma 2.3 since a, b /∈ (p) whenever a, b > 2 are such that a|α2 and b|α3.

By [BH87, Proposition 2.5], every exact sequence of µpn-equivariant vector bundles on X
splits as a direct sum of µpn-equivariant sheaves. Combining these with Theorem 2.6, we obtain
the following result.

Corollary 2.7. Let p be a prime number and n > 1 an integer. Suppose that µpn acts on
a Koras–Russell threefold X via the inclusion µpn ( C× and (p, α2α3) = 1. Then every µpn-
equivariant vector bundle on X is stably trivial. That is, for any µpn-equivariant vector bundle E
on X, there exist µpn-representations F1 and F2 such that E ⊕ F1 ' F2.

Borel equivariant K-theory can be defined in the context of unstable A1-homotopy theory
by taking K-theory of the motivic Borel construction (see [Kri16, § 3.3]). By [Kri16, Theorem
1.3], the Borel C×-equivariant Grothendieck group of X is the completion of KC×

0 (X) at the
augmentation ideal of R(C×). The next result shows that this completion is trivial. Later we
will be able to prove that, in fact, any Borel equivariant cohomology theory vanishes on X (see
Corollary 4.4). Thus, Borel equivariant cohomological invariants cannot distinguish a Koras–
Russell threefold from an A1-contractible smooth affine variety.

Theorem 2.8. Let X be a Koras–Russell threefold. Denote by K̂C×
0 (X) the IC×-adic completion

of the R(C×)-module KC×
0 (X). Then there are ring isomorphisms

Z[[t]]
'−→ R̂(C×)

'−→ K̂C×
0 (X) .

Proof. Let A = Z[t, t−1] ' R(C×) and Â = R̂(C×); there is an isomorphism A/(1− t)n '
Z[t]/(1− t)n for all n > 0. Using the automorphism Z[t] → Z[t] sending t to (1 − t), we deduce
the ring isomorphism Z[t]/(tn)→ A/(1− t)n. We conclude that Â ' lim←−

n

Z[t]/(tn) ' Z[[t]].

By (2.5), it remains to show Â/f(t) = 0. Since Â/f(t) ' Â/f(t), we need to show that f(t) is
invertible in Â ' Z[[t]]. We claim that f(1) = ±1 ∈ Â or equivalently (f(t), 1− t) = A. By (2.7)
it suffices to show that (Φab(t), 1 − t) = A for a, b > 2 and (a, b) = 1. This follows immediately
from Lemma 2.3 since Φ1(t) = 1− t.
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We end this section with an interesting application of Theorem 2.6. To put this in context, we
first recall a result due to Jackowski [Jac77, Theorem 4.4] which can be viewed as a local-global
principle for equivariant topological K-theory.

Theorem 2.9. Let G be a compact Lie group acting on a finite CW -complex X. Let C(G) denote
the set of finite cyclic subgroups of G. Then the restriction map

KG
∗ (X)Q →

∏
H∈C(G)

KH
∗ (X)Q

is a monomorphism.

It is not known if an analogous result is true for equivariant algebraic K-theory. But we
show that a weaker version of Theorem 2.9 fails for equivariant algebraic K-theory. Let Cind(G)
denote the set of indecomposable finite cyclic subgroups of G (that is, subgroups which cannot
be written as a direct sum of two or more cyclic subgroups).

Theorem 2.10. For X a nontrivial Koras–Russell threefold, the restriction map

KC×
0 (X)Q →

∏
H∈Cind(C×)

KH
0 (X)Q

is not a monomorphism.

Proof. The rationalized version of (2.5), that is, the isomorphism

KC×
0 (X)Q

'−→ Q
[
t±1
]
⊕
(
Q[t±1]

(f(t))

)ρ−1
,

implies in combination with Proposition 2.5 the isomorphism

Kµn
0 (X)Q

'−→ Q
[
t±1
]
⊕
(

Q[t±1]

(f(t), 1− tn)

)ρ−1
.

An indecomposable finite cyclic subgroup H of C× is of the form Z/pn for some prime p and
integer n > 0. Under the restriction map KC×

0 (X)Q → K
µpn
0 (X)Q,

FC× =

(
Q[t±1]

(f(t))

)ρ−1
→ Fpn =

(
Q[t±1]

(f(t), 1− tpn)

)ρ−1
.

Theorem 2.6 implies Fpn = 0. On the other hand, Bell [Bel01, Theorem 5.3] has shown that FC×

is a nonzero finite-dimensional Q-vector space.

3. Motivic cohomology of Koras–Russell threefolds

Let C[X] denote the coordinate ring of a complex variety X. The Makar-Limanov invariant is
defined as the subring of functions invariant under all possible C+-actions on X; that is,

ML(X) =
⋂

C+→Aut(X)

C[X]C
+

.

We note that ML(AnC) = C for all n > 1. Kaliman and Makar-Limanov [KML97] showed
that ML(X) 6' C for a nontrivial Koras–Russell threefold. In fact, their main result shows
ML(X) = C[X] unless X is isomorphic to a hypersurface in A4

C given by one of the following
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equations:

ax+ xmy + zα2 + tα3 , (3.1)

ax+ (xb + zα2)ly + tα3 . (3.2)

Here, a ∈ C× and l,m, b, α2, α3 > 2 are integers such that (α2, α3) = 1 in (3.1) and (α2, bα3) = 1
in (3.2). We shall refer to threefolds given by (3.1) as Koras–Russell threefolds of the first kind,
and to those given by (3.2) as Koras–Russell threefolds of the second kind. The Russell cubic is a
Koras–Russell threefold of the first kind. By [KML97], we have ML(X) = Image (C[x]→ C[X])
if X is of the first kind, and ML(X) = Image (C[x, z]→ C[X]) if X is of the second kind.

In [Blo86], Bloch defined higher Chow groups CHj(X, i) as a candidate for motivic cohomo-
logy, that is, an algebraic singular (co)homology theory. Set

CH∗(X, i) =
⊕
j>0

CHj(X, i) and CH?(X) =
⊕
i>0

CH∗(X, i) .

If X is smooth of dimension d, we write CHj(X, i) = CHd−j(X, i). Bloch has shown that
the higher Chow groups are contravariantly functorial for flat maps and covariantly functo-
rial for proper maps [Blo86, Proposition 1.3]. The important property of homotopy invariance
is shown in [Blo86, Theorem 2.1]. Recall also that Bloch’s higher Chow groups are invari-
ant under nilpotent extensions; that is, CHj(Xred, i) ' CHj(X, i) for any quasi-projective C-
scheme X. This is an elementary consequence of the fundamental localization result in [Blo94].
We shall make repeated use of this nil-invariance and the following result (see [Mat89, Corol-
lary 22.6]).

Lemma 3.1. Let A be a Noetherian ring, let B = A[x1, . . . , xn] be the polynomial ring over A, and
let f ∈ B. If the ideal generated by the coefficients of f contains 1, then f is a non-zero-divisor
in B and B/(f) is flat over A.

Proposition 3.2. Let a, b > 2 be relatively prime integers, and let Y be a smooth complex affine
variety. The natural ring extension C→ C[u, v]/(ua + vb) induces an isomorphism of higher Chow
groups

CH?(C[Y ])
'→ CH?

(
C[Y ][u, v]/

(
ua + vb

))
.

Proof. Set A = C[u, v]/(ua + vb). Since (a, b) = 1, we may assume that b is an odd number.
The ring homomorphism φ : A → C[t] given by φ(u) = tb, φ(v) = −ta is injective with image
the subring C[ta, tb] ↪→ C[t]. In particular, A is an integral domain. The ring map ψ : C[u] → A
is an injection of a principal ideal domain into an integral domain, hence it is flat. We have a
commutative diagram:

C //

=

��

C[u]

��

ψ
// A

��

φ
// C[t]

��

C // C[u±1] // A[u±1]
' // C[t±1] .

(3.3)

As indicated in (3.3), inverting u turns the normalization map φ into an isomorphism, and the
composite C[u±1]→ C[t±1] is determined by ψ(u) = tb. Note that we may replace C by B = C[Y ]
in the discussion leading to (3.3).
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For i > 0 there is an induced commutative diagram of higher Chow groups.

CH∗(B, i)

' α1

��

=

%%

α2

((

0 // CH∗(B[u], i)

ψ∗
1

��

j∗1 // CH∗(B[u±1], i)

ψ∗
2

��

∂1 // CH∗(B, i− 1)

ψ∗
3

��

// 0

0 // CH∗(A⊗
C
B, i)

j∗2 // CH∗(A⊗
C
B[u±1], i)

∂2// CH∗(A⊗
C
B/(u), i− 1) // 0

0 // CH∗(B[t], i)

φ1∗

OO

j∗3 // CH∗(B[t±1], i)

φ2∗

OO

∂3 // CH∗(B, i− 1)

φ3∗

OO

// 0

CH∗(B, i)

' β1

OO

β2

66

(3.4)

The top vertical map, induced by C ↪→ C[u], is an isomorphism by homotopy invariance. The
vertical maps in the upper square are flat pullbacks and those in the lower square are proper
pushforwards. It is easy to check that the top and bottom rows are exact. Now φ2∗ and φ3∗ are
induced by a ring isomorphism and a nilpotent ring extension, respectively, so both of them are
isomorphisms. Thus the middle row is also exact.

Since φ : A[u±1] → C[t±1] is an isomorphism of C-algebras, (3.3) and (3.4) imply that ψ∗1 is
surjective: Its image Im(ψ∗1) = Im(ψ∗1◦α1) = Im(j∗2 ◦ψ∗1◦α1) = Im(ψ∗2◦α2) = Im(φ2∗◦β2) identifies
with φ2∗

(
Ker(φ3∗ ◦ ∂3)

)
= φ2∗

(
Ker(∂2 ◦ φ2∗)

)
= Ker(∂2) = CH∗(A⊗CB, i). Since ψ∗2 ◦ α2 = φ2∗ ◦ β2

is injective, so is j∗2 ◦ ψ∗1 ◦ α1 = ψ∗2 ◦ j∗1 ◦ α1 and hence also ψ∗1.

Proposition 3.3. Let X be a Koras–Russell threefold of the first kind with coordinate ring

C[X] =
C[x, y, z, t]

(ax+ xmy + zα2 + tα3)
,

where m > 0 is an integer, a ∈ C∗, and α2, α3 > 2 are relatively prime integers. For Y any
smooth complex affine variety, the pullback map CH?(Y )→ CH?(X × Y ) is an isomorphism.

Proof. Since X and Y are both smooth, it is equivalent to show that the flat pullback map
CH?(Y ) → CH?(X × Y ) is an isomorphism. Set A = C[Y ][x] and B = C[X × Y ]. The natural
ring extension φ : A → B is flat by Lemma 3.1. Now CH?(C[Y ]) → CH?(A) is an isomorphism
by homotopy invariance, so it suffices to show that φ∗ : CH?(A)→ CH?(B) is an isomorphism.

For i ∈ Z, there is a commutative diagram of localization exact sequences, where the vertical
pullback maps are induced by the flat map φ:

CH∗(A[x−1], i+ 1) //

��

CH∗(A/(x), i) //

��

CH∗(A, i) //

��

CH∗(A[x−1], i) //

��

CH∗(A/(x), i− 1)

��

CH∗(B[x−1], i+ 1) // CH∗(B/(x), i) // CH∗(B, i) // CH∗(B[x−1], i) // CH∗(B/(x), i− 1) .

(3.5)

By identifying A[x−1]→ B[x−1] with the ring extension A[x−1]→ A[x−1][z, t], it follows that
the leftmost and the second rightmost vertical maps in (3.5) are isomorphisms.
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The map A/(x)→ B/(x) coincides with the composite of the ring extensions

C[Y ]→ C[Y ][z, t]

(zα2 + tα3)
→
(

C[Y ][z, t]

(zα2 + tα3)

)
[y] .

The first map induces an isomorphism of higher Chow groups by Proposition 3.2, and likewise
for the second map by homotopy invariance. It follows that the second vertical arrow from the
left and the rightmost vertical arrow in (3.5) are isomorphisms.

We conclude using the 5-lemma that the middle vertical arrow in (3.5) is an isomorphism.

Lemma 3.4. Let a, b, c > 2 be integers such that (a, bc) = 1, and let l > 0 be an integer. Consider

Al =
C[Y ][x, z]

((za + xb)l)
and the inclusion φ : Al →

Al[t]

(tc − x)
.

Then φ is flat and the induced pullback map CH?(Al)→ CH? (Al[t]/(t
c − x)) is an isomorphism.

Proof. Lemma 3.1 shows that φ is flat. We may assume l = 1 since nilpotent invariance implies
that the pushforward maps

CH?(Al)→ CH?(A1) and CH?

(
Al[t]

(tc − x)

)
→ CH?

(
A1[t]

(tc − x)

)
are isomorphisms. Proposition 3.2 implies that the ring extension C[Y ] ↪→ A1 induces an isomor-

phism CH?(C[Y ])
'−→ CH?(A1). Next we prove that there is an isomorphism

CH?(C[Y ])→ CH?

(
A1[t]

(tc − x)

)
.

The ring extension C[Y ] → A1[t]/(t
c − x) coincides with C[Y ] → C[Y ][x, z, t]/(x− tc, xb + za),

and the latter ring can be identified with C[Y ][z, t]/(za + tbc). Under the assumption (a, bc) = 1,
Proposition 3.2 furnishes the desired isomorphism

CH?(C[Y ])
'→ CH?

(
A1[t]

(tc − x)

)
' CH?

(
C[Y ][z, t]

(za + tbc)

)
.

Proposition 3.5. Let X be a Koras–Russell threefold of the second kind with coordinate ring

C[X] =
C[x, y, z, t]

(ax+ (xb + zα2)ly + tα3)
,

where l > 0 is an integer, a ∈ C×, and b, α2, α3 > 2 are integers such that (α2, bα3) = 1.
For Y any smooth complex affine variety, the pullback map CH?(C[Y ]) → CH?(X × Y ) is an
isomorphism.

Proof. Since X and Y are smooth, it is equivalent to show that the flat pullback map CH?(C[Y ])
→ CH?(X×Y ) is an isomorphism. We may assume a = −1. Set A = C[Y ][x, z] and B = C[X×Y ].
The natural map φ : A → B is flat by Lemma 3.1. Moreover, CH?(C[Y ]) → CH?(A) is an
isomorphism by homotopy invariance. It remains to show that φ∗ : CH?(A) → CH?(B) is an
isomorphism.

We set u = (xb + zα2)l ∈ A and consider for i ∈ Z the commutative diagram of exact
localization sequences with vertical pullback maps induced by the flat map φ:

CH∗(A[u−1], i+ 1) //

��

CH∗(A/(u), i) //

��

CH∗(A, i) //

��

CH∗(A[u−1], i) //

��

CH∗(A/(u), i− 1)

��

CH∗(B[u−1], i+ 1) // CH∗(B/(u), i) // CH∗(B, i) // CH∗(B[u−1], i) // CH∗(B/(u), i− 1) .

(3.6)
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The ring extension A[u−1] → B[u−1] coincides with A[u−1] → A[u−1][t]. Hence the leftmost
and the second rightmost vertical arrows in (3.6) are isomorphisms by homotopy invariance.

The ring extension A/(u) → B/(u) coincides with A′ → A′[t, y]/(tα3 − x), where A′ =
C[Y ][x, z]/

(
(zα2 + xb)l

)
. There exist induced pullback maps

CH?(A
′)→ CH?

(
A′[t]

(tα3 − x)

)
→ CH?

(
A′[t, y]

(tα3 − x)

)
.

Here, the first map is an isomorphism by Lemma 3.4 and the second by homotopy invariance.
Hence the second leftmost and the rightmost vertical maps in (3.6) are isomorphisms.

Using the 5-lemma, we conclude the middle vertical arrow (3.6) is an isomorphism.

Combining Propositions 3.3 and 3.5 with the isomorphism between higher Chow groups and
motivic cohomology, as shown by Voevodsky [Voe02a, Corollary 2], we obtain the following.

Theorem 3.6. Let X be a Koras–Russell threefold of the first or second kind, and let Y be
a smooth complex affine variety. Then the pullback map H∗,∗(Y,Z) → H∗,∗(X × Y,Z) induced
by the projection X×Y → Y is an isomorphism of (bigraded) integral motivic cohomology rings.

An immediate consequence of Theorem 3.6 is that CH>1(X) = 0 for a Koras–Russell threefold
of the first or second kind. This result has the following application to the vector bundles on
such threefolds.

Corollary 3.7. Let X be a Koras–Russell threefold of the first or second kind. Then every
vector bundle on X is trivial.

Proof. Serre showed that every vector bundle on X of rank at least four is a direct sum of a
rank three vector bundle and a trivial bundle. Now CH3(X) = 0, see Theorem 3.6, so by [KM82,
Corollary 2.4] every vector bundle of rank three is a direct sum of a rank two vector bundle and
the trivial line bundle. Since CH2(X) = 0 by Theorem 3.6, it follows from [AF14, Corollary 2]
that every vector bundle of rank two is a direct sum of a line bundle and the trivial line bundle.
Finally, as Pic(X) ' CH1(X) = 0, every line bundle over X is trivial.

Remark 3.8. Triviality of vector bundles on Koras–Russell threefolds of the first kind was shown
by Murthy [Mur02, Corollary 3.8] by a completely different method.

4. A1-contractibility of Koras–Russell threefolds

In this section, we prove our main results on A1-contractibility of Koras–Russell threefolds using
Theorem 3.6 and A1-homotopy theory (see, for example, [DLØRV07, MV99]).

The pointed unstable and stable A1-homotopy categories H•(C) and SH(C) are the homotopy
categories of simplicial model categories Spc•(C), respectively Spt(C). Recall that the objects
of Spc•(C) are pointed simplicial presheaves on SmC, the Nisnevich site of smooth complex
varieties of finite type, while Spt(C) is comprised of T -spectra in Spc•(C) for the Tate object
T = (CP1,∞).

We note that SH(C) is a triangulated category with shift functor E 7→ E[1] given by smashing
with the topological circle. Denote by Σ∞T (X,x) ∈ SH(C) the (CP1,∞)-suspension spectrum of
X ∈ SmC and a rational point x ∈ X(C). For fixed F ∈ SH(C), recall from [RØ08b] that
E ∈ SH(C) is called

• F -acyclic if E ∧ F ' ∗;
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• F -local if HomSH(C)(D,E) = 0 for every F -acyclic spectrum D.

It is clear that the F -local spectra form a colocalizing subcategory of SH(C). Note that if F is
a ring spectrum, then any F -module E is F -local (every map D → E factors through D∧F and
hence it is trivial if D is F -acyclic).

Let MZ ∈ SH(C) denote the ring spectrum that represents motivic cohomology; that is, for
every X ∈ SmC and all integers n, i ∈ Z, there is an isomorphism

Hn,i(X,Z) ' HomSH(C)(Σ
∞
T X+,MZ(i)[n]) . (4.1)

Here, for E ∈ SH(C), the Tate twist E(1) is defined by E(1) = E ∧ Σ∞T (Gm, 1)[−1].

Lemma 4.1. For every X ∈ SmC and closed point x ∈ X, the spectrum Σ∞T (X,x) ∈ SH(C) is
MZ-local.

Proof. By resolution of singularities, Σ∞T (X,x) is in the smallest thick subcategory of SH(C) con-
taining Σ∞T Y+ for any smooth projective variety Y [Rio05, Theorem 1.4], [RØ08a, Theorem 52].
It now suffices to show that Σ∞T Y+ is MZ-local for such Y . Our proof employs Voevodsky’s slice
filtration on SH(C) [Voe02b]. Recall that the slice filtration of E ∈ SH(C) is a tower of spectra

· · · → fq+1E → fqE → fq−1E → · · · → E , q ∈ Z .

The qth slice sqE of E is defined by the distinguished triangle

fq+1E → fqE → sqE → fq+1E[1] .

By Levine [Lev13, Theorem 3], the slice filtration of Σ∞T Y+ for Y a smooth projective variety is
complete; that is,

holim
q→∞

fq(Σ
∞
T Y+) ' ∗ .

Equivalently, if we define cqE by the distinguished triangle fqE → E → cqE → fqE[1], then

Σ∞T Y+ ' holim
q→∞

cq(Σ
∞
T Y+) .

Since the subcategory of MZ-local spectra is colocalizing, it now suffices to prove that cq(Σ
∞
T Y+)

is MZ-local for every q ∈ Z. By definition of the slice filtration, we have cq(Σ
∞
T Y+) ' ∗ for q 6 0.

Using the distinguished triangles

sqE → cqE → cq−1E → sqE[1]

and induction on q, we are reduced to proving that the slices sq(Σ
∞
T Y+) are MZ-local. In fact, all

slices in SH(C) are MZ-local: by [GRSØ12, § 6 (iv),(v)], [Pel11, Theorem 3.6.13(6)], and [Spi12,
§ 3], any slice sqE is a module over the zeroth slice s0(1) of the sphere spectrum, and hence it is
s0(1)-local. Moreover, s0(1) 'MZ, as shown in [Voe04, Theorem 6.6].

Theorem 4.2. Let X be a Koras–Russell threefold of the first or second kind. Then there exists
an integer n > 0 such that Σn

T (X, 0) is A1-contractible.

Proof. We first reformulate Theorem 3.6 as an equivalence in the stable A1-homotopy category
SH(C), using its structure of a closed symmetric monoidal category. Denote by Hom(E,F ) the
internal homomorphism objects of SH(C) characterized by the adjunction isomorphism

HomSH(C)(D,Hom(E,F )) ' HomSH(C)(D ∧ E,F ) .

The structure map X → Spec (C) induces a morphism in SH(C)

MZ ' Hom(Σ∞T Spec (C)+,MZ)→ Hom(Σ∞T X+,MZ) .
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In view of (4.1), Theorem 3.6 asserts that for every smooth complex affine variety Y and all
n, i ∈ Z, there is an induced isomorphism

HomSH(C)(Σ
∞
T Y+(i)[n],MZ)→ HomSH(C)(Σ

∞
T Y+(i)[n],Hom(Σ∞T X+,MZ)) .

The objects Σ∞T Y+(i)[n] form a family of generators of SH(C), because every smooth variety
admits an open covering by smooth affine varieties. We deduce that MZ → Hom(Σ∞T X+,MZ)
is an isomorphism. Its retraction Hom(Σ∞T X+,MZ)→MZ induced by the base point 0 ∈ X is
therefore also an isomorphism. From the distinguished triangle

MZ[−1]→ Hom(Σ∞T (X, 0),MZ)→ Hom(Σ∞T X+,MZ)→MZ ,

we deduce that Hom(Σ∞T (X, 0),MZ) ' ∗. By [Rio05, Theorems 1.4 and 2.2] or [RØ08a, Theo-
rem 52], the spectrum Σ∞T (X, 0) is strongly dualizable in SH(C), so that

Hom(Σ∞T (X, 0),MZ) ' Hom(Σ∞T (X, 0),1) ∧MZ .

Thus Hom(Σ∞T (X, 0),1) is MZ-acyclic, and for any E ∈ SH(C) we obtain

HomSH(C)(E,Σ
∞
T (X, 0) ∧MZ) ' HomSH(C)(E ∧Hom(Σ∞T (X, 0),1),MZ) ' ∗ ,

since E∧Hom(Σ∞T (X, 0),1) is MZ-acyclic and MZ is MZ-local (being an MZ-module). By the
Yoneda lemma, this implies

Σ∞T (X, 0) ∧MZ ' ∗ ;

that is, Σ∞T (X, 0) is MZ-acyclic. On the other hand, Lemma 4.1 implies that Σ∞T (X, 0) is MZ-
local. It follows that every endomorphism of Σ∞T (X, 0) is trivial, and hence Σ∞T (X, 0) ' ∗. The
proof is completed by the following lemma.

Lemma 4.3. LetX be a smooth complex variety, and let x ∈ X be a closed point. If Σ∞T (X,x) ' ∗
in SH(C), then there exists an integer n > 0 such that Σn

T (X,x) is A1-contractible.

Proof. By [DRØ03, Definition 2.10], an object F ∈ Spc•(C) is fibrant exactly when for every X ∈
SmC, we have (1) F (X) is a Kan complex; (2) the projection X ×A1 → X induces a homotopy
equivalence F (X) ' F (X×A1); (3) F maps Nisnevich elementary distinguished squares in SmC
to homotopy pullback squares of simplicial sets, and F (∅) is contractible. Moreover, a spectrum
E ∈ Spt(C) is fibrant if and only if it is levelwise fibrant and an ΩT -spectrum. There are standard
simplicial Quillen adjunctions, whose left adjoints preserve weak equivalences:

ΣT : Spc•(C)� Spc•(C) : ΩT

Σ∞T : Spc•(C)� Spt(C) : Ω∞T .

Let (En)n>0 be a levelwise fibrant replacement of Σ∞T (X,x), that is, En is a fibrant replace-
ment of Σn

T (X,x) in Spc•(C), and let E be a fibrant replacement of Σ∞T (X,x) in Spt(C). A key
observation is that filtered colimits in Spc•(C) preserve fibrant objects; this follows from the
above description of fibrant objects and the facts that filtered colimits of simplicial sets preserve
Kan complexes, homotopy equivalences, and homotopy pullback squares ([DRØ03, Corollary
2.16]). This implies that there is a simplicial homotopy equivalence

Ω∞T E ' colim
n→∞

Ωn
TEn .

Let X̃ ∈ Spc•(C) be the simplicial presheaf (X,x) ∨∆1 pointed at the free endpoint of ∆1;
this is a cofibrant replacement of (X,x) in Spc•(C). Since X̃ ∈ Spc•(C) is ω-compact, the
following are homotopy equivalences of Kan complexes, where Map denotes the simplicial sets
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of maps in the above simplicial model categories:

Map(Σ∞T X̃, E) ' Map(X̃,Ω∞T E) ' Map(X̃, colim
n→∞

Ωn
TEn)

' colim
n→∞

Map(X̃,Ωn
TEn) ' colim

n→∞
Map(Σn

T X̃, En) .

The hypothesis that Σ∞T (X,x) is weakly contractible means that the weak equivalence Σ∞T X̃
∼→ E

and the zero map Σ∞T X̃ → ∗ → E are in the same connected component of the Kan complex
Map(Σ∞T X̃, E). Since π0 preserves filtered colimits of simplicial sets, there exists n > 0 such
that the weak equivalence Σn

T X̃
∼→ En and the zero map Σn

T X̃ → ∗ → En belong to the same
connected component of Map(Σn

T X̃, En). In other words, Σn
T X̃ ' Σn

T (X,x) is A1-contractible.

Corollary 4.4. Let X be a Koras–Russell threefold of the first or second kind, and let BC× '
CP∞ denote the motivic classifying space of C× (cf. [MV99, Section 4]). Then the projection
map

Σ∞T
(
X

C×

× EC×
)
+
→ Σ∞T (BC×)+ (4.2)

is an isomorphism.

Proof. By definition, Σ∞T (X
C×

× EC×)+ is the colimit of the compact objects Σ∞T (X
C×

× Un)+ for
n > 1, where Un = An\{0} with free C×-action given by scalar multiplication. Hence, it suffices
to show that there is an isomorphism

Σ∞T
(
X

C×

× Un
)
+
→ Σ∞T

(
CPn−1

)
+

for each n > 1. Since Un → CPn−1 is Zariski-locally trivial, in fact a principal C×-bundle, so is

the map X
C×

× Un → CPn−1 with fiber X. Using the Mayer–Vietoris exact triangles

Σ∞T (U ∩ V )+ → Σ∞T (U)+ ⊕ Σ∞T (V )+ → Σ∞T (U ∪ V )+ → Σ∞T (U ∩ V )+[1]

and induction on the length of an affine open cover of CPn−1, we are reduced to showing that for
any smooth complex affine variety Y , the projection Σ∞T (X×Y )+ → Σ∞T (Y )+ is an isomorphism.

This follows from the isomorphisms Σ∞T (X)+
'−→ 1 (cf. Theorem 4.2) and Σ∞T (X × Y )+ '

Σ∞T (X)+ ∧ Σ∞T (Y )+.

Remark 4.5. Given a spectrum E ∈ SH(C) and a smooth complex variety X with C×-action,
the Borel C×-equivariant E-cohomology groups of X can be defined as

E∗,∗C×(X) = E∗,∗
(
X

C×

× EC×
)
.

Special cases include the equivariant Chow groups [EG98] and Borel equivariant K-theory
[Kri16]. If X is a Koras–Russell threefold of the first or second kind, Corollary 4.4 shows that
the Borel C×-equivariant E-cohomology of X is trivial, in the sense that the map X → SpecC
induces an isomorphism

E∗,∗C×(X) ' E∗,∗C×(SpecC) .

This implies that the other two terms in the Milnor exact sequence (see [Hov99, Proposi-
tion 7.3.2])

0→ lim←−
n

1 Ea−1,b
(
X

C×

× Un
)
→ Ea,b

(
X

C×

× EC×
)
→ lim←−

n

Ea,b
(
X

C×

× Un
)
→ 0

are trivial in the same sense (the last term is sometimes taken as the definition of Borel equivariant
cohomology).
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Remark 4.6. Koras–Russell threefolds were initially studied over C and with C×-actions. All
results in this paper, as well as the proofs, are valid for algebraically closed fields of characteristic
zero and Gm.

Remark 4.7. Recently, Dubouloz and Fasel announced a proof that Koras–Russell threefolds of
the first kind are unstably A1-contractible [DF15].
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