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Abstract

Hermitian K-theory and Witt-theory are cellular in the sense of stable motivic homotopy
theory over any base scheme without points of characteristic two.

1 Introduction

The notion of a cellular object in motivic homotopy theory is intrinsically linked to the geometry
of motivic spheres Sp,q [4]. Suppose the smooth scheme X admits a filtration by closed subschemes

∅ ⊂ X0 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X,

where Xi rXi−1 is a disjoint union of affine spaces Anij . Examples of such filtrations arise in the
context of Bia lynicki-Birula decompositions for Gm-action on smooth projective varieties [2], cf. [3]
for a more recent implementation. By homotopy purity [7, Theorem 3.2.23] for Thom spaces of
normal bundles of closed embeddings, there is a homotopy cofiber sequence

X rXi
// X rXi−1

// Th(Ni).

By assumption the normal bundle Ni is trivial. Thus the splitting Th(Ni) ∼=
∨

j S
2nij ,nij and the

two-out-of-three property for stably cellular objects [4, Lemma 2.5] imply inductively that X is
stably cellular in the sense of [4, Definition 2.10].

In this paper we employ a similar strategy to prove cellularity for Thom spaces of direct sums of
tautological sympletic bundles over quaternionic Grassmannians. This allows us to show cellularity
of the motivic spectra representing hermitian K-theory and Witt-theory [5]. By a base scheme we
mean any regular noetherian separated scheme of finite Krull dimension.

Theorem 1.1. Suppose all points on the base scheme have residue characteristic unequal to two.

Then hermitian K-theory KQ and Witt-theory KW are cellular motivic spectra.

For a related antecedent result showing cellularity of algebraic K-theory, see [4, Theorem 6.2].
The proof of Theorem 1.1 exploits the geometry of quaternionic Grassmannians and the explicit
model for hermitian K-theory from [9].

Recent applications of KQ and KW concern computations of stable homotopy groups of motivic
spheres [6], [8], [12], and a proof of the Milnor conjecture on quadratic forms [11]. For cellular
motivic spectra one has the powerful fact that stable motivic weak equivalences are detected by
π∗,∗-isomorphisms [4, Corollary 7.2]. Our main motivation for proving Theorem 1.1 is that it is
being used in the computation of the slices of KQ in [12, Theorem 2.14]. In terms of motivic
cohomology with integral and mod-2 coefficients, the result is

sq(KQ) ∼=

{

Σ2q,qMZ ∨
∨

i<
q

2

Σ2i+q,qMZ/2 q even
∨

i<
q+1

2

Σ2i+q,qMZ/2 q odd.
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In turn, this is an essential ingredient in our proof of Morel’s π1-conjecture in [12]. It is an interesting
problem to make sense of Theorem 1.1 without any assumptions on the points of the base scheme.

This short paper is organized into Section 2 on basic properties of motivic cellular spectra,
Section 3 on the geometry of quaternionic Grassmannians, and Section 4 on hermitian K-theory
and Witt-theory.

2 Cellular objects

The subcategory of cellular spectra in the motivic stable homotopy category is the smallest full
localizing subcategory that contains all suspensions of the sphere spectrum, cf. [4, §2.8]. For our
purposes it suffices to know four basic facts about cellular motivic spectra. First we recall part (3)
of Definition 2.1 in [4].

Lemma 2.1. The homotopy colimit of a diagram of cellular motivic spectra is cellular.

The second fact is a specialization of [4, Lemma 2.4].

Lemma 2.2. Let E be a motivic spectrum and let p, q be integers. Then E is cellular if and only

if its (p, q)-suspension Σp,qE is cellular.

The third fact is a specialization of [4, Lemma 2.5].

Lemma 2.3. If E → F → G is a homotopy cofiber sequence of motivic spectra such that any two

of E, F , and G are cellular, then so is the third.

Finally, we recall Lemma 3.2 in [4].

Lemma 2.4. If Ei is a cellular motivic spectrum for all i ∈ I, then
∐

i∈I Ei is cellular.

3 Quaternionic Grassmannians

The quaternionic Grassmannian HGr(r, n) is the open subscheme of the ordinary Grassmannian
Gr(2r, 2n) parametrizing 2r-dimensional subspaces of the trivial vector bundle O⊕2n on which the
standard symplectic form is nondegenerate. It is smooth affine of dimension 4r(n − r) over the
base scheme. Let Ur,n be short for the tautological symplectic subbundle of rank 2r on HGr(r, n).
It is the restriction to HGr(r, n) of the tautological subbundle of Gr(2r, 2n) together with the
restriction to Ur,n of the standard symplectic form on O⊕2n.

More generally, to every symplectic bundle (E , φ) one associates the quaternionic Grassmannian
HGr(r, E , φ); it is the open subscheme of the Grassmannian Gr(2r, E) parametrizing 2r-dimensional
subspaces of the fibers of E on which φ is nondegenerate. Associated to the trivial rank 2n − 2
symplectic bundle (E , ψ) is the bundle F = O ⊕ E ⊕O equipped with the direct sum of ψ and the
hyperbolic symplectic form, i.e.,





0 0 1
0 ψ 0
−1 0 0



 .

For simplicity we write HGr(E) for HGr(r, E , ψ) and likewise for F .
The normal bundle N of the embedding HGr(E) ⊂ HGr(F) is the tensor product U∨

E
⊗O⊕2 for

the dual of the tautological symplectic subbundle of rank 2r on HGr(E). Theorem 4.1 in [10] shows
that N is naturally isomorphic to an open subscheme of Gr(2r,F) and there is a decomposition
N = N+ ⊕N−; here, N+ = HGr(F) ∩Gr(2r,O ⊕ E) and N− = HGr(F) ∩Gr(2r, E ⊕ O) have
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intersection HGr(E). Thus there are natural vector bundle isomorphisms N+ ∼= N− ∼= Ur,n−1

and the normal bundle N of N+ in HGr(F) is isomorphic to π∗+Ur,n−1 for the bundle projection
π+ : N+ → HGr(E). Moreover, there is a vector bundle isomorphism between the restriction
Ur,n|N

+ of Ur,n to N+ and π∗+Ur,n−1. For r ≤ n − 1, let Y denote the complement of N+ in
HGr(F) [10, (5.1)].

Proposition 3.1. For m ≥ 0 the suspension spectrum of the Thom space of the vector bundle U⊕m
r,n

on HGr(r, n) is a finite cellular spectrum. In particular, Σ∞HGr(r, n)+ is a cellular spectrum.

Proof. The proof proceeds by a double induction argument on r and n ≥ r. The base cases
HGr(0, n) and HGr(n, n) are clear, so we may assume 0 < r < n. Define the motivic space Z by
the homotopy cofiber sequence

Th(U⊕m
r,n |Y ) // Th(U⊕m

r,n ) // Z. (1)

According to [13, Lemma 3.5] there is a canonical isomorphism in the motivic homotopy category

Z ∼= Th(U⊕m
r,n |N+ ⊕N ).

Using the above we note U⊕m
r,n |N+ ⊕N ∼= π∗+U

⊕(m+1)
r,n−1 and hence there are canonical isomorphisms

Z ∼= Th(π∗+U
⊕(m+1)
r,n−1 ) ∼= Th(U

⊕(m+1)
r,n−1 ).

By induction hypothesis Σ∞Z is a finite cellular spectrum. Thus Lemma 2.3 and (1) reduce the
proof to showing that Σ∞Th(U⊕m

r,n |Y ) is a finite cellular spectrum. To this end we recall parts of
Theorem 5.1 in [10]: There exists maps

Y Y1
g1

oo Y2
g2

oo
q

// HGr(r − 1, E , ψ),

where gi and q are Zariski locally trivial torsors over vector bundles of rank 2r − i and 4n − 3,
respectively. Moreover, g∗2g

∗
1Ur,n is isomorphic to O2

Y2
⊕ q∗Ur−1,n. Invoking [7, §3.2, Example 2.3]

this implies the canonical isomorphisms

Σ∞Th(U⊕m
r,n |Y ) ∼= Σ∞Th(g∗2g

∗
1U

⊕m
r,n |Y ) ∼= Σ∞Th(O2m

Y2
⊕ q∗U⊕m

r−1,n) ∼= Σ2m,mΣ∞Th(U⊕m
r−1,n).

Here, the suspension spectrum of Th(U⊕m
r−1,n) is finite cellular by the induction hypothesis. This

finishes the proof using Lemma 2.2.

4 Hermitian K-theory and Witt-theory

In this section we finish the proof of Theorem 1.1 stated in the introduction.
The quaternionic plane HP1 is the first quaternionic Grassmannian HGr(1, 2). In the pointed

unstable motivic homotopy category, (HP1, x0) is isomorphic to the two-fold smash product of
the Tate object T ≡ A1/A1

r {0}. It follows that the A1-mapping cone HP1+ of the rational
point x0 : S → HP1 is isomorphic to T∧2. Hence the stable homotopy category of HP1+-spectra
is equivalent to the standard model for the stable motivic homotopy category [9, Theorem 12.1].

Theorem 12.3 in [9] shows there is an isomorphism between hermitian K-theory KQ and an
HP1+-spectrum BOgeom. For n odd, BO

geom
2n = Z × HGr [9, (12.5)]. Here HGr denotes the

infinite quaternionic Grassmannian, i.e., the sequential colimit

colim
n

HGr(n, 2n).
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We note that the transition maps in the colimit are defined in [9, (8.1)]. The motivic space Z×HGr

is pointed by (0,HGr(0, 0)). Thus KQ is isomorphic to the homotopy colimit

hocolim
n odd

Σ4n,2nΣ∞Z×HGr. (2)

It remains to show cellularity of (2). Note that Σ∞Z × HGr is a homotopy colimit of cellular
spectra by Lemma 2.4 and Proposition 3.1. It follows that Σ4n,2nΣ∞Z×HGr is cellular according
to Lemmas 2.1 and 2.2. We conclude the proof for KQ by applying Lemma 2.1.

Cellularity of KW follows from that of KQ via Lemma 2.1 and the description of KW as the
homotopy colimit of the diagram

KQ
η

// Σ−1,−1KQ
Σ−1,−1η

// Σ−2,−2KQ
Σ−2,−2η

// · · ·

given in [1, Theorem 6.5]. Here, η is the first stable Hopf map induced by the canonical map
A2

r {0} → P1.
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