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Abstract

We solve affirmatively the homotopy limit problem for K-theory over fields of finite

virtual cohomological dimension. Our solution employs the motivic slice filtration and

the first motivic Hopf map.

1 Introduction

A homotopy limit problem asks for an equivalence between fixed points and homotopy fixed

points for a group action [30]. In some contexts, the fixed points are easily described, and

one then obtains a description of the otherwise intractable homotopy fixed points. Many

distinguished results in algebraic topology take the form of a homotopy limit problem, e.g.,

the Atiyah-Segal completion theorem linking equivariant K-theory to representation theory,

Segal’s Burnside ring conjecture on stable cohomotopy, Sullivan’s conjecture on the homotopy

type of real points of algebraic varieties, and the Quillen-Lichtenbaum conjecture on Galois

descent for algebraic K-theory under field extensions.

In this paper we give a surprising solution of the homotopy limit problem for K-theory in

the stable motivic homotopy category. This is achieved by analyzing the slice filtration for

algebraic and hermitian K-theory [25], [26], [32], and completing with respect to the Hopf

element η in the Milnor-Witt K-theory ring [15].

To provide context for our approach, recall that complex conjugation of vector bundles

gives rise to the Adams operation Ψ−1 and an action of the group C2 of order two on the

complex K-theory spectrum KU. Atiyah [1] shows there is an isomorphism

KO
≃−→ KUhC2 (1.1)

between the real K-theory spectrum KO and the C2-homotopy fixed points of KU. For the

corresponding connective K-theory spectra, the homotopy cofiber of

ko −→ ku
hC2 (1.2)

is an infinite sum
∨

i<0 Σ
4iHZ/2 of suspensions of the mod-2 Eilenberg-MacLane spectrum.
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We are interested in the analogues of (1.1) and (1.2) for algebraic K-theory KGL with

C2-action given by the Adams operation Ψ−1 and hermitian K-theory KQ, see for example

[25, §3,4]. Throughout we work in the stable motivic homotopy category SH over a field F

of characteristic char(F ) 6= 2. Our starting point is, somewhat unexpectedly in view of (1.2),

the naturally induced map between fixed points and homotopy fixed points

γ : kq −→ kglhC2 (1.3)

for the projections of KGL and KQ to the effective stable motivic homotopy category SHeff .

The latter is the localizing subcategory of SH generated by suspension spectra of smooth

schemes [32]. Let η be the first motivic Hopf map induced by the natural map of algebraic

varieties A2 r {0} −→ P1. Recall that η defines a non-nilpotent element in the homotopy

group π1,11 of the motivic sphere spectrum. We let π⋆E denote the bigraded coefficients of a

generic motivic spectrum E. The stable cone of η acquires a Bousfield localization functor Lη

defined on all motivic spectra [24, Appendix A]. Let vcd2(F ) denote the mod-2 cohomological

dimension of the absolute Galois group of F (
√
−1) [27, Chapter 1,§3]. We solve the homotopy

limit problem (1.3) affirmatively by completing with respect to η.

Theorem 1.1: Suppose F is a field of char(F ) 6= 2 and virtual cohomological dimension

vcd2(F ) <∞. Then (1.3) induces an isomorphism

Lη(γ) : kq
∧
η

≃−→ kglhC2 . (1.4)

We show that the homotopy fixed point spectrum kglhC2 in (1.4) is η-complete. The

proof of Theorem 1.1 invokes the slice filtration

· · · ⊂ Σq+1
T SHeff ⊂ Σq

TSH
eff ⊂ Σq−1

T SHeff ⊂ · · · (1.5)

introduced by Voevodsky [32, §2]. Using (1.5) one associates to E an integrally graded family

of slices s∗(E) and a trigraded slice spectral sequence

π⋆s∗(E) =⇒ π⋆E. (1.6)

We show that (1.6) converges conditionally for the η-completion of kq and also for the

homotopy fixed point spectrum kglhC2 . In contrast to the topological situation (1.1), π⋆KQ

and π⋆KGL are unknown over general fields. Nonetheless we obtain a proof of Theorem 1.1

by using the computations of s∗(KQ) and s∗(KGLhC2) accomplished in [25].

Next we turn to solving the homotopy limit problem

Υ: KQ −→ KGLhC2 . (1.7)

Here KGLhC2 is η-complete essentially due to motivic orientability of algebraic K-theory.

We proceed by comparing with the effective cocovers of KQ and KGLhC2 . Remarkably, the

first motivic Hopf map η turns Υ into an isomorphism without altering the target in (1.7).
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Theorem 1.2: Suppose F is a field of char(F ) 6= 2 and virtual cohomological dimension

vcd2(F ) <∞. Then (1.7) induces an isomorphism

Lη(Υ): KQ∧
η

≃−→ KGLhC2 . (1.8)

Supplementing our main results we note that the η-arithmetic square

KQ //

��

KW

��

KQ∧
η

// KQ∧
η [η

−1]

(1.9)

for KQ [26, §3.1] coincides up to isomorphism with the Tate diagram [9, (20)]

KQ //

��

KW

��

KGLhC2 // KGLtC2

(1.10)

for the C2-action on KGL. Here KW denotes the higher Witt-theory and KGLtC2 denotes

the Tate K-theory spectrum. Moreover, by representability, (1.8) implies that for every

X ∈ SmF — smooth F -schemes of finite type — there is a naturally induced isomorphism

Lη(Υ)⋆ : π⋆KQ(X)∧η
∼=−→ π⋆KGL(X)hC2.

Remark 1.3: The earlier works [2] and [9] identified the 2-adic completion of the homotopy

fixed points by showing an isomorphism π⋆KQ/2
∼=−→ π⋆KGLhC2/2. Explicit calculations are

carried out over the complex numbers C in [10]. However, for the identification of KGLhC2

in (1.8) it is paramount to work in SH, so that the η-completion of KQ makes sense. The

commonplace assumption vcd2(F ) < ∞ is also used in [2], [9], and in the context of the

Quillen-Lichtenbaum conjecture for étale K-theory [12, §4].

2 The first motivic Hopf map η

We view A2 r {0} and P1 as motivic spaces pointed at (1, 1) and [1 : 1], respectively. The

canonical projection map A2r{0} −→ P1 induces the stable motivic Hopf map η : Gm −→ 1

for the motivic sphere spectrum 1. Iteration of η yields the cofiber sequence

G∧n
m

ηn

−→ 1 −→ 1/ηn. (2.1)

The η-completion E∧
η of a motivic spectrum E is defined as the homotopy limit holim

n→∞
E/ηn

of the canonically induced diagram

. . . −→ E/ηn+1 −→ E/ηn −→ . . . −→ E/η. (2.2)
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By (2.1) and (2.2) there is a naturally induced map

E −→ E∧
η . (2.3)

We say that E is η-complete if the map in (2.3) is an isomorphism. The Bousfield localization

LηE of E for the cone of η coincides with E∧
η . Recall that the algebraic cobordism spectrum

MGL is the universal oriented motivic spectrum, see [16], [18].

Lemma 2.1: Every module over an oriented motivic ring spectrum is η-complete.

Proof. The unit map for algebraic cobordism 1 −→MGL factors through the cone 1/η, see

[26, Lemma 3.24] for an explicit factorization, which implies MGL ∧ η = 0. The statement

for modules follows readily.

3 The slice filtration

In this section we discuss results for the slice filtration [32] which will be applied in the proofs

of our main results in Section 5. Throughout we work over a base field F .

To (1.5) one associates distinguished triangles

fq+1(E) −→ fq(E) −→ sq(E), (3.1)

for every motivic spectrum E, see [32, Theorem 2.2]. Here the qth effective cover of E

is the universal map fq(E) −→ E from Σq
TSH

eff to E. The qth slice sq(E) ∈ Σq
TSH

eff is

uniquely determined up to isomorphism by (3.1). Every object of Σq+1
T SHeff maps trivially

to sq(E). It is technically important for many constructions to have a “strict model” for the

slice filtration, e.g., by means of model categories as in [6, §3.1], [20, §3.2]. We note that

fqsq′ ≃ sq′ fq follows from [6, (2.2), §6] for all q, q′ ∈ Z.

Lemma 3.1: The slice filtration is exhaustive in the sense that there is an isomorphism

hocolim
q→−∞

fq(E)
≃−→ E. (3.2)

Proof. Each generator Σs,tX+ of SH is contained in Σq′

T SH
eff for some q′ ∈ Z. Here s, t ∈ Z

and X ∈ SmF , see for example [4, Theorem 9.1]. Recall that fq′ preserves homotopy colimits

[28, Corollary 4.5], [32, Lemma 4.2]. By the universal property of the q′th effective cover it

suffices to show there is an isomorphism

SH(Σs,tX+, hocolim
q<q′

fq′ fq(E))
≃−→ SH(Σs,tX+, fq′(E)).

This follows since fq′ fq ≃ fq′ for q < q′.

Lemma 3.2: The slices of a motivic spectrum are η-complete.
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Proof. Every slice sq(E) is a module over the motivic ring spectrum s0(1), cf. [6, §6 (iv),(v)]

and [20, Theorem 3.6.13(6)]. If F is a perfect field, then s0(1) is the motivic cohomology

spectrum MZ by [14, Theorem 10.5.1] and [34, Theorem 6.6]. This extends by base change;

every field is essentially smooth over a perfect field [8, Lemma 2.9], and [8, Lemma 2.7(1)]

verifies the hypothesis of [21, Theorem 2.12] for an essentially smooth map. To conclude the

proof we use Lemma 2.1 and the canonical orientation on MZ [17, §10].

Corollary 3.3: Algebraic K-theory KGL and its effective cover kgl are η-complete.

Proof. This follows from Lemma 2.1 by using the orientation map MGL −→ KGL, see

for example [19, Example 2.4] and [29, Examples 2.1, 2.2], and the geometric fact that the

algebraic cobordism spectrum is effective [28, Corollary 3.2], [32, §8].

Corollary 3.4: The homotopy fixed points spectra KGLhC2 and kglhC2 are η-complete.

Proof. Let E be short for KGL or kgl. We use homotopy limits to model the homotopy

fixed points EhC2 for the C2-action given by the Adams operation Ψ−1 [7, §18], [25, §3,4].
Corollary 3.3 implies there is an isomorphism

holim
C2

E
≃−→ holim

C2

holim
n→∞

E/ηn.

Thus the corollary follows by commuting homotopy limits over small categories, i.e.,

holim
C2

holim
n→∞

E/ηn
≃−→ holim

n→∞
holim

C2

E/ηn.

The qth effective cocover fq−1(E) of E is uniquely determined up to isomorphism by the

distinguished triangle

fq(E) −→ E −→ f
q−1(E). (3.3)

Note that fq−1(E) is a (q − 1)-coeffective motivic spectrum, i.e., it is an object of the right

orthogonal subcategory of Σq
TSH

eff . If q ≤ q′ the isomorphism

sq′ fq(E)
≃−→ sq′(E) (3.4)

implies sq′ f
q−1(E) ≃ ∗. When q = 0, (3.3) yields a distinguished triangle for the effective

cover e ∈ SHeff of E, i.e.,

e −→ E −→ f
−1(E). (3.5)

We note that all the nonnegative slices of the coeffective motivic spectrum f
−1(E) are trivial.

Lemma 3.5: If E has no nontrivial negative slices then E ∈ SHeff .

Proof. Using (3.1), (3.2) and (3.5) it follows that f−1(E) ≃ ∗.
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Lemma 3.6: Suppose E→ F induces an isomorphism sqf
q−1(E)

≃→ sqf
q−1(F) for all q ∈ Z.

Then there is a naturally induced isomorphism f
q−1(E)

≃→ f
q−1(F).

Proof. This follows by applying (3.1) and (3.2) to the effective cocovers.

Lemma 3.7: For n > 0 there is a distinguished triangle

f−n+1f
−1(E) −→ f−nf

−1(E) −→ s−n(E). (3.6)

It follows that f−nf
−1(E) is a finite extension of the negative slices of E.

Proof. This follows from the distinguished triangles:

f−n+1(e) //

��

f−n+1(E) //

��

f−n+1f
−1(E)

��

f−n(e) //

��

f−n(E) //

��

f−nf
−1(E)

��

s−n(e) // s−n(E) // s−nf
−1(E)

(3.7)

In (3.7) the slice s−n(e) ≃ ∗ by the assumption n > 0. This implies (3.6). We note the

effective cover f0f
−1(E) ≃ ∗ since the map f0(e) −→ f0(E) is an isomorphism. It follows that

f−1f
−1(E) is isomorphic to s−1(E). The conclusion follows from (3.6) by induction on n.

Remark 3.8: For n > 0, f−nf
−1(E) is η-complete by Lemmas 3.2 and 3.7.

Lemma 3.9: For n ≥ −q > 0 there are isomorphisms

sq(E)
≃−→ sqf

−1(E)
≃←− sqf−nf

−1(E). (3.8)

Proof. Here we use that sq(e) ≃ ∗ for q < 0. The isomorphism for f−n is a special case of

(3.4).

For every E ∈ SH the distinguished triangle (3.3) yields a commutative diagram:

fq+1(E) //

��

E // f
q(E)

��

fq(E) // E // f
q−1(E)

(3.9)

The slice completion of E is defined as the homotopy limit

sc(E) ≡ holim
q→∞

f
q−1(E). (3.10)
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Using (3.9) and (3.10) we conclude there is a distinguished triangle

holim
q→∞

fq(E) −→ E −→ sc(E). (3.11)

We say that E is slice complete if the homotopy limit holim
q→∞

fq(E) in (3.11) is contractible.

Lemma 3.10: For every E ∈ SH, both sq(E) and f
q(E) are slice complete for all q ∈ Z.

Proof. If q < q′ there are distinguished triangles

fq+1fq′(E)
≃−→ fqfq′(E) −→ sqfq′(E), fq′ fq+1(E)

≃−→ fq′ (E) −→ fq′ f
q(E). (3.12)

It follows that fq′sq(E) ≃ sqfq′ (E) ≃ ∗ and fq′ f
q(E) ≃ ∗ for q < q′ by (3.12).

Lemma 3.11: Algebraic K-theory KGL and its effective cover kgl are slice complete.

Proof. It suffices to consider KGL. The associated Nisnevich sheaf of homotopy groups

πp,qKGL is trivial when p < 2q. Hence fq(KGL) is q-connected by [26, Lemma 3.17], i.e.,

for every triple (s, t, d) of integers with s− t+ d < q and every X ∈ SmF of dimension ≤ d,

the group [Σs,tX+, fq(KGL)] is trivial. We conclude by letting q →∞.

From Lemma 3.11 we deduce isomorphisms

KGLhC2
≃−→ sc(KGL)hC2 ,kglhC2

≃−→ sc(kgl)hC2 .

However, it is unclear whether KGLhC2 and kgl
hC2 are slice complete because homotopy

fixed points need not commute with effective cocovers or equivalently with effective covers.

To emphasize this issue we construct an example in §6, see also Proposition 3.15.

For n > 0 there is a naturally induced distinguished triangle

e −→ f−n(E) −→ f−nf
−1(E). (3.13)

Lemma 3.1, (3.5), and (3.13) imply there is a naturally induced isomorphism

hocolim
n>0

f−nf
−1(E)

≃−→ f
−1(E). (3.14)

Next we make precise the vagary of identifying the homotopy fixed points f−1(KGL)hC2

with a homotopy colimit. That is, we identify a homotopy limit with a homotopy colimit.

Throughout we let E be a motivic spectrum equipped with a G-action for a finite group G.

Lemma 3.12: There is a natural isomorphism

hocolim
n>0

f−nf
−1(E)hG

≃−→ f
−1(E)hG. (3.15)
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Proof. For every generator Σs,tX+ of SH there is a canonically induced map

SH(Σs,tX+, hocolim
n>0

f−nf
−1(E)hG) −→ SH(Σs,tX+, f

−1(E)hG). (3.16)

If t ≥ 0 the source and target of (3.16) are trivial. If t < 0 we show (3.16) is an isomorphism

by using the distinguished triangle

ftf
−1(E)hG −→ f

−1(E)hG −→ f
t−1(E)hG, (3.17)

obtained by applying homotopy fixed points to (3.3) for f
−1(E) and identifying f

t−1
f
−1(E)

with f
t−1(E) by means of the distinguished triangles

ft(e)
≃−→ e −→ f

t−1(e), ft−1(e) −→ f
t−1(E)

≃−→ f
t−1

f
−1(E).

Since f
t−1(E)hG in (3.17) is (t− 1)-coeffective there is a canonically induced isomorphism

SH(Σs,tX+, ftf
−1(E)hG)

∼=−→ SH(Σs,tX+, f
−1(E)hG).

On the other hand there are canonical identifications

SH(Σs,tX+, hocolim
n>0

f−nf
−1(E)hG) ∼= colim

n>0
SH(Σs,tX+, f−nf

−1(E)hG)

∼= SH(Σs,tX+, ftf
−1(E)hG).

In the following we make the standing assumption that for all q ∈ Z there is a naturally

induced isomorphism

sq(E
hG)

≃−→ sq(E)hG. (3.18)

The map in (3.18) arises from the standard adjunction between motivic spectra and “naive”

G-motivic spectra. That is, with the trivial G-action on the homotopy fixed points there is

a naturally induced G-map sq(E
hG)→ sq(E). Its adjoint is the map in (3.18).

Corollary 3.13: Assuming (3.18) and n > 0 there is a naturally induced isomorphism

f−nf
−1(EhG)

≃−→ f−nf
−1(E)hG. (3.19)

Proof. Follows from Lemma 3.7 under the stated assumptions.

Corollary 3.14: Assuming (3.18) and n ≥ −q > 0 there is a naturally induced isomorphism

sq(E
hG)

≃−→ sq(hocolim
n>0

f−nf
−1(E)hG). (3.20)

Proof. From the isomorphisms (3.8) in Lemma 3.9 we obtain

sq(E
hG)

≃−→ sqf
−1(EhG)

≃←− sqf−nf
−1(EhG). (3.21)
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Recall that slices commute with homotopy colimits [28, Corollary 4.5], [32, Lemma 4.2]. Thus

the target in (3.20) identifies with the homotopy colimit

hocolim
n>0

sqf−nf
−1(E)hG. (3.22)

With the assumption n ≥ −q > 0 the qth slice sqf−nf
−1(E)hG maps isomorphically to (3.22).

It remains to apply the isomorphism (3.19) in Corollary 3.13 and (3.21).

Proposition 3.15: Assuming (3.18) the slices of e commute with homotopy fixed points in

the sense that there is a naturally induced isomorphism

sq(e
hG)

≃−→ sq(e)
hG (3.23)

for every q ∈ Z. Moreover, ehG is an effective motivic spectrum.

Proof. Applying homotopy fixed points to (3.3) yields the distinguished triangle

ehG −→ EhG −→ f
−1(E)hG. (3.24)

From (3.24) we deduce the commutative diagram of distinguished triangles:

sq(e
hG) //

��

sq(E
hG) //

��

sq(f
−1(E)hG)

��

sq(e)
hG // sq(E)hG // sq(f

−1(E))hG

(3.25)

When q ≥ 0 it follows that sq(f
−1(E)) ≃ sq(f

−1(E)hG) ≃ ∗ since homotopy limits preserve

coeffective motivic spectra. Since the middle vertical map in (3.25) is an isomorphism, see

the assumption (3.18), so is (3.23).

When q < 0, (3.15) and (3.20) imply that sq(E
hG) −→ sq(f

−1(E)hG) is an isomorphism.

Lemma 3.5 implies ehG ∈ SHeff and thus sq(e
hG) −→ sq(e)

hG is an isomorphism.

Lemma 3.16: Assuming (3.18) there are naturally induced isomorphisms

f
q(ehG)

≃−→ f
q(e)hG, fq(e

hG)
≃−→ fq(e)

hG. (3.26)

Proof. We show that all the nonnegative effective cocovers of e commute with homotopy

fixed points. With this in hand the assertion for the effective covers of e follows from (3.3).

We claim there is a commutative diagram:

s0(e
hG)

≃
//

≃

��

f
0(ehG)

��

s0(e)
hG ≃

// f
0(e)hG

(3.27)
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Proposition 3.15 shows the left vertical map in (3.27) is an isomorphism and that ehG is an

effective motivic spectrum. Hence s0(e) ≃ f
0(e) and s0(e

hG) ≃ f
0(ehG) by comparing (3.1)

and (3.3). It follows that the natural map f
0(ehG) −→ f

0(e)hG is also an isomorphism.

The cone of the left vertical map in (3.9) is the qth slice. Hence there is a homotopy

cofiber sequence sq(e) −→ f
q(e) −→ f

q−1(e), and likewise for ehG. Proposition 3.15 and

induction on q implies that fq(e) commutes with homotopy fixed points.

Corollary 3.17: Assuming (3.18) there is a naturally induced isomorphism

sc(ehG)
≃−→ sc(e)hG. (3.28)

If e is slice complete then so is ehG.

Proof. Lemma 3.16 and the fact that homotopy limits commute imply there are canonical

isomorphisms

holim
q→∞

f
q−1(holim

G
e) ≃ holim

q→∞
holim

G
f
q−1(e) ≃ holim

q→∞
holim

G
f
q−1(e) ≃ holim

G
holim
q→∞

f
q−1(e).

For slice completeness of ehG we use the factorization ehG −→ sc(ehG) −→ sc(e)hG.

Corollary 3.18: Assuming (3.18) there are naturally induced isomorphisms

f
q(EhG)

≃−→ f
q(E)hG, fq(E

hG)
≃−→ fq(E)hG. (3.29)

Proof. There is a naturally induced commutative diagram of distinguished triangles:

f0(E
hG) //

��

EhG // f
−1(EhG)

��

f0(E)hG // EhG // f
−1(E)hG

(3.30)

Proposition 3.15 shows that f0(E
hG) −→ ehG is a map between effective motivic spectra. It

follows that f−1(EhG) −→ f
−1(E)hG induces an isomorphism on all negative slices. Since it

is a map between coeffective spectra, it is in fact an isomorphism according to Lemma 3.6.

The general cases follow by using induction on (3.1) and (3.3).

We end this section by discussing G-fixed points in more detail. Let OG denote the orbit

category ofG with objects {G/H} and morphisms the G-maps mapG(G/H,G/K) ∼= (G/K)H

[31, §1.8]. Let MSS be a highly structured model for the stable motivic homotopy category,

e.g., motivic functors [5], or motivic symmetric spectra [11]. Let MSSeff be the Bousfield

colocalization of MSS with respect to the set of objects Σp,0Σ∞
P1X+, where X ∈ SmF and

p ∈ Z (it suffices to consider p ≤ 0). Its homotopy category is SHeff . As a model for naive G-

motivic spectra we use the functor category [Oop
G ,MSS] with the projective model structure

[7, Theorem 11.6.1]. There is a naturally induced Quillen adjunction:

i
G
0 : [Oop

G ,MSSeff ] // [Oop
G ,MSS] : rG0oo (3.31)
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Evaluating a naiveG-motivic spectrum E at the orbits corresponding toG and the identity

element yields the underlying motivic spectrum E and the G-fixed points EG, respectively.

Let e be the naive G-motivic spectrum f
G
0 (E), where fG0 = LiG0 ◦rG0 . (Forgetting the G-action,

e coincides with e.) Since evaluating at the identity orbit commutes with (3.31), we obtain

an isomorphism

f
G
0 (E)G ∼= f0(E

G). (3.32)

In particular, kglC2 coincides with the effective hermitian K-theory spectrum kq, cf. (1.3).

4 The slice spectral sequence

The trigraded slice spectral sequence for E arising from (1.5) takes the form

π⋆s∗(E) =⇒ π⋆E. (4.1)

This is an upper half-plane spectral sequence with entering differentials [3, §7] because

πp,wsq(E) = 0 for q < w, cf. [32, §7]. A standard argument shows that (4.1) converges

conditionally to the motivic homotopy groups of sc(E) in the sense of [3, Definition 5.10].

For the following result we refer to [26, Lemma 3.14].

Lemma 4.1: Suppose e ∈ SHeff and e/η is slice complete. Then there is a naturally induced

isomorphism between e∧η to sc(e).

Proposition 4.2: Suppose e ∈ SHeff and e/η is slice complete. There is a conditionally

convergent slice spectral sequence

π⋆s∗(e) =⇒ π⋆e
∧
η . (4.2)

Proof. This follows from Lemma 4.1 and (4.1).

5 Proofs of Theorems 1.1 and 1.2

Corollary 5.1: For effective hermitian K-theory there is a conditionally convergent slice

spectral sequence

π⋆s∗(kq) =⇒ π⋆kq
∧
η . (5.1)

Proof. The only issue is to identify the quotient of kq by η with a slice complete spectrum.

By [25, Theorem 3.4] there is a homotopy cofiber sequence

Σ1,1KQ
η−→ KQ −→ KGL (5.2)

relating algebraic and hermitian K-theory via η. Passing to effective covers in (5.2) identifies

the cofiber of f0(η : Σ
1,1KQ −→ KQ) with kgl. Hence the cofiber of η : Σ1,1kq −→ kq is an

extension of kgl by Σ1,1
s−1(KQ) ≃ s0(Σ

1,1KQ), cf. [25, Lemma 2.1], so it is slice complete

by Lemmas 3.10 and 3.11. This verifies the assumptions in Proposition 4.2 for kq.
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Assuming vcd2(F ) <∞, (3.18) holds for KGL by [25, Proposition 4.24]. We summarize

some useful consequences of the results in §3.

Proposition 5.2: The following holds when vcd2(F ) <∞.

(1) The homotopy fixed points spectrum of effective K-theory kglhC2 is slice complete.

There is a conditionally convergent slice spectral sequence

π⋆s∗(kgl
hC2) =⇒ π⋆kgl

hC2 . (5.3)

(2) There is a naturally induced isomorphism fq(KGLhC2)
≃−→ fq(KGL)hC2 .

Proof. Here (1) follows from Lemma 3.11, Corollary 3.17 and the discussion of (4.1) in §4,
while (2) is a special case of Corollary 3.18.

Proof of Theorem 1.1. By [25, Theorems 4.18, 4.25, 4.27, Lemma 4.26] the natural map

Υ: KQ −→ KGLhC2 in (1.7) induces an isomorphism of slices

sq(Υ): sq(KQ)
≃−→ sq(KGLhC2) ≃

{

Σ2q,qMZ ∨∨

i<0 Σ
2q+2i,q

MZ/2 q ≡ 0(2),
∨

i<0 Σ
2q+2i+1,q

MZ/2 q ≡ 1(2).
(5.4)

From (5.4) we conclude the natural map kq −→ f0(KGLhC2) induces an isomorphism on

slices. By composing with f0(KGLhC2)
≃−→ kglhC2 , see Proposition 5.2(2), we conclude

there is an isomorphism

sq(γ) : sq(kq)
≃−→ sq(kgl

hC2). (5.5)

Thus γ : kq −→ kgl
hC2 in (1.3) induces an isomorphism between the conditionally convergent

upper half-plane slice spectral sequences (5.1) and (5.3). The induced map between the

filtered target groups is thus an isomorphism [3, Theorem 7.2]. This finishes the proof by

passing to Nisnevich sheaves of homotopy groups.

Proof of Theorem 1.2. Using (3.5) we obtain the naturally induced commutative diagram of

distinguished triangles:

kq //

f0(Υ)

��

KQ //

Υ
��

f
−1(KQ)

f−1(Υ)
��

f0(KGLhC2) // KGLhC2 // f
−1(KGLhC2)

(5.6)

Lemma 3.6 and (5.4) imply that f
−1(Υ): f−1(KQ) −→ f

−1(KGLhC2) is an isomorphism

because it is a map between coeffective spectra and it induces on isomorphism on slices. By

composing with the isomorphism f0(KGLhC2)
≃−→ kglhC2 of Proposition 5.2(2) we obtain a

commutative diagram of distinguished triangles:

kq //

γ

��

KQ //

Υ
��

f
−1(KQ)

f−1(Υ) ≃

��

kglhC2 // KGLhC2 // f
−1(KGLhC2)

(5.7)
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This shows that Lη(γ) is an isomorphism if and only if Lη(Υ) is an isomorphism. It follows

that Theorem 1.1 implies Theorem 1.2.

Corollary 5.3: If vcd2(F ) < ∞ then the η-completion of the Tate K-theory spectrum

KGLtC2 is contractible.

Proof. Recall that KGLtC2 is the cone of the norm map from the homotopy orbits KGLhC2

to the homotopy fixed points KGLhC2 in the Tate diagram [9, (20)]

KGLhC2

// KQ //

Υ
��

KW

��

KGLhC2

// KGLhC2 // KGLtC2

for the C2-action on KGL. Thus the assertion follows from Theorem 1.2 since the higher

Witt-theory spectrum KW can be identified with KQ[η−1], see e.g., [25, (7)].

6 Appendix

By way of example we show that SHeff is not closed under homotopy fixed points. In effect,

consider the homotopy fixed points for the trivial C2-action on the effective motivic spectrum

∨

i≥0

Σi,0MZ/2 ≃
∏

i≥0

Σi,0MZ/2. (6.1)

Here the sum and product are isomorphic by [25, Proposition A.5]. Since C2-homotopy fixed

points commute with products, [25, Lemma 4.22] yields a naturally induced isomorphism

(

∏

i≥0

Σi,0MZ/2
)hC2 ≃−→

∏

i≥0

∏

j≥0

Σi−j,0MZ/2. (6.2)

Assuming (6.2) is an isomorphism in SHeff , the countably infinite product
∏

n∈N
MZ/2 —

corresponding to indices i = j — is effective. However, we show that
∏

n∈N
MZ/2 6∈ SHeff .

Recall from [33, §2] the adjunction between SH and the stable motivic homotopy category

of S1-spectra SHs:

Σ∞
t : SHs

//
SH : Ω∞

t .oo

Now Ω∞
t MZ/2 is the Eilenberg-MacLane S1-spectrum HZ/2 associated with the constant

presheaf Z/2 by [33, Lemma 5.2]. It follows that Ω∞
t

∏

n∈N
MZ/2 is the Eilenberg-MacLane

S1-spectrum HV associated with the constant presheaf V, where V is a Z/2-vector space of

(uncountable) infinite dimension. If
∏

n∈N
MZ/2 ∈ SHeff we would obtain

Ω∞
t Σ0,1

∏

MZ/2 ≃
∏

Ω∞
t Σ0,1MZ/2 ∈ Σ1

tSHs (6.3)
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since Ω∞
t Σ0,1MZ/2 ∈ Σ1

tSHs by [14, Theorem 7.4.1] (as conjectured in [33, Conjecture 4]).

In (6.3) we use that Σ0,1, being an equivalence, commutes with products. In SHs there is a

canonically induced map

α : (
∏

n∈N

Ω∞
t MZ/2)⊗Ω∞

t
MZ/2 Ω

∞
t Σ0,1MZ/2 −→

∏

n∈N

Ω∞
t Σ0,1MZ/2. (6.4)

The tensor product in (6.4) is formed in the module category of the Eilenberg-MacLane S1-

spectrum Ω∞
t MZ/2 [13], cf. [22], [23], [33, Lemma 5.2]. In particular, the source of α in (6.4)

is 1-effective, because Ω∞
t Σ0,1MZ/2 ∈ Σ1

tSHs by [14, Theorem 7.4.1] and
∏

n∈N
Ω∞

t MZ/2 is

effective, since it is the Eilenberg-MacLane spectrum associated with V. We will prove that

SHs(Σ
n,0X+ ∧Gm, α) is an isomorphism for every X ∈ SmF and n ∈ Z; here Gm denotes

the multiplicative group scheme. In effect, choose an uncountable basis B of V and express

V as the filtered colimit of finite dimensional sub-Z/2-vector spaces V′ ⊂ V spanned by

finite subsets F ⊂ B. Since Σn,0X+ ∧Gm is compact in SHs there are isomorphisms

SHs

(

Σn,0X+ ∧Gm,
(

∏

n∈N

Ω∞
t MZ/2

)

⊗Ω∞

t
MZ/2 Ω

∞
t Σ0,1MZ/2

)

∼=

SHs

(

Σn,0X+ ∧Gm, (colimF⊂B

∏

f∈F

Ω∞
t MZ/2)⊗Ω∞

t
MZ/2 Ω

∞
t Σ0,1MZ/2

)

∼=

colimF⊂B SHs

(

Σn,0X+ ∧Gm, (
∏

f∈F

Ω∞
t MZ/2⊗Ω∞

t
MZ/2 Ω

∞
t Σ0,1MZ/2)

)

∼=

colimF⊂B SHs

(

Σn,0X+ ∧Gm,Ω
∞
t MZ/2⊗Ω∞

t
MZ/2

∏

f∈F

Ω∞
t Σ0,1MZ/2

)

∼=

colimF⊂B SHs

(

Σn,0X+ ∧Gm,
∏

f∈F

Ω∞
t Σ0,1MZ/2

)

∼=

colimF⊂B SHs

(

Σn,0X+,Ωt

(

∏

f∈F

Ω∞
t Σ0,1MZ/2

)

)

∼=

colimF⊂B SHs

(

Σn,0X+,
∏

f∈F

Ω∞
t ΩtΣ

0,1MZ/2
)

∼=

colimF⊂B SHs

(

Σn,0X+,
∏

f∈F

Ω∞
t Σ−1,0MZ/2

)

∼=

SHs

(

Σn,0X+, colimF⊂B

∏

f∈F

Ω∞
t Σ−1,0MZ/2

)

∼=

SHs

(

(Σn,0X+,
∏

n∈N

Ω∞
t Σ−1,0MZ/2

)

∼= SHs

(

Σn,0X+,
∏

n∈N

Ω∞
t ΩtΣ

0,1MZ/2
)

∼=

SHs

(

Σn,0X+,Ωt

∏

n∈N

Ω∞
t Σ0,1MZ/2

)

∼= SHs

(

Σn,0X+ ∧Gm,
∏

n∈N

Ω∞
t Σ0,1MZ/2

)

,

which by canonicity coincides with the map induced by α. If the target in (6.4) is 1-effective,

as implied by (6.3), it would follow that α is an isomorphism. One checks that α is not an
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isomorphism by choosing a field F such that F ∗⊗Z/2 is an infinitely generated Z/2-module,

e.g., F = Q. The map SHs(Σ
−1,0Spec(F )+, α) coincides with the canonical map

(

∏

Z/2
)

⊗Z/2 (F
∗ ⊗ Z/2) −→

∏

F ∗ ⊗ Z/2, (6.5)

which is not surjective. Hence
∏

n∈N
Ω∞

t Σ0,1MZ/2 cannot be 1-effective. As explained above

it follows that (
∏

i≥0 Σ
0,iMZ/2)hC2 is noneffective.
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[23] O. Röndigs and P. A. Østvær. Modules over motivic cohomology. Adv. Math., 219(2):689–727, 2008.
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