
Selective Owner-Side Encryption in Digital Data Markets:
Strategies for Key Derivation

Sara Foresti1 a, Giovanni Livraga1 b

1Computer Science Department, Università degli Studi di Milano, via Celoria 18, Milano, Italy

{sara.foresti, giovanni.livraga}@unimi.it

Keywords: Digital Data Market, Selective Encryption, Key Derivation

Abstract: The combined adoption of selective encryption and smart contracts deployed on blockchains allows data own-

ers to maintain control over their data when traded on digital data market platforms. Selective encryption,

combined with key derivation techniques, guarantees that only customers who are entitled to access a resource

can read its content. The adoption of smart contracts deployed on a blockchain permits to regulate the in-

terplay among parties, the possible economic incentives to be paid to the owners, and the exchange of the

information necessary for resource decryption (i.e., updates to the key derivation structure) upon payment.

However, operations on blockchains have a cost. In this paper, we propose two approaches for updating the

key derivation structure to enable customers to access resources, while limiting access times to resources and

the cost of write operations on the blockchain to enforce purchases.

1 INTRODUCTION

A great deal of interest is paid nowadays towards
the development of spaces and platforms where data
can be easily shared among interested subjects. Such
spaces, typically called digital data markets, repre-
sent virtual places where data owners, acting as data
producers, offer datasets, and customers, acting as
data consumers, can access (parts of) these datasets.
The creation of these platforms, enabling data sharing
among different subjects, can have a positive impact
on the creation of knowledge based on the analysis of
heterogeneous data, with clear societal benefits.

One of the main concerns that can hamper the
diffusion of data-driven innovation is the (perceived)
lack of control suffered by owners when they resort
to these platforms. Completely delegating to a third
party (such as the market provider) the storage and
management of data, while relieving overhead at the
owners’ side, inevitably requires complete trust in the
market provider, as it should be trusted to i) access
all data; ii) maintain them confidential and not dis-
close them improperly to others; iii) correctly route
the payment to the owner, if a price is to be paid to
the owner for sharing a dataset with a customer. How-
ever, market providers are third parties that can more

a https://orcid.org/0000-0002-1658-6734
b https://orcid.org/0000-0003-2661-8573

realistically (in line with traditional data outsourcing
scenarios) be considered honest-but-curious, meaning
trusted for correctly managing data but not trusted
for accessing their content. Hence, ensuring proper
protection to the data shared in digital data markets,
and maintaining owners in control over the customers
with which data are shared, are key requirements for
enabling a wide adoption of digital data markets.

To address these issues, a recent proposal
combines selective owner-side encryption and
blockchain (De Capitani di Vimercati et al., 2019).
With selective owner-side encryption, data are stored
in encrypted form. Encryption uses different keys,
which are then distributed to the interested customers
according to possible restrictions set by the owners.
In this way, encrypted data can be possibly stored
directly on the premises of the data market, if avail-
able, or more generally of economically-convenient
cloud platforms with the guarantee that unauthorized
subjects (including the market/cloud provider) cannot
access the data content. When an interested customer
requests access to a certain data collection of a given
owner, their interaction and the possible economic
transaction are managed via smart contracts deployed
and executed on a blockchain. In this way the request,
the payment, and the willingness of the owner to
grant access to such data collection to that customer
remains logged in the tamper-proof ledger of the
blockchain, ensuring transparency and accountability.

Foresti, S. and Livraga, G.
Selective Owner-side Encryption in Digital Data Markets: Strategies for Key Derivation.
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 620-627
ISBN: 978-989-758-524-1 ISSN: 2184-7711
DOI:10.5220/0010603506200627
Copyright © 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

The combined adoption of blockchain and selec-
tive owner-side encryption should however be care-
fully regulated. Selective owner-side encryption re-
quires in fact the definition of encryption keys and
of tokens enabling the derivation (i.e., computation)
of one key starting from another one. The catalog of
the tokens is publicly stored on the blockchain so that
key derivation can be executed in accordance with the
restrictions imposed by the owners. At every pur-
chase request by a customer, the key derivation struc-
ture (and hence the token catalog) needs to be up-
dated to reflect and enforce the new granted access.
However, writing on a blockchain inevitably implies
an economic cost, and hence the updates to the key
derivation structure should be carefully managed. In
this paper, we investigate this issue and, after a brief
discussion of basic concepts (Section 2), we investi-
gate strategies (Section 3) that aim at minimizing the
overall number of tokens in the system (Section 3.1)
on the one hand, and which aim at minimizing the
number of additional tokens needed to grant an access
(Section 3.2), along with further optimizations (Sec-
tion 3.3), on the other. We then discuss related works
(Section 4) and present our conclusions (Section 5).

2 PRELIMINARIES

We consider a data market scenario, characterized by
different data owners O={o1, . . . ,ol} who are willing
to sell their data (represented as a set R ={r1, . . . ,rm}
of resources) to interested customers C ={c1, . . . ,cn}
through a platform made available by a data market
provider.

To enable data owners to regulate access to re-
sources by customers who paid for them, without the
need of relying on the (curious) market provider, we
adopt selective encryption as proposed in (De Capi-
tani di Vimercati et al., 2019). Intuitively, selective
encryption consists in encrypting (at the owner-side)
different resources with different encryption keys, and
in distributing encryption keys to customers in such a
way that each customer can decrypt all and only the
resources she is authorized to access. To limit the
number of keys that customers need to manage, while
preventing resource replication, selective encryption
is typically combined with key derivation approaches.
Key derivation enables the computation of the value
of an encryption key k j, leveraging the knowledge of
another encryption key ki through a publicly avail-
able token ti, j=k j⊕h(ki,l j), where h is a deterministic
non-invertible encryption function, ⊕ is the bitwise
xor operator, and l j is a public label associated with
k j (Atallah et al., 2009). Graphically, key derivation

a b c d e

cde

α

abc

β

γ
δ

Figure 1: An example of key derivation hierarchy.

structures can be represented as graphs having a node
for each encryption key and an edge from ki to k j if
there is a token ti, j enabling the derivation of k j start-
ing from ki. Any path in the graph represents a (direct
or indirect) derivation relationship among encryption
keys. In the remainder of this paper, for simplicity,
we will denote with i or with ki interchangeably the
node representing key ki.

To enforce access restrictions reflecting purchases
(i.e., each customer can access in plaintext all and
only the resources she purchased), each data owner o
selectively encrypts her resources before storing them
in the data market and distributes keys to customers
according to purchases. The solution proposed in (De
Capitani di Vimercati et al., 2019) is based on the def-
inition of a key derivation structure with at least a key
kc for each customer c, a key kr for each resource r,
and a set of tokens enabling each customer to derive
the keys of the resources that she purchased. Specifi-
cally, the structure is assumed to have a key for each
set representing the capability list cap(c) of a cus-
tomer c (i.e., the set of resources that the customer
purchased). The node of each customer c is con-
nected, in the hierarchy, to the node representing her
capability list cap(c). The node of each capability list
cap(c) is connected (through a token) to other nodes
in the key derivation structure in such a way that it is
possible to (directly or indirectly) reach all and only
the nodes representing the resources in the capability
list (i.e., for each r∈cap(c) there is a path from cap(c)
to r in the structure). This guarantees that each cus-
tomer can derive the keys of all and only the resources
in her capability list. To illustrate, consider a market
storing five resources R ={a, . . . ,e} owned by a sin-
gle data owner, and four customers C ={α,β,γ,δ} who
purchased access to {a,b,c}, {c,d,e}, {a}, and {d}
respectively (i.e., cap(α)= {a,b}, cap(β)= {c,d,e},
cap(γ) = {a}, and cap(δ) = {d}). Figure 1 illustrates
a key derivation hierarchy enabling customers to de-
crypt all and only the resources they purchased. For
instance, from her key kα, customer α can derive kabc
with token tα,abc (edge (α,abc) in the figure). From
key kabc, she can then derive keys ka, kb, kc and use
these keys to decrypt resources a, b, and c, respec-

tively. In the figure, we denote nodes representing
customers’ keys with a gray background, to distin-
guish them from the nodes representing resources (or
sets thereof), and omit commas and brackets (i.e., abc
stands for {a,b,c}).

3 MINIMIZATION STRATEGIES

Data market scenarios are characterized by data own-
ers joining the market to publish their resources, and
by customers purchasing resources. The accommoda-
tion of the changes in the set of resources and access
privileges requires the adaptation of the key deriva-
tion structure, and hence of the corresponding token
catalog. Clearly, re-building the key derivation hier-
archy from scratch at every purchase would be too
expensive for the data owner, and would imply exces-
sively long waiting times for customers. We therefore
propose to update the hierarchy to accommodate pur-
chases. Such updates should however be handled with
care, for two main reasons: i) a large token catalog
implies a higher response time for customers when
accessing resources (due to the search for the tokens
necessary for the access), and ii) write operations on
the blockchain imply a cost and should then be per-
formed with care. In this section, we propose two so-
lutions aimed at limiting the impact of purchases on
the token catalog. Section 3.1 illustrates an approach
to minimize the overall number of token in the cata-
log. Section 3.2 focuses on minimizing the number of
additional tokens for managing purchases (i.e., write
operations on the blockchain). Section 3.3 presents
some considerations to further reduce the number of
tokens necessary for purchase management.

3.1 Minimize the overall number of

tokens

To limit response time for customers when access-
ing resources they have purchased, the size of the
token catalog should be kept limited. Every access
request implies a sequence of search operations in
the catalog, for retrieving the tokens along the path
connecting the node representing the requesting cus-
tomer c with the node representing the resource r of
interest. The size of the catalog has then a clear im-
pact on response times. The problem of computing
a key derivation hierarchy that minimizes the number
of tokens is NP-hard (De Capitani di Vimercati et al.,
2010). We therefore propose an heuristic approach
aimed at locally modifying the key derivation hierar-
chy to accommodate the purchase, while keeping the
number of tokens in the catalog low.

Let H (K ,T) be the key derivation hierarchy, with
K the set of keys and T the set of tokens. The hier-
archy needs to be updated when: i) a new customer
c joins the data market, ii) a new resource r is pub-
lished in the market, and iii) a customer c purchases a
resource r. The insertion of a customer implies only
the creation of a new node c, whose key is agreed be-
tween the owner and the customer. Such a key is how-
ever not connected to the rest of the structure since her
capability list is initially empty. Similarly, the publi-
cation of a new resource only implies the creation of a
new node r, whose key is used to encrypt the resource,
but which is not connected to the derivation structure
by any token, since it does not belong to any capabil-
ity list. The purchase of a resource r by a customer
c requires instead a restructuring of the hierarchy, to
guarantee the existence of a path from c to r.

Let us consider, for generality, the purchase of a
set R of resources by a customer c. To keep the num-
ber of tokens in the system low, our solution is based
on the idea of leveraging existing nodes and tokens
to enable the derivation of the key used to encrypt
each resource r∈R starting from the key of customer
c. Let kold be the node in the hierarchy representing
the capability list of the customer before the purchase
(i.e., cap(c)), and knew be the node representing the
capability list of the customer after the purchase (i.e.,
cap(c)∪R). To enforce the purchase of R by c, it is
necessary to substitute the token enabling c to derive
kold from kc with a new token that permits her to de-
rive knew from kc . For instance, with reference to the
example in Figure 1, if γ purchases resources b and c,
the token enabling the derivation of ka from kγ needs
to be substituted with a token enabling the derivation
of kabc from kγ, as illustrated in Figure 2(a).

We note however that knew might not belong to the
key derivation structure and, in this case, it needs to
be created and properly connected to the structure.
In other words, it is necessary to insert into the hi-
erarchy node knew and a set of tokens enabling to
derive kr from knew for each r∈cap(c)∪R. To this
aim, we connect knew to a set K of nodes in hierarchy
that represent subsets of cap(c)∪R and that guaran-
tee complete coverage of such a set of resources (i.e.,
∀kX ∈ K,X ⊆ cap(c)∪R and

⋃
kX∈K X = cap(c)∪R).

Clearly, we aim at keeping the number of nodes in
K low, to minimize the number of tokens in the sys-
tem. The minimum coverage problem is NP-hard and
we therefore propose a heuristic approach aimed at
identifying a coverage for cap(c)∪R while limiting
the number of nodes necessary for the coverage. To
this purpose, we populate K starting from the larger
subsets of cap(c)∪R in the hierarchy, until all the re-
sources in cap(c)∪R are covered by at least a node in

a b c d e

cde

α

abc

β

γ
δ

a b c d e

cdeabc

abcde

α

γ

β

δ

a b c d e

abc

abcde

α

γ

β

δ

a b c d e

abc

abcde

α

γ

β

δ

abce

(a) γ buys b and c (b) β buys a and b (c) α buys e

Figure 2: Evolution of the key derivation hierarchy in Figure1 to enforce a sequence of purchases minimizing the overall
number of tokens.

Purchase Min Token Catalog(c,R)

1: let Desc be the descendants of kcap(c) and Anc be the ancestors of kcap(c)

2: if !c′ '= c ∈ C s.t. cap(c)=cap(c′) AND |Desc| · |Asc|> |Desc|+ |Asc|

4: then remove kcap(c) and all its incident edges from H

5: connect each node in Anc with each node in Desc via a set of tokens

6: else remove the token from kc to kcap(c)

7: if kcap(c)∪R '∈K

8: then generate kcap(c)∪R and insert it into K

9: let K = {kX ∈ K : X ⊆ cap(c)∪R}

10: to cover := cap(c)∪R

11: while to cover '= /0 do

12: let kX be the largest set of resources in K s.t. X ∩ to cover '= /0

13: K := K\{kX}

14: to cover := to cover\X

15: connect kcap(c)∪R to kX via a token

16: connect kc to kcap(c)∪R via a token

17: for each kX∈K s.t. cap(c)∪R⊂X do

18: let T be the tokens that are redundant if kX is connected to kcap(c)∪R

19: if |T |> 2

20: then remove T from T and connect kX to kcap(c)∪R via a token

Figure 3: Management of resource purchase aimed to min-
imize the overall number of tokens.

K. For instance, with reference to the example in Fig-
ure 2(a), let us assume that β purchases a and b. It is
first necessary to insert into the hierarchy a node rep-
resenting cap(β) = {a,b,c,d,e}. According to our
heuristics, such a node is then connected through a to-
ken to nodes abc and cde, as illustrated by the struc-
ture on the left hand side in Figure 2(b).

To reduce the number of tokens in T , we note
that node kold can be possibly removed from the key
derivation structure, if: i) no other customer shares
the same capability list with c; and ii) the removal of
kold reduces the number of tokens in T . Indeed, the
removal of kold requires to directly connect all its an-
cestors with its all its descendants. For instance, con-
sidering the purchase of a and b by β, node cde can
be removed from the key derivation structure (see the
structure on the right hand side of Figure 2(b)), sav-
ing one token with respect to the structure on the left
hand side in Figure 2(b). The insertion of node knew

can also be leveraged to further reduce the number of
tokens in the hierarchy. To this purpose, it is possible

to analyze each node kX in the hierarchy represent-
ing a superset of cap(c)∪R. If such a node can be
connected to knew removing its connection to at least
two of its descendants, as they become redundant, we
enforce such a change. For instance, considering the
hierarchy in Figure 2(b), assume that customer α pur-
chases resource e. The new node representing cap(α)
can become direct descendant of node abcde, saving
one token in the structure (see Figure 2(c)).

Figure 3 illustrates the pseudo-code of the proce-
dure enforcing the purchase of a set R of resources by
a customer c, aimed at minimizing the overall number
of tokens in the catalog. Note that the procedure can
manage the purchase of a single resource r, by simply
setting R to the singleton set {r} of resources.

3.2 Minimize the number of additional

tokens

The strategy illustrated in Section 3.1, while effective
in limiting the cost for customers in accessing data,
implies an economic cost for the data owner propor-
tional to the number of tokens inserted and deleted
from the catalog. Indeed, both insertion and dele-
tion of tokens imply a write operation on the cata-
log, and hence on the blockchain. In this section,
we propose an alternative approach for managing pur-
chases, aimed at minimizing the operations on the
blockchain. To this aim, we propose to prevent to-
ken deletion (the removal of tokens is not necessary
for the enforcement of purchases) and minimize the
number of additional tokens.

Let us consider the purchase of a set R of re-
sources by a customer c. The capability list of c needs
to be updated to include also the resources in R, that
is cap(c)∪R. Therefore, we need to connect the node
of c with a node in the hierarchy representing the set
cap(c)∪R of resources. If such a node already be-
longs to the hierarchy, we can simply add a token en-
abling the derivation of kcap(c)∪R from kc , as showed
by the structure in Figure 4(a) illustrating the structure
in Figure 1 updated to accommodate the purchase of b

a b c d e

cde

α

abc

β

γ
δ

a b c d e

abc

abcde

α

γ

δ

β

a b c d e

abc

abcde

α

γ

δ

β

abce

(a) γ buys b and c (b) β buys a and b (c) α buys e

Figure 4: Evolution of the key derivation hierarchy in Figure1 to enforce a sequence of purchases minimizing the number of
additional tokens.

and c by γ: since the structure already contains a node
for the new capability list abc of γ, it is sufficient to
create a token enabling the derivation of kabc from kγ

(note that in the figure, for the sake of readability, we
did not report the old token connecting γ to a). On the
contrary, if such a node does not exist, we envision
the following two possible scenarios.

• New node: insert a node in the hierarchy repre-
senting cap(c)∪R and connect it to the node rep-
resenting cap(c) (and hence indirectly to the cor-
responding resources) and, directly or indirectly,
to the nodes of the resources in R.

• Rename node: connect (directly or indirectly) the
node representing cap(c) to the nodes of the re-
sources in R (i.e., node representing cap(c) is re-
labeled to represent cap(c) ∪ R). This strategy
saves the insertion and deletion of one token (the
one from kc to kcap(c)∪R , as it already exists) com-
pared to the previous strategy, but it is not always
viable. Specifically, this approach can be adopted
only if the following two conditions hold: i) no
other customer c′ shares the (old) capability with
c, since otherwise c′ too would be granted ac-
cess to R without being authorized; and ii) all
the ancestors of the node represent a superset of
cap(c)∪R, since otherwise this could enable cus-
tomers who can derive the ancestors of the node
to access R without paying for such resources.

For instance, consider the purchase of resources
a and b by β illustrated in Figure 2(b), starting from
the hierarchy in Figure 2(a). This purchase can be
managed by renaming node cde into abcde (see Fig-
ure 4(b)) paying the insertion of 2 tokens, in contrast
to the insertion of 4 tokens and the removal of 4 to-
kens payed by the solution in Figure 2(b). On the con-
trary, the purchase by α of e cannot be managed with
a simple renaming of node abc, since γ would gain
access to e without paying for such a resource. The
structure is then updated inserting a new node, rep-
resenting abce, connected to abc and to e (see Fig-
ure 4(c)).

Independently from the strategy chosen for having
a node representing cap(c)∪R in the hierarchy, such
a node (which is already connected to the resources
in cap(c)) needs to be connected to the resources in
R. A straightforward solution consists in adding a to-
ken enabling the derivation of the key kr used to en-
crypt each resource r∈R from kcap(c)∪R . This simple
solution implies the creation of |R| new tokens. We
note however that, if the hierarchy already includes
a node representing R, node cap(c) ∪ R can be di-
rectly connected to it, enabling the derivation of kr ,
∀r ∈ R, paying one token only. In general, if the hi-
erarchy includes a set K composed of less than |R|
nodes representing subsets of cap(c)∪R (and hence
also of R) that completely cover R, the number of ad-
ditional tokens can be reduced to |K| by connecting
cap(c)∪R with each of the nodes in K. Clearly, we
aim at minimizing the number of nodes in K. We then
follow a strategy similar to the one discussed in Sec-
tion 3.1, and first consider nodes covering larger sub-
sets of R as candidates for insertion into K. For in-
stance, with reference to our running example, node
abcde is connected to node abc, which completely
covers the set R = {a,b} of resources purchased by β
(see Figure 4(b)). Indeed, connecting abcde to each
purchased resource would cost one additional token.

Figure 5 illustrates the pseudo-code of the func-
tion enforcing the purchase of a set R of resources by
a customer c, aimed at minimizing the number of to-
kens inserted into the catalog for the purchase.

3.3 Discussion

The strategy illustrated in Section 3.2 can take advan-
tage of additional considerations that can possibly fur-
ther reduce the number of tokens inserted into the cat-
alog to enforce purchases. In this section, we discuss
further optimizations that could be adopted.

• Remove the assumption of having a node repre-
senting the capability list of each customer. Hav-
ing a node representing the capability list of each

Purchase Min Additional Tokens(c,R)

1: if kcap(c)∪R '∈K

2: let Anc be the ancestors of kcap(c)

3: if !c′ '= c ∈ C s.t. cap(c′)=cap(c) AND ∀kX∈Anc, cap(c)∪R ⊂ X

4: then relabel kcap(c) as kcap(c)∪R

5: else generate kcap(c)∪R and insert it into K

6: connect kcap(c)∪R to kcap(c) via a token

7: let K = {kX ∈ K : X ⊆ cap(c)∪R}

8: to cover := R

9: while to cover '= /0 do

10: let kX be the largest set of resources in K s.t. X ∩ to cover '= /0

11: K := K\{kX}

12: to cover := to cover\X

13: connect kcap(c)∪R to kX via a token

14: connect kc to kcap(c)∪R via a token

Figure 5: Management of resource purchase aimed to min-
imize the additional number of tokens.

customer implies the rename or the creation of a
new node at each purchase of a resource (or set
thereof). Removing this assumption could reduce
the number of tokens that need to be inserted into
the catalog to manage a purchase operation. Con-
sider, as an example, a customer c with capability
list cap(c), and assume that c purchases access to
a set R of resources and that the key derivation hi-
erarchy already includes a key kR . If we do not
require the presence of a node representing the set
cap(c)∪R of resources, it is sufficient to create a
token enabling the derivation of kR from kc . On
the contrary, the need for node cap(c)∪R implies
the insertion of at least two tokens in the hierar-
chy: one enabling the derivation of kcap(c)∪R from
kc , and another one enabling the derivation of kR

from kcap(c)∪R . Also, if cap(c)∪R is not repre-
sented by a node in the hierarchy, it is also neces-
sary to insert a token from kcap(c)∪R to kcap(c) (i.e.,
three tokens). For instance, with reference to our
running example, Figure 6(a) illustrates the key
derivation hierarchy obtained managing the pur-
chases of our running example, according to this
optimization strategy. This solution saves the in-
sertion of 3 tokens for the management of the pur-
chase of e by α. Note that we did not manage
the purchase of a and b by β and of b and c by
γ connecting directly the customer’s node to the
resources’ nodes since this would not provide any
cost reduction.

• Manage purchases in batch. The solutions illus-
trated in this section implicitly assume that pur-
chases are managed when they are submitted to
the data owner, who is expected to accommo-
date each purchase independently from the oth-
ers. However, the management of purchases in
batches could provide considerable advantages

for the data owner. As a first advantage, the data
owner would not need to be always available to
manage resource purchases, but decide (in agree-
ment with customers) to enforce changes to the
key derivation hierarchy periodically (e.g., once
a day). As a second advantage, the management
of multiple purchases, by the same or by multiple
customers over one or more resources, could pro-
vide advantages also in terms of the management
of the key derivation hierarchy, enabling higher
economic savings for the write operations in the
blockchain. Intuitively, the data owner can op-
erate all the optimizations on the sub-hierarchy
necessary for managing the purchases in the batch
and possibly reduce the number of tokens with re-
spect to the management of each purchase singu-
larly taken. Clearly, there is an advantage in man-
aging together a batch of purchases by multiple
customers if they refer to the same resource (or
set thereof). Consider, as an example, three cus-
tomers cx, cy, and cz who all purchase resources
ra and rb. In this case, it would be convenient for
the data owner to create a node representing the
set {ra,rb} of resources and connect cx, cy, and cz

to such a node, which is in turn connected to ra

and rb. This strategy implies the insertion of 5 to-
kens in the key derivation hierarchy. If the three
purchases were managed in sequence, at their sub-
mission time, the cost would be of 6 tokens (2
for each customer for connecting their node to the
node of each of the 2 resources). Intuitively, the
data owner could locally perform the optimiza-
tions illustrated in Section 3.1 on the portion of
the hierarchy affected by the batch of purchases
to be managed, and then connect it to the public
key derivation structure when the number of ad-
ditional tokens has been reduced as much as pos-
sible. For instance, with reference to our running
example, Figure 6(b) illustrates on the left the key
derivation hierarchy obtained managing, in the or-
der, the purchase of a by β, of c by γ, of b by β,
of e by α, and of b by γ starting from the initial
configuration in Figure 1. Figure 6(b) illustrates
on the right the key derivation hierarchy obtained
managing the same purchases in batch. While the
first strategy implies the addition of 8 tokens, the
second one costs only 6 additional tokens.

• Additional nodes. The data owner might con-
sider, when managing purchases, to insert addi-
tional nodes in the hierarchy to possibly reduce
the number of tokens that will be needed in the
future. Indeed, the presence of a node in the hi-
erarchy representing a set R of resources could be
profitably used by any customer buying a superset

a b c d e

αγ

δ

abc

abcde

β

a b c d e

β

γ

α
abc

abce

abcde

δ

a b c d e

α β

γ

δ
abc cde

abce

abcde

a b c d e

ε

ab

β

γ

δ

abc abd

abcde

α

(a) no capability nodes (b) batch of purchases (d) additional nodes

Figure 6: Evolution of the key derivation hierarchy, considering the optimizations.

of R, saving in the number of tokens. Indeed, if
at least two customers buy a superset of R, there
is an advantage in having R in the hierarchy, in
terms of the number of tokens payed by the data
owner to manage the two purchases by the two
customers. The data owner can therefore decide,
when a customer buys a set R of resources, to ma-
terialize the node representing R, if she is confi-
dent on the fact that other customers will be inter-
ested in the same set. The data owner pays an ad-
ditional token when first inserting R, but she may
experience a saving in the future. For instance,
with reference to the initial configuration of the
key derivation hierarchy in Figure 1, to manage
the purchase of resources a and b by β, the data
owner might decide to create a new node ab pay-
ing 3 tokens. If, after some time, also δ and ε buy
these resources, it would be sufficient to insert a
token from kabd to kab for δ and from kε to kab
for ε, saving on the number of tokens inserted to
manage the three purchases (7 tokens instead of
9 tokens). Figure 6(c) illustrates the resulting key
derivation hierarchy.

4 RELATED WORK

The adoption of selective encryption for enforcing ac-
cess restrictions in digital data market scenarios, cou-
pled with smart contracts deployed on a blockchain,
has first been proposed in (De Capitani di Vimercati
et al., 2019). Our solution, while sharing with the
proposal in (De Capitani di Vimercati et al., 2019) the
use of selective encryption and key derivation for en-
abling data owners to maintain control over their re-
sources in the data market, nicely complements it. In-
deed, our techniques for minimizing the size of the to-
ken catalog and for limiting the number of additional
tokens implied by the management of each purchase
can be used in combination with the protocols for re-

source purchase presented in (De Capitani di Vimer-
cati et al., 2019).

The adoption of selective encryption, possibly
combined with key derivation, has been widely
adopted in data outsourcing scenarios, which are
characterized by data owners storing their resources
on the premises of non fully trusted cloud providers
(e.g., (Bacis et al., 2016; De Capitani di Vimercati
et al., 2010; De Capitani di Vimercati et al., 2016)).
These approaches however operate in a different sce-
nario and aim at enforcing a (quite static) authoriza-
tion policy defined by the data owner. Also, the key
derivation hierarchy is organized to model the access
control lists of resources (i.e., nodes represent groups
of users), in contrast to capability lists. Changes in the
authorization policy can imply both grant and revoke
of privileges as decided by the data owner, who is in-
terested in limiting her intervention to enforce policy
updates.

Other lines of work close to ours are re-
lated to the adoption of blockchain and smart
contracts for data management and access control
(e.g., (Di Francesco Maesa et al., 2017; Kokoris-
Kogias et al., 2020; Nguyen et al., 2019; Nguyen
et al., 2021; Shafagh et al., 2017; Zichichi et al., 2020;
Zyskind et al., 2015)), and privacy and security in
cloud computing (e.g., (Donida Labati et al., 2020;
Zhang et al., 2020)). These approaches are however
complementary to ours, as they do not consider selec-
tive encryption and key derivation for enforcing ac-
cess restrictions to traded resources, and do not con-
sider the peculiarities of data markets.

5 CONCLUSIONS

We studied the management of purchases of resources
in a data market scenario, by properly modifying the
key derivation structure used to enforce access restric-
tions. We proposed two alternative solutions, aimed

at minimizing the overall number of tokens and the
number of additional tokens necessary to support each
purchase, respectively. We also discussed improve-
ments for further reducing the number of tokens nec-
essary to enforce purchases. Our work leaves room to
future works, aimed at comparing the two strategies in
a real world environment to determine which solution
should be preferred in different application scenarios.

ACKNOWLEDGMENTS

This work was supported in part by the EC within the
H2020 Program under projects MOSAICrOWN and
MARSAL.

REFERENCES

Atallah, M., Blanton, M., Fazio, N., and Frikken, K. (2009).
Dynamic and efficient key management for access hi-
erarchies. ACM TISSEC, 12(3):18:1–18:43.

Bacis, E., De Capitani di Vimercati, S., Foresti, S.,
Paraboschi, S., Rosa, M., and Samarati, P. (2016).
Mix&Slice: Efficient access revocation in the cloud.
In Proc. of ACM CCS, Vienna, Austria.

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Para-
boschi, S., and Samarati, P. (2010). Encryption poli-
cies for regulating access to outsourced data. ACM
TODS, 35(2):12:1–12:46.

De Capitani di Vimercati, S., Foresti, S., Livraga, G., and
Samarati, P. (2016). Practical techniques building on
encryption for protecting and managing data in the
cloud. In Ryan, P., Naccache, D., and Quisquater, J.-
J., editors, The New Codebreakers: Essays Dedicated
to David Kahn on the Occasion of His 85th Birthday.
Springer-Verlag Berlin Heidelberg.

De Capitani di Vimercati, S., Foresti, S., Livraga, G., and
Samarati, P. (2019). Empowering owners with control
in digital data markets. In Proc. of IEEE CLOUD,
Milan, Italy.

Di Francesco Maesa, D., Mori, P., and Ricci, L. (2017).
Blockchain based access control. In Proc. of DAIS,
Neuchâtel, Switzerland.

Donida Labati, R., Genovese, A., Piuri, V., Scotti, F., and
Vishwakarma, S. (2020). Computational intelligence
in cloud computing. In Kovács, L., Haidegger, T., and
Szakál, A., editors, Recent Advances in Intelligent En-
gineering: Volume Dedicated to Imre J. Rudas’ Seven-
tieth Birthday. Springer International Publishing.

Kokoris-Kogias, E., Alp, E. C., Gasser, L., Jovanovic, P.,
Syta, E., and Ford, B. (2020). CALYPSO: Private
data management for decentralized ledgers. PVLDB,
14(4):586–599.

Nguyen, D. C., Pathirana, P. N., Ding, M., and Seneviratne,
A. (2019). Blockchain for secure EHRs sharing of

mobile cloud based E-Health systems. IEEE Access,
7:66792–66806.

Nguyen, L. D., Leyva-Mayorga, I., Lewis, A. N., and
Popovski, P. (2021). Modeling and analysis of data
trading on blockchain-based market in iot networks.
IEEE IoT-J, 8(8):6487–6497.

Shafagh, H., Burkhalter, L., Hithnawi, A., and Duquennoy,
S. (2017). Towards blockchain-based auditable stor-
age and sharing of IoT data. In Proc. of CCSW, Dallas,
TX, USA.

Zhang, Y., Deng, R. H., Xu, S., Sun, J., Li, Q., and Zheng,
D. (2020). Attribute-based encryption for cloud com-
puting access control: A survey. ACM CSUR, 53(4).

Zichichi, M., Ferretti, S., and D’Angelo, G. (2020). A
framework based on distributed ledger technologies
for data management and services in intelligent trans-
portation systems. IEEE Access, 8:100384–100402.

Zyskind, G., Nathan, O., et al. (2015). Decentralizing pri-
vacy: Using blockchain to protect personal data. In
Proc. of IEEE SPW, San Jose, CA, USA.

