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Abstract

We consider the many body quantum dynamics of systems of bosons interacting
through a two-body potential N33~V (NPz), scaling with the number of particles
N. For 0 < 8 < 1, we obtain a norm-approximation of the evolution of an appro-
priate class of data on the Fock space. To this end, we need to correct the evolution
of the condensate described by the one-particle nonlinear Schrodinger equation by
means of a fluctuation dynamics, governed by a quadratic generator.

1 Introduction

In the last years important progress has been achieved in the mathematical understand-
ing of the time-evolution of many body quantum systems. Here, we are going to consider
the dynamics of systems of bosons, characterized by permutation symmetric wave func-
tions.

A bosonic system of N particles moving in three space dimensions can be described
on the Hilbert space

LIR*™) = {¢y € LPR*N) : [onl2 =1 and ¥n(2r), - Trwy) = On (21,2 28) )
The evolution of an initial vy € L2(R3*") is governed by the Schrédinger equation

10Ny = HNYn g (1.1)

where, on the r.h.s., H is the Hamilton operator of the system. Restricting our attention
to two-body interactions, the Hamilton operator takes the form

N N

Hy =Y (=g, + Vexs(2)) + A D V(wi — ) (1.2)
j=1 i<j
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where Veyt is an external potential, V' is an interaction and A € R is a coupling constant.
Notice that the unique global solution of (1.1) is given by ¥n; = exp(—iHnt)n 0.

For systems of interest in physics and chemistry, the number of particles involved in
the dynamics is huge, ranging from N ~ 10% up to values of the order N ~ 10%3. For
this reason, despite the fact that (1.1) is a linear equation, it is typically very difficult
to extract useful information. One of the main goals of non-equilibrium statistical me-
chanics is therefore the derivation of effective equations approximating the solution of
(1.1) in the interesting regimes.

The simplest non-trivial limit, in which it is possible to obtain an effective approx-
imation of (1.1) is the mean field regime, where N > 1, |A\|] < 1 and N\ remains fix,
of order one. These conditions guarantee that particles interact through a large number
of weak collisions, whose total effect is comparable with their inertia. To investigate
the time-evolution in the mean field regime, we set A = 1/N in (1.2). We obtain the

Hamiltonian
N N

HY =" (=D, + Vext(25)) + % > V(e — =) (1.3)
j=1 i<j

and we study the corresponding evolution ¢y ; = exp(—iHﬁft)w ~. Let us assume that
the initial data is approximately factorized, i.e. that ¢¥no ~ ©®N for a p € L?(R?).
Because of the mean-field nature of the interaction, we can expect that, for large N,
factorization is approximately preserved by the time-evolution. In other words, we can
expect that 1y ~ @?N for a new ¢, € L2(R3). Under this assumption, it is simple to
show that ¢; must satisfy the self-consistent Hartree equation

0ot = (—A 4 Vest )t + (V * |0t (1.4)

where the cubic nonlinearity reflects the two-body interactions.

To obtain a precise statement about the convergence of the many-body evolution
towards the Hartree dynamics, we introduce the notion of reduced densities. The one-
particle reduced density associated with the solution ¢n; of the Schrodinger equation is
defined as the non-negative trace-class operator on L?(R?), with the integral kernel

%(\},)t(l“;y) :/d$2---d$N¢N,t($,ﬂ?2,---,QJNWN,t(y,SUz,---,wN)

normalized so that trfy](\})t =1 (’y](\})t is obtained by taking the partial trace of the orthog-

onal projection [y ) (N | over the degrees of freedom of the last (N — 1) particles).
(k)

Similarly, we can also introduce the k-particle reduced density ’y]{; , associated with ¥y,
for every k =2,3,..., V.

It turns out that the reduced densities 7](\1;1 provide the appropriate language to dis-
cuss convergence of the many body evolution towards the Hartree dynamics in the mean
field regime. In fact, under appropriate conditions on the interaction potential V' (in-
cluding the case V(z) = £|x|~! of a Coulomb interaction), one can show that, for every



family of initial data ¥ € L?(R3Y) with 'y](\})o — |¢){(¢| (approximate factorization at
time ¢ = 0), we will have

e = e el (1.5)

as N — oo, for all fixed t € R. Here ¢, is the solution of the Hartree equation (1.4),
with the initial data @i—o = . In fact (1.5) can be extended to get convergence of the
k-particle reduced density, for any fixed & € N. The first results in the direction of (1.5)
have been obtained in [28, 23, 38]. More recently, much work went into the proof of (1.5)
in the case of singular interaction potentials; see [21, 4, 15, 22, 36, 1, 29, 30, 3, 11, 12, 9, 2.

After identifying the limiting effective dynamics (the one governed by the Hartree
equation (1.4), in the mean field regime), it is natural to consider fluctuations around it.
To study fluctuations, it is very useful to switch to a representation of the many particle
system on the bosonic Fock space

F=ELi®" du ... dx,)
n>0

On F, we can describe states with a variable number of particles. The vector ¥ =
{tbo,11,...} € F describes a state having n particles with probability ||¢,[|3, for all
n € N. For f € L?(R?), we let a*(f) and a(f) denote the usual creation and annihilation
operators acting on F. We also introduce operator-valued distributions al, a, creating
and, respectively, annihilating a particle at . They satisfy the canonical commutation
relations
[am,a;;] =d(z —vy), laz,ay] = [a;,aZ] =0.

In terms of these operator-valued distributions, we define the Hamilton operator on F

by
1
HY = / dr a7y (— A + Vet ()t + 5 / drdyV(z —y)azayayae  (1.6)

Since H%f commutes with the number of particles operator

N = /d:ca;ax

the corresponding time evolution preserves the number of particles. In particular, if we
choose an initial data of the form ¥ = {0,...,0,9xn,0,...} with exactly N particles, its
evolution will coincide precisely with the one generated by (1.3).

The advantage of working in the Fock space, rather than in the N-particle space
L2(R3N), is the freedom in the choice of the initial data. We are interested in the
evolution of coherent initial data. For f € L?(IR3), the coherent state with orbital f is
given by W(f)Q2 € F, where Q = {1,0,0,...} is the vacuum state (with no particles)
and

W (f) = exp(a”(f) — a(f))
is the Weyl operator with orbital f. Simple computations show that

W) = e 171872 {1, f, %} ()

3



and that the expected number of particles is given by
(W(HLNW(HY =113 (1.8)

Motivated by (1.8), we study the many body evolution generated by (1.6) for ini-
tial coherent states of the form W (v Np)Q, with ¢ € L*(R?) such that ||¢||s = 1 (this
normalization guarantees that the expected number of particles in W(\/ﬁ )2 is equal
to N). Since factorization is believed to be approximately preserved by the mean field
dynamics, we expect that the evolution of the coherent state W (v/Np)Q can be ap-
proximated by the evolved coherent state W(\/N ©1)§2, where @y is the solution of the
Hartree equation (1.4).

We define the fluctuation dynamics

UR () = W (VN e TN (VN ) (1.9)
and we set & = URL()Q2. Then, we have
TR (VNG)Q = W(VN@)& (1.10)

Hence, to prove that the full evolution of the initial coherent state (the Lh.s. of the last
equation) is approximately coherent, we need to show that & is close to the vacuum (in
fact, it is enough to prove that the expected number of particles in & is much smaller than
N, since the evolved Weyl operator W(\/N ¢t) creates a condensate with approximately
N particles in the state ¢;). To this end, it is useful to observe that

OUN(t) = LR (OUN(2)

with the generator
L) = /dxa;(—Ax + Vext (2))ay + /dm(V s e ) (z)atay

+ [ dsayV(z - parpaia,
1 k%

+35 /dmdyV(m —y) [¢t(x)pe(y)ajay + hc.] (1.11)
1

+ — [ dxdyV(x — y)a ay +h.c.|a,
1

+ oN dzdyV (x — y)aza,aya,

Notice that the terms on the third and fourth line do not commute with the number
of particles operator N. This implies that the fluctuation dynamics L{ﬁf(t) does not
preserve the number of particles (this is of course no surprise; the number of excitations
of the condensate is expected to increase during the dynamics). Nevertheless it turns
out that the expectation of N cannot increase too fast. In fact, using the expression
(1.11), one can show that

(& N&) = UR' (0 NUF (1)Q) < eI (1.12)



uniformly in N. This estimate on the growth of the expectation of NV in the state & can
be used to show that (1.10) remains close to a coherent state, in the sense of the reduced

densities. If we denote by 7](\% the reduced density of the full evolution of W (v/Np)Q

(more generally, of a state of the form W (v Nyp)¢, with € having only few particles),
(1.12) allows us to show that

C Kt
N

tr |77 = leed el | < (1.13)

and that similar estimates hold for the k-particles reduced density, for all £k € N. The
study of the dynamics of coherent states has been initiated in [28, 23]. More recently, it
has been further developed in [36, 11], leading to a proof of (1.13).

A part from bounds like (1.13) on the rate of convergence of the reduced densities,
this approach also allows us to study the fluctuations around the Hartree dynamics, in
the limit of large N. From (1.11), we expect that, for N — oo, the fluctuation dynamics
UBL(t) converges towards a limiting dynamics U2(¢), defined by

OUR' (1) = LU (1)
with the generator
Loty = /dm;;(—Ax + Vixt (2))az + /dx(V % | ?) (@)aka,
+ [ dsayV(z - penrp aia, (1.14)
+ % /dxdyV(x —v) [apt(m)wt(y)a;iaz + h.c.]

independent of N. In fact, under appropriate assumptions on the interaction potential,
one can indeed show that

mf mf CeK‘tI
[N ()2 = U ()] < Wi (1.15)
By definition, this implies that
o m C Klt‘
e MW (VN@)Q — W (VN U (19| < = (1.16)

VN

Hence, taking into account the limiting fluctuation dynamics L{Orgf(t), we provide a norm
approximation to the full many body evolution (hence, a stronger approximation com-
pared with the one furnished by the evolved coherent state W(\/N ©¢)$2, which is only
valid in the sense of the reduced densities). The convergence (1.15) has already been
observed in [28] for smooth interactions and then in [23] for a larger class of potentials.
More recently, it has been established, in a slightly different form, in [26, 27, 8]. Using
(1.15) and bounds like (1.12) on the growth of the expectation of the number of particles



(and of its higher moments) with respect to the evolution Z/{]I\I}f, one can prove a central
limit theorem for sums of one-particle observables evolved through the full interacting
many-body dynamics; see [5, 7].

Instead of considering fluctuations around the Hartree dynamics for coherent initial
states on the Fock space, it is possible to analyze directly the mean field evolution in
the N-particle Hilbert-space L2 (R3N ), for approximately factorized initial data. To this
end, it is convenient to introduce the time-dependent map

ung : LR™Y) — F (1.17)

where F; denotes the bosonic Fock space, constructed over the orthogonal complement
in L?(R?) of the one-dimensional space spanned by the solution ¢; of (1.4) and uy ) =

{p© D ™ 00, }if
= PO 1y @, PNV=D 1 VD g )

where ®, denotes the symmetric tensor product. When applied to the many body evo-
lution YN = e*iH?V]ftzb ~,0 of an approximately factorized initial data vy, the isometric
map uy, eliminates the particles in the condensate ¢; and let us focus on the fluctua-
tions. It has been shown in [31], inspired by ideas developed in the time-independent
setting in [32], that there exists a Fock space unitary evolution LNIOIgf(t; s) with a quadratic
generator £L2(¢) such that

HUN,tefiHN%N — U (t; O)UN,M/JNH < CN~1/2eKN (1.18)

Notice that £2f is similar but does not coincide with the limiting generator (1.14) (the
difference between the two generators is due to the requirement, in the definition of upy 4,
that fluctuations are orthogonal to ;).

A more subtle and physically interesting regime, in which it is possible to approximate
the many-body evolution by an effective dynamics, is the Gross-Pitaevskii regime. In
the Fock space representation, the Hamilton operator is given by

* 1 ko %k
HEE = /d:ﬂ ay(—Ay + Vexe(2))az + 3 /d:cdy N2V(N(x — Y)) iy y (1.19)
where V' > 0 is a smooth, short range potential. It turns out that, in this case, the
many-body Schrodinger evolution can be approximated by the time-dependent Gross-

Pitaevskii equation

iOrpapt = (—A + Vext)pap,e + 8mao [oap > eap (1.20)

where ag is the scattering length of the potential V. Recall that the scattering length is
defined through the solution f of the zero-energy scattering equation

[—A + %v] f=0 (1.21)
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with the boundary condition f(z) — 1, for |x| — oo. For z outside the support of V,
we have
ao

flz) =1

||

where the constant ag is defined to be the scattering length of V. Equivalently, we can
define ay through the integral

8mag = /V(x)f(a:)dm (1.22)

From the point of view of physics, the Gross-Pitaevskii regime is very different from
the mean field limit since here particles interact rarely (only when they are very close,
at distances of the order N~!) but when they do, the collisions are very strong. As a
consequence of the strong interactions among the particles, the many body wave function
develops a short range correlation structure which can be described by the solution f
of the zero-energy scattering equation (1.21) and is responsible for the emergence of the
scattering length in (1.20).

A first derivation of (1.20) starting from many-body quantum mechanics has been
given in [17, 18, 19]. Later, an alternative approach has been proposed in [35]. Bounds
on the rate of the convergence towards the Gross-Pitaevskii dynamics have been then
obtained in [6], making use of an appropriately modified version of the coherent states
method illustrated above. The main problem one has to face to apply the coherent
states approach to the Gross-Pitaevskii regime is the formation of correlations among
the particles, which cannot be described by coherent states (the development of a short
scale correlation structure in the Gross-Pitaevskii regime has been studied in [14, 10]).
To circumvent this problem, one has to modify the coherent states through appropriate
Bogoliubov transformations. Following [6], we define the function

ki (23y) = =N(1 = f(N(z = )¢ +(2)0Cp 4 (4)

where f is the solution of (1.21) and where ¢Xp, is the solution of a modified, N-
dependent, version of (1.20), with the local nonlin7earity replaced by an Hartree term,
given by convolution with N3V (N.)f(N.) (since by (1.22), N3V (N.)f(N.) — 8rmag6, it
is easy to bound the difference between gogp . and gp). Using kST we construct the
unitary operator 7

1
Top,t = exp [5 /dxdy (k" (w3y)atay — h.e.)

on F. Tgp, is a Bogoliubov transformation; it acts on creation and annihilation opera-
tors by

Tépa(f)Teps = a(coshktc,p N+ a*(sinhktc,p )
Tépa™(f)Tapy = a”(coshygr f) + a(sinhygr )



The operator Tap ¢ can be used to implement the short scale correlation structure char-
acterizing the solution of the many-body Schriodinger equation in the Gross-Pitaevskii
limit.

We consider the initial data W (v/ Ng)T, ap,0 §2 (more generally, we can consider states
of the form W(\/NQD)TGP,()&-, with £ containing only a bounded number of particles). We
expect that the many-body evolution of such an initial data still has the same form. To
confirm this fact, we define the fluctuation vector & by requiring that

eV (VNQ)Tap ot = W (VNeRp ) Tep & (1.23)

From (1.23), to show convergence of the many-body dynamics towards (1.20) it is
enough to prove that the fluctuation vector & defined by (1.23) remains close to the
vacuum. Since & = UST (1), with

URT (1) = Tép W (VN e " W (VN @) Tap

the problem reduces to show a bound for the growth of the number of particles with
respect to the fluctuation dynamics Z/{]%P.

Such a bound has been established in [6], making use of certain cancellations in the
generator of Z/{]%P produced by the introduction of the Bogoliubov transformation Tap ;.

As a consequence, it was proven in [6] that the reduced density ’y](\})t of the full evolution

of the initial data W (v N¢)Tgp o2 (or, more generally, of initial data having the form
W(\/N@)Tgp@f, for £ € F with a bounded expectation for N' and Hy) satisfies the
bound

tr [y = len il | < ONTY2 exp(er exp(ealt]) (1.24)

where ¢, is the solution of the Gross-Pitaevskii equation (1.20).

In the mean field regime that we discussed above, the coherent states approach could
also be used to describe fluctuations around the limiting equation. In particular, it al-
lowed us to identify a limiting fluctuation dynamics with a quadratic generator and to
apply it to obtain a norm bound of the form (1.16) for the many-body evolution. After
establishing the estimate (1.24) for the rate of convergence of the one-particle reduced
density, it is therefore natural to ask whether we can use the same approach to describe
fluctuations around the Gross-Pitaevskii equation in the limit of large V. Unfortunately,
it turns out that the in the Gross-Pitaevskii regime, one cannot approximate the fluctua-
tion dynamics Z/{]%P by a quadratic evolution in norm. Although one can control its effect
on the growth of the number of particles (needed to prove (1.24)), the cubic and quartic
components of the generator of L{Sp (cubic and quartic in the creation and annihilation
operators) are not negligible in the limit of large N.

Instead of considering fluctuations of the time-evolution around the time-dependent
Gross-Pitaevskii equation, it is also possible to approach this problem from a static,
time-independent, point of view. To this end, one can trap the system in a finite volume
(either by imposing boundary conditions or by turning on an external potential) and one
can study the difference between the many-body ground state energy and the minimum



of the Gross-Pitaevskii energy functional or, more generally, the energy of low lying
excitations (the fact that Gross-Pitaevskii theory describes, in leading order, the ground
state properties of the many body system has been established in [34, 33]). In the
mean field setting, this program has been carried out in [37, 24, 32, 13], where it was
proven that the excitation spectrum is determined by a quadratic Hamiltonian similar to
(1.14). This suggests that, in the mean field regime, a good approximation for the many
body ground state has the form W(\/N ©)T, where ¢ minimizes the Hartree energy
functional and where 7" is a Bogoliubov transformation (the exponential of a quadratic
expression in creation and annihilation operators), needed to diagonalize the quadratic
Hamiltonian. Similarly, good approximation for low-lying excited states have the form
W(V/Nop)Ta*(g1) . ..a*(gr)S, for appropriate k € N, Ng = N — k and orbital g1, ..., gk
orthogonal to ¢ (in fact, to produce states with a fixed number of particles, it is better
to work with a map wuy, defined similarly to (1.17), rather than with the Weyl operator
W(VNy); see [32] for details).

Although the excitation spectrum in the Gross-Pitaevskii regime should still be close
to the spectrum of a quadratic Hamiltonian, a good approximation for the ground state
cannot have the form W (v/Ng)TQ for a Bogoliubov transformation 7' (analogously,
excited states cannot be approximated by vectors like W(vVN@)Ta*(g1)...a*(gr)S).
This follows from [20], where it has been shown (in fact, in a more general setting)
that the minimum of the energy over all states of the form W (v/Ng)TQ (with T being
the exponential of a quadratic expression) remains strictly above the true ground state
energy, with an error of order one (an upper bound to the correct ground state energy,
up to an error that, in the Gross-Pitaevskii regime, vanishes in the limit of large N, has
been obtained in [39]; this result is consistent with the Lee-Huang-Yang prediction).

In this paper, we are going to consider an intermediate regime, lying between the
mean field and the Gross-Pitaevskii limits. For 0 < 8 < 1, we define the Hamilton
operator

Hy = /dxvxazva;aa; + % /dmdy N¥V(NP(x — Y)) Ay ayay (1.25)
acting on the bosonic Fock space F. To simplify a bit the computations, we neglect
here the external potential (but it would be easy to modify our analysis to include one).
The Hamiltonian (1.25) can be thought of as an interpolation between the mean field
Hamiltonian (1.6), obtained with § = 0, and the Gross-Pitaevskii Hamiltonian (1.19),
recovered with g = 1.

For 0 < B < 1, the many body evolution develops weaker correlations, compared with
the Gross-Pitaevskii regime. As a consequence, on the level of the reduced densities, the
many body evolution generated by (1.25) can be approximated, in the limit N — oo
and for all 0 < 5 < 1, by the nonlinear Schrodinger equation

i0ppr = —Api + bo s>t (1.26)

with by = [V (x)dz (notice that 8rag < by for all short range and repulsive V).
While (1.26) is enough if we are interested in the limiting behavior of the reduced
densities, to study fluctuations and to obtain a norm approximation for the many body



evolution we need a more precise ansatz, taking into account the (weak) two-body cor-
relations. Instead of working with the solution of the zero-energy scattering equation
(1.21), we find more convenient here to fix £ > 0 and to consider the ground state fx,
of the Neumann problem associated with the potential N~!*3%V(N5.) on the sphere of
radius ¢ centered at the origin. In other words, we choose fy, as the solution of the
eigenvalue problem (2.4) associated with the smallest possible eigenvalue Ay ¢, normal-
ized so that fye(z) =1 for |z| = ¢ and continued to R? by requiring that fy(z) =1
for all |z| > ¢. We use fy, to describe correlations among particles in the condensate.
Accordingly, we consider the N-dependent Hartree equation

i0p) = —Ap) + (NPV(N) fnex o) P)er (1.27)

As N — oo and for all 0 < 8 < 1, ¢}V approaches the solution of the nonlinear equa-
tion (1.26). We will see, however, that (1.27) furnishes a better approximation for the
dynamics of the condensate wave function, because, through the factor fu ., it takes
into account the correlations among the particles (which, despite being weak, are not
negligible in the analysis of the fluctuations).

Our goal is to study the fluctuations around (1.27), to prove that their dynamics
has a quadratic generator in the limit of large N, and to use the limiting fluctuation
dynamics (with the quadratic generator) to obtain a norm approximation of the many
body evolution generated by (1.25).

First of all, we need to take care of the correlation structure. We proceed similarly as
in [6], introducing a family of Bogoliubov transformations. Using the Neumann ground
state fy ¢, we set wn=1— fyy (so that wy(z) = 0 for all |z| > ¢) and we define

kna(ay) = —None(e =) (@ +9)/2))° (1.28)

where ¢} is the solution of (1.27). It turns out (see Lemma 2.1) that ||ky (|2 is bounded,
uniformly in N, and therefore (1.28) is the integral kernel of a Hilbert-Schmidt operator
that we denote again by ky ;. Using kn ¢, we define the Bogoliubov transformation

1
TNt = exp [5 /dmdy kn (75 y)aya, —h.c. (1.29)

We consider initial data of the form W(\/N@)TN,ofN, with a &x “close” to the vacuum
2 (in the sense that the expectation and the variance of the number of particles and of
the kinetic energy operator in the state £y can be bounded uniformly in N). We write
the evolution of such initial data as

eiiHNtW(\/N(P)TN,OSN = W(\/ﬁcpiv)TN,tSN,t

where
Ene =UN(E0)EN

with the fluctuation dynamics

U (t;0) = Tiy W* (VNN )e MW (VN) Ty o
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Our goal is to approximate Uy (¢;0) by an evolution with a quadratic generator.
To this end, we define the phase

v (t) = N/dwdyN?’BV(Nﬁ(w —y))(1/2 = faelz — )led (@)l ()
+ [ dndy|Vsinhey (o) P+ [ da(NOV ) ) ) 55,
+ [ dnagNV (V@ - )l @0 )6 )
+Re [ dody NOVV @~ )l @)l ) )

1
o [ dudy NSV (@ — ) [N, e 52 s + (5107 s

and the time-dependent and N-dependent quadratic generator
La,x(t) = (0T T + LS (0) + L83
+ % /dﬂ?dy wr,e(z —y)
< [ (@ +9)/2)8¢7 (@ +)/2) + [V} (@ +1)/2)])azay + hoc]

N [ dady (e — vl < ) [N (@ +)/DVasa; + e
(1.31)

0 = [ de VIV e P
x [0 (@)a(ed) + o (s )a(sd) + 0 () (53) + afsa(ed)]
+ / dzdyN3*V (NP (z — y) @
X [a*(civ)a(cév) + a*(sév)a(siv) + a*()a*(sY) + a(siv)a(cév)]
45 [ dsdyNEV (N @ = )l
x [a*(e))a(s)) + a*(c) )a(s) ) + a(sy )a(s
45 [ dsdy NV o~ )l @)l )
X [a*(sév)a(civ) + a*(siv)a(cév) + a*(siv)a*(sév)]

45 [ dsdy NV @ = )l @l ) [a° 02 + 0 (X)a (0]

5
N~—
5
2
s

sz
S—
=,

45 [ dedy NIV @ = )l (@)l ) [alp )y + alealo])]
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Eglg\;(t) = /dxvxaivxax + /dw {a;a(—Axin) + a*(=AppN)ag + a* (Vep)a(VpY)

+ Vaa®(kz)Vaalks) + a*(—AxriV)a(kz) + a*(siv)a(—AJ;riV)
+a* (= Aupy)a” (ke) + alky)a(—Ap)) + aja* (—Apry))
+ a(=AprM)ag + a*(pY)a* (= Aurl) + a(=AprM)a(pl)
(1.33)

Here we used the shorthand notation ¢l (y) = coshyy , (v, ), sN(y) = sinhgy , (y, ),

PN (y) = (coshkN’t —1)(y,x) and 7Y (y) = (sinhgy , —kne)(y, T).

We denote by u27N(t; s) the time evolution generated by Lo n. In other words,
Uz, N (t; s) is the two-parameter group of unitary operators solving the Schrédinger equa-
tion

i0Us N (t;s) = Lo N(t) U, N (t; 5) (1.34)

with the initial condition Up n(s;s) =1 for all s € R. The existence of such an evolution
Uz v can be established as in [23] (notice here that all kernels entering the generator
Lo n(t) are smooth for every finite N; they only develop singularities as N — 00).

In the next theorem, our first main result, we show that, when acting on appro-
priate vectors &y, Un(t;0) can be approximated by Us n(2;0), up to the (physically
uninteresting) phase 7.

Theorem 1.1. Let V > 0 be smooth, spherical symmetric and compactly supported. Fix
0<pB <1 andlet « =min(8/2,(1 - B)/2). Let p € H*R?). Fiz { > 0. Consider a
sequence {n € F such that ||En] =1 and

(En, [N +K*+ Yy &n) <C (1.35)

uniformly in N. Here we introduced the notation

* 1 k %k
K= /dwvxamvxam VN = IN /dwdyN?’BV(Nﬁ(x —Y))aya,aya; (1.36)

for the kinetic and the potential energy operators entering in Hy = K+ Vy. Then there
are C,cy,co > 0 such that

‘ - 2
H@iZHNtW(\/NQD) TN,O éN _ eflfo nn (s)ds W(\/NQD{&V)TN,t UQ,N(t)gNH
< CN~ “exp(cy exp(ealt]))
for allt € R and all N large enough.

Notice that a result similar to Theorem 1.1 has been recently obtained in [25], however
only for 0 < 8 < 1/3. The main difference with respect to [25] is the fact that here we
already introduce the Bogoliubov transform T at time ¢ = 0; this allows us to cover
all g < 1.

12



Theorem 1.1 shows that, in the limit of large N, the dynamics of the fluctuations
around the nonlinear Schrodinger equation (1.27) can be approximated by the evolution
Uz, N (t; s) having the quadratic generator (1.31). It is also possible to approximate the
dynamics of the fluctuations by a limiting evolution, again with a quadratic generator,
but now independent of N. To this end, we start by noticing that, in the limit of large
N, the integral kernel (1.28) approaches the limit

k(23 y) = =™ (2 — y)g} ((z + 1) /2) (1.37)

where ¢; is the solution of the N-independent nonlinear Schrdodinger equation (1.26)
while

b 2
_O[I%I_%—i_;?} for x| < ¢

wy P () = { s (1.38)

0 otherwise
is the pointwise limit of Nwy(z) for N — oo. Like k4, also k € L*(R? x R?) is
the integral kernel of a Hilbert-Schmidt operator on L?(IR?). It defines the Bogoliubov
transformation

1
Ty = exp [5 /d:cdy ki(z;y)azay, — h.c.] (1.39)

With this notation, we can formally take the limit NV — oo in (1.31) and define the
time-dependent quadratic generator

Looolt) = GOTYIT, + £57(1) + £57 (1)
+ % /d:vdy w, " (z —y)

< {[ee((@ +9)/2)A0e((x +)/2) + [Ver((z + ) /2)]*] apay + hec. |
+ 3 /dmdyl(\x —yl <0 [0} ((z +y)/2)asa; + h.c.]

3
(1.40)

where EgK) and £g\/) are defined as Eéﬁ; and E;‘;\),, but with ¢¥ and kN replaced by

@y and ky (and thus with ¢, s p ¢V replaced by ¢, 54, Pz, 7z, defined analogously).

We denote by Us o (t;s) the two-parameter unitary group generated by (1.40). In
other words, we define Us o, through the Schrodinger equation

Z'atUon(t; 8) - ﬁQ,oo(t)UQ,oo(t§ 8)

with the initial condition Us (s;s) = 1. Also here, the existence of such an evolution
Uz, is guaranteed by the work [23] (the only singularity entering L5 o is the Coulomb-

type singularity of wy™>"").

Theorem 1.2. Let V > 0 be smooth, spherical symmetric and compactly supported. Fizx
0 < B <1 and set a« = min(3/2,(1 — B)/2). Let p € H*R?). Fiz £ > 0. Consider a
sequence {n € F such that ||En|| =1 and

En, NP+ K2+ Vy]én) < C

13



uniformly in N. Then there exist C,c1,co > 0 such that

. A 2
HG_Z’HNtW(\/th)TNpgN — e_’ fot nN(S)dS W(\/N(in)TNﬂg Uon(t)gNH
< CN™%exp(cy exp(ealt]))
for allt € R and all N large enough.

Theorem 1.2 shows that, for all 0 < 8 < 1, the dynamics of the fluctuations around
the nonlinear Schrédinger evolution (1.27) is governed by the quadratic generator (1.40).

Acknowledgements. The authors would like to acknowledge support by the Swiss Na-
tional Science Foundation through the SNF Project “Effective equations from quantum
dynamics”. S. Cenatiempo acknowledges the support of MIUR through the FIR grant
2013 “Condensed Matter in Mathematical Physics” (code RBFR13WAET). C. Boccato
and B. Schlein also gratefully acknowledge support by the CRC-1060 “The Mathematics
of emergent effects”.

2 The Fluctuation Dynamics

We work on the bosonic Fock space

F=CoPLi®R™

n>1
where L2(R3") denotes the space of all 1, € L?(R3") such that
Un(Tr1y ooy Tan) = Un(x1, .00y 2p)
for all permutations 7 € S,,. We use the notation Q = {1,0,0... } for the vacuum vector
in F.

For g € L?(R3), we introduce the creation operator a*(g) and its adjoint, the anni-
hilation operator a(g), by

* n 1 ¢ n—
(a (g)\I/)( )(1'1, R ,.%'n) = % Zg(m‘j)w( 1) (1‘1, ey T, Tl e - ,.%'n)
j=1

(a() W)™ (21, ..., 2n) = Vn + 1/dmmw(”+1)(x,x1, cey )

for all ¥ = {¢(") tnen € F. Creation and annihilation satisfy canonical commutation
relations

[a(f),a"(9)] = (f.9), [a(f),alg)] = [a*(f),a"(9)] =0

We will also make use of the operator-valued distributions a}, a,, defined so that
w'(g) = [ degl@la, alg) = [ deglaa,

14



Although creation and annihilation operators are unbounded operators, they can be
bounded with respect to the number of particles operator, defined by

(NT)P) = pap™

for all ¥ = {T/J(n)}neN € F or, equivalently, in terms of the operator valued distributions

Qg @y DY
N = /d:ca;iax.

Using this last expression, it is easy to check that
la(@) || < [lglla|N*/2w],
la* ()@l < llglla |V + 1)/* @]

On F, we are interested in the time-evolution generated by the Hamilton operator

Ayl (2.1)

1
Hy = /dazvxa:’zvxam+ﬁ/d$dyN35V(Nﬁ(x— y))ara; a,

for 0 < 6 < 1 and for a smooth potential V' > 0 with spherical symmetry and with
compact support. Notice that Hy commutes with the number of particles operator N;
hence, the time evolution preserves the number of particles. On the n-particle sector,
(2.1) acts as

n n
1 3
Hulr, =3 ~Bay+ 55 2 NYV(N (2 —y))
7j=1 1<J
We are going to study the time-evolution generated by (2.1) on coherent states. For
g € L%*(R3), we define the Weyl operator

W(g) = expla’(g) — alg)) = ¢ 1l8/2¢0" ) ala 22)

Weyl operators are unitary W*(g) = W(—g) = W~1(g) and they act on creation and
annihilation by shifts, i.e. for any f,g € L%(R?), we have

W(g) a(f)W(g) = a(f) + (/. 9),
W(g)*a™ (/)W (g) = a*(f) + {9, f)

For ¢ € L*(R?) with |||z = 1, the coherent state W (v/N)Q describes a condensate
with an average of N particles, all described by the orbital ¢ (recall (1.7). To obtain
a norm approximation of the many body evolution, we have to implement the correct
short scale correlation structure on top of W (v/N)Q. To this end, we fix £ > 0 and we
define fy, to be the ground state of the Neumann problem

(2.3)

A+ NNwV(Nﬁ x)| fne=ANefne (2.4)

on the sphere |z| < £, normalized so that fy(x) =1 for || = £. In the next lemma,
whose proof is deferred to Appendix A, we collect some important properties of the
solution of (2.4).
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Lemma 2.1. Let V' be smooth, positive, spherically symmetric and compactly supported
with by = [ Vdx. Let fny be the ground state of the Neumann problem

(—A+ %Nsﬁ*lV(NB'))fN,z = ANefNnye (2.5)
on the sphere of radius £, with the boundary conditions
Ine(x) =1 Orfnyu(z) =0
for all x € R® with |xz| = ¢. For N sufficiently large (such that RN—? < £) we have:
i)

3bo C
— < 2.
‘AN’K STNG | = NTP (2:6)
ii) There is a constant 0 < co < 1 such that, for all |x| <,

co < fne(r) <1 (2.7)

iii) Let wnye=1— fnyg. There exists a constant C' > 0 such that, for all |z| < £,

C C

< \% < 2.8
WN[(.%') — N(‘x’ 4 N_ﬁ) ‘ WN,[(.%')‘ — N(’x‘Z + N—Qﬁ) ( )

We continue fy, to a function on R? by setting fy(z) = 1 for all |z| > £ and we
define wy =1 — fy (so that wye(x) = 0 for all |x| > £). To generate correlations in
the condensate W (v/Np)Q at time t = 0, we define

kno(z;y) = —Nwno(z — y)e*((x +y)/2) (2.9)

With Lemma 2.1 it is easy to check that ||knoll2 < C, uniformly in N (the constant
depends on ¢, though). Hence, (2.9) is the integral kernel of a Hilbert-Schmidt operator,
which we will denote again by kn,o. We use ko to define the Bogoliubov transformation

1
Tno = exp [5 /dxdyk:N,o(x;y)a; , — h.c.

acting as a unitary operator on F.

We are going to study the time evolution of initial data of the form W(\/N ©)TNoéN,
for a sequence {x € F satisfying (1.35) (this assumption guarantees that our initial data
are dominated by the Weyl operator W(\/N ©), creating a condensate with an average
of N particles in the state ¢, and by the Bogoliubov transformation Ty, creating the
short scale correlation structure).

To construct an ansatz to approximate the full evolution of such an initial data, we
proceed as follows. First of all, we let the condensate wave function ¢ evolve, according
to the Hartree equation

i0pp = Ay + (NPV(NC) e * o P (2.10)
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with the initial data 80,{\;0 = . Some standard properties of this equation (including
global well-posedness in the energy space H'(R?) and propagation of higher Sobolev
regularity) are reviewed in Proposition B.1.

On top of the evolved condensate, we add the short scale correlation structure, ap-
propriately modified to take into account the variation of the condensate wave function.
Similarly to (2.9), we define

kna(z3y) = —Nwne( —y) (o] (2 +9)/2))? (2.11)

Like at time ¢t = 0, the function ky; turns out to be the integral kernel of a Hilbert-
Schmidt operator. We use it to define the family of Bogoliubov transformations

1
TN = exp [5 /dxdyk:N,t(x;y)a; , — h.c. (2.12)

Observe that the unitary operators Ty act on creation and annihilation operators by

Ty a(9)Tn = a(coshyy , g) + a*(sinhyy , 9)

. s . ) _ (2.13)
TN a*(9)Tng = a”(coshgy, g) + a(sinhgy , 9)
where
coshy, , = Z b (kntkn.e)" sinhy, , = Z;(kw knt) kN
N,t (2”)! )t )t ) N,t (2n _|_ 1)! )t )t it
n>0 n>0
We define the fluctuation vector {x; at time ¢, requiring that
eV (VN ) T oén = W (VNN )T 1€ n (2.14)
Equivalently, we have {n ¢ = Un(t;0){y with the fluctuation dynamics
Un(t;s) = T W (VN e M (VNG ) Ty (2.15)

The fluctuation vector £y, measures the distance from the modified coherent state
W (VNN T Q. Following the analysis of [6], one can prove a bound of the form

(€Nt NEN ) = UN (L5 0)En, NUN(E;0)EN)
< Cexp(cy exp(ealt]){(én, [N+N2/N + ’HN] EN)

for the growth of the expectation of the number of particles with respect to the fluctu-
ation dynamics. As explained in the introduction, this bound provides an estimate of
the form (1.24) for the convergence of the reduced density associated with the full many
body evolution (2.14).

Here, we want to go one step further, and prove a norm-approximation for (2.14),
using (2.10) for the evolution of the condensate, (2.12) for the description of the corre-
lation structure, and a unitary evolution with a quadratic generator to approximate the
fluctuation dynamics. To this end, we will use the following proposition.
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Proposition 2.2. Let V > 0 be smooth, spherical symmetric and compactly supported.
Fiz 0 < 3 < 1 and set a = min(3/2, (1 — B)/2). Let ¢ € H*(R?). Fiz £ > 0. Consider
a sequence £ € F such that ||{n] =1 and

(En, N2+ K2+ Vy]én) < C

uniformly in N. Let Uy be the fluctuation dynamics defined in (2.15), and Us N be the
quadratic evolution defined in (1.34). Then there exist C,cy,co > 0 such that

. 2
HUN(t; O)SN - e_’ fg n (5)ds Z/[QJV(t; O>§NH S CN_a exp(cl eXp(CQ‘t‘))

for allt € R and all N large enough.
Making use of this proposition, we can easily prove Theorem 1.1.

Proof of Theorem 1.1. We notice that

. et 2
B_ZHNtW(\/NgD)TN@gN - e_lfo N (s)ds W(\/N@iV)TN,tUQ,N(t; O)f]\/ H

= W/ R T thol250) = e 5O 1 150 |
= || [t (1:0) — e 5 1y (1:0)] e[| < ON 2 expler explesli))

where, in the last inequality, we used Proposition 2.2. ]

To prove Proposition 2.2 we will compute the generator of the fluctuation dynamics
Uy and we will compare it with the quadratic generator (1.31) of Us . This is the
content of the next two sections.

3 The Generator of the Fluctuation Dynamics
From the definition of the fluctuation dynamics (2.15), we find
10UN(t;s) = LN () UN(t; 5)
with the generator
LN (t) = TR )Tve +Tioy | (100 (V) ) W(VNY) o)
3.1
W (VNN YHNW (VN ) | Ty

The goal of this section is to prove the following theorem, describing the properties
of the generator Ly (t).
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Theorem 3.1. Let V > 0 be smooth, spherical symmetric and compactly supported. Fizx
0< B <1 and set a =min(B/2,(1 — B)/2). Let o € HYR3). Fiz £ > 0. Let Uy be the
fluctuation dynamics defined in (2.15). Then

Ln(t) =nn(t) + Lon(t) + VN +ENn(L)

where the phase ny (t) and the quadratic generator Lo n(t) are given by (1.30) and (1.51),
respectively, Vy is defined in (1.86), and where the error term En(t) satisfies

+En (1) < VN + CN?/N + CseBIH(N +1)
[N, En(t)] < VN + CN?/N + CseXH(N + 1) (3.2)
+En (1) < VN + CN?/N + Csef(N + 1)
and
(W1, En()a)| < CNT*M M [y, (K + N + 1)) + (o, (K + (N +1)%)02)]  (3.3)
for all 11,1 € F. Moreover, the quadratic generator Lo n(t) satisfies the bounds

(Lo n(t) — K) < CeMIW + 1), (Lo (t) — K)? < CeXMN +1)2
LN, Lon()] < CFIW +1), £ [N Lon(t)] < CMINV +1)7 (3.4)
+Lo n(t) < CeMIIW + 1), [Lon(t))* < CeRMN +1)2
To prove Theorem 3.1, we compute the different terms on the r.h.s. of (3.1). From

(2.3) we obtain
4
(i@tW*(\/Ncpt )W (\/_(Pt )+W*(\/_<Pt JHNW( \/_SOt ZQ
7=0

with
G0 (0) = N [ dady NV (N (@~ ))(1/2 ~ ool — )l @) Pl )P
G (1) = VN |a"(NPV(N Yoo+ o P)el)

Fal(NPV (N Yoo o P)pl)
09 1) = [ doV.aiVaas + [ do (WIVIV) 0N P)@)aa,
+ [ daay NV @ - ) @ ()asa,
43 [ dedy NIV @ - ) [ @)l (i + 5 @ ()asa)
G0 (0) = 7= [NV @ = y)a (A ey + 7 1)) o

4 1
QJ(V)(t) =N /dwdyN?’BV(Nﬁ(x —Y))aya,aya,
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From (3.1), we conclude that
4 .
Lx(t) = [i0Th ) Trve + > TG (0T
=0

Next, we analyze the contributions ng}é) (t)Tny to the generator Ly(t) separately.
For j =0, we have

T3, O (0T = N [ dady NV (V2 (@) (/2 falo — ) @P I )P (39
For j =1, we just write
T3 08 (T = VN T, [a" (NPV(ND e+ [0 P)e) + he | T (3.6)

since at the end the main part of this term will be canceled.

In the next four subsections, we study the terms Tj{,’tg](e,) (t)I'ng, for j =2,3,4 and
the term (i@tT]’Q7t)TN7t. At the end, in subsection 3.E, we combine all results to prove
Theorem 3.1.

3.A  Analysis of T]’Q7tg](3) ()TN
We denote by
K= /dm VaarVaay

the kinetic energy operator. We will use the shorthand notation cy; = coshkN’ . SNt =

. N .
sinhgy ,, PN = cng — 1, "Ny = sy — kg and, for a fixed z € R3, N (y) = eng(y; @),

sN(y) = sna(y; ), pY (y) = pna(y; ) and 7Y (y) = ry4(y; x).

The goal of this subsection is to prove the following proposition, which is a conse-
quence of Proposition 3.3 and Proposition 3.5 below.

Proposition 3.2. Under the assumptions of Theorem 3.1, we have
13,0 Tivs = [ dody| Vosinby, o) + [ do(NPVN) 1 P06 52)
+ [ dmagN V(@ - )l @) )65 )
+Re [ dody NOVV (@~ )l @)l ) )
+ [ dndy (- Askva(op)asay + [ dady (-Akya(z,g))osa,

45 [ st NV (o= ) [ ()l i + o @)l (w)asa)

+L50) + L5910
(3.7)
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with L'(A; and E(V) given in (1.83) and, respectively, in (1.32). Putting

L2 () = LEN®) + LER (1) (38)
we find
+(LEN () — K) < O + 1), (LN (1) — K)? < ORI 4 1)2
+ [N, £§?}V(t)] < CefMN + 1), [NZ ) (¢ )] < CefM(N +1)2
L8 () < CeKI 4 1), (cg?])v(t)) < CeKII(N +1)?2

To prove Proposition 3.2, we split

T30 () Tns = T KT s + T G0 ()T (3.9)

G0 = [ de NV ¢ ol ) w)asa,
+ [ty NV @ - )l @@ aay

45 [ dedy NPV - ) [N @)l i + 6 @ ()asar
(3.10)

We start by analyzing T, ,KTn. From (2.13), we find
TIKT, = [ dudy |9 s, (y,0)
+/dxdy(—Aka,t(x,y))a;aZ—i—/dmdy(—Axk:N,t(x,y))axay
+ L5500
with £ as given in (1.33).

Proposition 3.3. Under the assumptions of Theorem 3.1, the operator E( N (1) defined
in (1.33) satisfies the bounds

+(LIN() — K) < CeRKM W + 1), (LS — K)? < Cef I + 12
£ N L] < oMV ), H VL) < ceMv 12 (3

+L8 () < CeRMN +1), [.c;f@( )]2 < KN +1)?

The proof of Proposition 3.3 is based on the estimates contained in the next lemma.
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Lemma 3.4. Let jy,jo € L*(R® x R3) and denote j; () = ji(z,z) fori=1,2. Set

]1:1:

dzaf (j1..)a* (jo.r)

\\

Then, we have
(0, 419)] < Clinll2 |V + 1) 22
(@, A2p)| < Cllflalldall2 NV + 1) 20>
for all ¥ € F. Moreover,
ATA; + AL AT < Cllll3 WV + 1)
A3 Ay + Az A3 < Cljullllj2ll2 (N + 1)

(3.12)

(3.13)
Furthermore, let
Az = / dra*(V kN )a(V kDY)

where we put kY (y) = kn+(y, ), with kn ¢ as defined in (2.11), with initial data oy 1—o =
¢ € H*(R?). Then we have

Az < CeRMN +1), A2 < CelIN +1)? (3.14)

and also the bound o o
AjAs + Ay A5 < CeMMN +1)2 (8.15)

for the time derivative
Az = / dza*(VkN)a(VakY) + / dra*(V kN)a(VkN) (3.16)
Proof. We start with (3.12). To this end, we observe that

(0, A} < / dzaf (ro ) laxt]
< / dnlne 2OV + D)Y26 lawts]l < 51 2OV + 1)202

by Cauchy-Schwarz. The bound for A; follows similarly. Now, we show (3.13). We begin
with

(4, Af Arip) = / dady(i, aa (1) (1., ay )
< / dadyl|a (. )astdllla Gry)ay |

< /dxdyHJi,xHijz,szHale/QwHHayf\/l/sz
1/2

1/2
< [ / dmdynm||%Hay/v1/2¢||ﬂ [ [ syl BlaAt P
< I BN
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Analogously
<1/}7A1A>{1/}>
= /dmdy(?,!),aﬁ(j1,x)axazaﬁ(j1,y)¢>

< / drdy(ip, @t (1 o) aza Gry ) + / da(p, at () (L))
< / dwdyllaya ()l lasa oyl + [PV + 1)12)2

which implies, as above, that (i, A;Afv) < 2|71 [13|(V + 1)9||>. The estimate for
A5 As + Az A5 follows analogously.
We switch now to the term As. We write it as

Az = /dxdydz Vakni(y, 2)Vaky (2, v)ata, = /dya*(uév)ay

with
uév(z) - uN,t(z7y) = /dm vka,t(yax)vx]%N,t(zax)

To bound the L*(R3 x R?) norm of uy,, we notice that
_ 2
Juxcalld = [ dedy] [ d Vsl )V oz,

= /dZdydxldHCQ Vairkn i (Y, 1)V kv (2, 21) Ve, kv (v, 22) Vi, kv (2, 2)

Since

Lz -2 <)

[Vakn i(2;2)] < C P [l (@ + 2)/2)1 +Ver (2 + 2)/2) ]

|z —
we find
lunglls < llof 1% /dwldfﬂzdy e ((x1 +9)/2)1 + Vel (z1 +3)/2)]

1(|z1 —y| < O1(Jze — y| < 0) 1
X 2 D) dZ 2 2
|1 — y[?|z2 — |21 — 22|z — 22

(Jo1| < O1(|z2] < 1)
|21 2|22 [?[21 — 22|

1
< e 1% e 12 / dv1des
S CeK‘tI

Hence, (3.14) follows from (3.12) and (3.13). As for (3.15), we proceed similarly, re-
marking that

¥ (y,2) = /deka,t(y,x)VmEN,t(z,x) and

ﬁév(y’z) :/dmvka,t(y7x)vl‘];:N,t(Zaw)
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are such that [|a ||z < CeXl for i = 1,2 (one has to observe that one can avoid to take
the terms V¢{¥ in the L>-norm). O

Proof of Proposition 3.3. Since

kv allzs lsnellz, lonellz, lrxllz, IVepn e, 1Aapn a2, | Aarnellz < Ce M

are all finite, uniformly in N (see section C), we note that the terms in (1.33), with
the exception of the kinetic energy operator K, have the form of one of the operators
Ay, A7, Ay, Az analyzed in Lemma 3.4. From (3.12), (3.14) it follows immediately that

+(LSV (1) — 1) < CeRM W + 1)
With Cauchy-Schwarz, we can bound the square of (Eg() — K) by the sum of terms like
A;AY and A7 A;, with ¢ =1,2,3. Lemma 3.4 implies therefore that
(Loy —K)” < ORI + 1)

Since the commutators of N with the terms on the r.h.s. of (1.33) are either zero, or

proportional to the same terms, we also obtain the bounds on the second line of (3.11).
Finally, since (see Section C)

lew.ellz 8nvellz, 1Dl 1N ell2, 1V apn,ellz, [ Aopnellz, [Aainllz < CeXM

we also obtain the estimates on the last line of (3.11). O

Next, we analyze the second term in (3.9). We have
TGy (T

xT T

_ / do(N¥PV(NP.) « o] [2) () (s, 51
n / dedyN>V(N?(z — )l ()5 () (s, )
+ Re /dxdy NPV(NP(z = y)er (2)ef () (sh )

4y [ dsdy NV @ = ) [ ()l Wt + 6 @) ()asa)

+ L)

with ﬁgvj\), given in (1.32). The properties of the generator L'gvj\), are analyzed in the next

proposition, which together with Proposition 3.3, implies Proposition 3.2.

Proposition 3.5. Under the assumptions of Theorem 3.1, the operator Egvj\),(t) defined
in (1.32) satisfies the bounds

=L (1) < CFMIW + 1), (L5 () < CeRI N +1)2
LIV, L (0] < ORI 1), V2 L0 (0)] < CHIW 4+ 1)?
£R(t) < CeR1(A 4 1), LY (02 < CeKIH N + 1)
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To prove Proposition 3.5, we will make use of bounds contained in the following

lemma.

Lemma 3.6. Let ji, jo € L?>(R3 x R®). We consider the operators
Ay = / dzdy NV (N?(z — 1)1 ()02 ()0 (.2 ) (o)
Ay = / dadyN**V (NP (z — y))p1 (2) 02 (4)a (1
iy = [ dedy NV (N = ) (e)ealu)ata,

and

Ay = / dxdy NV (N8 ( — 1)1 (2)a () (G1.4)0 (ny)
Ay = / dzdyN**V (N® (z — 1)) g1 (2) 2 (2)a* (1 )ay
Ay = / drdyN¥V (N8 (z — )1 (2)a(x)aay

Then we have

[, Ajr)| < C i llallzllolln a2 lall a2 (N + )Y
(b, Aj o] < Clijullzlenllee l@all = |V + 1)24)2
(4, Aj39)] < Cllenllzllp2ll = |V + 1) 202
for j =1,2 and all ¢p € F. Moreover,
Aja A5y + A5 Aga < Cllal3l2 13 e I e lleallfe WV +1)7
AjpdSo + A5 A5 < Clli I3l erlle 2l (N +1)2
AjaAs s+ A5 34 < Cller|72lle2ll7: NV +1)7
forj=1,2 and all ¢y € F.
Proof. We start with the bounds (3.17), for the case j = 1. We have

(1, Ari)| < /dxdyN?’ﬁV(Nﬁ(fﬂ—y))lsol(w)llw(y)lHaﬁ(jl,mﬁbllHaﬁ(h,y)w

(3.17)

(3.18)

< lle1lloc i@zl /dwdyN?’BV(Nﬁ(w —9)llrall2llizgll2ll NV + 1))

1/2
<1l llpall 2 |V + 1)) [/ dzdyN* V(NP (z —y))\ljm\lg]

1/2
| [ dadyNo?y (97 = )y 1]
< Clalelalelios e el IOV + 1297
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Moreover,

(0, Ay g0)| < / dedyN**V (NP (z — y))|e1(2) |02 ()] [|a* (10 )0 | |lay ¥ |
1/2
< Cllp1lollp2lo [ / dedyN**V (NP (z — y)) |1, |3]| (N + 1)/ 2|2

1/2
« [ / dwdyN3V (NP (z — y))[|ay|?

< Clljillloall ezl a2 |V + )20

Finally,

(v, A13¢)] < /dmdyN?’BV(Nﬁ(w—y))\wl(x)\!wz(y)\\\ayw\\H%l/fH

< leHooHsoaHoo/dxdyN?’BV(Nﬁ(fﬂ = y))llayy®

< CeK|t\HN1/2¢H2

The terms Ay j, with j = 1,2,3 can be bounded similarly; we skip here the straightfor-
ward details. We switch now to the estimates (3.18). Again, we consider the case j = 1.
We have

(¥, A1 AT 0) < / dzdydzdwN**V (NP (z — y)) N> V(NP (z — w))
x |o1(2)| |02 (1)1 ()2 (w)][|a* (1,2 )@ (G, )| 0 (51,2 )@ (o) |
< Cllsollliollsozllio/dxdydzdwN?’ﬁV(Nﬁ(w —y))N¥V(NP(z — w))
X Nl 12112,y 121112 2 12,00 |2 A+ Db
< CllgrllzlleallZ=ll NV + Dy |2
X / dedydzdwN*V (N (z —y)) NPV(N?(z — w))|lj10 13l 72.0 13
< CllullP 21 ler [z o2l 7 1N + 1|

The contribution A7 ;A; ; can be estimated exactly in the same way. Let us now consider
the term A; 3A7 ;. We find

(1, A13A7 30)
= / dzdydzdwN**V (NP (z — y))N*V(NP(z — w))
X p1(2)p2(y)P1(2)P2 (W) (¥, azayay,az1))
— / dzdydzdwN*V (NP (z — y))N*¥V (NP (2 — w))
X p1(2)p2(y)P1 (2)P2 (W) (¥, azay,ayazy)
+ /dwdydzNwV(Nﬁ(w —Y)NPV(N?(z = y))or1 (2) 02 (v) PPy (2) (0, afaz1))
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which leads us, by Cauchy-Schwarz, to (¢,A1,3A’{73¢> < C\|901||§{2||S02||§12H(./\/' + 1))
Since Aj 5 equals A; 3, with o1 and ¢y exchanged, the operator A} 3A4; 3 can be bounded
in the same way. Also the estimates for the terms A 2 A7 5, A7 941 2 and for the squares
of the operators A j, with j = 1,2, 3, can be obtained similarly. O

Proof of Proposition 3.5. Writing coshg, , = 1+pn , and recalling from Lemma C.1 that

sinhgy ,, PNt € L?(R? xR3), with a norm bounded uniformly in N, we notice that Egvj\), is

a sum of terms, each of them having the form of one of the operators A; 1, A; 2, A7 5, Ai 3,

for an i = 1,2. Since the solution ¢ of (2.10) satisfies ||| 2 < CeXlY, the bounds
(3.17) in Lemma 3.6 immediately imply that

L0 (1) < CeMHIW 4 1)
and (since by the assumptions on ¢ we have ||¢N || 2 < CeXIH) also that

[V, LR ()] < CeMHIW + 1), +L50 < O +1).

From (3.18), on the other hand, we find

3.B  Analysis of Ty, ](\i,)’)(t)TNi

We have
10T, = = [ drdy NV = )l )
% (a*(e) + a(s¥)) (@ () + a(s))(alc) + a*(sM))
4 %N / dzdy N>V (N%(z — )@ ()

Writing the terms in normal order and decomposing
(s, ey = snaly, o) + (sY,p)) = kna(y, @) + Pne(y, @) + (s, py))

we arrive at

1 _
Q}*Q](\?)Tt = \/—N /dmdyN?’V(N(x — y))@iv(y)kNi(x, )T a Ty +hec. + E n(t) (3.19)
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with
&W@w:jﬁ/@wmwﬁdNﬁx—wwﬁw>
x [a*(e))a* (¢ )a*(s)) + a* (e} )a* () Ya(c) ) +
T ar(c)a* (sM)a(sY) + a*(eNa(sNa(ed) + a* ()l o)
tar(sM)a(sY ya(sY) + a(sYa(sY a(el)]

+\/Lﬁ/dxdy]\f?’ﬁ‘/(]\fﬁ(x—y))gpiv(yxsév’si\fﬂa*(civ)+a(5iv))
+\/Lﬁ/d:cdy]\f?ﬁV(Nﬁ(x—y))spiv(y)nsi\fw(a*(cév)+a(8év))

. \/LN /dmdyN%V(Nﬁ(x —y)er ) [(sy)p) + el )]

x (a(c) +a*(s]))
+ h.c.
(3.20)

The properties of 3 y(t) are established in the next proposition.

Proposition 3.7. Under the assumptions of Theorem 3.1, we find, for every 6 > 0, a
constant Cs > 0 such that

+E N (t) < VN + CN2/N + CselIH(N + 1)
[N, E N (1)] < VN + CN?/N + CseXH(N + 1) (3.21)
+E n(t) < 6VN + CN?/N + CsefIH(N + 1)
Moreover, we have

C Kl

[(¥1, E3 N (1)1h2)] < NAZ (@1, (K + N+ 1)apn) + (s, (K2 + (N + 1)%)un)]  (3:22)
for all 1,19 € F.

After applying the Cauchy-Schwarz inequality, we will estimate the cubic terms in
&3 n(t) by quadratic and quartic terms. The quadratic terms can be controlled with
Lemma 3.6. To bound the quartic terms, we will need the following three lemmas.

Lemma 3.8. Let V € LY(R3), V>0 and 0 < 8 < 1. Let j1,jo € L*(R3 x R3) with

M; = max [sup/dy]ji(x,y)\2,sup/dx]ji(x,y)\2] < 00
z y

fori=1,2. Then we have

/d:vdyNgﬁV(N(w = y))la* (1,2) @ (o )PI* < Cmin(My 5213, Mol 3|V + 1))

/M@NMWN@—wwﬂm@%wPSGMMN+DMP
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for all y € F. These inequalities remain true if both operators applied to v on the l.h.s.
act on the same variable, i.e.

/ dadyN*V (N (z — y)l|a (r.0)a (oo 0|12 < Cmin(My | a3, Mall |2 |V + 1))
/ dadyN**V (N (@ — y)) (i )astl> < CM|N + 12

for ally € F.

Proof. We observe that
[ sy NV (N = )G G0

< / dedy NV (N (@ — )10l 22y 21N + Dl

< C'min(M;||7213, Ma |71 |13) (N + 1)

and that
[ dsayNV (N = )Gy
< [ dwdy NV @ = ) el Bl NV
< CM||(V + Dy|f?
The last two bounds are obtained similarly. O

In the next lemma, we control quartic terms where the arguments of creation and
annihilation operators is the kernel coshy,,,.

Lemma 3.9. Let 0 < B < 1,V € LYR3), V >0, and Vy be defined as in (1.36). Let
kn be defined as in (2.11) and, as usual, let ¢} (y) = coshyy, (y,2). Then, we have
1 * * I
oV / dzdyN**V (N’ (z — y))a* (e} )a* (¢ )a(c) Ja(c)) = Vv + E(t)
where, for every § > 0, we can find a constant Cs > 0 such that
E(t) < VN + C5(N +1)%/N

Proof. The lemma follows expanding a(c)) = a, + a(pl) and a(cév ) =ay + a(pév ) and

applying Lemma 3.8 and Lemma C.1. U

Finally, we need a bound for the expectation of Vy in terms of the square of the
kinetic energy operator. This is the content of the next lemma.
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Lemma 3.10. Let V € L'(R3), V >0 and V be radially symmetric, 0 < 3 < 1. Then

[ dsayN V(N @ )z lP < C [ dodyl V2009 0,017+ C [ dodyl| Foasa,0l?

Proof. We define

o) = ~3 [ =) (323)

Then we have Ag =V and therefore
[ dsagNV V@ )zl
= /dxdyNﬁvm - Vy [g(Nﬁ (z — y))] <a:vay¢2a a:vayw2>

= /dwdyNBg(Nﬁ(x — ) (Vs Vyaya, azayiha) + (Vyagay, az Vyayhs) + h.c

< | [ dedyl V10,9 0,001 N [ deslg @ - p)Plasa val? "
N7 [ dndylg(N(z = )| Vatsa ol
< C’/dacdyHVJC(JLJCVyOLngH2 —i—C’/dmdyHanmay%Hz
Here we used the fact that (from Newton’s theorem) |g(x)| < Clz|~L. O

Proof of Proposition 3.7. Let us decompose the operator £z y(t) as
E3n(t) = L(t) + Ci(t) + Ca(t)
with
1) = [ dsdu NIV @ = )l ) s 20 () + als)
s [t NIV = )l ) ) + o))
+ \/LN /dl“dyN?’ﬁV(Nﬁ(x —y)er () (s) oY) + Pz, y))(alc)) + a*(s)))
+ h.c.
Crt) = = [ dsdy NV (N @ - )l (0
1 \/N Pr Y
x [a* (e )a*(s))a(s)) + a*(c))a*(s7)a(s) ) + a*(c} )a(sy) a(c))
+a* (e )a(sy)a(e) + a* (s )a(s) a(s)) + a(s a(s) )a(cl)] + hec.
Cult) = = [ dsdy NV (NP~ )l (0

x (a*(cX)a* (e )a*(sD) + a*(ch)a* (c))a(ch)) + hec.
(3.24)
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Let us begin with the linear terms in L(t). Using Cauchy-Schwarz inequality and
Lemma 3.6 (together with the estimates in Appendix C for the Hilbert-Schmidt operators
sinhkN’t,pN,t, rN¢t), it is easy to check that

(1, L(t)ha)| < CNTY2KIM (g (N + 1)) + (12, (N + 1)iha))
and, taking 11 = 19, that

+L(t) < ON"V2eRIUN 4 1)
N, L) < ONTVRRUWN 1), £L(H) < ONTV2RIV 1)

Next, we control the terms in C(t). Decomposing coshyy, =1+ pny and applying
Cauchy-Schwarz, it is clear that all contributions to (1, C;(t)12) can be bounded by a
sum of terms of the form

1 38 s N (A2t (4 )]
= [ [ gV (N = )N )Pl G o ]
1/2
% [ / dxdyN?’ﬁV(Nﬁ(:c—y))Ha“(jm)a(jg,y)%HQ] ;
1 38y ( NP N 2llat (4 ]
= [ [ gV )l P e Gl ]
1/2
% [ / da:dyNwV(Nﬁ(:v—y))\laﬁ(jzm)aywznﬂ ;
1 36 B N 2 2 2
= [ [ty NV (N = )i ) Plasis }
1/2
x [ / dxdyN35V(N5(:c—y))Haﬁ(h,m)aﬁ(]’:&,y)wuz} ;
1 36 B N 2 2 2
= [ [ty NV (N = )i () Plasts }
1/2
% [ / dzdyN**V (N® (& — y))”aﬁ(j2,m)ay¢2”2}
with appropriate ji, ja, j3 € L?(R? x R?) satisfying [|j[|» < Ce®l and

M; = max [sup/dy\ji(x,y)IQ,sup/dw\ji(x,y)\z} < CeXlt
T Y

for all ¢ = 1,2,3. Using Lemma 3.8, we conclude therefore that

|1, CL(t))] < CNT2RM[(N + 1)1 29[| (A + 1)

< ONVEHH (g (N 4 D) + (s N+ D) )
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Taking 11 = 1o the first inequality shows that, for all 6 > 0, there exists a constant
Cs > 0 with

+C1(t) < SN?/N + CseBHM(N + 1)
+[N,C1(t)] < SN?/N + CseXHU(N +1)
+C1(t) < SN?/N + CsefIH(N +1)

Finally, we study the term C5(t). Using Cauchy-Schwarz, we obtain
1
— [ dedyN3**V (NP (x — N La* (eN)a* (a(Y
| [ Aty VIV = ) ) (X (e e )
K
< [ dsdy NPV (@ = (e al P
1
+ ;/d:vdyN?’BV(Nﬁ(l‘ — et @) llaled)y)?
for every x > 0. With Lemma 3.9, we find, for every § > 0, a constant Cs > 0 such that
1 * *
s [ dzayN V(@ ) [ @ (a6 a(e) + b
< VN + CN?/N + Cse®SIHU(N + 1)
Similarly, one can show that, for all § > 0, there exists Cs > 0 such that
1 * * *
s [ drtg NV N @ = ) [ ()" ()" (¢} )a* () + hc]
< VN + CN?/N + Cse®IN +1)
We conclude that, for all 6 > 0 there exists Cy > 0 with

+Cy(t) < VN 4+ CN?/N + Csef(N + 1)
+ [NV, Cy(t)] < 0Vn 4+ CN?/N + CsefIH(N + 1)
+C5(t) < 6Vy + CN? /N + CseXIHN +1)

To prove (3.22) for the term Cs(t), we need to proceed differently. We observe that,
for any wlawZ € ]:7

(ﬁ / dadyN**V (N (& — y))ol (1) {1, a* (X )a* (e )ale )|

< ‘%ﬁ / drdyN*3V (NP ( — ) (4) (1, @ (¥ )aZa(cY ibo) (3.26)

| [ stV @ - ) ) () 0 e
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To bound the second term, we observe that
1 * *
= [ a6 = ) ) 0 () ] e o)

< [ dsaN V@ = )l Wl Talated ot )V + 1) 2]
O Kl
VN

As for the first term on the r.h.s. of (3.26), we recall the definition (3.23) of the function
g with Ag = V. Putting v = Vg, we find that V- v = V. Hence

<

({1, N1) + (1o, (N + 1)%2ho)]

\/% / dedyN* V(NP (z — y))o} (y) (b1, a* (X )asa(ch )ub)
- % / drdyN?*v,, - [v(Nﬁ (z — y))] o (y) (Y1, a* (e} )analch i)
_ % / dedyN?o(N® (2 — y)) - Vo (y) (b1, a* (e )aZa(c i)
+ \/LN /dﬂ:dygoév(y)N%v(Nﬁ(x —y)) - <a(civ)vyay1,b1, a(CiV)ZZ)2>
Therefore,
\L/ddN?’ﬁV(Nﬁ( — el “(Naja(cl
\/N xray T —UY))Pe (y)<¢laa’ (Cm )aya(czv )¢2>
< %ﬁ / dadyN?|o(NP ( — y))llla(c ) (N + 1)124

< (196 Wla(e@) W + 17 2ay1] + o () la(e )W + 1)V ag0n]
(3.27)

The contribution of the first term in the parenthesis can be estimated by

/d:ﬂdyl\fzﬁIv(Nﬁ(fC Vel Wllla(e )N + 1) 2ayifllla(er )N + 1) 24|

1/2
< ORI N8 [/ dxdy|la(cy )N + 1) 2ayn |°

/2

1
g [/ dadylo(N (@ = y) Plla(c) )V + 1)1
< CMINPRIN 2y |||V + 1)

Here we used the bounds [[v[|c < C|[V[3 and [Jv[|2 < C[|V||g/5, that can be proven with
the help of the Hardy-Littlewood-Sobolev inequality.
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As for the second term in the parenthesis on the r.h.s. of (3.27), we have

/dwdyN%!v(Nﬁ(w =)ot Wlllale YWV +1) 72V ayi [[la(c )NV +1)7 24|

1/2
< CKU NS [ [ dedylaleX ) + 1)1/2vyayw1\|2}

1/2
X [/ dzdy|v(NP (z — ) |la(c¥ )N + 1)1/27/)2HQ]
< CeRMNP2 (4, Kapy) + (o, (N +1)%4)2)]
We find that
‘\/% / dzdyN*V (N (@ =)ol ()1, a* (el )a* (e Ja(ch in)|

< CMMNEV [y, (I + N + 1)h1) + (o, (N + 1)%)]

Since the other term entering in the definition of C(t) in (3.24) can be bounded similarly
and the hermitian conjugates can be treated using Lemma 3.10, we conclude that

(1, Co(t)ih2)| < CeBKIMNBE=D2 [y (IC+ N 4 1)ap1) + (Wb, (K + N +1)%1h9)]

(3.28)

3.C  Analysis of T}, ](VA‘) (t) TNy

Finally, we consider the conjugation of the quartic terms. Expanding the products, and
writing all terms in normal order, we obtain

217G (1)
= %/dxdyN”V(Nﬁ(x — ) [, eV + (s, sV 2+ (s, D) (s, s2))
* % /dxdy NPV(N(z = y)) [(ey s st )a* (e )a*(e)) + (53, e Yale) Ja(el)]

+2Vn + &N (1)

X [2<8578§V>a*(0iv)a*(8iv) +2(sy, sy )a(sy)aley) + 2(sy, s7)a* (e )a*(sy))
+2(s, s?)a(sjyv)a(civ) + 2(53]}\7, s?)a*(civ)a(civ) + 2<SZ]/V, si\f)a*(civ)a(cév)
+2(sy sy )a*(s3)alsy) +2(sy sy )a* (s7)a(sy) + (¢} s2)a* (e a(sy))
+(sa s ey )a (s )a(eq)) + (s, ) Ya* (s )a* (s7) + (e, 52 )a(sT a(sy)

+ sy s ¢y )a* (57 )aley) + (e Siv>a*(0év)a(5iv)]



and
4 4.1 4.2
el = &0 + K@) (3.30)

Here, the term
aNESR) (1) = / dzdyN3*V (NP (z — y))
x |a (oY )a* (e o) )a(eX) + aza* () a(e) Na(c))
+azaga(py)a(ey) + ayajaya(py)

contains the contributions arising from a*(ck )a*(cév )a(cév Ja(cl), after removing Vi,
while

(3.31)

Proposition 3.11. Under the assumptions of Theorem 8.1, there exists, for all § > 0,
a constant Cs > 0 such that

+E, N (1) < VN + Coe™ NN + 1)2/N + CsN PRI (N 4 1)
+ [NV, Ean ()] < 6V + Coe™ (N +1)% /N + CsN NI 4 1)
+E4(t) < VN + CseBMN +1)2 /N + Cs NN 1)
FPurthermore,
[, Enn (E)a)] < ONTODRERI oy Vvan) + (un, (W + 1) /N i) o)
3.32
+ (b1, N+ 1)hr) + (o, (K + N+ 1)%¢y)

for all 1,19 € F.

Proof. We start with the terms in £ ZEQJ)\,(t). We write



+ (s ey )a(sy )aley) + (52, ¢ )a"(sy)a" (s7) + (e, 52 ha(sy a(sy)
+ (s e dat(s))ale))) + (e, sYa*(e) a(sD)|

Using Lemma 3.6 and the bounds for the Hilbert-Schmidt operator sinhy, ,, we easily
find that

(1, E3 (D)52) | < ONTLEKI (A + D)2 |||V + 1)V 245
< CNT'RI (g, (W + 1)) + (o, (N + 1)n)]
Taking 1, = 12, we immediately obtain
&30 (1) < ONTLKI(N 4 1)
+ [N, Efjvl’(t)] < ON“LKMHN 4 1)
LEPV () < ONTLR N 4 1)

Let us now consider the terms in Efj\?) (t). They all contain the inner product

(e, sé\f) = kni(z,y)+rne(e, y)+ (Y, Sév> Since |ry¢(y, )| and |{(pY, sév>| are bounded,

uniformly in N, the contributions arising from these terms can be dealt with, as we did
above, for the term Sfj\})(t). For the contributions proportional to kxy+(z,y), we use the
bound |ky4(z,y)| < Clz — y|~!. Paying the price of an additional factor N? we can
deal with these terms as we did above, just replacing the potential V(x) with V' (z)/|z|

(which is still integrable, by assumption). We conclude that

(1, ED (D)2)] < ONTE=D KA 4 1) 201 |[| (A + 1)1 200
< ON~OP KM (4 (N + 1)1 + (o, (N + 1)ho)]

As usual, we also obtain

o3 (t) < ON~U-9 KA 4 1)
=N ERD ()] < ONTOARHN 4 1)
+E2D (1) < ON~D KN (A 4 1)
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Finally, we consider the quartic terms in 5&4])\,(15). Recall the decomposition (3.30).
From Lemma 3.9, we find for every § > 0 a constant Cs > 0 such that

+e8 () < 0Vn + CoeRII W + 1)2/N
ié’(4 D) < 6Vy + Coe™M(WV + 1)2/N

notice that [\, %1 — 0). Tn order to show that £, satisfies the estimate (3.32 , We
4, N 4,N
remark that, from Lemma 3.10,

[(¥1, VNip2)| < <¢1,VN¢1>1/2(1/127VN¢2>1/2
(. V) + 1N / drdy NSV (NP (& — y)) (o, a5a%ayazibe)

<

(W1, Vntp1) + (o, (KK + N + 1)%)]

%\Hﬂ\

Analogously, with Lemma 3.9, we find

3 [ ANV @ )t () (e ale NateX o)

CeK|t C Klt|

(Y1, V1) + (2, VNY2) +

IV + 1)¢1H2]

IV + 1>w2\|2]

CeKlt
< = [ v + H(N+1)w1!!2+<wz,(iC+N+1)2wz>]

The last two equations show that

(1, & 4N D(tya)| < CN-V2KI [(1/117VN1/11> —H(N+1)¢1Hz+ (2, (K+N + 1)21/12>]

We switch now to £ f‘]’\?), defined in (3.31), which can be further decomposed as

() = Av(t) + As(t) + As(t)
with

- % /dxdy N¥V(NP(z —y))
X [a*(civ Ja*(sy )a*(s3 )a(sy) +a*(cy)a* (s )a* (s7 )a(sy)

+a*(sy) )a(sy )a(sy )aley) + a*(siv)a(siv)a(sév)a(cév)}
+ % /dxdyN?’ﬁV(NB(:v —-v))
x [a*(civ)a*( yJa(sy)a(el) +a*(e))a* (s7)a(sy a(ey)

§ Sy
+at(@)a (5l ya(eY) + a* (e))a" (X a(sYa(ed)].



and
() = / dedy NPV (N%(z — y))
x |a* (e )a* (e )" (s) )" (s) + a(sY )a(s) (e} a(ed) |
As(t) = / dedy N¥V(N%(z — y))
x [a*(e)a* (@) )a* (s a(ed) + a*(eh)a” (e )a* (2 )alc))
+ (e )a(s))ale) )a(el) + a*(e) )a(sN )a(e) a(ed)|

In Ay (t), we collected terms with 0, 1, and some of those with 2 kernels coshy,, , (namely
the terms with 2 kernels that can be separated by Cauchy-Schwarz). In As(t) we collected
all other terms with 2 factors coshy, ,. In A3(t), we included all terms with 3 factors
coshy, ,. Terms in A;(t) can be controlled with Lemma 3.8. We find

(1, A1 (t)1h2)| < CN e K'”H(NJr D[V + 1|
< ON~V2eKN \|<N+1>¢1||2 + [V + 1o

Taking 11 = 19, we get

+4,(t) < CefIUN +1)2/N
+ [N, A1 (1)] < CeKH NV 4+ 1)2/N
+A,(t) < CeKM(N +1)2/N

Next, we consider terms in As(t). By Cauchy-Schwarz and Lemma 3.9, we have
1 * * * *
7 [ ANV = ) (a(e)a (5)a () )

5
< — [ dedyN**V(NP(z — y))[la(c) )a(c) )i |?
N/ 1 (3.33)

b [ dady NV (NP — ) o () (5] ol
K|t Klt|
< 26, Vi) + e |+ P+ T

IV + 1)

Hence, choosing § = N~1/2, we find

3 [ NV = )t (e (e (a5 )|

C Kl

o |1 ) O D+ (1)

<
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The hermitian conjugated term can be bounded using Lemma 3.10; we get

7 [ NV @ ) alsNals] alc aled o)
- CeKlt
= UN

IO D+ G (10|

Hence, we find

C Kt

1, Aa(B))] € = (00, V) OV + D02+ G (K 4+ 1))
Going back to (3.33) and choosing 11 = 12, we obtain that for every § > 0, there exists
Cs > 0 with

+A5(t) <6Vy + CseBIIN +1)2/N
£ [V, A (t)] <6V + Cse" (N +1)%/N
+Ay(t) <6VN + CseBIN +1)2/N

Finally, we bound the term As. To this end, we observe that

3 [ NV = ) (a6 (5 (e i)

<2 / dzdyN¥V(N® (& — ) a(e (e i |2

+ W dzdyN**V (NP (z — y))[la* (s} )a(c) Yo

<= /dxdyN?’ﬁV(Nﬁ(x - y))Hamczyle2

N C(SeK tl Ce

IOV + 1)en|* + H(N+ Lo ®

Similarly, the complex Conjugated term can be controlled by

i /d:vdyN?’BV(Nﬁ(cﬂ = Y)W, a* (e )alsy aley aley Ja)

%
C(SeK t ceK |

1N+ D)e | + 1A+ 1)ep |2

5<71Z)2) VN¢2>
Hence, we obtain that, for every 61, d9 > 0,
o
(r, As(0)i)| < § [ dady NV (V@ = ) oz, P

1)
+ NQ/dﬂvdyl\f?’ﬁV(J\fﬁ(915—y))”aacayi/’?”2

CeKlt]
N

Kt|
(824 52 ) IV 0P + S5 (31 5 ) 1V + P
2
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Choosing 8; = N~'/2 and , = N'/2, we find

CeKlt]

VN

If instead we set 61 = do = d < 1, we obtain, with ¥ = 19, that for every § > 0 there
exists Cs > 0 with

<¢1,A3(t)¢2>‘ < [W)h V1) + %(1#1, (N + 1)201) + (2, (K + N+ 1)%1hy)

+A3(t) < 6Vy + CsefIIN +1)2/N
+ [N, A3(t)] <0Vn + CseBIUN +1)2/N
+A3(t) <oVn + CsefU(W +1)2/N
O
3.D  Analysis of (i0,Ty )Ty,
We set 1 )
B(0) = 5 [ dudy(kya(o. )t~ Fova(op)esa,)
and
B(0) = 5 [ ddy(hya(o. )i, ~ Fova(op)esa,
Then Ti; = exp(B). Defining ad%(C) = C and ad;™(C) = [B, ad’(C)] we have
R b AB(®) Ay AB(®) (=)t '
MMMHM:—/dM B(t)e :}}G:ﬁmym (3.34)

0 n>0

on the domain D(N) of the number of particle operator (this can be shown as in 6,
Lemma 2.3]). In the next lemma, we collect some bounds for the operators ad’s(B),
whose proof can be found in [6, Lemma 6.9)].

Lemma 3.12. For each n € N there exist fn 1, fn2 € L*(R® x R3) such that

. 1
adp(B) = 3 /dmdy <fn71(x,y)a2a;§ + fmg(x,y)axay) , for all n even and
. 1
ady(B) = 3 /dmdy <fn71(x,y)a;ay + fmg(x,y)ava) , for all odd n , (3.35)

where .
I frillLzxre < 27 [knells 1o ell2 (3.36)

foralln >0 andi=1,2,

: 1Entlla ifn=0
[ fn,illz < AR : , (3.37)
S 4 el ™ (WeallaIecalla + o ell3)  ifm > 1,
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and

/d:vlfn,z(:v,:v)l < 2%k a5 e,z
(3.38)

[ it o) < el (Wil + el
for all n > 1.

Using the bounds from the last lemma, we can now control the operator (i@tTj{,,t)TN,t,
appearing in the generator £y (t).

Proposition 3.13. Under the assumptions of Theorem 3.1, we have

+(i0, Ty 1) Tiv.e < Ce"IIN + 1), (0T ) Twva)? < Ce"IIN +1)2
+ [N, (8T 1) Twe) < CeMIN +1), N, (8, T5 ) Tve] < CeMIMN +1)?
£0,[(10, T3 ) Tive) < Ce"M(N + 1), [@[(i@tTﬁJ)TN,t]f < Cefl (N +1)?

Proof. For any fi, f € L*(R® x R3) with [ dz|f2(x,x)| < co we have

(. [ ey )azag + fag)asa)i)]| < (151l + 1la) 0. O + D)
and
(0. [ oy p)aza, + fo(o piasay) o)
< (Wile + 1521R) (6. M%) + [ dalfote )01
From Lemma 3.12 and (3.34), we find therefore

(¥, (i0: Ty, t)TN )| (3.39)
<3 b )

2|k (2]|k
DI e . Nt” Pl l OV + 117217 + 3= CLLZ i oo

n>1 )
< 62“kN’t”2||k3N,tH2||(./\/'—|— 1)1/2¢||2
< CRHI + 12y P 10
The bound
(0, IV GOTR )T al)| < ORI 4+ 1) 2

follows similarly, since the commutator with A is just eliminating the contributions

ad’b(B) for all odd n.

41



To prove the bound for [(i@tTj{,t)TN,t]Q, we use again (3.34):

(W, [GOTR )TN ) =D n+1 m+1 (¢, ad}(B)adg (B)Y)

n>0 m>0 (3 41)
3~ IsdbB e By |
Sl (m )]
We claim that
Jad(B)p|? = < [adp(B > < O (Ifaalle + [ fuzll)® (V4 1) (3.42)

for n even and

lad (86 = < [adp (5 >

2
< C(Ifaslle + [ Fnzlls)? (o <N+1>2¢>+c[ / dx|fn,2<x,x>|] ol

(3.43)
for n odd. The bound for n even follows because
.12
<¢a [ad%(B)} ¢> = /dxdydx/dy/ fn,l(xay)fn,l(x/,y/)<w’a:va’ya’a: y’¢>
—i—/dxdydx'dy' fn,g(x,y)fn,g(x',y')<¢,axayam/ay/w>
(3.44)

+ [ dndyds' @y foa ) (el ey
+ /dxdydx/dy’ Tn2(@,y) fo1 (@, y) (W, azayala '7/1>
The absolute value of the first term is bounded by
[ deda’asaub | (o) (0

< O + )9 / 022 | o1 allol| for o 12 0t
< Ol funlBIN + D]

The contribution of the second term on the r.h.s. of (3.44) can be estimated similarly.
The third term, on the other hand, is bounded by

[ sy @y o)l ) lasay ] oray o]

< / dadyda’dy’ [| f1 (@, 9) | aw ay ¥ lI” + | fa2(@',y)? lazayp|?]
< (Ifnal3 + [l fn2l DN + 1)
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To control the last term on the r.h.s. of (3.44), we observe that
[ dndyds'ay o) b ()0 00,00
— [ dndyds'ay o) o (9wt as,00)
+ [ dedydy oo ) (1)) (g 0)
+ / dxdydy' fr2(x,y) fa1(y,y') (W, azay )
— [ dndyds’ (o) 0 0y ()
+ [ dedydy 2.0 foa )iy + 101 [ dody oo 9) o)
s [ drdydy fuo(e, ) a0 st + 10IP [ ddyfa() s (0.2)

This implies that
| [ dwdyde'ay o) s ()0 0z )
N /dmdydx'!fnp(x,y)\Ham/(J\/+1)1/2¢HHazaya*(fn,l,m/)(f\/+1)_1/2¢H
+ /dwdydy’lfn,z(w,y)llfn,1(ﬂf,y’)l\lay¢|l\|ay'¢|l DI fuall2]l fa,2ll2

+ /dwdydy’!fnp(%y)anvl(%y’)\HaywaHGWH + 112 fa2ll2ll frt 12

< O fuall3 + 1 £ 2D NN + Dol
and concludes the proof of (3.42). Eq. (3.43) can be shown analogously. Combined,
they imply that
lad (B)o|| < CeIM[(N + 1)y
and thus, inserting in (3.41), that
[(i0:T% )T i) < CeMIN 4+ 1)2

Let us now consider the bound for the commutator [A/2, (10:Tx ;) Tn ] in Proposition
3.13. We observe that

[ N2, GOTRe ) T a]) | = [, NIV, GO ) Thval) + (W, GO ) Tha N )

1 "o
<2 3 oy | Nad(B))

1
= Cﬂ;ﬂ Ml + 12 ll2) [V + 1|2
< CeMMW + 1)y
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Finally, we observe that the bounds involving the time-derivative of (i0,T% ,)Tn, in
Proposition 3.13 can be proven similarly, taking the time derivative of the expressions
for ad(B), and using the bounds for || fnill2 and [ dz|f,i(z,z)| in (3.37) and (3.38)
and, finally, using the estimate for ||ky || proven in Appendix C. O

3.E Proof of Theorem 3.1

Finally, we combine all results of the previous subsections to prove Theorem 3.1.
From (3.5), (3.6), Prop. 3.2, (3.19), (3.29) and (3.34), we conclude that
LN (1) = i (1) + (0T5) T + L33 (1) + Vi + E v () + E v (0)

(3.45)
+ A1+ Ay
with
A =VNTS, {a*((NB’BV(Nﬁ.)wN,g 5 [N )N + hee.] Ty
1 * *
+— / dzdyN*V(N?(z —y)) [ (y)kni(2,y) Ty a5 T e + hoc.]
VN
Ay = /dxdy (—Azkn (2, y))aya, + /dxdy (—Azkn(x,y))azay (3.46)

43 [ dray NIV @ ) [ ()l ey + o () )
+ % dzdy N3V (NP (z — y))
x ey, s)a*(e)a*(e)) + (3, ¢ haley a(el))]

We observe that, by the definition of kx,
Ay = VN [ dady NV (N (o~ )l ()onate — o)
x [l W)@t (2) = @1 ((x +)/2)°] T} a, Ty + hec.
Using the bounds in Lemma 2.1, we find
| [ aunssv = el ol — e @) [ e O -7 (- + /27 |
and therefore

(W1, Arbe)| < ONTV2eRIH (W 4+ 1)V 29 |||V + 1)1 24 (3.47)
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Let us now consider the second term in (3.46). Using the permutation symmetry of

F, we find
[ iyt e

/dwdy(A kni)(x,y)a

*

/ dzdy [( Aykni(z,y)] azay,

= %/dxdy [<2Am y T A (z+y) /2> kn (@ ] U0, (3.48)
_ N / dady(Dwn ) (@ = y) (@l (x+9)/2))%a
- %/dﬂ?dwa,z(x - )

< o ((z +9)/2)8¢7 (x +9)/2) + IVey ((z + 9)/2)*] aza;,

Moreover, we have

1 * *
- / dedyN**V (N?(z — y)el ()l (y)aia

er—l

1 (3.49)
== /dxdnyWV(Nﬁ(x )¢t (& +y)/2)%aa; + By

where

By = [ dadyNV (V@ - ) [ (o + /27 - o @6l )] ol

and
o [ ANV = e sat(e)a ()
= -5 [ ANV @ g)onsle = )l (@ +0)/2) P + B
with
Ba= g [ dsdy NPV (N =)o) + sl (@)a ()
=5 [ Aty NIV @ = )~ ) (o + /2P )
~ 5 [ Ay NIV @~ el — ) (o + /20" () )
By the definition of fy =1 — wn;, we conclude that
Ay = [ dadyan o -y)
< [N (@ +9)/2)86) (@ +)/2) + Vel (z +9)/2) ] aia;

N / drdyl(|z —y| < O(eN (@ +1)/2)) a%a;

—{—Bl—{—BQ—FBg—Fh.C.

(3.50)
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with
By = —NAN,e/dl‘dy wn ez —y)(er ((x +y)/2)asa;

Next, we show that By, B, Bg are small. To control By, we define fy; through
|z =yl fna(z,y) = o (@)e) (y) — 7 ((x +9)/2)

We set W(x) =V (x)|z|, we define

@) === [dy W)

“an ) Y=yl
and v = Vg; then we have V - v = W. Integrating by parts, we find
[(vh1, Bipo)| =

1
= oG ‘ /dx dy N3V (NP (z — y))NP |z — y| fin (2, y) (1, a}a;, ¢2>‘

(3.51)

1
< o [ el o (V0N = ) Vo (e, ) el

1
+ W/dfﬂ\lvmawﬂl a*(N?Pu(NP (2 — N (2, ) ba|

Since ||v]l2 < Cl].|V[|g/5 and [ || g2 < Cell we obtain

IN?P0(N® (2 = y))fe (2, )|z < ONP/2XN
INo(N? (@ — ) Vafi (o, )l < ONP/2AI
From (3.51), we conclude that
(1, (B + BY)ba) | < ONTF2S [y, (W K+ 1)ebn) + (2, W+ K+ 1)ein)]

To bound B», we notice first that

[ dmagNV @ - ) [0 ) + i) (o )a (o)

C Kl
< _
~ N2

‘L
2N
[(v1, [V + WV +1)?/N] 1) + (2, 92)]
as it easily follows from Lemma 3.9. Moreover, we find

5 [ sy NSV (N = oo = ) (2 + 9)/2)P 0" (0 )|

K
<
= 9N

1
=] P ll2 llaytbr [V + 1)1 24|

< ONPLHMH A+ 1) 2 [[||(NV + 1) 24|

/dxdy N3¥BV(NP(z —v))
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and an analogous estimate for the term proportional to a*(c)a* (p]yv ). Hence, we con-
clude that

|(1,(B2 + B3)2)|
< C'max [Nﬁfl,Nfl/2 Kt
X [(@1, (VN + N +1)%/N 4+ 1)¢h1) + (2, Vn + (N +1)%/N + 1)¢bo)]

Finally, we control Bs. From the bounds in Lemma 2.1, we immediately find that

(1, (B3 + B3)w2)| < CN" (b, (N + 1)¢h1) + (o, (N + 1)eba)]
Combining (3.45) with (3.47), (3.50) and with the bounds for By, B, Bs, we find
L) = v (1) + Lon(t) + Vi + Ex(t)
with
Lo (t) = (0T Tve + L5 (1)
+ g /dxdwa,g(x —v)
x (o (& + 9)/2)A¢) ((x +9)/2) + [Ver (« +y)/2)[*)ajay + hec.]

+ Ny / dady 1(|z — y) < 0) [(¢Y (= + y)/2))%a%a’ + hc]
(3.52)

and where En(t) = Ena(t) + Ena(t) + A1 + By + By + Bs satisfies the estimates (3.2),
(3.3) in Theorem 3.1.

To complete the proof of Theorem 3.1, we still have to show that the last two terms
on the r.h.s. of (3.52) satisfy the bounds (3.4). But this fact follows easily, since, from
Lemma 2.1, Nwy (z —y) < C1(Jx —y| < £)/|z —y| is square-integrable and Ny, < C
is of order one.

4 Growth of Number of Particles and Energy

We apply the estimates of the Section 3 to show a bound for the growth of the expectation
of the number of particles with respect to the fluctuation dynamics generated by Ly (t).
Moreover, we prove bounds for the growth of the expectation of the number of particles,
of the kinetic energy and of their square with respect to the dynamics generated by the
quadratic part of the generator Lo n(t).

We need, first of all, to compare kinetic and potential energy operators with the
generators Ly (t) of the full fluctuation dynamics and with its quadratic part £ . The
following proposition follows directly from Theorem 3.1.
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Proposition 4.1. Under the same assumptions as in Proposition 2.2, there exists a
constant C > 0 such that

%(;c +Vn) = CeXIH N + 1+ N?/N] < Ln(t) —nn(t)

< 2K + V) + CeflU [N + 1+ N?/N] ey
Moreover, we have
K — CelH N +1) < Lon(t) < K+ CeBIHMN +1) (4.2)
and )
5/@ — CeMIN + 1) < £3 (1) < 2K% + CeMII (W +1)? (4.3)

Next, we control the growth of the expectation of the number of particles and of the
energy with respect to the fluctuation dynamics Uy (¢; s).

Theorem 4.2. Under the same assumptions as in Proposition 2.2, there exist constants
C,c1,c9 > 0 such that

U (8 0, N (10)) < C expler exp(ealt)) (0, (N + N2/N + Ha) )
(U (t;0)0, (L (t) — v (8)Un (£ 0)0)] < Cexpler exp(ea|t])) (W, (N +N?/N +Hy) )
To prove Theorem 4.2, we use the following lemma, whose proof can be found in [6].

Lemma 4.3. Let the fluctuation dynamics Un(t;s) be defined as in (2.15). Then there
exists a constant C > 0 such that

Un (£ 0N Un (t;0) < C(NUxN 0N Un (£0) + NNV +1) + (N +1)?).

Proof of Theorem 4.2. From Theorem 3.1, (4.1) and Lemma 4.3, we obtain

@ 000 Nt (101
= (Un(t;0)0, [iN, Ly (t)UN(t;0)1))

< Ce™ MU (1 0)4p, Nty (£ 0)9) + Un (85000, (L () — nv () Un (£ 0)))
+ CeK1 (y, [(N + 1) + N?/N] o)

and

@ U (10}, (Lx(t) — (1) U (1:0))
= Un(t:0)0, (L (t) — v () Un (£ 0))

< CeM M U (;0)0, Nty (£:0)9) + Uni (8500, (L () — nv () Un (£ 0)1))
+ CelI (4, [(W + 1) + N2/N] ¥)
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We conclude that

d

= (Un (00, [ ORI +1) + (L (1) = v (1) | Un (5:0)0)

< DRI (U (800, | CeMMN 4+ 1)+ (L (8) = ()| Un (15009 )
+ DKW (4, [(N + 1) + N2/N] ¥)

for appropriate constants C, K (chosen so, that the operator Cexp(K|t|)(N + 1) +
(Ln(t) —nn(t)) is non-negative) and D > 0. Gronwall’s Lemma implies that

(U (80w, | RN +1) + (Ex (1) = ()] Un (15 0))

< Cexp(er exp(ealt]) (o, [N +1) + N?/N + Hy| ¢)
which completes the proof of the theorem. O
Finally, we control growth of number of particles, energy and their squares w.r.t.

quadratic fluctuation dynamics.

Theorem 4.4. Under the same assumptions as in Proposition 2.2, there exist constants
C,c1,c9 > 0 such that

({Uo, N (t;0), NUa N (£;0)0)
(Uo,n (£ 0)0), N Us, v (£;0)1)
t:0

) p(c1exp(ealt])) (¥, (N + 1)4)
)
(Us, N (£ 01, L3 5 (£)Ua,n (£ 0)1))
)
)

< Cex )
< Cexp(er exp(eaft])) (1, (N + 1)) (4.4)
< Cexp(er exp(ea|t)) (W, (K + N +1)%))
Remark. The last bound in (4.4 )
(Us, N (t;0), K Us n (£;0)1) )

Proof. From Theorem 3.1, we obtain

combined with (4.3), also implies that

< Cexp(ey exp(ea|t]) (W, (K + N + 1)%)

o (100, (N + Do (1:00) = W (10)0 [ L (1)t (1:0)0)
< CeM MUy (£ 0)0, (N + 1)Ua, v (5 0)1))

Gronwall’s lemma implies that

(Us, N (;0)h, NUaz N (;0)1h) < Cexp(cy exp(calt])) (1, (N + 1)ah)

The estimate for A2 follows analogously. Finally, we compute, using again the
bounds in Theorem 3.1,

o (1.0)0 L3 (1o (5, 0)0)
= Us,n (10}, | £ N< Lo, (1) + e | Uo, (8 0)5)
< (U, (5 0), L3 5 (U v (£ 0)0) + Ua,n (8 00, L3 v (#)Uo, v (15 0)0)
< (Ua (: Ow,ﬁ ~ (U, (8 0)) + O™V Uy v (8 0)0, (N + 1)U v (£ 0)8)
< (U N (85000, L5y ()2, v (£ 0)1)) + Cexp(cexp(clt])) (¥, (N + 1))
Gronwall’s lemma and equatlon (4.3) imply the last bound in (4.4). O
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With the help of Theorem 4.2 and Theorem 4.4, we can now conclude the proof of
Proposition 2.2.

Proof of Proposition 2.2. We have

% HUN(f; 0)en — ¢ Ho (I 1y (2 0)€NH2

= 2Im (Uy (£, 0)n, (Lx(t) — Loy (t) — (D)) e~ o W81y (1:0)6 )

< CKUN(E,0)EN, E(t) Ua,n (8 0)EN )| + CI{UN(E, 0)En, Vv Us N (5 0)EN )|

< ON [ Uy (8 0)€n (K + Vi + N + 1k (1 0)6w)

+ (U (8 0)6n, (K2 + N2 + 1o (15 0)éw) |
where a = min(S3/2, (1 — 3)/2) and where we used the bounds in Theorem 3.1 and
Lemma 3.10. Applying Proposition 4.1, and then Theorems 4.2 and 4.4, we obtain
% HUN(t; 0)én — e Jo i (s)ds Us N (t; 0)§NH2
< Cexp(er exp(ealt)) N~ (En, (N2 + K2 + Vv )én)

Integrating over time, we conclude the proof of Proposition 2.2. O

5 Comparison with the limiting fluctuation dynamics

Next, we prove Theorem 1.2. Proceeding similarly as in Proposition 2.2, we observe that

e NI (VN Q) T o€ — el WSS (VNN VT s, oo
= W(VNeN) Ty [thn (85006 — e oy &dsys, (1:0)ey

From the result of Theorem 1.1, it is enough to compare Us n(t;0)En with Us oo (t;0)EN -
To this end, we need to compare the two generators Lo n(t) and Lo o (t) defined in (1.31)
and (1.40); we do so in the next four lemmas.

Lemma 5.1. Recall the definition of L';I;; and EgK)(t) given in (1.33) and after (1.40).

Under the same assumptions as in Theorem 1.2, with oo = min(5/2, (1 — 3)/2), we have

[, (£50) = £89®)) va)|

(5.1)
< ON~“exp(er exp(ealt])) |V + 1) 2y || [V + 1)1 24|
Proof. From (1.33), all contributions to the difference L'g;; - EgK) have the form
A = /dxaﬁ(mx)am or AT = /dxa;aﬁ(mm)
(5.2)

A= [dodm)ai) or A5 = [ @i)am,)

20



Here m, j € L*(R? x R?) with ||j||z < CeXl* and
Imlly < CN™%exp(c exp(cat])) (5:3)
Eq. (5.1) follows therefore from the bounds
(1, Arta)| < Cllm2l|(N + 1) 29 || [V + 1) 24|

and

(91, Aztha)| < Cllmll2 ]l ll2 (N + 1)V 21| [N + 1)1

which can be proven as in Lemma 3.4.

When we consider the different terms in (1.33), the kernel m is a difference like
knt — ki, png — P, TN — Tt VPN — Vi, Apnyg — Apg or Ary — Arg. In these cases,
(5.3) follows from the results of Appendix C.

Notice that also the contribution

B = /dxvxa*(kziv)vma(kév) - /dazvxa*(kzm)vxa(kx) (5.4)

can be written in the form A; in (5.2), with m = uy ¢ — v and

unt(z,y) = /szka,t(x,z)VxEN,t(x,y), u(x,y) = /dszkt(x,z)vwgt(x,y)

To prove that (5.3) holds in this case, we estimate

HUN,t - UtHg :/dmdy’uN,t(xay) - Ut(ﬂcay)’2

2

< C’/dxdy '/szZkMt(z,y)(Vzlz:N,t(x,z) — V.ki(z,2)) (5.5)

2
+ C/da:dy ‘/dz(vsz,t(Z,y) — Vki(2,9))V.ki(, 2)

Integrating by parts in the first term, we obtain

2

/dwdy‘/szszﬂg(z,y)(VZkNJ(x,z) — V.ki(x, 2))

g/dmdy‘/dz Ackni(z,y) (kv (2, 2) — ke(, 2)) 2

S/dﬁﬂdyd21d22 AL kN (21, )] 1A kN e (22, )|

X knt(z, 21) — ke(x, 21)| |kn (2, 22) — ke, 22)]
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By Cauchy-Schwarz inequality, we find
2

/dxdy ‘/dzvsz,t(Zay)(szN,t(xa z) — Vik(z, 2))

< /dwdzl |kn (2, 21) —kt(.%'721)’2811p/dy’AzlkNﬂj(Zl,y)‘Sllp/dZQ’AZQkN7t(ZQ,y)’
21 )

< CefMky, — k|2
(5.6)

In the last inequality, we observed that

AL kNt (22,Y)
= — NAwn(z2 — y)(o (22 +9)/2))?

N onales — ) [0 (22 + )/ DAY (22 + )/2) + (Vo) ((22 + 1)/2)]

2
— 2NVuwne(z2 —y)er (22 +9)/2) Ve (22 +y)/2)

Using the scattering equation for fy,=1— wn, we get

AL kN i(22,Y)

38
= TV — i) vz — ) (2 0)/2))

— NAnefne(z2 — 9)1(|z2 — y] < O(0) (22 + 1) /2))?
N ona(zs — ) [68 (2 + 1)/2) 20N (22 + 1)/2) + (Vo2 ((22 + 9)/2)]

- —w
2

— 2NVwn(z2 = y)ep (22 +9)/2)Ver (22 +9)/2)

With the bounds from Lemma 2.1 and Proposition B.1, we conclude that

sup [ dy|Aks(za,9)] < Cllef [z < CeX
29
The results of Appendix C, combined with (5.6), imply that

2
< CN2*exp(c; exp(ealt]))

/dmdy ‘/szzk:N,t(z,y)(VZI?:Mt(x,z) — V.ki(z,2))
Proceeding analogously to bound the second term on the r.h.s. of (5.5), we obtain
lun: — utl]2 < Cexp(cr exp(czlt])) [NfHﬁ + NP2
Hence, as claimed, also the term (5.4) can be written as the term A; in (5.2), with the

kernel m = uy — u satisfying (5.3). O
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Lemma 5.2. Recall the definition of L'gvj\), and L'gv)(t) given in (1.32) and after (1.40).
Under the same assumptions as in Theorem 1.2, with oo = min(5/2, (1 — 3)/2), we have

[, (£528) - £87 ) )|
< ON~* exp(er exp(ealt]) [V + D)V 2|V + K + 1)1 24|
(In fact, the kinetic energy operator K could also be placed on 1);.)

Proof. From (1.32), we observe that all terms in Eé"/j\),(t) have one of the following forms:

AYy = [ dody NPV (N = )l @l ) e G
AYy = [ drdy NPV (N = ) @l ) ey

AYy = [ dedy NPV (N = )l @l e, y
A = [ dedgNPY (N = ) (@)l () G )b ) o
Ay = [ drdg NPV (N = ) (@ (@) G

Ay = [ dodgNPY (N (o = ) @l (e

(or possibly, the form of the adjoint of A{YQ or AQ{Q). Here )Y denotes the solution
of the N-dependent nonlinear Schrodinger equation (2.10), and jiV, ¥ € L?(R3 x R3)
being either the operator sinhy, , or py ¢ = coshgy , —1. (In fact, some of the @l factors
should be replaced by @}, but this does not affect our analysis).

To estimate the difference Eg"/j\),(t) - Eév)(t), we need to compare the terms in (5.7)
with their formal limits:

Ay =by [ dadyd(x —y) ee(x)ee(y)a (j1,.2)a* (jay)
drdy 5(z — y)pi(x)ee(y)a (j1,2)ay
drdy §(x — y)ei(z) e (y)agay
drdyd(z — y)pi (@) (2)at (1) (o)

Az =1by [ drdyd(r — ?/)SDt@)SDt@)aﬁ(ij)ay

/
-/
s=n
-]
/
/

Azz =bo | drdyd(x — y)pi(z)pi(z)aya,

where ¢, is the solution of the limiting nonlinear Schrédinger equation (1.26) and ji, j2 €
L?(R3 x R3) are either sinh(k;) or p; = coshy, —1, with k; given by (1.37). Note that,
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from the results of Appendix C, we always have
i = 5[l < ON™exp(er exp(cat])) (5.8)
for i = 1,2. The lemma will follow if we can prove that

(W1, (A — Ay j)iba)|
< CN~“exp(cr exp(ea|t]) [V + 1)V 20| [V + K + 1)1 24h]|

forall t=1,2 and j = 1,2, 3.
We start comparing A{\f 1 with Ay ;. To this end, we observe that

A{Yl — Ay
— [ dady NV @~ )l @)l WG, — o)
- / dzdyN*’V (N’ (z — )@ ()¢} (y)a* (j1 — 1.2)a" (zy) (5.9)
+ [ dnay[ NPV (@ - ) - bod(a = )|l @l (1) 1.0)0 )
+ / dxdy bod(x —y) (cpiv (@)er (y) = %(@%(M)aﬁ (j1,2)@* (o)
The contribution from the first term can be bounded by

| [ dndy NV @ ) @)l ), GG  — dna)

< Ol e 138 2 13 = Jall IOV + Y22 + 1)V (B10)
< ON~%exp(er exp(ealt) [N + D200 || ||V + 1)1 24|

Also the contribution from the second term can be bounded similarly. The fourth term
on the r.h.s. of (5.9), on the other hand, is bounded by

[ el @) - @) [0 )08 G|

< (16N oo + letlloo) 9N = oo / dz |0 (1)t || [|a Goa)o]| 1D
< ON exp(er exp(ealt])) [N + D)Y20 [V + 1)/ 24)

Finally, we have to bound the contribution arising from the third term on the r.h.s. of

(5.9). We have
[ ey (VYN = ) = b0 = )l @) (0) (. ) Gy )
— [ dndyV () [ (2l o+ 9N 01,0500 2)
— o1 (2)* (W1, @ (j1.0)a* (joa ) 2)
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and thus
( /dwdy (N¥V(N(z = y)) = bod(z — y)er ()1 (y) (W1, 0 (j1.2)a* (o )2
< /dfvdyV(y)hDiv(fﬂﬂ o (z + y/NP) = o ()] [|a* (1.0 )¢ | a* (o gy ve )2l (5.12)
+ /dwdyV(y)!@iv(w)PHaﬁ(jl,x)wlHHaﬁ(jz,ﬁy/zvﬂ — J2.0)¢2|

The first term can be easily controlled with Proposition B.1. We find

/dxdyV(y)lin(ﬂf)l o (x +y/NP) — oY (@)|[la* (e )1 |0 (oo v )02
< N7 exp(er exp(ealt]) (N + D21 | [V + 1)1 24|
As for the second term, we estimate it by
/ dadyV (y)|er” (2)[|a* Gra) w10 (a gy e — G2.0) 02
< ON PR + )Y 20 || (N + 1)1 245 /dxdy
1
x /0 AV () lylle ()P 151,212 [ Vadamragn-sl2

< ON PR 3112l Vagall2 |V + 1)V 20| [NV + 1)1 24|

We are interested in jo = sinhg, and jo = p; = coshg, —1. In both cases we have
|Vajall2 < CNP/2 (in the case j, = py, we actually have the better bound ||Vajs||2 < C;
see Appendix C). Hence, we conclude that

/ drdyV ()oY () 2lla* () 10 Gy s — o)
< ON“BRERI N 1+ 1)Y20 | |V + 1) Y240

and therefore, inserting in (5.12), that

| / dady (N*PV (NP (z = y)) = bod(z = )t ()0 (1) (¥, 0 (j1.2) (o )¥bo)
< ON™#2 exp(er exp(ealt)) [V + 1) 20| (A + 1) 4]

Together with (5.10) and (5.11), we obtain from (5.9) that

[(1,(AT) — ALp)n)| < ON™exp(er exp(eaft])) |V + 1)y | [V + 1) 24|

Similarly, we can show that
(1, (AN — A12)2)| < CN ™ exp(er exp(ealt])|(NV + 1)V 24 || (N + 1)1/ 24|
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In fact, the contribution
| [ dndy (NVN @ ) = bl — ) el () (0) (o, 0Py )
< / dadyV (@) ¢ (5)ouly + 2N )1, @iy on-o)aytin)
~ N W), @ (ry)aybo)

< [ dsagv@lelf )l [erty + 2N ) = & )] 106Gyl el

+ [ dnagV @)l )P Gy an—s — na)en gl

can be dealt with as the third term on the r.h.s. of (5.9).
Next, we consider the difference A{\fg — Ay 3. We write

‘<¢17(A{\,[3 - A1,3)1/12>‘
< /dwdyN?’ﬁV(NB(w —)ler (x) — oo (@)| [ef W)] laxt[lllayell
+/dfﬂdyN36V(Nﬁ(fU —))ler@)ler () — ee()] llast|lllayal

+ /dMyN?’BV(NB(x —9)) [ee(2) e (y) (astn, aytha) — o1 (2)*(azth1, aziho)]

=14+ 11+1II
(5.13)

We can control the first term on the r.h.s. by

L< 0t — tlloollellocl| (A + 1) 20 [[[|(V + 1) 24|
< ON~exp(er exp(eaft]) (N + 1) 20| [|(N + 1)1 20|

The second term on the r.h.s. of (5.13) can be controlled analogously. As for the third
term, with a change of variables we can write

i< [ dadyV ()l @)llonte+ uN ) = er@)llasthlles -l
+ [ dedyV ()lon@)P e, (@ -0 — as)ia)
< GNP+ )P [| + 1) 2| (5149
+ [ oty | LDV GNP 0 PtV ez apar-atal

< CRMNTRN + DY 200 | [(K + N + 1) 24|
The bounds for the terms

(1, (A — A i)iba)| (5.15)
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for ¢ = 1,2, 3 can be obtained similarly. In this case, since both field operators depend on
the same integration variable y, the difference between N3V (NP (2 —y)) and bod(z — )
can be controlled through the difference between ¢ () and ¢} (x +yN—?). Smallness
here follows from the regularity of ¢, there is no need to use the kinetic energy of v
and 1y (in contrast with the term AJl\j?) — A 3). To illustrate this point, let us briefly
consider the term

‘(7/117 (Agg—A2,3)¢2>‘

< ‘ / drdy(N*V (NP (z —y)) = bod(z — y)) @/ ()% (aybr, ayha)|  (5.16)

+bo/dw [l (2) 1 = loe(2) ] laztr|ll|actbe]

The second term can be bounded by

1/2 1/2
boM@Ww+wwmwaﬁ—¢Mm(/ﬁwmﬂmw) (/dwmﬂmw)
< ON~* expler exp(calt)) N2 [ |AY24

As for the first term on the r.h.s. of (5.16), it can be estimated by
[ sy V@) |l o+ o2 - o 2 gy el

<O [y [ V@IV 0+ 20Nl
< ON IR MN 2 [N 24|
From the last two estimates, we conclude that
(W1, (A3 — Az 3)2)| < CN™* exp(er exp(ealt])) [N 2 [N 24 |
Analogously, we can also control (5.15), with i =1, 2. O
Lemma 5.3. Recall the definitions (1.29) and (1.39) of Tny and T;. Under the same

assumptions as in Theorem 1.2, with « = min(5/2,(1 — )/2), we have
| (¢, ((10,Tx )Ty — (i0,T7)T1) T/Jzﬂ
< Cexp(er exp(ea|t)) NN + )20 [[[|(V + 1) 24|

Proof. We use the notation

1 * ok A
Bn(t) = 3 /dﬂ?dy <k‘N,t(l“,y)%ay - kﬁN,t(%?/)%%)
and

B(0) = 5 [ dedy(hs(a,y)aa; ~ Tl y)asay )

N | —
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Then we have T = exp(Bn(t)) and T} = exp(B(t)). We will make use of the repre-
sentations

(0T = Y CU o (Ba(). GO = > CU iy (1)
with _ _
(B () = 5 [ dody (£33t + (e v)asay)
i (BO) = 5 [ dedy (fuslo,p)ata + Fua(e.p)ase,)
where ni and f,;, for i = 1,2 and n € N satisfy the bounds from Lemma 3.12 (once

with ky; and once with the limiting kernel k). We find
| (¢, ([i0,Tx 4T, — [i0,T; 1T3) ba)|
1 n > n >
< Z m‘@/}h (ad, ) (Bn (1)) — adfp (B(t ))t2)|

= Z an L= Fualla 1 = Frall2) [V + D2 [N + 1)1 24|
T s Z o [ 4o | 1ae.) = fancrofa2)
n>1
(5.17)
Next, we claim that
1Y = frllz < (2llkell2)" ne — el
n—1
e (5.18)
+ 2llkn e — Fellzlln e (2lknal)’ (2l )"
7=0
and that
/dﬁﬂlfﬁi(x,x) — frg(@, @) < 2llkell2) " one — Fell2
n—1 -
+20lkn g — Kellallne Y (2llknall)’ (2l l)"
7=0
(5.19)

for all n € N (with the convention that the sum disappears if n = 0). These bounds,
together with the estimates in the appendix C, complete the proof of the lemma.

It remains to show (5.18) and (5.19). We proceed by induction over n € N. For
n = 0, we have

f(!)\,[l(x’y) = ];:N,t(x,y)a fé\,g(xay) :EN,t(x’y)
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and analogously for fy1 and fp2; the bounds (5.18) and (5.19) are clearly satisfied. Let
us now assume that (5.18) and (5.19) hold for some n € N. We prove they also hold for
(n+1). We consider first the case n even. By Lemma 3.12 we have

Frna(e2) = =5 [ dy(ke9) (Fnalesn) + Faa(y.2)

iy 2) (fa2l,9) + fa(y,0)))
frna(e2) = =5 [ dy(kes,2) (ra(2,0) + Fur (0. 2)

@, y) (Fan(5:9) + fa(9:2))

N 1 N 2 1/2
an+171 — fat1all2 < B /dﬂ?dz /dy(kN,t(xay)fn,z(Z,y) - k?t(l“,y)fn,z(zay))
T 971/2
by | [ oz [ dyOomate ) 00.2) = b ) sl 2)

- 971/2

+% /dxdz /dy(kN,t(y7 z)fr]LYQ(x7y) - kt(yaz)me(x?y))

r 971/2

+% /dxdz /dy(kN,t(y7 z)fr]L\fZ(y7x) - kt(yaz)me(y?x))

and similarly for f,ﬁ171(x,z) and fﬁrm(x,z). Therefore

By the Cauchy-Schwarz inequality, we find

1Ner = Furrallz < 2( Uk = Rella | £z + WeelaL £y = f2llz)

Using the induction assumption (5.18) and the bound ||f7]xl||2 < 2llknell2)™ enello from
Lemma 3.12, we obtain (5.18) with n replaced by (n + 1). Moreover, we notice that

/dm | (@, 2) = frgra(z, @)
=5 [ o] [ duthnate.s) + Fovatw o) (o) + £o(00)
- / dy(he (2, 9) + Ty, 2)) (Faa () + Fa(y 7))
< / ddy [l o (2, 9) — Kol 9)] (1FYo (0] + | £y, 2))

o / ddy |ky(z, 9)| | £ (@, y) — fua(z,y)

< 2|k = kellzl| faallz + 201 f02 = Fazll2llkell2
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Again, the induction assumption, combined with the bounds of Lemma 3.12 imply (5.19),
with n replaced by (n+ 1). The bounds for ¢ = 2 and for n odd can be proven similarly.
O

Finally, we compare the last two terms on the r.h.s. of (1.31) with the corresponding
terms on the r.h.s. of (1.40).

Lemma 5.4. Under the same assumptions as in Theorem 1.2, with « = min(5/2, (1 —

B)/2), we let
DY = / drdy Nuwy o(z — y)on (& + v)/2)asa

DY = Ny [ dadyt(fe — y| < 06 (2 + )/2 el

and
Dy = /dmdy w,/ " (2 = y)o((x + y)/2)aza,
3b0 2 *x %
Dy = o—5 | dedyl(le —y| < O@il((x +9)/2) azay
with

on(2) = ¢} (@) Ap () + [Vl ()P and  ¢(x) = @i(@) Apy (@) + [V ()
Then we have
(b1, (Ds, v — Di)tha)| < ON™exp(er exp(ealt])) [V + 1)V 2u[[| (N + 1)y
fori=1,2.
Proof. We have
DY — Dy = /d$ dy (Nwe,n(z —y) — wy™™(x —y)) o (2 + y)aza,

(5.20)
T / dz dy ™™ (@ — y) (65 (z +y) — (z +v)) aa

To estimate |(11, (DI — D1)1s)|, we observe that, for any Hilbert-Schmidt operator A
on L%(R?), with the integral kernel A(z,y), we have (with the usual notation A,(y) =
A(z,y))

' / dredyA(z, y) (Y1, aza,s)

_ ‘ / dar (g, a* (A, i)

< /dﬂCHawlHHAJCHQH(/\/Jr 1)Y24| (5.21)
< [[Aflus |N + 1) 2| (N + 1)1 24|

60



Hence, we find

(1, (D{V—D1)1/12>‘
<N + 1) [N+ 1) 2|

<[ [ dedyiNewata = ) = ¥ = )P lox (2 + )2
asymp 2 2 1/2
+ [ dndg™ (@ — g on (@ +)/2) — 6o+ /2P
< ON~exp(er exp(ealt)) [V + 1) 20|V + 1)1 24|
To control the difference D5 — Do, we write

(DY = Do) = (Vo =) [ dody1o =yl < 0) (6 (@ +0)/2)) e

2 * %
i [dedyie =y <0 (6 (@ +)/2)" - P +0)/2) i
where we defined A\, = 3by/87¢3. Hence, with (5.21), we find

[(w1.(D) = Da)iia)

< CIN + DV2 ||V + 1)V 24|
3bg
X HN)\N’Z — —87Tf3

< ON~*exp(er exp(ealt])) |V + 1)1 29[|V + 1)1 24|

T KN m\z]

We are now ready to show Theorem 1.2.
Proof of Theorem 1.2. We write
He_mNtW(\/Nw)TN,oﬁN — e o mv(s)ds W(\/N@iv)TMtUzoo(t)fNH
< Un (006w — e~ o gy (1 0)¢n |
< |l (£ 0) € — e o IOy (1 0)n | + U, (£ ) — Up,oo (£ 0)En |

The first term can be estimated with Proposition 2.2. To bound the second term, we
apply Lemmas 5.1, 5.2, 5.3, 5.4. We find

D o (:0)€n U (t:0)E
< C[(Ua,n (80)En, (Lon(t) — Looo(t)) Us N (E;0)EN)]
< ON™%exp(c1 exp(calt]))
X [(Ua, N (t;0)En, (N + K+ DUz N (:0)EN) + (Usz,00 (15 0)En, (N + 1)Uo o0 (15 0)EN)]
< ON~“exp(ey explealt)(En, (N + K + 1)EN)
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Theorem 1.2 follows integrating this bound over time. In the last step, we used Theorem
4.4 and the fact that, exactly as in Theorem 4.4, we can also control the growth of the
expectation of N with respect to the limiting fluctuation dynamics Us o, i.e. there exist
constants C' c1, ¢y > 0 such that

(Us,00(t;0)EN, NUa o6 (t;0)En) < Cexp(ey exp(calt])(En, (N + 1)En)

A Properties of the Scattering Function

In this appendix, we give a proof of Lemma 2.1, containing basic properties of the ground
state fy ¢ of the Neumann problem

1
~A+ S NPVND) | fve = Avefe

on the sphere |z| < 2.

Proof of Lemma 2.1. To prove an upper bound on Ay ¢, we use a constant trial function.
With the notation

- _ 3 B
b A+ NN V(NPzx),

we find
(1,01) 1 Sue NPV(NOz)de gy,
(1,1) 2N [ ~ SN

Anye <

for £ > NP, Before proving the lower bound in (2.6), we prove parts ii) and iii) of the
Lemma.

Part ii) can be proven as in [16, Lemma A.1]; we skip the details. As for part iii),
we observe that, from (2.5), we can write

wn (@ C/dy N3571V(N6y)fN,é(y) — AN
(A1)
N dy’ ‘N?’ﬁV(Nﬁ y) fne(y)
The Hardy-Littlewood-Sobolev inequality implies that
_ C |z| + NP
2|+ N P wye(z) < = | dy =———N3BYV(NPy
(el + N ) nala) < 7 [ dy T NPV (N
C C 1
<= N3V (NPy) (NP 1
< SVl + s [ A NV + 1)

<V 10+ DV Ollye)
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Furthermore, taking the gradient of (A.1), we can also estimate
(N7 4 J2*) Ve ()|

<c [ay( A ) (NPV (V) + Al (ly] < 0) fve(w)
< Y g2 |z — y[? Y NeLUY] = Ne\Y

< O(INPTVNP )+ NNV (ND) (NP2 + 1) 15)
+ CAne (N "21(Jyl < Olls + 12(y] < Ol + Iy P11yl < O)l15)

/

c , C
<= L2V <=
<5 UVIs +1VIE+IPVOls +1) < 5

for any ¢ > N5,
Finally, we have to prove a lower bound for the eigenvalue Ay . To this end, we use
the estimates 0 < wy ¢(x) < C/(N|x|), established in part ii) and iii). We have

I (fnesbfne)
N v Fve)
1 1
>

Sl (1 + W?v,g(:v)) da 2N Jiz|<e

1 1 C
L S SR VL
> sy o sV O/

3bg 1 C
STN 3 N1-8

forall > NP and 0 < 3 < 1. O

N3BV(NPz) (1 — 2w ()

B Properties of Nonlinear Schrodinger Equations

For a given initial data ¢ € H'(R?), we define ¢V as the solution of the modified time
dependent nonlinear Schrédinger equation

ot (2) = —Ap] (@) + (NPV(N7) fve () * @1 [P) (@) ot () (B.1)

where fx ¢ is the solution of the scattering equation (2.5). Moreover, we denote by ¢
the solution of the limiting equation

i0ppr = —Api + bo s>t (B.2)

where by = [dx V().

We need some standard facts concerning the well-posedness and the propagation
of higher Sobolev regularity for these equations. Moreover, we need to estimate their
difference in the limit of large N. This is the content of the next proposition.
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Proposition B.1. Let V € L' N L3(R3, (1 + |z(%)dz) be non-negative and spherically
symetric. Let o € HY(R3) with |||z = 1.

i) There exist unique global solutions P~ and ¢_in C(R; H(R3)) of (B.1) and, respec-
tively, of (B.2) with initial data @. The solutions are such that ||o¢]|a = ||oN |2 =
lellz =1 and

leell e, o g < C
for a constant C > 0 and all t € R.

i) Under the additional assumption that ¢ € H"™(R3), for an integer n € N, then
o1, o € H"(R?) for all t € R and there exist constants C > 0 (depending on
llollzm and on n) and K > 0 (depending only on ||¢|| g1 and on n) such that

el zns o | m < Ce™ M
for allt € R.

iii) Let o € H*(R3). Then there exists C > 0 (depending on ||| gs) and K > 0
(depending only on ||| 1) such that

el a2 ll2ell2 < CeX M

iv) Let o € H?(R®). Then there exist constants C,c; > 0 (depending on ||¢||52) and
¢y > 0 (depending only on |||/ g1) such that

loe — @i ll2 < ON Y exp(erexp(eaft]))  with v = min(5,1 - B).

v) Let ¢ € H*(R®). Then there exist constants C,c; > 0 (depending on ||| g+) and
ca > 0 (depending only on ||| 1) such that

loe = @i 2, 20 — @Vyllz < ON "V exp(erexp(eelt]))  with ¥ = min(8, 1~ 5)

Proof. The proof of i)-iii) is quite standard and can be found, for example, in [6, Prop.
3.1]. Also the proof of the bound

llor — cinHg < CN 7 exp(cy exp(ealt])), with v = min(3,1 — ()

can be found in [6, Prop. 3.1], up to the observation that
‘ / de N3PV (NPz) fyo(x) — by| < CN P
as follows from Lemma 2.1, writing fx, =1 —wpn . To prove v), we observe that
ot —pp = i/otds AU+ 9] )l — boliosPes]
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with Uy (z) = N3V (NPz) fy o(x). We estimate
llee = @0 12

t
D S N[O e B
a1 |+|az|+las|<2 /0

t
= > / ds ||(Un * (V) = V0,) V2R ) Vel |
ot [+ oz |+og| <2 7O

t
Y / ds ||(Un % Vo1 g, (V250 — Vo25,)) Vo |
ot |+ 2| +las|<2 O

t
Y [as O e v v )|
ot [+ |ova|+|evg| <2 7 ©

¢
+ > / ds [[(Un * V¥, VR IV — bg Vs VBV ||
ot |+ |z +las|<2 /0

Hence, we obtain
lee — ot 12

t
<X vl [ ds 19 el TN e T = T
0
ot |+]az|+]az|<2

+ IV sl V20N o0 [ V320 — V204l
+ Hva1‘:08H00HVW‘PSHOOHV%‘P?[ — VBpgla

t
* > /0 ds [|[(U * V¥ s VG, ) V5 s — oV s VB, V5 o |

|t |+]az|+|az|<2

and using the propagation of regularity from part ii) of the proposition, we conclude
that

t
lor — oV a2 < C / iy — o[ 12 + CN TN
0
By Gronwall, we find

lor = @ a2 < CN ™7 exp(er exp(ezlt])

The estimate for ||¢; — ¢V |2 follows with the help of the equations for ¢y and ¢¥. O

C Properties of the operator ky;
We define the integral kernel

kna(a,y) = —Non(e = )9 (= +9)/2))° (C.1)
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where fy,=1—wn, is the solution of the scattering equation (2.5). Note that Ky is
the integral kernel of a Hilbert-Schmidt operator on L?(R3). In fact, using part iii) of
Lemma 2.1, we find

1knellfrs = /dﬂcdy|’<¢N,t(ﬂc,y)l2 = /d:ﬂdyNzwzzv,z(w—y)lsoiv((cﬂ+y)/2)l4
(C.2)

1(jlz —y| </
gc/mw—%;%ﬁlmﬂm+wﬂW§C€

In the next five lemmas, we collect some properties of the kernel ky; and of the
operators sy,; = sinhk]\,’t7 DNt = coshkN’t =1, rnt = 5Nt — kN

Lemma C.1. Let V be as in Lemma 2.1 and kny be defined as in (C.1), with ¢ =
o, € H2(R?) (so that |jp || g2 < CeXIY for all t € R, by Proposition B.1). Then

() Iknell2s Ipnelles Isnell2, lIraele < C

(i7) sup ||k (2, )|z, sup [pae(z, )|l < CeXI,
z€R3 z€R3

sup [[sne(x, )2, sup [[ra (@, -)lla < CeXl
z€R3 z€R3

(4ii) sup |rn (23 y)|, sup [pas (e, y)| < ekl
x?y 'T7y

Proof. We start with the property (i). The bound for ky ; is proven in (C.2) above. The
bounds for ||[pn¢ll2, ||rnvtll2 and ||sy ]2 follow from

[ K1 Koz < [|Kqll2 ([ K22

for any two kernels K1, Ko € L?(R? x R3) (equivalently, ||[K1Ka|lus < ||K1|us|| K2|lus
for any Hilbert-Schmidt operators K, K3).
Next, we show (ii). We observe that

oo, )2 = / dy|kN,t<x,y>|2
<C [ay—=mle¥ (@ +n)/2)

< [y |91 PP < Clled Il < CeX

using Hardy’s inequality. To prove the bound for sup, |[pn+(z,.)|2, we use

2
v o)™ )|J2 = / dy ' / A by (2, 2) [(Bx i)™ Fons] ()

< /ddedw\kN,t(%Z)’Q |[(EN,tkN,t)n_1EN,t] (way)‘2

< ke, B 1 ekn)" ™ Enell3 < llkwe(e, 3 1Rl
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This gives
sup [[px(, )2 < Cel™elsup by (e, )2 < X1
x xT
as claimed. The bounds for sup, ||rn+(x,.)||2 and sup, ||sn«(x,.)||2 can be proven simi-

larly.
Finally, we show iii). From the definition of rn, we find

o
ry+(z,y) Z 2n Yy (kntkn ) k(2. y)

Yo 2n+1 /dzdw kv (s 2) [(Enakne)™ k] (2,w) kg (w,y)

n:l

3
—

and therefore
> 1

1/2
st € 3 iy | f dwdeliosto s,
n=1 !

— -~ 1/2
X [/ dwdz ‘(kN7tkN7t)n_1kN,t(z,w)]Q]
Z (2n +1 ke 157 e (s e llkae ()2 < CeXM

for every x,y € R3. The bound for p ~,¢ can be proven analogously. U

Lemma C.2. Let V be as in Lemma 2.1 and kny be defined as in (C.1), with ¢ =
oo € H*(R3) (so that ||oN ||g2 < CeX for all t € R, by Proposition B.1). Then
(@) IViknillz, [Voknills < CNP2 4 G
(@) IVipw el [Vapnill2, [Virnellz, [Varnellz < €
(i) [ Airngllz, |Aornille, [A1pnelle, 182pn ]2 < CeF M

Proof. From the definition of ky ¢, we find
Vikni(z,y) = — NVwy ez —y)(ef (z +1)/2))?
— Nune(e = y)¢r (2 +9)/2) Vel (@ +y)/2)

Hence

/ dzdy|V 1y 1z, 1)

< C [ a4 2

1
+C [ dudy e VA (@0 2P (@ )P

< CONP 4+ Kl
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where we used the bounds from Lemma C.1. B
To bound the [[Vipn¢l|2,[|Virngll2, we need an estimate for |Vi(kntkne)|l2. To
this end, we notice that

sup / dy ’vka,t(xa y)’

< C'sup / dy [W (= +y>2/2>l2 L et (@ +9)/2) IVl (@ +y>/2>|]
x |z -y |z — y|

N T 2
<o [ay [PEEEREE L (@ s <€

by Hardy’s inequality. Analogously, we find

sup / 42|V k(2. y)| < C
Y

Hence, we obtain
/ dady|V 1ky (2, )|

< /dmdydzldzﬂvka,t(%Zl)HkN,t(Zhy)\WMN,t(%Zz)HkN,t(Zmy)\

(C.3)
< [ dndydardealVda(o, 2)|[ ks (o, 2 o )P
< el s [ aoi ot [sup [ aol oot <€
x Yy
Now, we are ready to bound ||Vipn|2. From the definition, we have
1. S 1 1. n—1
Vipne = Vi(knknt) [nz:l m(kN,tkN,t) }
and therefore B
IVipnallz < elfvell2 | (k) ||o < C
Similarly, one can show the bounds for Vapyn ¢, Virn, and Vary .
As for the estimates involving second derivatives, we claim that
1AL (kn k)2 < CeEl (C.4)
In fact,
Agknikni(z,y) = /dZAka,t(CC,Z)kN,t(Z,y)
= =N [ daBun )@ — A (@ + /2 k()
(C.5)

=2 [ da(Fun (o = 2) [Vl (@ + 2)/2)P] halern)

-N / Qoo o — 2) [D (@ (& + 2)/2)] k(2 1)
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and therefore

AkaiEN,t(x,y) = — N/dz(VwNj)(x — z)(goiv((x + z)/2))2VZkN7t(z,y)

-3 [Tt - ) [Talel (@ + D2 i) (o

N [ sl = 2) [Balof (@ + /2] hva(a.)
=I1+4+1I+1II
where we used integration by parts. The L?-norm of first term can be bounded by
Lz — 21| < O1(jx — 2| < 1)
| — 21|22 — 22]?
< Jor ((z + 21) /2) Pl (2 +Zz)/2)|2/dyIVzlkN,t(Zhy)IIVsz‘N,t(Zz,y)I
(C.7)

(113 < /d:cdzleQ

Notice that

/ dy |V s a2, )| Vsakve (22, 9)

N P 2
< [y [EHEEUEE | 90+ 2]

y [W (2 +9)/2)
|22 — y|?

Ve (e + y>/2>|2}
1

|21 — 2o

< CeKlHH [ + 1}

Inserting this bound on the r.h.s. of (C.7) and shifting the integration variables, we
conclude that

13 < cert / doydz, 221 S 0120 <0 { ]

+1]
|21]%] 22|

|21 — 2]

X sup / delo? (x4 21 /22N (@ + 22/2) 2
21,22

with the Hardy-Littelwood-Sobolev inequality. The second term on the r.h.s. of (C.6)
can be controlled by

1
IS < Ol sup [ do = [Vl (@ + 20/ + 1 (@ + 2)/2)F]
Z1

coup [ der——g IVl (o + 22)/2)F + 16l (2 + 2)/2))

< C Kl
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Finally, the third term on the r.h.s. of (C.6) is bounded by

i3 < © / dedydzdz e, ) v (22 )|

|z — 21|z — 22|
x (1A ((x + 21/2))ler ((z + 21)/2)| + Ve, ((z + 21)/2) ]
x (1A ((x + 22/2)) |1 ((z + 22)/2)| + Ve, (2 + 22)/2) ]

N((x + =z 2
< Cllkngl3 Sllp/dx[]Acpiv((x—i—zl/g))’?_i_ o ((x +21)/2)|

|z — 212
+ ‘V‘va(’(w + 2’1)/2)!2}
xr — 21
N((z+ 2 2
csup [ dea[|Ap (o + /2 + P22
[T 2y
|z — 2

< CeKlt
This concludes the proof of (C.4). From (C.4), we immediately obtain
[A1pw el < Cel*vel2 | Ak k) |2 < CeXN

and
AN 2 < Cllkngll2 ™2 Ak k) |2 < CeXN

as claimed. O

Lemma C.3. Let V be as in Lemma 2.1 and kny be defined as in (C.1), with ¢ =
o, € HY(R?) (so that |jp || gs < CeXIY for all t € R, by Proposition B.1). Then

(@) Ilewellz < CXT
(i) Ilewellz < CX1
(ii1) ol lsnalle < 0K

Proof. The bounds (i) and (ii) follow from

liwelly =1 [ dodylNowv(z =PIl (@ +9) 2P (@ + 9)/DP
< ClloM |2 16V | < CeKld
and
sl < € [ dedy|Nen( ~ )
< (16 (@ + 9) 2 PIEN (@ + 9) /2D + 22 (@ + 1) /)]

=N N K
< C [leellF= 8113 + et 3] < O™
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The bounds (iii) follow from (see [6])
Ipnllz < lkvallz cosh(llkngll2),  and  [l3ngll2 < [lknellz sinh([lky,ll2)
O

Lemma C.4. Let V be as in Lemma 2.1 and kny be defined as in (C.1), with ¢ =
oN o € HYR3) (so that ||oN ||gs < CeX for all t € R, by Proposition B.1). Then

(i) sup [[kny (- @)z < CeXM

rER3
(i7)  sup [[pe(2)ll2, sup [[Fne( 2)ll2, sup [[$n.4(,2) ]2 < CeXl
TER3 TER3 TER3

(t3i)  sup |[Fne(z,y)| < CceklH
z,y€R3
Proof. The bounds can be proven as in Lemma C.1, taking into account the fact that
the kernel of ky; is similar to the one of ky¢, just with ¢ ((z + y)/2)? replaced by

201" (= +y)/2)¢1 ((x +1)/2). O

Lemma C.5. Let V be as in Lemma 2.1 and kny be defined as in (C.1), with ¢ =
oo € HYR3) (so that || || gs < CeXW for all t € R, by Proposition B.1). Then

() IVDNll2s [Virnglla < Cefl,
(i) [AFN 2, [ Apaglla < CeKlH

Proof. Also in this case, the statements can be proven similarly as in Lemma C.2, keeping
in mind that the kernels of pn; and 7y, look exactly like the kernels of py; and ry
with the only difference that in the series expansion defining we have to replace one
factor of ky; or EN,t by its time-derivative (which simply means that in this one factor,
we have to replace ¢ ((z +1)/2)* by 26 ((z + 1) /2)&N (& +)/2)). O

Next, we establish the convergence of the kernel ky; towards its limit, as N — oo.
We denote

ke(z,y) = —w; ¥ (@ — y) 0 ((x + 1) /2)

with w?symp given by

b [1 3 a2
asymp U L
wp ) = g [\xy 2 " 2@3}
for all z € R? with || < ¢ and by w,”"™(z) = 0 for |z| > ¢. Moreover, we define
s¢ = sinh(ky), py = cosh(ky) — 1, rp = sinh(ky) — k.
From (2.5), we find that

sin(Ay (| —£))  Leos(Ay(lz] —£))
WN,E(x) =1- 1/2 - |$|
)\N’K\xl
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for all z € R with RN—# < |z| < ¢, where R > 0 is the radius of the support of V.
This gives the bound

asy1m C

for a constant C' depending on £, and for all x € R3 with |z| > RN~7.
We use (C.8) to bound the difference ky ¢ — k.

Lemma C.6. Let V be as in Lemma 2.1 and kny be defined as in (C.1), with ¢ =
oNo € HYR?) (so that ||oN|ga < CeXll for all t € R, by Proposition B.1). Let
d =min(f/2,1 — B). There exist constants C,cy,co > 0 such that

kne = Fell2, P, — pell2s Iravge — rell2 < ON 0 exp(ey exp(ea|t]))
IV (o = ) ll2, [V (rv,e = 70)ll2 < CN 72 exp(er exp(ealt])
1A (P = i) [l2, [ A(rwv e = 7o)ll2 < ON 72 exp(er exp(ealt])
Proof. We estimate

asym 2
ke — kell3 < 2/dmdy |Nwno(z —y) — )™ (@ —y)|” o (z +y)/2)]?

2
+2 / drdy |w;™™P (z — y)|? ‘goiv((m +9)/2)° — eu((x +y)/2)° (€9)
=I4+1I
Using (C.8), we find
1z —y| <
0 <on=0 [ A ZD 108 ot gy 2

1
+C dedy—— o} ((z +y)/2)?
|z—y|<RN—8 |z —yl

<CON % 4 ONF
On the other hand, using Proposition B.1, we find

1< € [ doay ==L Z 0N @t )2 = el -+ )27

|z —

<c [ar|of vy - prp|

< [dRIoN (R) = B (6 (BP + e (R)P)
< MM |l — 3
< CN~27 exp(c; exp(calt])) with v = min(8,1 — 3)

Hence, we conclude that

ke = Kella < CN7° exp(er exp(eslt]))
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as claimed. Furthermore, we have

n—1
1 o _ _ B L
PNt — Dt = Z — Z(ktkt)](kN,tkN,t — Koy ) (kv gk )" (C.10)

|
= (2n)! =

This implies that
lpnve = pell < Celblztlbnelz |y, — kil < CN70 exp(er explealt]))

Similarly, we find
I = rella < CN~ exp(er exp(ealt])

From (C.10), we find

_ _ 1 - _
V(pN,t - pt) = V(k?N,tk?N,t - k‘tk?t) [Z W(k‘N,tkN,t)n !
n>1 ’
_ 1o _ _ ~ ,
VR | 3 o D ekl ™ v = ko) (o) |
L)
Therefore
IV (pnt — pe) ]2
= T 1 2(n—1)
< ||V(knikng — kb2 D WHkN,tH2
n>1 ’

n—1
_ _ . 1 i 2(n—1—j C.11
IVl s bl Y- s S Il 507 (4D
P>

n>1
< Hv(k?N,tEN,t — kikt) |2 ellfnellz ||k5N,t];3N,t — kikt|l2 |V (keke) ||2 ellkel2
< CHV(kN,tEN,t — ktEg)”Q + CN_(S eXp(Cl eXp(Czlt’))

We have
IV (kn,thne — kik)ll2 < IVEn(Bne — k) ||, + 1V (BN — Ke)kell2 (C.12)
On the one hand, we find
IVEN (ke — ko)
= /dxdydzldz2|vmkN,t(x’ 2)[ [kt — ki) (21, Y)| [Vakn (2, 22)| (b — Ke)(22,9)]

< /dwdyd21d22 (ke — ki) (21, 9) P Vakn (2, 20)| [ Vakn (2, 22))|

< Cllkng — kill3
(C.13)
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On the other hand, we compute

2
I\V(knt — k:t)EtH% = /dxdy ‘/dz Valkni(z,2) — k:t(x,z))Et(z,y)

2

< [ audy ‘ [ 42Vt o) hwal,) — e,z (10

2

+ /dxdy ‘/dz (knu(z,2) — ki(2,2)) V. ki (2,9)

integrating by parts. As in (C.13), we can estimate

2
< Cllkng — kill3

/dmdy '/dz (kni(z,2) — ke(z,2)) VoK (2, y)

As for the first term on the r.h.s. of (C.14), it can be estimated by

[ady] [ az [N ota - 26 (@ + /296 (@ +2)/2)
P = (e 2) DVl + 2)/2) k)|

< sup/dy\ka:(z,y)!2

2

x [/ dedz | N (@ — 2) — w2 - 2)]* [of (@ + 2)/2)P|Vel (@ + 2)/2)
+ [ dods o = 2P [ (@ +2)/D) -l o+ 2)/2) 1V (@ + 2/
+/d~’ﬂdz WP (2 — 2)[* [eu((@ + 2)/2) PV (2 + 2)/2) - Veul(z + 2)/2) 2
Proceeding as in the analysis of (C.9) and using Proposition B.1, we conclude that
/dmdy ‘ /dz (Vo + Vo) (kni(x, 2)—k(z, Nki(z,y) ’ <CN7? exp(cy exp(ealt]))
Inserting the last bound and (C.13) in (C.12), we find
HV(kNvtler,t — kiky)|l2 < CN~° exp(cy exp(calt]))
Hence, from (C.11), we conclude that
IV (et = pe)ll2 < ON~° exp(er exp(ealt]))

Analogously, we can show the bound for ||V (ry;: — 7)].
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Also the bounds for ||A(py: — pt)| and ||A(rnt — r¢)|| can be proven in a similar
way. In fact, observing that

2

Vi ((x +9)/2)

Agkn(z,y) = — NAwyo(z — y) (e (z +y)/2))
— 2NVuwn(z — y)er (z +y)/2))
— Nwny(z —y)(Ver((x +y)/2))°
— Nwng(z —y)g) ((x +)/2)Ae (x +y)/2)

and that

N Ao = y)( (@ +)/2)? = GNPV ) el — )
= NAnfne(z —y)L(lz —y| < 0)

we find
SUP/dyIAka,t(:v,y)l < CeXli

T

and therefore, similarly to (C.13),
| Ak (Fne —ke)lla < CeXl|kn ;s — Eilla < CN7% exp(er exp(ealt])) (C.15)

Moreover, integrating by parts twice, we obtain

2
1A (ke = ke)kell3 S/dxdy ‘/dZ(Vx +V2) (kv (@, 2) — ke, 2)) ke (2, 9)

+/d:cdy ‘/dz(vx + V) (kni(x, 2) = ky(z, 2)) Vo Ee(2,y) 2

2

+ / dzdy ‘ / dz(kn sz, 2) — ke(, 2)) AL ke(2, 1)

This implies that
IA(RN,: = ke)kell3 < ON~° exp(er exp(ezlt])
and thus, together with (C.15), that
IA(kn, kN, — kike)||l2 < CN 70 exp(cy exp(calt]))
The last bound allows us to conclude that

1A = po)ll2 < ON~° exp(er exp(elt]))
1A(rxe = 72)ll2 < ON ™ exp(er exp(est]))
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