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Abstract

We consider a gas of interacting bosons trapped in a box of side length one
in the Gross–Pitaevskii limit. We review the proof of the validity of Bogoliubov’s
prediction for the ground state energy and the low–energy excitation spectrum. This
note is based on joint work with C. Brennecke, S. Cenatiempo and B. Schlein.

1 Introduction

The first theoretical investigation of the Bose gas dates back to 1924: in [6, 11] Bose-
Einstein condensation was predicted for the non–interacting Bose gas. The interacting
problem is considerably more difficult. An important progress on the study of the in-
teracting Bose gas has been made by Bogoliubov [5] in 1947. Bogoliubov’s heuristic
approach leads to expressions for the ground state energy and the excitation spectrum,
the latter explaining the superfluid behavior of substances such as liquid helium. Bo-
goliubov’s method sets the track for approaching the study of the interacting Bose gas;
however, the physical intuitions behind it require a precise mathematical formulation. In
this note we present a rigorous implementation of Bogoliubov theory for the interacting
Bose gas in the Gross–Pitaevskii regime.

We consider a gas of N bosons trapped in a box Λ = [−1/2, 1/2]3 with periodic
boundary conditions. The Hamiltonian HN , given by

HN = −
N∑

i=1

∆xi
+N2

N∑

i<j

V (N(xi − xj)), (1.1)

acts on the space of symmetric (bosonic) wave functions

L2
s(Λ

N ) = {ψ ∈ L2(ΛN ) : ψ(xσ(1), . . . , xσ(N)) = ψ(x1, . . . , xN ), for every σ ∈ SN},

where SN is the set of all permutations of N objects. We take the interaction potential
V to be non–negative, spherically symmetric and of finite range. For large N , the scaling
of the interaction potential models a very dilute system: the range of interactions is of

1

http://arxiv.org/abs/2001.00497v2


order N−1, while the mean interparticle distance is much larger, namely of order N−1/3;
this is called the Gross–Pitaevskii regime. Equivalently we can describe the system as
trapped in a box of side length N with non–rescaled interactions. In the latter picture
the density is N−2 and it is clear that the limit of large N is a simultaneous large volume
and low density limit.

The ground state energy of this system is known [22, 20], to leading order in N , to
be

EN = 4πaN + o(N) . (1.2)

In the expression above the scattering length a appears; it is defined by

8πa =

∫

R3

V (x)f(x)dx, (1.3)

where f is the solution of the zero–energy scattering equation
[
−∆+

1

2
V (x)

]
f(x) = 0 (1.4)

with the boundary condition f(x) → 1, as |x| → ∞.
The ground state vector [18], and any sequence of approximate ground state vectors

[19, 23], i.e., any sequence ψN ∈ L2
s(Λ

N ) with ‖ψN‖ = 1 and

lim
N→∞

1

N
〈ψN ,HNψN 〉 = 4πa , (1.5)

exhibit Bose–Einstein condensation. This means that the reduced density matrices
γN = tr2,...,N |ψN 〉〈ψN | satisfy, as N → ∞,

〈ϕ0, γNϕ0〉 → 1 (1.6)

where ϕ0 ∈ L2(Λ) is the one–particle zero momentum mode ϕ0(x) = 1, called the
condensate wave function. The expectation on the left–hand side of equation (1.6) is
the fraction of particles in the zero momentum mode; equation (1.6) establishes that all
particles, up to a fraction vanishing in the limit N → ∞ are in the condensate state.

We present now our results obtained in [3, 4]. In Theorem 1.1 below we determine
the convergence rate of condensation, improving (1.6). Theorem 1.2 exhibits the next
order to (1.2) for the ground state energy and determines the excitation spectrum of
(1.1).

Theorem 1.1 (Optimal rate for Bose–Einstein condensation). Let V ∈ L3(R3) be non–
negative, spherically symmetric and compactly supported. Let ψN ∈ L2

s(Λ
N ) be a se-

quence with ‖ψN‖ = 1 such that

〈ψN ,HNψN 〉 ≤ 4πaN + ζ (1.7)

for a ζ > 0. Then the reduced density matrix associated with ψN satisfies

1− 〈ϕ0, γNϕ0〉 ≤
C(ζ + 1)

N
(1.8)

for all N ∈ N large enough.
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Equation (1.8) establishes a bound, uniform in N , for the number of excited particles
over the condensate. This holds for the ground state vector and for approximate ground
states. The proof of Theorem 1.1 also provides the estimate

|EN − 4πaN | ≤ D (1.9)

for a D > 0, improving (1.2). Results (1.8) and (1.9) have been obtained in [4] (and
before in [2] for small interaction potentials). Going beyond (1.8) and (1.9) requires
additional techniques, which we developed in [3]. In the theorem below we state our
result for the second order of the ground state energy and for the energy of excitations.

Theorem 1.2 (Ground state energy and excitation spectrum). Let V be as in Theorem
1.1. Then, for N → ∞, the ground state energy is given by

EN = 4π(N − 1)a + eΛa
2

− 1

2

∑

p∈Λ∗

+

[
p2 + 8πa−

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(N−1/4) . (1.10)

Here we introduced Λ∗
+ = 2πZ3\{0} and we defined

eΛ = 2− lim
M→∞

∑

p∈Z3\{0}:
|p1|,|p2|,|p3|≤M

cos(|p|)
p2

.

Moreover, the spectrum of HN − EN below a threshold ζ consists of eigenvalues given,
in the limit N → ∞, by

∑

p∈Λ∗

+

np
√

|p|4 + 16πap2 +O(N−1/4(1 + ζ3)) .
(1.11)

Here np ∈ N for all p ∈ Λ∗
+ and np 6= 0 for finitely many p ∈ Λ∗

+ only.

Theorem 1.2 confirms Bogoliubov’s predictions for the equilibrium properties of the
interacting Bose gas. Equation (1.10) is the finite volume analogue of the well–known
Lee–Huang–Yang formula. The sum in the second line of (1.10) gives a contribution of
order one, since the summand behaves as p−4 for large p. We find also a boundary contri-
bution eΛa

2, of order one too, due to the fact that we work in a finite box. The excitation
spectrum (1.11) is given by a sum of approximately non–interacting harmonic oscillators.
We read there the dispersion relation of excitations E(p) =

√
|p|4 + 16πap2. For small

momenta, E(p) =
√
16πa|p|

(
1 + O(p2)

)
is linear, in contrast with the quadratic behav-

ior of the dispersion relation of non–interacting particles. In [5] Bogoliubov associated
such linear behavior with the phenomenon of superfluidity, connecting it to Landau’s
arguments [16].
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2 Bogoliubov theory

We present here Bogoliubov’s approximation procedure [5] for deriving the energy spec-
trum of a bosonic gas. Bogoliubov writes the Hamiltonian (1.1) in second quantized
form, i.e.,

HN =
∑

p∈Λ∗

p2a∗pap +
1

2N

∑

p,q,r∈Λ∗

V̂ (r/N)a∗p+ra
∗
qapaq+r, (2.1)

where a∗p and ap are creation and annihilation operators associated with momentum

p ∈ Λ∗ = 2πZ3. We denote with V̂ the Fourier transform of the interaction potential V .
(To be precise, Bogoliubov works in a thermodynamic limit setting, with a non–rescaled
interaction; however, we discuss in this note only the Gross-Pitaevskii regime.) The
Bogoliubov approximation consists of three steps.

a. Replacing creation and annihilation operators corresponding to the zero-momentum
mode a∗0, a0 by the numberN1/2 (i.e., imposing condensation by assumption). This
procedure extracts the condensate contributions and decomposes HN in a sum of
constant (i.e., not containing operators) contributions, quadratic, cubic and quar-
tic contributions in creation and annihilation operators of non–zero modes. (There
are no linear terms due to translation invariance.)

b. Dropping all terms in the Hamiltonian that are higher than quadratic in a∗p and
ap, for p 6= 0. The resulting Hamiltonian is quadratic and can be explicitly diag-
onalized through a Bogoliubov transformation. Diagonalization yields the ground
state energy and the excitation spectrum. However, the result differs already at
leading order (1.2). There only the first two summands of the Born series for the

scattering length, a(0) = (8π)−1V̂ (0) and a
(1) = − 1

16π

∑
p∈Λ∗

+

V̂ (p)2

p2
, appear. In

the second order and in the excitation spectrum only the Fourier transform of the
interaction V̂ (p) appears.

c. Substituting in the result the Born approximations and V̂ (p) with the scattering
length a leads to (1.10) and (1.11).

With a rigorous analysis, the inclusion of cubic and quartic terms (neglected in Step
b.) should take care of the appearance of the full scattering length in the result (which
Bogoliubov introduces by hand in Step c.). In the next sections we will see how to
extract from cubic and quartic terms these order one contributions to the ground state
energy and the excitation spectrum.

Bogoliubov’s ideas have been implemented for the derivation of the ground state
energy of the Bose gas in the thermodynamic limit (the Lee–Huang–Yang formula)
[14, 8, 9, 13], and before for the computation of the ground state energy of the bosonic
jellium [21]. For the Bose gas in the mean field regime more information is available, and
Bogoliubov’s method has been implemented to give the excitation spectrum (see [27, 15,
17, 10, 26]). In this regime the gas is confined in a fixed volume and the interaction scales
as VN (·) = N−1V (·), describing a high density system. Here collisions between particles
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are sensitive to the shape of the interaction potential, and the excitation spectrum has
the form

∑

p∈Λ∗

+

np

√
|p|4 + 2V̂ (p)p2 , (2.2)

with np 6= 0 only for finitely many p ∈ Λ∗
+. When, instead, we consider dilute, strongly

interacting regimes, correlation effects renormalize interactions and lead to the emer-
gence of the scattering length instead of V̂ (p). This is what makes the implementation
of Bogoliubov theory in the Gross–Pitaevskii regime more difficult than in the mean
field case.

From a slightly different point of view, one could minimize the Hamiltonian after Step
a. over all quasi–free states. This procedure can be viewed as a variational formulation
of Bogoliubov theory and gives the leading order of the ground state energy correctly,
but the second order is off by a constant (see [12, 24, 25]). In [28] the second order is
correctly resolved using a trial state which additionally includes correlations that can be
thought as arising from cubic combinations of creation and annihilation operators.

3 Bose-Einstein condensation

We present now the ideas developed in [4] leading to the proof of Theorem 1.1. Our
goal is to obtain a bound, uniform in N , for the number of excited particles over the
condensate. We denote this quantity by N+ =

∑
p∈Λ∗

+
a∗pap.

Step 1: Fock space of excitations. We start with a technique developed in [17], where
it was observed that every wave function ψN ∈ L2

s(Λ
N ) can be uniquely decomposed as

ψN =
∑N

j=0 ψ
(j)
N ⊗sϕ

⊗(N−j)
0 for a sequence ψ

(j)
N ∈ L2

⊥(Λ)
⊗sj . With L2

⊥(Λ)
⊗sj we indicate

the symmetric tensor product of j copies of the orthogonal complement L2
⊥(Λ) of ϕ0 in

L2(Λ). We take ϕ0 to be the condensate wave function ϕ0(x) = 1. We organize the

coefficients ψ
(j)
N as a vector in a bosonic Fock space F≤N

+ =
⊕N

j=0 L
2
⊥(Λ)

⊗sj constructed

over L2
⊥(Λ) and truncated to sectors with at most N particles. This suggests to define

a unitary map UN : L2
s(Λ

N ) → F≤N
+ through UNψN = {ψ(0)

N , ψ
(1)
N , . . . , ψ

(N)
N }. The

map UN factors out the Bose–Einstein condensate contribution in ψN and returns the
excitations. Using UN we define a new Hamiltonian

LN = UNHNU
∗
N : F≤N

+ → F≤N
+ (3.1)

describing excitations over the condensate. Conjugation of HN with UN acts as a re-
placement of creation and annihilation operators a∗0, a0 of the zero-momentum mode by
(N −N+)

1/2, while, for p 6= 0, ap and a∗p remain untouched:

UNa
∗
0a0U

∗
N = N −N+

UNa
∗
pa0U

∗
N = a∗p

√
N −N+

UNa
∗
0apU

∗
N =

√
N −N+ap

UNa
∗
paqU

∗
N = a∗paq.
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This procedure rigorously implements Bogoliubov’s first step. Notice that, in addition,
the resulting excitation Hamiltonian, unitarily related to HN , preserves the truncated
Fock space F≤N

+ . The excitation Hamiltonian LN decomposes into a sum of constant
terms (i.e., not containing creation and annihilation operators) and quadratic, cubic and
quartic contributions in creation and annihilation operators (up to factors (N−N+)

1/2).
Now the central task is to use the energy bound (1.7) in the assumptions in order to
control

1− 〈ϕ0, γNϕ0〉 = 1−N−1〈ψN , a
∗
0a0ψN 〉 = N−1〈ψN , U

∗
NN+UNψN 〉.

However, there is a difficulty: in LN the constant contribution of order N is NV̂ (0)/2,
which does not agree with the correct leading order (1.2) of the ground state energy.
Some other important contributions are therefore hidden in the remaining part of LN .
Those are in fact the contributions of correlations, which are not included in the action
of UN .

Step 2: Generalized Bogoliubov transformation. To extract the energy of correlations,
we conjugate LN further with a generalized Bogoliubov transformation eB(η). This
transformation is different from the transformation that Bogoliubov used in Step b. to
diagonalize his quadratic effective Hamiltonian. Our approach instead is inspired by the
treatment of the dynamics in [1, 7]; a similar transformation was also used before in
[12] for the computation of the ground state energy in the thermodynamic limit. The
transformation eB(η) is the unitary operator

eB(η) = exp
(1
2

∑

q∈PH

ηq
[
b∗qb

∗
−q − bqb−q

] )
(3.2)

where bp = N−1(N − N+)
1/2 ap and b∗p = N−1a∗p (N − N+)

1/2 are modified creation
and annihilation operators which create or annihilate excitations, leaving the number
of particles invariant. The coefficients ηq are related to the solution of the scattering
equation (1.4) and satisfy |ηp| ≤ C|p|−2, for C > 0. The momenta in the sum in the
exponent belong to the set PH = {p ∈ Λ∗

+ : |p| ≥ ℓ−α}, for parameters ℓ, α > 0. Later we
will fix a suitable α and choose ℓ small enough (but independent of N). We will exploit
for example that

∑
q∈PH

|ηq|2 ≤ Cℓα/2 is a small quantity. Since eB(η) maps F≤N
+ back

into itself, we can use it to define a new excitation Hamiltonian

GN,ℓ = e−B(η)UNHNU
∗
Ne

B(η) : F≤N
+ → F≤N

+ . (3.3)

The constant contributions in the new excitation Hamiltonian GN,ℓ combine together
to give 4πaN , i.e., the correlation structure introduced by eB(η) correctly resolves the
leading order of the ground state energy. Our goal is now to prove that for a suitable
choice of α and ℓ small enough, there exist constants C, c > 0 such that

GN,ℓ − 4πaN ≥ cN+ − C (3.4)

for all N ∈ N sufficiently large. The inequality in (3.4) clearly implies (1.8) when
evaluated on approximate ground states satisfying (1.7).
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Step 3: Localization in Fock space. To prove (3.4), we divide the Fock space in two
parts using the localization technique from [21, 17]. We define f, g : R → [0; 1] to be
smooth functions with f2(x) + g2(x) = 1 for all x ∈ R. We assume that f(x) = 0
for x > 1 and f(x) = 1 for x < 1/2. We set fM = f(N+/M), gM = g(N+/M). The
function fM localizes therefore to Fock space sectors with N+ ≤ M and gM to sectors
with N+ ≥ M/2. We will chose at the end M = ℓ3α+κN , for a suitable κ > 0. Using
the properties of GN,ℓ, we can prove the localization estimate

GN,ℓ = fM GN,ℓ fM + gM GN,ℓ gM + EM (3.5)

for a C > 0 and a small error EM (in fact proportional to M−2). We analyze now
fM GN,ℓ fM and gM GN,ℓ gM separately. For the latter, we observe that there exists a
constant C > 0 such that

gM (GN,ℓ − 4πaN)gM ≥ CNg2M ≥ CN+g
2
M (3.6)

for all N sufficiently large. The first inequality in (3.6) follows from a contradiction
argument: if it was not true, we could find a sequence of states with high number of
excitations and with the correct energy at leading order. Those would be approximate
ground states as defined in (1.5), which therefore exhibit condensation in the zero mo-
mentum mode, contradicting the assumption N+ ≥ M/2 = ℓ3α+κN/2. The second
inequality in (3.6) obviously follows from the first. This proves the first part of (3.4).
To conclude the proof of (3.4) it remains to prove for fM GN,ℓ fM the bound analogous
to (3.6).

Step 4: Renormalizing cubic transformation. In the last step we prove that for ℓ > 0
small enough

fM(GN,ℓ − 4πaN)fM ≥ CN+f
2
M − Cℓ−3αf2M (3.7)

To achieve this, we define the operator A : F≤N
+ → F≤N

+ by

A =
1√
N

∑

r∈PH ,v∈PL

ηr
[
b∗r+va

∗
−rav − h.c.

]
, (3.8)

where we introduced the low–momentum set

PL = {p ∈ Λ∗
+ : |p| ≤ ℓ−β}

for a parameter 0 < β < α. Then, for suitable restrictions on α and β, there exists κ > 0
and a constant C > 0 such that

RN,ℓ = e−A GN,ℓ e
A ≥ 4πaN +

(
1− Cℓκ

)
N+ − Cℓ−3αN 2

+/N − Cℓ−3α (3.9)

for all ℓ small enough and N large enough. The inequality (3.7) follows from (3.9) and
the fact that conjugation with eA does not change significantly powers of the particle
number operator, i.e.,

e−A(N+ + 1)keA ≤ C(N+ + 1)k (3.10)

for all α > β > 0 and N large enough. Equation (3.10) can be proved using a Gronwall
argument. Combining (3.6) and (3.7) with (3.5) we get to (3.4).
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4 The excitation spectrum

We discuss now the ideas in [3] for proving Theorem 1.2.
Step 1: Stronger bounds on GN . We define GN as in (3.3), but in the definition of

B(η) (Eq. (3.2)) we let the sum run over all momenta in p ∈ Λ∗
+. We study now GN

and determine it up to an error which vanishes for large N , getting

GN = CGN
+QGN

+HN + CN + EN , (4.1)

where CGN
is a constant contribution, QGN

is quadratic, HN is the Hamiltonian (1.1)

restricted to F≤N
+ and CN is the cubic operator

CN =
1√
N

∑

p,q∈Λ∗

+

q 6=−p

V̂ (p/N)
[
b∗p+qb

∗
−p

(
cosh(ηq)bq + sinh(ηq)b

∗
−q

)
+ h.c.

]
. (4.2)

The error EN satisfies

± EN ≤ CN−1/4 (HN +N 2
+ + 1)(N+ + 1) . (4.3)

The product on the right hand side is small on the states in which we are interested:
the techniques we use to prove the bound for the number of excitations also allow us to
prove bounds for the energy of excited particles HN and the products of HN with powers
of N+. This holds for states ξN = e−B(η)UNψN ∈ F≤N

+ with normalized ψN ∈ L2
s(Λ

N )
belonging to the spectral subspace of HN with energies below EN + ζ, for some ζ > 0.
For such ξN , for any k ∈ N there exists a constant C > 0 such that

〈ξN , (N+ + 1)k(HN + 1)ξN 〉 ≤ C(1 + ζk+1) . (4.4)

Step 2: Renormalize QN through a cubic transformation. We define a new cubic
operator Ã : F≤N

+ → F≤N
+ by

Ã =
1√
N

∑

r∈P̃H ,v∈P̃L

ηrb
∗
r+vb

∗
−r

[
sinh(ηv)b

∗
−v + cosh(ηv)bv

]
− h.c. (4.5)

where P̃L = { p ∈ Λ∗
+ : |p| ≤ N1/2} corresponds to low momenta and P̃H = Λ∗

+ \ P̃L to
high momenta (by definition r + v 6= 0). The coefficients ηp are the same as those used
in the definition of the generalized Bogoliubov transformation eB(η) appearing in (3.2).
We define the excitation Hamiltonian

JN := e−Ãe−B(η)UNHNU
∗
Ne

B(η)eÃ = e−ÃGNe
Ã : F≤N

+ → F≤N
+ . (4.6)

We study now JN and prove that

JN = CJN
+QJN

+ VN + EN ,
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where EN is an error term satisfying (4.3) and VN is the potential term of the Hamil-

tonian restricted to F≤N
+ . Conjugation with e−Ã cancels the cubic contribution (4.2)

and renormalizes the constant and quadratic contribution into new expressions CJN
and

QJN
; there only the scattering length appears because all the instances of the interaction

potential are corrected with the solution f of the scattering equation (1.4).
Step 3: Diagonalization. In the final step we act on JN with a unitary transfor-

mation which approximately diagonalizes QJN
. This is again a generalized Bogoliubov

transformation eB(τ) : F≤N
+ → F≤N

+ with

B(τ) :=
1

2

∑

p∈Λ∗

+

τp
(
b∗−pb

∗
p − b−pbp

)
,

where the coefficients τp ∈ R are suitably chosen so to approximately diagonalize QJN
.

The new excitation Hamiltonian

MN = e−B(τ)JNe
B(τ) = e−B(τ)e−Ãe−B(η)UNHNU

∗
Ne

B(η)eÃeB(τ)

still leaves the space of excitations F≤N
+ invariant, and can be determined up to a small

error EN to be given by

MN = 4π(N − 1)a+ eΛa
2 +

1

2

∑

p∈Λ∗

+

[
−p2 − 8πa +

√
p4 + 16πap2 +

(8πa)2

2p2

]

+
∑

p∈Λ∗

+

√
p4 + 16πap2 a∗pap + VN + EN .

(4.7)

The potential energy of excitations VN is small on low-energy eigenspaces of the quadratic
operator

∑
p∈Λ∗

+

√
p4 + 16πap2 a∗pap. Equations (1.10) and (1.11) follow now from (4.7)

and the min–max principle.
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