
Acta Informatica (2021) 58:335–356
https://doi.org/10.1007/s00236-021-00398-7

ORIG INAL ART ICLE

The descriptional power of queue automata of constant
length

Sebastian Jakobi1 · Katja Meckel1 · Carlo Mereghetti2 · Beatrice Palano3

Received: 1 February 2020 / Accepted: 9 April 2021
© The Author(s) 2021

Abstract
We consider the notion of a constant length queue automaton—i.e., a traditional queue
automaton with a built-in constant limit on the length of its queue—as a formalism for rep-
resenting regular languages. We show that the descriptional power of constant length queue
automata greatly outperforms that of traditional finite state automata, of constant height
pushdown automata, and of straight line programs for regular expressions, by providing opti-
mal exponential and double-exponential size gaps. Moreover, we prove that constant height
pushdown automata can be simulated by constant length queue automata paying only by a
linear size increase, and that removing nondeterminism in constant length queue automata
requires an optimal exponential size blow-up, against the optimal double-exponential cost
for determinizing constant height pushdown automata. Finally, we investigate the size cost of
implementing Boolean language operations on deterministic and nondeterministic constant
length queue automata.
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1 Introduction

It is well known that the computational power of computing devices can be tuned by restrict-
ing the way they access memory. To catch a glimpse of this phenomenon, one may start from
the traditional model of a one-way Turing machine equipped with a potentially unbounded
and freely accessible working tape representing memory. If we impose a lifo usage of the
working tape, still keeping unboundedness, then we obtain a pushdown automaton, whose
computational power is strictly lower than that of a one-way Turing machine. Instead, by
imposing a fifo memory access policy, we get a queue automaton, whose computational
power gets back to that of a one-way Turing machine. However, for all these (and other)
models, by fixing a constant1—i.e., not depending on the input length—bound on the amount
of available memory, we have that their computational power boils down to that of finite state
automata, regardless of the memory access policy in use.

For constant memory machines, it is then worth investigating how the memory access
policy affects their descriptional power, that is, their capability of succinctly representing
regular languages. (We refer the reader to, e.g., [19] for a thoughtful survey on descriptional
complexity theory.)

This line of research is settled in [17], where the notion of a constant height push-
down automaton is introduced and studied from a descriptional complexity perspective.
Roughly speaking, a constant height pushdown automaton is a traditional pushdown automa-
ton with a built-in constant limit on the height of the pushdown. Optimal exponential and
double-exponential gaps are proved, between the size of constant height deterministic and
nondeterministic pushdown automata (dpdas and npdas, respectively) and the size of equiv-
alent deterministic and nondeterministic finite state automata (dfas and nfas, respectively)
and classical regular expressions. Moreover, the notion of a straight line program for regular
expressions (slp, see Sect. 2) is also introduced in [17], as a formalism equivalent to a con-
stant height npda from a size point of view. In [5], the fundamental problem of removing
nondeterminism in constant height npdas is tackled, and a double-exponential size blow-up
for determinization is emphasized. Finally, the size cost of boolean operations on constant
height dpdas and npdas is analyzed in [3,4,6].

In this paper, we investigate the descriptional advantages of replacing the pushdown with
a queue storage of fixed size, by considering the notion of a constant length queue automaton.
Basically, this device is a traditional queue automaton (see, e.g., [2,14]), in which the length
of the queue cannot grow beyond a fixed constant limit.

As for constant height pushdown automata, in Sect. 3 we single out optimal exponential
and double-exponential gaps between the size of constant length deterministic and nondeter-
ministic queue automata (dqas and nqas, respectively) and the size of equivalent dfas and
nfas. In addition, differently from constant height pushdown automata, in Sect. 4 we prove
that a queue storage enables a size-efficient removal of nondeterminism. Precisely, we show
that nfas can be simulated by constant length dqas paying by only a linear size increase.
This, in turn, leads us to prove that the optimal size cost of removing nondeterminism in con-
stant length nqas is only exponential, in sharp contrast with the optimal double-exponential
size blow-up above pointed out for determinizing constant height npdas.

The higher descriptional power of a queue vs. a pushdown storage for constant memory
machines is also emphasized in Sect. 5, where we show that constant height npdas (resp.,
dpdas) can be simulated by constant length nqas (resp., dqas), paying by only a linear size
increase. On the other hand, the opposite simulation features an optimal exponential size

1 Actually, even o(log n) or o(log log n) space bounds (see, e.g., [29]).
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cost. This is witnessed by proving, in Sect. 6, that constant length dqas can be exponen-
tially smaller than equivalent slps, this gap being optimal. In Sect. 7, a complete overview
on the optimal simulation size costs between finite state automata, constant height push-
down automata, constant length queue automata, and straight line programs is portrayed for
reader’s convenience. In Sect. 8, as typically done in the literature for formalisms defining
regular languages (see, e.g., [3,4,6,16,19,22–24]), the problem of establishing the size cost of
implementing boolean language operations on constant length dqas and nqas is tackled. As
a useful tool in this investigation, analogously to what is done for constant height pushdown
automata [3–6,17], a normal form for constant length queue automata is defined, where at
most one symbol is enqueued on each move. The size cost of converting constant length
queue automata into their normal form is analyzed. Finally, in Sect. 9, we sum up obtained
results and provide possible developments of our work.

2 Preliminaries: addingmemory to finite state automata

We assume the reader is familiar with basics in formal language theory, and we refer to, e.g.,
[18,20] for an extensive presentation of the topic. The set of all words (including the empty
word ε) on a finite alphabet Σ is denoted by Σ∗. The length of a word w ∈ Σ∗ is denoted
by |w|, and we let Σ i be the set of words on Σ of length i ≥ 0 (with Σ0 = {ε}). Moreover,
we let Σ≤k = ⋃k

i=0 Σ i . A language L on Σ is any subset L ⊆ Σ∗. The complement of L
is denoted by Lc.

Finite state automata. A nondeterministic finite state automaton (nfa, see, e.g., [18,20])
is formally defined as a 5-tuple A = 〈Q,Σ, δ, q0, F〉, where Q is the finite set of states,
Σ the finite input alphabet, q0 ∈ Q the initial state, F ⊆ Q the set of final, or accepting,
states, and δ is the transition function mapping Q × (Σ ∪ {ε}) to finite subsets of Q. The
computation of A on an input string x = σ1σ2 · · · σn ∈ Σ∗ begins in the initial state q0 by
scanning the first input symbol σ1. Next, the rules established by the transition function δ

are subsequently applied. An application of δ is called move. An input string is accepted, if
there exists a computation beginning in the state q0 and ending in some final state q ∈ F
after reading the entire input. If such a computation does not exist, then the input string is
rejected. The set of all inputs accepted by A is denoted by L(A) and called the accepted
language. The automaton A is deterministic (dfa), if there are no ε-transitions in δ and, for
every q ∈ Q and a ∈ Σ , we have |δ(q, a)| ≤ 1.

The other two computational models we shall be dealing with can be obtained by equip-
ping finite state automata with some auxiliary memory storage. Depending on whether such
memory is used in a lifo- or fifo-mode, we have pushdown or queue automata, respectively.
In particular, we will be interested in the case in which the auxiliary memory storage has a
fixed constant size (not depending on input length).
Constant height pushdown automata. A nondeterministic pushdown automaton (npda,
see, e.g., [18,20]) is formally defined as a 7-tuple A = 〈Q,Σ, Γ , δ, q0,⊥, F〉, where
Q,Σ, q0 and F are defined as for nfas, Γ is the pushdown alphabet, ⊥ ∈ Γ is the ini-
tial symbol in the pushdown store, and the transition function δ maps Q × (Σ ∪ {ε}) × Γ to
finite subsets of Q × Γ ∗. At any time, the pushdown content may be represented by a string
where the leftmost symbol is the top of the pushdown, while the rightmost is its bottom. Let
δ(q, σ, X) � (p, γ ). Then A, being in the state q , reading the input symbol σ and the push-
down symbol X on the top of the pushdown, can reach the state p, replace X by γ , and finally
advance input scanning to the next input symbol only if σ �= ε. An input string is accepted,
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if there exists a computation beginning in the state q0 with ⊥ in the pushdown, and ending
in some final state q ∈ F after reading the entire input. The set of all inputs accepted by A is
denoted by L(A). The automaton A is deterministic (dpda), if for any q ∈ Q, σ ∈ Σ ∪ {ε}
and X ∈ Γ , we have |δ(q, σ, X)| ≤ 1, and if δ(q, ε, X) is defined then |δ(q, a, X)| = 0 for
any a ∈ Σ .

A constant height npda [17] is obtained from a traditional npda by imposing that the
pushdown store can never contain more than h pushdown symbols, for a fixed constant h ≥ 0
not depending on input length. By definition, any attempt to store more than h symbols in the
pushdown results in rejection. This constant memory bounded device is formally specified
by an 8-tuple A = 〈Q,Σ, Γ , δ, q0,⊥, F, h〉, where h ≥ 0 is the built-in pushdown height,
while all other components are defined as above.

Constant length queue automata. A nondeterministic queue automaton (nqa, see, e.g.,
[2,14]) is formally defined as a 7-tuple A = 〈Q,Σ, Γ , δ, q0,, F〉, where Q,Σ, q0, F are
defined as for nfas, Γ is the queue alphabet,  ∈ Γ is the initial symbol in the queue store,
and the transition function δ maps Q×(Σ ∪{ε})×Γ to finite subsets of Q×{D, K }×Γ ∗. At
any time, the queue content may be represented by a string where the leftmost symbol is the
head of the queue, while the rightmost is its tail. Let δ(q, σ, X) � (p, χ, ω). Then A, being
in the state q , reading σ on the input and X as the head of the queue, can reach the state p,
delete (resp., keep) X if χ = D (resp., χ = K ), enqueue ω (i.e., append ω after the tail),
and finally advance input scanning to the next input symbol only if σ �= ε. So, a transition
with parameter D (resp., K ) means that we delete (resp., keep) the symbol at the head of
the queue. An input string is accepted, if there exists a computation beginning in the state q0
with  in the queue, and ending in some final state q ∈ F after reading the entire input. The
set of all inputs accepted by A is denoted by L(A). The automaton A is deterministic (dqa),
if for any q ∈ Q, σ ∈ Σ ∪ {ε} and X ∈ Γ , we have |δ(q, σ, X)| ≤ 1, and if δ(q, ε, X) is
defined then |δ(q, a, X)| = 0 for any a ∈ Σ .

A quick comment on our definition of a queue automaton is in order. In the definition
of several automata models, two special types of moves, namely stationary moves and ε-
moves, are sometimes allowed. Basically, a stationary moves takes place on well-defined
“configurations” established in the transition functionwhere a particular state and a particular
input symbol must be scanned. Acting such a move may possibly modify the state of the
automaton, some auxiliary storage (if any), while the input head has to stay put. On the other
hand, an ε-move is defined on a particular state without the need of reading a particular input
symbol. After an ε-move, the state and some storage (if any) content may be changed, while
the input head is allowed to move or stay put.

In our definition of a queue automaton, we allow ε-moves but not stationary moves on
the input, this latter feature being usually assumed (see, e.g., [2,14]). Our choice is moti-
vated by guaranteeing direct and fair comparisons between queue automata and pushdown
automata where stationary moves are never considered. However, it is not hard to see that
queue automata with ε-moves and queue automata with stationary moves are descriptionally
equivalent.

A constant length nqa is obtained from a traditional nqa by imposing that the queue can
never contain more than h symbols, for a fixed constant h ≥ 0 not depending on input length.
Any attempt to store more than h symbols in the queue results in rejection. This constant
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memory bounded device is formally specified by an 8-tuple A = 〈Q,Σ, Γ , δ, q0,, F, h〉,
where h ≥ 0 is the built-in queue length, while all other components are defined as above.

Some common notions and observations. Throughout the rest of the paper, we will say that
two automata A and A′ are equivalentwhenever L(A) = L(A′) holds true. Moreover, for the
sake of conciseness and when no possible confusion arises, we will be using the designation
constant memory automaton to denote either a constant height npda or a constant length
nqa. We observe that a constant memory automaton can be replaced by a corresponding
“traditional”—i.e., without a built-in limit h on its memory storage—automaton by storing
in its finite control states a counter recording permitted memory amounts (i.e., a number
ranging within {1, . . . , h}). This increases the number of states by the multiplicative factor h
(see, e.g., Lemma 3, where this technique is used in the proof). Indeed, notice that, for h = 0,
the definition of a constant memory automaton exactly coincides with that of a finite state
automaton.

Concerning acceptance mode, our constant memory automata are defined to accept by
final states. However, in case of nondeterministic devices, at the cost of one more state it is
always possible to accept by a single final state and with empty memory at once. This result
is proved, e.g., in [17] for constant height npda; for constant length nqa, the same can be
obtained with a similar approach.

For a constant memory automaton, a fair size measure (see, e.g., [3,17]) should take into
account all the components the device consists of, namely: (i) the number of finite control
states, (ii) the size of the memory alphabet, and (iii) the built-in memory limit. So, we adopt
the following

Definition 1 The size of a constant memory automaton with state set Q, memory alphabet
Γ , and memory limit h, is specified by measuring |Q|, |Γ |, and h.

We observe that this definition immediately implies that the size of an nfa, for which
clearly |Γ | = 0 = h holds true, is completely determined by the number of its states.

Straight line programs for regular expressions. A regular expression over a given alpha-
bet Σ is inductively defined as:

(i) ∅, ε, or a for any symbol a ∈ Σ ,
(ii) (r1 + r2), (r1 · r2), or r∗

1, if r1 and r2 are regular expressions.

The language represented by a given regular expression is defined in the usual way (see, e.g.,
[18,20]). With a slight abuse of terminology, we will often identify a regular expression with
the language it represents.

A convenient and concise way of specifying regular expressions is provided by straight
line programs. Given a set of variables X = {x1, . . . , x
}, a straight line program for regular
expressions (slp, see [17]) on Σ is a finite sequence of instructions

P ≡ instr1;
...

instri ;
...

instr
;
where the i th instruction instri has one of the following forms:

(i) xi := ∅, xi := ε, or xi := a for any symbol a ∈ Σ ,
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(ii) xi := x j +xk , xi := x j ·xk , or xi := x∗
j , for 1 ≤ j, k < i .

The program P expands to the regular expression in x
 (output variable), obtained by nested
macro-expansion of the variables x1, . . . , x
−1, using the right parts of their instructions.
Note that point (ii) in the definition of instruction form imposes a loopless structure to slps,
naturally leading to their digraph representation analogous to that of boolean circuits (see,
e.g., [1,17]).

The length of P is defined to be 
, i.e., the number of its variables or equivalently of
its instructions. Yet, we remark that a variable may occur several times in the right parts of
the instructions P consists of. Such a number of occurrences is called the fan-out of that
variable. The fan-out of x
 is 0, while the fan-out of any other variable is at least 1 (if no
useless instructions occur). The fan-out of P is the maximum fan-out of its variables.

Definition 2 The size of an slp is specified by measuring its length and its fan-out.

It is easy to see that a regular expressionmay be seen as an slpwith fan-out 1. In general,
due to fan-out power, straight line programs can be exponentially more succinct than regular
expressions [17].

We end this section by a quick comment on our way of writing and denoting the type of
size increasing when simulating computational models. As the reader noticed, due to their
different “hardware”, the size of the models under consideration here clearly is not always
measured by the same parameters. So, with a slight abuse of terminology we say, e.g., that the
size blow-up is exponential in the simulation of themodel Awith themodel B whenever some
parameter measuring the size of B is bounded above by some parameter of A appearing at
the exponent. An example of this attitude can be seen in the discussion before Proposition 2.

3 Comparing constant length queue automata and finite state
automata

We start comparing the descriptional power of constant memory automata with that of clas-
sical finite state automata. In [17], it is proved that any constant height npda (resp., constant
height dpda) can be converted into an equivalent nfa (resp., dfa) paying by an exponential
size increase, this size cost being optimal, that is, necessary in some cases. An analogous
result may be obtained for converting constant length nqas and dqas:

Theorem 1 For each constant length nqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉, there exists an
equivalent nfa A′ = 〈Q′,Σ, δ′, q ′

0, F
′〉 with |Q′| ≤ |Q|·|Γ ≤h |. Moreover, if A is a constant

length dqa then A′ is a dfa.

Proof The key idea is to keep the queue content of A, represented by a string in Γ ≤h , in
the finite control state. The transitions of A′ reflect step-by-step the evolution of both state
and queue content in A. So, we let our nfa A′ = 〈Q′,Σ, δ′, q ′

0, F
′〉 have Q′ = Q × Γ ≤h,

q ′
0 = [q0,], F ′ = F × Γ ≤h, and δ′ defined as follows, for any p, q ∈ Q, ω ∈ Γ ≤h,

σ ∈ Σ ∪ {ε}, and X ∈ Γ (recall that X0 = ε):

– if (p, χ, ω) ∈ δ(q, σ, X) and α ∈ Γ ≤h−1, then [p, Xeαω] ∈ δ′([q, Xα], σ ), provided
that |Xeαω| ≤ h, where e = 0 (resp., e = 1) if χ = D (resp., χ = K ).

The reader may easily verify that L(A′) = L(A), and that this transformation preserves
determinism. ��
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The descriptional power of queue automata of constant… 341

Let us now show the optimality of the exponential simulation costs presented inTheorem1.
Consider the following witness language, for each h > 0, each alphabet Γ , and a separator
symbol � /∈ Γ :

DΓ ,h = {w�w : w ∈ Γ ≤h} .

Such a language is accepted by small constant length dqas, while any accepting nfa must
be exponentially larger:

Theorem 2 For each h > 0 and each alphabet Γ :

(i) The language DΓ ,h is accepted by a constant length dqa with 3 states, queue alphabet
Γ ∪ {�,}, and queue length h + 1.

(ii) Any nfa accepting the language DΓ ,h must have at least |Γ ≤h | states.
Proof For point (i), we informally describe the behavior of a constant length dqa A for DΓ ,h ,
when accepting the input stringw�w ∈ DΓ ,h . First, A storesw� in its queue by remaining in
its initial state and using no more than h+1 queue cells. Then, by switching to another state,
A symbol-by-symbol compares the input suffix w against the queue content by dequeuing
any matching symbol. Finally, by reading the sole symbol � in the queue, A reaches a final
state by an ε-move. The formal definition of A, correctly managing also inputs not in DΓ ,h ,
may be easily fixed by the reader.

For point (ii), assume by contradiction an nfa B for DΓ ,h exists, with less than |Γ ≤h |
states. Suppose also that any non-final state of B has an outgoing path leading to a final state;
otherwise, we can remove the state without altering the accepted language. By counting
arguments, there exist v,w ∈ Γ ≤h such that v �= w and the computation of B on both v and
w may end up in the same non-final state q . Now, let α be a word leading B from q to a final
state. Consequently, we have that both vα and wα belong to DΓ ,h . From this, we get that
β�vβ = α = β�wβ for some β ∈ Γ ≤h . Hence, v = w against the hypothesis v �= w. ��

Now, we investigate the size trade-off between constant length nqas and dfas. By The-
orem 1, any constant length nqa can be simulated by an equivalent nfa, paying by an
exponential size increase. In turn, the classical powerset transformation of nfas into dfas
(see, e.g., [18,20]) induces another exponential size blow-up. So, we get

Proposition 1 Any constant length nqawith state set Q, queue alphabetΓ , and queue length
h can be converted into an equivalent dfa with 2|Q|·|Γ ≤h | states.

The double-exponential simulation cost pointed out in Proposition 1 is optimal. In fact,
for each h > 0, each alphabet Γ , and a separator symbol � /∈ Γ , we define the language

SΓ ,h = {v1v2 · · · vr�w1w2 · · · wt : vi , w j ∈ Γ h, for 1 ≤ i ≤ r , 1 ≤ j ≤ t,

and (∪r
i=1{vi }) ∩ (∪t

j=1{w j }) �= ∅} .

The following theorem proves that SΓ ,h can be accepted by a constant length nqa where the
number of states and the length of the queue are both linear in h, while any equivalent dfa
requires a number of states which cannot be less than double-exponential in h:

Theorem 3 For each h > 0 and each alphabet Γ :

(i) The language SΓ ,h is accepted by a constant length nqa with O(h) states, queue
alphabet Γ ∪ {}, and queue length h.

(ii) Any dfa accepting the language SΓ ,h must have at least 2|Γ h | states.
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Proof For point (i), informally an nqa A for SΓ ,h sweeps the first half of the input string
while counting modulo h in its finite state control, in order to delimit each block vi . While
doing this, A nondeterministically chooses a block vi to be stored in the queue, and skips the
others until � is reached. From this point on, A sweeps the second half of the input string as
done for the first half, but this time it nondeterministically chooses a block w j to be matched
against the block vi previously stored in the queue. Clearly, the length of the queue is h,
and O(h) states suffice to count modulo h and perform queuing/dequeuing operations as
described.

For point (ii), assume by contradiction the existence of a dfa A for SΓ ,h featuring

less than 2|Γ h | states. By counting arguments, there exist two different subsets of Γ h , say
B = {x1, x2, . . . , xm} and C = {y1, y2, . . . , yn}, such that A reaches the same state q after
processing either the input string α = x1x2 · · · xm and the input string β = y1y2 . . . yn . With-
out loss of generality, assume that u ∈ B and u /∈ C . Clearly, the word α�u belongs to SΓ ,h ,
while the word β�u does not. However, starting from q and deterministically processing the
same suffix �u, we get that A accepts α�u ∈ SΓ ,h if and only if it accepts β�u /∈ SΓ ,h , a
contradiction. ��

4 The cost of determinizing constant length queue automata

Let us now focus on the cost of removing nondeterminism in constant length nqas. We are
going to prove an optimal exponential cost, in sharp contrast with the realm of constant height
npdas, where an optimal double-exponential cost is proved in [5].

As a preliminary result, we complete the picture given in the previous section by studying
the missing simulation. Precisely, we show that, by having a constant length queue at our
disposal, we can remove nondeterminism in finite state automata paying by only a linear size
increase.

Theorem 4 For each nfa A = 〈Q,Σ, δ, q1, F〉, there exists an equivalent constant length
dqa A′ = 〈Q′,Σ, Γ , δ′, q0,, F ′, h〉 such that ∣∣Q′∣∣ ≤ 2 ·|Q|·|Σ |+|Σ |+3, |Γ | ≤ |Q|+2,
and h ≤ 2 · |Q| + 2.

Proof The key idea is to simulate the behavior of the powerset automaton of A (i.e., the dfa
obtained from A by the powerset construction [18,20]) by using the queue of A′ to store the
set of states in which A might currently be. Each possible transition of A is simulated in A′
by consuming the state q at the head of the queue, and enqueuing the set of successors of q on
the current input symbol. Basically, A′ performs a breadth-first traversal of the computation
digraph of A on a given input string, searching for a possible accepting state.

Formally, we define our constant length dqa A′ = 〈Q′,Σ, Γ , δ′, q0,, F ′, h〉 as having:
– Q′ = { eqa , ẽqa | q ∈ Q, a ∈ Σ } ∪ { ta | a ∈ Σ } ∪ { q0, r , rF },
– Γ = Q ∪ {�,},
– F ′ = {rF } if q1 /∈ F , otherwise F ′ = {q0, rF } if q1 ∈ F ,
– h = 2 · |Q| + 2.

Let us now focus on defining the transition function δ′. Thefirst transition initializes the queue,
reads the first input symbol, and stores it in the finite state control. So, for every a ∈ Σ , we
let

δ′(q0, a,) = (ta, D, q1�).

123
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Roughly speaking, along the computation of A′, the queue content will be a string inΓ ∗ of the
form α�β , with α, β ∈ Q∗, having the following meaning: the prefix α represents the set of
states in which Amight currently be in, while the factor β represents the set of states Amight
reach upon reading the current input symbol. This queue content is managed by A′ as follows:
the first symbol of α (i.e., the state q at the head of the queue) is consumed and its successor
states in A are enqueued. To accomplish this task, a queue rotation is required to avoidmultiple
storing of the same state in the second part β of the queue. To this aim, the transitions on
the state eqa rotate the queue content until � is reached, while those on ẽqa still rotate the
queue content, together with deleting the successors of q already occurring in β. Formally,
let Q = {q1, q2, . . . , qn} be the state set of A, and for any P = {qi1 , qi2 , . . . , qi
} ⊆ Q with
i1 < i2 < · · · < i
 define wP as the string qi1qi2 · · · qi
 ∈ Γ ∗. For any a ∈ Σ and p, q ∈ Q,
we let

δ′(ta, ε, q) = (eqa , D, ε), δ′(eqa , ε, �) = (ẽqa , D, �),

δ′(eqa , ε, p) = (eqa , D, p), δ′(ẽqa , ε,) = (ta, D, wδ(q,a) ),

δ′(ẽqa , ε, p) =
{

(ẽqa , D, ε) if p ∈ δ(q, a),

(ẽqa , D, p) if p /∈ δ(q, a).

If there is no further state symbol of A in the first part of the queue, i.e., if the head of the
queue is �, we need to process β upon the next input symbol. To this aim, the queue content
is modified from �β  to β�. We get this by rotating the queue in the states r and rF , while
checking whether some state in F shows up in the queue. If this is the case, A′ enters the
accepting state rF at the end of rotation; otherwise, it enters the state r . Formally, for any
a ∈ Σ and q ∈ Q, we let

δ′(ta, ε, �) = (r , D, ε),

δ′(r , ε, q) =
{

(r , D, q) if q /∈ F,

(rF , D, q) if q ∈ F,
δ′(rF , ε, q) = (rF , D, q),

δ′(r , a,) = δ′(rF , a,) = (ta, D, � ).

To see that L(A′) = L(A), let the dfa A′′ be the powerset automaton from A. First, note
that ε is accepted by A′ if and only if ε is accepted by A′′. Now, assume that A′′ is in some
state P1 ⊆ Q, reads an input symbol a ∈ Σ , and goes to successor state P2 ⊆ Q. Further,
assume that A′, after consuming the input symbol a, is in the state ta , and its queue content
is w1� , for some permutation w1 of wP1—note that this situation is established since the
beginning, after the first transition of A′. Then, for each state symbol q in w1, the dqa A′
deletes this symbol fromw1, and adds the state symbols from δ(q, a) to the second part of the
queue between the � and symbols.When all state symbols fromw1 are processed, the queue
content of A′ is �w2 , where w2 is some permutation of wP2 . Now, A

′ sees the � symbol
in the queue and scans the word w2, trying to reveal some accepting state symbol q ∈ F
by rotating the queue content symbol by symbol. When A′ sees the  symbol, the scanning
of w2 is completed. In this situation, A′ is in the accepting state rF if and only if there is
an accepting state of A in the state set P2. Then, the next input symbol is consumed, the
new queue content is w2�, and A′ is ready to simulate the next step of A′′. Therefore, after
completely sweeping the input string, A′ is in the accepting state rF if and only if A′′ entered
an accepting state.

Clearly, the dqa A′ has 2 · |Q| · |Σ |+|Σ |+3 states and |Q|+2 queue symbols. Moreover,
notice that at any time the queue contains: any state symbol q ∈ Q at most once in the first
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part and at most once in the second part, at most one � symbol, at most one  symbol. So,
the queue length never exceeds 2 · |Q| + 2. ��

As a consequence of Theorem 4, we can settle the claimed optimal exponential size cost
for the determinization of constant length nqas:

Theorem 5 For each constant length nqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉, there exists an
equivalent constant length dqa A′ = 〈Q′,Σ, Γ ′, δ′, q ′

0,′, F ′, h′〉 which satisfies |Q′| ∈
O(|Q| · |Γ ≤h | · |Σ |), |Γ ′| ∈ O(|Q| · |Γ ≤h |), and h′ ∈ O(|Q| · |Γ ≤h |). Furthermore, the
size cost of this conversion is optimal.

Proof First, we use Theorem 1 to transform the given constant length nqa into an equivalent
nfa, paying by an exponential size increase. Then, we use the linear transformation in
Theorem 4 to obtain the desired constant length dqa.

To get the optimality of this exponential size blow-up, assume by contradiction a sub-
exponential size increase. Then, by Theorem 1, we would get a sub-double-exponential size
cost for converting constant length nqas intodfas, against the double-exponential optimality
pointed out at Theorem 3. ��

5 Comparing constant length queue automata and constant height
pushdown automata

We begin by showing that constant height pushdown automata can be simulated by constant
length queue automata paying by only a linear size increase.

Theorem 6 For any constant height npda A = 〈Q,Σ, Γ , δ, q0,⊥, F, h〉, there exists an
equivalent constant length nqa A′ with 2 · |Q| states, |Γ | + 1 queue symbols, and queue
length h + 1. Moreover, if A is a constant height dpda then A′ is a constant length dqa.

Proof The key idea is to maintain the pushdown storage in the queue so that the queue head
(resp., tail) represents the symbol at the top (resp., bottom) of the pushdown. The simulation
in A′ of a move of A works as follows:

(i) the head (corresponding to the top of A) is consumed,
(ii) the string to pile at the top of the pushdown is enqueued, preceded by a special separator

symbol � /∈ Γ ,
(iii) the whole queue content is rotated symbol by symbol, until � is consumed.

It is easy to see that at the end of this rotation the new queue content reflects the pushdown
content in A after the simulated move.

So, we define our constant length nqa A′ = 〈Q′,Σ, Γ ∪{�}, δ′, q0,⊥, F, h+1〉 as having
Q′ = Q ∪ {rq : q ∈ Q}, and δ′ stated as follows. Given in A the move δ(q, σ, Z) � (p, γ ),
with σ ∈ Σ ∪ {ε}, we let

δ′(q, σ, Z) = {(rp, D, �γ )},
δ′(rp, ε, X) = {(rp, D, X)} for any X ∈ Γ \ {�},
δ′(rp, ε, �) = {(p, D, ε)}.

The first transition enqueues the pushed string and prepares the queue rotation which is
then accomplished by the second transitions. Finally, the third transition switches the state
according to δ.
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Clearly, |Q′| = |Q| + |{rq : q ∈ Q}| = 2 · |Q|, while the set of queue symbols has
cardinality |Γ | + 1. Also, notice that the queue rotation process increases by 1 the length of
the queue at the first step, due to appending �. In conclusion, observe that no nondeterminism
is induced by moves from the states in {rq : q ∈ Q}. So, if A is deterministic, then A′ is
deterministic as well. ��

For the reverse conversions, i.e., from constant length queue automata to constant height
pushdown automata, we notice that Theorem 1 directly implies an exponential upper bound
since a finite automaton can be seen as a pushdown automaton that does not use its own
pushdown store. Therefore,

Proposition 2 For each constant length nqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉, there exists an
equivalent constant height npda A′ = 〈Q′,Σ, Γ ′, δ′, q ′

0,⊥, F ′, h′〉 which satisfies |Q′| ≤
|Q|·|Γ ≤h | and ∣

∣Γ ′∣∣ = h′ = 1. Moreover, if A is a constant length dqa then A′ is a constant
height dpda.

A corresponding exponential size cost lower bound for converting constant length queue
automata to constant height pushdown automata, that is, the optimality of Proposition 2, will
be proved later in Proposition 6, Sect. 6.

We end this section, by addressing the size costs for the conversions of constant height
npdas to constant length dqas, and constant length nqas to constant height dpdas. We show
an optimal exponential size cost for the former conversion, and a double-exponential size
cost for the latter.

Proposition 3 For each constant height npda A = 〈Q,Σ, Γ , δ, q0,⊥, F, h〉, there exists
an equivalent constant length dqa A′ = 〈Q′,Σ, Γ ′, δ′, q ′

0,, F ′, h′〉 which satisfies |Q′| ∈
O(|Q| · |Γ ≤h | · |Σ |), |Γ ′| ∈ O(|Q| · |Γ ≤h |), and h′ ∈ O(|Q| · |Γ ≤h |). Furthermore, the
size coast of this conversion is optimal.

Proof For the size cost upper bound, it suffices to apply Theorem 6 and get from A an
equivalent constant length nqa which in turn, according to Theorem 5, can be transformed
into an equivalent constant length dqa A′ with the claimed size.

For the optimality, we notice that if every constant height npda could be transformed to
an equivalent constant length dqa with a sub-exponential size blow-up, then we could use
the exponential transformation from Proposition 2 to convert the resulting constant length
dqa into an equivalent constant height dpda. Altogether, this would yield a sub-double-
exponential size cost for removing nondeterminism in constant height npdas, against the
results proved in [5]. ��

Proposition 4 For each constant length nqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉, there exists an
equivalent constant height dpda A′ = 〈Q′,Σ, Γ ′, δ′, q ′

0,⊥, F ′, h′〉 which satisfies |Q′| ≤
2|Q|·|Γ ≤h | and |Γ ′| = h′ = 1. Furthermore, the size cost of this conversion is optimal.

Proof The size cost upper bound directly follows from Proposition 1. For the optimality, we
observe that a sub-double-exponential size cost conversion plus the linear transformation in
Theorem 6, from constant height npdas to constant length nqas would yield a sub-double-
exponential cost for removing nondeterminism in constant height npdas, against the results
proved in [5]. ��
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6 Comparing queue automata and straight line programs

Let us state the cost of turning constant length nqas into slps. By composing Proposition 2
with a result in [17] relating the size of a constant height npda with the size of an equivalent
slps we get:

Proposition 5 For each constant length nqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉, there exists an
equivalent slp of length O(|Q|4 · |Γ ≤h |4 · |Σ |) and fan-out O(|Q|2 · |Γ ≤h |2).
Proof The exponential size cost is obtained by composing the exponential simulation from
constant length nqas to constant height npdas in Proposition 2 with the polynomial trans-
formation given in [17], from constant height npdas to slps. ��

For the optimality of Proposition 5, we consider the following language, for each h > 0,
each alphabet Γ , and separator symbols $, � /∈ Γ :

LΓ ,h =
⋃

u∈Γ h

{ (�u)i$ | i ≥ 1 }.

Theorem 7 For each h > 0 and each alphabet Γ :

(i) The language LΓ ,h is accepted by a constant length dqa with O(h) states, queue
alphabet Γ ′ = Γ ∪ {, �}, and queue length h + 1.

(ii) Any slp accepting the language LΓ ,h must have at least |Γ h | variables.
Proof A constant length dqa for LΓ ,h stores the prefix �u of a given input word in its queue,
while checking that |u| = h. This requires O(h) states. Then, it matches its queue content
against the rest of the input word by rotating the queue symbol by symbol, rejecting whenever
a bad input format problem or a wrong symbol match is revealed. Upon reading the input
symbol $ and the symbol � at the head of the queue, the dqa enters a final state.

Let us now switch to slps for LΓ ,h , and first introduce some terminology. In an slp,
we call star-variable any variable x occurring on the left-hand side in a star-instruction of
the form x := y∗. Moreover, we denote by L(x) the language represented by the regular
expression computed in x .

Thus, let P be an slp computing a regular expression for LΓ ,h , and let P ′ be the slp
obtained from P by replacing every star-instruction x := y∗ by the instruction x := ε.
Clearly, P ′ describes a finite language for which we let m be the length of the longest word.
It is easy to see that, for any word z ∈ LΓ ,h with |z| > m, the slp P must make use of
a star-variable producing some non-empty factor of z. By applying this observation to the
word zu = (�u)m$ ∈ LΓ ,h , with u ∈ Γ h , we get the existence of a star-variable xu in P such
that:

(i) zu = zu,1zu,2zu,3 with ε �= zu,2 ∈ L(xu), and
(ii) for all z′u,2 ∈ L(xu), we have zu,1z′u,2zu,3 ∈ LΓ ,h .

The non-empty factor zu,2 must contain at least one � symbol. Otherwise, P would describe a
word with a factor ω ∈ Γ ∗ satisfying |ω| > h, which cannot belong to LΓ ,h . If zu,2 contains
at least two � symbols, then it contains the factor �u�. If zu,2 contains only one � symbol,
i.e., if zu,2 = v1�v2 for v1, v2 ∈ Γ ∗, then v1 (resp., v2) is a suffix (resp., prefix) of u. In fact,
since z2u,2 ∈ L(xu), it must be v2v1 = u.

Thus, we have shown that, for every word u ∈ Γ h , there exists a star-variable xu such
that L(xu) contains a word having �u� as a factor. If P has less than |Γ h | variables, then
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clearly there exist u, v ∈ Γ h , with u �= v, satisfying xu = xv . This implies that the language
L(xu) contains words that have either �u� and �v� as factors. Moreover, since L(xu) is closed
under star operation, we get that P describes words of the form α�u�β�v�γ /∈ LΓ ,h , for
α, β, γ ∈ (Γ ∪ {�, $})∗, a contradiction. Thus, P must have at least |Γ h | variables. ��

As a consequence of Theorem 7, we get the optimality of the exponential size cost con-
versions of constant length queue automata to constant height pushdown automata addressed
in Proposition 2:

Proposition 6 The exponential conversions from constant length dqas to constant height
npdas, and from constant length nqas (resp., dqas) to constant height npdas (resp., dpdas)
in Proposition 2 are optimal.

Proof Assume, by contradiction, a sub-exponential size cost conversion from constant length
dqas to constant height npdas. Then, by the polynomial size cost conversion of constant
height npdas to slps shown in [17], one could also convert any constant length dqa to an
equivalent slp of sub-exponential size, against Theorem 7. We can argue similarly for the
other conversions. ��

We conclude by converting slps to constant length nqas or dqas:

Proposition 7 The size blow-up for converting slps to equivalent constant lengthdqas (resp.,
nqas) is exponential (resp., linear). Furthermore, the former exponential transformation is
optimal.

Proof In [17], a linear size cost transformation from slps to constant height npdas is pre-
sented. Together with the linear size cost conversion from constant height npdas to constant
length nqas established in Theorem 6, this yields a linear size cost conversion from slps to
constant length nqas. In turn, Theorem 5 implies an exponential size cost upper bound for
converting of slps to constant length dqas.

For the optimality of this latter exponential size blow-up, assume by contradiction a
sub-exponential size cost conversion exists, from slps to constant length dqas. Then, by a
preliminary size cost polynomial transformation from constant height npdas to slps, plus
a successive exponential size cost conversion from constant length dqas to constant height
dpdas, one could get a sub-double-exponential size cost for removing nondeterminism in
constant height npdas, against results proved in [5]. ��

7 Summary of simulation costs

For reader’s ease of mind, we sum up in Fig. 1 the main relations among the sizes of the dif-
ferent types of formalisms for regular languages considered in this paper. Such size relations
are briefly commented below the figure.

Linear and polynomial size blow-ups. The linear size costs of the transformations dfa
→ nfa, dfa → h-dqa, nfa → h-nqa, dfa → h-nqa, h-dqa → h-nqa, and h-dpda →
h-npda are trivial. Let us focus on the other linear and polynomial costs:

– nfa → h-dqa: the linear cost comes from Theorem 4.
– slp → h-nqa: the linear cost comes from Proposition 7.
– h-dpda→ h-dqa, h-dpda→ h-nqa, and h-npda→ h-nqa: the linear costs come from

Theorem 6.
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Fig. 1 The size costs of simulations among different types of formalisms defining regular languages. Here
h-dpda (h-npda, resp.) denotes a constant height dpda (npda, resp.), while h-dqa (h-nqa, resp.) denotes
a constant length dqa (nqa, resp.). An arc labeled by lin (poly, exp, double exp, resp.) from a vertex A to a
vertex B means that, given a representation of type A, we can build an equivalent representation of type B,
paying by a linear (polynomial, exponential, double-exponential, resp.) increase in the size

– slp → h-npda: the linear cost comes from [17].
– h-npda → slp: the polynomial cost comes from [17].

Exponential and double-exponential size blow-ups.

– nfa → dfa: the exponential cost is known from [31], its optimality from [30].
– h-dqa → dfa, h-dqa → nfa, and h-nqa → nfa: the exponential costs come from

Theorem 1, their optimality from Theorem 2.
– h-nqa → dfa: the double-exponential cost comes from Proposition 1, its optimality

from Theorem 3.
– h-dqa → slp: the exponential cost comes from Proposition 5, its optimality from The-

orem 7.
– slp → h-dqa: the optimal exponential cost comes from Proposition 7.
– h-nqa → h-dqa: the optimal exponential cost comes from Theorem 5.
– h-nqa → slp: the exponential cost comes from Proposition 5, its optimality from The-

orem 7.
– h-dqa→ h-dpda, h-dqa→ h-npda, and h-nqa→ h-npda: the exponential costs come

from Proposition 2, their optimality from Proposition 6.
– h-npda → h-dqa: the optimal exponential cost comes from Proposition 3.
– h-nqa → h-dpda: the optimal double-exponential cost comes from Proposition 4.
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– h-npda → h-dpda: the optimal double-exponential cost comes from [5].

8 Boolean language operations on constant length queue automata

Let us now study the size cost of implementing boolean language operations on constant
length nqas and dqas. This is a commonly investigated topic in descriptional complexity, for
formalisms defining regular languages. For instance, for constant height npdas and dpdas,
results can be found in [3,4,6]. Indeed, also for nonclassical language acceptors, such as
different variants of quantumfinite automata, several results on the size complexity of boolean
language operations are established (see, e.g., [7–10,12,13]).

To simplify our constructions, sometimes it will be useful to assume that our queue
automata enqueue at most one symbol at any move, that is, any transition (p, χ, ω) ∈
δ(q, σ, X) satisfies |ω| ≤ 1. In this case, the queue length changes at most by 1 at any
move, and we say that the queue automaton is in normal form.

The next technical lemma shows that any constant length queue automaton can be con-
verted in normal form, by preserving determinism. To suitably evaluate the size cost of this
conversion, we adopt a size measure accounting for the “complexity” of the instructions of
the queue automaton.

According to [18], the size of an automaton M can be defined as the length of a string
describing its transition function. For a queue automaton, if the i th transition of M is
δ(q, σ, X) � (p, χ, Y1 . . . Yk), with k ≥ 0 and Ys ∈ Γ , it can be written down as a string
ti = q σ Xp χ Y1 . . . Yk . (Here we assume, without loss of generality, that Q, Σ , Γ and
{D, K } are mutually disjoint sets. This makes decoding of transitions unambiguous.) So,
globally M can be written down as t1 · · · tm ∈ (Q ∪ Σ ∪ Γ ∪ {D, K })∗, a string listing
all machine’s instructions one after another. By charging “1” for the constant part in each
transition, we define the size of M as

|M | =
∑

(q,σ,X)∈Q×(Σ∪{ε})×Γ

∑

(p,χ,ω)∈δ(q,σ,X)

max{|ω|, 1} .

As the reader may easily verify, we have that |M | ∈ O(|Q|2 · |Γ |2).
We are now ready to establish the size cost of converting constant length queue automata

into normal form:

Lemma 1 Given a constant length nqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉, there exists an
equivalent constant length nqa A′ = 〈Q′,Σ, Γ , δ′, q0,, F, h〉 in normal form, with
|Q′| ≤ |A| + 1. Moreover, if A is deterministic, then A′ is deterministic as well.

Proof Consider an instruction ρ = δ(q, σ, X) � (p, χ, γ ) of A, with γ ∈ Γ ∗. If |γ | ≤ 1,
then we let δ′(q, σ, X) � (p, χ, γ ). Otherwise, assuming γ = Y1 . . . Yk with k > 1, we add
k − 1 new states s1, . . . , sk−1 and, for 1 ≤ i ≤ k − 2 and all Z ∈ Γ , we translate ρ into the
following instructions:

δ′(q, σ, X) � (s1, χ, Y1),

δ′(si , ε, Z) = {(si+1, K , Yi+1)},
δ′(sk−1, ε, Z) = {(p, K , Yk)}.

Let us count the number of states required by A′. For the instruction ρ, the automaton A′
uses the states q, s1, . . . , s|γ |−1 , p. If q is reachable by some nonempty input string, then it
is already counted in some other instruction translation. Therefore, simulating the instruction
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ρ requires at most max{|γ |, 1} additional states. The only state that might not be counted is
the initial state q0. Altogether, we get |Q′| ≤ |A| + 1. ��

Another simplification we need for combining two constant length nqas in order to imple-
ment boolean language binary operations, is to assume that such automata have the same
queue length. The evaluation of the size blow-up to implement this assumption is the subject
of the following:

Lemma 2 Given a constant length nqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉 in normal form,
for any h′ > h we can construct an equivalent constant length nqa A′ in normal form,
having queue length h′, queue alphabet cardinality bounded by |Γ | + 1, and featuring
min{h · |Q|, |Q| · (|Γ | + 1) + h′ − h} states. Moreover, if A is deterministic, then A′ is
deterministic as well.

Proof First, we notice that a trivial step-by-step simulation of A by A′ using a queue of length
h′ would not be able to reproduce the situation in which A rejects by attempting to enqueue
more than h symbols. Thus, one possibility is to build A′ by integrating an integer counter
within the finite state control of A, keeping track of the current queue length and immediately
rejecting whenever the counter attempts to exceed h. This clearly implies the usage of h · |Q|
states in A′.

Another possibility is that A′ initially inserts h′ − h dummy symbols in the queue, which
will never be deleted. This clearly reduces A′’s queue capacity to h, and requires h′ − h new
states to be implemented. Along the computation, A′ maintains the simulated queue content
of A before the dummy symbols by using a queue rotation subroutine. For this subroutine,
we add new states of the form rYp storing the state p to be entered and the symbol Y to be
moved from the head to the tail of the queue (see, e.g., proofs of Theorems 4 and 6). This
implies the usage of |Q| + |Q| · |Γ | + h′ − h states in A′ and a queue alphabet which is Γ

equipped with a dummy symbol. ��

We are now ready to implement boolean language binary operations on constant length
nqas which, by considering Lemmas 1 and 2 above, are assumed to be in normal form and
working with the same queue length. We begin by considering the intersection:

Theorem 8 Given two constant length nqas A1 = 〈Q1,Σ, Γ1, δ1, c1,, F1, h〉 and A2 =
〈Q2,Σ, Γ2, δ2, c2,, F2, h〉 in normal form, we can construct a constant length nqa A
accepting L(A1) ∩ L(A2), having queue length h + 1, queue alphabet cardinality (|Γ1| +
1) · (|Γ2| + 1) + 1, and featuring |Q1| · (|Γ1| + 1)2 · |Q2| · (|Γ2| + 1)2 states.

Proof The key idea is that A simulates in parallel the behavior of A1 and A2, using its queue
divided into two tracks. To this aim, the queue symbols of A consist of pairs of symbols from
Γ1 × Γ2. Analogously, the states of A come from Q1 × Q2. The two components of the
elements of these two sets are responsible of simulating the computation steps of A1 and A2

on the corresponding tracks. Since the queue operations of A1 and A2 are generally not
synchronized, a special blank queue symbol b /∈ Γ1 ∪Γ2 is inserted at the end of the shortest
track to allow tracks aligning. Every enqueuing operation requires a rotation subroutine in
order to keep the b’s at the end of the shortest track. To this purpose, a special queue symbol
(�, �), with � /∈ Γ1 ∪ Γ2, is introduced, together with new elements that will be used as state
components of A during the rotation subroutine. Namely, for i ∈ {1, 2}, we let:
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– Ri = {rYp : p ∈ Qi , Y ∈ Γi }. An element rYp stores the state p to be entered and the
queue symbol Y to be enqueued at the end of the non-blank part of the corresponding
track.2

– Si = {sXp : p ∈ Qi , X ∈ Γi }. An element sXp stores the state p to be entered and the
queue symbol X to be enqueued at the next rotation step during the rotation subroutine.
This is required whenever the operations of A1 and A2 on the queue are not synchronized.

– Ti = {tY ,X
p : p ∈ Qi , X , Y ∈ Γi }. An element tY ,X

p stores the state p to be entered, the
queue symbolY to be enqueued at the endof the non-blankpart of the corresponding track,
and the queue symbol X to be enqueued at the next rotation step during the subroutine.

Formally, we define A = 〈Q,Σ, Γ , δ, (c1, c2), (,), F, h + 1〉 with
– Q = {(p1, p2) : pi ∈ Qi ∪ Ri ∪ Si ∪ Ti , i ∈ {1, 2}},
– Γ = (Γ1 ∪ {b}) × (Γ2 ∪ {b}) ∪ {(�, �)}, for b, � /∈ Γ1 ∪ Γ2,
– F = F1 × F2.

The transition function δ simulates δ1 and δ2 on the two tracks, and performs the rotation
subroutine whenever required.

Particular attention must be paid to handle ε-moves. If one of the two automata A1 or A2

requires to perform an ε-move, the other automaton must be synchronized by replicating an
ε-move too, in which state and queue are not modified. To this aim, we add the following
rules to δi , for i ∈ {1, 2}, which can be simulated by δ. For any q ∈ Qi and X ∈ Γi , we let:

δi (q, ε, X) � (q, K , ε). (1)

For the sake of brevity, here we formalize the rules in δ for the case delete- - keep, i.e.,
simulating the transitions

δ1(q1, σ, X1) � (p1, D, Y1) and δ2(q2, σ, X2) � (p2, K , Y2),

where σ ∈ Σ ∪ {ε} and Y1, Y2 �= ε. We define δ, for any (Z1, Z2) ∈ Γ1 × Γ2, as:

δ((q1, q2), σ, (X1, X2)) � ((rY1p1 , t
Y2,X2
p2 ), D, (�, �)),

δ((rY1p1 , t
Y2,X2
p2 ), ε, (Z1, Z2)) � ((rY1p1 , t

Y2,Z2
p2 ), D, (Z1, X2)),

δ((rY1p1 , t
Y2,Z
p2 ), ε, (�, �)) � ((p1, p2), D, (Y1, Z)(Y2, b)),

where the last rule takes place whenever the two tracks have the same length. Instead, in
case of different queue lengths, we have two different sets of rules depending on whether a
b symbol appears in the track dedicated to A1 or in that for A2. So, for any X ∈ Γ2, we let:

δ((rY1p1 , t
Y2,Z
p2 ), ε, (b, X)) � ((p1, r

Y2
p2 ), D, (Y1, Z)(b, X)),

δ((p1, r
Y2
p2 ), ε, (b, X)) � ((p1, r

Y2
p2 ), D, (b, X)),

δ((p1, r
Y2
p2 ), ε, (�, �)) � ((p1, p2), D, (b, Y2)),

while, for any X ∈ Γ1, we let:

δ((rY1p1 , t
Y2,Z
p2 ), ε, (X , b)) � ((rY1p1 , r

Y2
p2 ), D, (X , Z)),

δ((rY1p1 , r
Y2
p2 ), ε, (X , b)) � ((rY1p1 , p2), D, (X , Y2)),

δ((rY1p1 , p2), ε, (X , b)) � ((rY1p1 , p2), D, (X , b)),

2 Rotating one track symbol from head to tail cannot be done in a single move since two not-necessarily
synchronized tracks must be managed. This is the reason why Ri ’s sets are provided.
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δ((rY1p1 , p2), ε, (�, �)) � ((p1, p2), D, (Y1, b)).

The reader may fill the definition of δ for the cases Y1 = ε or/and Y2 = ε. We simply notice
that for Y2 = ε, instead of having the second component of the states in the form tY2,Zp2 , we
have sZp2 since we do not record Y2 to be inserted.

The rules in δ for simulating moves of type keep- - delete are managed symmetrically,
whilemoveskeep- - keep anddelete- - delete are replicated simply by parallel simulations
(in these two latter cases, involved states are only from the set (Q1 ∪ R1) × (Q2 ∪ R2)).

It is easy to see that A is a constant length nqa, with queue length at most h+1.Moreover,
since each component of the states of A is from the set Qi ∪ Ri ∪ Si ∪Ti , we have the claimed
number of states. ��

We observe that the two constant length nqas considered in Theorem 8 for intersection
enjoy particular properties, e.g., being in normal form and operating with the same queue
length. However, by considering the transformation size costs in Lemma 1 and Lemma 2,
the reader may easily verify that the state cost of implementing the intersection for two
general constant length nqas turns out to be at most the square of the state cost pointed out
in Theorem 8, multiplied by the length of the shortest queue among the two involved constant
length nqas.

Let us now focus on intersecting constant length dqas. It is not hard to see that the
construction provided in Theorem 8 does not preserve determinism. However, such a con-
struction can be adapted to implement the intersection of two realtime constant length dqas
by a constant length dqa. We recall that a queue automaton is said to be realtime whenever
it does not present ε-moves (see, e.g., [14]):

Corollary 1 Given two realtime constant length dqas A1 = 〈Q1,Σ, Γ1, δ1, c1,, F1, h〉
and A2 = 〈Q2,Σ, Γ2, δ2, c2,, F2, h〉 in normal form, we can construct a constant length
dqa A accepting L(A1) ∩ L(A2), having queue length h + 1, queue alphabet cardinality
(|Γ1| + 1) · (|Γ2| + 1) + 1, and featuring |Q1| · (|Γ1| + 1)2 · |Q2| · (|Γ2| + 1)2 states.

Proof We can consider the construction provided in the proof of Theorem 8, by simply
observing that there the only rules adding nondeterminism are the ones displayed in Eq. (1)
for handling ε-moves synchronization. Since A1 and A2 are realtime, we here do not need
these additional rules any more. ��

For general realtime constant length dqas, again by considering Lemma 1 and Lemma 2,
the reader may easily verify that the state cost of implementing intersection turns out to be
at most the square of the state cost pointed out in Corollary 1, multiplied by the length of the
shortest queue among the two involved constant length dqas.

Instead, in case of two nonrealtime constant length dqas, the idea is to turn one of the two
devices into an equivalent dfa according to Theorem 1, remove ε-moves from the dfa, and
finally embed the dfa into the finite control of the other dqa. The resulting constant length
dqa implements the intersection with a number of states bounded by |Q1| · |Q2| · |Γ ≤h2

2 |,
where Q1, Q2, Γ2, h2 have the usual meaning.

Now, we turn to implementing the union. For this operation, the construction is simpler
since we can exploit nondeterminism:

Theorem 9 Given two constant length nqas A1 = 〈Q1,Σ, Γ1, δ1, c1,, F1, h〉 and A2 =
〈Q2,Σ, Γ2, δ2, c2,, F2, h〉, we can construct a constant length nqa A recognizing L(A1)∪
L(A2), with queue length h, queue alphabet Γ1 ∪ Γ2, and |Q1| + |Q2| + 1 states.
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Proof Without loss of generality, we can assume that Q1 and Q2 are disjoint sets. The states
of A are from the set Q1 ∪ Q2, plus a new initial state c, the queue alphabet is Γ1 ∪ Γ2, and
the set of final states is F1 ∪ F2. As a first step, A performs a nondeterministic ε-move from
c leading to enter either c1 or c2. Then, A simulates δ1 on states from Q1, and δ2 on states
from Q2. It is not hard to see that A accepts whenever either A1 or A2 accepts. ��

In case of two constant length nqas with queues of different lengths, by Lemma 2 one
may easily obtain that the state cost for their union turns out to be at most |Q1|+h2 · |Q2|+1,
where Q1, Q2, h2 have the usual meaning.

For implementing the union in the realtime deterministic case, we can use the same
construction for intersection, addressed in the proof Corollary 1, with small modifications.
Such modifications are basically due to handling situations in which one of the two queue
automata rejects before consuming the whole input. To this aim, we present a technical
lemma:

Lemma 3 Given a realtime constant length dqa A = 〈Q,Σ, Γ , δ, c,, F, h〉, we can con-
struct an equivalent realtime constant length dqa A′ = 〈Q′,Σ, Γ , δ′, c,, F ′, h〉 with
|Q′| ≤ h · |Q| + 2, which always consumes the whole input before halting. Moreover, if A is
in normal form, then A′ is in normal form as well.

Proof Being A realtime, there cannot exist infinite loops due to ε-moves. The only situations
where A might halt before the end of the input string are the following:

(i) queue underflow and overflow,
(ii) undefined δ for some configurations.

To fix situation (i), we store the current length of the queue in the finite state control of A′,
i.e., the states of A′ has the form (q, 
) ∈ Q×{1, . . . , h}. Underflow and overflow situations
can be detected from the values of 
, and can be managed by redirecting the corresponding
computation to a new trap state rej . A particular situationmight arise, where the queue length
of A is zero, the input has been completely scanned, and A enters an accepting state. To handle
this situation, we equip A′ with a new accepting state acc and, for δ(q, a, Z) = (p, D, ε)

with p ∈ F , we let

δ′((q, 1), a, Z) = (acc, K , ε) and δ′(acc, σ, X) = (rej, K , ε),

for any σ ∈ Σ and X ∈ Γ . When entering the state rej , we consume the whole input by the
rules δ′(rej, σ, X) = (rej, K , ε).

To fix situation (ii), we complete the transition function by adding new rules δ′(q, σ, X) =
(rej, K , ε), whenever δ(q, σ, X) is not defined.

Therefore, Q′ = Q × {1, . . . , h} ∪ {rej, acc}, F ′ = F × {1, . . . , h} ∪ {acc}, and δ′ is a
total function that simulates δ on states in Q′ by updating the counter and preventing queue
underflow and overflow as above addressed. ��

We are now ready to show the size cost of the union operation in the realtime deterministic
case:

Corollary 2 Given two realtime constant length dqas A1 = 〈Q1,Σ, Γ1, δ1, c1,, F1, h〉
and A2 = 〈Q2,Σ, Γ2, δ2, c2,, F2, h〉 in normal form, we can construct a constant length
dqa A accepting L(A1) ∪ L(A2), having queue length h + 1, queue alphabet cardinality
(|Γ1| + 1) · (|Γ2| + 1)+ 1, and (h · |Q1| + 2) · (|Γ1| + 1)2 · (h · |Q2| + 2) · (|Γ2| + 1)2 states.
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Proof The construction of Aworks out similarly to that in the proof of Corollary 1. However,
we here have to handle cases in which one of the two simulated automata A1 or A2 halts
before consuming the whole input and the other accepts. To this aim, we first transform A1

and A2 into A′
1 and A′

2 according to Lemma 3. Then, to get A, we compose A′
1 and A′

2 as in
Corollary 1, except for the set of final states which is now defined to be (F ′

1×Q′
2)∪(Q′

1×F ′
2).��

For general realtime constant lengthdqas, the readermay easily verify that the state cost of
implementing the union turns out to be the same as the one above discussed for intersecting
general realtime constant length dqas, multiplied by the factor h1 · h2. This latter factor
follows from the construction in Lemma 3, aimed to accept or reject at the end of the input
only.

Instead, in case of non-realtime devices, we use the same construction above addressed
for implementing the intersection of non-realtime constant length dqas, thus yielding the
same state complexity.

Finally, we consider the size cost of implementing the complement operation:

Theorem 10 Given a constant length nqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉, we can construct
a constant length dqa A′ accepting L(A)c, with queue length 2 · (|Q| · |Γ ≤h |) + 4, queue
alphabet cardinality |Q| · |Γ ≤h | + 3, and 2 · (|Q| · |Γ ≤h | + 1) · |Σ | + |Σ | + 3 states.

Proof First, we transform A into an equivalent nfa, according to Theorem 1. The transition
function of the obtainednfamight be partial and containing ε-moves. Therefore,we complete
this function by adding transitions to a new trap state in which the remaining part of the input
is consumed, and remove ε-moves by standard tools (see, e.g., [18,20]) without increasing
the number of states.

Then, we use Theorem 4 to convert the obtained nfa to an equivalent constant length dqa.
Considering the above-mentioned properties of the nfa to be converted and how the construc-
tion of Theorem 4 works, it is not hard to see that the resulting constant length dqa always
sweeps the whole input, accepting or rejecting at the end only. So, by swapping accepting
and rejecting states, we obtain a constant length dqa for L(A)c, with the claimed features. ��

For complementing a realtime constant length dqa, it is enough to use Lemma 3 to get
an equivalent automaton consuming the whole input, and then swap accepting and rejecting
states of this automaton. Thus, we have

Corollary 3 Given a realtime constant length dqa A = 〈Q,Σ, Γ , δ, q0,, F, h〉, we can
construct a realtime constant length dqa for L(A)c, having queue length h, queue alphabet
Γ , and featuring h · |Q| + 2 states.

In case of non-realtime constant length dqas, the state cost for the complement remains
the same. In fact, before applying the construction used for proving Corollary 3, it suffices
to precompute and remove infinite loops due to ε-moves.

9 Conclusions

In this paper, we have considered the notion of a constant length queue automaton—i.e., a
traditional queue automaton with a built-in constant limit on the length of its queue—as a
formalism for representing regular languages.
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We have shown that the descriptional power of constant length queue automata is higher
than that of several formalisms for defining regular languages by providing optimal expo-
nential and double-exponential size gaps.

In particular, we have proved that constant height pushdown automata can be simulated
by constant length queue automata paying only by a linear size increase, and that removing
nondeterminism in constant length queue automata requires an optimal exponential size blow-
up, against the optimal double-exponential cost for determinizing constant height pushdown
automata. This proves the descriptional advantages of using a queue instead of a pushdown
in the realm of constant memory machines.

Finally, we have investigated the size cost of implementing boolean language operations
on deterministic and nondeterministic constant length queue automata.

Among possible future lines of research, onemay investigate restricted variants of constant
memory automata, for instance devices working on unary, i.e., single-letter, input alphabets
(see, e.g., [11,15,26,27]), or input-driven devices [25]. We also would like to emphasize the
interest in two-way devices [28].

Concerning the investigation of the size cost of language operations on constant length
queue automata, it would be interesting to consider further typical operations on regular
languages, such as Kleene’s star, reversal, quotient, shuffle, homomorphisms and inverse
homomorphisms, etc. Moreover, one could extend the investigation on language operations
for restrictedmodels, such as realtime constant lengthnqas.Also the size optimality shouldbe
proved or improved constructions should be designed, for the language operations considered
in this paper.
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