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 19 

The projected loss of millions of square kilometres of natural ecosystems to meet future 20 

demand for food, animal feed, fibre, and bioenergy crops could massively escalate threats to 21 

biodiversity. Preventing this requires a detailed knowledge of how and where such threats are 22 

likely to be greatest. We developed a flexible approach to modelling future agricultural 23 

expansion based on observed historic changes, and combined this approach with species-24 

specific habitat preferences for 19,859 species of terrestrial vertebrates. We project that 25 

87.7% of species will lose habitat to agricultural expansion by 2050, including 1,280 species 26 

projected to lose >25% of habitat. Proactive policies targeting how, where, and what food is 27 

produced could reduce these threats, with a combination of approaches potentially preventing 28 

almost all these losses while contributing to healthier human diets. As international 29 
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biodiversity targets are set to be updated in 2020, these results highlight the importance of 30 

proactive efforts to reduce demand for agricultural land to safeguard biodiversity. 31 

 32 

Main text 33 

Biodiversity declines are accelerating across the world1–3, with one fifth of terrestrial 34 

vertebrates threatened with extinction (categorised by the International Union for the 35 

Conservation of Nature, IUCN, as Vulnerable, Endangered, or Critically Endangered4). 36 

Habitat loss, driven by agricultural expansion, is the greatest threat to terrestrial vertebrates5,6. 37 

If current agricultural trends continue, pressures on biodiversity will increase substantially: 38 

projections based on population growth7 and dietary transitions estimate the need for 2-39 

10 million square kilometres of new agricultural land, largely cleared at the expense of 40 

natural habitats8–11. In the face of these agricultural trends, conventional conservation 41 

approaches, such as site based conservation, may be insufficient to conserve biodiversity12,13. 42 

Additional proactive approaches that reduce the underlying threats to biodiversity—such as 43 

agricultural expansion— will likely be needed to complement existing efforts5,14. 44 

Responding to the impending biodiversity crisis requires decisions based on high resolution, 45 

spatially explicit and species-specific assessments to identify the species and landscapes most 46 

at risk from future agricultural expansion. Results from these assessments help plan 47 

appropriate conservation responses—such as species- or location-specific legislation—and to 48 

assess which proactive changes to food systems have the greatest potential to reduce future 49 

threats to biodiversity before they occur. The utility of existing analyses for conservation 50 

planning and action has been limited by coarse spatial resolutions; a focus on a relatively 51 

small suite of species or on generalized biodiversity metrics such as species richness; or using 52 

narrative pathways that are neither tied to current agricultural trajectories nor are able to 53 



examine how specific changes to food systems might mitigate future biodiversity 54 

declines5,12,15,16 (see Methods). 55 

We address limitations of existing analyses by developing a model framework that increases 56 

the breadth and specificity of analyses, as well as their applicability to conservation efforts 57 

(Supplementary Figure 1). We analyse the impacts of agricultural expansion on an 58 

unprecedented number of species (almost 20,000) while explicitly accounting for differences 59 

in how individual species respond to agricultural land-use change, at a high spatial resolution 60 

(1.5 x 1.5 km), and by analyzing how proactive food system transitions might mitigate future 61 

biodiversity declines. In total, these changes enable us to identify the species and landscapes 62 

most at risk from agricultural expansion under current trajectories, as well as how proactive 63 

agricultural policies could reduce these threats.  64 

Future patterns of agricultural expansion under Business-As-Usual 65 

We developed a new, flexible, and high-resolution approach to modelling agricultural land 66 

cover change. Our approach is built on observed empirical relationships between historical 67 

changes in agricultural land cover and known correlates of agricultural land cover change 68 

(see Methods, Supplementary Figure 2). This differs from the approaches employed by global 69 

food system models such as IMAGE, MAgPIE, or GLOBIOM, which are based more on 70 

economic theory than on empirically observed patterns and changes. Our projections thus 71 

allow the exploration of agricultural futures at high spatial resolutions that are derived from 72 

observed trends, and can thus incorporate factors which are not accounted for in economic 73 

theory (for example strong or weak enforcement of protected areas, or the non-economic 74 

factors that determine agricultural expansion) and also be readily updated as new land cover 75 

data become available. To achieve this, we developed a flexible, spatially explicit, land 76 

allocation model at a resolution of 1.5 x 1.5 km using observed changes in agricultural land 77 

cover from 2001-2013 and spatially-explicit data on key determinants of land-cover change: 78 



the suitability of an area for agricultural production1, current agricultural land cover17, 79 

previous changes in agricultural land cover17, proximity to other agricultural land17, market 80 

access1, and the location of protected areas1. Specifically, we used satellite-derived historic 81 

land cover data17 from 2002 to 2007 to fit region-specific multinomial models to estimate the 82 

probability that agricultural land cover increased, decreased, or remained the same from 2007 83 

to 2012. Next, we used the same satellite data to fit region-specific generalized linear models 84 

to estimate the magnitude of any such change from 2007 to 2012.  85 

We then paired this two-part land allocation model with country-level estimates of 86 

agricultural land demand at five year intervals from 2010 to 2050 derived from the EAT-87 

Lancet global food system model11 that accounts for domestic food demand and international 88 

patterns of trade. For each country and each time step, the land allocation model was first 89 

used to probabilistically select cells to experience a change in agricultural land cover extent, 90 

and then second to estimate the magnitude of this change. This process was repeated until a 91 

country’s estimated agricultural land demand was met, and replicated 25 times to account for 92 

the probabilistic nature of the land allocation model. Because spatial patterns of agricultural 93 

expansion were consistent across model runs (see Supplementary Figures 3, 4 for variation 94 

across model iterations), we report results using the mean of the 25 model iterations.  95 

Under Business-As-Usual (i.e. based on current trajectories), we projected a total increase in 96 

in global cropland of 26% or 3.35 million km2. We projected particularly large increases in 97 

agricultural land throughout Sub-Saharan Africa (particularly tropical West Africa, the Rift 98 

Valley, and in the southern Sahel), South and Southeast Asia (particularly Bangladesh, 99 

Pakistan and southern Malaysia), and to a lesser extent Central and South America (large 100 

increases in northern Argentina, and much of Central America, smaller increases across 101 

southern Brazil) (Fig. 1, Supplementary Figure 5). These increases were driven by the EAT-102 

Lancet model projecting income-dependent transitions towards diets that contain more 103 



calories and larger quantities of animal-based foods (Supplementary Figure 6), combining 104 

with high levels of projected population growth (Supplementary Figure 7) and low crop 105 

yields that are only projected to increase slowly (Supplementary Figure 8). In North America, 106 

our allocation model projected increases in agricultural land in south-central Canada and 107 

throughout the U.S. (but centered in the south-east). This was due to the EAT-Lancet model 108 

projecting increased demand for international exports, but a combination of lower projected 109 

population increases than in Sub-Saharan Africa, South and Southeast Asia and Latin 110 

America and higher crop yields led to smaller projected increases in agricultural land (Fig. 1, 111 

Supplementary Figure 5). In contrast, we projected reductions in agricultural land demand 112 

across eastern Europe and central and northern Asia (especially in Southern Russia and 113 

Eastern Belarus) due to small dietary changes projected by the EAT-Lancet model, combined 114 

with low or negative rates of population growth and high or increasing crop yields (Fig. 1, 115 

Supplementary Figures 5-8).  116 

Our approach offers an empirically derived complement to integrated assessment models 117 

such as GLOBIOM 18, MAgPIE19 and and IMAGE20. Despite the difference in modelling 118 

approaches, our projections are in broad agreement with those based on Shared 119 

Socioeconomic Pathways, with the exception of projected agricultural expansion in North 120 

America, which is not seen under all of the Pathways(19). This difference results from 121 

increased crop demand from the EAT-Lancet projections we used(11) and are in agreement 122 

with analyses based on other non-SSP projections(20). However, our projections are at a 123 

higher resolution than most existing efforts, while the modular and adaptable nature of the 124 

land allocation model means it can be updated as new data becomes available, and can be 125 

paired with any estimate of future agricultural land demand at local to global scales (see 126 

Supplementary Figure 1 for model construction). 127 



 128 

Figure 1. Projected extent of agricultural land in 2050 under Business-As-Usual a 129 

Projected change in the proportion of agricultural land (cropland plus pastureland, in 130 

colour) in cells from 2010-2050, overlaid on proportions of agricultural land in 2010 for 131 

cells not projected to experience a change in extent (in greyscale). Note the offset scale to 132 

highlight areas with small decreases in the proportion of agricultural land. b Projected 133 

proportion of agricultural land in cells in 2050. 134 



Linking Business-As-Usual agricultural expansion to habitat losses 135 

We next estimated changes in habitat area21 for each of 4,003 amphibian, 10,895 bird, and 136 

4,961 mammal species. To do so, we overlaid our projections of future agricultural cover 137 

with maps of current habitat for each species22–24, using species-specific assessments of 138 

whether each species can survive and reproduce in agricultural land4 to calculate changes in 139 

total area of habitat for each species (see Methods). We acknowledge that, because a species’ 140 

population density will vary across its available habitat due to differences in climate, land 141 

cover, or land-use intensity16,25, habitat loss may not linearly equate to population change. 142 

In the Business-As-Usual scenario, we projected that 87.7% of species (17,409 species) 143 

would lose some habitat by 2050, 6.3% to have no change in habitat area, and 6.0% to have 144 

an increase in habitat area due to their survival in agricultural land, with 72.9% of these (877 145 

species) being birds. If natural habitats are allowed to regrow in abandoned agricultural land, 146 

these numbers are projected to be 76.1%, 6.1%, and 17.8%, respectively, with considerable 147 

benefits for some species (Supplementary Data 1). Henceforth, we report results assuming 148 

that habitats do not recover in abandoned agricultural land within the time period we 149 

analysed, although our overall conclusions do not differ if we alter this assumption 150 

(Supplementary Data 1). We projected a mean loss of 5.8±0.1% of habitat across all 19,859 151 

species in the analysis (range: 100% loss to 78.2% increase); across species losing habitat, 152 

this value was 6.7±0.9%, but with considerable variation between regions and species 153 

(Fig. 2). Projected mean habitat losses were greatest in Sub-Saharan Africa (14.4±0.3%% 154 

across all species) with particularly large losses for amphibians in Equatorial West Africa 155 

(where five ecoregions had projected mean losses of over 25%, and 10 ecoregions with mean 156 

losses over 20%, Supplementary Table 4) and for mammals in East Africa (eight ecoregions 157 

had projected mean losses over 18%, Supplementary Table 4). Large mean habitat losses 158 

were also projected in the Atlantic Forest in Brazil, in Eastern Argentina, across Central 159 



America and the Caribbean, and in parts of South and Southeast Asia (Fig. 2, Supplementary 160 

Table 4).  161 

 162 

Figure 2. Projected changes in habitat area in 2010-2050 under Business-As-Usual 163 

conditions for A amphibians B birds C mammals. Maps show the mean change in habitat 164 



area for all species within a cell, with values on a log10 scale. Insets show the mean change 165 

in habitat area for all species within a region. See Supplementary Data 2 for which countries 166 

are included in each region.  167 

Mean values conceal the severity of projected habitat losses for many species. By 2050, 168 

1,280 species were projected to lose at least 25% of their habitat area (Fig. 3a) and will likely 169 

be at increased risk of global extinction. Of these species, 980 are not currently classified as 170 

globally threatened according to the IUCN and so may not be a primary focus of current 171 

conservation efforts. More alarmingly, 347 species were projected to lose at least 50% of 172 

their remaining habitat; 96 at least 75%; and 33 at least 90%. A high proportion of these 173 

heavily impacted species are currently listed as globally threatened with extinction (34%, 174 

52%, and 55%, respectively), strongly suggesting that agricultural expansion could lead to 175 

regional or global extinction of many species in the coming decades. This highlights the need 176 

for analyses that project how and where future threats to biodiversity are likely to emerge, 177 

allowing conservationists and policy-makers to act proactively to mitigate against threats.  178 

Overall biodiversity impact will be greatest where high rates of habitat loss coincide with 179 

large numbers of species (Supplementary Figure 9). Loss of total habitat area—the mean 180 

habitat loss within a cell multiplied by the number of species present—as well as the number 181 

of species losing at least 25% of their habitat were projected to be highest in Sub-Saharan 182 

Africa, particularly the Rift Valley and throughout tropical Western Africa (Fig. 3b, c). In 183 

Sub-Saharan Africa 22.5% of species (941 species: 179 amphibians, 406 birds, and 356 184 

mammals) were projected to lose at least 25% of their remaining habitat, with 44 out of 52 185 

Sub-Saharan African countries containing at least 25 such species (Supplementary Data 7). 186 

Projected habitat losses were also high in Latin America, particularly southeast Brazil and the 187 

remaining Atlantic Forest, with 246 species, including 99 amphibians, projected to lose at 188 

least 25% of their habitat (Fig. 3b). Our results highlight the disproportionate share of local, 189 



regional, or even global extinctions that Sub-Saharan Africa and Latin America are projected 190 

to account for, containing 93% of the species projected to lose ≥25% of their remaining 191 

habitat. These continent-wide patterns of habitat loss could radically transform ecosystems 192 

that hold a large proportion of the world’s biodiversity, particularly of large mammals (in 193 

Sub-Saharan Africa) and birds and amphibians (in Latin America)1.  194 



 195 

Fig. 3. Severity of projected habitat losses from 2010-2050 A Number of species projected to 196 

lose ≥25% of their 2010 habitat by 2050, split by current IUCN status B Global distribution 197 

of species projected to lose ≥25% of their 2010 habitat by 2050 C Projected changes in total 198 

habitat (mean habitat loss in a cell multiplied by the number of species present) by 2050.  199 



We projected small decreases in agricultural land in parts of Europe, Central and Northern 200 

Asia, China, Australia, and New Zealand (Fig 1a). If these lands are allowed to revert to a 201 

natural state— a process which may take decades or over a century26—then there is the 202 

possibility for small increases in habitat area in these regions. However, these potential 203 

increases for some species were far outweighed by projected losses in habitat area for others, 204 

and allowing for recovery after habitat regrowth and restoration has a minor impact to the 205 

overall projections of widespread habitat loss across all species examined (Supplementary 206 

Data 1).  207 

Proactive changes to food systems to reduce threats to biodiversity 208 

The projected severity of agricultural land cover change on habitat area means that proactive 209 

policies to reduce future demand for agricultural land will likely be required to mitigate 210 

widespread biodiversity declines. To investigate the potential of such a proactive approach, 211 

we developed a “Sustainable Food Systems” scenario that implemented four changes to food 212 

systems: a global transition to healthier diets; halving food loss and waste; closing crop yield 213 

gaps; and global agricultural land-use planning to avoid competition between food production 214 

and habitat protection. In addition, to identify the relative impacts of specific changes to the 215 

food system, we investigated the impacts of each approach individually. We used previously 216 

published scenarios for diets, food waste, and yield increases5,11, and used projected habitat 217 

losses in the Business-As-Usual scenario to identify the countries that could most benefit 218 

from global agricultural land-use planning. In each case, we assumed each approach was 219 

steadily adopted, such that the complete transition was only achieved in 2050 (see Methods 220 

for details).  221 

Under the Sustainable Food Systems scenario, we projected that all regions would see mean 222 

habitat losses of 1% or less by 2050 (Fig. 4): that is, with global coordination and rapid 223 

action, it should be possible to provide healthy diets for the global population without major 224 



habitat losses. The greatest benefits compared to Business-As-Usual were in Sub-Saharan 225 

Africa, where we projected a mean loss of habitat of 1.0±0.04% under Sustainable Food 226 

Systems compared with a mean loss of 14.4±0.3% under Business-As-Usual (Fig. 4, 227 

Supplementary Figures 10, 11). If natural habitats are allowed to regrow in abandoned 228 

agricultural land, then we projected mean habitat increases in every region (Supplementary 229 

Data 1). 230 

 231 

Figure 4. Projected changes in mean habitat area from 2010-2050 under alternative 232 

scenarios. Maps show the mean change for all species of all taxa in a cell, with values on a 233 

log10 scale. Insets show the mean change in habitat area for all species within a region. The 234 

lower four panels show the results from scenarios using single approaches, the top panel 235 

(“Sustainable food systems”) show the combination of all four approaches. See 236 



Supplementary Data 2 for which countries are included in each region. Patterns for total 237 

habitat are similar (Supplementary Figure 12). 238 

Perhaps more importantly, habitat losses were far less severe for the species most heavily 239 

impacted under business-as-usual. Globally, only 33 species were projected to lose more than 240 

25% of their habitat, compared to 1,280 under Business-As-Usual. Thus, our analyses 241 

demonstrate that addressing the underlying drivers of agricultural expansion has the potential 242 

to greatly benefit the most at-risk species, thereby reducing extinction risks. However, the 243 

majority of species (81.6%) were still projected to lose small amounts of habitat, suggesting 244 

that conventional conservation measures will continue to be vital to protect biodiversity. 245 

The impacts of individual approaches varied regionally. Closing yield gaps was projected to 246 

have the largest overall benefits (Fig. 4) and was particularly effective in North Africa, West 247 

Asia, and Sub-Saharan Africa where large yield gaps remain27,28. Under this scenario only 33 248 

species in these regions were projected to lose more than 25% of their habitat, compared to 249 

953 under Business-As-Usual. Projected benefits were considerably lower in other regions, 250 

where yield gaps are smaller, but still reduced the number of such species from 361 to 103. 251 

The magnitude of these projected benefits supports, and is supported by, recent analyses 252 

investigating the land-saving potential of closing yield gaps across the world1,2 Transitioning 253 

to healthier diets and reducing food waste had considerable benefits—while not completely 254 

eliminating habitat losses—particularly in wealthier regions with high per capita consumption 255 

of both calories and animal-based foods, and in regions such as South America with high 256 

consumption of animal-based foods (Fig. 4). In contrast, projected benefits from international 257 

land-use planning were far smaller, with 1,026 species being still projected to lose at least 258 

25% of their habitat. The biggest benefits were projected in Sub-Saharan Africa, where all the 259 

countries with reduced agricultural land demand under this scenario were located, but even 260 

here there were 646 such species (compared to 942 under Business-As-Usual, 673 under 261 



healthy diets, and 695 under halved food waste). By analyzing the potential benefit of 262 

individual food system changes, we found that combining different approaches had 263 

synergistic benefits. For example, a country projected to see a 20% fall in food demand under 264 

the halved food waste scenario and a 50% increase yields under the close yield gaps scenario 265 

would see 20% and 33% reductions in land demand under each scenario respectively, 266 

compared to Business-As-Usual. However, when combined, the area required falls even 267 

further, to just 53% of Business-As-Usual demand. This results in the avoided habitat loss 268 

under Sustainable Food Systems being greater than the sum of the avoided loss under the four 269 

constituent scenarios (Fig. 4).  270 

Conclusions: Maintaining biodiversity in a world with 10 billion people 271 

Our projections suggest that under business as usual agricultural expansion will continue to 272 

drive widespread and severe biodiversity declines, but that these could be avoided with 273 

concerted efforts to address food consumption and production as ultimate drivers of 274 

biodiversity loss. Our approach and results are immediately relevant to international efforts 275 

for the development of new strategic goals and targets for 2030 and 2050 under the auspices 276 

of the Convention on Biological Diversity. We identify which policy approaches have the 277 

greatest potential to combat the underlying drivers of future biodiversity declines in different 278 

countries and highlight, at spatial scales relevant to conservation action, the species and 279 

landscapes most at risk. These results can support proactive planning of both changes to the 280 

wider food system, and on-the-ground conservation schemes to mitigate threats. 281 

Our approach offers an empirically derived complement to integrated assessment models 282 

such as GLOBIOM 18, MAgPIE19 and and IMAGE20. Despite the difference in modelling 283 

approaches, our projections are in broad agreement with those based on Shared 284 

Socioeconomic Pathways, with the exception of projected agricultural expansion in North 285 

America, which is not seen under all of the Pathways(19). This difference results from 286 



increased crop demand from the EAT-Lancet projections we used(11) and are in agreement 287 

with analyses based on other non-SSP projections(20). Our projections are at a higher 288 

resolution than most existing efforts, while the modular and adaptable nature of the land 289 

allocation model means it can be updated as new data becomes available, and can be paired 290 

with any estimate of future agricultural land demand at local to global scales (see 291 

Supplementary Figure 1 for model construction). The adaptable and updateable nature of our 292 

approach offers particular improvements when accounting for non-linearities in agricultural 293 

expansion. For example, a new road being built or the removal of a protected area could lead 294 

to rapid agricultural expansion in a region that neither our approach nor integrated assessment 295 

models highlight as vulnerable. Our approach, however, allows for the rapid inclusion of 296 

these changes into projections by adjusting the value of explanatory variables (in these cases 297 

travel time and the presence of a protected area) and recalculating the probability of future 298 

agricultural expansion. Thus, we hope that our approach can help provide a dynamic and 299 

responsive tool for decision makers to investigate the potential impacts of different policies. 300 

Future human activities will likely have even greater impacts on biodiversity than those 301 

projected by our scenarios. Anthropogenic climate change is likely to drive widespread 302 

changes in ecosystems both directly, through impacts on species’ potential distributions1 and 303 

indirectly, by affecting agricultural yields1 and the relative suitability of different regions1. 304 

Uncertainty in how changing precipitation and temperature regimes might affect farmer 305 

profitability, and thus the future location of agricultural lands, preclude a quantitative 306 

assessment of the impact of climate change on biodiversity. Likewise, increasing agricultural 307 

yields—the proactive approach estimated to have the largest potential benefits for reducing 308 

global habitat loss—may also have negative consequences not accounted for in this analysis. 309 

Increasing crop yields—even if sustainably—often has negative biodiversity consequences 310 

for species which exist in or near agricultural lands. As such, all scenarios will likely see a 311 



decline in habitat suitability (and thus biodiversity) on cropland, an effect that is likely to be 312 

exacerbated if yield gaps are closed. Other human impacts, such as the habitat fragmentation 313 

that accompanies land clearing; over-hunting; invasive species; and pollution also threaten 314 

biodiversity5,6,31,32. However, the proactive changes to the global food system that we discuss 315 

could also help reduce these threats. For example, reducing demand for new cropland would 316 

reduce habitat fragmentation, reduce greenhouse gas emissions from land-use change, and 317 

lessen the opportunity costs of protected areas for local people33, thus increasing protection 318 

from hunting. 319 

Here, we demonstrate the potential benefits of actions covered under our ‘sustainable food 320 

system’ to conservation, but such recommendations remain a long way from specific policy 321 

recommendations. Actions will require locally appropriate policies, taking into account 322 

individual countries’ socio-economic and governance environments, the cultural acceptance 323 

of different strategies, and on-the-ground capacity to implement strategies. Past successes can 324 

provide insights into how to ensure that strategies are both effective and maintain fair and 325 

equitable access to food, for example, through increasing crop yields34–36, shifting to healthier 326 

dietary patterns37–39, reducing food and crop waste40,41, and implementing landscape-scale 327 

land-use planning42. Previous efforts to increase sustainability can also be used to avoid 328 

unintended consequences, such as when increases in agricultural yields promote local 329 

agricultural expansion43.  330 

Completely achieving the sustainable food systems we investigated may not be feasible in all 331 

situations, but there will likely be benefits of even the partial implementation of these 332 

approaches. As we approach the updating of the Convention on Biological Diversity’s targets 333 

for global biodiversity conservation, now in 2021, and the halfway point of the SDGs in 334 

2022, our results strongly suggest there are synergies between biodiversity conservation and 335 

sustainable development. The approaches we investigated will also be key to meeting other 336 



SDGs: in particular raising reducing food waste, and shifting to healthier diets supports Goals 337 

2 (“No hunger”), 3 (“Good health”), and 12 (Sustainable consumption), but also economic 338 

and social development (Goal8, “Good jobs and economic growth”) and climate action (Goal 339 

13, “Climate action”), bringing further benefits to people, biodiversity, and the wider 340 

environment REFs. These efforts to change how we produce and consume food will be a 341 

challenge, but one which cannot be avoided if we are to safeguard species for future 342 

generations. 343 

Methods 344 

To project impacts of future agricultural land-cover change on biodiversity, we linked a land 345 

demand model, a land allocation model, and a biodiversity model in a flexible framework 346 

(Supplementary Figure 1). This approach to be readily adapted, for example to different 347 

future scenarios or different spatial scales, or to incorporate new data as it becomes available. 348 

Collectively, this approach enables us to project changes in land cover and their impact on 349 

habitat availability for individual species at a resolution of 1.5 x 1.5km for every 5 years from 350 

2010 to 2050. Our analysis includes nearly 20,000 species of birds, mammals, and 351 

amphibians, and 152 nations that occupy >99% of Earth’s ice-free land and contain >99% of 352 

current agricultural land (see Supplementary Data 2). Full details of model specification, 353 

datasets used, and sensitivity analyses are in Supplementary Information. 354 

Land Demand Model 355 

Projections of agricultural land demand under Business-As-Usual 356 

We used income-dependent projections of country-specific agricultural production under 357 

Business-As-Usual conditions (i.e. continuing historic trajectories) from EAT-Lancet 358 

Commission11, pairing them with the United Nation’s medium-fertility population 359 

projection65,66 and previously published yield projections1. We did not use the population 360 



projections used in EAT-Lancet because they are derived from Shared Socioeconomic 361 

Pathway (SSP) scenarios64 and so are not updated to account for recent population trends. As 362 

such, SSP 2—the pathway most similar to current Business-As-Usual trajectories—projects 363 

approximately 570 million fewer people worldwide than current UN medium variant 364 

population projections1. Additionally, we did not use the yield scenarios from the EAT-365 

Lancet projections because they assume increases in future crop yields at faster-than-historic 366 

trajectories11, which is not been supported by historic data1. We instead used published crop 367 

yield forecasts that project crop yields increase along historic linear trajectories, but cannot 368 

surpass current country-specific maximum potential yields1–3.  369 

We projected cropland demand for each country in each 5-year time period from 2010 to 370 

2050. To do so, we divided projections of demand for national food production (derived from 371 

combining EAT-Lancet projections with UN population projections) by crop yield 372 

projections. EAT-Lancet estimates of current cropland are based on FAO data1, while the 373 

Land Allocation Model is based on MODIS satellite data 1. We therefore harmonised EAT-374 

Lancet projections with satellite data by: (1) calculating proportional change in cropland in 375 

each 5-year time period (here called a “5-year target”) from 2010-2050; (2) estimating the 376 

total cropland in each country in 2010 based on MODIS data; (3) multiplying this satellite-377 

derived estimate by the projected change in proportional demand; and (4) capping country-378 

specific land-demand projections at FAO estimates of potential arable land in each country55. 379 

This ensures continuity between datasets but could lead to under-projecting agricultural 380 

expansion in countries where cropland is under-detected by satellite data (e.g. very small 381 

areas are farmed, or farming is largely under dense tree cover).  382 

We assumed the area of pastureland remained constant for each country, following recent 383 

patterns55, reallocating pastureland within a country if cropland expanded into existing 384 

pastureland. See Supplementary Information for more details.  385 



Projections of agricultural land demand under alternative future scenarios  386 

To investigate the impact of proactive policies that could reduce future cropland demand we 387 

repeated the Business-As-Usual analysis with five alternative scenarios:  388 

(1) Healthy diets: Diets transition from current diets to healthier composition and caloric 389 

quantity11. 390 

(2) Halved food waste: Food loss and waste throughout entire food supply chains is 391 

reduced from current rates67 by 25% in 2030 and halved by 2050.  392 

(3) Close yield gaps: Yields increase linearly from current yields to 80% of the estimated 393 

maximum potential by 2050. This upper bound was chosen as increasing yields above 394 

80% often decreases economic profits68. 395 

(4) International land-use planning: Agricultural production shifts from the 25 396 

countries projected to have the greatest mean losses of suitable habitat across all 397 

species to countries where less than 10% of species are threatened with extinction and 398 

less than 10% of species would qualify as being threatened with extinction under 399 

IUCN Criteria B21 under Business-As-Usual in 2050. The shift in agricultural 400 

production is gradual, such that an additional 10% of total food demand is imported 401 

by 2030 and by 20% in 2050.  402 

The goal of this scenario is to estimate the impact on biodiversity of land use planning 403 

across international borders, avoiding expansion in the most at-risk countries. We 404 

recognize this scenario could be antagonistic to food security and sovereignty, 405 

especially in countries where agriculture is a large source of employment and/or 406 

income.  407 

(5) Sustainable food systems: All four approaches were adopted simultaneously. 408 



By 2050, each scenario individually—with the exception of international land-use planning—409 

is estimated to reduce global demand for cropland by at least 2.5 million square kilometres, 410 

while simultaneous adoption of all four scenarios would reduce global land demand by 411 

~7.5 million square kilometres. International land-use planning had smaller impacts, reducing 412 

global demand by 220,000 square kilometres. See Supplementary Information for more 413 

explanation on the alternative land demand scenarios. 414 

Land Allocation Model 415 

We developed a novel and highly resolute (1.5km x 1.5km) spatial allocation model using 416 

observed changes in land cover to project future spatial patterns of agricultural land-cover 417 

change. We fitted relationships between empirically observed changes in cropland or 418 

pastureland and a set of key explanatory variables and assumed that these fitted relationships 419 

remain constant into the future. Thus, we are not simply extrapolating past changes in 420 

agricultural land into the future, but rather basing projections on an understanding of the 421 

factors that shape how spatial patterns of agricultural land-cover evolves through time. 422 

By separating projections of agricultural land demand from its spatial allocation, our 423 

approach enables investigation of how specific interventions might influence future land-use 424 

change and biodiversity loss. Our projections are at a far higher resolution than existing 425 

projections of agricultural land-use change, e.g. GLOBIOM (5-30 arc minutes; approximately 426 

100-2500 km2 at the equator)18, CLUMondo, and MAgPie (30 arc minutes; approximately 427 

2500 km2 at the equator)19,44. This allows stakeholders to identify areas likely to experience 428 

large biodiversity declines at the spatial scales at which conservation actions and policies are 429 

implemented.  430 



Modelling past changes in agricultural land 431 

To understand past drivers of change in agricultural land we applied a two-stage modelling 432 

process applied to each 1.5 x 1.5 km terrestrial cell on earth. First, we fitted a multinomial 433 

regression to estimate the probability a cell experienced a change in the proportion of 434 

agricultural land during a 5-year period. Secondly, we fitted generalized linear models 435 

(GLMs) to estimate the magnitude of this change. We fitted separate models for cropland and 436 

pastureland because of differences in the relative importance of factors influencing their 437 

dynamics. 438 

Data Inputs 439 

Land-use change is driven by interacting biophysical and socio-economic forces45. We 440 

reviewed land-use change literature, identifying potential drivers of agricultural expansion 441 

and including those where global data was available at appropriate spatial resolutions. We 442 

therefore included in our models: extent and surrounding agricultural land; historic changes 443 

in agricultural land; agro-ecological suitability; travel time to large cities (>50,000 people) as 444 

a proxy for market access; and the presence of a protected area in a cell1–7. See 445 

Supplementary Information for more detail and data sources. 446 

We resampled all data to 1.5 x 1.5 km Mollweide projection using the resample() function in 447 

the raster package1 in R1. Note that agro-ecological suitability was originally at a coarser 448 

resolution1 (Supplementary Table 2), adding a degree of uncertainty to our projections. All 449 

other input data was originally at a higher resolution. 450 

Model fitting  451 

We fitted region-specific multinomial regressions to estimate the probability that each cell 452 

experienced a change in cropland or pastureland extent and then used GLMs to estimate the 453 

magnitude of this change. Because drivers of cropland and pasture expansion differ by region 454 



(Supplementary Data 3-6), we fitted separate models for each IUCN region59 and for 455 

cropland and pastureland.  456 

We a priori included the same explanatory variables for all models (although see 457 

Supplementary Table 2 for differences between cropland and pastureland models) and used 458 

cell-specific values for each explanatory variable. 459 

Examining univariate relationships between explanatory and response variables showed non-460 

linear relationships for some variables. We therefore log-transformed travel time and 461 

included quadratic effects for all variables except AES and presence/absence of a protected 462 

area. We also included country as a fixed effect in the model because differences in country-463 

specific laws, policies, and demand for agricultural land affect the spatial pattern of cropland 464 

expansion. See Supplementary Information for more information on model fitting.  465 

Probability of Change in Agricultural Extent  466 

Our first response variable was whether the proportion of cropland or pastureland in a cell 467 

increased, decreased, or remained constant from 2007 to 2012. To account for uncertainty in 468 

MODIS data, we classified cells as having a constant agricultural extent if the proportion of a 469 

cell under agricultural land cover changed by less than 0.025 from 2007 to 2012. We then 470 

used the R package {nnet}60 to fit a multinomial regression model to estimate the probability 471 

a cell increased, decreased, or did not change in cropland or pastureland extent from 2007 to 472 

2012.  473 

Magnitude of Change in Agricultural Extent 474 

To estimate the magnitude of agricultural cover change in a cell, we fitted separate GLMs to 475 

cells that experienced increases in agricultural land and those that experienced decreases. 476 

This resulted in three GLMs for each IUCN region: cropland increases, cropland decreases, 477 

and pastureland increases. We did not fit models for pastureland decreases because we 478 



assume pastureland extent remains constant in each country. We fitted models using the 479 

glm() function in the {stats} package in R61, with a gamma error distribution and a log-link 480 

function to bound estimates between 0 and 1. 481 

Modelling results and accuracy 482 

Model coefficients and accuracies are shown in Supplementary Table 3 and Supplementary 483 

Data 3-6. See Supplementary Information for more details on modeling testing, results and 484 

accuracy. 485 

Modelling Accuracy: Probability of Change in Agricultural Extent  486 

We assessed model accuracy by classifying cells as having expanded or contracted from 487 

2007-2012 based on the cell’s most probabilistic modelled outcome. We then compared these 488 

classifications with actual changes over 2007-2012. 489 

Model accuracy varied across regions, ranging from ~62.5% (Caribbean) to ~95% (North 490 

Africa) for cropland and 59% (Oceania) to 77% (South and Southeast Asia) (Supplementary 491 

Table 3) for pastureland. This compares with a 33% chance of randomly selecting the correct 492 

outcome. The lower accuracy of pastureland predictions is possibly due to MODIS data not 493 

differentiating between natural grasslands or savannas and artificial pastures17.  494 

Agricultural Projections: Projecting the location and magnitude of future 495 

agricultural land cover change 496 

We estimated the probability and magnitude of future agricultural land cover change for 497 

every cell using the coefficients from the fitted models. We extracted land cover data from 498 

MODIS for 2005 (estimated as the mean of 2004-2006) and 2010 (mean of 2009-2011), 499 

using 2010 as a baseline for our projections and calculating the change from 2005 to 2010 as 500 

an independent variable. We used the region-specific multinomial models to estimate the 501 

probability that each cell would experience an increase or decrease in cropland, then 502 



estimated the magnitude of these increases or decreases using the GLMs. See Supplementary 503 

Information for more detail on how the location and magnitude of future agricultural land 504 

cover change was projected. 505 

Cropland expansion 506 

To project future agricultural land cover we then linked these estimated probabilities and 507 

magnitudes of land-cover change from the Land Allocation Model with the agricultural land 508 

demand estimated from the Land Demand Model (Supplementary Figure 1).  509 

For countries with a projected increase in cropland demand, we randomly selected a single 510 

cell, based on the probability it would experience an increase in cropland extent (i.e. the 511 

output from the region-specific multinomial model), then increased the proportion of 512 

cropland in the chosen cell by the cell-specific amount estimated from the expansion GLMs. 513 

We updated the estimates from both parts of the model (because the area of cropland is a key 514 

predictor), reduced the country’s five-year agricultural land demand target by the amount of 515 

expansion estimated for the cell, and repeated the process until the country’s five-year target 516 

for cropland was met.  517 

For countries projected to see a decrease in cropland, we used the same procedure, but using 518 

the probability of cells experiencing a decrease in cropland from the multinomial model, and 519 

the estimated magnitude of this decrease from the contraction GLMs. 520 

Changes in pastureland 521 

Following recent trends in global pastureland55,71 and the EAT-Lancet projections, we did not 522 

project changes in countries’ areas of pastureland. However, we did allow cropland to expand 523 

into pastureland. This displaced pastureland was then reallocating within the country using 524 

the allocation process described above for crops, but using the region-specific models for 525 

pastureland and additionally assuming pastureland cannot expand into cropland. To avoid 526 



overestimating future pastureland extent, we limit pastureland expansion to cells identified as 527 

having livestock by Gridded Livestock of the World in 2010. If pastureland extent could not 528 

expand adequately to meet the five-year target, we assumed that shortfalls were compensated 529 

by livestock intensification5,72.  530 

Adjusting probabilities and the magnitude of changes 531 

Agriculture cannot expand into all regions and land cover classes, specifically regions with 532 

very low growing degree days, and urban, rock and ice, barren ground, and water land cover 533 

classes. We therefore assumed that agriculture could not expand into certain cells based on 534 

their land cover type and climatic conditions, and further capped the potential amount of 535 

agricultural land based on the proportion of each cell that is suitable for agriculture. See 536 

“Input data for models” and “Adjusting probabilities and the magnitude of changes” in 537 

Supplementary Methods for details. 538 

Consistency of projections 539 

Because the land allocation model is probablistic, we repeated it 25 times, calculating the 540 

mean and standard deviation of the extent of cropland and pasture in each cell for each five-541 

year time period and using the mean value in our analyses.  542 

The allocation model produced consistent projections (Supplementary Figure 3). The median 543 

global coefficient of variation (standard deviation / mean) in 2050 was 0.26 for cropland and 544 

<0.001 for pastureland (Supplementary Figure 4), indicating variation in agricultural extent 545 

was small relative to estimated mean agricultural extent.  546 

Potential impacts of climate change on agricultural land 547 

We did not include the potential impact of climate change on AES or agricultural yields in 548 

our models. Doing so would rely on a large number of untestable assumptions over farmer 549 

and policy responses to environmental change, and is further hampered by a lack of 550 



consensus of how climate change might affect AES and crop yields. See Supplementary 551 

Information for a longer discussion of how climate change might affect future patterns of 552 

agricultural land cover change. 553 

The flexibility and adaptability of our approach allows for the easy inclusion of climate 554 

change impacts in the future. This can be done by adjusting future yield projections based on 555 

local conditions and adaptive capabilities, or by adjusting future AES to capture how 556 

changing climates might affect the relative suitability of different regions.  557 

Biodiversity Model 558 

Current area of habitat 559 

Maps of suitable habitat (referred to as Area of Habitat, AOH21) were produced for 4,003 560 

amphibians, 10,895 birds, and 4,961 mammal species21–24. These maps were originally 561 

developed at 300 x 300m resolution through deductive habitat suitability models integrating 562 

species ranges with data on suitable land-cover and elevations21. These habitat models 563 

reliably predict species distribution over wide geographical and taxonomic extents at the 1-564 

km resolution23,24. Supplementary Figure 9 shows the species richness patterns created from 565 

the AOH maps. 566 

Species’ habitat tolerances 567 

We used IUCN data to define whether species are able to survive in agricultural land1. For 568 

each species, we recorded if habitats were “suitable” or “marginal” and took the maximum 569 

value of all habitats that qualify as either cropland or pastureland. i.e. if a species has “Arable 570 

Land” as “marginal” and “Plantations” as “suitable”, we defined cropland as “suitable” for 571 

the species. See Supplementary Information for a longer description on species habitat 572 

tolerances. 573 



Current Area of Habitat 574 

We next estimated the global area of suitable habitat for each species in 2010. We first 575 

calculated the overlap between each species’ suitable habitat and current cropland and 576 

pastureland (from MODIS data) and subtracted the area of agricultural land from the habitat 577 

maps, adjusting for suitability of cropland or pastureland: we assigned “suitable”, “marginal”, 578 

and “unsuitable” habitats a value of 0, .5, and 1, respectively, and multiplied this value by the 579 

overlap between habitat and agriculture in each cell. Thus, the value in each cell indicates the 580 

proportion of the cell suitable for a species. We then summed this value to estimate of area of 581 

suitable habitat in 2010. See Supplementary Information for more detail on how current area 582 

of habitat was calculated. 583 

Biodiversity Projections 584 

We estimated future changes in area of suitable habitat for 19,859 species of terrestrial 585 

amphibians, birds, and mammals, repeating the process described above for each 5-year time 586 

period from 2010 to 2050. We assumed species were unable to recolonise areas where 587 

agricultural land was abandoned to provide conservative estimates of biodiversity gains from 588 

agricultural abandonment. Altering this assumption such that species are able to colonise 589 

abandoned agricultural areas (as is often observed in long-term dynamics80) has little overall 590 

impact on our results: with recolonisation allowed, 17.8% of species were projected to see 591 

their area of habitat area increase, compared to 6.1% without recolonisation, and the mean 592 

change in habitat area for these species increased from 1.2% to 2.2% (Supplementary Data 593 

1). Across all species, mean changes were even smaller, changing from a mean loss of 5.8% 594 

to a mean loss of 5.3% with recolonisation. Species for which agricultural land is suitable 595 

could see increases in area of habitat as cropland and pastureland expand, or as pastureland is 596 

converted into cropland. 597 



Projecting changes in habitat extent under alternative scenarios 598 

We repeated the process above for each of the five alternative scenarios and calculated both 599 

the absolute changes in habitat area, as well as the difference between Business-As-Usual and 600 

the alternatives. 601 
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