
Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

146

LISTEN TO YOUR MIND’S (HE)ART: A SYSTEM FOR AFFECTIVE MUSIC
GENERATION VIA BRAIN-COMPUTER INTERFACE

Marco TIRABOSCHI(marco.tiraboschi@unimi.it)(0000-0001-5761-4837)1,
Federico AVANZINI(federico.avanzini@unimi.it)(0000-0002-1257-5878)1, and
Giuseppe BOCCIGNONE(giuseppe.boccignone@unimi.it)(0000-0002-5572-0924)2

1 Laboratorio di Informatica Musicale (LIM), Department of Computer Science, Università degli Studi di Milano, Italy
2 PHuSe Lab, Department of Computer Science, Università degli Studi di Milano, Italy

ABSTRACT

We present an approach to the problem of real-time gener-
ation of music, driven by the affective state of the user, esti-
mated from their electroencephalogram (EEG). This work
is aimed at exploring strategies for real-time music gen-
eration applications using sensor data. Applications can
range from responsive music for x-reality to art installa-
tions, and music generation as feedback in pedagogical
contexts. We developed a Brain-Computer Interface in the
open-source platform OpenViBE. It manages communica-
tion with the EEG device and computes the relevant fea-
tures. A benchmark dataset is used to evaluate the perfor-
mance of supervised learning methods on the binary clas-
sification task of valence and arousal. We also assessed
the performance using a reduced number of electrodes and
frequency-bands, in order to address the problems of lower
budgets and noisy environments. Then, we address the
requirements for a real-time music generation model and
propose a modification to Magenta’s MusicVAE, introduc-
ing a parameter for controlling inter-batch memory. In the
end, we discuss possible strategies to map desired music
features to a model’s native input features. We present a
Probabilistic Graphical Model to model the mapping from
valence/arousal to MusicVAE’s latent variables. We also
address dataset dimensionality problems proposing three
probabilistic solutions.

1. INTRODUCTION

Interest and curiosity towards exploiting the EEG to con-
trol sound and music with one’s own brain have always
been strong in the sound and music community. It was not
until 1973 that EEG gained currency as a means for setting
a direct communication between brains and computers [1],
and it was almost 20 years later that the first BCI success-
fully allowed the users to control the cursor on a computer
screen. But the first reported use of EEG in music is “Mu-
sic for Solo Performer” by Alvin Lucier (1965) [2]. He
had met researcher Edmond Dewan who asked Lucier if he
would be interested in using his equipment to detect alpha
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waves for a piece of music. Alpha waves have frequen-
cies around 8-13 Hz, and would not be audible as audio:
so he thought of them as rhythms, thus suitable to create a
piece for percussion, by amplifying the alpha bandwidth to
drive loudspeakers placed on top of drums membranes [3].
Subsequently, other pioneers of EEG musical applications,
such as Richard Teitelbaum, David Rosemboom and Roger
Lafosse, exploited brainwaves and other biological signals
(e.g. the ECG) to control sound synthesisers, as in the ex-
perimental piece “Spacecraft” by Richard Teitelbaum, pre-
sented at Musica Elettronica Viva in 1967 [4]. In recent
years, interest has grown around so-called Brain-Computer
Music Interfaces [5] and general BCIs because of the in-
creasing affordability of reliable EEG equipment.

The chief concern of this work is to present a system
for generating music that reflects the users’ affective state,
which is estimated from their EEG. We also propose solu-
tions to some practical problems of real BCI systems. Our
system is composed of four main modules. Each module is
discussed in its own section and sections follow the design
order, rather than the data-flow order.

• Brain-Computer Interface (Sec. 3): the EEG hard-
ware and software for acquisition and preprocessing

• EEG Affect Recognition (Sec. 2): the model of va-
lence and arousal correlates of an EEG signal

• Musical Affect Model (Sec. 5): the generative model
of musical features conditioned on affective states

• Music Generator (Sec. 4): the model for generating
music conditionally to a set of musical features

2. EEG AFFECT RECOGNITION

The EEG Affect Recognition module is the subsystem that
is responsible for associating an affective label to the elec-
trical activity of the brain. Affect denotes the mental coun-
terpart of bodily sensation and affective features, such as
valence and arousal, capture what a given instance of expe-
rience feels like [6]. Valence refers to the feeling of plea-
sure or displeasure; arousal refers to a feeling of activa-
tion or sleepiness. It is worth remarking that in the litera-
ture concerning the computational modelling of emotions,
the term “affect” is often used interchangeably with that of
“emotion” but they should not be confused; emotions are
constructed from affect, emotional events being specific in-
stances of affect that are linked to the immediate situation
and involve intentions to act [6]. Indeed, the system pre-
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sented here deals with affect. However, in what follows,
markedly when discussing related work, we will occasion-
ally adopt such convention for the sake of simplicity.

2.1 Related Work

There are several works that address EEG emotion recog-
nition. The DEAP dataset [7] is a popular dataset used
as a benchmark for this task. It is a dataset collect-
ing EEG and physiological signals recorded from 32 sub-
jects over 40 trials per subject. The authors also pre-
sented some approaches to the emotion recognition task.
They used a Gaussian Naive Bayes classifier trained on
band-power features. They report a Leave-One-Out Cross-
Validation (LOOCV) 𝐹1 score of 0.56 for valence and 0.58
for arousal. Jatupaiboon et al. [8] assessed the problem of
real-time valence estimation. They used SVM with power-
spectral features for the binary classification of valence.
Their work is not directly comparable to the DEAP paper
because they use their own dataset, but they show some
very important points. First, the average performance
of subject-independent models is significantly lower than
subject-dependent models (0.65 against 0.75 accuracy).
Second, by using only the pair of channels T7 and T8, the
performance achieved is comparable to that attained by us-
ing all the 14 channels (0.73 accuracy). Menezes et al.
exploited the DEAP dataset as a benchmark for emotion
recognition in virtual environments [9]. They evaluated
band-power features, temporal statistics and the Higher Or-
der Crossing (HOC) features [10] via SVM and Random
Forest. They found that band-powers and their statistics
performed similarly while the HOC were less predictive.

2.2 Approach

2.2.1 Features

We chose band-powers as features for several reasons: they
are the most common features used in EEG emotion recog-
nition; they have a good predictive power; they can be
computed efficiently and online; they have been shown
to have neurobiological significance [11, 12] in describing
the brain activity. For consistency, we adopted the same
band definitions as in the DEAP paper: theta (4 to 8 Hz),
slow alpha (8 to 10 Hz), alpha (8 to 12 Hz), beta (12 to
30 Hz), gamma (over 30 Hz). We compute the logarithm
of the RMS of the signal for each band and channel. Then,
we also compute the difference of each band-power for 14
pairs of symmetric electrodes.

2.2.2 Evaluation Protocol

We divided the 32 subjects randomly into a training set
and a test set (60:40). For each subject, every model is
evaluated via LOOCV. We will refer to the LOOCV scores
on the training subjects as the validation scores and to
the LOOCV scores on the test subjects as the test scores.
Comparison between validation scores is performed with
related samples tests. The paired-sample T-test [13] for
normally distributed samples and the Wilcoxon signed-
rank test [14] otherwise. Comparison between valida-
tion scores and test scores is performed with an indepen-

Valence Arousal
Model mean std mean std
Majority 0.315 0.138 0.310 0.163
SVM (rbf) 0.395 0.133 0.340 0.156
Ratio 0.472 0.062 0.485 0.074
Naive Bayes 0.620 0.095 0.535 0.100
LDA 0.609 0.079 0.560 0.106
SVM (linear) 0.590 0.093 0.579 0.078
SVM (poly 7) 0.626 0.114 0.557 0.115
Test 0.622 0.092 0.550 0.089

Table 1. Validation 𝐹1 scores for different models and test
scores for the best-scoring model (SVM with polynomial
kernel of seventh degree) for binary classification of va-
lence and arousal in ascending order of average score. Sub-
optimal polynomial SVMs are omitted.

dent samples test, (independent-samples T-test if normal or
Wilcoxon rank-sum otherwise). Normality is checked via
the Shapiro-Wilk test [15]. We computed validation scores
for common machine learning approaches from the BCI
literature: Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis [16] (QDA), and Support Vector
Machine [17] (SVM). We used QDA with diagonal co-
variance: this can be called Gaussian Naive Bayes (as in
the DEAP dataset paper). As to SVM, we adopted linear,
polynomial and RBF kernels. Two “dummy” classifiers
were used as reference: one that always predicts the ma-
jority class (Majority) and another that predicts at random
with a probability determined by the label ratio (Ratio).

2.2.3 Feature Sets

Performance on the full feature set is summarized in Tab. 1.
Overall, the results on arousal match the ones in the DEAP
dataset paper, but not for valence: we obtained 0.62 accu-
racy against their 0.56 (this could be due to the slightly
different feature set). The best-scoring model (on aver-
age and on valence) is the SVM with a 7th degree poly-
nomial kernel. Linear SVM performs better on arousal.
Rbf-kernel SVM performs worse than the dummy Ratio
predictor. The performance of SVM (7th degree polyno-
mial kernel) is significantly different from the dummy pre-
dictors and rbf-kernel SVM (𝑝 ≤ 0.01), but not from other
models (𝑝 > 0.1). Test scores are not significantly differ-
ent from validation.

In a real-time BCI setting, it would be impractical to use
an EEG headset with 32 channels, as it would require a
very long setup time. The minimal set of channels to be
able to use information about band power asymmetry is
2. The brain activity is known to correlate with valence
if measured on T7-T8 [8]. Also, activity at CP5-CP6 [7]
correlates with arousal. Because of our hardware, we are
interested in the specific case of a feature set built us-
ing 6 channels. Thus, we evaluated two different setups,
adding two pairs of electrodes to either one of the two
pairs T7-T8 and CP5-CP6. We wanted one pair at the
front of the brain and one at the back, to diversify the in-
formation: the pairs FC5-FC6 (frontal-central) and PO3-
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6c T7-T8 CP5-CP6 T7-T8 (α+β) CP5-CP6 (α+β)
Valence Arousal Valence Arousal Valence Arousal Valence Arousal

Model mean std mean std mean std mean std mean std mean std mean std mean std
LDA 0.512 0.066 0.538 0.113 0.563 0.085 0.522 0.084 0.532 0.074 0.539 0.091 0.550 0.070 0.562 0.104
NB 0.597 0.128 0.525 0.098 0.622 0.093 0.531 0.080 0.589 0.118 0.522 0.104 0.603 0.093 0.549 0.086
SVM-L 0.611 0.117 0.553 0.115 0.615 0.101 0.557 0.079 0.592 0.123 0.518 0.096 0.616 0.083 0.530 0.093
SVM-P 0.606 0.118 0.537 0.111 0.609 0.097 0.550 0.114 0.559 0.106 0.575 0.114 0.556 0.092 0.528 0.095

Table 2. Validation 𝐹1 scores for different models on the 6-channels feature sets: using the T7-T8 as central channels or
CP5-CP6, and using all frequencies or just alpha and beta bands. Mean and standard deviation of the 𝐹1 scores are reported
for binary classification of valence and arousal.

2c T7-T8 CP5-CP6 T7-T8 (α+β) CP5-CP6 (α+β)
Valence Arousal Valence Arousal Valence Arousal Valence Arousal

Model mean std mean std mean std mean std mean std mean std mean std mean std
LDA 0.601 0.125 0.503 0.128 0.612 0.060 0.555 0.092 0.587 0.113 0.487 0.092 0.617 0.087 0.514 0.099
NB 0.584 0.131 0.509 0.105 0.610 0.071 0.529 0.094 0.561 0.137 0.487 0.078 0.593 0.092 0.544 0.087
SVM-L 0.619 0.136 0.494 0.150 0.640 0.072 0.535 0.104 0.578 0.171 0.435 0.073 0.571 0.122 0.485 0.123
SVM-P 0.650 0.070 0.515 0.086 0.602 0.101 0.538 0.090 0.577 0.119 0.529 0.119 0.561 0.114 0.512 0.105

Table 3. Validation 𝐹1 scores for different models on the 2-channels feature sets: using the T7-T8 channels or CP5-CP6,
and using all frequencies or just alpha and beta bands. Mean and standard deviation of the 𝐹1 scores are reported for binary
classification of valence and arousal.

PO4 (parieto-occipital) show correlations with affective la-
bels [7]. We evaluated performance on two 6-channels fea-
ture sets: FC5, FC6, PO3, PO4 with T7-T8 or with CP5-
CP6. In real-world operation, low-frequency components
can be subject to noise from muscle movement. Also,
high-frequency components can be affected by power-line
interference (50 Hz or 60 Hz). Hence, we also assessed
the performance of the models trained only on the central
frequency bands (slow alpha, alpha and beta). Validation
scores on 6-channel feature sets are summarized in Tab. 2
for all four configurations: two channel choices, both with
all frequency bands or only with central frequency bands
(α+β). We also assessed the performance on 2-channels
feature sets, using T7-T8 or CP5-CP6, exploiting all fre-
quency bands or just the central bands (Tab. 3).

2.3 Results

Using 6 channels, 𝐹1-scores for valence classification are
very similar to the ones obtained with the full feature set.
Scores on arousal slightly decreased. Using all frequency
bands, the best model on average is the Linear SVM (0.62
on valence and 0.56 on arousal). Using only the central
bands, the best model on average is Naive Bayes (0.60 on
valence and 0.55 on arousal). In almost every case, per-
formance is better using CP5-CP6. Employing 2 channels
with all frequency bands, 𝐹1-scores are still very similar
to the previous ones. However, the two best validation
scores on valence (Polynomial SVM with T7-T8 and Lin-
ear SVM with CP5-CP6) are significantly different from
the test scores: the test score for Linear SVM is 0.54
(𝑝 < 0.05). Thus, we consider LDA as the best model
(0.61 on valence and 0.56 on arousal), since it is consistent
across the two partitions. We observed that performance
on arousal using T7-T8 is not significantly different from

the dummy predictor (Ratio). We surmise that T7-T8 is
not a sufficient configuration for arousal classification, in
contrast to its use for valence classification (as in previ-
ous literature [8]). Using 2 channels and only the central
bands, none of the models is significantly better than the
dummy predictors for arousal classification (all 𝑝 < 0.05).
Valence classification is still possible, but the validation
score of LDA with CP5-CP6 (0.62) is significantly differ-
ent from the test score: 0.52 (𝑝 < 0.01). So, we consider
Naive Bayes as the best model, with an 𝐹1-score of 0.59.

Based on these observations, we determined three differ-
ent setups to address different requirements: FC5-FC6-
CP5-CP6-PO3-PO4 (α+β) for robust features, CP5-CP6
for minimal hardware and CP5-CP6 (α+β) for robust fea-
tures and minimal hardware, but for valence only.

3. BRAIN-COMPUTER INTERFACE

The Brain-Computer Interface module is the system that
allows for sensing the brain activity of the user and ex-
tracting the relevant features.

3.1 Related Work

Brain-Computer Interfaces for music are becoming more
and more popular. BCIs are often categorized as “passive”
(using arbitrary brain activity without the purpose of vol-
untary control), “reactive” (using brain activity arising in
reaction to external stimulation), and “active” (using brain
activity that is consciously controlled by the user, inde-
pendently from external events) [18]. A popular technique
for reactive BCIs is based on steady state visually evoked
potentials (SSVEP). It consists in presenting images on
screen that flicker at different rates, and detecting electri-
cal potentials on the visual cortex to determine which ob-
ject the user is watching. SSVEP-BCIs have been used for
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Figure 1. The Band-powers DEAP metabox. This metabox
selects one channel (named Channel name) out of the
multi-channel signal and computes its band-powers.

music writing, music navigation [19], and sonic expres-
sion [20]. A common approach to active BCIs is motor
imagery. It consists in detecting patterns correlated to the
imagination of motor activity [21] (𝜇 rhythms). MI-BCIs
are becoming popular for video game control [22]. Passive
BCIs are often exploited in affective computing, e.g. for
monitoring attention, stress and affective states [23].

3.2 Approach

We used the g.tec g.Sahara active dry EEG electrode sys-
tem headset. We developed a feature extraction software
for the BCI in OpenViBE, a cross-platform open-source
environment [24]. It is headset-independent, because the
OpenViBE acquisition server handles incoming signals.
Thus, it can be used with any EEG headset, provided that
the drivers are available. The OpenViBE designer is a vi-
sual programming environment. An executable is called a
scenario and its components boxes. A scenario can be used
within another scenario as a metabox.

3.2.1 Feature Extraction

For each channel, we compute the band-powers. We de-
fined the band-power of a frequency band as the mean-
square of the band-passed signal (see Sec. 2.2.1). We de-
fined the metabox Power to compute the power of a sig-
nal over overlapping temporal windows. Then, we devel-
oped the metabox Band-powers DEAP, that selects one
channel and splits it into 5 different bands using a time-
domain filterbank. It uses the Power metabox to com-
pute the band-powers. The band-power signals are re-
arranged into a single multi-channel signal and renamed.
The metabox Band-Power Features instantiates a Band-
powers DEAP metabox for each channel to extract its
band-powers and rearranges the band-power signals into
a single multi-channel signal.

3.2.2 Data Transmission

After computing the band-power features, we need to be
send them to the EEG affect recognition process. We use

the Open Sound Control (OSC) [25] network protocol for
this. Due to the great interest of the sound and music com-
munity in BCIs, OSC has also become a common protocol
for BCIs and some companies that develop BCIs provide
OSC utilities, such as Emotiv’s Mind Your OSCs. Open-
ViBE also has a rudimentary OSC client box. Each feature
is sent on a different OSC method. The address pattern is
/eeg/<channel>/<band>.

4. ONLINE MUSIC GENERATION

The Online Music Generation module is the system that
generates music in real-time. We want to be able to control
it with parameters that can change over time. We propose a
transfer-learning approach for generating music via affec-
tive parameters.

4.1 Related Work

The recent developments in deep learning enabled new ap-
proaches that are now the state-of-the art of music gen-
eration. Deep learning for music mainly exploits ad-
vancements in natural language modelling. Especially,
the introduction of attention-based Recurrent Neural Net-
works [26] (RNN) allowed for longer time-scale coher-
ence than before. The Magenta project by Google Brain
has developed several deep learning models for computa-
tional creativity. Melody RNN [27] employs an attention-
based LSTM (Long Short-Term Memory, a type of RNN)
for generating melodies. To improve long-term structure,
they developed a hierarchical RNN decoder for an autoen-
coder called MusicVAE [28]. The latest architecture in
language modelling is the transformer [29], a deep neural
network that does not use recurrence, but relies entirely on
attention, such as OpenAI’s GPT-2 [30] and GPT-3 [31].
Magenta’s Music Transformer [32] is a transformer that
employs relative self-attention for music generation. Ope-
nAI’s MuseNet [33] is based on their GPT-2 and is a large-
scale transformer for symbolic generation that supports up
to 10 different instruments. On the other hand, their Juke-
box [34] generates raw musical audio of fully arranged
compositions with singing voice. It can be conditioned
on either artist, genre or lyrics. The main drawback of
deep learning is the amount of data required for training:
as an example, Music Transformer has been trained with
10 000 hours of piano music retrieved from YouTube and
converted from audio to MIDI by another neural network,
Onsets and Frames [35].

4.2 Modified MusicVAE

We chose MusicVAE for real-time music generation. One
reason is that pre-trained checkpoints are available for
download. Also, operations in its latent space have se-
mantic effects on the output (e.g. interpolation in the latent
space results in the semantic interpolation of the MIDI con-
tent). Finally, it supports multi-instrument pieces. A pre-
trained checkpoint is available for use with trios (drums,
bass and melody). We propose a small modification that
does not require re-training for real-time parameter mod-
ification. MusicVAE is a variational auto-encoder (VAE)
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Figure 2. Top layer of the restructured decoder RNN for online music generation. The final state of the LSTM is interpolated
with the new state to obtain a new initial state that is in-between the two. This results in a transition between the two parts.

composed of a deep Bidirectional LSTM (BLSTM) proba-
bilistic encoder and a hierarchical LSTM probabilistic de-
coder. The encoder encodes an entire input MIDI into one
single latent vector. It can only be executed batch because
of its bidirectionality (the output at any time step depends
both from past and future inputs). The decoder decodes a
latent vector into any length of musical content. It can be
executed in real-time because it is monodirectional. Also,
memory cost does not increase with time because the out-
put depends only on the current state of the network. The
drawback of MusicVAE for our intended application is that
the decoder doesn’t allow any input for transitioning to a
different part without starting over. Thus, we restructured
the network for sequentially generating music with smooth
transitions. The first layer of the network is visualized in
Fig. 2. When sampling conditionally on a new encoding
𝑧𝑡+1, we compute the corresponding new initial state for
the RNN using the same fully-connected layer as the origi-
nal network. We then compute the new state for the LSTM
as a convex combination of that output and the final state
from the previous execution of the LSTM. We introduce a
memory coefficient 𝛼 ∈ [0, 1]. Defining 𝑓𝑡 the final state
after decoding 𝑧𝑡 and 𝑑(𝑧𝑡) the result of applying the dense
layer to 𝑧𝑡, the new initial state will be

𝑠𝑡+1 := 𝛼 · 𝑓𝑡 + (1− 𝛼) · 𝑑(𝑧𝑡+1). (1)

Setting 𝛼 = 0 results in independent samples (the network
forgets the previous state), whilst setting 𝛼 = 1 the net-
work ignores new inputs. Setting the memory to an in-
between value allows for adjusting the trade-off between
coherence (𝛼 → 1) and change (𝛼 → 0). We implemented
this modification in Python by extending Magenta’s own
class for MusicVAE pre-trained models and overriding the
definition of the decoding operation.

4.3 Multiprocess System

Decoding a MIDI section from MusicVAE is not a fast op-
eration in a musical context. It can take several seconds on
a laptop using a CPU. We developed a dual-process system
to overcome this problem. The two processes involved are
a MIDI sequencer client and a MusicVAE server. Since
they are local processes, we handle their communication
with pipes. We implemented the MIDI sequencer using
the Python bindings for FluidSynth [36]. The sequencer is

never blocked waiting for a request of a MIDI sequence.
Instead, every time the client callback is called, if there
is a pending request, the MIDI is read from the pipe and
scheduled for the synthesizer. Then, a new MIDI sequence
is requested from the client.

5. MUSICAL AFFECT MODEL

The module named Musical Affect Model is the subsystem
that maps musical features to affective labels. Here, musi-
cal features are encoding vectors in the MusicVAE latent
space (see Sec. 4) and an affective state is a pair of binary
labels for valence and arousal (see Sec. 2).

5.1 Related Work

Affect correlates of music features have always been a sub-
ject of great interest for musicologists, although they are
not as often computationally exploited for music genera-
tion. Williams et al. propose a taxonomy for what they
refer to as Affective Algorithmic Composition (AAC) sys-
tems [37]. AAC systems can be compositional if they gen-
erate music (e.g. Robertson et al. [38]) or performative if
they execute a musical piece in a way that reflects the target
emotion (such as RaPScoM [39]). Briefly, they are genera-
tive if they write new music or transformative if they mod-
ify a given input, such as a music production system [40].
They can be real-time or in batch: real-time systems are
adaptive if they can adjust their output during execution,
as our modified MusicVAE (see Sec. 4.2). Williams et
al. later presented an AAC system that targeted affective
states by means of lookup table of musical features com-
piled from literature review [41]. They specify a discrete
mapping from the affective-state space to the set of musical
features, then a neural network outputs MIDI. Kirke and
Miranda developed an AAC system for communicating the
affective state detected from an EEG signal [42]. Valence
is computed as the difference of logarithmic alpha-band
energy between left and right frontal regions of the brain.
Arousal is computed as the negative of the sum of such log-
arithmic alpha-band energies. Binary valence and arousal
are used to transform a pre-written musical score by chang-
ing key, pitch and tempo. Galvanic skin response (GSR) is
another biological signal that is known to correlate with
affective states and Daly et al. developed a system where
GSR serves as input for affective music generation [43].



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

151

PA

PV

A

V

Λ

Z

μ

A

V

Z

A

V

H Z

A

V

H Z

β

β

W

N

N

B

B

B

B

T

B

B

B

B

T N NN

a) b)

c) d)

Figure 3. Probabilistic Graphical Models discussed in text.
A PGM is a directed graph where nodes represent random
variables and arcs stand for conditional probabilities. Hid-
den variables are in white and observed variables are in
grey. Annotations on top of each variable denote the type
of its conditional distribution (Beta, Bernoulli, Wishart,
Normal or T). The PGM (a) is simplified in a graph only
including observed variables (b). PPCA introduces a new
hidden variable 𝐻: PPCA can be performed on the entire
dataset (c) or for each class (d). See text for details.

5.2 Approach

We developed a directed Probabilistic Graphical Model
(PGM) to map affective labels to MusicVAE encodings.

5.2.1 Dataset

The MIREX-like mood dataset is a dataset for multimodal
music emotion recognition [44]. It collects 903 audio sam-
ples, 193 of which with lyrics and MIDI. Affective tags are
adjectives, grouped in 5 clusters. First, we preprocessed
the dataset to get the MusicVAE encodings from the MIDI
files: 151 of the 193 MIDI files were compatible with the
MusicVAE trio model. We used a dataset containing the
“Norms of valence, arousal, and dominance for 13 915 En-
glish lemmas” [45] for converting adjectives to valence and
arousal values. We observed that the 5 pre-defined clusters
did not map to clusters in the valence-arousal 2-D space.
We partitioned the samples into four classes by binarizing
valence and arousal, median values being the thresholds.

5.2.2 Model

We used a directed PGM to model the interdependency
of the different variables. As a consequence of Music-
VAE’s ELBO loss function, the prior distribution of the la-
tent codes 𝑍 is a standard multivariate Normal distribution
(MVN) [28]. Therefore, we model the conditional distribu-
tion of 𝑍 given an affective state (𝑎, 𝑣) as a MVN, as well.
The mean and precision parameters given each affective
state (𝜇𝑎,𝑣,Λ𝑎,𝑣) are unknown. The joint posterior distri-
bution of the unknown mean and precision parameters of
a MVN is a Normal-Wishart distribution. However, they
are never observed and we are not interested in inferring
them. So, we can directly model the distribution of latent
codes given an affective state as a multivariate Student’s
T distribution: this is the distribution of the samples of a
MVN whose mean and the precision are Normal-Wishart
distributed. Valence and arousal only assume binary val-

ues, so, we model them as Bernoulli variables. The mean
parameters (𝑝𝑎 and 𝑝𝑣) are unknown. The posterior distri-
bution of the mean of a Bernoulli variable is a Beta distri-
bution. As previously, their inference is not of interest. The
distribution of a Bernoulli variable whose mean is Beta dis-
tributed is still a Bernoulli distribution. The full PGM and
its simplified version are visualized in Fig. 3a and Fig. 3b.

5.2.3 Dimensionality Reduction

The dimensionality of the latent space is much larger than
the available data points. The MusicVAE trio model has
512 latent variables and only 151 points are in the dataset:
when partitioned into 4 classes, it amounts to an average of
38 points per class. This is not sufficient for inferring the
parameters of the multivariate Student’s T distribution be-
cause the sample covariance matrix is singular. We present
three approaches for overcoming this problem.

We can make a Naive Bayes assumption, imposing all
features to be independent from each other given the class.
Often Naive Bayes is applied in contexts where the inde-
pendence assumption is not supported [46]. In our case, it
could be partially motivated by the fact that the prior distri-
bution of the encodings is a standard MVN, for which the
assumption holds. We applied Naive Bayes to our graphi-
cal model by setting to zero all non-diagonal values of the
sample covariance matrix.

We can use probabilistic PCA (PPCA) [47] to map our
samples to a lower-dimensional space. There are two pos-
sible ways of applying PPCA to our graph. We can use
a class-independent PPCA to map all the latent codes to
a lower-dimensional space, where we can estimate the pa-
rameters of the class-wise T distributions. The resulting
PGM is visualized in Fig. 3c. Alternatively, we can use
PPCA as the model of the distribution of the latent codes
of each class. In this setting, each affective state corre-
sponds to different values for the PPCA parameters. The
corresponding BBN is shown in Fig. 3d. 1

6. CONCLUSIONS

We have presented a pipeline for generating affectively-
driven music using the EEG. Main results so far achieved
can be recapped as follows. We have shown that a re-
duced number of EEG channels can still be effective for
the binary classification of valence and arousal, resulting in
cheaper and more practical BCIs. We have also developed
an online feature extraction algorithm using the OpenViBE
platform. This software is cross-platform and headset in-
dependent. We used the OSC protocol for the communi-
cation with the affect classification module. We discussed
the requirements for an online music generation algorithm
and made a modification to a pre-trained neural autoen-
coder (MusicVAE). This modification allows control over
the latent codes when generating music, so that the output
MIDI is the result of a trajectory in the latent space, instead
of a single static code. Finally, we proposed a probabilistic
model for mapping affective labels to music features, in the

1 Examples generated with a class-dependent PPCA (6 principal com-
ponents) are publicly available at https://chromaticisobar.
github.io/ListenToYourMindsHeArt
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form of MusicVAE latent codes. Thee different probabilis-
tic solutions are presented for dimensionality problems.

In the future, we plan to make a thorough investigation in
the relationship between the number of EEG channels and
the affect classification performance. Also, we plan to col-
lect a dataset of affectively labelled MIDI to evaluate the
dimensionality reduction models we exploited when map-
ping affective labels to music features.
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