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DAVID GREGORY’S MANUSCRIPT ‘ISAACI NEUTONI METHODUS
FLUXIONUM’ (1694): A STUDY ON THE EARLY PUBLICATION

OF NEWTON’S DISCOVERIES ON CALCULUS
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David Gregory’s manuscript ‘Isaaci Neutoni methodus fluxionum’ is the first systematic
presentation of the method of fluxions written by somebody other than Newton. It was
penned in 1694, when Gregory was the Savilian Professor of Astronomy at Oxford.
I provide information about its content, sources and circulation. This short treatise reveals
what Newton allowed to be known about his method in the mid-1690s. Further, it sheds
light upon Gregory’s views on how Newton’s mathematical innovations related to the work
of other mathematicians, both British and Continental. This paper demonstrates two things.
First, it proves that Newton, far from being—as often stated—wholly isolated and reluctant
to publish the method of fluxions, belonged to a network of mathematicians who were
made aware of his discoveries. Second, it shows that Gregory—very much as other
Scottish mathematicians such as George Cheyne and John Craig—received Newton’s
fluxional method within a tradition that was independent from England and that, before
getting in touch with Newton, had assimilated elements of the calculi developed on
the Continent.
icco
Keywords: David Gregory; Isaac Newton; fluxions; manuscript circulation
THE ITEM IN QUESTION

This paper is devoted to David Gregory’s 44-page holograph manuscript ‘Isaaci Neutoni
Methodus Fluxionum; ubi Calculus differentialis Liebnitij, et Methodus tangentium
Barrovij explicantur et exemplis quam plurimis, omnis generis, illustrantur. Auctore D:
Gregory. A.P.S.’ (hereafter the Methodus fluxionum), which is held at the University of St
Andrews Library (MS 31011) as part of the ‘Papers of James Gregorie the elder (1638–
1675), David Gregory (1661–1708) and David Gregory (1712–1765)’ (see Figure 1). As it
appears from the dates penned by Gregory himself, it was written, maybe in its entirety,
lo.guicciardini@unimi.it
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Figure 1. First page of Gregory’s Methodus fluxionum. The hand is David Gregory’s. (University of St Andrews
Library, MS 31011, p. 1. Courtesy of the University of St Andrews Library.)
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in Oxford in October and November 1694.1 The Methodus fluxionum is particularly
interesting, since it is the first systematic presentation of the method of fluxions written by
somebody other than Newton.

A full transcription is provided by MS 131, ff. 193r–216v, Christ Church Library, Oxford
(see figure 2). This is part of a scribal copy of three other works attributed to David Gregory:
namely, ‘Notæ in Newtoni Principia Mathematica’ (ff. 1r–150v), ‘Addenda Notis et suis locis
reponenda’ (ff. 151r–155r), and ‘Geometria de Motu Pars prima. Definitiones’ (ff. 157r–
191v).2 A note in Gregory’s hand identifies the scribe as James Canarys (1653/4–1698)
and the date on which this transcription was made as 1695.3 The hand changes on
ff. 151r–155r and, just near the end of the Methodus fluxionum, from the bottom of
f. 210v up to the desinit of the manuscript. The hand in the above-mentioned folios is
unmistakably Gregory’s.

There is evidence that Gregory’s Methodus fluxionum was not only copied, presumably at
the author’s request, just one year after its composition, but that in subsequent years it
circulated among Newton’s acolytes too. Two copies are in the Macclesfield Collection
(MS Add. 9597/9/3 and MS Add. 9597/9/4, Cambridge University Library, Cambridge).
Both are incomplete (they lack the last 9 and 10 propositions respectively out of 47) and
might have belonged to the papers in William Jones’s collection. The second is written in
a hand that appears immature: it might be an exercise by the young George Parker (1697–
1764), whom Jones tutored in mathematics after around 1708 (see figure 3).4 In
Cambridge, there is another copy, lacking the final propositions 46 and 47, among John
Keill’s letters and papers (MS O.XIV.278.13, Cambridge University Library). It is
inscribed: ‘For Dr James Keile at Mr J[oh]n Bannisters Apothecary in Oxon’. This places
the date, at least of the transfer of the copy, between 1698 and 1703, since James Keill,
John’s brother, arrived in Oxford in 1698 and left for Northampton in 1703. Another copy
is in the University of St Andrews Library (MS QA 33G8/D12). This is a complete scribal
copy, lacking the title on f. 1r. Interestingly, this copy looks very much like the mock-up
of a printed book, since all figures, carefully drawn by hand, are gathered at the end in six
folded plates (see figure 4).5 One might therefore infer that a printed publication was at
1 The manuscript is paginated from p. 1 and foliated from f. 132. Dates occur on p. 12 (‘Oxoniæ 23 October 1694’), p. 16
(‘Oxoniæ October 29 1694’), p. 20 (‘7 November 1694 Oxoniæ’) and p. 24 (‘Oxoniæ die S. Ceciliæ 1694’, i.e. 22 November 1694).

2 The four items are bound in reversed calf over pasteboards and are written on quires of six and eight folios measuring
231×185 mm. The detailed description available from the Bodleian Digital Library explains that MS 131 ‘was bequeathed to Christ
Church Library with many other volumes by Gregory’s son, David Gregory (1696–1767), first Professor of Modern History in the
University of Oxford, and Dean of Christ Church from 1756–1767)’. See https://digital.bodleian.ox.ac.uk/objects/9f161887-ec8e-
40fe-b417-c11e5845d91d/surfaces/e29e96f5-05ab-4846-8909-e1bbf79758a9/ (accessed 8 February 2021).

3 As explained in ibid., ‘A note written vertically near the fore-edge of the inside of the upper board and signed by David
Gregory explains its origins: “This book was written by James Canarys Doctor in Divinity, first Parson of Selkirk in Scotland,
afterwards Vicar of Abingdon in Berkshire in England, in the year MDCXCV.”’

4 Both MS Add. 9597/9/3 and MS Add. 9597/9/4 are written on paper bearing the Arms of Parker. The hand in MS Add. 9597/
9/4 has some resemblance with George Parker’s. On fol. 1r, one might note a funny mistake (‘Prop 1 Prop’ for ‘Prop 1 Prob’), some
corrections of the Latin, the use of ruling, and the rigidity of the hand as features that suggest that the scribe, certainly not a
professional, was a student.

5 The copy is undated, unfortunately. Furtherwork, possible only by a close studyofwatermarks, might help in approximately dating
it. However, MS QA 33G8/D12 seems to be penned mostly, except the final tables, on a notebook bought by a stationer, which makes the
dating evenmore difficult. It is likely that it was produced before 1704,when the publication ofNewton’s Tractatus de quadratura curvarum
(in [Isaac Newton],Opticks: Or, ATreatise of the Reflexions, Refractions, Inflexions and Colours of Light, Also Two Treatises of the Species
and Magnitude of Curvilinear Figures, pp. 163–211 (Sam. Smith and Benj. Walford, London, 1704)) and other printed works on fluxions
made Gregory’sMethodus fluxionum less informative. For some early printed treatments of fluxions, see John Harris, ANew Short Treatise
of Algebra: with the Geometrical Construction of Equations as far as the Fourth Power or Dimension. Together with a Specimen of the

https://digital.bodleian.ox.ac.uk/objects/9f161887-ec8e-40fe-b417-c11e5845d91d/surfaces/e29e96f5-05ab-4846-8909-e1bbf79758a9/
https://digital.bodleian.ox.ac.uk/objects/9f161887-ec8e-40fe-b417-c11e5845d91d/surfaces/e29e96f5-05ab-4846-8909-e1bbf79758a9/
https://digital.bodleian.ox.ac.uk/objects/9f161887-ec8e-40fe-b417-c11e5845d91d/surfaces/e29e96f5-05ab-4846-8909-e1bbf79758a9/


Figure 2. The rules of the differential calculus demonstrated in terms of Newton’s method and notation. (Christ Church
Library, Oxford, MS 131, f. 195v (p. 6). Reproduced by kind permission of the Governing Body of Christ Church,
Oxford.) (Online version in colour.)

Nature andAlgorithmof Fluxions (J.M. forD.Midwinter and T. Leigh, London, 1702); GeorgeCheyne,FluxionumMethodus Inversa: sive
Quantitatum Fluentium Leges Generaliores (J. Matthew, sold by R. Smith, London, 1703); Charles Hayes, A Treatise of Fluxions: or, an
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Figure 3. Transcription of Proposition 1. Gregory cites the works by Leibniz, Tschirnhaus, Barrow and Newton.
Formerly in the collection of the Earl of Macclesfield. (Cambridge University Library, Cambridge, MS Add.
9597/9/4, f. 1r. Reproduced by kind permission of the Syndics of Cambridge University Library.) (Online version
in colour.)
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Figure 4. Folded plate (no. 4) of a scribal copy of David Gregory’s Methodus fluxionum. Note the diagram for
Proposition 26 on the cone frustrum of least resistance and the diagram for Proposition 39 on the optimal position
of the rudder of a ship. (University of St Andrews Library, MS QA 33G8/D12. Courtesy of the University of
St Andrews Library.)

Introduction to Mathematical Philosophy; Containing a Full Explication of that Method by Which the Most Celebrated Geometers of the
Present Age Have Made Such Vast Advances in Mechanical Philosophy. AWork Very Useful for Those That Would Know How to Apply
Mathematicks to Nature (E. Midwinter, for D.Midwinter and T. Leigh, London, 1704); William Jones, Synopsis PalmariorumMatheseos;
Or, a New Introduction to the Mathematics: Containing the Principles of Arithmetic & Geometry Demonstrated, in a Short and Easie
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this point considered. But our understanding of the practices of production and circulation of
mathematical manuscripts is still too tentative to allow this conclusion to be drawn. This way
of presenting the diagrams in the manuscript might simply represent a further stage of scribal
publication.
DAVID GREGORY, EDITOR OF JAMES GREGORIE AND ISAAC NEWTON

David Gregory was born in Upper Kirkgate, Aberdeen, on 3 June 1659. His was a family of
Episcopalians which was steeped in the tradition of medicine and mathematics (not least
through its relationship with the Andersons).6 He was the nephew of one of the greatest
mathematicians of the seventeenth century, James Gregorie (1638–1675).7 After his move
to England in 1691 David became one of Newton’s closest mathematical correspondents.
After studying at Marischal College, enrolling in it—as was customary in Scotland—at the
very young age of 12, in 1675 he moved to the family estate of Kinnairdy, where he found
his uncle’s papers and correspondence. It was by reading the family archives that he
became a proficient mathematician. Most notably, Gregory familiarized himself with
cutting-edge research on quadratures via infinite series. In 1683, he was elected Professor
of Mathematics at Edinburgh, the chair once occupied by his uncle. In the meanwhile, he
had established contacts with a group of Scottish physicians and mathematicians which
included Archibald Pitcairne, George Cheyne, John Craig, John Keill and Colin Campbell.8

Gregory’s first publication, the Exercitatio Geometrica de Dimensione Figurarum (1684), is a
treatise on the ‘dimension of figures’: that is, on the calculation of the areas and volumes
of curvilinear figures, based on his uncle’s discoveries, especially on the series expansion of
Method, with Their Applications to the Most Useful Parts Thereof…Design’d for the Benefit, and Adapted to the Capacities of Beginners
(J. Matthews, for J. Wale, London, 1706).

6 ‘James’s mother is reckoned to be a “close” (how close, it cannot be said) relative of the mathematician, Alexander Anderson
(ca. 1582–after 1619), a student of Viète and editor of some of his posthumous works. Tradition has it that Janet taught James his first
mathematical notions.’ Antoni Malet, ‘Studies on James Gregorie (1638–1675)’, PhD thesis, Princeton University (1989), p. 17.

7 David Anglicized the spelling of his surname after moving to Oxford in 1691.
8 Archibald Pitcairne (1652–1713), Professor of Medicine at the University of Edinburgh, was a leading iatro-mechanical

physician who had taught briefly but influentially at Leiden in the early 1690s. Born into an Episcopalian family in Aberdeenshire,
George Cheyne (1671/2?–1743) distinguished himself as one of the staunchest defenders of Pitcairne in the latter’s dispute with the
Edinburgh College of Physicians over the nature of fevers. The Scottish iatro-mechanists’ aim was to apply a ‘Newtonian’ matter
theory, based on attractive and repulsive forces, to medicine. Cheyne had a brief career as a mathematician in the early 1700s (see
Cheyne, op. cit. (note 5)) before devoting himself entirely to medicine and theology. John Craig (1663–1731) was a Scottish
mathematician who was deeply influenced by Continental calculus. In 1685 he published a short treatise, written in Leibniz’s notation,
on the quadrature of curvilinear figures, the Methodus Figurarum Lineis Rectis & Curvis Comprehensarum Quadraturas
Determinandi (M. Pitt, London, 1685). He continued to use the differential and integral notation in another treatise published in 1693,
the Tractatus Mathematicus de Figurarum Curvilinearum Quadraturis et Locis Geometricis (Sam. Smith & Benj. Walford, London,
1693), and in papers published in the Philosophical Transactions up until 1708. John Keill (1671–1721), a friend of Gregory, moved
from Scotland to Oxford in 1694 and began to lecture on Newtonian philosophy. In 1699 he was employed by Thomas Millington as
deputy Professor of Natural Philosophy. His course was published as Introductio ad Veram Physicam: seu Lectiones Physicae,
Habitae in Schola Naturalis Philosophiae Academiae Oxoniensis, Quibus accedunt C.Hugenii theoremata de vi centrifuga et motu
circulari demonstrata (e Theatro Sheldoniano, Oxford, 1702). In 1712 he was elected Savilian Professor of Astronomy and lectured
regularly until his death. Colin Campbell (1644–1728), who earned his living as minister of Ardchattan on Scotland’s west coast, was
highly regarded as a mathematician. He was consulted by Pitcairne, Craig and Gregory on mathematical matters related to the calculus
and Newton’s Principia. On Campbell’s mathematical correspondence, see Philip Beeley, ‘“There are great alterations in the geometry
of late”: the rise of Isaac Newton’s early Scottish circle’, Brit. J. Hist. Math. 35, 3–24 (2020), at pp. 12–14 (https://doi.org/10.1080/
26375451.2019.1701862).

https://doi.org/10.1080/26375451.2019.1701862
https://doi.org/10.1080/26375451.2019.1701862
https://doi.org/10.1080/26375451.2019.1701862
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y = (1 ± x2)(±1/2).9 The fact that most of the results in the Exercitatio were due to James Gregorie
should not induce one to think that David’s was a trivial achievement. Reading through James’s
papers and correspondence and making sense of a brand-new mathematical topic was no mean
feat, and both Gregory and his readers certainly understood this well enough. After all,
commenting on the (mostly manuscript) output of an innovative thinker is something that
allowed many scholars—such as Descartes’s and Viète’s mathematical editor Frans van
Schooten in the United Provinces—to reach a more than respectable position in the Republic of
Letters.10 The fact that the Exercitatio showcased James Gregorie’s mathematical discoveries
was of course a very apt way to celebrate the prestige of the newly acquired chair in Edinburgh.

When the book reached Newton in Cambridge it elicited a less than cordial reaction.
According to the extant letters, the Lucasian Professor of Mathematics did not even reply
to the author, who had sent him a complimentary copy.11 Rather, Newton set himself the
task of writing a work—never published—for the purpose of claiming his priority and
superiority over James Gregorie in matters concerning infinite series.12 Indeed, as is
apparent from the extant exchanges between John Collins, James Gregorie and the young
Newton in the early 1670s (letters to which David had access and which he had used
in the Exercitatio), the Scottish mathematician had obtained many results contained in
Newton’s short treatise De analysi per æquationes numero termonorum infinitas that
in July 1669 Isaac Barrow had communicated to John Collins. Gregory’s relationship with
Newton, then, did not begin in a very auspicious way.

Gregory was one of the first to appreciate the importance of Newton’s Principia. On
2 September 1687, he wrote an enthusiastic letter to the author.13 There is evidence that he
introduced some of his students to gravitation theory, even though he did not include
Newtonian science in his lectures.14 He also began drafting a detailed commentary on the
Principia, entitled ‘Notæ in Newtoni Principia mathematica philosophiæ naturalis’, on
which he continued to work until the end of his life.15 At some point he cherished the
idea of acting as editor of a second edition of the magnum opus, since it was known that,
as early as the 1690s, Newton was thinking of publishing a revised edition. It was then
that Gregory shifted from being a disseminator of his uncle’s mathematical discoveries to
9 David Gregory, Exercitatio Geometrica de Dimensione Figurarum: sive Specimen Methodi Generalis Dimetiendi Quasvis
Figuras (James Kniblo, Joshua van Solingen, and John Colmar, Edinburgh, 1684).

10 Frans van Schooten (1615–1660) was Professor of Mathematics at the University of Leiden. A friend and correspondent of
Descartes, he established a school which included Johannes Hudde, Johan de Witt, Henrik van Heuraet and Christiaan Huygens. His
annotated Latin translation of Descartes’s Géométrie was highly influential. Van Schooten was not only a mathematical editor and
teacher but also a very creative mathematician.

11 ‘Sr I perceive by severall letters from Mr Collins to my Uncle, from whose remains this is for ye most parte taken, that your
selfe have of a long time cultivate this methode, and that ye world have long expected your discoveries therein.’ David Gregory, Letter
to Isaac Newton, 9 June 1684, in H. W. Turnbull, J. F. Scott, A. Rupert Hall and Laura Tilling (eds), The correspondence of Isaac
Newton, 7 vols (Cambridge University Press, Cambridge, 1959–1977), vol. 2, p. 396.

12 See ‘Matheseos universalis specimina’ and ‘De computo serierum’, MS Add. 3964.3, fols 7r-20v, MS Add. 9597/2/6 and
MS Add. 9597/2/7, Cambridge University Library, Cambridge (hereafter CUL), transcribed in D. T. Whiteside (ed.), The
mathematical papers of Isaac Newton, 8 vols (Cambridge University Press, Cambridge, 1967–1981), vol. 4, pp. 526–45, 590–605.

13 Turnbull et al., op. cit. (note 11), vol. 2, p. 484.
14 Christina M. Eagles, ‘David Gregory and Newtonian science’, Brit. J. Hist. Sci. 10, 216–25 (1977) (https://doi.org/10.1017/

S0007087400015661).
15 The autograph is MS 210, Royal Society Library, London (hereafter RSL). Three further copies are known: MS 131, ff. 1–

155, Christ Church Library, Oxford (hereafter CCL); MS Dc.4.35, Edinburgh University Library, Edinburgh (hereafter EUL); and MS
465, Aberdeen University Library, Aberdeen. On Gregory’s career in Edinburgh, see Christina M. Eagles, ‘The mathematical work of
David Gregory, 1659–1708’, PhD thesis, University of Edinburgh (1977).

https://doi.org/10.1017/S0007087400015661
https://doi.org/10.1017/S0007087400015661
https://doi.org/10.1017/S0007087400015661
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being a would-be editor of Newtonian mathematical works.16 Indeed, he based his most
important work, the Astronomiæ Physicæ & Geometricæ Elementa (1702), on Newtonian
science.17 The Astronomiæ was very much part of Gregory’s publication plan for
Newtoniana, as he included in this work a version of the so-called ‘Classical Scholia’—the
ruminations on the prisca sapientia that Newton planned to include in a second edition of
the Principia—and a Latin translation of Newton’s Theory of the Moon.18 By then
Gregory had moved to Oxford as Savilian Professor of Astronomy, a position that he
gained in December 1691, partly thanks to Newton’s recommendation, probably due to the
Lucasian professor’s desire to secure a Newtonian outpost in Oxford—as Philip Beeley
suggests.19 Gregory’s move was for political reasons and he was followed by a group of
Episcopalians who, after 1689, found a more hospitable climate in the English university.
He remained in Oxford until the end of his life in 1708. He was the main representative of
a Scottish diaspora whose members pursued iatro-mechanics, in the spirit of Pitcairne, and
mathematical natural philosophy in the wake of Newton. They were dubbed the ‘Tory
Newtonians’ in a seminal paper that Anita Guerrini published 35 years ago.20 This group
held some political and religious views in common, were united at least in part by kinship,
and shared the common fate of having felt compelled to leave Presbyterian Scotland. For
the Tory Newtonians, mathematized Newtonianism and medicine were deeply intertwined
enterprises: for example, George Cheyne pursued them both, while the brothers James and
John Keill devoted themselves to iatro-mechanics and to Newtonian natural philosophy and
astronomy respectively.21

Gregory discussed the possibility of using the ‘Notæ’ as a commentary for a second edition
of the Principia with Newton himself, when they first met in Cambridge in early May 1694.22
16 It is interesting that in the ‘Notæ’ Gregory follows the editorial conventions of Frans van Schooten’s commentary in his
annotated Latin translation (1649 and 1659–1661) of Descartes’ Géométrie (1637). See Geometria à Renato Des Cartes Anno 1637
Gallicè Edita; Nunc Autem cum Notis Florimondi de Beaune in Curiâ Blæsensi Consiliarii Regii, in Linguam Latinam Versa, &
Commentariis Illustrata, Operâ atque Studio Francisci à Schooten, Leydensis, in Academia? Lugduno-Batava?, Matheseos
Professoris, Belgicè Docentis (Maire, Leiden, 1649) and Geometria à Renato Des Cartes Anno 1637 Gallicè Edita, Postea Autem
Unà cum Notis Florimondi de Beaune… in Latinam Linguam Versa, & Commentariis Illustrata, 2 vols (Ludovicum & Danielem
Elzevirios, Amsterdam, 1659). It is fascinating to note that two heavily annotated copies of the first edition of the Principia, currently
housed at the University of Glasgow Library (Sp Coll Hunterian Ec.1.15 and Sp Coll Ea7-b.10) circulated in Pitcairne’s circle. A study
of the hands and of the annotations would shed much light upon the early reception of the Principia in Scotland, since they seem to
have been annotated when both Pitcairne and Gregory were active in Edinburgh. The copy at Moscow University Library (4.E.n.1) is
likely to have annotations in Gregory’s hand. See Vladimir S. Kirsanov, ‘The earliest copy in Russia of Newton’s Principia: is it
David Gregory’s annotated copy?’, Notes Rec. R. Soc. Lond. 46, 203–218 (1992) (https://doi.org/10.1098/rsnr.1992.0022). See
Mordechai Feingold and Andrej Svorenc ̌ík, ‘A preliminary census of copies of the first edition of Newton’s Principia (1687)’, Ann.
Sci. 77, 253–348 (2020), at p. 263 (https://doi.org/10.1080/00033790.2020.1808700).

17 David Gregory, Astronomiæ Physicæ & Geometricæ Elementa (e Theatro Sheldoniano, Oxford, 1702).
18 See Paolo Casini, ‘Newton, the classical scholia’, Hist. Sci. 22, 1–58 (1984) (https://doi.org/10.1177/

007327538402200101); and I. B. Cohen (ed.), Isaac Newton’s ‘Theory of the Moon’s motion’ (1702): with a bibliographical and
historical introduction (Wm. Dawson and Sons, Folkestone, 1975).

19 See Beeley, op. cit. (note 8), p. 14.
20 Anita Guerrini, ‘The Tory Newtonians: Gregory, Pitcairne, and their circle’, J. Brit. Stud. 26, 288–311 (1986) (https://doi.

org/10.1086/385866). See also John Friesen, ‘Archibald Pitcairne, David Gregory and the Scottish origins of English Tory
Newtonianism, 1688–1715’, Hist. Sci. 41, 163–191 (2003) (https://doi.org/10.1177/007327530304100203).

21 On the iatro-mechanical agenda of the Tory Newtonians, see Anita Guerrini, ‘Archibald Pitcairne and Newtonian medicine’,
Med. Hist. 31, 70–83 (1987) (https://doi.org/10.1017/S0025727300046329).

22 ‘If my Notes on the Newtonian Philosophy are published (as indeed I heartily wish and expect, and made the proposal to the
author himself on 8 May 1694) a great deal that serves to detect slips or even mistakes of Newton and is contained in my notes is to be
omitted if a new edition of that work is made by the author: otherwise the notes are to be inserted in their proper places.’ Translation
from Latin by H. W. Turnbull in Turnbull et al., op. cit. (note 11), vol. 3, p. 386. Turnbull translates from a memorandum by Gregory:
‘In editione nova Philos: Newtoniana hæc ab Auctore fient, May 1694’, MS Dc.1.61, Folio C [42], EUL.

https://doi.org/10.1098/rsnr.1992.0022
https://doi.org/10.1098/rsnr.1992.0022
https://doi.org/10.1080/00033790.2020.1808700
https://doi.org/10.1080/00033790.2020.1808700
https://doi.org/10.1177/007327538402200101
https://doi.org/10.1177/007327538402200101
https://doi.org/10.1177/007327538402200101
https://doi.org/10.1086/385866
https://doi.org/10.1086/385866
https://doi.org/10.1086/385866
https://doi.org/10.1177/007327530304100203
https://doi.org/10.1177/007327530304100203
https://doi.org/10.1017/S0025727300046329
https://doi.org/10.1017/S0025727300046329
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This five-day-long meeting had momentous consequences for Gregory. For some reasons,
Newton gave him free access to his archive, showing the Savilian professor some of his
most important scientific and theological manuscripts. In a way, Newton’s openness
towards Gregory is unexpected since the two had another reason to be on unfriendly terms,
in addition to the priority issue raised by the publication of the Exercitatio. In 1688
Pitcairne had published a theorem on quadratures, attributing it to David Gregory, in a
book entitled Solutio Problematis de Historicis, seu Inventoribus.23 On 7 November 1691,
just weeks before his election as Savilian Professor of Astronomy at Oxford, Gregory
wrote a letter to Newton, dated from London, in which he tried obliquely to assert his
independence in the discovery of this important result.24 As a matter of fact, this theorem
had been communicated to Leibniz in Newton’s so-called epistola posterior, dated 24
October 1676.25 The theorem had later been passed to Craig, who had visited Newton in
his rooms at Trinity in 1685. It seems likely that it was through Craig that this rule for the
quadrature of curves came into Gregory’s hands, as Newton politely, yet firmly, replied to
Gregory: ‘your fellow-countryman Craig also, when he stayed with us [in Cambridge] for
quite a long time six years ago, examined my manuscripts’ and ‘then he sent to you my
squaring of that curve’.26 However, one should not exclude the possibility that Gregory
indeed achieved this result by relying on the forces at his own disposal, or after receiving
just a few hints.

Be that as it may, on the occasion of Gregory’s visit in May 1694, Newton put all dissent
aside and revealed his well-guarded mathematical manuscripts on geometry, fluxions and the
Principia to the Savilian professor. It was during this meeting that Gregory acquired most of
the information that allowed him to devise the plan to write a short treatise on the still
unpublished method of fluxions.

The extraordinary openness of Newton towards Gregory is, I must confess, not wholly clear
to me. On the occasion of Gregory’s visit, Newton not only opened up his mathematical archive
covering fluxions, quadratures, optics and the Principia, but he let Gregory read and annotate
his manuscripts on the prisca sapientia and religion too. One might surmise that Newton was
particularly well disposed since Gregory’s visit was solicited by Nicolas Fatio de Duillier, as
Christina Eagles convincingly suggests.27 Maybe, when Gregory visited Cambridge, he
knocked on the door of the Lucasian professor, fashioning himself as a member of Newton’s
close network of trustworthy acolytes. Yet, at this juncture I must add that I cannot provide a
convincing explanation. Further work is necessary in order to clarify this important aspect of
Newton’s life. Indeed, Gregory’s memoranda are the main source of information at our
disposal on Newton’s work in the period 1694–1708.
23 Archibald Pitcairne, Solutio Problematis de Historicis, seu Inventoribus (J. Reid, Edinburgh, 1688).
24 Gregory, Letter to Newton, 7 November 1691, in Turnbull et al., op. cit. (note 11), vol. 3, pp. 172–176.
25 Isaac Newton, Letter to Henry Oldenburg, 24 October 1676, in ibid., vol. 2, pp. 110–129. The so-called theorema primum is

at pp. 115–117.
26 Ibid., vol. 3, pp. 181–182. Translation by H. W. Turnbull at p. 183. The whole affair between Newton, Craig and Gregory is

reconstructed by D. T. Whiteside in Whiteside, op. cit. (note 12), vol. 7, pp. 3–13. Gregory’s method of quadrature was also printed in
John Wallis, Opera Mathematica, 3 vols (e Theatro Sheldoniano, Oxford, 1693–1699), vol. 2, pp. 377–380. Newton’s version is
corroborated by Craig who, in 1718, detailed how he passed Newton’s theorem to Gregory. See ‘Præfatio ad lectorem’, in John Craig,
De Calculo Fluentium Libri Duo: Quibus Subjunguntur Libri Duo de Optica Analytica (Pearsons, London, 1718), sig. b3–b4.

27 Eagles, op. cit. (note 15), at pp. 398–399.
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GREGORY’S METHODUS FLUXIONUM

Planning a tract on Newton’s method of fluxions

After his momentous encounter with Newton in May 1694, Gregory wrote extensive
memoranda in which he recorded what had been revealed to him about the Lucasian
professor’s intellectual output. The memoranda, which have only been partially published,
are a treasure trove of information about Newton’s ideas on scientific, mathematical and
religious subjects.28 According to Tom Whiteside’s careful study of the mathematical
memoranda29, in May Gregory was shown parts of Newton’s early treatise on fluxions
known as De methodis serierum et fluxionum, 30 the masterpiece that was begun in 1670
and that was printed only in 1736 in John Colson’s English translation.31 Gregory also had
the opportunity to look at, among many other things, Newton’s working notes related to
the demonstration of some propositions of the Principia. Thus, the memoranda provide an
invaluable source of information about the methods employed by Newton in writing his
magnum opus. From a memorandum dated 7 September 1694, we learn that by then
Gregory was already planning to write the Methodus fluxionum. The memorandum is
entitled ‘Describenda et Chartis consignanda Mense Septembri MDCXCIV’ and was listed
in Gregory’s later manuscript catalogue as ‘Adumbratio nostræ de fluxionibus methodi’.32

Gregory’s plan occupies one page and consists of a list of 11 points: it appears that in the
composition of the Methodus fluxionum, which, as we know, took place in October and
November, Gregory followed closely the project sketched in early September. Indeed, the
first point clearly summarizes the content and purpose of the Methodus: ‘1. Newton’s
method of fluxions, as it is contained in Wallis’s works is to be written out and illustrated
more fully, followed by what he [Newton] understands by Fluxions, in its broadest
sense.’33 As is well known, up until then very little of the method of fluxions had been
printed or circulated. Therefore, Gregory certainly appreciated the opportunity that his
recently acquired access to Newton’s personal mathematical archive offered him to be the
first to ‘write out’ (describere) and ‘illustrate’ the new method. The method’s notation and
terminology had been recently and succinctly presented—as Gregory notes in the above
quotation—in six folio pages of the second volume of Wallis’s Opera (1693), while the
binomial theorem and excerpts from Newton’s 1676 letters to Henry Oldenburg for
28 A complete edition of the memoranda by Gregory, kept in the libraries of Christ Church, Oxford, Edinburgh University
Library, and the Royal Society Library, is lacking. Some excerpts can be found in W. G. Hiscock (ed.), David Gregory, Isaac Newton
and their circle: extracts from David Gregory’s memoranda 1677–1708 (printed for the editor, Oxford, 1937); and in Turnbull et al.,
op. cit. (note 11), vols 3 and 4.

29 Whiteside carefully reads the ‘Adnotata Math: ex Neutono. 1694. Maio’ (MS 247, Royal Society Library, London, p. 68)
and the memorandum, datable to July 1694, MS Dc.1.61, Folio C [42], Edinburgh University Library, Edinburgh, translated into
English by H. W. Turnbull in op. cit. (note 11), vol. 3, pp. 384-6. See, Whiteside’s comments in op. cit. (note 12), vol. 7, p. 197.

30 MS Add. 3960.14, CUL.
31 Isaac Newton, The Method of Fluxions and Infinite Series, trans. and annotated by John Colson (H. Woodfall for J. Nourse,

London, 1736).
32 MS 247, p. 64, RSL, edited in Turnbull et al., op. cit. (note 11), vol. 4, pp. 15–16. From the boxed number 79, it appears that

this was originally part of Folio C of the Gregory papers in Edinburgh.
33 ‘Methodus fluxionum Newtoni prout in Wallisij operibus continetur plenius describenda et illustranda, deinde quid ille per

Fluxiones late sumptas intelligat’. MS 247, p. 64, RSL.



N. Guicciardini12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 M

ay
 2

02
1 
Leibniz had already been included in the English Algebra (1685).34 In the 1670s John Collins
had circulated some of Newton’s mathematical discoveries via correspondence, as did Nicolas
Fatio de Duillier in the early 1690s.35 Yet, in 1694 nobody, with the possible exception of
Fatio and Wallis, had such an extensive knowledge and competence in Newtonian fluxions
as Gregory. The newly appointed Savilian Professor of Astronomy clearly understood that
what he had seen in May was of utmost importance. He set to work with alacrity and in
about a couple of months, most probably by November 1694, he completed his planned
treatise on the method of fluxions, to which we now turn.
Contents and sources of the Methodus fluxionum

The title of the Methodus fluxionum makes it clear that Gregory’s intention was to present not
only Newton’s method of fluxions, but also Leibniz’s differential calculus and Barrow’s
method of tangents, as provided in Lecture X of the Lectiones geometricæ (1670). Indeed,
as we shall see, this short treatise is not simply a transcription of the papers on fluxions by
Newton that Gregory had the opportunity to study in May 1694. Gregory aimed to offer a
treatment of Newton’s method and its relationship with previous and contemporary works,
including the one by his uncle and by David himself. He relied upon a variety of sources
that included both British and Continental work.

As can be inferred from a note datable to around 1685, while still in Edinburgh, Gregory
had read excerpts from Newton’s De methodis serierum et fluxionum from annotations
brought to Scotland by Craig.36 In 1694, of course, he became acquainted with Newton’s
dotted notation and the methods of quadrature published in Wallis’s Latin Algebra (1693).
It is also known that from the mid-1680s Gregory began a close reading of the papers on
calculus published in the Acta Eruditorum: he was particularly interested in the work
presented there by Ehrenfried Walther von Tschirnhaus, Leibniz and Jacob Bernoulli.37

Not surprisingly, Gregory’s sources were very similar to the ones used by Craig in his
treatises from 1685 and 1693.38 The memoranda kept at Christ Church also provide
evidence of Gregory’s study of the results on calculus and algebra published by the
Continental mathematicians in the Acta.39 Thus, when Gregory set himself the task of
writing the Methodus fluxionum, he had already spent about eight years digesting the most
34 Wallis included paraphrases from the two famous 1676 epistolæ to Leibniz in his English (1685) and Latin (1693) Algebra.
Here the reader could acquire some knowledge of Newton’s methods of series and fluxions. Most notably, new material provided by
Newton himself, which described the dotted notation for fluxions and some methods for the ‘squaring’ of curves, was included in
Wallis, op. cit. (note 26), vol. 2 (1693), pp. 390–396. For details, see Niccolò Guicciardini, ‘John Wallis as editor of Newton’s
mathematical work’, Notes Rec. R. Soc. Lond. 66, 3–17 (2012) (https://doi.org/10.1098/rsnr.2011.0051).

35 The classic reference is A. Rupert Hall, Philosophers at war: the quarrel between Newton and Leibniz (Cambridge
University Press, Cambridge, 1980).

36 MS Dk.1.2, Quarto A [56(1)], EUL.
37 Gregory’s first encounter with the works by Tschirnhaus and Leibniz is documented, as Philip Beeley has shown, in his

correspondence with Colin Campbell dated to between 1685 and 1687. See Beeley, op. cit. (note 8), pp. 6–8. Ehrenfried Walther von
Tschirnhaus (1651–1708) was a mathematician, physician and philosopher. He was a correspondent of Leibniz and contributed to the
discovery of the calculus. As a mathematician he is known for the Tschirnhaus transformation. Jacob Bernoulli (1655–1705) was an
eminent mathematician based in Basel. With his younger brother Johann (1667–1748), he was one of the first to improve and apply
Leibniz’s calculus.

38 Craig, op. cit. (note 8).
39 MS 346, esp. pp. 1–86, CCL. See also, MS Dk.1.2, Quarto A [81] and Quarto A [91] (notes on Leibniz’s method for

maxima and minima); MS Dc.1.61, Folio C [32] (notes on Tschirnhaus’s method for maxima and minima); and MS Dc.1.61, Folio C
[35] (a reading of some papers on calculus from the Acta produced between 1681 and 1692), EUL.

https://doi.org/10.1098/rsnr.2011.0051
https://doi.org/10.1098/rsnr.2011.0051
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up-to-date mathematical methods, which he explained by way of exemplary ‘problems’ in 47
propositions.

The first proposition is purely definitory. It reads: ‘Prop. I. Problem: To explain what
Newton understands by fluent quantities, and their fluxions, and how they are denoted.’40

In the lines immediately following the above statement, Gregory claims that after 1674
several problems and theorems concerning the ‘dimension of figures’ had been found by
‘Newton, Leibniz, Huygens and Tschirnhaus’, and that his aim is to explain their methods
by way of examples, so that other mathematicians can apply them to more cases and make
them more general.41 Far from being a presentation of Newton’s fluxions, Gregory’s
treatise is framed as a comparison between different notations and methods devised by
mathematicians active in the preceding 20 years.

Gregory opens the Methodus fluxionum by assigning priority to Barrow’s ‘method of
tangents’ and by stating the equivalence between Leibniz’s ‘calculus’ and Newton’s
‘method’. The ‘former first published in the Acta in 1684, the latter in Wallis’s second
volume of the Opera in 1692 [sic]… slightly differ only by their name’.42 Newton’s
method, according to Gregory, is not the first, since it dates from 1664, as it appears from
an annotation by Newton.43 All existing methods ‘easily follow’ from Barrow’s method of
tangents published in the tenth lecture of the Lectiones geometricæ.44 Gregory rightly
assumes that Barrow’s method predates Newton’s early work on fluxions.45 A few pages
below, Gregory reports the evaluation by Jacob Bernoulli published in the Acta
Eruditorum in 1691, according to which ‘Leibniz’s differential calculus is not different
from Barrow’s’, if one excludes the notation and the ‘compendious way’ in which the
operations are carried out.46
40 ‘Quid per Quantitates fluentes harumque fluxiones a Newtono intelligatur et quomodo notentur explicare.’ MS 31011, p. 1,
University of St Andrews Library, St Andrews (hereafter USAL).

41 The date 1674 was probably inferred from the correspondence between James Gregory and Collins: see, e.g., Collins’s
reference to Tschirnhaus’s ‘new methods for quadrature of curvilinear figures and straightening of Curves’ in a letter dated 3
August 1675, in H. W. Turnbull (ed.), James Gregory tercentenary memorial volume, pp. 314–319 (Bell & Sons for the Royal Society
of Edinburgh, London, 1939), at p. 315. The reference to Huygens is probably due to Gregory’s personal encounter with the Dutch
polymath in May and June 1693. See Steffen Ducheyne, ‘Adriaen Verwer (1654/5–1717) and the first edition of Isaac Newton’s
Principia in the Dutch Republic’, Notes Rec. R. Soc. Lond. 74, 479–505 (2020) (https://doi.org/10.1098/rsnr.2019.0008), at p. 491,
n. 108. Huygens was deeply interested in the new methods of quadrature and he discussed Newton’s findings on this topic with
Gregory. See R. Vermij and J. van Maanen, ‘An unpublished autograph by Christaan Huygens: his letter to David Gregory of
19 January 1694’, Ann. Sci. 49, 507–523 (1992) (https://doi.org/10.1080/00033799200200431). John Collins had met Tschirnhaus in
London in the summer of 1675. He informed James Gregory about their discussions in letters dated between 3 August and 21
September 1675. The works by Tschirnhaus that Gregory cites at the incipit of the Methodus are ‘Inventa nova exhibita Parisiis
Societati Regiæ Scientiarum’, Acta Eruditorum, 364–365 (1682), and ‘Methodus datæ figuræ, rectis lineis & Curva Geometrica
terminatæ, aut Quadraturam, aut impossibilitatem ejusdem Quadraturæ determinandi’, Acta Eruditorum, 433–437 (1683).

42 ‘since, at least according to my judgement, Leibniz’s differential calculus and Newton’s method of fluxions… slightly differ
only by their name’ (‘cum meo saltem judicio, Calculus differentialis Leibnizij [et] Methodus fluxionum Newtoni… tantum nomine
tenue differant’). MS 31011, p. 1, USAL.

43 The date 1664 probably derives from the fact that Gregory was shown an early manuscript dated by Newton. One might
surmise that Gregory was shown either the Waste Book (MS Add. 4004, CUL) or the Mathematical Notebook (MS Add. 4000, CUL),
in which such early dates can be found.

44 Isaac Barrow, Lectiones Geometricæ: in Quibus (præsertim) Generalia Curvarum Linearum Symptomata Declarantur
(Typis Gulielmi Godbid & prostant venales apud Johannem Dunmore & Octavianum Pulleyn Juniorem, London, 1670).

45 On the dating of Barrow’s method of tangents and its influence on Newton, see Mordechai Feingold, ‘Newton, Leibniz, and
Barrow too: an attempt at a reinterpretation’, Isis 84, 310–338 (1993) at pp. 316–317 (https://doi.org/10.1086/356464). A manuscript
in Barrow’s hand on the method of tangents is in MS Add. 9597/11/50, CUL.

46 ‘Sed et a J Bernoullio agnitum est Calculum Differentialem Leibnizij a Methodo Barroviana præterquam in differentialium
notatione et operationis aliquo compendio non differre in Actis Lipsiæ Mens: Januarij MDCXCI. pag:14.’ MS 31011, pp. 4–5,

https://doi.org/10.1098/rsnr.2019.0008
https://doi.org/10.1098/rsnr.2019.0008
https://doi.org/10.1080/00033799200200431
https://doi.org/10.1080/00033799200200431
https://doi.org/10.1086/356464
https://doi.org/10.1086/356464
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Newton’s method, however, has the advantage of being based on an ‘easier
demonstration’: through it one can demonstrate not only Leibniz’s calculus, which was
published ‘without a demonstration’, but also Barrow’s and Tschirnhaus’s methods.47 As
will be clear from later propositions, Gregory also mentions René François de Sluse’s
method: in this case, too, he provides a demonstration in terms of the method of fluxions.48

Gregory often repeats that Newton’s method is easier and more demonstrative compared to
the others. Another advantage of the method of fluxions is that the Newtonian conception of
magnitudes as generated by motion is more suitable to be applied to ‘physical matters’ than
Leibniz’s conception of the magnitudes as constituted by infinitesimal components.49

Throughout the Methodus fluxionum, Gregory stresses that the two methods are equivalent.
He concludes the first proposition with the basic definitions of fluent and fluxion and the
distinctive dotted notation, which Newton had invented in the early 1690s. These first
definitions and notations had been already published in Wallis’s Latin Algebra (1693): the
‘fluents’ are ‘indeterminates’ which vary when geometrical ‘figures’ are generated by
motions; ‘fluxions’ are the ‘changes’ which the fluents undergo ‘in very small or minimal
times’.50 This definition of fluxion allows Gregory to add that the concept is equivalent to
that of ‘moment’ as employed in his Exercitatio geometrica. Gregory continues his
presentation of the method of fluxions with three propositions (numbers 2, 3 and 4) in
which he shows how to determine the tangent to a plane curve and how to calculate first-
and higher-order fluxions. The first four propositions thus introduce the reader to Newton’s
‘direct’ method of fluxions: that is, the method that allows the calculation of the (ratio of
the) fluxions of fluent quantities occurring in an equation (in Leibnizian terms, this is the
‘differential calculus’, opposed to its inverse, the ‘integral calculus’).51

As announced in the incipit of the Methodus fluxionum, Gregory proceeds to show how
one can ‘deduce and demonstrate’ Barrow’s method of tangents (Propositions 5, 9 and 10),
Leibniz’s calculus (Propositions 6 and 7) and Sluse’s ‘canon’ (Proposition 8) from
Newton’s method. As a matter of fact, Proposition 5 consists merely of a series of
USAL. Gregory is here citing ad litteram Jacob Bernoulli, ‘Specimen Calculi Differentialis in dimensione Parabolæ helicoidis, ubi de
flexuris curvarum in genere, earundem evolutionibus, aliisque’, Acta Eruditorum, 13–23 (1691), at p. 14.

47 ‘quæ omnes facile fluunt ex Methodo tangentium Barrovij X. Lect. Geom: tradita. Sed quoniam Newtoni Methodus
Fluxionum non tantum primo inventa sit (utpote Neutono nota ab anno usque 1664) sed ejus demonstratio facilis ab Auctore pertexta
sit et Calculo differentiali demonstranda (cum quippe absque demonstratione edidit Leibnizius) inserviat, immo Barrovij et
Tschirnhausij Methodus in Fluxionum methodi demonstratione contineantur, libet eam primo explicare.’ MS 31011, p. 1, USAL.

48 René François de Sluse (1622–1685) was a Walloon mathematician who was deeply influenced by the Dutch school of
Cartesian mathematicians led by Frans van Schooten. As we shall see below, in 1672 he contributed a paper on the drawing of
tangents that was noted by the English mathematicians, most importantly by John Collins and Isaac Newton.

49 ‘Nam ad Mathematica, ad res physicas applicanda feliciter nihil magis conducit quam generatio figurarum per motum
localem.’ MS 31011, p. 5, USAL.

50 ‘D. Newtonus per quantitates fluentes intelligit indeterminatas illas in figuris, quæque perpetuæ mutationi sunt obnoxiæ. Per
Fluxiones vero intelligit mutationes hisce fluentibus simul in tempore brevissimo vel minimo inductas’. MS 31011, p. 1, USAL.
Newton’s definitions in the text he sent for inclusion in Wallis’s Algebra differ slightly, but significantly. Most notably, Newton
defines ‘fluxions’ as the velocities of increment or decrement (celeritates incrementi vel decrementi) of the fluents and adds that the
concepts of ‘moment’, ‘minimal part’ and ‘infinitely small difference’ are less natural and easy. See Wallis, op. cit. (note 26), vol. 2,
p. 391.

51 Propositions 1 and 3 are lifted almost verbatim from Wallis, op. cit. (note 26), vol. 2, pp. 391–393, where they occur in the
section in which Wallis added material provided by Newton for inclusion in his Latin Algebra (pp. 391–396). In these two
propositions one finds the definitions and notation for fluents and fluxions, the definition of the direct method (‘Data æquatione
fluentes quotcunque quantitates involvente invenire Fluxiones’, p. 391) and two examples of application of the method (pp. 392–293).
Proposition 2, on the application of the method of fluxions to the drawing of tangents to plane curves appears to have been lifted from
the so-called De methodis serierum et fluxionum. See Add. 3960.14, p. 43, CUL.
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statements, rather than a demonstration, concerning the equivalence of Barrow’s method of
tangents, presented after the ‘advice of a friend’ at the end of the tenth lecture of Lectiones
geometricæ,52 with the methods for calculating tangents published by Tschirnhaus in 1682
and by Leibniz in 1684. Gregory observes that these equivalences had already been
recognized by Jacob Bernoulli in papers published in the Acta Eruditorum for 1691.53

He is still citing from Wallis’s Algebra. Indeed, at the end of the six-page-long
presentation of the method of fluxions, Wallis writes:
52
53

Geomet
the othe
perhaps
Barrovia
proposit
est, & n
translati
is in Jac
Triangu
at p. 29

54
55

Paris, se
Cambrid

56
pp. 372

57
Trans. R
Analogous to this [Newton’s] method is the differential method of Leibniz and that other
method, older than either, which Barrow expounded in his Geometrical Lectures; and this
is acknowledged in the Leipzig Transactions (January 1691) by a writer [Jacob Bernoulli]
making use of a method similar to that of Leibniz.54
Bernoulli had gone so far as to state that Leibniz’s ‘discoveries’ were ‘based on’ Barrow’s
‘earlier discovery’. As Whiteside explains in his learned reconstruction of this episode,
Leibniz was not slow in offering his own version of how he discovered the calculus during
his celebrated stay in Paris (1672–1676), independently of both Barrow’s and James
Gregorie’s works, in a paper published in a subsequent issue of the Acta. A few months
later, again in the Acta, Jacob Bernoulli rectified his statement, no doubt in order to
smooth his relationships with Leibniz.55

Gregory’s attribution of the ‘method of tangents’ to Barrow, and its influence on both Newton
and Leibniz, should not be understood as an attempt to disparage Newton. Barrow’s prominent
role in inspiring Newton and Leibniz became the official Newtonian narrative during the priority
dispute, so much so that Barrow’s priority in the invention of the method of tangents is put into
relief in the Commercium epistolicum, the pamphlet circulated in early 1713 by the Royal
Society, in the context of the priority dispute over the invention of the calculus.56 Newton also
maintained that his method of fluxions, as well as Leibniz’s differential method, could be
applied to equations in which the unknown occurs in a denominator of a fraction or under a
root. In his opinion, both he and Leibniz had improved on Barrow’s method in this respect.57

What mattered most to Newton was to see others acknowledge his priority in momentous
advancements in the inverse method of fluxions, or method of ‘quadratures’. Newton and his
Barrow, op. cit. (note 44), pp. 80–84.
‘Yet, to speak frankly, whoever has understood Barrow’s calculus (which he outlined ten years earlier in his Lectiones

ricæ; and of which the whole of that medley of the propositions contained in it constitutes examples), will hardly fail to know
r discoveries of Mr. Leibniz, considering that they were based on that earlier discovery, and do not differ from it, except
in the notation of the differentials and in some abridgement of the operation of it’ (‘Quanquam, ut verum fatear, qui calculum
num (quem decennio ante in Lectionibus suis Geometricis adumbravit Auctor, cujusque specimina sunt tota illa
ionum inibi contentarum farrago) intellexerit, alterum a Dn. L. inventum ignorare vix poterit; utpote qui in priori illo fundatus
isi forte in differentialium notatione, & operationis aliquo compendio ab eo non differt’). Bernoulli, op. cit. (note 46), p. 14,
on by J. F. Scott in Turnbull et al., op. cit. (note 11), vol. 4, p. 10, n. 2. A similar statement concerning Tschirnhaus’s method
ob Bernoulli, ‘Specimen Alterum Calculi Differentialis in dimetienda Spirali Logarithmica, Loxodromiis Nautarum, &; Areis
lorum Sphæricorum: una cum Additamento quodam ad Problema Funicularium, aliisque, Acta Eruditorum, 282–290 (1691),
0.
Wallis, op. cit (note 26), vol. 2, p. 396. Translation from Hall, op. cit. (note 35), p. 97.
See Whiteside’s commentary in Whiteside, op. cit. (note 12), vol. 8, p. 585, n. 83. On Leibniz’s discovery of the calculus in

e Joseph E. Hofmann, Leibniz in Paris 1672–1676: his growth to mathematical maturity (Cambridge University Press,
ge, 1974).
See Niccolò Guicciardini, Isaac Newton on mathematical certainty and method (MIT Press, Cambridge, MA, 2009),

–381.
‘An Account of the Book Entituled Commercium Epistolicum Collinii Et Aliorum, De Analysi Promota’, Phil.
. Soc. Lond. 342, 173–224 (1715), at pp. 194–197 (https://doi.org/10.1098/rstl.1714.0021).

https://doi.org/10.1098/rstl.1714.0021
https://doi.org/10.1098/rstl.1714.0021
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acolyteswere primarily interested in defending his priority in the ‘inverse’method offluxions, the
method applied to solve, most notably, problems in ‘quadratures’, ‘rectifications’ and the ‘inverse
method of fluxions’ (in Leibnizian terms, the ‘integral calculus’ applied to the solution of
differential equations). The ‘method of tangents’—that is, the ‘differential calculus’—was not
top of the agenda for early eighteenth-century mathematicians, so it was not difficult for
Newton to attribute its invention to his mentor.58 Indeed, Gregory ends Proposition 5 with the
following qualification: ‘While both Newton and Leibniz applied their methods to the
determination of maxima and minima, Newton did so also to the measure of spaces
encompassed by straight and curve lines, as it will appear in what follows.’59 It is, of course,
absurd to claim that Leibniz did not apply the calculus to quadratures (namely integration),
but—strange as it might seem—this was the view defended by Newton and his acolytes.

In Proposition 6, Gregory aims to show how Leibniz’s rules of the differential calculus, as
published in the famous paper in the Acta of 1684, can be easily deduced from Newton’s
method, since the differential calculus deals with ‘indeterminates’ that ‘are the very same
thing as the fluents of Newton’, and with ‘differences’ that are ‘the fluxions of Newton’.60

Gregory introduces the differential notation and demonstrates the rules of the calculus (for
example, the rules for the differential of a product and the differential of a quotient) by
using both the Leibnizian and the Newtonian notations (see Figure 2). He opines that:
58
‘Newton
Press, O

59
etiam ad

60
31011,

61
Neutoni
p. 7, US

62
excellen
order to
without
5147 (1

63
Sluse’s
Letter to
Sluse’s
Therefore, from all this it is sufficiently manifest that Leibniz’s differential calculus differs
only by name from Newton’s method of fluxions, and that at the same time the Leibnizian
algorithm published in October 1684 in the Acta of Leipzig can be derived from it.61
Gregory aims to show this equivalence by a brief calculation of the tangent to parabolas
(Proposition 7). The same equivalence holds true for Sluse’s method as published in the
Philosophical Transactions of 1672 (Proposition 8).62 Interestingly, Gregory claims that,
by deducing Leibniz’s and Sluse’s rules in terms of fluxions, he is providing a
‘demonstration’ of the two ‘algorithms’, since, in his opinion, Newton had given a
demonstration of the rules.63 When he considers Barrow’s method, he shifts his emphasis:
his aim is not so much to show the equivalence between Barrow’s method and Newton’s
one, but the priority of the former, which is given pride of place: ‘But we hasten to other
examples, in the first place those by which the most learned Barrow has illustrated his
I have defended this thesis in Guicciardini, op. cit. (note 56), pp. 372–381. See also the beautiful essay Antoni Malet,
’s mathematics’, in The Oxford handbook of Newton (ed. Eric Schliesser and Chris Smeenk), pp. 1–28 (Oxford University
xford, online July 2020).
‘Cum tamen Neutonus et Leibnitius suas Methodos ad quælibet maxima et minima determinanda adhibeant, Newtonus
Spatia Curvis et rectis comprehensa mensuranda ut in decursu patebit.’ MS 31011, p. 5, USAL.
‘Patet jam indeterminatas hasce esse ipsissimas fluentes Neutoni; et differentias Leibnizij esse fluxiones Neutoni.’ MS

p. 5, USAL.
‘Ergo ex omnibus hisce satis patet Calculum differentialem Leibnizij nomine tantum diversam esse a fluxionum Methodo

ana et simul Algorithmum Leibnizianum Octobri A MDCLXXXIV Act: Lipsiæ consignatum exinde derivari.’ MS 31011,
AL.
Employing fluxional notation, Gregory reproduces the main results in R-F., de Sluse, ‘An extract of a letter from the

t Renatus Franciscus Slusius, Canon of Liege and Counsellor to his Electoral Highness of Collen, written to the publisher in
be communicated to the R. Society; concerning his short and easie method of drawing tangents to all Geometrical curves
any labour of calculation: Here inserted in the same language, in which it was written’, Phil. Trans. R. Soc. Lond. 7, 5143–
672) (https://doi.org/10.1098/rstl.1672.0061).
In 1691, Gregory received from some ‘Amsterdamers’ a five-page manuscript with ‘demonstrations and improvements’ of

method attributed to Burchard De Volder. MS Dk.1.2, Quarto A [39]; and MS Dc.1.61, Folio C [81], EUL. Cited in Gregory,
Newton, 27 August 1691, in Turnbull et al., op. cit. (note 11), vol. 3, p. 166 (and p. 167, n. 10). For Gregory’s interest in

method, see also MS Dk.1.2, Quarto A [72]; MS Dc.1.61, Folio C [23]; and MS Dc.1.61, Folio C [26], EUL.

https://doi.org/10.1098/rstl.1672.0061
https://doi.org/10.1098/rstl.1672.0061
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Method of Tangents, upon which both the Method of Fluxions and the differential calculus
are built.’64 Gregory refers to the tenth lecture of the Lectiones geometricæ, at the end of
which Barrow had enunciated his method of tangents and applied it to five curves.65

Gregory reproduces the first three examples, devoting particular attention to the third, the
so-called Descartes’s folium (which Gregory, following Barrow, calls ‘la Galande’).

In Proposition 10, Gregory offers a treatment of this curve, which he expresses in Cartesian
coordinates as x3+y3 = axy. The study of the graph of the folium occupies several pages and is
carried out in Newton’s notation. However, the source is not Newton but rather Johannes
Hudde, one of the authors of the mathematical appendices to the second edition of the Latin
translation of Descartes’s Géométrie (1659–1661) edited by Frans van Schooten. Gregory
mentions that in 1693 he was able to take notes from Hudde’s papers when he visited him
in Amsterdam.66 He ends this proposition by informing the reader that he postpones a
presentation of Guillaume de L’Hospital’s quadrature of the folium to another occasion.67 In
Proposition 10, the influence of Continental mathematics on Gregory is once again evident.
As Sandra Bella details in her dissertation, L’Hospital and Huygens had discussed the
quadrature of the folium in correspondence running from 22 October 1692 to 18 January
1694.68 The French mathematician took this opportunity to defend the versatility and power
of Leibniz’s calculus and advocate its use. Gregory acquainted himself with L’Hospital’s
quadrature of the folium when he visited Huygens at Hofwijk on 16 and 17 May 1693.69

Before moving on to problems concerning quadrature, Gregory completes the treatment of
the direct method with a proposition devoted to the calculation of inflection points to the
conchoid (Proposition 11), probably lifted from Newton’s De methodis serierum et
fluxionum.70 Quadrature methods are introduced in Proposition 12, where Gregory refers to
his Exercitatio Geometrica de Dimensione Figurarum. As often occurs in the ‘Notæ’, he
does not miss the opportunity to underline the importance of his contributions to the
advancement of methods of quadrature.71 It is at this juncture that he begins to tackle more
complex problems.

The following set of problems reveals, yet again, the influence on Gregory’s mathematical
culture of the Continental school—in this case, specifically of Leibniz and Jacob Bernoulli.
As Philip Beeley has shown, from the correspondence with Colin Campbell one gathers
64 ‘Sed ad alia exempla properemus ea imprimis quibus Doctiss: Barrovius suam Methodum tangentium, cui utraque hæc et
Fluxionum et Calculi differentialis superstruitur, illustravit.’ MS 31011, p. 8, USAL.

65 Barrow, op. cit. (note 44), pp. 80–84.
66 ‘Præcedens Curva ipsissima est quam Galli la Galande dixere, quamque primus quod sciam consideravit Ampliss: Jo

Huddenius Consul Reipubl:…Atque hanc ejus figuram ipse Huddenius detexit ut ex Schedis ejus An: 1693 Amstelodami per ipsum
Ampliss: virum mihi ostensis adnotavi.’ MS 31011, p. 9, USAL.

67 ‘Quantum ad spatij [sic] hujus tam folio AGC comprehensi quam interminati AKHk dimensionem et quadraturam ab Illustri
Hospitalio Gallo noviter exhibitam, eam suo loco modoque inventam in medium proferemus.’ MS 31011, p. 11, USAL.

68 Sandra Bella, ‘De la géométrie et du calcul des infiniment petits: les réceptions de l’algorithme leibnizien en France (1690–
1706)’, PhD thesis, Université de Nantes (2018), pp. 442–452.

69 MS Dk.1.2, Quarto A [8], EUL. Gregory visited Holland in May and June 1693. His annotations from Hofwijk dated 30
June 1693 are in Turnbull et al., op. cit. (note 11), vol. 3, pp. 272–273. See also Gregory’s letter to Huygens, 12 August 1693, in ibid.,
vol. 3, pp. 275–276.

70 Gregory’s procedures appear to be inspired by Newton: see MS Add. 3960.14, p. 45, CUL, edited in Whiteside, op. cit.
(note 12), vol. 3, p. 126. In 1685, Gregory had received extracts of this work via Craig. A possible influence from Sluse’s Miscellanea
cannot be excluded. See René-François de Sluse, Mesolabum seu Duæ Mediæ Proportionales inter Extremas Datas per Circulum et
per Infinitas Hyperbolas vel Ellipses et per Quamlibet Exhibitæ… Accessit Pars Altera de Analysi et Miscellanea (Streel, Liège,
1668), pp. 117–130.

71 MS 31011, p. 14, USAL. The proposition concerns the quadrature of equations with the form y =mxp/r.



N. Guicciardini18

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 M

ay
 2

02
1 
that Gregory began studying the works by Tschirnhaus and Leibniz in Acta Eruditorum from
the beginning of 1685.72 He even faithfully transcribed for Campbell both Sluse’s method of
tangents as printed in the 1672 Philosophical Transactions and Leibniz’s ‘Nova methodus’ as
printed in the 1684 Acta Eruditorum.73 Gregory’s memoranda kept in Christ Church, Oxford,
reveal that he continued to study in detail the papers on calculus published in the Leipzig
journal.74 Proposition 13 concerns a typical example of an ‘inverse tangent problem’, the
so-called Florimond De Beaune’s problem—that is, the determination of the curve whose
‘subtangent’ is constant. As Leibniz had shown in the closing lines of ‘Nova methodus’,
this is a ‘logarithmic curve’.75 Gregory, however, refers to the solution provided by Barrow
in the Lectiones geomericæ.76 The more advanced problem of the rectification of the
logarithmic curve is broached later on, in Proposition 41.77 In 1692 Guillaume de
L’Hospital had set the challenge of the calculation of the length of De Beaune’s curve.78 It
might be surmised that in this proposition Gregory draws inspiration from Hendrik van
Heuraet’s rectification method, which he had read about in a manuscript transmitted to him
in Amsterdam in 1693.79 Proposition 14, proposed to the reader in ‘order to verify the
strength of the method (of fluxions) in the solution of some physical problems’, is devoted
to the determination, by application of a Fermatian minimum time principle, of the path
followed by a light-ray passing through two media with different refraction indexes.80 Just
as in the previous proposition, Gregory’s source is most probably Leibniz’s 1684 seminal
paper on the differential calculus.81

The following propositions, down to Proposition 24, are rewritings, in fluxional notation,
of papers published in the Acta Eruditorum for 1691. Propositions 15–20 are based on a paper
by Jacob Bernoulli: they concern the tangent, area, inflexion point and quadrature of the
‘parabola helicoidis’ and the calculation of evolutes.82 Proposition 21 consists of a
treatment of the area and rectification of the logarithmic spiral, the spira mirabilis, whose
properties had been studied in depth by Bernoulli. In this, and in the two subsequent
propositions, Gregory reframes in fluxional notation another paper by Bernoulli, again
published in Acta Eruditorum in 1691.83 However, he refers to James Gregorie’s, Wallis’s
and Barrow’s works too.84 He then moves on, in Proposition 22, to investigate the
rectification and the area subtended by the loxodrome (which, as was already known at the
72 See the letters by Gregory to Campbell dated 5 March 1685 and 25 February 1686, MS 3099.11, no. 14 and no. 17, EUL,
cited in Beeley, op. cit. (note 8), pp. 6–7. See also MS Dc.1.61, Folio C [32], EUL.

73 Sluse, op. cit. (note 62); and G. W. Leibniz, ‘Nova methodus pro maximis et minimis, itemque tangentibus, quæ nec fractas
nec irrationales quantitates moratur, & singulare pro illis calculi genus’, Acta Eruditorum, 467–473 (1684).

74 MS 346, CCL. See also Gregory’s list of mathematical papers in the Acta in the period 1681–1692, MS Dc.1.61, Folio C
[35], EUL.

75 Leibniz, op. cit. (note 73), p. 473. The subtangent is defined as the segment of the x-axis lying between the x-coordinate of
the point at which a tangent is drawn to a curve and the intercept of the tangent with the x-axis.

76 Barrow, op. cit. (note 44), p. 123; MS 31011, p. 14, USAL.
77 MS 31011, pp. 37–38, USAL.
78 Guillaume de L’Hospital, ‘Solution du problème que M. De Beaune proposa autrefois à M. Descartes, et que l’on trouve

dans la 79. de ses lettres, tome 3’, Journal des Sçavants 3, 401–403 (1692).
79 ‘Excerpta de Codico M.S. Heuratii communicata a [illegible], 27 May 1693’, MS Dk.1.2, Quarto A [19], EUL.
80 ‘ut hujus Methodi vires experiamur in Physicis quibusdam quæstionibus solvendis’. MS 31011, p. 15, USAL.
81 See Leibniz, op. cit. (note 73), pp. 471–472.
82 The equation of the ‘parabola helicoidis’ in polar coordinates is r = ±c√θ. Gregory lifts these calculations from Bernoulli,

op. cit. (note 46).
83 Bernoulli, op. cit. (note 53).
84 Namely, James Gregorie, Geometriæ pars universalis: inserviens quantitatum curvarum transmutationi & mensuræ (Typis

Heredum Pauli Frambotti, Padua, 1668), Prop. 16; John Wallis, Tractatus duo. Prior, de cycloide et corporibus inde genitis. Posterior,
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time, is related to the logarithmic spiral by a projection). In Proposition 23, he applies this
result to the calculation of the area of spherical triangles. These results, too, are lifted from
Bernoulli’s paper just cited above.

The Methodus fluxionum continues with several propositions tackling problems of maxima
and minima in plane and spherical geometry. These propositions seem to play a didactic role.
They solve very simple problems, such as the determination of the right circular cone of least
volume circumscribed about a given sphere (Proposition 34).85 Proposition 24 is slightly more
advanced, being devoted to the calculation of the tangent of the quadratrix. In this case, too, it
seems that Gregory has a didactic purpose in mind. This proposition leads him to devote a
scholium to the properties of ‘transcendental’ curves. It is notable that he deploys
Leibnizian terminology for the curves that Newton, following Descartes, would have called
‘mechanical’.

Most of the last pages of the Methodus fluxionum originate from conversations with
Newton. Proposition 39 is devoted to the determination of the ‘most convenient place
where a rudder should be placed in order make a vessel turn’ (see figure 4).86 Gregory’s
treatment of this problem is purely qualitative: it is, of course, a ‘problem of maximum’

but, not surprisingly, no mathematical ‘function’ (to use modern terminology), whose
maximum might be sought by application of the fluxional method, is proposed. The
problem of understanding the effect of the rudder in directing a ship was often broached
during the Renaissance, most notably in commentaries on the ‘nautical questions’
occurring in the pseudo-Aristotelian Mechanical problems.87 Gregory cites the works by
Stephanus Gradius, Jacob Bernoulli and Paul Hoste on this issue.88 It appears from his
memoranda that he discussed Hoste’s approach with Newton in May 1694.89 The
conversation between Newton and Gregory on the manoeuvring of ships reveals that the
interest in ‘mixed mathematics’ that Newton had entertained in the 1670s was still alive.
The fact that Gregory and Newton discussed issues concerning shipbuilding and the
crewing of ships sheds some interesting light on Newton’s engagement, even after the
publication of the Principia, with what nowadays we would call ‘applied mathematics’.
Proposition 40 is related to another ‘maximum problem’ in mechanics that had apparently
been proposed by Edmond Halley: the determination, given the intensity and direction of a
epistolaris; in qua agitur, de cissoide, et corporibus inde genitis: et de curvarum, tum linearum…, tum superficierum… (Typis
Academicis Lichfieldianis, Oxford, 1659); Barrow, op. cit. (note 44), p. 124.

85 Propositions 28–38 and 43–45.
86 ‘Maxime commodum Gubernaculi situm ad navigium circumducendum determinare’. MS 31011, p. 34, USAL.
87 See e.g., Bernardino Baldi, ‘Quæstio V. Dubitatur: cur parvum existens gubernaculum, & in extremo navigio tantas habeat

vires, ut ab exiguo temone, & ab hominis unius viribus alioqui modice utentis magnæ navigiorum moveantur moles?’, in Mechanica
Aristotelis Problemata Exercitationes: Adiecta Succincta Narratione de Autoris Vita et Scriptis (typis et sumptibus viduæ Ioannis
Albini, Maintz, 1621), p. 41. I thank Elio Nenci for suggesting this reference.

88 Stephanus Gradius (Stjepan Gradic)́, ‘Dissertatio I de directione navis ope gubernaculi’, in Dissertationes Physico-
mathematicæ Quatuor (apud Danielem Elsevirium, Amsterdam, 1680), 1–21; Jacob Bernoulli, Dissertatio de Gravitate Ætheris (apud
Henr. Wetstenium, Amsterdam, 1683); Paul Hoste, Recueil des Traités de Mathématique, qui Peuvent Être Necessaires à un Gentil-
homme pour Servir par Mer, ou par Terre, vol. 3 (J. Anisson, Paris, 1692).

89 See ‘Extrait de Manouvre [sic] des Vaisseaux… sequuntur… de Newtoni cogitatio, 1694’, MS Dc.1.61, Folio C [57], EUL.
Interestingly, both Newton’s and Gregory’s hands can be found on this page of jottings on the manoeuvring of vessels, most probably
a note taken during Gregory’s May 1694 encounter with Newton. In 1697 Gregory studied Tourville, Anne Hilarion de Cotentin,
Exercice en Général de Toutes les Manoeuvres qui se font à la Mer en Toutes les Occasions qui se Peuvent Presenter (Jacques
Hubault, Le Havre, 1693). See MS Dk.1.2, Quarto A [2], EUL.
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force, of the point in a wheel or sphere to which the given force must be applied in order to
cause the maximum speed of rotation.90

Proposition 42 consists in a fluxional solution to the determination of the solid of least
resistance (the Scholium to Proposition 35 of the first edition of the Principia). Newton
communicated it to Gregory on 14 July 1694.91 Gregory inserted it not only in the
Methodus fluxionum but also in his ‘Notæ’.92 Indeed, this proposition (with Proposition 26
on the cone frustrum of least resistance; see figure 4) is very much part of Gregory’s
planned editorial work for a second edition of the Principia.93 He was particularly
interested in the higher fluxional methods that, as was obvious to the few competent
readers of the magnum opus, its author had used in some of the demonstrations.94

Newton’s fluxional treatment of the solid of least resistance, in the form communicated to
Gregory, was eventually printed as an appendix to Andrew Motte’s English translation of
the Principia (1729), a fact that might indicate that either the Methodus fluxionum or the
‘Notæ’ was circulating among English mathematicians.95
Gregory and the publication of Newton’s method

Newton the mathematician is notorious for his reluctance to publish his discoveries. There is
more than a grain of truth in this image: the Lucasian Professor of Mathematics had a fraught
relationship with the public sphere, at least after the traumatic critical reception of his great
1672 paper on the composition of white light.96 However, by looking more closely at his
correspondence, one easily discovers that throughout his lifetime he was part of various
networks of mathematicians active in Britain. Newton took his first steps as a
mathematician in Cambridge, under the guidance of his predecessor in the Lucasian chair,
90 See ‘De gyratione Globorum de collisione mutua Probl: Halleianum 3, c January 1695’, MS Dk.1.2, Quarto A [7]; ‘Scheda
D.G. de rotatione globi de percussione orta, 12 February 1695’, MS Dk.1.2, Quarto A [25], EUL.

91 The draft of Newton’s letter to Gregory has survived and is edited in Turnbull et al., op. cit. (note 11), vol. 3, pp. 380–
382. D. T. Whiteside provides, with his usual thoroughness, the details of Newton’s correspondence with Gregory on this matter, in
Whiteside, op. cit. (note 12), vol. 6, pp. 470–480 (esp. p. 470, n. 1). Whiteside has edited all the drafts in Newton’s hand of the
material on the cone frustrum and the solid of least resistance written in order to provide Gregory with all the necessary information.

92 See MS 31011, pp. 39–40, USAL; MS 210, p. 88, RSL, where the pasted sheet with the fluxional analysis is missing: its
transcription can be found in MS 131, pp. 135–136, CCL. In the collection of Gregory’s papers at the Royal Society Library, one finds
an analysis of the cone frustrum of least resistance in Newton’s hand. See Turnbull et al., op. cit. (note 11), vol. 3, p. 323, and
Whiteside, op. cit. (note 12), vol. 6, pp. 470–471. Gregory incorporated it as Proposition 26 of the Methodus fluxionum, and as a
commentary on the Scholium to Proposition 35, Book 2, in the ‘Notæ’. MS 31011, pp. 27–28, USAL; MS 210, p. 87, RSL.

93 The same holds true for the concluding Propositions 46 and 47 on the resistance exerted by a ‘rare and elastic medium’ to the
motion of a solid whose cross-section is a square and a circular segment.

94 See ‘In editione nova Philos: Newtoniana hæc ab Auctore fient, May 1694’, MS Dc.1.61, Folio C [42], EUL, in part
translated by H. W. Turnbull in Turnbull et al., op. cit. (note 11), vol. 3, pp. 384–386. Most significantly, Gregory notes that Newton
had a plan to add an appendix on the quadratures of curves to a second edition of the Principia and that ‘on these [quadratures] depend
certain more abstruse parts in his philosophy as hitherto published’. ibid. p. 386: ‘Tractatus Methodum suam Quadraturarum continebit
quæ rem istam mire augebit et promovebit… innituntur quædam abstrusiora in Philosophia sua hactenus edita.’

95 In the Appendix there is a fluxional treatment of the gravitational attraction of a homogeneous ellipsoid of revolution upon a
mass point situated on the prolongation of the axis (Cor. 2, Prop. 91, Book 1 of the Principia), and the fluxional treatment of the cone
frustrum and the solid of least resistance. See ‘Appendix. Among the Explications (given by a Friend,) of some Propositions in this
Book, not demonstrated by the Author, the Editor finding these following, has thought it proper to annex them’, in Isaac Newton, The
Mathematical Principles of Natural Philosophy, Translated into English by Andrew Motte, to Which are Added, the Laws of the
Moon’s Motion, According to Gravity, By John Machin (printed for B. Motte, London, 1729), vol. 2, pp. i–viii.

96 Hall, op. cit. (note 35), p. 25, writes: ‘What he [Newton] had done—even what he was now doing—was for his own
satisfaction and not for applause. Through all the past years, though ready enough to share his results when a rare opportunity (like
Halley’s visit) offered itself, his attempts to address the public at large had been highly tentative. In 1685 none of Newton’s mathematical
work (amounting in modern form to four very stout volumes) had yet been printed, and little enough was known to any one at all.’
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Isaac Barrow. Newton’s mathematical concepts and techniques resemble Barrow’s, so much
so that he acknowledged his indebtedness to Barrow until the last years of his life. Even
though we know very little about the transactions between the two, it is highly probable
that Barrow lent Newton some books.97

What is certain is that it is through Barrow that Newton entered into contact with John
Collins, and via Collins with the bustling world of the London mathematical practitioners.98

Newton’s binomial theorem was soon put into practice in fields such as the determination of
volumes of barrels for the Excise Office, while his innovative algebraic methods were
deemed useful for the writing of mathematical tables. It seems that Newton found these
topics quite congenial to his interests and that his replies to gaugers and table makers such
as Michael Dary and John Smith were solicitous. We often depict Newton as endowed with
a ‘mind forever voyaging through strange seas of thought, alone’, as the genius who
‘discovered the calculus’, a highly abstract field of pure mathematics. Yet Newton might also
have had practical purposes in mind when he formulated the method of series and fluxions.99

The Methodus fluxionum was conceived during a later stage in Newton’s life. In 1694 Newton
was the celebrated author of the Principia, a major contribution to mathematicized natural
philosophy, and as a member of the Convention Parliament he had acquired a fair political
standing too. Gregory, Nicolas Fatio de Duillier and before them Wallis had all addressed
Newton in the hope of gaining information about his cutting-edge mathematical techniques. It
was clear that he had made use of higher quadrature techniques and infinite series in writing his
magnum opus. It is unsurprising that Fatio and Gregory approached Newton in order to learn
the quadrature methods that were deployed, and in some cases just hinted at, in the Principia.100

Quadrature methods, the inverse method of fluxions and the ‘integral calculus’ were the open
problems which busied the minds of the best European mathematicians of Newton’s generation.
In the early 1690s, Newton himself was at work writing a treatise on this topic, which was to
become the Tractatus de quadratura curvarum, published as an appendix to the Opticks in
1704. Indeed, Gregory met Newton when the Lucasian professor was pursuing two related
publication projects: a second edition of the Principia and a systematic treatise on quadratures.
These projects influenced Gregory when he composed the Methodus fluxionum.

As we have seen, the direct method is explicitly attributed to Barrow. Newton’s method of
fluxions is praised, on the one hand, because it allows an easier demonstration of Barrow’s
method of tangents and, on the other, because it can be applied to higher quadratures.
Some of Newton’s quadratures—such as those necessary to solve the solid of least
resistance problem—are featured in the most mathematically advanced parts of the
Principia. The fact that, in Gregory’s conversations with Newton, the above problem was
mentioned alongside the very practical one of determining the best position of the rudder
97 See Feingold, op. cit. (note 45).
98 See Philip Beeley, ‘Practical mathematicians and mathematical practice in later seventeenth-century London’, Brit. J. Hist.

Sci. 52(2), 225–248 (2019) (https://doi.org/10.1017/S0007087419000207).
99 I thank Derrick Mosley for his precious information on this issue.

100 Nicolas Fatio de Duillier (1664–1753) was a Swiss-born mathematician, who befriended Huygens and Newton. His contacts
with Newton were especially intense in the early 1690s, just before Gregory’s visit to Newton in 1694. Fatio and Newton worked
together not only on mathematics and the theory of gravitation, but also on alchemy. See Robert Iliffe, ‘Servant of two masters? Fatio
de Duillier, Isaac Newton and Christiaan Huygens’, in Newton and the Netherlands: how Isaac Newton was fashioned in the Dutch
Republic (ed. Eric Jorink and Ad Maas), pp. 67–91 (Leiden University Press, Leiden, 2012); Scott Mandelbrote, ‘The heterodox
career of Nicolas Fatio de Duillier’, in Heterodoxy in early modern science and religion (ed. John Brooke and Ian MacLean),
pp. 263–297 (Oxford University Press, Oxford, 2005).

https://doi.org/10.1017/S0007087419000207
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of a ship suggests that the hands-on approach of Collins’s young correspondent was still part
of the agenda for the author of the Principia.

As we have seen, after meeting Newton in May 1694, Gregory evolved from being an editor of
his uncle’s mathematical works to proposing himself as an editor of Newton’s mathematical
discoveries: the mathematization of gravitation offered in the Principia and the method of
fluxions. It would be reductive, however, to define Gregory’s mathematical culture as
‘Newtonian’, notwithstanding the impact that his May 1694 encounter with Newton’s
manuscripts must have had. Gregory was an attentive reader of Continental works, especially
those on differential equations and quadratures by Tschirnhaus, Leibniz and Jacob Bernoulli.
He had also gained information on the works of Hudde and Sluse. Therefore, he incorporated
the Continental methods in his presentation of Newton’s method of fluxions. Very much like
other Scottish mathematicians in Pitcairne’s circle, most notably John Craig, he merged
Continental methods and notations with British ones. And very much like Fatio de Duillier, he
deployed his contacts with savants in the United Provinces, most notably Huygens, in order to
establish himself as a mathematician who could play a prominent role in the Continental
arena. Further, in the early 1690s, it seems that he was proposing himself as an intermediary
between Newton and the Dutch.101 Consequently, the Methodus fluxionum informed its
readers about topics that polarized the attention of mathematicians belonging to Leibniz’s and
Bernoulli’s circles, such as the logarithmic curve, the loxodrome and the logarithmic spiral.

The Methodus fluxionum, then, was not only the first systematic treatise on series and
fluxions written by somebody other than Newton: it was also an attempt to integrate
Newton’s method into a narrative extending from Hudde and Sluse to Bernoulli. Gregory
did not miss the opportunity to underline the importance of his uncle’s discoveries, and to
some extent his own, in the long historical overview of the development of the calculus
provided in the Methodus. This small treatise was also conceived as a way to affirm the
role that the Scottish group had played in this cutting-edge research field, and the potential
of the Scottish mathematicians, mostly based in Oxford, to promote Newton’s discoveries,
especially ones helpful in proving the most ‘abstruse parts’ of the Principia. As Gregory
wrote in one of the memoranda about his May 1694 visit to Newton:
101
and van

102
Add. 95
The second treatise [a draft of De quadratura] will contain his [Newton’s] Method of
Quadratures which greatly extends and improves this matter… To this he will subjoin
[tables on quadratures] upon which depend certain more abstruse parts in his philosophy
as hitherto published.102
CONCLUDING REMARKS

As I have detailed above, in writing the Methodus fluxionum Gregory made use not only of the
material Newton shared with him, but also of manuscript and printed works on the calculus
authored by Scottish, English and Continental mathematicians. His aim was often to compare
the different methods, with an eye to proving their ‘equivalence’. Most notably, quoting
similar remarks by Jacob Bernoulli, Gregory claimed that both Newton’s method of fluxions
This clearly emerges from study of Gregory’s mathematical correspondence with Fatio, Newton and Huygens. See Vermij
Maanen, op. cit. (note 41).
See note 94. It is interesting to note that in the Macclesfield Collection there is a partial copy of Newton’s De quadratura. MS
97/2/18, ff. 83r–88r, CUL.



David Gregory’s Methodus fluxionum 23

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 M

ay
 2

02
1 
and Leibniz’s differential calculus were equivalent to Barrow’s method of tangents. This raises
an interesting historiographical question that often emerges in studies devoted to the history of
the priority dispute between Newton and Leibniz. Did Barrow, Newton and Leibniz discover the
same thing? To what extent can we attribute priority to one of them? Or, perhaps, should we say
that the calculus was discovered by Blaise Pascal, or maybe Evangelista Torricelli? As scholars
trained in present-day mathematics, we all run the risk of sliding towards poor historiography,
precisely because, as mathematicians, we are trained to detect equivalences. In a way, they all
discovered the same thing: we can prove it by translating each of these past actors’ language into
present-day calculus! Yet, as historians we both need to acknowledge the continuity between the
past and the present, and to appreciate the alterity of the past. What we have to appreciate is that
there is not a ‘calculus’ that was discovered, or created, as a single act of invention that occurred
to a single mind in a single eureka moment. The discovery of the calculus was a slow process, to
which several generations of mathematicians contributed. The historical actors who participated
in this process could not have the benefit of hindsight that characterizes our view of the past:
they saw events ‘from within’, without a clear picture of where the (largely contingent)
development of mathematics would have led them.

As historians, rather than adjudicating equivalences and priorities, we must recapture our
predecessors’ views as best as we can. This has been done in an admirable way by several
historians of mathematics. Two examples can be put forward. Nico Bertoloni Meli has
shown that Newton and Leibniz had different views of what was at stake in the priority
dispute over the calculus: when they quarrelled about who had discovered the calculus
first, they meant different things.103 The problematic nature of the notions of ‘equivalence’
and ‘priority’ in the history of mathematics has been brought into relief by Catherine
Goldstein’s account of the reception of an elementary theorem formulated both by Fermat
and by Bernard Frénicle de Bessy. As she shows, the meaning and equivalence of different
presentations of this theorem cannot be given a priori by the historian, who must instead
regard the network of relations between readers as the condition which lends meaning to a
text and makes ‘equivalence’ the result of a contingent historical development.104 Our
reading of the Methodus fluxionum invites a similar historiographical viewpoint, since
Gregory’s text teaches us a great deal about how its author saw equivalences and which
aspects of the method of fluxions he considered most important.

The Methodus fluxionum was never printed; yet, as the three copies in the Cambridge
University Library show, at some point—presumably in the first decades of the eighteenth
century—it enjoyed some circulation. The amanuensis copy in Christ Church reveals that a
printed version, or some form of systematic scribal circulation of the work, was envisaged
in 1695 (see figure 2). The hands of the extant copies suggest that the circulation occurred
within the limits of a small network of Newton’s trusted acolytes, such as John Keill and
William Jones. As I noted at the beginning, the copy in St Andrews was probably meant
for print publication or scribal circulation, as the concluding folded plates of figures
suggest (see figure 4).105 The printed publication of the Newtonian methods of series and
fluxions had to await the placet of the mighty author, who, worried by the circulation of
unauthorized versions of his discoveries such as George Cheyne’s Fluxionum Methodus
103 Domenico Bertoloni Meli, Equivalence and priority: Newton versus Leibniz (Clarendon Press, Oxford, 1993).
104 Catherine Goldstein, Un théorème de Fermat et ses lecteurs (Presses Universitaires de Vincennes, St-Denis, 1995).
105 MS QA 33G8/D12, USAL.
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Inversa (1703), ventured into print, first in 1704 with the mathematical appendices to the
Opticks, and then in 1711 with a small pamphlet edited by William Jones.106

Gregory’s Methodus fluxionum is significant for several reasons. Most notably, it shows that
Newton, far from being a mathematician wholly isolated in an ivory tower, circulated
knowledge of his fluxional method in the mid-1690s. There is still a story to be told about
the ways in which he disseminated his mathematical discoveries, first in the 1670s via
Barrow and Collins, then in the 1680s via Craig and Wallis, in the 1690s via Wallis, Fatio
and Gregory, and finally in the 1700s via William Whiston, Roger Cotes, Joseph Raphson,
John Keill, William Jones and Henry Pemberton, among others. The Methodus fluxionum
also provides evidence that Newton’s method was received by acolytes who were not passive
defenders of an uncontested master. Gregory, as well as other Scottish mathematicians, such
as Craig and Cheyne, received the fluxional method within a tradition that was proudly
independent from England and that had already assimilated elements of the calculi by
mathematicians such as Hudde, Sluse, Tschirnhaus, Leibniz and Jacob Bernoulli. It seems
that one might even surmise that Gregory, as well as Craig, considered himself a
mathematician whose results and methods could be received as original and of import by the
Continentals.107 Last but not least, this short treatise would not have been possible outside a
mathematical culture in which information was shared via manuscript circulation,
correspondence and personal encounters. Gregory received information about mathematical
discoveries in the calculus not only from Newton, but also from many other mathematicians
with whom he corresponded and whom he met, such as Craig, Campbell, Pitcairne, Hudde,
Sluse, Fatio, Huygens and Halley. A study of the Methodus fluxionum has much to teach us
about the scribal circulation of mathematical knowledge at the turn of the eighteenth century.
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