

International Conference

Park hotel Moskva Sofia • Bulgaria

ECONOMIC AND ENVIRONMENTAL PERFORMANCES OF FORESTRY MECHANIZATION: AN INNOVATIVE APPROACH

BRIDGE TO THE FUTURE

Luca NONINI(1*), Daniele CAVICCHIOLI⁽²⁾, Marco FIALA⁽¹⁾

Department of Agricultural and Environmental Science. Production, Landscape, Agroenergy (DiSAA), University of Milan. Via G. Celoria 2, 20133 Milan, Italy.

Department of Environmental Science and Policy (ESP), University of Milan. Via G. Celoria 2, 20133, Milan, Italy.

*Corresponding author: luca.nonini@unimi.it

International Conference BRIDGE TO THE FUTURE

INTRODUCTION AND AIM OF THE WORK – 1

INTRODUCTION AND AIM OF THE WORK-2

CRUCIAL FOR

- Quantification of economic and environmental performances of the whole chain;
- Increase operations' productivity and efficiency;
- Improvement safety conditions of operators at work.

- National
- Regional
- Local (Forest stand)

Regardless of the final utilization of wood

SELECTION OF MACHINES FOR FORESTRY OPERATIONS

APPROCHES AT DIFFERENT SCALES

Forest Management Plans (FMPs)

TOGETHER WITH

Information on forestry mechanization

Improvement of forest management at the local scale

International Conference

Problems

Several approaches available but:

- definition of machines according to few parameters (e.g., slope);
- usable machines defined as input by the user and not as output;
- calculation of economic costs generally performed for single operations and not for the whole chain;
- environmental performances: for single operations and often based on literature data.

INTRODUCTION AND AIM OF THE WORK – 3

BRIDGE TO

THE FUTURE

Solution

GENERALIZED APPROACHES IN ORDER TO:

- indentify forestry machinery chain (FMC) for specific forest stands;
- calculate economic costs and environmental performances

AIM OF THE WORK

TO DEVELOP AN <u>INNOVATIVE APPROACH</u> BASED ON <u>TWO STAND-LEVEL MODELS</u> TO SELECT THE <u>FORESTRY</u> <u>MACHINERY CHAINS ACCORDING TO FORESTRY AND OPERATING CONDITIONS</u> AND TO CALCULATE <u>ECONOMIC</u> <u>COSTS</u> AND <u>ENVIRONMENTAL PERFORMANCES</u>.

BENEFIT

Strategic support for Local Administrations (public subsidies) and logging companies (tariffs for operations).

BRIDGE TO THE FUTURE

MATERIALS AND METHODS: THE MODEL «FOREMA» – 2

Database "DEFINITION OF FORESTRY MACHINERY CHAIN"

International

Conference

Add and a	Limiting factor		Technical Parameter				
Stands classified	N°	Name	N°	Name	Category	Sub- Code	
according to	1	Characteristics of the forest	1	Management	Coppice	F1	
MARCALL I				System	High forest	F 2	
	2	Characteristics of the production system	2	Wood	Firewood	A1	
				Assortment	Beams/poles	A2	
				Assortment	Woodchips	A3	
			3	Harvesting	Cut-to-length	M1	
					Tree length	M2	
				Method	Full tree	M3	
			4	Level of	Low	L1	
				Mechanization	Medium-high	L2	
	3	Site-specific operating conditions	5	Forest roads'	Medium-high	T1	
				Transitability	Medium-low	T2	
			6	Forest stand's Accessibility	High (AC I)	AC1	
					Medium (AC II)	AC2	
					Low (AC III)	AC3	
			7	Harvested	≤ 16 t•ha⁻¹ DM	H1	
				Merchantable Mass	>16 t·ha ⁻¹ DM	H2	

PARAMETERS AND CATEGORIES: <u>HIERARCHICAL</u> <u>TREE</u> <u>STRUCTURE</u>

MATERIALS AND METHODS: THE MODEL «FOREMA» - 3

USER-FRIENDLY INTERFACE		MATERIALS AND	D METHODS: T	HE MODEL «F	OREMA» – 4						
SELECTION OF: CATEGORIES FOR EACH PARAMETERS											
Management SystemWood Assortment	Harvesting Method	Level of Mechanization	Forest roads' Transitability	Stand's Accessibility	Harvested Mass						
CoppiceF1FirewoodA1High forestF2Beams/polesA2WoodchipsA3	Cut-to-length M1 Tree length M2 Full tree M3	Low L1 Medium-high L2	Medium-high T1 Medium-low T2	High AC1 Medium AC2 Low AC3	≤ 16 t·ha ⁻¹ H1 > 16 t·ha ⁻¹ H2						
Searching CLASSIFICATION COCE (CC)											
DATABASE: DEFINITION OF FORESTRY MACHINERY CHAIN CC LIST SELECTION OF: TYPES OF USABLE MACHINES											
CC ₁ Op ₁ Op ₂ Op ₃ Op	n → Op ₁ → Op	2 Op ₃ Op _n	\rightarrow Op ₁	Op ₂ Op ₃	Op _n						
CC ₂ Op ₁ Op ₂ Op ₃ Op	MO ₁₁ MO ₂	MO ₃₁ MO _{n1}	MO ₁₁ O M	IO ₂₁ MO ₃₁	MO _{n1}						
CC ₃ Op ₁ Op ₂ Op ₃ Op		MO ₃₂ MO _{n2}	MO ₁₂	10 ₂₂ MO ₃₂	MO _{n2} O						
CC _n Op ₁ Op ₂ Op ₃ Op	MO _{1n} MO ₂	m MO _{3n} MO _{nn}	MO _{1n} M	10 _{2n} O MO _{3n}							
				USER	1-1-1-1-						
SELECTED TYPES OF USABLE MACHINES (for each operations according to the qualitative level)											

MATERIALS AND METHODS: THE MODEL «ENVIAM» - 1

International Conference RESTRY BRIDGE TO THE FUTURE

MATERIALS AND METHODS: THE SECOND MODEL «ENVIAM» - 3

International Conference RESTRATE BRIDGE TO THE FUTURE

MATERIALS AND METHODS: THE SECOND MODEL «ENVIAM» - 4

SIRV

CONCLUSIONS AND FUTURE PERSPECTIVES

BRIDGE TO

THE FUTURE

An innovative approach based on two linked stand-level models was developed:

- the FOREMA model support the user in selecting the forestry machinery chain to use, by taking into account seven technical parameters that "classify" the stand;
- for a given machinery chain, FOREMA defines the sequence of operations and the types of usable machines;
- in the ENVIAM model environmental performances assessment based on calculation of fuel/lubricant, materials and emissions of each operation (relations between engine load and working times);
- economic costs of each operation computed as the sum of fixed and variable costs;
- simultaneous calculation of economic costs and environmental performances crucial to better define the sustainability of the whole machinery chain.

PERSPECTIVES

• Model validation (experimental tests);

International

Conference

- Improvement of FOREMA model with:
 - Parameters currently not included: soil conditions, average tree diameters;
 - Selection of different wood assortment at the same time;
- use of a programming language and integration of FOREMA and ENVIAM models.