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Abstract: High-gain free-electron lasers, conceived in the 1980s, are nowadays the only bright sources
of coherent X-ray radiation available. In this article, we review the theory developed by R. Bonifacio
and coworkers, who have been some of the first scientists envisaging its operation as a single-pass
amplifier starting from incoherent undulator radiation, in the so called self-amplified spontaneous
emission (SASE) regime. We review the FEL theory, discussing how the FEL parameters emerge from
it, which are fundamental for describing, designing and understanding all FEL experiments in the
high-gain, single-pass operation.

Keywords: free-electron laser; X-ray emission; collective effects

1. Basic Concepts

The free-electron laser is essentially a device that transforms the kinetic energy of a
relativistic electron beam (e-beam) into e.m. radiation [1–4]. The e-beam passing through a
transverse periodic magnetic field oscillates in a direction perpendicular to the magnetic
field and the propagation axis, and emits radiation confined in a narrow cone along the
propagation direction. The periodic magnetic field is provided by the so-called undulator, an
insertion device usually realized with two arrays of permanent magnets with alternating
polarities (see Figure 1) or with two helical coils with current circulating in opposite
directions. The wavelength of the emitted radiation depends on the undulator period, on
the strength of the magnetic field and on the electron energy. This means that FELs can be
continuously tuned in wavelength, ranging from microwaves (cm) to X-rays (Å); this is
one of the main advantages of FELs with respect to atomic and molecular lasers, where the
wavelength of the radiation field is fixed by the quantum transition between two atomic or
molecular states, and it has, in general, a small tunability. Moreover, another advantage of
the FEL with respect to atomic and molecular lasers is that its main processes happen in
vacuum, with no thermal dispersion or breakdown effects in the active medium. The FEL
is a powerful source of tunable, coherent e.m. radiation [5]. In general, the FEL radiation
can be of two different kinds: basic spontaneous emission, i.e., synchrotron radiation, which
comes from the direct interaction of the e-beam with the undulator magnetic field with
no injected field, while stimulated emission occurs when also a seed radiation field co-
propagates with the electron beam. We use the term "spontaneous emission" in analogy
with the atomic laser physics (i.e., emission from the spontaneous decay of the atomic
excited state) although its origin here is different: it corresponds to the classical incoherent
undulator emission from accelerated charges.

1.1. FEL Spontaneous Emission

It is well-known that a free charge cannot radiate because of the energy–momentum
conservation; the word “free” in FEL describes the state of the electrons used as active
medium: the electrons are not bound as in atomic or molecular lasers. In the FEL, the elec-
trons are not really “free” because they are accelerated by the periodic magnetic field. This
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accelerated motion generates a radiation field which is particularly intense and directed
in a small cone around the instantaneous velocity vector. The FEL radiation is really a
synchrotron radiation, i.e., the radiation emitted by an electric charge moving at relativistic
speed when a transverse force is applied to it. This radiation power is greater than that
due to a parallel force by a factor γ2, where

γ =
1√

1− β2
(1)

is the Lorentz factor, γmc2 the electron energy, m the electron mass unit and βββ = v/c.

Figure 1. Scheme of free-electron laser. Here the undulator is built by permanent magnets, where the
period corresponds to the distance between two red arrows. The electrons wiggle along the undulator
axis and emit a radiation burst in the forward direction.

The electrons inside the undulator are periodically deflected by the Lorenz force

F = −ev× Bw (2)

exerted by the magnetic field Bw on electrons with charge −e, traveling at speed v. Since
the magnetic field has a periodic alternated polarization, the electrons will “wiggle”,
i.e., oscillate transversely along the undulator axis. Its main features are the following:

(i) The intensity is proportional to the electrons’ current, i.e., the radiation is incoherent
(I ∝ Ne where Ne is the number of electrons).

(ii) The emitted radiation is confined in a narrow cone along the direction of electrons
motion (that will be identify with the z-axis) within an angle of order of ' 1/γ.

(iii) It is a narrow-band radiation, with on-axis spectral distribution

d2 I
dΩdω

= 4N2
wγ2a2

wsinc2
(

πNw
ω−ωs

ωs

)
(3)

where sinc(x) = sin(x)/x,

aw =
eλwBw

2πmc
(4)

is the undulator parameter, λw is the undulator period and Nw is the number of undu-
lator periods. The spectrum is peaked around a spontaneous frequency ωs = 2πc/λs
where, for on-axis radiation,

λs =
1− β‖

β‖
λw (5)

where β‖ = 〈v‖〉/c and 〈v‖〉 is the average longitudinal velocity. The resonant
condition (5) can be derived requiring that during the time necessary for an electron
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to travel an undulator period λw the electromagnetic wave slips over it by a radiation
wavelength λs,

λw

v‖
=

λw + λs

c
. (6)

The radiation line-width, from Equation (3), is

∆ω

ωs
' 1

Nw
(7)

The above result can be easily understood in the (average) longitudinal electron rest
frame: here each electron “sees” an Nw-periods undulator magnetic field as an Nw-
periods counter-propagating pseudo-radiation field (known as “Weizsacker–Williams
Approximation” [6,7]), with Lorentz contracted wavelength λ′w = λw/γ‖. Hence,
it oscillates Nw times, emitting a sinusoidal wave train of length Nwλ′w at a wavelength
λ′s = λ′w. In other terms, it acts as a “relativistic mirror” where the radiation is back-
reflected. From this picture, we obtain the same result of Equations (3)–(7). In fact,
by Lorentz-transforming the incident and reflecting wavelengths λ′w and λ′s back to
the laboratory frame, we obtain the relation (5). Moreover, it is well-known that the
Fourier transform of a plane-wave truncated after Nw oscillations is a sinc-function
with line-width ∆ω/ωs = 1/Nw.

From Equation (6), we can write (kw + ks)dz/dt− ωs = 0, (where kw = 2π/λw and
v‖ = dz/dt) or equivalently d[(kw + kr)z−ωrt]/dt = 0, showing that the resonant relation
can be obtained also by imposing the relative phase

θ = (kw + ks)z−ωst (8)

of the electron in the undulator and e.m. fields to be constant. As we will show later,
the module of electron transverse velocity v⊥ = cβββ⊥ is approximately:

β⊥ '
aw

γ
. (9)

Thus, from 1/γ2 = 1− β2
‖ − β2

⊥, it follows

1
γ2
‖
=

1 + a2
w

γ2 . (10)

where γ2
‖ = 1/(1− β2

‖). Finally, using the resonant condition (5) in the ultrarelativistic
limit γ‖ � 1, we obtain:

λs =
1− β‖

β‖
λw '

λw

2γ2
‖
' λw

1 + a2
w

2γ2 . (11)

This relation shows the high tunability of the FEL; in fact, the wavelength λs can be
tuned by varying either the electron energy γ or the undulator magnetic field Bw.

1.2. FEL Stimulated Emission

Stimulated emission takes place when a radiation field with wavelength λ ' λs
co-propagates with the electron beam inside the undulator. From the resonant relation (11)
one can define the resonant electron energy

γr =

√
λw(1 + a2

w)

2λ
(12)
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If the electron energy and the radiation wavelength preserve the relation (12), then the
relative phase (8) between the transverse oscillations of the electron and the radiation
remains constant. Depending on the value of this relative phase, one of these processes
occurs for each electron:

(a) the electron gives energy to the field and decelerates, i.e., stimulated emission which
provides “gain”,

(b) the electron takes energy from the field and accelerates, i.e., absorption.

If the first of these two processes dominates, then the injected radiation field is am-
plified, as in the first amplifier experiment [8]; moreover, if the undulator is long enough
or if the process happens in an optical cavity, then the spontaneous emission is amplified,
as in the first FEL oscillator experiment [9]. This oversimplified picture of the FEL gain
process is at the single-particle level and leads to the Madey’s small-gain regime [10]: let
us consider a “long” electron pulse so that the slippage of the radiation over the electrons
can be neglected (steady-state regime). Then, the initial electron phases θ are randomly
distributed over a radiation wavelength. As a consequence, for a nearly mono-energetic
and resonant electron beam, on average half of the electrons will decelerate and half of the
electrons will accelerate, with the result that no net gain will occur. The Madey’s small-gain
regime occurs when we inject, in a “short” undulator, an electron beam with average energy
slightly above resonance, 〈γ〉0 > γr, such that gain (slightly) prevails over absorption [11].

1.3. High-Gain Regime and SASE

More generally, electrons will communicate with each other via the common radiation
field. In fact, if the undulator is long enough and the electron current is high enough,
then the electrons will start to bunch within an optical wavelength: electrons faster than
γr will decelerate, slower electrons will accelerate, so that the electron energy will be
driven toward resonance. This energy modulation, after a transient time called “lethargy”,
will become a space modulation, i.e., the electrons will start to longitudinally bunch in
pancakes on the scale of the radiation wavelength (micro-bunching), around a phase that
produces gain. Since most of electrons will have, at this stage, nearly the same phase, they
will emit coherently. The quantity measuring how strongly bunched the electrons are is the
bunching parameter [12]:

b ≡ 1
Ne

Ne

∑
j=1

e−iθj ≡ 〈e−iθ〉. (13)

Given the physical meaning and mathematical definition of the phase θ, it should
be clear how b is the measure of the longitudinal modulation of the electron beam on
the scale of the radiation wavelength. A bunching equal to zero represents a completely
uniform/random distribution of phases, while an ideal bunching of |b| = 1 can only be
possible with all electrons perfectly in phase. We shall see the existence of a collective
instability for the system, which leads to electron self-bunching (up to a value |b| ∼ 0.8) and
to exponential growth of radiation until saturation, which set a limit on the conversion
of kinetic electron energy into radiation energy; this is high-gain steady-state regime [12,13].
In this regime, the peak of the radiated power is proportional to N4/3

e (see Equation (99)),
whereas in the incoherent radiation case the power is only proportional to Ne.

New effects appear when the propagation effect, due to the different velocity of the
electrons and the radiation beam, is taken into account. As a consequence of this effect
(known as slippage), the radiation pulse moves ahead with respect to the electron pulse by
a radiation wavelength λr every undulator period λw, i.e., by ls = Nwλr at the end of a Nw
period undulator. From analytical and numerical studies, it has been shown [14–17] that
when the slippage length ls is larger than a properly defined cooperation length lc (defined
as the slippage in a gain length, see later), an FEL can operate in the superradiant regime,
in which the peak of the radiation power scales as N2

e . Notice that radiation intensities
scaling as N2

e may also arise from coherent synchrotron radiation emitted by electrons
which have been pre-bunched by an external source. The radiation field emitted by these
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pre-bunched electrons sum up coherently to give a N2
e scaling; this superradiant emission

is typical from coherently prepared systems. In FEL the electrons enter the undulator in
an unprepared state, so that emission is initially proportional to Ne (incoherent emission).
Then, the electrons begin to bunch on interacting with the spontaneous radiation and
undulator field, which, with the additional slippage effect, leads to a radiated intensity
proportional to N2

e . Roughly speaking, the slippage introduces a dissipative mechanism
for the radiation which, as soon it is emitted, it quickly escapes from the interaction
volume inhibiting the re-absorption process. This feature is fundamental for the occurring
of superradiance [18]. Superradiance in a single-pass high-gain FEL has been observed
experimentally since 2007 [19].

The presence of the collective instability (i.e., an exponential growth with a rate
depending on Ne) allows an FEL to operate also in the absence of a seed signal (i.e., self-
emission), starting from the fluctuations in the initial particle phases; this mode operation
is called self-amplified spontaneous emission (SASE). In the SASE-mode, the radiation
pulse contains a random superposition of narrow superradiant spikes [20]. In the time
domain, the noisy pattern of the bunching along the electron beam leads to a superradiant
spiking in the radiation pulse. The initial irregular spiking, seeded by non-uniformities
on the scale of the radiation wavelength, cleans up and tends to a more regular pattern,
with one spike every cooperation length. The position of the spikes, however, is random
and depends strongly on the initial noise pattern of the bunching.

The SASE-FEL mode operation is important at wavelengths not accessible to coherent
radiation sources, such as in the XUV and X region. The realization of a single-pass high-
gain FEL in the SASE mode has been realized in the last decades and it is presently one
(if not the only one) bright and powerful X-ray source in the world. Such sources emit X-ray
pulses with a broad spectrum composed by many random superradiant spikes [20] (see the
example shown in Figure 2). This drawback can be alleviated by different techniques,
for instance by a seed signal injected at the entrance of the undulator, forcing the electrons
to emit in the narrow-band spectrum imposed by the seed [21,22]. However, a more
fundamental way to "clean" the SASE spectrum has been proposed operating an FEL
in a quantum regime [23], where the SASE spectrum reduces to a single narrow line,
strongly increasing the longitudinal coherence of a SASE-FEL-based X-ray source [24].
However, the price to pay is more stringent experimental requirements of the electron
beam quality, in terms of emittance and energy spread, at the borderline of the present
electron beam technology.

Figure 2. Typical SASE spectrum, in this case from the simulations of an experiment at λ = 2 nm
(from [25]).
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1.4. Quantum FEL

Most of the properties of FEL have been analyzed and found remaining in a strictly
classical framework. Additionally, if the original proposal of Madey was based on a quan-
tum description of FEL [10], the derived expression for the gain (known as “Madey gain”)
is independent on the Planck constant h, i.e., is classical; however, in attempt to extend the
range of the FEL operation into the X-ray region, the quantum effects must be taken into
account. In fact, at these wavelengths, the electron recoil due to the emission of a photon
becomes comparable to the emission line-width, and a quantum mechanical treatment of
the electron–photon interaction becomes compulsory. It is well known that the borderline
between the classical and quantum world is defined by the Heisenberg Uncertainly Prin-
ciple (HUP), which can be written in terms of the position and momentum uncertainty,
∆p∆x ≥ h̄, or in terms of the energy and time uncertainty, ∆E∆t ≥ h̄ (where h̄ = h/2π).
When the Heisenberg inequality is strong (i.e.,�) quantum effects can be neglected and
the system behaves classically, conversely when the inequality tends to similarity (i.e.,
∼) quantum effects become relevant and a quantum theory is necessary. Assuming that
for a relativistic electron with energy Ee = mc2γ, the interaction time is proportional to
the inverse of the emitted photon frequency ∆t ∝ ω−1

r and the energy–time uncertainly
relation can be written as follows

δγ ≥ λc

2πλr
(14)

where λr = 2πc/ωr is the emitted photon wavelength, and λc = h/mc = 0.024 Å is the
Compton wavelength. This relation shows that when reducing the emission wavelength,
the strong inequality is not satisfied anymore. Therefore, for a complete understanding of
the basic FEL process, we need a quantum theory which describes the interaction between
the beam electrons and the emitted photons in terms of discrete momentum exchange.
Since a quantum theory should tend to a classical description when the inequality in the
HUP is strong (i.e.,�), we should look for a parameter ruling the transition between the
classical and the quantum regime. This parameter can be found starting from Equation (14)
which can be written as follows

mcδγ

h̄kr
≥ 1 (15)

where kr = 2π/λr. The dimensionless left side of Equation (15) can be chosen as our
transition parameter, because it represents the ratio between the maximum classical electron
momentum spread mcδγ and the photon recoil momentum h̄kr. The classical regime occurs
when the electron momentum recoil is greater than the photons recoil, i.e., (mcδγ)� h̄kr,
whereas the quantum effects become important in the opposite. We observe that the energy
spread δγ has a two-fold relevance: (a) if it refers to the initial energy spread, i.e., the
energy spread of the electron beam injected in the undulator, the condition set a restriction
on the quality of the electron beam; (b) if it refers to the electron energy spread induced
by the momentum recoil due to the photon emission, the condition set a restriction on
the strength of the coupling between electron and light. Since in the high-gain regime the
maximum induced energy spread is δγ/γ ∼ ρ (where ρ is the FEL parameter, see later),
then the quantum FEL regime occurs for [24,26]

ρ̄ ≡ mcγρ

h̄kr
. 1. (16)

The consequence that this condition implies for an experimental realization of the
quantum FEL regime will be discussed in Section 4.3. However, we outline that this review
presents mainly the well consolidated classical FEL theory, without discussing in details
the relatively young theory of quantum FEL, which, due to some yet unsolved aspects,
deserves a more appropriate presentation in an evolving research context.



Atoms 2021, 9, 28 7 of 32

2. Classical Model of Equations

From the discussion of the previous section, it results that a proper classical theory
describing a high-gain FEL amplifier must be a many-particle theory. Moreover, the electron
dynamics should be self-consistently related to the evolution of the e.m. field dynamics.
One can set a self-consistent scheme for the FEL dynamics (similarly to that of the Maxwell–
Bloch equations in laser physics [27]) which couple the Maxwell equations with the Newton–
Lorentz equations for charged particles moving at relativistic speed in an e.m. field;
alternatively one can use a Hamiltonian approach, as done in [28–30]. We will obtain the
electron dynamics equations starting from a full 3D relativistic Hamiltonian of a single
electron interacting with a circular polarized e.m. field and counter-propagating laser
beam (e.m. undulator) (instead of the usual static undulator). This choice is motivated by
recent increase of interest toward the laser undulator. However, it will be easy to adapt the
obtained results to the usual static undulator. The evolution equations of the e.m. field are
derived from the Maxwell equations in the slowly varying envelope approximation (SVEA,
see later). The longitudinal electrostatic interaction between electrons (i.e., space-charge
effects) will be also taken into account, but only in the 1D approximation.

3. 3D FEL Model

The circularly polarized laser undulator and the radiation fields are characterized by
the transverse vector potential A which can be written in terms of the polarization vector
ê = (x̂ + iŷ)/

√
2 as:

a =
e

mc
A = aL + ar.

aL =
ê√
2

aLe−ikL(z+ct) + c.c (17)

ar = −i
ê√
2

areikr(z−ct) + c.c (18)

aL,r =
e

mc2kL,r
EL,r(x⊥, z) (19)

where EL,r and kL,r = 2π/λL,r are the electric field and the wave number of the laser
undulator and of the radiation field with frequency ωL,r = ckL,r, respectively.

3.1. 3D Hamiltonian

The time-dependent Hamiltonian equations can be derived from the modified Hamil-
tonian principle [28]

δ
∫ t2

t1

(pxdx/dt + pydy/dt + pzdz/dt− H)dt = 0. (20)

Since we are interested in the systems evolution along the z axis, we change the independent
variable from t to z, and using H = E (where E is the total energy), we obtain:

δ
∫ z2

z1

(pxdx/dz + pydy/dz− Edt/dz + pz)dz = 0. (21)

In Equation (21), (x, px), (y, py), (t,−E) appear as the canonical variables with respect to a
new Hamiltonian H1 = −pz. Hence, we can write

dx
dz

= − ∂pz

∂px
,

dy
dz

= − ∂pz

∂py
,

dpx

dz
=

∂pz

∂x
,

dpy

dz
=

∂pz

∂y
, (22)

dt
dz

=
∂pz

∂E
,

dE
dz

= −∂pz

∂t
. (23)
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Let H be the relativistic Hamiltonian for an electron interacting with e.m. field

H = c
√
(p + eA)2 + m2c2 − eV = mc2γ− eV = E. (24)

where Ez = −dV/dz. The second equation in (23) yields:

dγ

dz
= −

(
1

mc2
∂pz

∂t
− ez

)
, (25)

ez = −
e

mc2 Ez = −
dΦ
dz

, Φ = − e
mc2 V (26)

and the new Hamiltonian is

H(x, Px, y, Py, ct,−γ; z) = −
√

γ2 − 1− P2
x − P2

y − |a|2 − 2 P⊥ · a + Φ (27)

where P⊥ = γ(dx⊥/dz) + a and H = −Pz are respectively the transverse and longitudinal
momenta, in mc units. The above Hamiltonian can be simplified with the following
approximations:

1. the fast oscillating term 2P⊥ · a can be neglected,
2. the ultra-relativistic limit, γ�

√
1 + |P⊥|2 + |a|2 is assumed,

3. the small term |ar|2 � |aL|2 is neglected.

With 1–3, the Hamiltonian (27) is approximated by

H(x⊥, P⊥, ct,−γ; z) = −γ +
1

2γ

[
1 + |P⊥|2 + |aL|2 − i

(
a∗L · areiθ − c.c.

)]
+ Φ (28)

where θ = (kr + kL)z− c(kr − kL)t is electron phase in the laser-undulator and radiation
potential. From the Hamiltonian (28), we obtain the equations of motion:

dx
dz

=
∂H
∂Px

=
Px

γ
(29)

dy
dz

=
∂H
∂Py

=
Py

γ
(30)

dPx

dz
= −∂H

∂x
= − 1

2γ

∂

∂x

[
|aL|2 − i

(
a∗Lareiθ − c.c.

)]
(31)

dPy

dz
= −∂H

∂y
= − 1

2γ

∂

∂y

[
|aL|2 − i

(
a∗Lareiθ − c.c.

)]
(32)

c
dt
dz

= −∂H
∂γ

= 1 +
1

2γ2

[
1 + P2

x + P2
y + |aL|2 − i

(
a∗Lareiθ − c.c.

)]
(33)

dγ

dz
=

∂H
∂(ct)

+ ez = −
kr

2γ

[
a∗l areiθ + c.c.

]
+ ez. (34)

Notice that, using the definition of the total momenta of an electron in e.m. potential
normalized to mc, P⊥ ≡ βββ⊥γ = (dx⊥/dz)γ − a, we obtain the transverse velocity of
the electron

βββ⊥ =
a
γ
+

dx⊥
dz

(35)

In the paraxial approximation, dx⊥/dz� 1 and Equation (35) reduces to the simple
expression βββ⊥ = a/γ.
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3.2. Maxwell Evolution Equations

The evolution of the e.m. transverse potential ar and of the longitudinal electrostatic
field ez = −∂Φ/∂z can be determined from the rescaled Maxwell equation, expressed in
the Coulomb gauge (∇ · ar = 0):(

∇2
⊥ +

∂2

∂z2 −
1
c2

∂2

∂t2

)
ar = −µ0e

mc
J⊥ (36)(

∇2
⊥ +

∂2

∂z2

)
Φ = − e

ε0mc
$ (37)

where J⊥ and $ are the transverse density current and the charge density, respectively, for a
beam of Ne electrons:

J⊥ = −ec
N

∑
j=1

βββ⊥ δ(3)
(

x− xj(t)
)

, $ = −e
N

∑
j=1

δ(3)
(

x− xj(t)
)

. (38)

3.2.1. Vector Potential

The evolution of the transverse e.m. field can be obtained in the following way:
substituting the electron current (38) in (36), we get

[
D+D− +∇2

⊥

]
ar =

e2

ε0mc2

N

∑
j=1

βββ⊥ δ2(x⊥ − x⊥j(t)
)
δ
(
z− zj(t)

)
(39)

where we have defined D± = ∂/∂z± (1/c)∂/∂t. The radiation beam which propagates in
the opposite direction with respect to the electron motion can be neglected because it does
not interact resonantly with the electrons. The complex amplitude ar(x⊥, z) is assumed to
be a slowly varying function of z and t; this means that the fast variation on the radiation
wavelength scale does not affect significantly the field enveloped amplitude. This is known
as slowly varying envelope approximation (SVEA):∣∣∣∣∂ar(x⊥, z, t)

∂z

∣∣∣∣ � kr |ar(x⊥, z, t)| (40)∣∣∣∣∂ar(x⊥, z, t)
∂t

∣∣∣∣ � ωr |ar(x⊥, z, t)| (41)

Notice that this approximation is based on the presence, in the FELs dynamics, of two
different scales; one of the order of the radiation wavelength, and the other on the order of
the interaction length, normally three or four orders larger than the radiation wavelength.
More precisely (as we will show in Section 3.7), the second scale length coincides with the
“cooperation” length lc; moreover, the possibility to separate the two different scales can
be done more rigorously by using a multiple scaling approach [31]. As a result of (SVEA),
the second-order derivatives in longitudinal and temporal coordinates in Equation (39) can
be neglected and

[
D+D− +∇2

⊥

]
ar '

√
2êkr eikr(z−ct)

[
D+ +

∇2
⊥

2ikr

]
ar + c.c.

Substituting Equation (35) for the electron transverse velocity βββ⊥, and projecting the
Equation (39) on the ê direction, we obtain[

D+ +
∇2
⊥

i2kr

]
ar =

e2

ε0mc2kr

Ne

∑
j=1

{
aL(x⊥, z)eiθ − iar(x⊥, z)

γj
+ (dx⊥/dz)eik(z−ct)

}
×δ
(
x⊥ − x⊥j(t)

)
δ
(
z− zj(t)

)
(42)
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We average Equation (42) on the fast scale θ, over a longitudinal dimension lb several
wavelengths long lb = sλr (where s is an integer number). In particular, we integrate both
sides of Equation (42) by 1/lb

∫
R χ[−s λr

2 ,s λr
2 ]

dz or similarly by 1/(krlb)
∫

R χ[−sπ,sπ]dθ where

χ[a,b] is equal to one within [a, b] and zero otherwise; then the term on the right side of
Equation (42) becomes:

1
krlb

∫
R

dzχ[−sπ,sπ]δ(z− zj(t))e−iθ =
1
lb

∫
R

dθχ[−sπ,sπ]δ(θ − θj(t))e−iθ =
1
lb

χ[−sπ,sπ]e
−iθj(t).

Then, defining the average over Ne electrons of a generic function as:

〈 f (θ, x⊥)〉⊥ =
Σ
Ne

Ne

∑
j=1

f (θj, x⊥)δ(x⊥ − x⊥ j(t)) (43)

where Σ is the transverse section of the electron beam and the total longitudinal electron
density n‖ = χ[−sπ,sπ]Ne/lb, we obtain:[

D+ +
∇2
⊥

2ikr

]
ar =

k
2

(
ωp

ωr

)2
{〈

aLe−iθ

γ

〉
⊥

− i

〈
ar

γ

〉
⊥

−
〈
(dx⊥/dz)e−ik(z−ct)

〉
⊥

}
(44)

where ωp ≡
√

e2ne/ε0me is the plasma frequency and ne = n‖/Σ is the total electron
density. The first average in Equation (44) shows that the e.m. field evolution is ruled by
the sum of all electron phases. As previously discussed, this average term is zero if the
electron phases are homogeneously distributed. Conversely, if most of the electrons have
the same phase, then the average is different from zero, and it may drive the radiation
dynamics. The last two terms on the right side of Equation (44) are usually neglected; the
second term is proportional to ar which is usually much smaller compared to aL; the third
term is fast oscillating and can be neglected too. Then, the evolution equation for the
self-consistent radiation field can be written as:[

∂

∂z
+

1
c

∂

∂t
+
∇2
⊥

2ikr

]
ar =

k
2

(
ωp

ωr

)2
aL

〈
e−iθ

γ

〉
⊥

(45)

3.2.2. Space Charge Effects

Here we investigate the longitudinal micro-bunch space charge effects, i.e., the repul-
sion between neighbor electrons at the scale of the radiation wavelength. The macroscopic
charge effects are not considerate because they become important only for very small
e-beam energies. A full investigation of the space charge effect would be useful since the
local repulsion between electrons could inhibit the establishment of the micro-bunching in
the FEL process. However, a complete solution of the Equation (37) is difficult; rather, here
we investigate the paraxial approximation of Equation (37), in which only the longitudinal
micro-bunching space charge effects are taken into account, neglecting the transverse
operator∇⊥. Similarly to the evolution equation of the e.m. vector potential ar, we assume
the SVEA approximation in Equation (37), such that the evolution of the longitudinal
electrostatic field in the paraxial approximation can be written as follows:

∂ez

∂z
=

e2

mε0c2
ne(θ)

Ne

N

∑
j=1

δ
(
θ − θj

)
(46)

where ne(θ) is the local electron density. Expanding ne(θ) in a Fourier series with respect
to θ, we obtain

∂ez

∂z
=

ω2
p

c2

∞

∑
n=1

einθ〈e−inθ〉+ c.c. (47)
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where we omitted the term n = 0 in the sum, since we neglect the macroscopic space-charge
effect. Finally, the longitudinal electrostatic field is:

ez(θ) = kr

(
ωp

ωr

)2 ∞

∑
n=1

einθ〈e−inθ〉
in

+ c.c. (48)

Notice that the first harmonic term (i.e., n = 1) is proportional to the bunching factor
b = 〈e−iθ〉. Clearly, the longitudinal space-charge force is appreciable only if the electron
density is large enough. Similarly to the transverse e.m. field, the ez-field is proportional
to the sum over the electron phases. This fact shows that the space-charge effects are
negligible also if the electron phases are homogeneously distributed. We observe also that
if we sum the space-charge force over the electrons, the result is zero; this means that the
space charge force is an internal force with respect to the electron system once that the
macroscopic effects have been neglected. Then, the main contribution to the space-charge
force comes from its first harmonic term, and we write [32]:

ez(θ) = 2kr

(
ωp

ωr

)2 1
Ne

Ne

∑
j=1

sin(θ − θj) (49)

Equation (45) and Equations (29)–(34) together with Equation (49) form a self-consistent
system of equations for the 3D dynamics of Ne electrons interacting with radiation and
laser undulator fields. The basic physics of FEL can be understood more clearly in the
1D scheme approximation. For this reason, before discussing the full 3D model, we review
the one-dimensional theory and its results.

3.3. 1D FEL Model

The 1D approach is exhaustive for almost everything of the FELs physics. Moreover,
at the same time it offers a very clear simple picture of the basic mechanism of the FEL
process. In the previous section, a closed set of 3D equations representing the evolution
of the whole system has been obtained. The one-dimensional approximation consists
of neglecting any dependence on transverse spatial coordinates (Equations (29)–(32)),
so that the dynamical variables, i.e., the electron phases θj, the electron energy γj and the
dimensionless radiation field amplitude ar, depend only on z and t. The electron dynamic
Equations (33) and (34) in the 1D approximation become:

c
dtj

dz
= 1 +

1
2γ2

j

[
1 + |aL|2 − iaL

(
areiθj − c.c.

)]
(50)

dγj

dz
= − aLkr

2γj

[
areiθj + c.c.

]
+ ez(θj). (51)

with j = 1, . . . , Ne. The 1D field evolution is obtained neglecting the transverse dependence
in the radiation field ar(z, x⊥, t) ≈ ar(z, t) and assuming a uniform magnetic undulator
aL(z, x⊥) = aw; then, by integrating both side of Equation (45) by 1/Σ

∫
Σ dx⊥, where Σ is

the transverse section of the beam, we obtain(
∂

∂z
+

1
c

∂

∂t

)
ar =

k
2

(ωp

ω

)2
aw

〈
e−iθ

γ

〉
(52)

where the plasma frequency is ωp ≡
√

e2ne/ε0me. The evolution equation for each electron
phase can be obtained from Equation (50)

dθj

dz
= (kr + kw)− krc

dtj

dz
= kw

(
γ2

j − γ2
r

γ2
j

)
(53)
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where γr =
√

kr(1 + a2
w)/2kw is the resonant energy introduced in the previous section,

(Equation (12)). We assume that during the interaction with the e.m. field, the energy of
each electron remains close to the resonant energy, γ ' γr (this assumption is known as
the “Compton limit”), i.e.,

γ2
j − γ2

r

γ2
j
' 2

γj − γr

γr
� 1 (54)

With this assumption, we define a new energy-variable ηj =
γj − γr

γr
. The self-

consistent equations for the electron phases and energies and the radiation field are:

dθj

dz
= 2kwηj (55)

dηj

dz
= − awk

2γ2
r

[
areiθj + c.c.

]
− i

kr

γr

(ωp

ω

)2[
〈e−iθ〉eiθj − c.c.

]
(56)(

∂

∂z
+

1
c

∂

∂t

)
ar =

kaw

2γr

(ωp

ω

)2
〈e−iθ〉. (57)

3.4. Universal Scaling

One of the most useful features of the 1D FEL model is the possibility to introduce in
Equations (55)–(57) dimensionless variables so that any physical parameters will not appear
explicitly in the equations. This allows a general analysis of the FEL scaling laws and a
simple interpretation of the basic physics of the process. We start defining the fundamental
FEL-parameter [12]

ρ =
1
γr

(
awωp

4ckw

)2/3
. (58)

In terms of ρ, the system of coupled evolution Equations (55)–(57) can be set in a
dimensionless form by introducing the following variables and parameters.

p̄j =
ηj

ρ
Ar =

ωr

ωp
√

ργr
ar (59)

z̄ =
z
lg

, t̄ =
ct
lg

, lg =
1

2kwρ
=

λw

4πρ
(60)

where lg is the gain length. Note that in this universal scaling

ρ|Ar|2 =
ε0|E0|2

2mc2γrne
=

Prad
Pbeam

(61)

is the ratio between the e.m. and the electron power, i.e., is the FEL efficiency. Using this
“universal scaling”, we obtain:

dθj

dz̄
= p̄j (62)

dp̄j

dz̄
= −

[
Areiθj + c.c.

]
+ σ

[
〈e−iθ〉eiθj − c.c.

]
(63)(

∂

∂z̄
+

1
c

∂

∂t̄

)
Ar = 〈e−iθ〉 (64)

where σ = 4ρ(1+ a2
w)/a2

w is the space-charge parameter. Note that σ is proportional to ρ, so
it can be neglected in the Compton limit ρ� 1 (this is because ηj = ρ p̄j � 1). As we have
anticipated before, the 1D FEL equations in the Compton limit assume a dimensionless
form, with the advantage of being solvable without specifying any operating parameters.
Once solved, the scaling can be reversed to find the real physical quantities needed for a
particular experimental set-up. The 1D FEL Equations (62)–(64) form a Maxwell-pendulum
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model: in fact, writing the complex field as Ar = |Ar| exp(iφr) and neglecting the space-
charge term, we obtain

d2θj

dz̄2 = −2|Ar| cos(θj + φr) (65)

Of course, this equation greatly differs from an ordinary pendulum equation since
amplitude and phase of the field are not constant, but their evolution is determined by
Equation (64).

3.5. Steady State Regime

The set of Equations (62)–(64) can be written in a simpler way by a transformation
of coordinates

z̄ = z̄, z̄1 =
z̄− 〈v‖〉t̄
1− 〈β‖〉

(66)

The differential operators of the FEL equations change as follows:

d
dz̄
' ∂

∂z̄
+

1
〈v‖〉

∂

∂t̄
⇒ ∂

∂z̄
(67)

∂

∂z̄
+

1
c

∂

∂t̄
⇒ ∂

∂z̄
+

∂

∂z̄1
(68)

where in the first step of the Equation (67) we assumed z̄ ' 〈v‖〉t̄ with (〈v‖〉 the longitudinal
electron average velocity). Relation (68) shows that the time derivative can be neglected
if the difference between the electrons velocity and the speed of light is unimportant
(1− 〈β‖〉) ' 0→ 〈v‖〉 ' c) or alternatively if the interaction time is small compared with
the slippage time. This limit can be easily understood from Equation (68) by normalizing
z̄ to the undulator length Lw and t̄ to the electron pulse duration τb = lb/〈v‖〉; the ratio
between the time and space derivative coefficients is:

Lw(1− 〈β‖〉)
lb〈β‖〉

=
Nwλr

lb
=

ls
lb

(69)

where ls = Nwλr is the slippage length and we have used the resonant condition λr =
λw(1− 〈β‖〉)/〈β‖〉. If lb � ls, the time derivative can be neglected (steady-state regime):

dθj

dz̄
= p̄j (70)

dp̄j

dz̄
= −

[
Areiθj + c.c.

]
(71)

dAr

dz̄
= 〈e−iθ〉. (72)

3.5.1. Constants of Motion

The set of Equations (70)–(72) admits two constants of motion. The first is obtained by
differentiating the average momentum

d
dz̄

(
1

Ne

Ne

∑
j=1

p̄j

)
= − d

dz̄
|Ar|2 → 〈 p̄〉+ |Ar|2 = C (73)

where C is a constant. The meaning of this conservation law becomes clear if we return to
physical quantities, using the relation (59) and (61):

〈 p̄〉+ |Ar|2 =
1

Ne

Ne

∑
j=1

∆γj

ργr
+

ε0|E0|2
2mc2γrneρ

→ mc2
Ne

∑
j=1

γj +
ε0

2
V|E0|2 = C’ (74)
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where ne = Ne/V. The above relation describes the energy conservation law (the energy
of the undulator has been supposed constant) and shows that the energy of the emitted
radiation field is provided by the kinetic energy of the electron beam.

The second constant of motion is the total Hamiltonian of the system with
2Ne + 1 variables:

H(θj, p̄j, Re(Ar), Im(Ar))j=1,Ne =
Ne

∑
j=1

p̄2
j

2
− i

Ne

∑
j=1

[
Areiθj + c.c.

]
(75)

This Hamiltonian can be written in a more compact form, in which the real and
imaginary part of the radiation field are included as canonical variables (θ0, p̄0). In fact,
defining Ar = (θ0 + i p̄0)/

√
2Ne, we obtain:

H(θj, p̄j)j=0,Ne =
Ne

∑
j=1

p̄2
j

2
−
√

2
Ne

Ne

∑
j=1

[
θ0sin(θj) + p̄0cos(θj)

]
(76)

from which the equations of motion (70)–(72) follow as

dθj

dz̄
=

∂H
∂ p̄j

,
dp̄j

dz̄
= −∂H

∂θj
, for j = 0, Ne (77)

3.6. Linear Analysis

In FELs at the undulator entrance (z̄ = 0), the electron beam exhibits a narrow
longitudinal energy distribution. For simplicity, we assume that each electron has the same
initial energy γj(z̄ = 0) = γ0, so that the dimensionless momentum p̄ at time z̄ = 0 is
given by

p̄(0) =
γ0 − γr

ργr
≡ δ (78)

We define this value as the detuning parameter δ. It is particularly useful to redefine
our variables so that the initial condition for p̄ is zero:

p̄′j = p̄j − δ

θ′j = θj − δz̄ (79)

A′r = Areiδz̄

In this way, the detuning parameter appears explicitly in the equations which (drop-
ping the primes) read:

dθj

dz̄
= p̄j (80)

dp̄j

dz̄
= −

[
Areiθj + c.c.

]
(81)

dAr

dz̄
= 〈e−iθ〉+ iδAr (82)

This set of equations can be linearized in terms of three collective variables [12]

A = Ar, field amplitude (83)

B = 〈e−iθ〉, bunching (84)

P = 〈 p̄e−iθ〉, momentum bunching (85)
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Neglecting the second-order terms 〈e−i2θ〉 and 〈 p̄2e−iθ〉, we obtain a closed set of
linear equations

dB
dz̄

= −iP (86)

dP
dz̄

= −A (87)

dA
dz̄

= B + iδA (88)

which can be reduced to
d3A
dz̄3 − iδ

d2A
dz̄2 − iA = 0. (89)

Assuming a solution of the form A ∝ eiλz̄, one obtains the following dispersion
relation which rules the stability of the system:

λ3 − δλ2 + 1 = 0. (90)

When Equation (90) has three real roots, then the system is stable, but if it has one
real root and two complex-conjugate ones, then one of the latter will cause an exponential
growth of the field until non-linear effects come into play. If instead of choosing an ideal
cold beam, we assume an initial energy distribution f (p0) with a finite width, then (90)
generalize into

λ− δ +
∫ +∞

−∞

f (p0)

(λ + p0)2 dp0 = 0. (91)

The above integral can be analytically solved, for instance in the case of a rectangular
or Lorenz distribution [16]. For the rectangular case with half-width δγ, we obtain:

(λ− δ)(λ2 − µ2) + 1 = 0 (92)

where µ ≡ δγ/ργr is the energy spread parameter.
As the exponential behavior of Ar(z̄) is determined by the imaginary part of the

complex root of Equation (92), it is relevant to plot it as a function of the detuning pa-
rameter δ for different values of the energy spread µ. Figure 3 suggests some immediate
considerations:

1. given a spread µ, the optimal gain occurs for the specific detuning shift;
2. energy spread (µ > 0) lowers the growth rate, and shift the resonance to δ = µ;
3. the width of the gain curve shrinks as 1/

√
µ.

Coming back to physical variables, this means that in order to preserve the exponential
gain, for µ = 0, the e-beam must satisfy:

δγ

γr
≤ ρ (93)

The solution for the cold beam case (µ = 0) at resonance (δ = 0) is:

λ3 = −1 ⇒ λ1 = 1 , λ2 =
−1 +

√
3i

2
, λ3 =

−1−
√

3i
2

(94)

and the scaled field is

A(z̄) = 1
3

3

∑
k=1

(
A(0)− i

B(0)
λk

+ i
P(0)

λ2
k

)
eiλk z̄ (95)

For z̄ � 1 (exponential growth regime) the growing mode λ3 dominates over the
oscillatory λ1 and decaying λ2 modes, so that
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A(z̄) ' 1
3

(
A(0)− i

B(0)
λ3

+ i
P(0)

λ2
3

)
eiλ3 z̄ (96)

The first term in the bracket corresponds to the amplification of an external input
signal, while the second and the third terms correspond to some initial bunching. As it
results from the linear analysis, an exponential instability of the emitted radiation field
takes place in the FEL, until non-linear effects saturate this growth. The linear solution
of the exponential growing mode fits well the numerical solution of the full non-linear
system (70)–(72).
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Figure 3. |Imλ| vs. δ and different values of µ: (a) 0, (b) 0.5, (c) 3, (d) 5, (e) 7 and (f) 10.

In Figure 4, the radiated power is plotted, as obtained from the numerical integration
of the 1D non-linear equations. The figure shows that after an initial lethargy, the field
power grows exponentially, reaching a saturation after a certain number of gain lengths
(depending on the initial conditions). After saturation, the amplification process is replaced
by an oscillatory energy exchange between the electrons and the radiation field. In the case
of a seed signal intensity |A0|2, the asymptotic linear solution is given by the

|A|2 ' 1
9
|A0|2exp

[√
3

z
lg

]
, (97)

so that the lg as defined in Equation (60) corresponds effectively to the FEL gain length.
Since saturation occurs at |A|2 ' 1, from the Equation (97) we can estimate the saturation
length as

zsat '
lg√

3
ln
(

9
|A0|2

)
∝

λw

ρ
(98)

Furthermore, the result |A|2 ' 1 means that the saturation value is independent of the
initial conditions. Since we know that |A|2 is proportional to |E0|2/ρne, and ρ ∝ n1/3 then

|A|2 ∝
|E0|2

n4/3
e
⇒ |E0|2 ∝ n4/3

e (99)

i.e., the intensity is proportional to n4/3
e instead of ne: this implies the existence of a

collective behavior in the electron beam. The independence of the saturated field amplitude
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on its initial value gives us another important information, related again to the importance
of the ρ parameter. Since in Equation (61) we have defined the efficiency η of the FEL
as η = ρ|A|2, then the measure of FEL efficiency is given by ρ. In this section we have
shown that in the context of the 1D theory, ρ is the only parameter which determines the
constraints on the FEL: 

∆γ/γ ' ρ Energy spread
η = Prad/Pbeam ' ρ Efficiency
lg ∝ 1/ρ Gain length

(100)

0 1 0 2 0 3 0 4 0 5 01 0 - 9

1 0 - 7

1 0 - 5

1 0 - 3

1 0 - 1

1 0 1

 

 

z / l g

|A|
2

Figure 4. Dimensionless radiation intensity |A|2 vs. z/lg for δ = 0 and A0 = 10−4.

3.7. Superradiant Regime

The steady-state regime that we just described is based on the assumption that the
slippage is negligible (lb � ls, see Equation (69)): the undulator is not long enough to
appreciate the difference in velocity between the electrons and the radiation, so that all
sections of the electron beam evolve almost identically and the peak power of radiation
scale as n4/3

e (see Equation (99)). When slippage is taken into account, the FEL can operate in
a different regime of cooperative emission, the superradiant regime [14–16,33,34], where the
peak power scale as n2

e . The slippage modifies substantially the interaction process between
the radiation and the electrons: in fact, the radiation propagates with respect to the electrons,
interacting with different slices of the electron beam, such that there is a region, near the
trailing edge of the electron pulse and of length ls, where the electrons emit radiation
without being affected by the radiation produced by the other electrons behind them. Let
us introduce a new characteristic length which is useful for the analysis of the propagation
effect, the cooperation length,

lc =
λr

4πρ
. (101)

Its meaning can be better understood using the resonant relation (5), which allows to write
it in terms of the relativistic parameter β‖:

lc = lg
1− 〈β‖〉
〈β‖〉

(102)

so that it can be interpreted as the slippage in a gain length lg. We define the electron pulse
to be long or short with respect to the cooperation length. In general, if the electron pulse
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is long enough (lb � lc), the superradiant and the steady state instability will be present
together: superradiance occurs in the region near the trailing edge of the electron pulse
(slippage region) while the steady-state emission occurs in the remaining part of the beam:
this is named “strong superradiance” because the peak power is greater than that in the
steady-state regime.

Figure 5 shows the results of a numerical simulation integrating the 1D FEL equations
with slippage:

∂θj

∂z̄
= p̄j (103)

∂ p̄j

∂z̄
= −

[
Areiθj + c.c.

]
(104)(

∂

∂z̄
+

∂

∂z1

)
Ar = 〈e−iθ〉+ iδAr (105)

where z̄ = z/lg and z1 = (z− c〈β‖〉t)/lc. In Figure 5, the electron beam length is lb = 30 lc,
with a flat current profile in the interval 0 < z1 < 30 and the detuning δ = 0. We observe a
steady-state intensity in z̄ < z1 < 30 and a superradiant peak growing near the trailing
edge (z1 = 0), in the slippage region 0 < z1 < z̄ (see Figure 5b). The intensity observed
in the region 30 < z1 < 30 + z̄ is the trace of the radiation propagating forward, in front
to the electron leading edge z1 = 30. The peak of the superradiant pulse in the slippage
region strongly exceeds the maximum value of the steady-state intensity, |Ar| ∼ 1.4.

C\J 

<( 

20 

C\J 

<( 

-10

20 40 

20 

20 40 

(a) z=8

60 80 

-

(b) z=17

60 80 

-

(c) z=34

60 80 

Figure 5. Strong superradiance, with lb = 30 lc, δ = 0 and different values of z̄: (a) z̄ = 8; (b) z̄ = 17;
(c) z̄ = 34.
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In the short-bunch regime (lb � lc) the radiation emitted by electrons escapes from the
electron pulse in a length shorter than the gain length, so that the steady-state saturation
never occurs: this regime is called “weak superradiance” because the peak power is lower
than that in the steady-state regime.

Figure 6 shows the results of a simulation with lb = 0.1 lc, δ = 0 and different
values of z̄. In this case, almost all the radiation intensity is outside of the electron pulse,
propagated from the trailing edge z1 = 0.1, and no steady-state emission occurs. Weak
superradiance in high-gain single-pass FELs has been observed experimentally in the past
years by several groups [19,35].
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(c)  z=125

_

_

_

Figure 6. Weak superradiance, with lb = 0.1 lc, δ = 0 and different values of z̄: (a) z̄ = 50; (b) z̄ = 75;
(c) z̄ = 125.

It is possible also to observe pure superradiance by tuning the system out of resonance:
in fact, while the steady-state regime needs resonance (i.e., δ = 0) to produce exponential
gain, superradiance weakly depends on the detuning, since it has a much larger gain
bandwidth. Therefore, when the system is detuned in such a way to prevent steady-
state radiation, the superradiant instability travels forward over unperturbed electrons,
extracting energy from them with an even greater efficiency than in the steady-state regime.



Atoms 2021, 9, 28 20 of 32

This case is shown in Figure 6, with the same parameters as Figure 5 but with
a detuning δ = 2, such that the steady-state emission is inhibited. In this case the
superradiant pulse, born near the trailing edge of the electron beam, travels unper-
turbed over the electrons toward the leading edge, with a peak intensity growing as z̄2.
It has been demonstrated [15,34,36] that the superradiant pulse, as clearly observed in
Figures 6 and 7, is described by a self-similar solution of Equations (103)–(105). It is ob-
tained by setting θj(z̄, z1) = θ1j(y), p̄j(z̄, z1) = p1j(y)/

√
z1 and Ar(z̄, z1) = z1 A1(y), where

y =
√

z1(z̄− z1) and θ1j(y), p1j(y) and A1(y) are the solutions of the following ordinary
differential equations:

dθ1j

dy
= p1j (106)

dp1j

dy
= −

[
A1eiθ1j + c.c.

]
(107)

y
2

dA1

dy
+ A1 = 〈e−iθ1〉 (108)

Figure 8 shows |A1|2 as it results from the numerical solution of Equations (106)–(108).
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Figure 7. Strong pure superradiance, with lb = 30 lc, δ = 2 and different values of z̄: (a) z̄ = 11; (b)
z̄ = 21; (c) z̄ = 34.
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Figure 8. Superradiant self-similar solution |A1|2 vs. y =
√

z1(z̄− z1).

From the definition of the dimensionless radiation amplitude, the power of the pulse
is Pr = ρPbeamz2

1|A1(y)|2 ∝ ρ3Pbeam ∝ N2
e , i.e., superradiant, and its width decreases

as 1/
√

Ne. In the weak superradiance, z1 = lb/lc and y ≈
√

lb/lc z̄, so that |Ar|2 ∼
(lb/lc)2|A1(

√
lb/lc z̄)|2 (see Figure 6). The peak power is proportional to l2

b and the pulse
width is proportional to 1/

√
lb. In the strong superradiance, the peak pulse grows as z̄2

and shrinks as 1/
√

z̄ when it propagates over the electron beam (see Figure 7).

3.8. SASE Operation

The self-amplified spontaneous emission (SASE) operation for an FEL is made up of
three basic ingredients [20]:

1. high gain instability;
2. propagation effects, i.e., “slippage”;
3. start-up from noise.

The first experimental observation of the high-gain regime, also starting from noise, was
carried out in the microwave range using a wave guide in the Livermore experiment [37].
Presently, short wavelength FEL, which amplify incoherent shot-noise via SASE are of
greater interest worldwide as a source of ultra-bright coherent X-ray radiation. SASE FEL
in the X-ray region has been demonstrated firstly in LCLS project facility [38] at Standford,
CA, USA, in the European X-ray FEL [39] at Hamburg, Germany and in Riken, Japan [40].
Actually, several X-ray FELs operating in the SASE regime have been and will be realized
over the world [5]. The most important features of the SASE FEL operation are determined
by the following characteristic lengths [20]:

lb bunch length
lc cooperation length
lb gain length

(109)

An important parameter determining the evolution of the system is given by the ratio
between lb and lc (the number of cooperation lengths in a bunch length). If the ratio
lb/lc > 2π (long bunch case), then the radiation pulse contains many spikes, each one
having a maximum duration corresponding to about 2πlc with a width of order of 1/lb
and large intensity fluctuations (see Figure 9).
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Figure 9. SASE mode operation: typical temporal pattern of the intensity |Ar|2 vs. z1 for a long beam
with lb = 50 lc, at different undulator lengths z̄: (a) z̄ = 0; (b) z̄ = 50; (c) z̄ = 100.

On the contrary, if the ratio lb/lc ≤ 2π (short bunch case), only a single radiation
pulse is present in this case, with no inner spikes. In both cases, superradiance occurs for
sufficiently long undulators. The final result is an almost chaotic temporal pulse structure,
with a broad spectral width and with a number of spikes of the order of the number of
cooperation lengths in the electron bunch (see Figure 10 for the power spectrum of the
intensity profile shown in Figure 9 vs. ω̄ = (ω−ωs)/2ρωs, where ωs = ckwγ2/(1 + a2

w)
is the spontaneous frequency).

Finally, in order to model correctly this spiking behavior, we must take into account
not only the slippage between radiation electron pulse, but also the finite bunch length;
the electron bunch behaves as a lb/lc statistical independent zones, each of them giving
rise to a superradiant spike which grows and narrows extracting energy from electrons
within a cooperation length [20,41].

In the “so-called” quantum SASE regime [24], a completely different behavior occurs,
the “classical” random spiking behavior almost disappears and a strong narrowing of
the spectrum occurs. This new phenomenon is called “quantum purification”, also if its
experimental evidence is yet to come.
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Figure 10. SASE mode operation: power spectrum of the intensity shown in Figure 9 vs. ω̄ =

(ω−ωs)/2ρωs; (a) z̄ = 0; (b) z̄ = 50; (c) z̄ = 100.

4. From 1D to 3D

The description of an Ne electron beam can be made introducing, in the transverse

phase space (x⊥, ηηη⊥) (where ηηη⊥ =
dx⊥
dz

and z is the longitudinal coordinate along the beam

direction), the second-order moments, as for instance the rms beam size σ2
e = 〈|x⊥|2〉,

the rms beam angular divergence σ′2e = 〈|ηηη⊥|2〉 and the mixed terms 〈x⊥ · ηηη⊥〉. The rms
beam size (for example in x direction) evolves in the free space as:

σe(z) =

√
εx

(
β∗x +

z2

β∗x

)
(110)

where β∗x = 〈x2〉/εx is one of the Twiss parameters and εx =
√
〈x2〉〈η2

x〉 − 〈xηx〉2 is the
rms emittance along x, which is conserved in the free space evolution and for a linear
transport system; z = 0 corresponds to the point where 〈xηx〉 = 0 and the beam size is
minimum (“beam waist”). The radiation beam can be described in a similar way: in fact,
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using the free space diffraction formula, it is possible to show that the size of a Gaussian
beam evolves as:

σr(z) =

√
λr

4π

(
Zr +

z2

Zr

)
(111)

where Zr = 4πσ2
r /λr is the Rayleigh range. The evolution equations of the electron

and radiation beam sizes are formally equivalent if we identify εrad = λr/4π as the
rms emittance of the Gaussian radiation beam and β∗ as the Rayleigh range of the elec-
tron beam. Furthermore, the free space evolution of the counter-propagating laser beam
size σL(z) follows the same relation of Equation (111) where instead of Zr we substitute
ZL = 4πσ2

L/λL where λL is the laser beam wavelength.

4.1. Transverse Effects

From this picture, we can set some reasonable condition that must be satisfied in a
3D geometry:

1. The matching between electron and radiation beam requires that the beam waist and
the Rayleigh range of each other must be comparable:

σe ' σr (112)

β∗ ' Zr → krεr '
1
2

(
σe

σr

)2
(113)

2. The electron beam should be contained in the laser beam and the electron beam
should not diverge appreciably in a Rayleigh range ZL

σe ≤ σL (114)

β∗ ≤ ZL → kLεr ≤
1
2

(
σe

σL

)2
(115)

The condition (113) is known as the “Pellegrini criterium” [42] and it can be relaxed in
particular conditions, depending on the ratio between the electron and the radiation beam
size (112). Conditions (114) and (115) are more stringent and concern the matching between
the e-beam and the laser undulator profile. If conditions (114) and (115) are violated,
inhibition of the gain process occurs. If we use a magnetic undulator instead of the laser
undulator, then the homogeneous condition (115) can be written as kwεr < 1, which is
usually satisfied. In fact, for an undulator period of the order of λw = 1 cm and emittance
εr ' 10−7m-rad, kwεr ' 10−4. An FEL experiment operating with a laser undulator does
not require a focusing system for the electron beam, since the interaction between electrons
and laser beam occurs in free space near the beam waist zone, i.e., the interaction length
Lint is of the order of few laser Rayleigh ranges (Lint ' ZL). Hence, the gain process occurs
if the condition (115) is satisfied. Furthermore, if a magneto-static undulator instead of a
laser undulator is used, then the interaction length is usually more than one meter, and the
electron beam must be conveniently focused to keep a nearly constant beam size. A linear
magneto-static undulator provides a “natural” focusing effect in one transverse direction
and needs external focusing (by quadrupole magnets) on the other transverse direction.
This focusing force induces an oscillation of the electron motion with a wavelength much
longer than the undulator period λw. For an electron beam matched in two planes, the
beam size (averaged over the undulator period λw) remains constant along the undulator,
while individual electrons perform a periodic transverse motion, called “betatron motion”.

A potential deleterious effect for an FEL is the apparent energy spread induced by the
betatron motion, i.e., by the electron transverse velocities. The relation between energy
spread and transverse velocity can be made more transparent taking into account the
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transverse dimension in the resonant condition; it straightforward to demonstrate that an
observer far away in the ηηη⊥ direction from the axis sees a slightly different period, i.e.,

λ⊥r =
λw

2γ2
r

{
1 + a2

w + η2
⊥γ2

}
(116)

where λw is replaced by λL/2 for a laser undulator. The above relation agrees with the
resonance condition (11) when the observer angle tends to zero. From the transverse
resonant relation (116), using the relation ∆γ/γ ' ∆λ/2λ, we can argue that the energy
spread normalized to the FEL parameter ρ has the following contributions:

1. different longitudinal momentum distribution, (see Equation (93))(
∆γ

ρ γr

)
1D
' 1 (117)

2. off-axis variation of the undulator parameter(
∆γ

ρ γr

)
aw

' 1
2ρ

∆a2
w

1 + a2
w

(118)

3. angular divergence of the beam(
∆γ

ρ γr

)
⊥
' 1

2ρ

η2
⊥γ2

r

1 + a2
w

(119)

These effects are called “non homogeneous effects” and give rise to a broadening of
the resonant condition.

4.2. Full 3D Model

A most useful scheme for modeling a beam of Ne electrons interacting with e.m. field
is the Maxwell–Vlasov scheme. Following this scheme, we introduce the transverse phase
space variables (x⊥, ηηη⊥) and the longitudinal phase space variables (θ, p̄). The transverse
phase-space distribution, for a given phase and longitudinal momentum, can be described
by a distribution function F(x⊥, ηηη⊥) with a non-negative value equal to the number of elec-
trons per unit area at the transverse phase-space point (x⊥, ηηη⊥). A Gaussian distribution
function is normally adopted for its simplicity. Hence, the number of electrons within a
dx⊥dηηη⊥ at the beam waist (such that 〈x⊥ · ηηη⊥〉 = 0) is

F(x⊥, ηηη⊥) dx⊥dηηη⊥ =
Ne

2πεr
exp

(
−

x2
⊥

2σ2 −
η2
⊥

2σ′2

)
dx⊥dηηη⊥ (120)

The evolution equation of the electron beam distribution function can be obtained
using the Liouville theorem ∂ f /∂z̄ = {H, f } where {H, f } is the Poisson bracket. In the
previous sections, we have obtained a three dimensional Hamiltonian with its associated
equations of motion, Equations (29)–(34), and an evolution equation for the radiated e.m.
field (45). Now, we introduce the “3D Universal Scaling”:

θ = (kr + kL)z− c(kr − kL)t, z̄ =
z
lg

, x̄⊥ =
x⊥
σ

,

p̄ =
γ− γr

ργr
, p̄⊥ =

σ

εr
ηηη⊥, ηηη⊥ =

dx⊥
dz

, aL = a0g(z̄, x⊥) (121)
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where a0 = aw, g(z̄, x̄) is the transverse laser profile, σ is the rms electron beam radius at
the beam waist and εr = σσ′ is the rms beam emittance. With this universal scaling the
equations of motion (29)–(34) can be written:

dx̄⊥
dz̄

= b (1− ρ p̄)p̄⊥

dp̄⊥
dz̄

= −2ρ

X
(1− ρ p̄)∇x⊥

[
ξ

2ρ2 |g|
2 − i

(
g∗Aeiθ − c.c.

)]
dθ

dz̄
= p̄ +

[
ξ

2ρ
(1− |g|2)− bX

4
p̄2
⊥

]
dp̄
dz̄

= −(1− ρ p̄)
(

g∗Aeiθ + c.c.
)
+ E .

(122)

Whereas the 1D theory is ruled only by the FEL parameter ρ, instead, in the 3D theory,
we must introduce new parameters which characterize the transversal dynamics:

X = 2krεr, b =
lg

β∗
=

lgεr

σ2 ξ =
a2

0
1 + a2

0
. (123)

In the Compton limit, the terms proportional to ρ (as for instance in (1− ρ p̄) ' 1) can
be neglected, since the value of ρ ranges from about 10−5 to 10−3. With this simplification,
Equation (122) becomes: 

dx̄⊥
dz̄

= b ¯̄p⊥

d ¯̄p⊥
dz̄

= − ξ

ρX
∇x⊥ |g|

2

dθ

dz̄
= p̄ +

[
ξ

2ρ
(1− |g|2)− bX

4
p̄2
⊥

]
dp̄
dz̄

= −
(

g∗Areiθ + c.c.
)
+ E .

(124)

They can be obtained by the following Hamiltonian

H̄ =
p̄2

2
+

b
2

p̄2
⊥ + p̄

[
ξ

2ρ
(1− |g|2)− bX

4
p̄2
⊥

]
+

ξ

ρX
|g|2 − i

(
g∗Areiθ − c.c.

)
+ Φ̄.

where Φ̄ = γr/(ρ2(1 + a2
0))Φ is such that E = −∂Φ̄/∂θ. Now, using the Liouville theorem,

the Hamiltonian (125), the Maxwell Equation (45) and 3D universal scaling (121), we obtain
the following Maxwell–Vlasov system of equations for an e-beam interacting with a laser
undulator and a radiation field:

∂ f
∂z̄

+ b p̄⊥ · ∇x̄⊥ f +
{

p̄ +
ξ

2ρ
(1− |g|2)− bX

4
p̄2
⊥

}
∂ f
∂θ

+
{
E −

[
g∗Aeiθ + c.c.

]} ∂ f
∂ p̄
− ξ

ρX
∇x̄⊥ |g|

2∇p̄⊥ f = 0{
∂

∂z̄
+

∂

∂z̄1
− ia∇2

x̄⊥

}
Ar = g

∫ +π

−π
dθ
∫

R
dp̄
∫

R2
d2p̄⊥ e−iθ f + iδAr (125)
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Here a = lg/Zr = b/X and Zr = 4πσ2/λr are respectively the diffraction parameter
and the Rayleigh range of the emitted radiation, with a transverse radius equal to the
electron beam radius. The distribution function f and the radiation field Ar have the
following dependence f = f (θ, p̄, x̄⊥, p̄⊥, z̄, z̄1), Ar = Ar(θ, x̄⊥, z̄, z̄1), and g = g(x̄⊥, z̄)
is the laser undulator profile. The term b p̄⊥∇x̄⊥ corresponds, with the unscaled variables,
to ηηη⊥∇x⊥ and describes the transverse drift of the beam, responsible for instance of the
beam size increase away from the beam waist; the comparison of the two diffraction terms
a ' b (which corresponds to Equation (113)) rules the matching condition between the
electron and radiation beam. In fact, assuming the same initial spot size, if b < a the electron
beam is contained into the radiation beam, which corresponds to the “Pellegrini condition”
X < 1 [42], otherwise the radiation is confined into the electron beam size. The phase term
of Equation (125) contains three terms which, with the unscaled variables, can be written as:

p̄ =
γ− γr

ργr
=

(
∆γ

ρ γr

)
1D
' 1

ξ

2ρ
(1− |g|2) ' 1

2ρ

∆a2
w

1 + a2
w
'
(

∆γ

ρ γr

)
aw

bX
4

p̄2
⊥ '

1
2ρ

ϑ2γ2
r

1 + a2
w
'
(

∆γ

ρ γr

)
⊥

and are responsible of the “non homogeneous effects” (117)–(119). Finally, the last term
dp⊥/dz = ξ/(2ρX)∇x⊥ |g|2 corresponds with unscaled variables to a focusing force due
to the laser undulator profile ˙̄η⊥ = −a2

w/(2γ0)
2∇x⊥ |g|2. Notice that p̄⊥ · ∇x̄⊥ = p̄x∂/∂x̄ +

p̄y∂/∂ȳ and the average in the field evolution equation is replaced by the average over

an ensemble, 〈O〉 =
∫
O f (ξ)dξ with

∫
f (ξ)dξ = 1. This closed set of equations can be

solved numerically choosing a Gaussian initial condition at f (z̄ = 0) = f0:

f0(θ, p̄, x̄⊥, p̄⊥) ∝ exp

{
− [x̄⊥ + bz̄0p̄⊥]

2

2
−

p̄2
⊥
2

}
(126)

where z̄0 is the waist position. Typically, a Gaussian phase-space profile corresponds to a
thermal distribution.

4.2.1. Optical Guiding

One of the most peculiar results of the high-gain FEL theory is the presence of op-
tical guiding, i.e., the existence of exponentially growing modes which have a profile
independent of the longitudinal coordinate [43,44]. This is particularly important in the
case of long undulators, where the radiation tends to affected by diffraction. Neglecting
emittance, energy spread, betatron oscillation and slippage, the linear FEL equations tak-
ing into account diffraction in the paraxial approximations are obtained by combining
Equations (86)–(88) and (125) to give

∂2B
∂z̄2 = iA{

∂

∂z̄
− ia∇2

r̄

}
A = u(r̄)B + iδA (127)

where A and B depend on the transverse position r̄ and u(r̄) is the normalized transverse
electron distribution. Looking for solutions which depend exponentially on z̄ as exp(iλz̄)
and are azimuthally symmetric, Equation (127) becomes{

(λ− δ)A− a
1
r̄

d
dr̄

(
r̄

dA
dr̄

)}
= −u(r̄)

λ2 A (128)
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Outside the electron distribution (u = 0), the solution (normalized to unity) is

A = H0(φr̄) (129)

where H0 is the Hankel function of zero order of the first kind, and φ2 = (δ − λ)/a.
For large r̄, the asymptotic limit is

A ≈
(

2
πφ

)1/2
exp(iφr̄− iπ/4). (130)

In order that A → 0 for r̄ → ∞, we require that Imφ > 0. Since we want an
exponentially growing mode, then Imλ < 0 and Imφ2 > 0, so that it must be also Reφ > 0.
Considering an uniform sharp-edge distribution, with u = 1/π for r̄ < 1 and u = 0
for r̄ > 0, the mode amplitude satisfying Equation (128) inside the electron beam and
normalized to unity is

A = J0(χr̄) (131)

where J0 is the Bessel function of zero order of the first kind and

χ2 =
1
a

(
δ− λ− 1

λ2

)
= φ2 − 1

a3(φ2 − δ̂)2
(132)

where δ̂ = δ/a. When a is small (i.e., Zr � lg), diffraction is unimportant and the gain
is given by the 1D theory, where λ is solution of the cubic (λ− δ)λ2 + 1 = 0. When a is
large, the gain is less than that expected from 1D theory. The values of λ are determined
imposing the continuity of the A and its derivative ar the boundary r̄ = 1, finding that
this implies

φH1(φ)J0(χ) = χJ1(χ)H0(φ), (133)

looking for values of φ and χ which are simultaneous solutions of Equations (132) and (133).
A detailed numerical study has been done in [43], showing that the condition a = 1 (i.e.,
Zr = lg) measures the distance over which diffraction establishes transverse coherence in
the high-gain FEL. If Zr � lg, one-dimensional theory gives the correct gain, but there
is not full transverse coherence. If Zr < lg, the fundamental transverse mode has gain
substantially larger than that of the other modes, the laser mode area is much larger than
the electron beam area and a full transverse coherence is established.

4.3. Quantum Regime of FEL

We conclude with some remarks about the experimental constraints of the quantum
FEL regime, as described in [24,45]. It has been proposed [46,47] that one can use, instead
of a magneto-static undulator, a high-power laser beam as undulator for the X-ray emission
region. In fact, since λr ∝ λw/2γ2, the wavelength of the emitted radiation can be reduced
or increasing the electron energy or, alternatively, reducing the undulator period. An
infrared laser, coming from high-power Nd or CO2 lasers, with a wavelength λL of 1 or 10
µm could yield X-ray FEL radiation with electrons energy about a hundred MeV.

λr ∝
λL

4γ2 ' 0.1 nm (134)

Now, with a simple argument, we show why a laser undulator is advisable for X-ray
FEL emission in the classical scheme, while its is compulsory in the quantum regime.
As we have discussed, the transition between quantum and classical regime is ruled by the
quantum FEL (QFEL) parameter [24]

ρ̄ = ρ
mcγ

h̄kr
= ργ

λr

λc
(135)
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where λc = h/mc is the Compton wavelength and h is the Planck constant. The QFEL-
parameter is proportional to the ratio between the electron energy and the single-photon
energy and the quantum regime occurs when ρ̄ ≤ 1. Using the resonant relation and the
definition of ρ̄ in Equation (135), the condition for the quantum regime can be written
in terms of ρ:

ρ ≤
√

2λc√
λrλw(1 + a2

w)
(136)

We have seen that to reach the high-gain regime, a number of period of the order of

Nw ∝
1
ρ

is required, so that the undulator length must be:

Lw = Nwλw '
λw

ρ
≥

√
λrλ3

w(1 + a2
w)

λc
(137)

For an X-ray FEL experiment with λr ' 1Å, using a magnetic undulator with a period
λw ∼ 1cm and E = 3.5 Gev, we obtain from Equation (137) Lw ≥ 3 km, which is possible but
impracticable. If we substitute the magneto-static undulator with a counter-propagating
laser beam, we must substitute in the resonant relation and otherwise λw → λL/2, and for
a typical laser with wavelength of 1 µm and an electron energy E = 2.5 Mev, we obtain
Lw ≥ 2 mm. However, the use of a laser undulator would require an exceptional stability in
intensity and frequency in the interaction region, which makes it still very challenging [48].

5. Conclusions

We reviewed the theory of high-gain FEL, following the approach developed by R.
Bonifacio and coworkers in the 1980s, which underpins the major advances in under-
standing that led to the next generation of X-ray FELs. The review started with a brief
introduction to the basic concepts and quickly developing the equations for “spontaneous”
FEL radiation, followed by a description of stimulated FEL emission, which gives an
intuitive understanding of the role of bunching, which is also necessary to understand the
high-gain regime. Finally, the introductory section introduces the basic concepts of the
quantum FEL where electron recoil resulting of photon emission dominates the resonant
interaction. The theoretical model, based on the many-particle evolution of the electrons
moving in the undulator and self-consistently coupled to the emitted radiation field, has the
advantage of showing the emergence of few fundamental parameters describing the main
features of the FEL devices. In particular, the 1D dynamics of a Compton (i.e., high-energy)
classical FEL is all described by the fundamental FEL parameter ρ, measuring efficiency,
gain length lg = λw/4πρ (where λw is the undulator period), energy spread and gain
bandwidth in the high-gain regime.

A 3D model of the FEL is developed based on a 3D Hamiltonian and Maxwell’s
equations. This is expanded to include the role of space-charge effects, which become
important for FELs operating in the Raman regime. To gain an intuitive understanding
of FEL theory, we discussed in detail the 1D model, using suitably scaled parameters
to develop a “universal” set of equations. Then we examined the steady-state regime,
where slippage is neglected, and we reviewed the results of the linear analysis and a
general dispersion relationship, showing the exponential collective instability. Including
the slippage effect, we discussed the FEL superradiance, which is characterized by the
cooperation length, lc = (λr/λw)lg. Superradiance in FELs can be classified as weak
superradiance for short electron bunches (lb � lc) and strong superradiance for long electron
bunches (lb � lc). At the core of the superradiant emission is the existence of a self-
similar solution, i.e., a solution which maintains the same profile growing and shrinking
when it propagates along the electron bunch. From the self-similar solution, the main
scaling laws with the electron beam length, current and undulator length follow naturally.
Superradiance is also the the core of the self-amplified spontaneous emission (SASE)
operation, very important for the development of the X-ray sources. We described the main
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features of SASE in the 1D limit, showing some typical temporal profiles and spectra of the
radiation intensity. Next, we described three-dimensional effects, as optical guiding and
transverse electron motion due to emittance. These effects are characterized by two other
dimensionless parameters, a = lg/Zr and b = lb/β∗ for radiation and electron diffraction,
where Zr is the Rayleigh range and β∗ the betatron length. Finally, we presented the
main concept of the quantum regime of FEL, which is characterized by the quantum FEL
parameter ρ̄ = ρ(mcγ/h̄kr), that can be interpreted as the average number of photons
emitted by each electron. The quantum regime of FEL occurs when ρ̄ < 1. The major
constraints for the experimental realization of a quantum FEL have been discussed.

In this review, we preferred to present only the classical theory of FEL, since it is well
established and confirmed by many experiments and is at the base of several numerical
codes developed for assisting the experiments [49–52]. About the quantum FEL, it has not
been experimentally proved yet and its studies are still under progress [53,54], leaving
the subject still in an advanced research context, with the hope that in the near future,
due to the fast progresses in particle-beam and laser technology, it may become a reality.
However, since the quantum FEL stems from an original idea of Rodolfo Bonifacio, we
have presented the main basic concepts of the quantum FEL, but without entering into a
detailed description of its quantum theory.

Since FEL has been studied since more than fifty years, many other authors have
contributed to the advance of the FEL physics, both theoretically and experimentally,
and it would be a hard task to make reference of all of them. About that, several excellent
reviews and books on FELs exist [1–4]. The main aim of this paper was to review the
main contributions made to the FEL physics by Rodolfo Bonifacio, to which this work
is dedicated.
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