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Abstract: Weeds are one of the major constraints in crop production affecting both yield and quality.
The excessive and exclusive use of synthetic herbicides for their management is increasing the
development of herbicide-resistant weeds and is provoking risks for the environment and human
health. Therefore, the development of new herbicides with multitarget-site activity, new modes of
action and low impact on the environment and health are badly needed. The study of plant–plant
interactions through the release of secondary metabolites could be a starting point for the identification
of new molecules with herbicidal activity. Essential oils (EOs) and their components, mainly terpenoids,
as pure natural compounds or in mixtures, because of their structural diversity and strong phytotoxic
activity, could be good candidates for the development of new bioherbicides or could serve as a basis
for the development of new natural-like low impact synthetic herbicides. EOs and terpenoids have
been largely studied for their phytotoxicity and several evidences on their modes of action have been
highlighted in the last decades through the use of integrated approaches. The review is focused on
the knowledge concerning the phytotoxicity of these molecules, their putative target, as well as their
potential mode of action.

Keywords: essential oils; terpenoids; phytotoxicity; mode of action; natural herbicides; secondary
metabolites; weed control

1. Introduction

Plants are sessile organisms daily exposed to various biotic and abiotic stress factors and
continuously involved in competition with other organisms for edaphic resources. Such necessity
to cope with stress and to fight for species survival has pushed these species in evolving defense
mechanisms and in increasing the competitive capacity in favor of the single plant or the whole
species [1,2].

The only strategy that could be adopted by plants to face these challenges consists in adjusting
their physiological state in preparation for and/or in response to these threats in order to improve
their well-being and survival [1]. In addition to physiological adjustments, plants have evolved the
production of secondary metabolites, not necessary for cell survival but pivotal for the survival of
the species, mainly involved in plant–organism communication (bacteria, plants, insects, fungi etc.)
and often used as chemical weapons, capable of positively/negatively affecting the growth and
development of neighboring species [3].
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Secondary metabolites such as phenolic compounds, short chain fatty acids, terpenoids, alkaloids
among others, can be constantly produced by the plants or their production could be induced ex novo,
since it has an energetic cost for the plant, by several factors such as both biotic and abiotic stresses,
kin recognition, climatic changes and phenological stages [3].

A both constitutive and inducible defense system adopted by plants to communicate, compete and
cope with stress is the production of volatile organic compounds, VOCs, chemicals that are involved in
several plant processes such as (i) attracting beneficial insects and pollinators, (ii) protecting plants from
heat, cold and elevated ozone concentration, (iii) defending plants from herbivory and (iv) priming
neighboring species against biotic and abiotic stresses [4,5].

Moreover, these chemicals are involved in most complex trophic interactions playing a role of
semiochemicals, which highlight the wide specialization of these compounds. For example, a recent
detailed review was focused on the microorganisms–plants–insects tritrophic interaction. Authors
have been able to document that microorganism-induced volatile communication could significantly
influence insect behavior [6]. VOCs are synthesized, accumulated and then secreted by specialized
tissues or cell types and then stored in complex and specialized secretary structures, generally
classified into three types: superficial glandular trichomes (Lamiaceae and Asteraceae, e.g., mint,
sage and chamomile); internal resin ducts, common to conifers; and embedded secretory cavities,
characteristic of Eucalyptus and Citrus (schizogenous origin in Myrtaceae and schizolysigenous in
Rutaceae). All structural types contain specialized biosynthetic cells. Additionally, in some cases,
essential oils (EOs) are stored in undifferentiated cells, like in Lauraceae [7,8]. From the chemical
point of view, VOCs belong to two groups (i) terpenes and terpenoids (a terpene containing oxygen)
and (ii) aromatic and aliphatic constituents. Regardless, terpenoids are the most representative and
abundant compounds released by plants.

Terpenes are the unsaturated hydrocarbons, which have a distinct architectural and chemical
relation to the simple isoprene molecule. The simplest terpenes are monoterpenes (molecular formula
C10H16), which are biosynthesized through the head to tail union of two isoprene units [9]. The general
formula used to express their composition is (C5H8)n. Depending on “n” number we can have
monoterpenes (n = 2), sesquiterpenes (n = 3), diterpenes (n = 4) etc. [9]. Terpenoids are terpenes that,
through an enzymatic-driven biochemical modification, lose a methyl group, which is substituted by
oxygen addition [9].

Terpenoids biosynthesis is localized in both cytoplasm and plastids of plant cells via the
methyl-d-erythritol-4-phosphate pathway (MEP), which provides the precursors for the biosynthesis
of the volatile hemiterpenes (C5), monoterpenes (C10) and diterpenes (C20), via the mevalonic acid
pathway (MAV), from which originate the volatile sesquiterpenes (C15) [9,10] and via the shikimic
acid pathway, which heads to phenylpropenes [11].

Generally, VOCs are constituted by few major components at relatively high concentrations
(20–70%) and several components that are present in trace amounts. It was generally assumed that
the biological properties of VOCs were mainly determined by their major components. However,
relatively recent studies have also demonstrated that trace elements can be determinant in plant
defense strategies and could play a pivotal role by acting synergistically in improving the biological
activity of the major constituents [12].

In the last few years, because of their complex chemical composition, their high biological activity
and being safe compounds for the environment and human health, VOCs gained a renewed interest in
several industrial areas, which pushed both researchers and industries in finding strategies to extract
and concentrate them. VOCs extraction and concentration are generally achieved by hydrodistillation
and/or mechanical means (e.g., cold-press extraction) and the final product are essential oils (EOs)
or aetherolea.

EOs are natural, volatile, complex mixtures of compounds, consisting in aromatic liquids, obtained
from different plant material, like flowers, roots, bark, leaves, seeds, peel, fruits, wood or the whole
plant [7,13,14]. They are defined by the International Organization for Standardization (ISO, 2014) [15]
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as “a product obtained from natural raw material of plant origin, by steam distillation, by mechanical
processes from the epicarp of citrus fruits, or by dry distillation, after separation of the aqueous phase
by physical processes.” This definition is common with other prestigious institutions, such as the
European Pharmacopoeia (Ph. Eur.) [16], or the Association Française de Normalisation (AFNOR).
EOs have great potential in agriculture for crop protection, as they possess antimicrobial [17] and
antibacterial [18] properties, as well as insecticidal [19] and herbicidal activity [20,21].

The EO composition, which includes mainly lipophilic and highly volatile, scarcely water-soluble
compounds, determines the properties and the biological activities of EOs [13,22–24]. The main
compounds of EOs are terpenoids, principally mono- and sesquiterpenes, but also diterpenes can be
found, all of them in the form of hydrocarbons, alcohols, aldehydes, ketones, ethers, esters, peroxides
and phenols. Aromatic compounds are less frequent than terpenes but are characteristic of some
EOs (e.g., eugenol is the main compound of clove EO (Zygium aromaticum (L.) Merr. et L.M.Perry),
and trans-cinnamic aldehyde is the major constituent of cinnamon EO (Cinnamomum verum J.Presl).
Aliphatic compounds (hydrocarbons, alcohols, acids, aldehydes, esters and lactones) can also be
present in the EO composition [7,13,22,24]. Furthermore, other substances, such as fats, coumarins,
anthraquinones and certain alkaloids, which are distillable, have been identified in EOs obtained
by distillation. Some compounds are derived from glycosides, which are transformed during the
distillation process [7]. In EOs from Citrus species, volatile and semivolatile compounds represent
85–99% of the EO composition, with the most frequent compounds being hydrocarbon and derived
mono- and sesquiterpenes, followed by aliphatic and olefinic C6–C12 nonterpene aldehydes, alcohols,
ketones, esters and acids, together with several aromatic compounds. The nonvolatile residue is mainly
composed of flavonoids, coumarins, diterpenoids, sterols and fatty acids [25].

The qualitative and quantitative composition of EOs determines their quality, value and price
on the market and it is not standard. It is necessary to know the causes of variability in EO
composition to control and manage them [26], which can be divided in abiotic and biotic factors.
Abiotic factors include growing conditions of the plant from which they are extracted, like climatic
conditions (temperature, rainfall, humidity, light intensity, wind), soil conditions, agronomical
practices (water supply, fertilization) and harvesting time [24,26]. The biotic/biological factors are the
genetic/biological differences of the source plants and root colonization by symbiotic microorganisms.
For example, differences in the EO composition can be found depending on the organ from which the
EO is extracted. EO composition in some species is very stable but in others can have great variations,
and different chemotypes can be found [24,26].

Approximately, 3000 different EOs have been described, and 300 of them are commercially
important for their applications in the pharmaceutical, agronomic, food, sanitary, cosmetic and
perfume industries [7,13].

The main botanical families that produce EOs are, according to Vigan [27] and Raut and
Karuppayil [28], the Abietaceae, which contains Pinus pinaster Aiton, from which turpentine is
obtained; the Cupressaceae, including thuja (Thuja spp.), cypress (Cupressus spp.) and juniper
(Juniperus spp.); the Lamiaceae, one of the most important, which comprises basil (Ocimum basilicum
L.), true or hybrid lavender (Lavandula spp.), marjoram (Origanum majorana L.), lemon balm
(Melissa officinalis L.), mint (Mentha spp.), oregano (Origanum spp.), patchouli (Pogostemon cablin
(Blanco) Benth.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.); the Myrtaceae,
containing Eucalyptus spp., clove tree (S. aromaticum), myrtle (Myrtus spp.) and niaouli (Melaleuca
quinquenervia (Cav.) S.T.Blake); the Lauraceae, covering cinnamon (C. verum), laurel (Laurus nobilis
L.), rosewood (Aniba rosaeodora Ducke), clove nutmeg (Pimenta dioica (L.) Merr.) and sassafras
(Sassafras albidum (Nutt.) Nees); the Rutaceae, which is another of the most important families,
including a great number of EOs from Citrus fruits, that are the most popular natural EOs and
account for the largest proportion of commercial natural flavors and fragrances [29], as lemon
(Citrus limon (L.) Osbeck), lime (Citrus aurantiifolia (Christm.) Swingle), mandarin (Citrus reticulata
Blanco), sweet and bitter orange (Citrus sinensis (L.) Osbeck and Citrus × aurantium L.) and grapefruit
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(Citrus paradisi Macfad.); the Ericaceae, which contains wintergreen (Gaultheria procumbens L.) and
Labrador tea (Ledum palustre subsp. groenlandicum (Oeder) Hultén); the Asteraceae, which includes
camomile (Matricaria chamomilla L.), tarragon (Artemisia dracunculus L.), sweet inula (Dittrichia graveolens
(L.) Greuter) and gray santolina (Santolina chamaecyparissus L.); the Alliaceae, from which Allium
genera have been the most studied [30,31]; the Apiaceae, which EOs have shown insecticidal
properties (Anethum graveolens L., Cuminum cyminum L., Foeniculum vulgare Mill., Petrosellinum crispum
(Mill.) Fuss) [32], and antioxidant and hepatoprotective potential (Coriandrum sativum L. and
Carum carvi L.) [33]; the Poaceae, with lemon grass (Cymbopogon citratus (DC.) Stapf) being the
most important representative; the Rosaceae, containing rose (Rosa spp.), which EO has been widely
investigated [34,35]; Geraniaceae, which contains Pelargonium spp.; and Santalaceae with Santalum spp.

The use of EOs is continually increasing due to the strong demand of pure natural ingredients
in many sectors [29]. In the food industry, EOs could be also used as natural antimicrobials for food
preservation [14]. In the latest years in Europe, a great number of EOs has been approved for their use
in agriculture, especially as biocides, such as Mentha arvensis L. and Mentha spicata L., Artemisia alba
Turra and Citrus × aurantium L., among others [24]. There are commercial products available, based
on EOs, used as fungicides or bactericides (e.g., BIOXEDA, from Xeda International, France, clove
oil), as growth regulators (e.g., BIOX-M, from Xeda International, France, Mentha spicata EO) and as
fungicides and insecticides (LIMOCIDE, from VIVAGRO SARL, France; OROCIDE, from Idai Nature,
Spain; and PREV-AM, from ORO AGRI INTERNATIONAL LTD, all three sweet orange EO) [24] but
there are still not commercial herbicides based on EOs available in the European market, although
there is a European patent involving the use of EOs to control weeds [36]. In the USA market, there are
many commercial herbicides formulated with EOs readily available, which will be reviewed in detail
in Section 5.

2. Role of Terpenoids in Plant–Plant Interactions

The understanding that EOs and/or their constituents could be a source for the production of new
formulations employable in weed management is strictly connected with ecological studies focused
on plant–plant interactions. In fact, several botanists and ecologists have been able to demonstrate
that plants, through the release of volatile organic compounds (VOCs), are able to alter the growth of
neighboring species affecting the composition of plant communities in natural ecosystems [37–39].

Through the release of VOCs, mainly terpenoids, plants might induce changes to the neighbor’s
phenotype [40] or prime them, affecting the competitive interactions and defensive strategies under
stress conditions [41]. Recently, Landi et al. [41] reported that salinity stress altered VOC profile in
emitter sweet basil plants and those airborne signals promoted the earlier flowering of kin receivers,
thus increasing their reproductive success.

Plant communities are characterized by a high density of plants that might interact and/or
compete with genetically related neighbors, such as their offspring, and other species. During these
interactions, plants are able to communicate with neighbors of different identity and/or under different
conditions, through the activation of a huge variety of signals and responses. For example, as reported
by Kegge et al. [42], differences in the ratio between red and far-red light conditions modulate the
emission of VOCs released from barley, leading to an alteration of biomass allocation in neighboring
plants. Similarly, Ninkovic [43] demonstrated using kin species that aerial plant–plant communication
significantly affects biomass allocation in individual plants without altering the total biomass.

Although several evidences have been reported concerning the role of terpenoids in plant–insect
and/or in plant–plant defense-related communication, only few evidences have been published
concerning the ability of plants to inhibit and/or stimulate the growth and development of neighboring
species. In fact, the majority of the experiments focused on this topic, aimed at describing this
phenomenon, were carried out in vitro using pure compounds or concentrated VOCs (mainly essential
oils) extracted by the donor species and not in natural ecosystems and/or in systems aimed to mimic field
conditions. Anyway, few researches have tried to fill this gap and robust results have been published.
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In 1964, Muller and Muller [44] demonstrated that the inhibition of growth of annual grassland
species growing close to Salvia leucophylla Greene colonies was mainly due to camphor and cineole,
two volatiles actively released by this aromatic species. They also reported that those volatiles,
mainly terpenoids, were able to inhibit the growth of several soil bacteria influencing the spacing and
patterning of grassland species [45,46]. Moreover, they demonstrated [47] that the soil collected under
S. leucophylla bushes was characterized by a high phytotoxicity mainly due to the ability of dry soil
colloids to adsorb terpenoids from the atmosphere.

These data were further confirmed by Nishida et al. [48], which demonstrated that monoterpenoids
released by this species were characterized by an inhibitory activity on cell proliferation and DNA
synthesis in the root meristem of Brassica rapa campestris L.

All these data suggest that a plant species could affect plant communities through the release
of VOCs, acting on a multiscale level. In this context, Karban [49] reported that VOCs emitted by
Artemisia tridentata Nutt. damaged leaves induced a significant inhibitory effect on the germination of
neighboring unrelated species. Interestingly, the germination of sagebrush seeds was not affected at all
by these volatiles, suggesting a strategy aimed at increasing the competitiveness of the species and
modeling the plant community structure. Similarly, Araniti et al. [37] demonstrated that the VOCs
released by Dittrichia viscosa (L.) Greuter subsp. viscosa, a pioneer Mediterranean shrub forming large
monospecific communities, were able to affect the growth of the sensitive species Lactuca sativa L.
altering its primary metabolism, inducing ROS (reactive oxygen species) burst and physical damages
to the photosynthetic machinery.

Ninkovic et al. [50,51] reviewed the role of volatiles in plant competition and in tritrophic
interactions, concluding that signals induced by VOCs could provide pivotal information concerning
the genetic identity as well as the physiological status of the emitter. Such information can be
further used to detect competitive neighbors and to activate, even before that competition takes
place, competitive responses aimed at initiating specific growth responses that could increase their
competitive capacity.

3. Herbicidal Activity of Essential Oils

The phytotoxic and herbicidal potential of EOs against weeds has been widely studied for their
use as an alternative to synthetic herbicides. Since their discovery and development in the 1940s,
synthetic herbicides have been the main method used for weed management. Their overuse has
promoted the evolution of herbicide-resistant weed biotypes [52], as well as harmful effects to human
and animal health [53] and the environment [54].

In the latest years, the research regarding EO application in pest management has increased
greatly, due to the changes in the regulation of the pesticides market in the European Union (EU)
(Directive 2009/128/EC). These changes are focused in achieving the sustainable use of pesticides,
and implementing, as mandatory in the EU, the principles of integrated pest management (IPM),
which gives priority to the use of nonsynthetic pesticides for weed control.

In this section, the studies about phytotoxic and herbicidal activity of EOs on weeds and crops
are reviewed, reporting the research carried out during the latest twenty years. As there are many
works that study the herbicidal activity of EOs from different Eucalyptus species, they will be analyzed
separately. Some previous works also summarized the herbicidal activity of EOs [22,24,55,56], giving
other interesting and complementary points of view.

The basis for the use of EOs in weed control is because they contain allelochemical compounds,
mainly terpenoids, which can prevent the germination and growth of weed species [57,58]. In Table 1,
the most important works regarding the herbicidal activity of EOs are summarized and ordered
chronologically, focusing on the compounds that are involved and the species on which they were
tested and the effects they promoted.

One of the first studies, which approached the investigation of the allelopathic compounds
contained in the EOs composition from a practical point of view and considering their possible
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applications in agriculture to control weeds, was the work of Dudai et al. [57] (Table 1). They verified
that EOs showed different potential to prevent weed seed germination and growth depending on
the EO composition and on the species against which they were applied. Their results opened many
opportunities to employ EOs for weed management, using different EOs depending on the weeds to
be controlled. Other remarkable work is that of Tworkoski [20], as he tested the EOs in vivo under
greenhouse conditions, when the majority of studies about EO herbicidal activity are carried out
in vitro conditions. The reason to carry out in vitro assays with EOs is that in vivo assays confront
some difficulties, like the quantity of EOs needed for the assays, or the proper formulation of the
EOs to be mixed with water and to enhance their properties, as their persistence and penetrability.
In Tworkoski’s work, many EOs (25) were tested and the main compound (eugenol) of the most active
EO (S. aromaticum) was determined and it was verified that the herbicidal activity of S. aromaticum
EO was due to this compound. Angelini et al. [58] tested different EOs (from Rosmarinus officinalis L.,
Thymus vulgaris L. and Satureja montana L.) and their main compounds on different weeds and crops
(Table 1), finding that S. montana EO with 57% carvacrol was the most effective, completely inhibiting
the germination of crops and weeds. It is noteworthy the work of Vokou et al. [59], who tested the
allelopathic potential of 47 monoterpenoids of different chemical groups against Lactuca sativa L.
germination and growth, determined that hydrocarbons, except (+)-3-carene, were the least inhibitory
and acetates were the less inhibitory of oxygenated compounds. Whenever the free hydroxyl group
of an alcohol turned into a carboxyl group, the activity of the resulting ester was considerably lower
(against both germination and seedling growth). They found more active compounds effective against
seedling growth (24 compounds) than against seed germination (only 5 compounds). The most
active compounds, which controlled both processes, belonged to four groups of ketones and alcohols:
terpinen-4-ol, dihydrocarvone and two carvone stereoisomers. In this research, the monoterpenes were
also tested in pairs, and in half the cases they acted as expected by the activity shown individually,
but in the other cases, antagonistic and synergistic interactions were detected. Thus, to predict the
herbicidal activity of an EO based on its composition when it has many components is not easy, as the
presence of minor compounds can alter the expected behavior of the main components of EOs.

Armirante et al. [60] investigated the herbicidal potential of EOs from aromatic plants Hyssopus
officinalis L., Lavandula angustifolia Miller, Majorana hortensis L., Melissa officinalis L., Ocimum
basilicum L., Origanum vulgare L., Salvia officinalis L., and Thymus vulgaris L. on Raphanus sativus
L., Lactuca sativa L. and Lepidium sativum L. (Table 1) concluding that the EOs tested showed a good
inhibitory activity against the germination and the radical length of the species assayed, dependent of
the doses applied, and also the inhibitory activity increased with the total monoterpene content of the
EO. They affirmed that the overall effect of EOs from aromatic plants cannot be predicted, unless the
composition and the interactions between their constituents are known. These studies were continued
with the work of De Almeida et al. [61], who tested the previously mentioned EOs together with
EOs from species of Verbenaceae and Apiaceae families (Table 1). All the EOs assayed were active,
inhibiting the germination and radicle growth of the three species tested, but the activity depended
on the EO applied, the doses and the species against which they acted. The EOs with the greater
herbicidal potential were those from T. vulgaris, M. officinalis, V. officinalis and C. carvi.

Campiglia et al. [62] tested in vivo, under greenhouse conditions, the herbicidal activity of
cinnamon (Cinnamomum zeylanicum L.), lavender (Lavandula spp.) and peppermint (Mentha × piperita
L.) EOs against Amarantus retroflexus L., Sinapis arvensis L. and Lolium spp. (Table 1). EO application
reduced seed germination of all tested weeds. The most effective was C. zeylanicum EO, and the
dicotyledonous weeds were more susceptible than the monocotyledonous, with A. retroflexus the most
sensitive species. This research was continued by Cavaliere and Caporali [63], who tested the same EOs
on seven weeds (A. retroflexus, Solanum nigrum L., Portulaca oleracea L., Chenopodium album L., S. arvensis,
Lolium spp. and Vicia sativa L.) in vitro and in vivo, under greenhouse conditions (Table 1). All the EOs
inhibited weed seed germination in the in vitro assays, and the dose to reach 100% inhibition depended
on the EO and the weed species tested. The most effective EO was C. zeylanicum, and the most sensitive
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weeds were A. retroflexus, P. oleracea and V. sativa, which germination was completely inhibited by all
EOs at 1.8 mg/L concentration, while S. arvensis and Lolium spp. were the most resistant weeds, as their
germination was completely controlled only at the highest concentration (5.4 mg/L). The weeds showed
different responses to the phytotoxic effects of EOs. They observed that the concentration of EOs had a
greater effect on weed susceptibility than the type of EO used. However, in vivo assays showed that
A. retroflexus was the most sensitive weed while Lolium spp. was the most resistant. C. zeylanicum EO
was also the most active EO in vivo conditions (Table 1).

The bioherbicidal potential of Artemisia scoparia Waldst et Kitam EO was verified in vitro and
in vivo on the weed species Achyranthes aspera L., Cassia occidentalis L., Parthenium hysterophorus L.,
Echinochloa crus-galli (L.) P. Beauv and Ageratum conyzoides (L.) L. [64] (Table 1). This work is very
interesting because they also studied and described the physiological effects caused by the herbicidal
activity of the EO on the weed species (Table 1).

The EOs from two species from Chile, Peumus boldus Molina and Drimis winteri J.R.Forst. et G.Forst.
were tested with P. boldus, showing good herbicidal activity [24] (Table 1). The study of this EO
continued in the work of Blázquez and Carbó [65], who tested P. boldus and C. limon EOs on P. oleracea,
in Petri dishes with filter paper or filled with different types of soil (clay, silty clay, loam and sandy clay
loam) and with sand. They confirmed that the EO activity depended on soil characteristics. At the
highest dose (1 µL/mL) P. boldus EO completely inhibited P. oleracea germination in filter paper, sand
and in clay and silty clay soils, being also very effective in loam soil. At low doses (0.250 µL/mL), it only
showed significant effect in soils with clay and sand textures, with the lowest concentration applied
(0.125 µL/mL) effective in soils with more clay content. C. lemon EO was not active at the doses tested.

C. ladanifer EO was tested in vitro against Amaranthus hybridus L., P. oleracea, C. album, Erigeron
canadensis L. and Parietaria judaica L., completely inhibiting A. hybridus germination, and nearly blocking
E. canadensis and P. judaica germination at all concentrations assayed. In P. oleracea, the EO was active
only at the higher doses tested. C. album was the most resistant weed, the EO did not control its
germination. Although inhibiting seed germination, the EO showed a selective behavior; it had strong
phytotoxic activity by reducing seedling length, being effective in all species at all concentrations [66]
(Table 1).

The work of Hazrati et al. [67] is remarkable, who tested a nanoemulsion (NE) of Satureja hortensis
L. EO against A. retroflexus and C. album, in vitro and in vivo conditions, demonstrating the strong
herbicidal potential of S. hortensis EO NE and the possibility to use it as a natural herbicide (Table 1).
In another work, Hazrati et al. [68] also investigated the herbicidal activity of R. officinalis, S. hortensis and
Laurus nobilis L. EO, and mixes of R. officinalis and L. nobilis EOs against one monocotyledonous weed
(Bromus tectorum L.), one dicotyledonous weed (A. retroflexus) and one crop (Solanum lycopersicum L.,
tomato). These assays were carried out in vitro conditions only. The EOs and their mixtures strongly
inhibited the germination and seedling growth of the species tested, with A. retroflexus the most sensitive.

Recently, the EOs from three Copaifera species (Leguminosae): C. duckei Dwyer, C. martii Hayne
and C. reticulata Ducke (Leguminosae) from Amazon (Brazil), were tested for their herbicidal properties
against two invasive plants native to the Brazilian Amazon, Mimosa pudica L. and Senna obtusifolia
(L.) Irwin et Barneby, both belonging to Leguminosae family (Table 1). This work demonstrated
the different herbicidal potential of EOs coming from different organs of the same plant, as the EOs
obtained from the stems showed greatest inhibitory potential of the germination than those from
the leaves, but it was very low (17.3% for M. pudica and 18% for S. obtusifolia). However, on root
development, the EOs from leaves showed greater inhibitory potential than those from the stems,
with values above 42%. The composition of EOs from leaves and stem were different; EOs from leaves
had more constituents, especially in C. martii. This was the cause for their different activity. All EOs
tested showed high inhibitory effects on M. pudica hypocotyl development, with values above 69%,
with C. reticulata the most active (76% inhibition). S. obtusifolia was more resistant, the highest inhibition
of hypocotyl development on this species was registered for C. copaifera EO (47.2%).
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The EOs from Thymbra capitata (L.) Cav., Mentha × piperita L., Santolina chamaecyparissus L. and
Eucalyptus camaldulensis Dehnh. were tested in vivo, in greenhouse experiments, applied in pre-
and post-emergence (by watering and spraying), to control Erigeron bonariensis L. [69] (Table 1),
one important cosmopolite weed, which affects many crops and has developed resistant biotypes to
glyphosate, the worldwide most used herbicide [70]. Results showed that the method of application
also determines the herbicidal potential observed. In pre-emergence assays, T. capitata EO was the
most potent. In post-emergence assays, T. capitata EO was the most effective to control E. bonariensis,
in both modes of application, irrigation and watering, but it showed a more rapid action when
sprayed. E. camaldulensis was the second most active EO when applied by watering. M. piperita applied
by spraying showed an efficacy similar to E. camaldulensis applied by watering and to T. capitata.
S. chamaecyparissus was the least active EO. T. capitata, E. camaldulensis and M. piperita showed good
herbicidal activity controlling this weed, and could be used as basis for the development of natural
herbicides [69]. The study of the herbicidal potential of these EOs was continued, and also their
effect on soil microorganisms was evaluated [71], verifying that only T. capitata EO when applied at
the highest dose did not permit soil microorganisms to recover their initial functionality. T. capitata,
M. × piperita and S. chamaecyparissus EOs were tested in vivo by irrigation against important weeds in
Mediterranean crops, as the dicotyledonous A. retroflexus and P. oleracea, and the monocotyledonous
Avena fatua L. and E. crus-galli. T. capita was the most effective EO, killing all weeds at the highest dose
applied (12 µL/mL), except P. oleracea, which was eliminated in 90%. As T. capitata EO demonstrated
the highest herbicidal potential, it was studied more in detail, through in vitro and in vivo experiments
carried out on many weeds [72] (Table 1). In vitro experiments showed the strong herbicidal potential
of T. capitata EO, which controlled completely the germination of different common and problematic
weed species, although they showed different sensitivity to the EO, as it blocked the germination
and seedling development of E. canadensis, Sonchus oleraceus (L.) L. and C. album at 0.125 µL/mL
(more sensitive species), of Setaria verticillata (L.) P. Beauv., A. fatua and Solanum nigrum L. at 0.5 µL/mL,
of A. retroflexus at 1 µL/mL and of P. oleracea and E. crus-galli at 2 µL/mL (more resistant species).
In greenhouse experiments, T. capitata EO was tested in pre- and post-emergence by irrigation against
the weeds present in a citrus orchard soil seedbank. It showed strong herbicidal activity at 4 µL/mL.
In vivo experiments under greenhouse conditions were carried out to test T. capitata EO, applied by
spraying in post-emergence on P. oleracea, A. fatua and E. crus-galli plantlets. The species showed
different sensibility to the EO, with E. crus-galli the most resistant. With the objective to determine
which mode of application was more effective, spraying or watering, T. capitata EO was applied on
A. fatua by spraying and by irrigation. Comparing the data obtained in A. fatua and in other species,
it was concluded that T. capitata EO was more effective at the same doses applied by irrigation in
monocotyledons and by spraying in dicotyledons [72].

Finally, we will summarize the works about the herbicidal activity of EOs from different Eucalyptus
species. The strong herbicidal potential of Eucalyptus EOs has been demonstrated [73–75]. One of
the most studied EOs from Eucalyptus species is the EO from E. citriodora Hook (the accepted name
of these species is Corymbia citriodora (Hook.) K.D.Hill et L.A.S.Johnson), which has been tested
against different weed species in many works [75–77] (Table 1), concluding that it can be an excellent
candidate to be used as bioherbicide. However, Ibáñez and Blázquez [78] tested E. citriodora EO against
P. oleracea, E. crus-galli and Lolium multiflorum Lam in vitro conditions finding no significant inhibitory
effects on seed germination and hypocotyl length on the tested weeds at the concentrations assayed
(0.125–1 µL/mL) (Table 1).

Verdeguer et al. [73] tested the herbicidal potential of E. camaldulensis EO rich in spathulenol
(41.46 ± 3.04%), showing high herbicidal potential against A. hybridus and P. oleracea. (Table 1)

The herbicidal potential of Eucalyptus tereticornis Sm EO was tested against E. crus-galli [79]
(Table 1) demonstrating great possibilities to be used as bioherbicide to control this noxious weed.
The EO from E. citriodora showed good potential as bioherbicide, as it controlled in vitro and in vivo
S. arvensis, S. oleraceus, Xanthium strumarium L. and A. fatua [77] (Table 1).
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Recently, a strategy to rapidly narrow down herbicidal chemicals from Eucalyptus EOs has
been developed [74]. The strategy was validated for fast determination of the chemicals that take
part in powerful herbicidal activities, based on gas chromatography–mass spectrometry (GC–MS)
coupled with principal component analysis (PCA) and corroborated by the results of bioassays
using different individual compounds [74]. In this work, the herbicidal activity of 17 EOs from
14 Eucalyptus species and hybrids was tested against Lolium rigidum Gaud. (Table 1), and two
strong herbicidal compounds were determined using the developed strategy, trans-pinocarveol and
α-terpineol. The herbicidal activity of trans-pinocarveol was revealed for the first time. The main
compounds that constituted the Eucalyptus EOs tested (except for E. grandis) were 1,8 cineole and
α-pinene, which have been reported to have bioactivities [80–83]. However, these two compounds
did not explain the differences observed in the inhibitory activity of L. rigidum germination between
the EOs. The authors concluded that other compounds, including minor components, could take
part in the inhibitory activity of these Eucalyptus EOs. Among the main compounds determined
as responsible for contributing to the strong herbicidal activity there were the terpenoids: borneol,
pinocarvone, camphene, exo-fenchol, trans-p-mentha-1(7),8 dien-2-ol, α-terpineol, (Z)-ocimenone,
epiglobulol, 2,2,5,5-tetramethyl-4-(2-hydroxy-2-methylbutylidene) cyclopenta-1,3-dione, myrtenol,
trans-pinocarveol, (E)-caryophyllene, α-campholenal, trans-carveol, 6-camphenone and leptospermone.

Other works reporting EOs constituents, biological activity and main results have been included
in Table 1.

One of the main difficulties that must be faced when testing the herbicidal activity of EOs is
that they cannot be mixed with water, so emulsifiers are needed. In the majority of works, when
EOs are tested in in vitro assays, they are applied directly to the paper in the Petri dishes. In other
studies, different emulsifiers have been used, as Tween 20 [58,77], Tween 80 [84], acetone [60,61] or
Fitoil [69,71,72]. When testing EOs in in vivo assays, it is necessary to prepare a solution of the EOs
to apply them, so an emulsifier or an applicable formulation of the EOs is always needed. Another
handicap, when testing herbicidal activity of EOs in in vivo conditions, is the rapid volatilization of
EOs. This could be solved with a proper formulation of EOs. The commercially used formulations that
are employed for EOs are microencapsulation and nanoemulsion [85].

Encapsulation is a method through which scientists mimic nature (is like imitating the membranes
of cells or mitochondria). With the encapsulation the active ingredients are isolated, protected and can
be functionally released [86]. Nanoencapsulation contributes to improving the bioavailability of the
payload compounds, while enabling their controlled release and target delivery [85]. Hazrati et al. [67],
as aforementioned, tested the herbicidal activity of a nanoemulsion of S. hortensis EO, which was
prepared via low energy method using 96% (v/v) water, 2% (v/v) EO and 2% (v/v) Tween 80.
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Table 1. Reported herbicidal activity of essential oils.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

32 EOs preliminary tested
Micromeria fruticosa

Artemisia judaica (Israeli var.)
Mentha piperita

Cymbopogon citratus
Artemisia judaica (Sinai var.)

Mentha longifolia
Melissa officinalis

Salvia officinalis (Dalmatian var.)
Eucalyptus citriodora
Ocimum citriodorum
Rosmarinus officinalis
Artemisia arborescens

Carun carvi
Lavandula officinalis
Thymus citriodorus
Ocimum basilicum
Hyssopus officinalis
Coriandrum sativum

Coridothymus capitatus
Origanum syriacum (thymol chemotype)
Origanum vulgare (thymol chemotype)

Origanum majorana
Lippia citriodora

Origanum syriacum (carvacrol chemotype)
Thymus vulgaris

Myrtus communis
Laurus nobilis

Pelargonium graveolens
Ocimum basilicum (methyl chavicol type)

Artemisia dracunculus (Russian var.)
Artemisia dracunculus (French var.)

Artemisia absinthium

Not reported Triticum aestivum
In vitro germination inhibition
test in Petri dishes with filter
paper.

50% inhibition of T. aestivum
germination for 28 EOs (doses
28–84 nL/mL), 4 EOs were not
active: O. basilicum (Methyl
chavicol type), A. dracunculus
(Russian var.), A. dracunculus
(French var.), A. absinthium; 3
EOs selected for further
studies: O. syriacum, C.
citratus and M. fruticosa.

[57]
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Origanum syriacum

Cymbopogon citratus

Micromeria fruticosa

Carvacrol (60.1%)

Citral (geranial 42.6%
and neral 32.1%)

Pulegone (59.7%)

Triticum aestivum
In vitro germination inhibition
test in Petri dishes with filter
paper.

C. citratus EO was the most
effective: 50% inhibition of
T. aestivum germination at
32 nL/mL and 50% inhibition
of T. aestivum radicle growth
at 16 nL/mL.

[57]

Origanum syriacum

Cymbopogon citratus

Micromeria fruticosa

Carvacrol (60.1%)

Citral (geranial 42.6%
and neral 32.1%)

Pulegone (59.7%)

Amaranthus blitoides
Amaranthus palmeri

Euphorbia hirta
Sinapis nigra

Trifolium campestre
Solanum lycopersicum

In vitro germination inhibition
test in Petri dishes with filter
paper.

Different sensitivity
depending on the species
(IC50 doses from 8 to
116 nL/mL).

[57]

Origanum syriacum

Cymbopogon citratus

Micromeria fruticosa

Carvacrol (60.1%)

Citral (geranial 42.6%
and neral 32.1%)

Pulegone (59.7%)

Triticum aestivum
Amaranthus palmeri

Germination and growth
inhibition test in clayey soil,
doses 0.5–2%.

The most active EO was C.
citratus (at 2%, 100%
inhibition of T. aestivum
germination, 92% inhibition
A. palmeri germination).
Different sensitivity to the
EOs depending on the
species.

[57]

Cymbopogon citratus Citral (geranial 42.6%
and neral 32.1%)

Triticum aestivum
Brassica nigra

Amaranthus palmeri

Germination and growth
inhibition test in clay soil, loam
and loess, doses 0.5–2%.

Different sensitivity
depending on the species.
The EO was more effective
inhibiting germination in
loam or loess than in clayey
soil.
Germination inhibition
decreased with increase of
sowing depth.

[57]
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Ocimum basilicum
Salvia sclarea
Carum carvi

Melissa officinalis
Coriandrum sativum

Not reported

Ocimum basilicum
Salvia sclarea
Carum carvi

Melissa officinalis
Triticum aestivum

Sinapis nigra
Solanum lycopersicum

In vitro germination inhibition
test in Petri dishes with filter
paper.

Different sensitivity
depending on the species and
the EO tested (IC50 doses
(dose necessary to inhibit the
germination by 50%) from 12
to 108 nL/mL).
O. basilicum, S. sclarea, C. carvi
and M. officinalis EOs
inhibited the germination of
seeds of the plant from which
they were extracted.

[57]

Ocimum basilicum
Brassica napus

Cinnamomum zeylanicum
Carum carvi

Syzygium aromaticum
Zea mays

Gossypium hirsutum
Vaccinium macrocarpon

Foeniculum vulgare
Linum usitatissimum

Vitis amurensis
Corylus avellana

Simmondsia chinensis
Limnanthes alba
Olea europaea

Arachis hypogaea
Prunus spp.

Brassica napus
Carthamus tinctorius

Sesamum indicum
Glycine max

Satureja hortensis
Helianthus annuus

Betula nigra
Thymus vulgaris

Not reported Taraxacum officinale

Phytotoxic effects of the EOs
were evaluated in separated
dandelion leaves in laboratory
experiments (doses tested 0, 0.5,
1.0 and 2.0%, v/v, EOs prepared
in mineral oil).

The most effective EOs were
Thymus vulgaris, Satureja
hortensis, Cinnamomum
zeylanicum and Syzygium
aromaticum (doses 1% v/v).
They all caused electrolyte
leakage resulting in cell death.

[20]
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Thymus vulgaris
Satureja hortensis

Cinnamomum zeylanicum
Syzygium aromaticum

Not reported
Not reported
Not reported

Eugenol (84% v/v)

Chenopodium album
Ambrosia artemisiifolia

Sorghum halepense

In vivo assays to test EOs
against weeds (whole plants) in
greenhouse conditions. EOs
were prepared in aqueous
solutions (5–10% v/v) with two
adjuvants, a nonionic surfactant
and paraffinic oil blend at 0.2%
v/v, and were applied on shoots.

Shoot death was verified
within 1 h and 1 day after
treatment.
S. aromaticum was the most
active EO.

[20]

Rosmarinus officinalis ecotype A

Rosmarinus officinalis ecotype B

Thymus vulgaris

Satureja montana

α-Pinene (37.2%) and
1,8-cineole (22.6%)

α-Pinene (13.5%),
1,8-cineole (46.8%),

borneol (12.9%)

Thymol (44.1%)

Carvacrol (56.8%)

Chenopodium album
Portulaca oleracea

Echinochloa crus-galli
Raphanus sativus

Capsicum annuum
Lactuca sativa

Germination and growth
inhibition tests in Petri dishes
with filter paper, EOs prepared
in an aqueous solution
(500 mg/L) with Tween 20
(100 mg/L).

S. montana was the most
effective EO, inhibiting
germination of all species
tested. T. vulgaris activity was
more selective, depending on
the species on which it was
applied. R. officinalis A caused
germination inhibition and
abnormal seedlings. R.
officinalis B showed greater
herbicidal activity than A.

[58]

Pure compounds carvacrol,
thymol, borneol and 1,8-cineole
were also tested, prepared in
aqueous solutions (250 mg/L)
with Tween 20 (100 mg/L).

Carvacrol was the most active
pure compound, completely
inhibiting germination in all
species except radish.
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Eucalyptus citriodora Not reported

Triticum aestivum
Zea mays

Raphanus sativus
Cassia occidentalis
Amaranthus viridis

Echinochloa crus-galli

In vitro germination and growth
inhibition tests in Petri dishes
were carried out separately.
Doses tested: 0.03, 0.06, 0.12,
0.30, 0.60 and 1.20 mg/L for
germination inhibition tests and
0.12 and 0.30 mg/L for growth
inhibition tests.

The germination of all species
was reduced significantly at
concentrations ≥0.30 mg/L,
species demonstrated
different sensibility to the EO.
A. viridis was the most
sensitive species while Z.
mays and R. sativus were the
most resistant.
Seedling growth was also
affected by EO application.
The total chlorophyll content
and the respiratory activity of
treated seedlings were
strongly reduced. A. viridis
was again the most sensitive
species.

[84]

Eucalyptus citriodora Not reported Echinochloa crus-galli
Cassia occidentalis

In vivo experiments in
greenhouse, post-emergence
assays in 4-weeks-old weeds.
Doses tested: 2.5%, 5.0% and
7.5% solution of EO in water,
applied by spraying.

Chlorophyll content and
respiratory activity were
affected in both weeds. C.
occidentalis respiratory activity
and chlorophyll content were
reduced by 85% when
sprayed with 2.5% solution of
EO.

[84]

Eucalyptus citriodora Not reported Echinochloa crus-galli
Cassia occidentalis

Field experiment in parcels of
1 × 10 m, where weed species
were sown. Doses applied by
spraying: 1%, 2.5%, 5.0% and
10% of EO, prepared in water
with the help of surfactant
Tween- 80 at concentration
0.05% v/v.

At low concentrations (0.5%
and 1%), few effects were
observed. At 7.5% and 10%,
C. occidentalis was completely
eliminated 1 day after
treatment. The injury level on
E. crus-galli at these doses was
50–76%.

[84]
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Eucalyptus citriodora Not reported Parthenium hysterophorus

Laboratory bioassay in Petri
dishes, germination and growth
inhibition test. Doses assayed:
0.20, 0.50, 1.0, 2.0 and
5.0 nL/mL.

Seed germination, seedling
length, chlorophyll content
and respiratory activity of the
weed were reduced with
increasing EO concentration.
Germination was completely
inhibited at 5.0 nL/mL.

[75]

In vivo assay in 4-week-old
plants. Doses tested: 0, 5, 25, 50,
75 or 100 µL/mL.

Damage symptoms increased,
while chlorophyll content and
the respiratory activity
decreased with increased EO
concentrations. Up to
50 µL/mL some plants
recovered over time, but
plants sprayed with 75 and
100 µL/mL died 2 weeks after
treatment application.
Treated plants suffered a
rapid electrolyte leakage at
concentrations between
5–75 µL/mL, indicating an
effect on membrane integrity.
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Hyssopus officinalis
Lavandula angustifolia

Majorana hortensis
Melissa officinalis

Ocimum basilicum
Origanum vulgare
Salvia officinalis
Thymus vulgaris

Not reported
Raphanus sativus

Lactuca sativa
Lepidium sativum

Germination and growth
inhibition assays in Petri dishes.
EOs were prepared in
water–acetone mixture
(97.5:2.5), and were tested at
doses: 2.5, 1.25, 0.625, 0.25,
0.125 and 0.06 µg/mL.

At the lowest dose some of
the tested EOs were able to
promote both germination
and radical elongation.
At the highest dose, all EOs
except O. basilicum inhibited
completely the germination of
R. sativus. L. sativa
germination was completely
inhibited by M. officinalis, M.
hortensis, O. vulgare and T.
vulgaris EOs. L. sativum was
100% inhibited by H.
officinalis, M. officinalis, O.
vulgare and T. vulgaris.

[60]

Effects on germination of EO
vaporization: 1.5 mL of EO in
each Petri dish.

All the EOs showed strong
inhibitory activity on both
germination and growth of
the 3 species tested, with
inhibition values above 72%
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Cinnamomum zeylanicum
Lavandula spp.

Mentha × piperita
Not reported

Amarantus retroflexus
Sinapis arvensis

Lolium spp.

In vivo assays in pots, in
greenhouse.
Oil-in-water emulsion was
prepared at the doses: 5.4, 21.6,
86.4 and 345.6 mg/L; 5 mL were
sprayed on the soil surface of
each pot after sowing. Control
pots were irrigated with water.

Application of EOs reduced
weed germination at all
concentrations. C. zeylanicum
was the most active EO.
The highest concentration
tested of cinnamon and
lavender EOs controlled
significantly germination of
all weeds. Lolium spp.
germination was reduced by
52% with C. zeylanicum EO
and by 51% with Lavandula
spp. EO. S. arvensis
germination was inhibited
79% by C. zeylanicum EO and
58% by lavender EO, while A.
retroflexus did not germinated
with the maximum dose of C.
zeylanicum EO and its
germination was reduced by
85% with lavender EO.
M. piperita EO showed the
maximum inhibitory effect for
A. retroflexus at the highest
dose applied (82% of
germination inhibition) and
for the other species at the
third dose tested (62%
germination reduction for
Lolium spp. and 44% for S.
arvensis).
The dicotyledonous species
were more susceptible to the
EOs compared with the
monocotyledonous.

[68]
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Eucalyptus citriodora Not reported

Bidens pilosa
Amaranthus viridis
Rumex nepalensis

Leucaena leucocephala

In vitro germination and growth
inhibition assays in Petri dishes.
Doses tested: 0.0012 to 0.06%.

The EO reduced the
germination and seedling
growth of the weeds. At
0.06% no weed seed
germinated. A. viridis was the
most sensitive species, with
its germination completely
blocked at 0.03% dose.
The chlorophyll content and
the respiratory activity of the
leaves of emerged seedlings
were also affected. A. viridis
chlorophyll content and
respiratory activity were
reduced by 51 and 71%,
respectively, at 0.06% dose.

[76]

Eucalyptus camaldulensis

Lantana camara

Eriocephalus africanus

Spathulenol
(41.46 ± 3.04%),

p-cymene
(21.92 ± 1.61%),

cryptone (7.76 ± 0.62%)

α-Curcumene
(23.09 ± 2.10%),
γ-curcumene

(14.64 ± 1.06%),
γ-muurolene

(12.54 ± 1.43%)

Artemisia ketone
(56.46 ± 1.99%),

intermedeol
(9.59 ± 0.89%)

Amaranthus hybridus
Portulaca oleracea

In vitro assays in Petri dishes,
germination and seedling
growth inhibition test. Doses
assayed: 0.125, 0.25, 0.5 and
1 µL/mL.

E. camaldulensis EO was the
most effective, completely
controlling the germination
and seedling growth of both
weeds. E. africanus EO was
very effective against A.
hybridus germination but only
reduced slightly P. oleracea
germination at the two
highest doses tested. L.
camara inhibited A. hybridus
germination and seedling
length, but showed no effect
against P. oleracea
germination, although
reduced its seedling growth.

[73]
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Cinnamomum zeylanicum
Lavandula spp.

Mentha × piperita

Not reported
Amaranthus retroflexus

Solanum nigrum
Portulaca oleracea

Chenopodium album
Sinapis arvensis

Lolium spp.
Vicia sativa

For each EO, an oil-in water
emulsion was prepared.
In vitro assays, germination
inhibition tests in Petri dishes.
EO concentrations tested: 0.2,
0.6, 1.8 and 5.4 mg/L. Water was
used in controls.

EOs inhibited weed seed
germination. The
concentration to reach 100%
germination inhibition was
different for each EO and
depended on the species
tested. C. zeylanicum was the
most active EO.
A. retroflexus, P. oleracea and V.
sativa were the most sensitive
weeds, as all EOs inhibited
their germination at 1.8 mg/L.
S. arvensis and Lolium spp.
were the more resistant
weeds, only being completely
inhibited at the highest
concentration (5.4 mg/L).

[63]

In vivo assays in pots, in
greenhouse. EO concentrations
tested: 5.4, 21.6, 86.4 and
345.6 mg/L.

C. zeylanicum EO was the
most active. At the maximum
concentration inhibited
completely the germination of
A. hybridus, reducing the
germination of S. arvensis by
78% and decreasing Lolium
spp. germination by 57%.
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Hyssopus officinalis

Lavandula angustifolia

Majorana hortensis

Melissa officinalis

Ocimum basilicum

Origanum vulgare

Salvia officinalis

iso-Pinocamphone
(29.1%), β-pinene

(18.2%),
trans-pinocamphone

(11.2%)

Linalool (23.1%), linalyl
acetate (44.4%), geraniol

(9.3%)

1,8-Cineole (33.5%),
linalool (9.8%), α-pinene

(9.0%)

(-)-Citronellal (39.6%),
carvacrol (13.3%),

iso-menthone (8.8%)

iso-Pinocamphone
(35.1%), carvone (39.7%)

Carvacrol (44%),
o-cymene (41.9%)

trans-Thujone (37.9%),
camphor (13.9%),

borneol (7.6%)

Raphanus sativus Lactuca
sativa Lepidium sativum

Germination and growth
inhibition assays in Petri dishes.
EOs were prepared in
water–acetone mixture
(99.5:0.5), assayed at doses: 2.5,
1.25, 0.625, 0.25, 0.125 and 0.06
µg/mL.

All EOs were active against
germination and early radicle
growth of the three species
tested, showing different
levels of activity, with the
most active being T. vulgaris,
M. officinalis, V. officinalis and
C. carvi EOs.
L. sativum was the less
sensitive seed. All EOs tested,
except P. anisum, O. basilicum
and F. vulgare, inhibited by
100% the germination of R.
sativus, at the highest dose
tested, while M. officinalis, C.
carvi, H. officinalis, T. vulgaris
and V. officinalis inhibited
100% L. sativum germination
at the highest dose.
T. vulgaris and O. vulgare EOs
inhibited both germination
and radicle elongation of L.
sativum at 1.25 µg/mL. C. carvi,
V. officinalis, S. officinalis and
M. hortensis EOs affected,
significantly the radicle
elongation of L. sativum at all
doses. P. anisum was the less
active EO on germination,
whereas F. vulgare EO was less
active on radicle elongation of
L. sativum.
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Thymus vulgaris

Verbena officinalis

Pimpinella anisum

Foeniculum vulgare

Carum carvi

o-Cymene (56.2%),
carvacrol (24.4%),

thymol (8.7%)

Isobornyl formate
(45.4%), (E)-citral

cis-Anethole (97.1%)

cis-Anethole (76.3%),
fenchone (14.2%)

Estragole (65.0%),
limonene (14.3%)

Some EOs (P. anisum and O.
basilicum) stimulated the
germination and/or radicle
elongation of L. sativum at the
lowest dose.
V. officinalis EO inhibited by
100% the germination of R.
sativus, at almost all doses
tested. C. carvi, H. officinalis
and S. hortensis EOs inhibited
significantly the germination
of R. sativus, at all doses
tested. The radicle growth of
R. sativus was affected by
100% by V. officinalis, C. carvi,
O. vulgare, T. vulgaris, H.
officinalis and L. angustifolia
EOs at the three highest doses
assayed. All these EOs,
except L. angustifolia EO, were
active towards radicle
elongation, at all doses.
T. vulgaris EO inhibited by
100% germination and radicle
elongation of L. sativa seeds,
at all assayed doses. V.
officinalis, M. officinalis and C.
carvi EOs inhibited
significantly germination of L.
sativa seeds at all doses. M.
hortensis and V. officinalis
inhibited significantly the
radicle growth of L. sativa
seeds. F. vulgare and P. anisum
were among the less active
EOs against L. sativa.

[61]
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Artemisia scoparia
p-Cymene (20.5%)
β-myrcene (13.95%)

(+)-limonene (12.53%)

Achyranthes aspera
Cassia occidentalis

Parthenium hysterophorus
Echinochloa crus-galli
Ageratum conyzoides

Bioassay carried out in Petri
dishes filled with sand
impregnated with A scoparia EO
at 5, 10, 25 and 50 µg oil/g sand.

The germination and seedling
growth (root and shoot
length) were significantly
reduced at doses ≥10, 25 and
50 µg A. scoparia EO/g sand.
The effect was greater on root
length than on shoot length.
The most sensitive species
was P. hysterophorus followed
by A. conyzoides and the most
resistant was C. occidentalis.

[64]

In vivo experiment in a
greenhouse on 6-week-old
weed plants raised under
controlled conditions, sprayed
with 2, 4 and 6% (v/v) solution
of A. scoparia EO on distilled
water.

EO application provoked
visible injury symptoms (1
and 7 days after spray)
extending from chlorosis to
necrosis to complete wilting
of plants. The most sensitive
weeds were E. crus-galli and P.
hysterophorus. The treatment
with EO caused loss of
chlorophyll content and
cellular respiration in tested
weeds, suggesting an
interference/impairment with
photosynthetic and
respiratory metabolism. The
EO produced a severe
electrolyte leakage on E.
crus-galli (a monocot) and C.
occidentalis (a dicot) indicating
membrane disruption and
loss of integrity.
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Peumus boldus

Drimis winteri

Ascaridole
(51.17 ± 9.51%),

p-cymene
(16.31 ± 2.52%) and

1,8-cineole
(14.45 ± 2.99%)

γ-Eudesmol
(21.65 ± 0.41%), elemol

(12.03 ± 0.34%),
terpinen-4-ol

(11.56 ± 1.06%)

Amaranthus hybridus
Portulaca oleracea

In vitro experiments in Petri
dishes, germination and growth
inhibition test. Doses tested:
0.125, 0.25, 0.5, 1 µL/mL.

P. boldus was the most active EO,
inhibiting seed germination and
growth of both species tested. D.
winteri only affected P. oleracea
germination at the highest dose
applied.

[21]

Cistus ladanifer

trans-Pinocarveol
(20.00%), viridiflorol

(13.59%), bornyl acetate
(7.03%)

Amaranthus hybridus
Portulaca oleracea

Chenopodium album
Conyza canadensis
Parietaria judaica

In vitro germination and
growth inhibition assays in
Petri dishes. Doses tested:
0.125, 0.25, 0.5, 1 µL/mL.

A. hybridus was the most sensitive
species; its germination was
completely blocked at all
concentrations. C. canadensis and P.
judaica were also very sensitive,
their germination was almost
completely controlled. P. oleracea
germination was inhibited at the
two higher doses tested, and C.
album was the most resistant weed,
no effect was observed on its
germination.
The EO showed a strong phytotoxic
activity on seedling length of all
weeds at all concentrations tested.

[66]

Melaleuca armillaris

Melaleuca styphelioides

Melaleuca acuminata

cis-Calamenene (19%),
torreyol (15.1%),

dihydrocarveol (9%),
α-Terpineol (7.7%)

Methyl eugenol (91.1%)

trans-Pinocarveol
(25.1%), dihydrocarveol

(23.6%), myrtenol
(12.3%), 1,8-cineole

(11.7%)

Raphanus sativus, Lepidium
sativum, Sinapis arvensis,

Triticum durum and
Phalaris canariensis

In vitro assays in Petri dishes.
EOs were prepared in
water–acetone mixture
(99.5:0.5).
Doses assayed: 2.5, 1.25, 0.625,
0.25, 0.125 and 0.062 µg/mL.

The EOs tested showed no effect
against seed germination, but
affected the radicle elongation of
the five tested seeds.

[87]
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Eucalyptus tereticornis

α-Pinene, 1, 8-cineole
and β-pinene

constituted more than
50% of EO composition

other components in
high concentrations

were α-eudesmol and
β-eudesmol

Echinochloa crus-galli

Bioassay in Petri dishes, doses
tested: 0, 25, 50,100 and 250
µg/mL.
Parameters evaluated:
germination percentage, root
and shoot length, dry weight of
7-day-old seedlings, total
chlorophyll content, cellular
respiration or cell survival of
treated and control seedlings.

E. terticornis EO suppressed the
growth and affected the physiology
of E. crus-galli.
Doses of 100 and 250 µg/mL
affected seed germination and
seedling development.
A 250 µg/mL dose decreased
chlorophyll content by 80% and
respiratory activity by 60%. The
effect on macromolecules, i.e.,
proteins and carbohydrates,
followed a similar trend.

[79]

Peumus boldus

Citrus limon

Ascaridole
(31.56 ± 0.15%),

p-cymene
(21.58 ± 0.09%),

1,8-cineole
(12.57 ± 0.13%)

Limonene (59.28%),
β-pinene (12.96%),

γ-terpinene (10.92%)

Portulaca oleracea

In vitro germination inhibition
assays in Petri dishes with filter
paper, or filled with sand, or
different types of soil.
Soils tested: clay soil, silty clay
soil, loam soil, sandy clay loam
soil.
Doses tested: 0.125, 0.250, 0.5
and 1 µL/mL.

P. boldus EO was the most effective.
At the two highest doses controlled
completely seed germination of P.
oleracea in soilless culture (paper,
sand and clay). At the lowest
concentration applied, the EO
reduced slightly seed germination
in clay textural classes without
effect in loam and in soilless culture.
At 0.250 µL/mL P. boldus EO
showed significant effect in clay
and sand culture. The highest dose
tested was effective in both soil and
soilless culture.
The type of soil affected P. oleracea
germination. Probably seedling
emergence declined with
increasing clay content (clay and
silty clay texture class), and
increased with increasing sand
content (sand and loam texture).
C. lemon EO did not show any
herbicidal effects at the doses
tested.

[65]
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Achillea millefolium

Anthemis cotula

Artemisia annua

Artemisia verlotiorum

Bidens tripartita

Helianthus tuberosus
Helichrysum italicum

Inula viscosa

Otanthus maritimus

Xanthium strumarium

Artemisia ketone
(25.3%),

trans-pinocarveol
(20.9%),

camphor (12.9%)

Not reported

1,8-Cineole (23.4%),
trans-sabinyl acetate

(12.5%), artemisia ketone
(12.4%), camphor (10.4%)

Chrysanthenone (22.2%),
1,8-cineole (19.4%),
β-pinene (16.3%)

Not reported

Not reported
Not reported

Not reported

Camphor (33.6%),
yomogi alcohol (18.6%),
artemisia alcohol (16.3%)

Borneol (30.3%),
isobornyl acetate

(12.2%), camphene
(11.8%), limonene

(11.6%)

Amaranthus retroflexus
Setaria viridis

In vitro test in Petri dishes
against seed germination of A.
retroflexus and S. viridis to select
the most active EOs.

A. retroflexus was the most
sensitive weed and S. viridis
the most resistant. A. annua,
A. verlotiorum and X.
strumarium EOs were the most
active, completely inhibiting
A. retroflexus germination at
10 µg/mL, and S. viridis
germination at 100 µg/mL.
Five EOs were selected from
this experiment for their
stronger herbicidal activity
and were tested in in vivo
conditions: Achillea
millefolium, Artemisia annua,
Artemisia verlotiorum,
Otanthus maritimus, Xanthium
strumarium. [88]

In vivo test carried out in
post-emergence in containers
prepared with peat substrate.
The EOs tested were prepared
in an aqueous solution with
water using Tween 80 as
emulsifier (0.1% v/v). Doses
tested: 10, 100 and 1000 mg/L.
EOs were applied at two
different phenological stages on
the weed seedlings: at
cotyledons and at the third true
leaf. The EOs were sprayed
using a micro airbrush
(AG5107, Humbrol, Kent, UK).

EOs from A. annua and X.
strumarium were the most
active (at the highest
concentration induced the
total death of all plants), but
X. strumarium showed the
highest herbicidal potential,
so it was tested again to
monitor the dynamics of
plant damage symptoms. At
the highest dose tested
(1000 mg/L) plant fresh
weight was reduced 20–30%
10 days after application, and
chlorophyll molecules were
destroyed.



Plants 2020, 9, 1571 26 of 52

Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

Satureja hortensis Carvacrol (55.6%),
γ-terpinene (31.9%)

Amaranthus retroflexus
Chenopodium album

S. hortensis EO applied in an
oil/water (O/W) nanoemulsion
(NE) was tested in vitro and
in vivo, in greenhouse
conditions.
In vitro germination inhibition
assays in Petri dishes,
concentrations tested 100, 200,
400, 800 and 1000 µL/L. A
solution of 2.0% v/v Tween 80 in
distilled water was used as
control.

Germination inhibition
increased with NE
concentration. In A.
retroflexus, the control
germinated 76.6% and the
maximum effect (lowest
germination) was observed
for 800 µL/L; the dose 1000
µL/L completely controlled A.
retroflexus germination.
In C. album, the germination
percentages were 56.6% for
the control and 16.6% for 1000
µL/L dose.
A dose–response relationship
was verified for the
germination inhibition and
for the root and shoot
elongation.
Germination speed (GS), was
greatly dose-dependent, the
lowest GS was for 800 µL/L
dose, and was lower for A.
retroflexus (0.3) than for C.
album (0.93).
The NE reduced root
elongation more than shoot
growth in both weeds.
S. hortensis EO had greater
effect on the seedling growth
of C. album rather than on
seed germination.

[67]
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In vivo assays in pots in
greenhouse.
The NE was applied in post
emergence, in 2–4 leaves stage
of the weeds by spraying with a
common garden sprayer at the
rate of 100 mL/m2.
Concentrations tested: 1000,
2000, 3000, 4000 and 5000 µL/L.
A solution of 1.0% v/v Tween 80
in water was used as control.
Morphophysiological
characteristics including fresh
and dry weights (whole
individual plants), leaf surface,
root length and shoot length
were measured and recorded 10
days after spray.
Healthy plants were counted
and recorded for determination
of lethality percentage (LP).
LP = (N/n) × 100, where “n”
represents the death weeds 10
days after spray, and “N” the
total number of weeds.

Weeds manifested injury
symptoms 30 min after being
treated. The maximum
lethality was reached within
24 h after treatment
application. Ten days after
treatments both weeds were
killed by 4000 and 5000 µL/L.
The treatments with different
concentrations of NE caused a
significant reduction on root
and shoot elongation in both
weeds. The reduction was
greater on roots than on shots.
The growing factors length of
seedlings primary root (RL),
length of seedlings primary
shoot (SL), leaf area (LA),
fresh weight (FW) and dry
weight (DW) were
significantly decreased with
increasing concentrations of
NE.
The total chlorophyll content
decreased in a
dose-dependent manner.
NE at 1000, 2000 and 3000
µL/L concentrations provoked
significant deterioration in the
membrane integrity by
increasing the electrolyte
leakage.
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Eucalyptus citriodora Citronellal (64.7%),
citronellol (10.9%)

Sinapis arvensis
Sonchus oleraceus

Xanthium strumarium
Avena fatua

In vitro germination inhibition
experiments in Petri dishes,
doses tested: 0.01, 0.02 and
0.03%.

At 0.01 and 0.02%, seed
germination of all weeds
tested was affected; at 0.03%,
S. arvensis germination was
completely blocked and the
germination of the other
weeds was strongly inhibited.
Germinated seeds in treated
Petri dishes with 0.02 and
0.03% doses showed a high
reduction in root and shoot
lengths.

[77]

In vivo experiments in pots
incubated in a growth chamber,
doses tested: 1, 2 and 3%.
3–4 leaf stage plants were
sprayed with the EO treatments,
injury level was registered daily
1–6 days after treatment.

At the highest concentration
(3%), 100% lethality in S.
arvensis, S. oleraceus and A.
fatua and 90% in X.
strumarium.
Total chlorophyll content was
reduced depending on the EO
concentration.
At 1% significant electrolyte
leakage was registered for all
weeds except A. fatua. At
2–3% significant decline of
membrane integrity was
observed due to intense ion
leakage.
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Rosmarinus officinalis

Satureja hortensis

Laurus nobilis

α-Pinene (25.85%),
1,8-cineole (9.67%),

camphor (9%),
camphene (7.79%)

γ-Terpinene (31.98%),
carvacrol (55.66%)

1,8-Cineole (40.1%), α
-terpinyl acetate (14.6%),

terpinene-4-ol (6.37%)

Amaranthus retroflexus,
Bromus tectorum

Solanum lycopersicum

Bioassays in Petri dishes with
filter paper with the EOs
prepared in solution with
Tween 80, and combination of
R. officinalis (50%) and L. nobilis
(50%) EOs (R+L) were tested in
several concentrations: 100, 200,
400, 800, 1000 and 1200 µL/L.
A solution of 2.0% v/v Tween 80
in distilled water was used as
control.

The tested EOs strongly
inhibited the germination and
seedling growth of all species,
in a dose dependent manner,
with A. retroflexus the most
sensitive.
At 400 µL/L, R. officinalis EO
inhibited A. retroflexus
germination by 91.3%;
germination of B. tectorum
and seedling growth of
tomato were reduced by 56.7
and 26.7%, respectively.
R. officinalis EO was the most
active against germination of
A. retroflexus and S.
lycopersicum while B. tectorum
germination was well
inhibited by S. hortensis EO.
A. retroflexus shoot length was
inhibited by R+L EO more
than by the other EOs, while
the higher root growth
inhibition was caused by S.
hortensis EO.
For B. tectorum and S.
lycopersicum, S. hortensis EO
showed the strongest
inhibitory effect on root and
shoot elongation.

[68]
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Eucalyptus citriodora

Lavandula angustifolia

Pinus sylvestris

Citronellal (88.0 ± 0.8%),
isopulegol (4.3 ± 1.1%)

Linalool (38.7 ± 0.1%),
1,8-cineole (26.5 ± 0.0%),

camphor (14.2 ± 0.1%)

α-Pinene (25.6 ± 0.2%),
limonene (18.5 ± 0.2%),

bornyl acetate
(17.9 ± 0.0%), β-pinene

(15.9 ± 0.1%)

Portulaca oleracea
Lolium multiflorum

Echinochloa crus-galli
Solanum lycopersicum

Cucumis sativus
Nicotiana glauca

In vitro assays in Petri dishes,
seed germination and seedling
growth were evaluated. Doses
tested: 0.125–1 µL/mL.

L. angustifolia EO was the
most active in all species
tested except cucumber. E.
citriodora and P. sylvestris did
not reduce weed seed
germination at the doses
tested. L. multiflorum was the
most sensitive weed,
especially to L. angustifolia EO,
which reduced its hypocotyl
and radicle length by 87.8%
and by 76.7%, at the
maximum dose applied.
C. sativus behaved as the most
resistant crop, it did not show
any reductions on seed
germination and hypocotyl
length.
L. angustifolia could be used to
control L. multiflorum in
cucumber crops without
affecting it.

[78]
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Copaifera duckei

Copaifera reticulata

Copaifera martii

Leaf EO: germacrene D
(23.37%),

β-caryophyllene
(13.92%),

bicyclogermacrene (9%)
Steam EO:

β-caryophyllene
(33.45%), germacrene D

(12%), α-humulene
(7.63%)

Leaf EO:
β-caryophyllene

(20.06%), germacrene D
(17.53%), δ-cadinene

(6.61%)
Steam EO:

β-caryophyllene
(24.77%), β-selinene

(14.36%), germacrene D
(10.61%),

Leaf EO:
β-caryophyllene (19.9%),
germacrene D (15.82%),

bicyclogermacrene
(8.86%)

Steam EO: α-copaene
(14.41%),

β-caryophyllene (9.2%),
cyperene (8.25%),
δ-cadinene (7.19%)

Mimosa pudica
Senna obtusifolia

Steam and leave EOs were
tested.
In vitro assays in Petri dishes to
test germination inhibition
capacity of EOs, and their
effects on root and hypocotyl
development.

The inhibitory effects of both
EOs against M. pudica and S.
obtusifolia germination were
very low (<20%).
Inhibitory effects of the EOs
were greater on root
development than on seed
germination.
M. pudica was more sensitive
than S. obtusifolia.
Leaf oils showed strong
phytotoxic activity on root
and hypocotyl development
(values above 42%), whereas
stem oils showed greater
inhibition of seed
germination.
C. reticulata was the most
active EO against seed
germination, and C. martii
against root development.
Against hypocotyl
development, C. reticulata EO
showed the greatest activity
on M pudica (76% inhibition)
while C. martii EO on S.
obtusifolia (47.2% inhibition).

[89]
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Thymbra capitata

Mentha × piperita

Santolina chamaecyparissus

Eucalyptus camaldulensis

Carvacrol (72.30%),
p-cymene (8.93%),
γ-terpinene (7.77%)

Menthol (51.81%),
menthone (20.52%)

1,8-Cineole (17.50%),
viridiflorol (13.56%),

germacrene-D (12.60%)

Spathulenol (31.29%),
p-cymene (20.36%),

cryptone (17%)

Erigeron bonariensis

In vivo assays in pots, in
greenhouse conditions, in pre-
and post-emergence. EOs
emulsified with water using
Fitoil (1 µL/mL). In
pre-emergence EOs were
applied by watering, in
post-emergence EOs were
applied by watering and by
spraying. Doses tested 2, 4 and
8 µL/mL.

All the EOs inhibited E.
bonariensis germination, with
the most effective being T.
capitata, followed by E.
camaldulensis and S.
chamaecyparissus.
In post-emergence assays, T.
capitata EO was the most
active in both modes of
application but acted more
rapidly when sprayed. The
second most active EO was E.
camaldulensis applied by
watering and also M. piperita
EO applied by spraying
showed a similar
effectiveness.

[69]

Thymbra capitata Carvacrol
(72.30–77.13%)

Erigeron canadensis
Sonchus oleraceus

Chenopodium album
Setaria verticillata

Avena fatua
Solanum nigrum

Amaranthus retroflexus
Portulaca oleracea

Echinochloa crus-galli

In vitro assays in Petri dishes,
EO applied directly to the filter
paper. Doses tested: 0.125, 0.5,
0.5, 1 and 2 µL/mL.

The EO controlled completely
the germination and seedling
development of E. canadensis,
S. oleraceus and C. album
(more sensitive species) at
0.125 µL/mL, of S. verticillata,
A. fatua and S. nigrum at
0.5 µL/mL, of A. retroflexus at
1 µL/mL and of P. oleracea and
E. crus-galli (more resistant
species) at 2 µL/mL.

[72]

Thymbra capitata Carvacrol
(72.30–77.13%)

Tests against the seedbank of a
citrus orchard, in trays, in
greenhouse conditions, EO
emulsified with water using
Fitoil (1 µL/mL) applied in pre-
and post-emergence, doses
tested: 1, 2 and 4 µL/mL.

Good results with the dose
4 µL/mL.
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Thymbra capitata Carvacrol
(72.30–77.13%)

Erigeron bonariensis
Portulaca oleracea

Avena fatua
Echinochloa crus-galli
Erigeron bonariensis

In vivo assays in greenhouse
conditions, EO applied in
post-emergence, when the
plants had 2–3 true leaves
(stage 12–13 BBCH scale) for
the monocotyledons, and 3–4
true leaves (stage 13–14 BBCH
scale) for the dicotyledons, by
watering or by spraying,
emulsified with water using
Fitoil (0.5 µL/mL). Doses tested:
4, 8 and 12 µL/mL for all
species, except E. bonariensis, on
these species the doses tested
were 2, 4 and 8 µL/mL.

E. crus-galli was the most
resistant species. Comparing
results with the EO applied
by irrigation and by spraying,
it was concluded that at the
same doses it was more
effective on monocotyledons
applied by irrigation and on
dicotyledons by spraying.
The EO applied by spraying
controlled completely P.
oleracea at all doses applied, E.
bonariensis at 2 and 8 µL/mL
and A. fatua at the highest
dose applied. On E. crus-galli
was not effective when
applied by spraying. The EO
applied by irrigation at the
highest dose totally controlled
A. fatua, while P. oleracea and
E. bonariensis were controlled
in 90% and E. crus-galli 50%.

Thymbra capitata
Mentha × piperita

Santolina chamaecyparissus

Carvacrol (72.30%),
p-cymene (8.93%),
γ-terpinene (7.77%)

Menthol (51.81%),
menthone (20.52%)

1,8-Cineole (17.50%),
viridiflorol (13.56%),

germacrene-D (12.60%)

Amaranthus retroflexus
Portulaca oleracea

Avena fatua
Echinochloa crus-galli

In vivo assays in pots in
greenhouse conditions. EOs
applied in post-emergence. EOs
applied by watering and by
spraying, emulsified with water
using Fitoil (0.5 µL/mL).
Doses tested: 4, 8 and 12 µL/mL
T. capitata EO; 12, 16 and
20 µL/mL M. piperita EO; 12, 16
and 20 µL/mL S.
chamaecyparissus EO.

T. capitata EO was the most
effective, killing all plants of
all weed species at the highest
dose applied, except P.
oleracea, which was eliminated
in 90%. M. piperita EO also
showed good herbicidal
potential, especially against A.
retroflexus and A. fatua, which
were the most sensitive weeds
to all EOs tested, while P.
oleracea and E. crus-galli were
the most resistant. S.
chamaecyparissus was the least
active EO; it controlled some
plants but did not eliminate
completely any species.

[71]
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

17 Eucalyptus EOs tested
Eucalyptus nutans

E. resinifera

E. carnei

E. amplifolia

E. angulosa

E. fastigata

1,8-Cineole (23.36%),
α-pinene (14.65%),
viridiflorol (7.58%),
trans-pinocarveol

(6.67%)

1,8-Cineole (37.19%),
α-pinene (13.82%),
trans-pinocarveol

(10.55%), borneol (7.40%)

1,8-Cineole (19.21%),
α-pinene (34.19%),
trans-pinocarveol

(8.27%)

1,8-Cineole (17.57%),
α-terpinyl acetate
(11.26%), α-pinene

(7.64%), globulol (6.77%),
trans-pinocarveol

(6.77%), aromadendrene
(6.65%)

α-Pinene (17.61%),
1,8-cineole (16.58%),

globulol (12.36%),
trans-pinocarveol

(9.77%)

β-Eudesmol (31.90%),
γ-eudesmol (17.32%),
1,8-cineole (12.17%),
α-pinene (9.22%)

Lolium rigidum

Germination and growth
inhibition test in Petri dishes.
EOs were added at doses of 0,
0.25, 0.5, 2.5, 5.0 and 7.5 µL in
each Petri, previously filled
with 5 mL of water.

Effects depended on the
Eucalyptus species EO tested.
At 5.0 µL/dish and 7.5
µL/dish, 100% germination
inhibition by E. grandis, E.
resinifera and E. angulosa.
At 5.0 µL/dish and 7.5
µL/dish, E. ampflifolia and E.
carnei inhibited the shoot
growth by 96.6 and 93.2%.
At 7.5 µL/dish, E. carnei and E.
amplifolia inhibited the root
growth by 99.3 and 93.0%.

[74]

Germination and growth
inhibition test in Petri dishes.
Pure compounds 1,8-cineole,
α-pinene, α-terpineol,
trans-pinocarveol, γ-terpinene
and terpinolene were tested at
the doses of 0, 0.25, 0.5, 2.5, 5.0
and 7.5 µL) in each Petri,
previously filled with 5 mL of
water.

At 2.5 µL/dish, α-terpineol
and trans-pinocarveol
reduced the germination by
98.9 and 96.4%, while the
others less than 14.8%.

Pot experiment was conducted
with α-pinene (weak herbicidal
activity) and α-terpineol and
trans-pinocarveol (strong
herbicidal activity). Doses
tested: 0, 0.0625, 0.125, 0.25, 0.8
and 1.0 mL/g soil.

At 0.5 µL/g and 1.0 µL/g,
trans-pinocarveol totally
controlled L. rigidum
germination, α-terpineol
inhibited the germination by
49.0 and 89.7%, respectively,
and α-pinene reduced
germination by 43.9 and
56.0%, respectively.
The IC50 value was 0.16 µL/g
for α-terpineol and 0.19 µL/g
for trans-pinocarveol. The
IC50 of control herbicide
pendimethalin was 0.017 µL/g
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Table 1. Cont.

EO Tested Main Compounds of
the EO

Species against Which
the EO Have Been Tested Methodology

Herbicidal
Activity/Phytotoxic Effects

Observed
Bibliography

E. selachiana

E. albida

E. grandis

E. planchoniana

E. exserta

E. saligna × E. exserta No. 9 (the optimizing
of 9 lines of E. saligna × E. exserta)

E. urophylla No. 4

E. urophylla No. 16

E. urophylla × E. camaldulensis No. 3

E. grandis × E. urophylla No. 5

E. grandis × E. urophylla No. 9

α-Pinene (13.25%),
1,8-cineole (11.62%),

globulol (7.54%),
terpinolene (7.54%),
β-eudesmol (7.53%)

α-Pinene (22.27%),
1,8-cineole (11.49%),
isobutyl isobutyrate

(11.19%)

2,2,5,5-Tetramethyl-
4-(2-hydroxy-2-

methylbutylidene)
cyclopenta-1,3-dione
(13.17%), flavesone

(9.29%),
iso-leptospermone

(8.11%)
β-Eudesmol (20.02%),
α-pinene (11.63%),

1,8-cineole (11.02%)
1,8-Cineole (46.31%),
p-cymene (20.41%),
α-pinene (9.75%)

1,8-Cineole (55.31%),
(Z)-β-ocimene (19.23%),

α-terpinyl acetate
(15.04%)

1,8-Cineole (64.09%),
α-pinene (11.40%)

1,8-Cineole (62.74%),
α-pinene (22.64%)

1,8-Cineole (43.89%),
α-pinene (16.28%),
limonene (26.61%)

1,8-Cineole (64.34%),
α-pinene (12.89%)

1,8-Cineole (63.69%),
α-pinene (13.12%)
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4. Effects of EOs on Plant Physiology and Mode of Action of Their Isolated Constituents

EOs are a complex mixture of biological active compounds, which can synergistically, additively
and/or antagonistically interact among them [12]. Moreover, it should be considered that their
composition is extremely variable depending on genotype, ecotype, biotic and abiotic stress,
environmental condition and/or cropping management [90,91]. The complexity of the mixture
joined to its high variability makes the identification of their mode of action extremely complex and
hardly achievable.

On the contrary, despite the complexity and the necessity of a multidisciplinary approach,
the identification of the mode of action of their pure constituents in controlled conditions is a simpler
task. This is the main reason why we find many works in the literature focused on the mode of action
of individual compounds rather than essential oils. Regardless, it should be highlighted that despite
the lack of information concerning the EOs mode of action, several commercial organic herbicides
are already available on the market (Section 5), whereas herbicides based on their pure constituents,
which on the contrary have been deeply studied, are barely available.

4.1. Effects of EOs on Plant Physiology and Metabolism

To our knowledge, the only manuscript that has tried to hypothesize the mode of action of an EO
was published by Araniti et al. [92]. Through an integrated physiological and metabolomic approach
they were able to demonstrate that Origanum vulgare EOs treatment was able to inhibit the glutamate
and aspartate metabolism altering the photorespiratory pathway and the photosynthetic machinery.

On the other hand, the literature reports much research focused on the potential application of
EOs as leaf burning herbicides (with selective and/or nonselective activity) and on their effects on
plant physiology.

Concerning the selectivity of the EOs, Synowiec et al. [93] reported that caraway EO emulsion
was a good candidate for weed management in corn crops. This EO was selective, severely affecting
the physiology and metabolism of E. crus-galli without damaging the corn. Moreover, the authors
demonstrated that the application of this EO severely impacted the plant metabolism by altering
several amino acidic pathways and the TCA cycle of treated plants. On the contrary, the same authors
demonstrated that peppermint EO phytotoxicity was significantly higher than that of caraway EO but
with no selectivity.

Concerning the effects of EOs on plant physiology, it was demonstrated that the application of
different EOs, as E. citriodora [84], E. tereticornis [79] and S. hortensis [67], caused a reduction in the
chlorophyll content and the cellular respiration of the treated weeds. These observations indicate that
EOs were affecting negatively the photosynthetic system and the energy metabolism of the target
plants [84].

Phytotoxic effects of EOs that can be visible in treated plants, like growth reduction, chlorosis
and burning of leaves, have been attributed to their interference with some processes in the plant
cells, like inhibition of mitosis, decrease of cellular respiration and chlorophyll content, membrane
depolarization and ion leakage, removal of the cuticular waxes, oxidative damages and microtubule
polymerization [24]. EOs that alter the membrane integrity (e.g., E. citriodora EO), consequently
increasing its permeability and enhancing the solute leakage [75], affect other physiological and
biochemical processes linked to membrane functioning [64].

Regarding the inhibitory effects on seed germination of EOs, it was demonstrated that the
phytochemicals prevent seed germination by the disruption of mitochondrial respiration and oxidative
pentose phosphate pathway (OPPP) [94–96].

The reduction that EOs cause on seedling root and shoot length can be attributed to the reduced
rate of cell division and cell elongation due to the activity of allelochemicals and reduced mitotic
index [97].

The main components of EOs are monoterpenes, but oxygenated monoterpenes have shown
more phytotoxic effects than monoterpene hydrocarbons [57,98]. EOs and their components can cause
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anatomical and physiological changes in plant seedlings, causing accumulation of lipid globules in the
cell cytoplasm and reduction in membrane permeability and respiration, possibly due to the inhibition
of DNA and RNA syntheses [48]. Phytotoxicity can be increased with the synergistic effects of EO
components [99].

4.2. Terpenoids Phytotoxicity and Mode of Action

The phytotoxic potential of terpenoids has been largely documented in the last 20 years.
Because of their relatively simple structure, as well as their multiple biological activity and ecofriendly
characteristics, they have been proposed for the formulation of natural herbicides or as a backbone
for the production of synthetic natural-like herbicides [100]. Nevertheless, despite the extensive
proof concerning their in vitro and in vivo (both microcosms and open field) phytotoxicity, only few
experiments have highlighted, or at least have tried to highlight, their mode of action.

In the present review, we tried to focus on those molecules that have been deeply studied, giving
a proof and/or a hint concerning their potential mode of action.

Amongst terpenoids, cineoles have been the most widely studied, and 1,4 cineole is of
particular interest because of its similarity in structure with the synthetic herbicide cinmethylin [101].
This molecule, as well as several other terpenoids, significantly altered the mitotic process affecting the
prophase. Moreover, it induced growth abnormalities in shoots, such as helical growth [81] (Table 2).

Similarly, 1,8-cineole (eucalyptol), a monoterpene largely produced by the allelopathic species
Eucalyptus sp. [102], is a ubiquitous terpene characterized by a strong inhibition of plant growth
affecting mitochondrial respiration and, in onion roots, inducing the formation of swollen root tips and
the inhibition of all the mitosis stages [81,103] (Table 2).

Moreover, a recent publication [104] demonstrated that 1,8-cineole vapors were able to inhibit
the tuber sprout growth of Solanum tuberosum ”Russet Burbank” reducing gibberellin production
(in particular GA20 but not GA19). The authors, by supplying exogenous gibberellins (GA1, GA3 and
GA20), were able to reverse cineole-induced sprout growth inhibition. In addition, the expression of
genes encoding key gibberellin metabolic enzymes was significantly altered by the treatment, suggesting
that this natural monoterpenoid interferes with plant growth and development by impairing the
biosynthesis of gibberellin (Table 2).

The radial root tip swelling observed after 1,8-cineole treatment and the helical growth of the
shoot of plants treated with 1,4-cineole are a clear sign that these molecules are able to interfere
with cell division and with the cortical microtubule organization (Table 2). In fact, Baskin et al. [105]
demonstrated that the chemicals oryzalin and colchicine, two tubulin disorganizers, could induce
two different effects on the root tip: radial expansion (phenomenon known as swelling) or root
growth inhibition, which can be accompanied by a characteristic anisotropic growth “corkscrew shape”
(phenomenon known as handedness) [106]. In particular, Baskin et al. [105] demonstrated that the root
swelling is mainly due to a disorganization of cortical microtubules, which stimulated the tangential
expansion and reduced the uniformity of cellulose microfibril alignment among cells.

Although no evidence has been provided regarding the effects of 1,8-cineole on microtubules,
the ability of terpenoids, in particular mono- and sesquiterpenes, in altering both cortical and spindle
and phragmoplast microtubules, has been largely documented in the last few years.

The first evidence, concerning microtubules as intracellular target of the terpenoids, was given
by Chaimovitsh et al. [107] with the monoterpene citral. In a first experiment, they were able to
demonstrate that a few minutes exposition of Arabidopsis seedlings to citral vapors was sufficient to
disrupt the microtubules organization and polymerization, leaving intact the actin filaments (Table 2).

Successively, working on wheat roots, they further demonstrated that citral treatment led to the
alteration of root growth and cell ultrastructure (curvature of newly formed cell walls and deformation
of microtubule arrays) [108]. They highlighted that mitotic microtubules were more sensitive than
cortical and, as a consequence, citral was able to disrupt mitotic microtubules, inhibiting the cell cycle
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and increasing the frequency of asymmetric cell plates in treated cells by directly interfering on cell
plates during their formation [107,108] (Table 2).

More recently, Graña et al. [109] were able to further confirm the citral-mediated inhibition of cell
division and to link for the first time the ultrastructure cellular alteration to a biased hormonal balance
(auxin and ethylene), and to a reduction in plasmodesmata-mediated cell–cell communication (Table 2).
In addition, through a staining technique the authors have been able to histolocalize citral accumulation
in Arabidopsis roots demonstrated that it accumulates mainly in the differentiation zone [110] (Table 2).

Finally, in 2020, through a transcriptomic and molecular docking approach, Graña et al. [111]
demonstrated that just 1 h of exposition to citral was enough to induce an inhibition of the single
strand DNA-binding proteins, as a consequence, downregulating the genes transcription (Table 2).

A link between cell division, microtubule organization and hormonal level was also highlighted
by Araniti et al. [112,113] with the sesquiterpene farnesene. This ubiquitous molecule, generally
present in low concentrations in various plant species, has been shown to play a fundamental role
in the defense of the plant, and the increase in its production is closely linked to the presence of
stress [114,115]. Araniti et al. [113] demonstrated that farnesene was inducing reactive oxygen species
(ROS) accumulation, alteration of cell division (bi- and tetranucleated cells) and an anisotropic growth
of the root (left handedness and loss of the gravitropic response), mainly due to auxin-mediated
microtubule malformations (Table 2). Further investigating this phenomenon, they were able to
demonstrate that the microtubule malformation was a consequence of an altered auxin distribution.
In fact, during their experiments they observed that farnesene was able to downregulate all the auxin
polar transport proteins (PIN proteins) and, through a confocal microscopy approach using GFP (green
fluorescent protein) mutant lines, they were able to observe a complete absence of the proteins PIN4
and PIN7, pivotal for auxin redistribution in root meristem, at the level of the quiescent center [112]
(Table 2). Furthermore, they demonstrated anatomically that the left-handedness phenotype was due to
a difference in length between the inner cell of the root meristem and the epidermal cells. In particular,
because of farnesene-mediated microtubule malformations, the inner cells were shorter than epidermal
cells and the last were characterized by an abnormal shape [112].

In addition, the sesquiterpene alcohol nerolidol (Table 2) induced in A. thaliana an alteration in root
morphology, growth and development, altering the auxin balance and inducing ROS accumulation
followed by lipid peroxidation. Moreover, as observed in farnesene, the primary root was characterized
by a random corkscrew shape indicating a possible alteration of the cortical microtubules. On the
other hand, plants were able to counteract the stress by increasing the activities of the two ROS
scavengers, superoxide dismutase and catalase, as well as inducing the production of metabolites
with osmoprotectant activity. The metabolomic pathway analysis highlighted that starch and sucrose
metabolism, alanine, aspartate and glutamate metabolism, and glycine, serine and threonine metabolism
were the most affected pathways [116] (Table 2).

Similar to farnesene, Yan et al. [117] reported that artemisinin, a sesquiterpene endoperoxide,
was inducing in lettuce root tips an arrestment of cell division, and the loss of cell viability because of
an artemisin-induced ROS burst followed by an increase of lipid peroxidation and damages to cell
membrane. Successively, they also demonstrated that the same molecule altered the root gravitropic
responses, as well as root growth, development and architecture, in seedlings of Arabidopsis thaliana
They further demonstrated that the gravitropic alterations observed were mainly due to a reduction in
the number of starch grains in the columella cells and to altered auxin lateral distribution (inhibition of
the PIN2 carrier) [118] (Table 2).

All those findings are extremely interesting since the ability of terpenoids to inhibit and/or alter
mitosis and cell division is a phenomenon that has been largely reported in the past [81,108,109,119],
but only now it is possible to affirm that such alterations are the consequence of the direct effects of
these molecules on microtubule organization, suggesting that terpenoids, at least those which are able
to affect mitosis, can be considered as a class of mitotic disrupter bioherbicides [120].
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However, in vitro experiments are pivotal for a rapid and economic screening of molecule
phytotoxicity, for the identification of the main target (root and shoot), for the identification of key
concentrations (e.g., effective and lethal doses), and for the potential identification of their mode of
action under controlled conditions; often the effects observed in vitro on seedlings do not coincide
with those observed on adult plants of the same species [109,121,122]. Therefore, it is usually necessary
to increase the concentrations of the molecules assayed to observe phytotoxicity effects.

For example, the terpenoid citral was extremely active in vitro at concentrations of 194 µM
(IC50—dose necessary to inhibit the root length by 50%), whereas it was necessary to increase its
concentration at least 10 times to see phytotoxic effects on adult plants [121,122].

In particular, they observed that the application of citral through irrigation or spraying had
completely different effects on plants, suggesting that foliar or root absorption can determine the
effectiveness of this compound. Anyway, the subirrigation method was the most effective, inducing an
alteration of the plant water status followed by oxidative stress and damages to the photosynthetic
machinery, which resulted in a strong reduction of plant growth and development [121] (Table 2).
The same authors, further investigating the effects of this molecule on the plant water balance, observed
a time dependent reduction of stomatal conductance accompanied by a reduction of leaf relative water
content and its water potential. Moreover, the plant fitness was extremely compromised since treated
plants were unable to complete their leaf cycle because of a premature withering of the flowers and the
inability to produce silique and develop seeds [122] (Table 2). These effects are extremely encouraging
since citral application, if its effects are reproducible on weed species, could be used as an ecofriendly
herbicide able to reduce the fitness of the crop competitors, without completely eradicating them
(allowing the maintenance of the biodiversity in the agroecosystem), and to strongly reduce the weed
seed bank in the soil.

In addition to mitosis, the alteration of the plant water status is a phenomenon commonly
observed in adult plants treated with terpenoids. For example, it was reported that the lipophilic
layers of the leaf surface and the stomata are primary targets of menthol and camphor. Full expanded
rosettes of Arabidopsis exposed for different hours to monoterpenes vapors were characterized by
an increase of stomatal aperture, followed by an extreme swelling and a final breakdown of the
protoplasts, an alteration of cuticular wax layer, which induced, as a consequence, huge water loss
and plant death [123]. They further demonstrated that both compounds, in particular camphor,
prevented stomatal closure and inducing changes to stomata cytoskeleton, which plays a pivotal role in
stomatal movements. Moreover, the prolonged treatment induced a reduction of the expression of the
genes MPK3 and ABF4, which encode for proteins involved in the process of stomatal closure, and a
concomitant downregulation of the PEPCase expression, which is an enzyme important for stomatal
opening. All these effects were followed by an alteration of the plant water status accompanied by a
reduction in growth and development, and a final plant death if the exposure to vapors was prolonged
for more than 48 h [124,125] (Table 2).

Araniti et al. [125] observed that adult plants of Arabidopsis treated through irrigation with
the sesquiterpene trans-caryophyllene were characterized by pinwheel shaped rosettes (Table 2).
In addition, this phenomenon is known as handedness since it could interest both root and shoot organs.
Regardless, as for the roots, it is due to a microtubular alteration and a disturbance to their dynamic
instable equilibrium. Such a phenomenon was observed in plants subjected to salinity stress [126].
As for salinity stressed plants, and plants treated with this sesquiterpenoid were characterized by a
significant alteration of the plant water status accompanied by an accumulation of reactive oxygen
species and lipid peroxidation, which led to physical damages in the PSII antenna complexes and a
consecutive reduction of carbon assimilation [125].

Similarly, in a recent experiment, the terpenic phenol thymol caused a significant alteration of
the plant water status accompanied by increase in ABA (abscisic acid) content, which induced a total
closure of the stomata and the accumulation of heat at the level of the leaf lamina. These effects were
followed by a strong accumulation of reactive oxygen species and damages to the photosynthetic
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machinery. The authors demonstrated that the plants were activating several biochemical and metabolic
mechanisms aimed to counteract the stress. In particular, the thymol-treated adult plants increased
the production of several osmoprotectants metabolites (quaternary ammonium compounds, hexoses,
polyols, anthocyanins etc.) and upregulated the production of several proteins involved in ROS
scavenging activities. On the other hand, several proteins involved in photosynthesis were significantly
downregulated by the treatment (e.g., the light harvesting complexes of PSII (LHCIIs), the PSII reaction
centers (RCIIs), antenna pigment-protein complex CP47 etc.) [127] (Table 2).

Other molecules, belonging to the terpenoids class, were characterized by a mode of action,
which reduced pigment content and/or impaired the PSII system. Among them, the sesquiterpene
endoperoxide artemisinin should be mentioned. Bharati et al. [128] demonstrated that this molecule
was able to inhibit the electron transport activity in chloroplasts affecting, as target site, the secondary
quinone moiety of photosystem II complex (QB). Moreover, they suggested that the phytotoxicity of
this molecule at PSII level was mainly due to the formation of a complex between the molecule and
an protein known as “herbicidal binding protein,” which is known to bind to several herbicide and
natural compounds such as atrazine, fisherellin, grandinol, sorgoleone etc., impairing the electron flow
beyond the primary electron-accepting plastoquinone QA (Table 2).

More recently, Hussain and Reigosa [129] further confirmed that artemisinin, in adult plants of
Arabidopsis, altered the photosynthetic machinery, reducing the photosynthetic efficiency, PSII yield
and the electron transport rate (Table 2).

5. Commercial Herbicides Based on EOs

Among the commercial organic herbicides based on EOs and/or their compounds, mainly
available in the USA market, these should be mentioned: herbicides based on clove EO (S. aromaticum);
summer savory EO (S. hortensis); cinnamon EO (C. zeylanicum); red thyme EO (Thymus zygis L.);
lemongrass EO (Cymbopogon citratus (DC.) Stapf); d-limonene, one of the major compounds in many
citrus EOs, as orange (Citrus sinensis (L.) Osbeck), lemon (C. limon) or mandarin (Citrus reticulata
Blanco); and eugenol, the main compound of clove EO. The commercial products available are
GreenMatch (55% d-limonene), Matratec (50% clove oil), WeedZap (45% clove oil + 45% cinnamon
oil), GreenMatch EX (50% lemongrass oil), Avenger Weed Killer (70% d-limonene) and Weed Slayer
(6% eugenol) [130,131]
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Table 2. Effects and metabolic targets of phytotoxic terpenoids on different species. Manuscripts focused on the screening of the phytotoxic potential of pure molecules,
that reported only information of their effects on germination or shoot and root growth parameters, were not included in the table.

Molecule Species Effects Bibliography

Monoterpenoids

α -Pinne Zea mays Altered the mitochondrial respiration by inhibiting the electron transport chain [132]

Cassia occidentalis Enhanced solute leakage in roots, increased H2O2 content and lipid peroxidation
inducing oxidative stress; stimulated the production of the osmoprotectant proline

ß-Pinene Oryza sativa Reduced chlorophyll content, enzymatic activity of proteases, cell respiration and α-
and ß-amylases; stimulated the activity of polyphenol oxidases and peroxidases [133]

Citral Triticum aestivum Reduced cell division, disrupted mitotic microtubules and cell plates, and inhibited cell
elongation by damaging cortical microtubules [108]

Arabidopsis thaliana
Altered auxin content, cell division and ultrastructure inducing cell wall thickening,
damages to mitochondria, chromatin fragmentation and reduction in intercellular
communication (plasmodesmata alteration)

[109]

Arabidopsis thaliana Altered plant metabolism, induced oxidative stress and damages to the photosynthetic
machinery reducing its efficiency [121]

Arabidopsis thaliana Altered plant water status and plant fitness (plants were unable to produce siliques and
seeds), increased anthocyanin content (osmoprotectant) [122]

Arabidopsis thaliana Inhibition of DNA transcription by competing with the strand-binding proteins [112]

Allium cepa
Strongly inhibited metaphase, anaphase and telophase and induced cellular aberration
(stickiness, binucleated cell, disturbed anaphase–telophase, chromosomal ring,
c-mitosis, chromosomal fragmentation, mitotic bridge, vagrant, polyploidy, laggard)

[119]

Citronellal Cassia occidentalis Reduction of chlorophyll content and cell respiration [134]

Eugenol Cassia occidentalis and Bidens
pilosa

Reduced chlorophyll content, photosynthetic efficiency and cellular respiration; altered
the mitotic activity disorganizing the microtubule organization and altering the
biosynthesis of cell wall

[135]

Limonene Zea mays Stimulated the basal respiration in isolated mitochondria and inhibited the coupled
respiration, triggering loosening of respiratory control [95]

Allium cepa Induced chromosomal and nuclear aberrations (sticky chromosomes, polynucleated
cells, among others) [119]

Menthol Arabidopsis thaliana

Induced an alteration of plant water status, enhancing excessive transpiration. In fact, it
induced protoplasts swelling, blocked stomatal closure altering the cytoskeleton
organization (it has a pivotal role in stomatal movements); downregulated the
expression of PEPCase (enzyme with an important role during stomatal opening)

[124]

Cucumis sativus Increased the concentration of cytosolic free calcium ions (Ca2+) [136]
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Table 2. Cont.

Molecule Species Effects Bibliography

Zea mays Induced the production of malondialdehyde, peroxides and conjugated dienes
inducing, as a consequence, oxidative stress [137]

Pulegone Cucumis sativus Acted as an uncoupler agent of mitochondrial respiration [136,138]

Thymol Arabidopsis thaliana
Altered the plant water status, induced oxidative stress and physical damages to the
photosynthetic machinery; plants responded by accumulating metabolites (amino acids,
sugars, anthocyanins, among others) and protein involved in oxidative stress defense

[127]

S-Carvone Solanum tuberosum Reduced the activity of the 3-hydroxy-3-methylglutaryl coenzyme A reductase without
affecting its mRNA level [138]

Camphor Allium cepa Inhibited mitosis and cell respiration [103,139]

Arabidopsis thaliana Altered the cuticular waxes structure and enhance leaf transpiration causing water
losses and cell dehydration [123]

Arabidopsis thaliana Disrupted actin filaments and microtubules affecting cell division [124]

1,8-Cineole Avena fatua Inhibited mitochondrial respiration in isolated organelles [139]

Allium cepa Inhibited mitosis in all its stages [81]

Allium cepa Induced swelling of the root tips, phenomenon known to be caused by an alteration of
the cortical microtubules [103]

1,4-Cineole Allium cepa Inhibited the prophase of mitosis and induced malformations in the shoot, which was
characterized by corkscrew-shape (handedness). [81]

Echinochloa crus-galli, Cassia
obtusifolia

Inhibited the photosynthetic efficiency causing a reduction of plant growth and
development [81]

Ageratum conyzoides
Disrupted the microtubule organization and altered the biosynthesis of cell wall; in
addition, it induced a decrease in chlorophyll content and cell respiration reducing the
photosynthetic activity

[82]

Sesquiterpenes

Farnesene Arabidopsis thaliana

Altered the auxin/ethylene balance inducing an alteration of the microtubule
organization and density, as a consequence induced a loss of the gravitropism due to an
anisotropic growth of the primary root (phenomenon known as left-handedness);
induced cell ultrastructure alterations (swollen cell walls, broken mitochondria,
polynucleated cells etc.)

[114]

Arabidopsis thaliana
Affected auxin transport (inhibited all PIN proteins) and distribution causing the
alteration of cell shape in the root meristem, and consequently the left-handedness
phenotype.

[113]



Plants 2020, 9, 1571 43 of 52

Table 2. Cont.

Molecule Species Effects Bibliography

trans-Caryophyllene Arabidopsis thaliana
Induced alterations to plant water status followed by oxidative stress and physical
damages to the photosynthetic machinery; moreover, the rosettes of plants treated were
characterized by a cork-screw shape indicating microtubular alterations

[125]

Nerolidol Arabidopsis thaliana

Induced alterations in root morphology mediated by an auxin unbalance and ROS
accumulation; metabolomic analysis pointed out changes in sugar, amino acid and
carboxylic acid profiles causing a strong impact on starch and sucrose metabolism,
alanine, aspartate and glutamate metabolism, and glycine, serine and threonine
metabolism.

[116]

sesquiterpene
endoperoxide

Artemisinin Vigna radiata Inhibited the synthesis of the enzyme peroxidase [140]

Arabidopsis thaliana Altered the root gravitropic responses reducing the number of starch grain in the
columella cells and altering auxin lateral distribution (inhibition of the PIN2 carrier) [118]

Lactuca sativa Induced reactive oxygen species accumulation, lipid peroxidation and cell death [117]

Beta palonga and Oryza sativa
Its biological activity was mainly due to the products of artemisinin metabolization; it
induced a strong inhibition of the photosynthetic electron transport affecting, as target
site, the secondary quinone moiety of photosystem II complex (QB)

[128]

Arabidopsis thaliana Altered the photosynthetic machinery reducing the photosynthetic efficiency, PSII yield
and the electron transport rate [129]

Lemna minor Inhibited cell respiration [141]

Lactuca sativa Stimulates oxygen uptake in root tips, altered all the mitotic phases inducing mitotic
aberrations [142]

Lemna minor Induced the release of proteins in the culture medium as a consequence of plasma
membrane alterations [143]

sesquiterpene
lactone

dehydrozaluzanin C Lactuca sativa Induced electrolyte leakage as a consequence of the separation of the plasma membrane
from the cell wall [144]
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Table 2. Cont.

Molecule Species Effects Bibliography

Diterpenes

Podolactones
(nagilactone C,

podolactone A and
podolactone E)

Several species (lettuce, barley,
Arabidopsis, Lolium temulentum

Inhibited the biosynthesis of chlorophyll, induced the swelling of root tip (cortical
microtubule alteration) and inhibited the hormone-induced growth [145]

Podolactone A Pisum sativum Suppressed auxin- induced growth and proton efflux without affecting ATP levels [146]

Podolactone E Hordeum vulgare Inhibited the biosynthesis of δ-aminolevulinic acid and chlorophyll [147]

Triterpenes and
derivatives

Holacanthone Allium cepa Inhibited all stages of mitosis [148]

Chaparrinone Allium cepa Inhibited all mitotic stages excluded profase [148]

Glaucarubolone Allium cepa Inhibited all mitotic stages excluded profase [148]

Digitonin (saponin) Catharanthus roseus Induced callose biosynthesis and Ca2+ uptake involving transport proteins controlled
by protein phosphorylation/dephosphorylation

[149]

Betulin Allium cepa Altered the formation of the spindle microtubular organization centers, causing the
development of multiple spindle poles and a chromosome asymmetrical convergence [150]
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6. Conclusions and Future Perspectives

In recent years, research regarding the herbicidal potential of EOs and their constituents has
strongly increased. The companies involved in marketing phytosanitary products are becoming more
interested in natural products for integrated pest management, and they are investing in the research
of natural products as bioherbicides. EOs, because of their high phytotoxic activity, are promising
candidates for the development of new potentially ecofriendly products. The main challenges are (i) to
develop adequate formulations that would allow applying phytotoxic EOs under field conditions,
minimizing their high volatility and enhancing their penetrability in plants; (ii) the difficulty and
high cost of registering them in the European market as phytosanitary products, due to their mix of
compounds; and (iii) to determine their mode of action, since EOs are a complex mixture of biologically
active compounds able to affect several targets at the same time, which may be valuable for avoiding
the development of resistant weeds. This could help also to better understand how they work and,
consequently, improve their formulation and application.

Identifying the mode of action of pure isolated terpenoids is growing faster since the
main experiments are carried out under controlled conditions using a single experimental factor
(pure compound concentration), which gives the possibility of attributing to a single molecule the
morphological, physiological, metabolic and molecular variations induced in the treated species.
Moreover, the use of new -omics approaches (genomic, transcriptomic, proteomic and metabolomic)
joined to the classical analytical techniques is giving new cues and hints, which is speeding up the
workflow for the study and discovery of new mechanisms of action.

In the future, the knowledge about terpenoids with known mechanisms of action would allow the
development of natural herbicides, which could exploit the potential synergism among single molecules,
thus reducing the application doses, and still having herbicidal products capable of simultaneously
hitting multiple targets. Moreover, this will help to avoid the development of resistance.

All the advances achieved suggest that in the next years new bioherbicides based on EOs or on
their constituents will be also produced in the European market.
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