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Abstract—The detection of Acute Lymphoblastic (or Lympho-
cytic) Leukemia (ALL) is being increasingly performed with the
help of Computer Aided Diagnosis (CAD) systems based on
Deep Learning (DL), that support the pathologists in performing
their decision by analyzing the blood samples to determine
the presence of lymphoblasts. When using DL, the limited
dimensionality of ALL databases favors the use of transfer
learning techniques to increase the accuracy in the detection, by
considering Convolutional Neural Networks (CNN) pretrained on
the general purpose ImageNet database. However, no method in
the literature has yet considered the use of CNNs pretrained on
histopathology databases to perform transfer learning for ALL
detection. In fact, the majority of histopathology databases in the
literature has either a small number of samples or limited ground
truth labeling possibilities (e.g., only two possible classes), which
hinders the effectiveness of training CNNs from scratch. In this
paper, we propose the first method based on histopathological
transfer learning for ALL detection, that trains a CNN on a
histopathology database to classify tissue types, then performs
a fine tuning on the ALL database to detect the presence of
lymphoblasts. As histopathology database, we consider a multi-
label dataset with a significantly higher number of samples and
classes with respect to the literature, which enables CNNs to learn
general features for histopathology image processing and hence
allow to perform a more effective transfer learning, with respect
to CNNs pretrained on ImageNet. We evaluate the methodology
on a publicly-available ALL database and considering multiple
CNNs, with results confirming the validity of our approach.

Index Terms—Deep Learning, CNN, ALL, Transfer Learning,
Histopathology

I. INTRODUCTION

Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL)
refers to a disease affecting the blood cells, which spreads
rapidly through the body and can result in fatal consequences
if left undiagnosed and untreated. To ensure a detection of
ALL in a timely manner and consequently the possibilities of
recovery, one of the main steps consists in the inspection of
peripheral blood samples to analyze white blood cells. The
inspection and consequent diagnosis is usually performed by
an expert pathologist in a manual way, by analyzing possible
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Fig. 1. Histopathological transfer learning: using a CNN trained on
histopathological data and fine-tuned for Acute Lymphoblastic Leukemia
(ALL) detection.

malformations in white blood cells. Such malformations are an
indication of the presence of lymphoblasts, that occur normally
in bone marrow. However, a greater number of lymphoblasts
than normal in peripheral blood can be a sign of ALL [1], [2].

The manual inspection of blood samples is a time con-
suming process which leads to fatigue and hence affects the
precision of the diagnosis. Therefore, there is a growing inter-
est in developing Computer Aided Diagnosis (CAD) systems
that can help pathologists in performing the diagnosis in a
faster and more reliable way. In fact, CAD systems partially
automate the process by detecting lymphoblasts using image
processing and Machine Learning (ML) techniques [3]. In
particular, ML methods based on Deep Learning (DL) and
Convolutional Neural Networks (CNN) are being increasingly
studied because of their high accuracy in several fields, making
them the state of the art in numerous application scenarios [4],
[5] as well as in several medical fields [6].

Currently, most of DL-based approaches for the detection
of ALL are considering learning procedures that increase the
classification accuracy [7]-[9], original network architectures
suited to processing blood images [10]-[12], or DL-based
preprocessing steps [1], with the purpose of detecting lym-
phoblasts with an increasingly higher precision [3], [13].

In most methods in the literature, the limited dimensionality



of ALL databases favors the use of transfer learning to increase
the accuracy of DL-based methods [1], [7], as happens in
several medical imaging fields due to the scarcity of medical
records, when compared to the high cardinality of samples
in general purpose databases (e.g., ImageNet) [14]. However,
no method in the literature has considered the use of a
histopathological transfer learning to increase the accuracy in
detecting ALL. The histopathological transfer learning consists
in pretraining the CNN model on a histopathology database
(source domain) for tissue type classification and fine-tuning
on an ALL database (target domain) for lymphoblast detec-
tion. The lack of any histopathological transfer learning in
the literature is probably caused by the limitations of most
histopathology databases, that include a small number of
samples, usually with a limited classification possibility (e.g.,
only two classes, such as healthy or cancer). Such limitations
hinder the effectiveness of training CNNs from scratch using
histopathology databases, limiting the comprehensiveness of
the learned feature space, and therefore the possibility of
performing transfer learning.

Recently, histopathology databases with a significantly
higher number of samples and classes and with multi-label
classifications have been proposed [15]. Such databases can
permit to train CNNs from scratch using histopathology im-
ages, learning general features for medical image process-
ing, and enabling to perform a histopathological transfer
learning, more effective for classifying blood samples with
respect to using CNNs pretrained on ImageNet. By using
the histopathological transfer learning, the source domain is
more similar to the target domain, with respect to considering
general purpose images (Fig. 1). In fact, it has been described
in the literature that an increased similarity between source
and target domains increases the effectiveness of the transfer
learning [16]. Moreover, a CNN pretrained on a histopathology
database can be used to detect cancer with limited fine-tuning
[17].

In this paper, we propose the first histopathological transfer
learning for ALL detection. The method is based on the
HistoTNet', a CNN pretrained for tissue classification on a
histopathology database [15] and then fine-tuned for ALL de-
tection. We evaluate the proposed method on the Acute Lym-
phoblastic Leukemia Image Database (ALL-IDB)? [18], with
results showing that our histopathological transfer learning
approach increases the detection of accuracy of lymphoblasts
over using CNNs pretrained on the ImageNet database.

The paper is structured as follows. Section II reviews the
related works. Section III introduces the methodology. Sec-
tion IV describes the experimental results. Finally, Section V
concludes the work.

II. RELATED WORKS
It is possible to divide the methods for ALL detection in
three main categories: i) handcrafted feature extraction and

"http://iebil.di.unimi.it/HistoTNet/index.htm
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shallow ML classifiers; ii) handcrafted feature extraction and
Deep Learning (DL); and iii) pure DL.

The methods in the first category apply a handcrafted feature
extraction step to process the images, then perform the classi-
fication using a shallow ML classifier (e.g., SVM) [19]-[24].
The methods in the second category also apply a handcrafted
feature extraction step, but then consider a deep classifier (e.g.,
CNN) for the classification [25]-[28]. Lastly, the methods
in the third category only consider DL techniques, without
applying handcrafted feature extraction, therefore exploiting
the capability of deep models to automatically learn feature
representations [5]. In most cases, pure DL methods represent
the most accurate approaches for ALL detection [1], [7]-[12].

It is possible to further divide the pure DL methods based on
the approach used to achieve a more accurate classification of
the blood sample images as normal or lymphoblast. In particu-
lar, it is possible to consider three categories: i) more efficient
learning procedures; ii) original network architectures; iii) DL-
based preprocessing.

Methods in the first category include the approaches pro-
posed in [7], [8], based on pre-training a CNN on general
purpose images and then fine tuning it on the ALL dataset.
Similarly, the approach described in [9] uses a CNN pre-
trained on the ImageNet database, then adopts a feature
selection procedure based on swarm optimization to better
adapt to blood sample images.

Methods in the second category propose modifications of
CNN architectures to better capture the details of blood
sample images, such as the technique described in [10], which
proposes a convolutional layer that can be added to existing
CNNs (e.g., AlexNet [29]), with the purpose of preprocessing
the blood sample images and performing a stain deconvolution
operation. Similarly, the approach proposed in [12] introduces
a variation of the ResNet architecture [30] able to capture both
the global and local features of blood samples.

Methods in the third category use DL techniques to pre-
process the images. In particular, the approach described in
[1] uses CNNs trained using an unsupervised procedure to
perform an intelligent tuning of the preprocessing parameters,
with the purpose of realizing an adaptive unsharpening of the
blood samples.

To the best of our knowledge, no method in the literature
has considered the use of a histopathological transfer learning
to increase the accuracy in detecting ALL.

III. METHODOLOGY

This section describes our original methodology for
histopathological transfer learning. The method is based on
training a CNN on a histopathology database for tissue type
classification, substituting the last fully-connected layer with
a layer configured for detecting lymphoblasts, and fine-tuning
the resulting CNN on ALL detection. In the remainder of the
paper, we refer to the resulting CNN as HistoT Net.

Our method executes the following steps: A) histopathology
training; C) creation of HistoT Net; C) deep ALL classifica-
tion. Fig. 2 shows the outline of the methodology.
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Fig. 2. Outline of the proposed methodology. The method executes the following steps: A) histopathology training, in which we train the HistoCNN, a
CNN for histopathology tissue type classification; B) creation of HistoT Net, in which we adapt the HistoC NN for binary classification (0: normal; 1:
lymphoblast); C) deep ALL classification, in which we apply the HistoT Net on the ALL images to predict the presence of a lymphoblast.
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Fig. 3. Examples of patch samples p in the histopathology database, with
associated set of labels. For each patch sample, the label [; 1 represents a
more precise classification than [;.

A. Histopathology Training

We consider a histopathology database containing Whole
Slide Imaging (WSI) samples, collected from diverse histo-
logical tissue organs such as epithelial, skeletal, nervous, and
adipose. Each WSI sample is split into several patches, each
with its own label, to facilitate the processing by the CNN. The
patches in the database are multi-label, with each patch that

can have multiple labels (e.g., if the patch represents multiple
tissue types).

The labels for each patch sample in the database are
organized in a hierarchical way, structured in n levels, with
each increasing level considering labels with a more precise
definition. Each patch sample p has therefore the set of labels
L(p) = {l;}_, associated, with the label /; corresponding to
the most coarse classification, and the label [,, corresponding
to the most precise classification. For example, a patch sample
p can have the following labels [15]:

Iy = Epithelial (E);
lo, = Stratified Epitelial (E.T); , (D
l3 = Stratified Squamous Epithelial (E.T.S)

with /; 1 having a more precise classification than /;. Fig. 3
shows some example of patch samples, each with the associ-
ated set of labels.

To perform the histopathology training, we train a CNN
for tissue type classification, for each of the n levels of
labels. To train the CNN, we consider the CNN architectures
and training procedures described in [15]. As a result, we
obtain n different HistoCN Ns, trained to classify tissue
types in the histopathology database, for each level of labels:
{HistoCNN;}?_,. The architecture of HistoC NN is build
according to models in the literature (e.g., ResNet [30] and
VGG16 [31]). These models include a set of convolutional
layers, followed by a set of fully-connected layers. The sizing
of the last fully-connected layer is performed according to the
cardinality of the classes in the label set (e.g., the models pre-
trained on the ImageNet database have a last fully-connected
layer with 1000 neurons in output, corresponding to the 1000
possible classes in the labels).
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Fig. 4. Example of HistoT Net, obtained by substituting the last layer of
the HistoCNN with a fully-connected layer with 2 neurons as output.

In this paper, we perform the sizing of the last fully-
connected layer for each HistoC' NN, according to the car-
dinality of the classes in each level of the labels considered.
For example, in the considered histopathology database, the
cardinality of the classes in the first level |{/;}| = 9, while
the cardinality of the classes in the second level, since they
express a more precise labeling, is |[{l2}| = 23.

B. Creation of HistoTNet

We consider an ALL database composed of images of
blood samples, describing either healthy white blood cells or
lymphoblasts. Each image in the database has a binary label
(0: normal; 1: lymphoblast) and can therefore be classified in
one of 2 classes.

To create the HistoT Net, we first adapt each HistoCN N
by substituting the last layer with a fully-connected layer
configured for binary classification, with 2 neurons as output
(Fig. 4). As a result, we obtain n different HistoTNets:
{HistoT' Net;} ;.

C. Deep ALL classification

To train each HistoT Net, we perform a fine-tuning on the
training subset of the ALL database. To compensate for the
limited dimensionality of the samples in the ALL database,
we apply data augmentation techniques, by randomly flipping
or rotating each image in the training phase.

Lastly, to perform the classification, we apply each
HistoT'Net on the images in the testing subset of the ALL
database. The output of HistoT Net for each image is a
binary value indicating the predicted presence of a lymphoblast
(0: normal; 1: lymphoblast).

IV. EXPERIMENTAL RESULTS

In this section, we describe the used databases, the CNN
training, the evaluation procedures and error measures, and
the accuracy results of the classification.
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Fig. 5. Examples of blood sample images in the ALL-IDB2 database [18],
describing white cells: (a,b) normal white cells; (c,d) lymphoblasts. The
images show only the area around white cells, having been cropped from
digital acquisitions of peripheral blood samples.

TABLE I
OVERVIEW OF THE DIFFERENT HistoC' N Ns OBTAINED BY TRAINING A
CNN ON THE ADP HISTOPATHOLOGY DATABASE.

CNN Architecture
ResNet18
1 | HistoCNNResNet18,1
Level * 2 | HistoOCNNResNet1s,2
3 | HistoCNNResNet18,3

VGG16
HiStOCNNVGGlG’l
HiStOCNNVGC,‘lG’Q
H’iStOCNNVGGlG,g

Notes. * = Level of histopathology labels (see Section III-A).

A. Used Databases

As the histopathology database, we consider the Atlas of
Digital Pathology (ADP) [15]>. The ADP database contains
17,668 patches, each labeled according to three levels of la-
beling (Fig. 3). Each patch can describe a portion of WSI with
multiple tissues, hence the labels are not mutually exclusive
and each patch can have multiple labels. For example, in the
case of the first level of labels [ = 1, each patch is associated
to a label vector of 9 elements, where 9 is the cardinality of
the classes in the first level of labels |{l1}| = 9.

As the ALL database, we consider the ALL-IDB2 database
[18], containing 260 images of peripheral blood samples
describing white cells. The images are cropped to show only
the region of interest around the cell (Fig. 5). Each image
is associated with a binary label (0: normal; 1: lymphoblast).
The images were captured using an optical microscope and a
Canon PowerShot G5 camera, with different magnifications of
the microscope, ranging from 300z to 500z. All the images
have size H x W = 256 x 256 pixels, with 24 bit color depth.

B. CNN Training

As the backbone of the HistoCN Ns, we consider two
CNN architectures described in the literature, ResNet18 [30]
and VGG16 [31], and for each architecture we train the cor-
responding HistoC N N for each of the 3 levels of labels. In
total, we obtain 6 HistoC N N s, shown in Table I. Moreover,
to address the possibility of having patches with multiple
labels, we append a sigmoid layer after the last fully-connected
layer in each CNN, rather than using a softmax layer.

To train the HistoC'N N's, we split the ADP database using
90% of the samples as training and 10% as validation. We train
the HistoCNNs for 100 epochs, using the procedure and

3https://www.dsp.utoronto.ca/projects/ADP



TABLE 11
OVERVIEW OF THE DIFFERENT HistoT Nets OBTAINED BY APPLYING
THE PROPOSED METHOD FOR HISTOPATHOLOGICAL TRANSFER LEARNING.

CNN Architecture
ResNet18
1 | HistoTNetRresnet1s,1
Level * 2 | HistoTNetresnet1s,2
3 | HistoT'Netresnet18,3

VGG16
HistoT'Netygaie,1

HistoT'Netyvaaise,2
HistoT'Netyaaie,3

Notes. * = Level of histopathology labels (see Section III-A).

learning parameters described in [15]. For each HistoC N N's,
we select the values of the weights for which we obtain the
highest classification accuracy over the validation subset of the
ADP database.

To create the HistoT' Net, we apply the proposed
methodology for histopathological transfer learning on each
HistoC'N N, obtaining the corresponding HistoT Net, shown
in Table II. Then, we split the ALL database as 40% training,
10% validation, and 50% testing. We train each HistoT Net
on the training subset of the ALL-IDB2 database using a
stochastic gradient descent for 100 epochs, with batch size 8,
a learning rate [ = 0.02, and momentum m = 0.9. Every 20
epochs, the learning rate is halved Ir’ = lr/2. We fine-tune
the HistoT' Net by using a deep tuning approach, enabling
gradient update on all weights of the CNN and not only the
last fully-connected layer. For each HistoT Net, we consider
the values of the weights for which we obtain the highest
classification accuracy on the training subset, then apply the
HistoT'Net on the testing subset of the ALL-IDB2 database
to compute the error measures. The training procedure is the
same for all the different HistoT Nets shown in Table II.

C. Evaluation Procedures and Error Measures

To compute the error measures, we consider an evaluation
procedure based on a n-fold cross-validation, with n = 2,
repeated 10 times. At each repetition, the training, validation,
and testing subsets are extracted randomly from the ALL-
IDB2 database.

For each repetition, we apply the proposed methodology for
histopathological transfer learning, in particular we perform
the steps described in Section III-B to create and train the
HistoT Net, and the steps described in Section III-C to
perform the classification of ALL samples. Lastly, the results
are averaged over the 10 repetitions.

As error measures, we consider the metrics described in
[18], which include the mean and standard deviation of the
classification accuracy, described as the percentage of samples
correctly classified over the total number of samples in the
testing subset. Moreover, we consider the confusion matrix,
describing the distribution of true positives, true negatives,
false positives, and false negatives.

D. Accuracy Results

Table IIT shows the accuracy results of the HistoT Net
for ALL classification, obtained using our methodology based

TABLE III
ACCURACY RESULTS ON THE ALL-IDB2 DATABASE USING THE
PROPOSED METHODOLOGY BASED ON HISTOPATHOLOGICAL TRANSFER

LEARNING.
Ref. Deep CNN Classification Accuracy
(%) (Meangq)

[30] ResNet18 (pretrained on ImageNet) 88.692 .67

[31]  VGGI16 (pretrained on ImageNet) 87.543.15
HiStOTNetResNetl&l 95.383,41
HiStOTNetReSNetl&g 97~921462
H”L’StOTNetResNetlgyg 97.381,04
HistoT'Netyaais,1 97.621.90
HistoT'Netyaaie,2 97.621.31
HistoT'Netyaaie,3 97.621.31

TABLE IV
AVERAGE CONFUSION MATRIX OF THE HistoT'NetgesNet18,2 ON THE
ALL-IDB2 DATABASE USING THE PROPOSED METHODOLOGY BASED ON
HISTOPATHOLOGICAL TRANSFER LEARNING.

Predicted

0 (normal) 1 (lymphoblast)

0 (normal) | TN = 49.23% FP =0.77%

True

1 (lymphoblast) | FN =1.31% || TP = 48.69%

Notes. TN = True Negatives; TP = True Positives; FN = False Negatives;
FP = False Positives.

on histopathological transfer learning. As a comparison, the
Table shows also the corresponding results obtained using by
performing a fine-tuning on the corresponding CNN pretrained
on the ImageNet database, which currently represents the
standard procedure in medical imaging [14]. From the Table, it
is possible to observe that the proposed method for histopatho-
logical transfer learning permits to significantly increase the
classification accuracy of ALL samples, with respect to using
CNNs pretrained on the ImageNet database. In particular, the
HistoT'Netgresnet1s,2 achieves the best accuracy among the
considered methods. Table IV shows the average confusion
matrix obtained using HistoT' Netpesnetis,2 on the ALL-
IDB2 database.

Using our approach, the increased accuracy over CNNs pre-
trained on the ImageNet database are, with most probability,
due to the fact that the ALL database is significantly more
similar to a histopathology database than a general purpose
object database such as the ImageNet. In fact, it has been
demonstrated that an improved similarity between the source
and target domains improves the effectiveness of approaches
based on transfer learning [16].



V. CONCLUSION

In this paper we proposed the first approach in the literature
based on histopathological transfer learning for Acute Lym-
phoblastic Leukemia (ALL) detection. The method is based
on using transfer learing to improve the cancer detection
accuracy in the case of databases with limited dimensionality,
and on considering a source domain containing histopathology
images, more similar to the target ALL domain with respect
to the general purpose ImageNet database.

Our approach is based on pretraining a CNN on a
histopathology database, then adapting the CNN for cancer de-
tection and performing a fine-tuning step on the ALL database.
The results on a publicly available database designed for ALL
detection prove that our method is able to significantly increase
the accuracy in detecting lymphoblasts, when compared to
CNN pretrained on the ImageNet database.

Future works will consider the use of different databases as
the source domain and the application on different databases
for cancer detection.
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