THE JORDAN ALGEBRAS OF RIEMANN, WEYL AND CURVATURE COMPATIBLE TENSORS

CARLO ALBERTO MANTICA AND LUCA GUIDO MOLINARI

Abstract

Given the Riemann, or the Weyl, or a generalized curvature tensor K, a symmetric tensor $b_{i j}$ is named 'compatible' with the curvature tensor if $b_{i}{ }^{m} K_{j k l m}+b_{j}{ }^{m} K_{k i l m}+b_{k}{ }^{m} K_{i j l m}=0$. Amongst showing known and new properties, we prove that they form a special Jordan algebra, i.e. the symmetrized product of K-compatible tensors is K-compatible.

1. Introduction

Let (M, g) be a n-dimensional Riemannian or pseudo-Riemannian manifold, and $K_{j k l m}$ a generalized curvature tensor (the Riemann, the Weyl, or any tensor with the algebraic properties of the Riemann tensor). In ref. 15 we introduced this concept: a symmetric tensor $b_{i j}$ is K-compatible if

$$
\begin{equation*}
b_{i}{ }^{m} K_{j k l m}+b_{j}{ }^{m} K_{k i l m}+b_{k}{ }^{m} K_{i j l m}=0 . \tag{1}
\end{equation*}
$$

We name (K, b) a compatible pair. The motivation was the following theorem [15]: if $b_{i j}$ is K-compatible with eigenvectors X, Y, Z and eigenvalues x, y, z with $z \neq x, y$, then:

$$
\begin{equation*}
K_{i j l m} X^{i} Y^{j} Z^{m}=0 \tag{2}
\end{equation*}
$$

It extends a result by Derdziński and Shen [7] who proved the same for the Riemann tensor, with the hypothesis that $b_{i j}$ is a Codazzi tensor, $\nabla_{i} b_{j k}=\nabla_{j} b_{i k}$. Despite the increased generality, the replacement of the Codazzi condition with the algebraic condition (11), enabled a far simpler proof of the new theorem.

Equation (11) with Riemann's tensor originally appeared in a paper by Roter, on conformally symmetric spaces (21 lemma 1). Riemann and Weyl compatible tensors were studied in refs. [16, 18, 10].
Examples of Riemann compatible tensors are the Codazzi tensors [15], the Ricci tensors of Robertson-Walker or perfect-fluid generalized Robertson-Walker spacetimes [20, the second fundamental form and the Ricci tensor of a hypersurface embedded in a (pseudo)Riemannian manifold [18], the Ricci tensors of 'weakly Zsymmetric' manifolds $\left(\nabla_{i} Z_{j k}=A_{i} Z_{j k}+B_{j} Z_{i k}+D_{k} Z_{i j}\right.$ with $Z_{i j}=R_{i j}+\varphi g_{i j}$, $A_{k}-B_{k}$ closed 1-form) [17] that include 'weakly Ricci-symmetric' ones ($\varphi=0$) [24] and others (see [4, 3]), or 'pseudosymmetric manifolds' [8] $\left(\left[\nabla_{i}, \nabla_{j}\right] R_{k l m p}=\right.$ $L Q_{k l m p i j}$, where $L \neq-1 / 3$ is a scalar function and Q is the Tachibana tensor built with the Riemann and Ricci tensors).
A Riemann compatible tensor is also Weyl compatible, but not the opposite. The Ricci tensors of Gödel ([11], th.2), or pseudo-Z symmetric space times [19] are Weyl compatible.

[^0]In sections 2 and 3 we review Riemann and Weyl compatible tensors, with some new results and examples, and their relation with known identities by Lovelock. Then, in sections 4,5 and 6 , we investigate the algebraic properties of generalized curvature tensors and K-compatible tensors. The main result is that the latter form a special Jordan algebra, i.e. the set of K-compatible tensors is closed for the symmetrized product.

2. Riemann compatible tensors

A symmetric tensor is Riemann compatible if:

$$
\begin{equation*}
b_{i}{ }^{m} R_{j k l m}+b_{j}^{m} R_{k i l m}+b_{k}{ }^{m} R_{i j l m}=0 \tag{3}
\end{equation*}
$$

The relation may be written $b_{(i}{ }^{m} R_{j k) l m}=0$, where $(i j k)$ denotes the sum on cyclic permutations of the indices. Contraction with the metric tensor $g^{j l}$ gives $R_{k m} b_{i}^{m}-b_{k}{ }^{m} R_{m i}=0$ i.e. b commutes with the Ricci tensor. Contraction with $b^{j l}$ gives $b_{i}{ }^{m} R_{j k l m} b^{j l}+b_{k}{ }^{m} R_{i j l m} b^{j l}=0$ i.e. b commutes with the symmetric tensor $\hat{R}_{j m}=R_{j k l m} b^{k l}$.

Example 2.1. Codazzi tensors are Riemann compatible.
Proof: in the identity $\left[\nabla_{i}, \nabla_{j}\right] b_{k l}=-R_{i j l}{ }^{m} b_{k m}-R_{i j k}^{m} b_{m l}$ sum on cyclic permutations of ijk. The first Bianchi identity $R_{(i j k)}^{m}=0$, gives:

$$
\left[\nabla_{i}, \nabla_{j}\right] b_{k l}+\left[\nabla_{j}, \nabla_{k}\right] b_{i l}+\left[\nabla_{k}, \nabla_{i}\right] b_{j l}=-\left(b_{i}^{m} R_{j k l m}+b_{j}^{m} R_{k i l m}+b_{k}^{m} R_{i j l m}\right)
$$

The left hand side is zero for Codazzi tensors.
Example 2.2. If $\nabla_{j} A_{k}=p_{j} A_{k}$, then $A_{i} A_{j}$ is Riemann compatible.
Proof: $A_{i}\left[\nabla_{j}, \nabla_{k}\right] A_{l}=A_{i}\left(\nabla_{j} p_{k}-\nabla_{k} p_{j}\right) A_{l}=A_{l}\left[\nabla_{j}, \nabla_{k}\right] A_{i}$. Then $A_{i} R_{j k l}{ }^{m} A_{m}=$ $A_{l} R_{j k i}{ }^{m} A_{m}$; the sum on cyclic permutations of ijk gives zero in r.h.s.
2.1. Codazzi deviation. In ref. 16] we introduced the natural concept of Codazzi deviation of a symmetric tensor:

$$
\begin{equation*}
\mathscr{C}_{j k l}=\nabla_{j} b_{k l}-\nabla_{k} b_{j l} \tag{4}
\end{equation*}
$$

Properties: $\mathscr{C}_{j k l}=-\mathscr{C}_{k j l}, \mathscr{C}_{j k l}+\mathscr{C}_{k l j}+\mathscr{C}_{l j k}=0$, and

$$
\begin{equation*}
\nabla_{i} \mathscr{C}_{j k l}+\nabla_{j} \mathscr{C}_{k i l}+\nabla_{k} \mathscr{C}_{i j l}=-\left(b_{i m} R_{j k l}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{i j l}^{m}\right) \tag{5}
\end{equation*}
$$

Once again we read that a Codazzi tensor is Riemann compatible. By eq. (5) the differential condition $\nabla_{(i} \mathscr{C}_{j k) l}=0$ is equivalent to the algebraic eq.(3).
A Veblen-like identity holds:

$$
\begin{align*}
& \nabla_{i} \mathscr{C}_{j l k}+\nabla_{j} \mathscr{C}_{k i l}+\nabla_{k} \mathscr{C}_{l j i}+\nabla_{l} \mathscr{C}_{i k j} \tag{6}\\
& =b_{i m} R_{j l k}{ }^{m}+b_{j m} R_{k i l}{ }^{m}+b_{k m} R_{l j i}{ }^{m}+b_{l m} R_{i k j}{ }^{m}
\end{align*}
$$

Example 2.3. For a concircular vector, $\nabla_{i} X_{j}=\rho g_{i j}$, the tensor $X_{i} X_{j}$ is Riemann compatible.
Proof: It is $\mathscr{C}_{j k l}=\left(\nabla_{j} \rho\right) g_{k l}-\left(\nabla_{k} \rho\right) g_{j l}$ and $\nabla_{i} \mathscr{C}_{j k l}=\left(\nabla_{i} \nabla_{j} \rho\right) g_{k l}-\left(\nabla_{i} \nabla_{k} \rho\right) g_{j l}$. The cyclic sum in (5) gives zero.
Note: the existence of a concircular time-like vector is necessary and sufficient for a space-time to be generalized Robertson-Walker [6].

Example 2.4 (Lovelock's identities).

1) The Codazzi deviation of the Ricci tensor is: $\mathscr{C}_{j k l}=\nabla_{j} R_{k l}-\nabla_{k} R_{j l}=-\nabla^{m} R_{j k l m}$. Property (5) becomes a Lovelock's identity for the Riemann tensor (14, p.289):

$$
\begin{equation*}
\nabla_{i} \nabla^{m} R_{j k l m}+\nabla_{j} \nabla^{m} R_{k i l m}+\nabla_{k} \nabla^{m} R_{i j l m}=-R_{(i}^{m} R_{j k) l m} \tag{7}
\end{equation*}
$$

2) The Codazzi deviation of Schouten's tensor ${ }^{1}$ is $\mathscr{C}_{j k l}=-\frac{1}{n-3} \nabla^{m} C_{j k l m}$. Property (5) is $\nabla_{(i} \mathscr{C}_{j k) l}=-(n-3) S^{m}{ }_{(i} R_{j k) l m}$. The term with the metric tensor in $S_{i j}$ does not contribute (Bianchi identity), and one is left with (see [16]):

$$
\begin{equation*}
\nabla_{i} \nabla^{m} C_{j k l m}+\nabla_{j} \nabla^{m} C_{k i l m}+\nabla_{k} \nabla^{m} C_{i j l m}=-\frac{n-3}{n-2} R_{(i}^{m} R_{j k) l m} \tag{8}
\end{equation*}
$$

In particular in $n>3$, if $\nabla_{m} C_{j k l}{ }^{m}=0$ (conformally symmetric spaces, Roter [21]) the Ricci tensor is Riemann compatible.

Proposition 2.5. If $u_{i} u_{j}$ is Riemann compatible, and $u^{k} u_{k} \neq 0$, then u_{i} is eigenvector of the Ricci tensor.

Proof. Since $u_{i} u_{j}$ is Riemann compatible, it commutes with the Ricci tensor: $R_{i j} u^{j} u_{k}$ $=R_{k j} u^{j} u_{i}$. Contraction with u^{k} gives: $R_{i j} u^{j}\left(u_{k} u^{k}\right)=\left(R_{k j} u^{j} u^{k}\right) u_{i}=0$.

We extrapolate a simple statement from Proposition 5.1 in [10]. A direct proof is possible, by writing (3) for the Ricci tensor in the warping coordinates:

Proposition 2.6. In a warped spacetime $d s^{2}= \pm d t^{2}+a(t)^{2} g_{\mu \nu}^{*} d x^{\mu} d x^{\nu}$ the Ricci tensor is Riemann compatible if and only if the Ricci tensor of the Riemannian submanifold $\left(M^{*}, g^{*}\right)$ is compatible with the Riemann tensor of the submanifold:

$$
R_{\mu \sigma}^{*} R_{\nu \rho \lambda}^{*}{ }^{\sigma}+R_{\nu \sigma}^{*} R_{\rho \mu \lambda}^{*}{ }^{\sigma}+R_{\rho \sigma}^{*} R_{\mu \nu \lambda}^{*}{ }^{\sigma}=0
$$

2.2. Geodesic maps. A map $(M, g) \rightarrow(M, \bar{g})$ is geodesic if every geodesic line is mapped to a geodesic line. It is necessary and sufficient that there exists a 1form such that the Christoffel symbols are related by $\bar{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+\delta_{i}{ }^{k} X_{j}+X_{i} \delta^{k}{ }_{j}$ (Levi-Civita, 1896). The relation between the Riemann tensors is

$$
\bar{R}_{j k l}^{m}=-\partial_{j} \bar{\Gamma}_{k l}^{m}+\partial_{k} \bar{\Gamma}_{j l}^{m}-\bar{\Gamma}_{k l}^{d} \bar{\Gamma}_{j d}^{m}+\bar{\Gamma}_{j l}^{d} \bar{\Gamma}_{k d}^{m}=R_{j k l}^{m}-\delta_{k}^{m} P_{j l}+\delta_{j}^{m} P_{k l},
$$

where $P_{k l}=\nabla_{k} X_{l}-X_{k} X_{l}=P_{l k}$. It is: $\bar{R}_{j l}=R_{j l}+(n-1) P_{j l}$.
Geodesic maps preserve the $(3,1)$ projective curvature tensor [22]: $\bar{P}_{j k l}{ }^{m}=P_{j k l}{ }^{m}$, where $P_{j k l}{ }^{m}=R_{j k l}{ }^{m}+\frac{1}{n-1}\left(\delta_{j}^{m} R_{k l}-\delta_{k}{ }^{m} R_{j l}\right)$.

Proposition 2.7 ([16]). If $b_{i j}=b_{j i}$, a geodesic map satisfies

$$
\begin{equation*}
b_{i m} \bar{R}_{j k l}^{m}+b_{j m} \bar{R}_{k i l}^{m}+b_{k m} \bar{R}_{i j l}^{m}=b_{i m} R_{j k l}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{i j l}^{m} \tag{9}
\end{equation*}
$$

Then, if (R, b) is a compatible pair, also (\bar{R}, b) is.

[^1]
3. Weyl compatible tensors

A symmetric tensor is Weyl compatible if:

$$
\begin{equation*}
b_{i m} C_{j k l}{ }^{m}+b_{j m} C_{k i l}^{m}+b_{k m} C_{i j l}{ }^{m}=0 . \tag{10}
\end{equation*}
$$

This identity holds for any symmetric tensor [16]:

$$
\begin{equation*}
b_{i m} C_{j k l}^{m}+b_{j m} C_{k i l}^{m}+b_{k m} C_{i j l}^{m}=b_{i m} R_{j k l}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{i j l}^{m} \tag{11}
\end{equation*}
$$

$$
+\frac{1}{n-2}\left[g_{k l}\left(b_{i m} R_{j}{ }^{m}-b_{j m} R_{i}^{m}\right)+g_{i l}\left(b_{j m} R_{k}{ }^{m}-b_{k m} R_{j}{ }^{m}\right)+g_{j l}\left(b_{k m} R_{i}^{m}-b_{i m} R_{k}{ }^{m}\right)\right]
$$

A simple consequence is obtained in dimension $n=3$, where the Weyl tensor is zero (see 9, in less simple manner):

Proposition 3.1. In $n=3$ a Ricci tensor is Riemann compatible.
If $b_{i j}$ is Riemann compatible, then it commutes with the Ricci tensor. As a result, the identity shows that $b_{i j}$ is also Weyl compatible. Therefore, Riemann compatibility is a stronger condition than Weyl compatibility. The identity (11) can be rewritten in terms of the Codazzi deviation:

$$
\begin{array}{r}
b_{i m} C_{j k l}^{m}+b_{j m} C_{k i l}{ }^{m}+b_{k m} C_{i j l}{ }^{m}=\nabla_{i} \mathscr{D}_{j k l}+\nabla_{j} \mathscr{D}_{k i l}+\nabla_{k} \mathscr{D}_{i j l} \tag{12}\\
\\
-\frac{1}{n-2} \nabla^{m}\left(\mathscr{C}_{i j m} g_{k l}+\mathscr{C}_{j k m} g_{i l}+\mathscr{C}_{k i m} g_{j l}\right) .
\end{array}
$$

where $\mathscr{D}_{j k l}=\mathscr{C}_{j k l}-\frac{1}{n-2}\left(\mathscr{C}_{j m}{ }^{m} g_{k l}-\mathscr{C}_{k m}{ }^{m} g_{j l}\right)$.
Example 3.2. If a vector field is torqued [5], i.e. $\nabla_{i} \tau_{j}=\rho g_{i j}+\alpha_{i} \tau_{j}$ with $\alpha_{k} \tau^{k}=0$, then $\tau_{i} \tau_{j}$ is Weyl compatible.
Proof: one evaluates $\mathscr{C}_{j k l}=-\rho\left(\tau_{j} g_{k l}-\tau_{k} g_{j l}\right)$ and $\mathscr{D}_{j k l}=-\frac{1}{n-2} \mathscr{C}_{j k l}$. It turns out that the r.h.s. of (12) is zero.
Note: the existence of a torqued time-like vector is necessary and sufficient for a space-time to be twisted 5].

Proposition 3.3 (see remark 4.2 of [12]). In a space-time of dimension $n=4$, if $u_{i} u_{j}$ is Weyl compatible and time-like unit $\left(u^{k} u_{k}=-1\right)$ then the Weyl tensor is wholly determined by the electric tensor $E_{k l}=C_{j k l m} u^{j} u^{m}$:

$$
\begin{array}{r}
C_{a b c d}=2\left(u_{a} u_{d} E_{b c}-u_{a} u_{c} E_{b d}+u_{b} u_{c} E_{a d}-u_{b} u_{d} E_{a c}\right) \tag{13}\\
+g_{a d} E_{b c}-g_{a c} E_{b d}+g_{b c} E_{a d}-g_{b d} E_{a c}
\end{array}
$$

Proof. In $n=4$ the following Lovelock's identity holds ([14], ex 4.9 page 128):

$$
\begin{aligned}
0= & g_{a r} C_{b c s t}+g_{b r} C_{c a s t}+g_{c r} C_{a b s t}+g_{a t} C_{b c r s}+g_{b t} C_{c a r s}+g_{c t} C_{a b r s} \\
& +g_{a s} C_{b c t r}+g_{b s} C_{c a t r}+g_{c s} C_{a b t r}
\end{aligned}
$$

The contraction with $u^{a} u^{r}$ gives

$$
\begin{aligned}
0= & -C_{b c s t}+u_{b} u^{r} C_{c r s t}+u_{c} u^{r} C_{r b s t}+u_{t} u^{r} C_{b c r s}+g_{b t} u^{a} u^{r} C_{c a r s}+g_{c t} u^{a} u^{r} C_{a b r s} \\
& +u_{s} u^{r} C_{b c t r}+g_{b s} u^{a} u^{r} C_{c a t r}+g_{c s} u^{a} u^{r} C_{a b t r} \\
= & -C_{b c s t}+u^{r}\left(u_{b} C_{s t c r}+u_{c} C_{r b s t}+u_{t} C_{c b s r}+u_{s} C_{b c t r}\right) \\
& +g_{b t} E_{c s}-g_{c t} E_{b s}-g_{b s} E_{c t}+g_{c s} E_{b t}
\end{aligned}
$$

This gives the Weyl tensor in terms of its single and double contractions with u^{i}. If $u_{i} u_{j}$ is Weyl compatible, the single contraction is: $C_{j k l r} u^{r}=u_{k} E_{j l}-u_{j} E_{k l}$, and the result is obtained. For an extension to $n>4$ see [12].
3.1. Conformal maps. A map $(M, g) \rightarrow(M, \hat{g})$ is conformal if $\hat{g}_{k l}=e^{2 \sigma} g_{k l}$. The Christoffel symbols transform according to: $\hat{\Gamma}_{i j}^{m}=\Gamma_{i j}^{m}+\delta^{m}{ }_{i} X_{j}+X_{i} \delta^{m}{ }_{j}-$ $g_{i j} X^{m}$, where $X_{i}=\nabla_{i} \sigma$. A conformal map leaves the Weyl tensor (3,1) unchanged: $\hat{C}_{j k l}{ }^{m}=C_{j k l}{ }^{m}$. Therefore, Weyl compatibility is an invariant property of conformal maps.

4. K-COMPATIBLE TENSORS

Riemann and Weyl compatibility extend to K-compatibility, where K is a generalised curvature tensor (GCT), i.e. a tensor with the algebraic properties of the Riemann tensor under permutation of indices [13]:

$$
\begin{align*}
& K_{j k l m}=-K_{k j l m}=-K_{j k m l} \tag{14}\\
& K_{j k l m}+K_{k l j m}+K_{l j k m}=0 \tag{15}\\
& K_{j k l m}=K_{l m j k} \tag{16}
\end{align*}
$$

In analogy with the Riemann tensor, one shows that (14) and (15) imply the symmetry (16), and the identity $K_{j(k l m)}=0$. The tensor $K_{j l}=K_{j m l}^{m}$ is symmetric.

A symmetric tensor $b_{i j}$ is K-compatible if:

$$
\begin{equation*}
b_{i}^{m} K_{j k l m}+b_{j}^{m} K_{k i l m}+b_{k}^{m} K_{i j l m}=0 \tag{17}
\end{equation*}
$$

and (K, b) is a compatible pair. The property can be written $b^{m}{ }_{(i} K_{j k) l m}=0$.
The metric tensor is K-compatible, by the Bianchi property (15). The tensors $b_{i j}$ and $K_{i j}$ commute: $b_{i}{ }^{m} K_{m k}-K_{i m} b^{m}{ }_{k}=0$ (contract (17) with $g^{j l}$ and use symmetry).
Examples of K-compatible tensors were obtained by Shaikh et al. starting from specific metrics (see for example [23, 1]). Bourguignon proved that if $b_{i j}$ is a Codazzi tensor then $\stackrel{\circ}{\mathrm{R}}_{j k l m}=R_{j k r s} b^{r}{ }_{l} b^{s}{ }_{m}$ is a GCT, [2]. We prove a more general statement:
Proposition 4.1. If $a_{i j}$ and $b_{i j}$ are K-compatible, then $\stackrel{\circ}{K}_{j k l m}=K_{j k r s}\left(a^{r}{ }_{l} b^{s}{ }_{m}+\right.$ $\left.b^{r}{ }_{l} a^{s}{ }_{m}\right)$ is a GCT.

Proof. The properties (14) and (16) are obvious; the Bianchi property (15) completes the proof: $\stackrel{\circ}{\mathrm{K}}_{(j k l) m}=a^{r}{ }_{(l} K_{j k) r s} b^{s}{ }_{m}+b^{r}{ }_{(l} K_{j k) r s} a^{s}{ }_{m}=0$ because each term is zero being a or $b K$-compatible.
4.1. Properties of K-compatible tensors. A linear combination of K-compatible tensors obvioulsy is K-compatible. Now we prove:

Theorem 4.2. If a and b are K-compatible, then $\frac{1}{2}(a b+b a)$ is K-compatible.
Proof. Let $c_{i j}=a_{i}{ }^{k} b_{k j}+b_{i}{ }^{k} a_{k j}$. Then:

$$
\begin{aligned}
c^{m} & { }_{i} K_{j k) r m}=a_{i}{ }^{s} b_{s}{ }^{m} K_{j k r m}+a_{j}{ }^{s} b_{s}{ }^{m} K_{k i r m}+a_{k}{ }^{s} b_{s}{ }^{m} K_{i j r m}+a \leftrightarrows b \\
= & -a_{i}{ }^{s}\left(b_{j}{ }^{m} K_{k s r m}+b_{k}{ }^{m} K_{\text {sjrm }}\right)-a_{j}{ }^{s}\left(b_{k}{ }^{m} K_{i s r m}+b_{i}{ }^{m} K_{s k r m}\right) \\
& -a_{k}{ }^{s}\left(b_{i}{ }^{m} K_{j s r m}+b_{j}{ }^{m} K_{\text {sirm }}\right)+a \leftrightarrows b \\
= & -\left(a_{i}{ }^{s} b_{j}{ }^{m}-a_{j}{ }^{s} b_{i}{ }^{m}\right) K_{k s r m}-\left(a_{j}{ }^{s} b_{k}{ }^{m}-a_{k}{ }^{s} b_{j}{ }^{m}\right) K_{i s r m} \\
& -\left(a_{k}{ }^{s} b_{i}{ }^{m}-a_{i}{ }^{s} b_{k}{ }^{m}\right) K_{j s r m}+a \leftrightarrows b \\
= & -\left(a_{i}{ }^{s} b_{j}{ }^{m}-a_{j}{ }^{s} b_{i}{ }^{m}\right)\left(K_{k s r m}-K_{k m r s}\right)-\left(a_{j}{ }^{s} b_{k}{ }^{m}-a_{k}{ }^{s} b_{j}{ }^{m}\right)\left(K_{i s r m}-K_{\text {imrs }}\right) \\
& -\left(a_{k}{ }^{s} b_{i}{ }^{m}-a_{i}{ }^{s} b_{k}{ }^{m}\right)\left(K_{j s r m}-K_{j m r s}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(a_{i}{ }^{s} b_{j}{ }^{m}-a_{j}{ }^{s} b_{i}{ }^{m}\right) K_{k r s m}+\left(a_{j}{ }^{s} b_{k}{ }^{m}-a_{k}{ }^{s} b_{j}{ }^{m}\right) K_{i r s m}+\left(a_{k}{ }^{s} b_{i}{ }^{m}-a_{i}{ }^{s} b_{k}{ }^{m}\right) K_{j r s m} \\
& =\left(a_{i}{ }^{s} b_{j}{ }^{m}+b_{i}{ }^{s} a_{j}{ }^{m}\right) K_{k r s m}+\left(a_{j}^{s} b_{k}{ }^{m}+b_{j}^{s} a_{k}{ }^{m}\right) K_{i r s m}+\left(a_{k}{ }^{s} b_{i}{ }^{m}+b_{k}{ }^{s} a_{i}{ }^{m}\right) K_{j r s m} \\
& =\stackrel{\circ}{\mathrm{K}}_{k r i j}+\stackrel{\circ}{\mathrm{K}}_{\text {irjk }}+\stackrel{\circ}{\mathrm{K}}_{\text {(krki) }}=0
\end{aligned}
$$

because $\stackrel{\circ}{K}^{\circ}$ is a GCT by Prop 4.1.

Therefore, the linear space of K-compatible tensors is a special Jordan algebra. In particular, the powers of b are K-compatible (powers $n, n+1, \ldots$ are linear combinations of lower powers by Cayley-Hamilton theorem). In particular (with an exchange of indices) the tensor $\left(b^{2}\right)_{j}{ }^{s}\left(b^{2}\right)_{k}{ }^{r} K_{r s l m}$ is a GCT. This enables the simple proof of the theorem in [15], so short that we reproduce it:

Theorem 4.3 (Extended Derdziński-Shen theorem). Let $b_{i j}$ be K-compatible, X^{i}, Y^{i}, Z^{i} be eigenvectors of $b_{i}{ }^{m}$ with eigenvalues x, y, z. If $x \neq z$ and $y \neq z$ then:

$$
\begin{equation*}
K_{i j k l} X^{i} Y^{j} Z^{k}=0 \tag{18}
\end{equation*}
$$

Proof. Consider the identities $g^{m}{ }_{(i} K_{j k) l m}=0, b^{m}{ }_{(i} K_{j k) l m}=0,\left(b^{2}\right)^{m}{ }_{(i} K_{j k) l m}=0$ and contract them with $X^{i} Y^{j} Z^{k}$. The three algebraic relations are put in matrix form:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{2} & y^{2} & z^{2}
\end{array}\right]\left[\begin{array}{l}
K_{j k l i} X^{i} Y^{j} Z^{k} \\
K_{k i l j} X^{i} Y^{j} Z^{k} \\
K_{i j l k} X^{i} Y^{j} Z^{k}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The determinant of the matrix is $(x-y)(x-z)(z-y)$. If the eigenvalues are all different then $K_{i j k l} X^{i} Y^{j} Z^{k}=0$ (with contraction of any three indices). If $x=y \neq z$, the reduced system of equations still implies $K_{i j k l} X^{i} Y^{j} Z^{k}=0$.

Proposition 4.4. If b is K-compatible and invertible, then b^{-1} is K-compatible:

$$
\begin{equation*}
\left(b^{-1}\right)^{j}{ }_{(s} K_{r l) k j}=0 \tag{19}
\end{equation*}
$$

Proof. Multiply (17) by $\left(b^{-1}\right)^{i}{ }_{r}\left(b^{-1}\right)^{j}{ }_{s}$ and obtain the identity: $\left(b^{-1}\right)^{j}{ }_{s} K_{j k l r}+$ $\left(b^{-1}\right)^{i}{ }_{r} K_{\text {kils }}+\left(b^{-1}\right)^{i}{ }_{r}\left(b^{-1}\right)^{j}{ }_{s} b^{m}{ }_{k} K_{i j l m}=0$. Rewrite it as:

$$
\left(b^{-1}\right)^{j}{ }_{(s} K_{r l) k j}-\left(b^{-1}\right)^{j}{ }_{l} K_{s r k j}+\left(b^{-1}\right)^{i}{ }_{r}\left(b^{-1}\right)^{j}{ }_{s} b^{m}{ }_{k} K_{i j l m}=0
$$

The last two terms cancel, as shown by the chain:
$\left(b^{-1}\right)^{j}{ }_{l} K_{\text {srkj }}=\left(b^{-1}\right)^{i}{ }_{r}\left(b^{-1}\right)^{j}{ }_{s} b^{m}{ }_{k} K_{i j l m} \Leftrightarrow K_{s r k b} b^{r}{ }_{a}=b^{i}{ }_{b}\left(b^{-1}\right)^{j}{ }_{s} b^{m}{ }_{k} K_{a j l m}$ $\Leftrightarrow b^{s}{ }_{c} K_{s r k b} b^{r}{ }_{a}=b^{l}{ }_{b} b^{m}{ }_{k} K_{a c l m} \Leftrightarrow \stackrel{\circ}{\mathrm{~K}}_{k b c a}=\stackrel{\circ}{\mathrm{K}}_{a c b k}$, which is true as $\mathrm{\circ} \mathrm{~K}$ is a GCT.

We prove a Veblen-like identity:
Proposition 4.5. If $b_{i j}$ is K-compatible then:

$$
\begin{equation*}
b_{i}{ }^{m} K_{j k l m}-b_{j}{ }^{m} K_{i l k m}+b_{k}{ }^{m} K_{i l j m}-b_{l}{ }^{m} K_{j k i m}=0 . \tag{20}
\end{equation*}
$$

Proof. $0=b_{i}{ }^{m} K_{j k l m}+b_{j}{ }^{m} K_{\text {kilm }}+b_{k}{ }^{m} K_{i j l m}=b_{i}{ }^{m} K_{j k l m}-b_{j}{ }^{m}\left(K_{i l k m}+K_{l k i m}\right)+$ $b_{k}{ }^{m} K_{i j l m}=b_{i}{ }^{m} K_{j k l m}-b_{j}{ }^{m} K_{i l k m}+b_{l}{ }^{m} K_{k j i m}+b_{k}{ }^{m} K_{j l i m}+b_{k}{ }^{m} K_{i j l m}$ $=b_{i}{ }^{m} K_{j k l m}-b_{j}{ }^{m} K_{i l k m}+b_{l}{ }^{m} K_{k j i m}-b_{k}{ }^{m} K_{l i j m}$.
4.2. More on generalised curvature tensors. A linear combination of GCTs is a GCT. Given two compatible pairs (K, a) and (K, b) a new GCT tensor is obtained in Prop 4.1. In particular, if $a_{i j}=g_{i j}$ (the metric tensor) the following K^{\prime} is a GCT:

$$
\begin{equation*}
K_{j k l m}^{\prime}=K_{j k r s}\left(\delta^{r}{ }_{l} b^{s}{ }_{m}+b^{r}{ }_{l} \delta^{s}{ }_{m}\right)=K_{j k l s} b^{s}{ }_{m}-K_{j k m s} b^{s}{ }_{l} \tag{21}
\end{equation*}
$$

Proposition 4.6. If b is K-compatible, then b is K^{\prime}-compatible.
Proof. The tensor $K_{j k l m}^{\prime}=K_{j k l r} b^{r}{ }_{m}-K_{j k m r} b^{r}{ }_{l}$ is a GCT. Let us evaluate: $b^{m}{ }_{i} K_{j k l m}^{\prime}=b^{m}{ }_{i} K_{j k l r} b^{r}{ }_{m}-b^{m}{ }_{i} K_{j k m r} b^{r}{ }_{l}=\left(b^{2}\right)^{r}{ }_{i} K_{j k l r}-\stackrel{\circ}{\mathrm{K}}_{j k i m}$. Both tensors vanish if the cyclic sum $(i j k)$ is taken.

Proposition 4.7. (K, b) is a compatible pair for any symmetric tensor b if and only if

$$
\begin{equation*}
K_{i j l m}=\frac{K}{n(n-1)}\left(g_{i l} g_{j m}-g_{i m} g_{j l}\right) \tag{22}
\end{equation*}
$$

where K is a scalar field.
Proof. The symmetry of the tensor is made explicit by writing $b_{i j}=\frac{1}{2} b^{r s}\left(g_{i r} g_{j s}+\right.$ $\left.g_{i s} g_{j r}\right)$. The compatibility relation must hold for any $b^{r s}$, then:

$$
0=g_{i r} K_{j k l s}+g_{j r} K_{k i l s}+g_{k r} K_{i j l s}+g_{i s} K_{j k l r}+g_{j s} K_{k i l r}+g_{k s} K_{i j l r}
$$

Contraction with $g^{k s}$ gives $(n-1) K_{i j l r}=g_{j r} K_{i l}-g_{i r} K_{j l}$; contraction with $g^{i l}$ gives $K_{j r}=\frac{1}{n} g_{j r} K^{i}{ }_{i}$ and (22) follows. The reverse, i.e. (22) implies (17), is shown by direct check.

A pseudo-Riemannian manifold of dimension $n>2$ is an Einstein manifold if $R_{i j}=\frac{1}{n} R g_{i j}$ where R is the scalar curvature. Since $\nabla_{i} R^{i}{ }_{j}=\frac{1}{2} \nabla_{j} R$, the scalar curvature is constant. A manifold is a constant curvature manifold if the Riemann tensor has the form (22). Such manifolds are Einstein manifolds.

Corollary 4.8. A manifold is a constant curvature manifold if and only if $b_{i}{ }^{m} R_{j k l m}+b_{j}{ }^{m} R_{k i l m}+b_{k}{ }^{m} R_{i j l m}=0$ for all symmetric tensors.

References

[1] Z. Ahsan, M. Ali and A. A. Shaikh, Curvature properties of Robinson-Trautman metric, J. Geom. 109 (2018) 38.
[2] J. P. Bourguignon, Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math. 63 (2) (1981) 263-286.
[3] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys. 15 (1988), 525-531.
[4] M. C. Chaki and S. Koley, On generalized Pseudo Ricci symmetric manifolds, Period. Math. Hung. (1994) 28: 123.
[5] B.-Y. Chen, Rectifying submanifolds of Riemannian manifolds and torqued vector fields, Kragujev. J. Math. 41 (1) (2017) 93-103.
[6] B.-Y. Chen, A simple characterization of generalized RobertsonWalker spacetimes, Gen. Relativ. Gravit. 46 (2014) 1833.
[7] A. Derdzinski and C. L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. Lond. Math. Soc. 47 (1983) 15-26.
[8] R. Deszcz and W. Grycak, On some classes of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987) 311-322.
[9] R. Deszcz, M. Głogowska, M. Plaue, K. Sawicz, M. Scherfner, On hypersurfaces in space forms satisfying particular curvature conditions of Tachibana type, Kragujevac J. Math. 35 (2011) 223-247.
[10] R. Deszcz, M. Głogowska, J. Jełowicki, M. Petrovic-Torgašev, and G. Zafindratafa, On Riemannian and Weyl compatible tensors, Publ. Inst. Math. (Beograd) (N.S.) 94 (108) (2013) 111-124.
[11] R. Deszcz, M. Hotloś, J. Jełowicki, H. Kundu and A. A. Shaikh, Curvature properties of Gödel metric, Int. J. Geom. Meth. Modern Phys. 11 (2014) 1450025 (20 pp).
[12] S. Hervick, M. Ortaggio, and L. Wylleman, Minimal tensors and purely electric and magnetic spacetimes of arbitrary dimensions, Class. Quantum Grav. 30 (2013), 165014 (50pp).
[13] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol.1, Interscience, New York (1963).
[14] D. Lovelock and H. Rund, Tensors, differential forms and variational principles, reprint Dover Ed. (1988).
[15] C. A. Mantica and L. G. Molinari, Extended Derdziński-Shen theorem for curvature tensors, Colloq. Math. 128 n. 1 (2012) 1-6.
[16] C. A. Mantica and L. G. Molinari, Riemann compatible tensors, Colloq. Math. 128 n. 2 (2012) 197-210.
[17] C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012) 80-96.
[18] C. A. Mantica and L. G. Molinari, Weyl compatible tensors, Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450070 (15 pp).
[19] C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric space-times, J. Math. Phys. 55 n. 4 (2014) (12 pp).
[20] C. A. Mantica, L. G. Molinari and U. C. De, A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time, J. Math. Phys. 57 (2016) 022508
[21] W. Roter, On conformally symmetric 2-Ricci recurrent spaces, Coll. Math. 26 (1972) 115122.
[22] N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces (Nauka, Moscow, 1979) (in Russian).
[23] A. A. Shaikh, H. Kundu, M. Ali and Z. Ahsan, Curvature properties of a special type of pure radiation metrics, J. Geom. Phys. 136 (2019) 195-206.
[24] L. Tamássy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor (N.S.) 53 (1993) 140-148.
C. A. Mantica: I.I.S. Lagrange, Via L. Modignani 65, 20161, Milano, and I.N.F.N. sezione di Milano, Via Celoria 16, 20133 Milano, Italy - L. G. Molinari (corresponding author): Physics Department Aldo Pontremoli, Università degli Studi di Milano and I.N.F.N. sezione di Milano, Via Celoria 16, 20133 Milano, Italy.

E-mail address: carlo.mantica@mi.infn.it, luca.molinari@mi.infn.it

[^0]: Date: 26 September 2019.

[^1]: ${ }^{1}$ Schouten tensor: $S_{i j}=\frac{1}{n-2}\left[R_{i j}-\frac{R}{2(n-1)} g_{i j}\right]$. Properties: $\nabla_{k} S^{k}{ }_{j}=\nabla_{j} S^{k}{ }_{k}, \nabla^{m} C_{j k l m}=$ $(n-3)\left(\nabla_{k} S_{j l}-\nabla_{j} S_{k l}\right)$.

