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Abstract

In this paper we lay the foundations of a new proof-theory for classical first-order
logic that allows for a natural characterization of a notion of inferential depth.
The approach we propose here aims towards extending the proof-theoretical
framework presented in [6] by combining it with some ideas inspired by Hin-
tikka’s work [18]. Unlike standard natural deduction, in this framework the
inference rules that fix the meaning of the logical operators are symmetrical
with respect to assent and dissent and do not involve the discharge of formulas.
The only discharge rule is a classical dilemma rule whose nested applications
provide a sensible measure of inferential depth. The result is a hierarchy of
decidable depth-bounded approximations of classical first-order logic that ex-
pands the hierarchy of tractable approximations of Boolean logic investigated
in [11, 10, 7].
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September 2019, and the participants in the 2nd Workshop on Logic and Information held in Milan
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D’Agostino, Larese and Modgil

1 Introduction
In the Manifesto of the Vienna Circle, written in 1929, Rudolph Carnap, Hans Hahn
and Otto Neurath claimed that logic is analytic and tautological:

Logical investigation leads to the result that all thought and inference
consists of nothing but a transition from statements to other statements
that contain nothing that was not already in the former (tautological
transformation). [. . . ] The scientific world-conception knows only em-
pirical statements about things of all kinds, and analytic statements of
logic and mathematics. [5, pp. 308, 311]

In a series of papers collected in the volume Logic, Language-Games and Information
published in 1973, Hintikka attacked the logical empiricists’ thesis. Starting from the
Church-Turing result that classical first-order logic is undecidable (1936), Hintikka
argues that there is a class of polyadic first-order logical truths that are synthetic
and informative. He formulates a theory of distributive normal forms for classical
first-order logic, on the basis of which he defines two objective and non-psychological
notions of information content. The former, which he calls “depth information”, is
equivalent to Bar-Hillel and Carnap’s semantic information and is not increased by
deductive reasoning, thus justifying the traditional claim that logic is tautological.
The latter, which he calls “surface information”, might be increased by deductive
reasoning and is computable, thus vindicating the idea that logic is informative.

The non-trivial deductive reasoning that does increase surface information is,
according to Hintikka, to be regarded as synthetic. But, of course, the terms “an-
alytic” and “synthetic” are given a meaning that is di�erent from the one used in
the Vienna Circle and that is based on an original interpretation of the distinction
put forward by Kant in his first Critique. According to Hintikka, a derivation is
synthetic if at least one of its steps introduces new individuals; a derivation is ana-
lytic if all its steps merely discuss the individuals which we have already introduced.
Inferences can be synthetic at any degree k and whether or not a sentence follows
from a given set of premises by means of a k-degree synthetic inference is decidable
for every fixed k.1

Despite Hintikka’s rejection of the idea that all logical inferences are analytic,
his approach still classifies as analytic a wide class of inferences that includes not
only many valid inferences of polyadic predicate logic, but also the entire set of valid
inferences of propositional logic and monadic predicate logic. As a result, his work
provides only a partial vindication of the idea that logical deduction is informative.

1For a thorough discussion of Hintikka’s view and its comparison with Kant’s analytic/synthetic
distinction, see [22].
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Towards Depth-Bounded First-Order Logics

These doubts find an important confirmation in the theory of computational com-
plexity: if the decision problem for Boolean logic is (most probably) intractable2,
that is to say, undecidable in practice, how is it possible to maintain that proposi-
tional logic is analytic and uninformative?

This observation was at the origin of the approach of Depth-Bounded Boolean
Logics (DBBLs) [11, 10, 7]. In this approach the standard semantics of the Boolean
operators is replaced by a weaker “informational semantics” whereby the meaning
of a logical operator ı is fixed by specifying the su�cient and the necessary con-
ditions for an agent a to actually possess the information that a ı-sentence Ï is
true (respectively false), and be therefore in the disposition to assent to (respec-
tively dissent from) it, solely in terms of the information that a actually possesses
about the immediate components of Ï. An inference is analytic if its conclusion can
be established in terms of the actual information that is implicitly contained in its
premises according to this weaker explanation of the logical operators. Synthetic in-
ferences are those that essentially require the introduction of “virtual information”,
i.e., information that we do not actually possess, but must be temporarily assumed
in order to reach the conclusion (as, for example, in the discharge rules of natural
deduction). In this approach a propositional inference can be synthetic at any given
degree k (the “depth” of the inference), depending on the nested use of virtual in-
formation; moreover, whether or not a sentence follows from a given set of premises
by means of a k-degree synthetic inference is tractable for every fixed k.

Our main purpose in this paper is to lay the foundations for a unified treat-
ment of classical first-order logic that brings together the main insights of the two
approaches outlined above. More specifically, our main aim is to extend to the stan-
dard quantifiers the informational semantics for the Boolean operators in order to
obtain a general view of the analytic/synthetic distinction and of the classification
of inferences in terms of their depth.

The main contributions of this paper are: (i) a natural characterization of the
intuitive “surface” meaning of quantifiers along the same lines as the characterization
given for the Boolean operators in DBBLs; (ii) the definition of a suitable first-order
extension of the propositional natural deduction system of [7]3 and of the associated
notion of inferential depth, in such a way that k-depth inference is decidable. Typical
technical results such as soundness, completeness and subformula property are stated
but their proofs are omitted.

2See, for example, [14].
3See also [6] for a thorough proof-theoretical investigation.
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D’Agostino, Larese and Modgil

2 Is logical inference “tautological”?
What do “analytic” and “tautological” mean? The a�nity between the notion of
analyticity and the discipline of logic is not something natural and atemporal, but
rather the result of a precise historical development. This development, which con-
cerns both the analytic/synthetic distinction and the conception of logic, might be
summarized in three turning points. First, according to Kant, a judgment is an-
alytic if and only if the concept of the predicate is (covertly) contained in that of
the subject [20, A6-7/B10-11]. However, although Kant uses traditional logic as an
instrument to define the notions, such as that of containment, that lie at the basis of
his definition of analyticity, in his first Critique (1781, 17872) he is not interested in
determining whether logic itself is analytic. It is with Frege’s Foundations of Arith-
metic (1884), that represents our second step, that the relationship between logic
and analyticity becomes stronger. Frege holds that a truth is analytic if and only if
it can be proved with help of logical laws from definitions only [13, §3, p. 4]; as a
result, logical truths, being provable through logical laws, are analytic. Interestingly
enough, however, Frege explicitly rejects the idea that truths or inferences that are
analytic in this sense are uninformative. With the logical empiricist movement, we
reach the third step: logical truths are assumed to be analytic and they are used
in order to catch the rest of analytic truths and inferences. Even W.V.O. Quine,
despite his thorough criticism of the sharp analytic/synthetic distinction made by
the Vienna Circle, in his Two dogmas of empiricism (1951), maintained that logical
truths can after all be safely classified as “analytic” [24, p. 23].4

Now, if we assume, as the logical empiricists do, that logical deduction is ana-
lytic — and thus its conclusions result from some kind of analysis that unfolds the
meaning of the logical operators —, then we seem to be obliged to conclude that it
must be trivial, that is, uninformative and tautological, at least on the basis of the
standard theory of semantic information [9]. This appears to be the side e�ect of
the paradox of analysis [21, p. 323], which states that analysis cannot be sound and
informative at the same time: for if it is sound, the analyzed and the analyzandum
are equivalent and analysis cannot be augmentative; and if it is informative, then the
analyzed and the analyzandum are not equivalent and the analysis is incorrect. The
logical empiricists were bold enough to accept the “triviality” of deductive reasoning
as a consequence of their commitment to the principle of analyticity of logic.

4On this point see also [8], Section 3.
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ca b
G G

R

(a) Premise P1.

ca b
B B

G

(b) Premise P2.

ba
B

(c) Premise P3.

ba
R

(d) Conclusion C.

a d c e b
G G

R

B B B B

(e) An intermediate step.

Figure 1: Configurations of individuals involved in the argument from premises P1,
P2 and P3 to conclusion C.

3 Hintikka on “synthetic” logical inference
In order to convey the main idea underlying Hintikka’s approach, while avoiding
technicalities, consider the following example, which is a simplified version of the
case first presented in [4] and then discussed in [17, p. 86 �.], that illustrates a kind
of reasoning that is synthetic according to Hintikka’s sense of the term. Consider
the argument from the premises P1, P2 and P3 to the conclusion C:

P1 : ’x’y(Rxy æ ÷z(Gxz · Gzy))
P2 : ’x’y(Gxy æ ÷z(Bxz · Bzy))
P3 : ’x’y((Bxy · Cx) æ Cy)
C : ’x’y((Rxy · Cx) æ Cy).

As Figure 1 suggests, P1 says that whenever two points are connected through a red
arrow, then there exists a third point, which is interpolated through green arrows.
Similarly, P2 says that whenever two points are connected through a green arrow,
then there exists a third point, which is interpolated through blue arrows. P3 says
that whenever two points are connected through a blue arrow and the former is
colored, then also the latter is colored. Similarly, C says that whenever two points
are connected through a red arrow and the former is colored, then also the latter is
colored.
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D’Agostino, Larese and Modgil

What is the reasoning that leads us from the premises to the conclusion? We
could start from premise P1 and say that whenever two points, a and b, are connected
through a red arrow, then there exists a third point, call it c, which is interpolated
through green arrows. Then, we could use premise P2 and reason as follows. Since
a and c are connected through a green arrow, then there is another individual d,
which is linked to a and c through blue arrows; similarly, since also c and b are
connected through a green arrow, then there is a fifth point e, which is linked to
c and b by blue arrows. Then, given the premise P3, if a is colored, then also d is
colored (because they are connected through a blue arrow); for the same reason and
given that d is colored, then also c is colored; again, since c is colored then also e is
colored; last, we get that b is also colored. In this way and since we didn’t assume
anything about the instantiating individuals, we reach the general conclusion that
the colored marker ink spreads along red arrows too.

According to Hintikka’s theory, this argument is synthetic, because some of its
intermediate steps introduce new individuals into the argument. In particular, the
intermediate step depicted in Figure 1e makes use of individuals d and e, which do
not enter the configurations of the premises and conclusion of the argument, but, at
the same time, are in certain relations with the other individuals.

As mentioned in the Introduction, this approach still classifies as analytic and
informationally trivial all the inferences of propositional logic and of the monadic
predicate calculus. This has been widely regarded as unsatisfactory especially in
light of the development of the theory of NP-completeness according to which the
decision problem for propositional logic is most likely to be intractable. The tension
between the (probable) intractability of Boolean logic and its alleged informational
triviality seems very similar to the tension that motivated Hintikka in arguing that
the undecidability of first-oder logic is at odds with the philosophical claim that its
inferences are analytic and tautological.

4 Depth-Bounded Boolean Logics

Standard formalizations of classical logic cannot capture the essential di�erence be-
tween these two inferences:

P ‚ Q
Q æ R
¬P

R

P ‚ Q
P æ Q

Q

The argument to establish the soundness of the first inference is the following:
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Towards Depth-Bounded First-Order Logics

1 P ‚ Q
2 Q æ R
3 ¬P
4 Q (from 1 and 3)
5 R (from 2 and 4)

Notice that, here, at each step we are using information that we actually possess.
On the other hand, a typical argument for the second example would run as follows:

1 P ‚ Q
2 P æ Q

3.1 Suppose that P 3.2 Suppose that ¬P
Q (from 2 and 3.1) Q (from 1 and 3.2)

Q

The sense in which the conclusion of the first argument is “implicitly contained”
in the premises is di�erent from the sense in which the conclusion of the second
argument is. In the latter we make essential use of information that we do not
actually possess and is not even implicitly contained in the information that we
actually possess. This is what we call “virtual information”. We simulate information
states that are richer than the actual one and consider the two possible outcomes of
the process of acquiring such information.

In Gentzen’s Natural Deduction the use of virtual information is associated with
a technical device, known as “discharging of assumptions”:

�···
P ‚ Q

�, [P ]
···
R

�, [Q]
···
R

R

�, [P ]
···
Q

P æ Q

�···
(÷x)P (x)

�, [P (a)]
···
R

R

with the usual restrictions on a. In the propositional rules, the sentences in square
brackets represent virtual information that may not be (and typically is not) con-
tained in the information that is actually “given” in the premises. In the existential
quantifier rule, the sentence in the square brackets may represent information on an
individual that is not actually “given” in the set of individuals associated with the
quantifiers that occur in the premises.

After making this fundamental distinction between inferences that make use only
of actual information and those that require the use of virtual information, we can
ask ourselves the following question: can we fix the meaning of the logical operators
in terms of the information that is actually possessed by an agent, that is, without
appealing to virtual information?
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The informational semantics of the logical operators is based on the following
principle:

The meaning of an n-ary logical operator ı is determined by specifying
the su�cient (necessary) conditions for an agent x to actually hold the
information that a sentence of the form ı(P1, . . . , Pn) is true, respectively
false, in terms of the information that x actually holds about the truth
or falsity of P1, . . . , Pn.

Here by saying that x actually holds the information that P is true (respectively
false) we mean that this is information practically available to x and with which x
can operate (e.g., in decision-making).

In [10, 8, 7, 6] a suitable set of introduction and elimination (intelim) rules for
the Boolean operators were presented that comply with the basic principle of infor-
mational semantics. These rules characterize a subsystem of classical propositional
logic that is a logic in Tarski’s sense and is tractable. Interestingly enough, this
logical system is sound and complete w.r.t. to a non-deterministic matrix, in the
sense of [1], that complies with the basic principle of informational semantics and
was first proposed by W.V.O. Quine in [25] to capture the “primitive” meaning of
the logical operators.5 The full deductive power of classical propositional logic is re-
trieved by adding a single discharge rule that governs the use of virtual information
and consists in a form of classical dilemma rule. The maximum number of nested
applications of this single discharge rule that are needed to obtain a conclusion from
a given set of premises provides a natural measure of the propositional depth of
the associated inference. For each given k, k-depth validity can also be decided in
polynomial time, so providing an infinite hierarchy of tractable approximations to
classical propositional logic.6 In the next section we shall propose a way of extending
these rules to first-order logic, to provide a similar measure of the quantificational
depth of an inference and a hierarchy of decidable approximations to full classical
logic.

To summarize, we have examined the main ideas of two theories that reject the
logical empiricists’ tenet that logic is analytic and tautological. Hintikka focuses
on the tension between this tenet and the undecidability of first-order logic. In his
conceptual framework, an inference is analytic if it does not introduce new individ-
uals into the argument beyond those that one needs to consider in order to grasp
the premises and the conclusion. The approach of DBBLs focuses on the similar
tension between the (probable) intractability of Boolean logic and the claim, shared

5See [8] for a discussion.
6Recently in [2] the DBBL approach has been adopted as the logical foundation of a depth-

bounded approach to belief functions.
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by Hintikka and the logical empiricists, that it is informationally trivial. According
to this perspective, an inference is analytic if and only if the informational meaning
of the logical operators is su�cient to derive the conclusion from the premises; an
inference is synthetic (at di�erent degrees) when virtual information (up to a certain
depth) is needed to derive the conclusion from the premises.

Although each of these two theories suggests a compelling reason for which logic
is informative, neither of them, if taken in isolation, is su�cient to provide a com-
plete vindication of the thesis that first-order logical inferences are synthetic and
informative. On the one hand, Hintikka’s work classifies as analytic all proposi-
tional and monadic inferences. On the other, DBBLs are restricted to propositional
logic and do not capture the dimension of quantificational depth that in Hintikka’s
work is related to the introduction of new individuals that were not “given” in a
surface understanding of the premises.

The main contribution of this paper consists in merging the two approaches
by introducing a new family of logical systems, that we call Depth-Bounded First-
Order Logics (DBFOLs), which extends DBBLs to first-order languages by exploiting
Hintikka’s insight (in particular, appropriate rules for quantifiers are added to the
introduction and elimination rules for DBBLs). The structure of DBFOLs, which
resembles that of DBBLs, is given by an infinite hierarchy of logics representing
increasing levels of syntheticity or informativeness of classical first-order logic. The
logic „0, which is the basic element of the hierarchy, validates only analytic infer-
ences; for every k > 0, the logic „k validates synthetic inferences in such a way
that the greater k is, the more synthetic and informative are the inferences that are
valid in it. Here, the terms “analytic” and “synthetic” are given a new meaning that
conciliates the intuitions of Hintikka’s work and of the DBBL-approach.

5 An intuitive informational semantics for quantifiers

In order to define inference rules that comply with the basic ideas of informational
semantics outlined in the previous section, we need to ask ourselves a fundamental
question. What do we mean when we say that we hold the information that a
sentence of the form ’xF or ÷xF is true, respectively false?

Let’s start with the notion of actually possessing the information that ’xF is
true. The answer cannot be that we actually possess the information that F [x/a]
is true for all the infinitely many individuals that may be denoted by a. A more
feasible answer is the following: we are in the disposition to assent to any sentence
of the form F [x/a]. A typical analogy widely used in this context is that we have an
urn W whose composition is unknown to us, and if we draw an individual at random
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from this urn, assign to it the name a (or a is its given name, in case it already has
one), then we are in the disposition to assent to F [x/a]. We may also imagine that,
once an individual has been drawn from the W urn, we move it into a box D that
represents the known domain of discourse. The composition of the box D, unlike
that of W , is fully known and always consists of a finite number of individuals at each
stage of the reasoning process. How many draws from W are needed in association
with the given universal quantifier in order to grasp the meaning of the sentence? It
makes sense to say that, in order to grasp the meaning of ’xF , a minimal su�cient
condition consists in envisaging a situation in which an agent is in the disposition
to assent to F [x/a] for any single random draw of an individual a from W , as well
as for all individuals a contained in D.

Similar considerations can be made for the case of the falsity of ÷xF . That an
agent actually possesses the information that ÷xF is false, or equivalently that ¬÷xF
is true, means in essence that for any possible draw of an individual a from the W
urn and for all the finitely many individuals in D, the agent is in the disposition to
dissent from F [x/a], i.e., to assent to ¬F [x/a], and this explanation is su�cient to
grasp the meaning of ¬÷xF .

What about the notion of actually possessing the information that ÷xF is true?
A natural answer is that one is informed that a search for an individual that fits
the description given by the open sentence F (assuming that F contains x as a free
variable) will eventually be successful. The search involves both the urn W and the
box D, meaning that the sought individual might be unknown or already known.
Similar considerations hold for the notion of actually possessing the information that
the sentence ’xF is false, or equivalently that ¬’xF is true. We are guaranteed that
the search for an individual that fits the description given by the open sentence ¬F
will eventually succeed. We can call this explanation the surface meaning of ’ and
÷.

6 Perfect PNF and analytic rules for quantifiers
Our aim is to put forward a set of introduction and elimination rules for quantifiers
that are in accordance with their surface meaning as fixed by the intuitive informa-
tional semantics outlined in the previous section. Their application will therefore be
analytic as well as informationally trivial.

In order to keep technicalities to minimum and focus on the conceptual analysis,
we shall assume that all premises of an inference are in prenex normal form.7 It is
well-known that this involves no loss of generality, for it is computationally easy to

7Since we are restricting our attention to classical logic, this is always possible.
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transform every formula in a formula in prenex normal form such that the matrix
has exactly the same Boolean structure as the original formula — namely it results
from the original formula by removing all quantifiers. We shall not impose, however,
that any formula other than the premises is in prenex normal form.

In what follows we shall assume also that the quantified variables in the set
of premises � of an inference are renamed in such a way that (i) the number of
existentially quantified variables occurring in � is maximal and (ii) the number of
universally quantified variables occurring in � is minimal, modulo logical equiva-
lence (see Example 1 below). When such a renaming has been performed we shall
say that � is in perfect prenex normal form. This kind of transformation of the
premises, albeit non essential, makes for easier formulation of suitable analytic rules
for quantifiers. The transformation can be avoided at the price of more contrived re-
strictions on the quantifier rules or of a new kind of format for proofs, other than the
standard Gentzen-style or Fitch-style format. For the purposes of this preliminary
investigation we shall therefore adopt this simplification and leave other options for
future research.

Recall that a formula is in prenex normal form (PNF) if it has the form

Qx1 · · · Qxn
F [x1, . . . , xn]

where each Qi is either an occurrence of ’ or an occurrence of ÷, F is quantifier-free
and all variables in F are bound by some quantifier in the prefix. A formula is in
minimal PNF (min-PNF) if there is no logically equivalent formula with the same
matrix and a lower number of occurrences of quantifiers in the prefix.

Example 1. ’x÷y’z(Rxy · Ryz) is in min-PNF. ’x÷y’z’w(Rxy · Ryz)is not, for
the last occurence of ’ is redundant. ’x’y(Px · Qy) is not, for it is equivalent to
’x(Px · Qx).

A set � of formulae is in perfect prenex normal form (PPNF) if:

• Every formula in � is in min-PNF;

• All occurrences of existential quantifiers in � bind variables that are di�erent
from each other and from all the universally quantified variables;

• The number of distinct universally quantified variables occurring in � is min-
imal.

Every set � of formulae in min-PNF can be easily transformed into a set �Õ in PPNF,
by renaming of variables, in such a way that every formula A in � is transformed
into a logically equivalent formula AÕ in �Õ such that the matrix of AÕ is the same as
the matrix of A modulo renaming of variables.
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Example 2. The set

{’x÷y’z(Rxy · Rxz), ’x÷y’w(Sxy · Sxw)}

is not in PPNF. A possible transformation of this set into PPNF is the following:

{’x÷y’z(Rxy · Rxz), ’x÷w’z(Sxw · Sxz)}.

The main motivation behind the requirement that the set of premises of an
inference is in PPNF is given by the following:

Proposition 1. Let � be a set of formulae in PPNF. Then, the number of distinct
bound variables in � is the same as the number of distinct bound variables in any
min-PNF of

w
�.

So, we can argue that when a set of premises is in PPNF the number of distinct
individuals that are considered in these premises and are required to grasp their
surface meaning is mirrored by the number of distinct bound variables. Moreover,
the situation does not change if we take any min-PNF of the conjunction of the
premises.

The preliminary transformation of any set of premises into PPNF makes the
explanation of the inference rules quite transparent. All inferences that can be
justified by means of these rules will be “analytic” in the following (informal) sense:

No more individuals need to be considered in proving the conclusion
than those that were already considered in grasping the surface
meaning of the premises.

(PQA)

PQA stands for “Principle of Quantificational Analyticity”. This sense of analyticity
is not strictly equivalent to any of the senses discussed by Hintikka in [19], except
perhaps the sense IIIc (p. 181).

Recall that when a set of premises is in PPNF, all occurrences of the existen-
tial quantifier bind di�erent variables, while di�erent occurrences of the universal
quantifier may bind the same variable. When a set of premises is in PPNF, every
distinct universally quantified variable involves the consideration of a distinct “ar-
bitrary” individual, and every distinct existentially quantified variable involves the
consideration of a distinct “specific” individual. These are all the individuals that
may be regarded as been “thought of” in the premises. To take a simplest example,
in order to grasp the surface meaning of the set of premises {÷x’yRxy, ’y÷zSyz},
we need to consider three distinct individuals. The first is a specific one that results
from the search, associated with the existentially quantified variable x, of an indi-
vidual that fits the description given by the open formula ’yRxy. The second is an
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unknown one, say b, which is drawn at random from the W urn and is associated
with the universally quantified variable y. The same “drawn” individual b can be
taken to instantiate the universally quantified variable y in the second formula. Fi-
nally we need to consider a third specific individual, say c, which results from the
search associated with the existentially quantified z and fits the description given
by the open formula Sbz.

Note that, according to our explanation of the informational meaning of ’, hold-
ing the information that ’x÷yRxy means that we are in the disposition to assent
to ÷yRay for any single unknown individual drawn from the W urn, as well as for
all already known individuals taken from the D box (when it is not empty). Being
in the disposition to assent to ÷yRay means that we hold the information that the
search for a suitable individual y that fits Ray will eventually be successful. This
does not immediately imply that we hold information about a specific individual that
does fit the description. However, when ’x÷yRxy is used as premise of an inference,
we may consider as part of the surface meaning of ’x÷yRxy that the result of this
search can somehow be “given” to us. This allows us to choose a new name for this
individual, say b, and infer Rab. These are the two individuals that are thought of in
grasping the meaning of the premises, as witnessed by the fact that any “concrete”
(e.g. graphical) explanation of what counts as a model of this sentence would need
to involve two individuals and no more. In essence, what ’x÷yRxy says is: “let a be
an arbitrary unknown individual drawn from W and let b any result of the search
for an individual that fits the description Ray, we are in the disposition to assent to
Rab”.

Now, it makes sense to claim that the meaning of ’ implies that we are also
in the disposition to assent to ÷yRby. However, it would not be equally natural
to assume that the new search for an individual that fits the description Rby and
the result of this search has already been thought of in the premise ’x÷yRxy and
therefore required to grasp its surface meaning.

For the sake of simplicity we assume that our first-order language contains no
constants and is equipped with a set of parameters (as in [28]) a, b, c, . . . possibly
with subscripts, that may occur in the proof, but neither in the premises, nor in the
conclusion. Given that formulae are in PPNF, let the Q-complexity of a finite set � of
premises be the number of distinct variables that occur in � (we assume all variables
are bound by some quantifier in the prefix). Then our notion of analytic proof in
the sense of (PQA) above, that is in a sense that is restricted to the informational
meaning of the quantifiers, can be simply rephrased as follows:

A proof is analytic only if the number of distinct parameters that
occur in it never exceeds the Q-complexity of its initial premises.

(PQAú)
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The use of “only if” stems from the fact that a proof may be analytic in the sense
of (PQAú) above and yet be synthetic in that it may still make use of virtual
information at the propositional level. In the sequel we shall see how the structural
DBBL rule that governs the introduction of virtual information may be used to
mark the transition to the next degree of depth both at the propositional and the
quantificational level, so as to provide a unified approach to the notion of synthetic
proof for full first-order logic.

Our next problem is then: can we define a set of intelim rules for quantifiers
that comply with the surface informational meaning of the quantifiers outlined in
Section 5 and deliver only analytic inferences in the sense of (PQAú)? Can we
construe the transition from analytic to synthetic inferences and from one degree of
depth to the next only in terms of the nested use of virtual information?

As far as no virtual information is used, we shall display our proofs in the format
of sequences of signed formulae, of the form T A or F A. In accordance with the
informational approach to classical logic our interpretation of signed formulae will
be non-standard. We take “T A” to mean “we actually possess the information that
A is true” and “F A” to mean “we actually possess the information that A is false”.
So the signs T and F do not refer to classical truth and falsity (as in Smullyan’s
semantic tableaux [28]), but to “informational truth” and “informational falsity”. As
mentioned above, a natural way of thinking of these notions is in terms of an agent’s
disposition to assent to a sentence or dissent from it depending on the available
information. A straightforward consequence of this epistemic interpretation of the
signs is that one cannot assume, in general, that for every sentence A an agent is
either in the disposition of assenting to A or in the disposition of dissenting from A.
When neither is the case, the agent may abstain for lack of su�cient information.

Although the use of signed formulae is appropriate for conceptual clarity, it is
by no means essential in our approach. For all practical purposes one can always
revert to standard formulae simply by removing all the T signs and replacing all the
F signs with the negation operator.

In the DBBL approach, for each logical operator, there are intelim rules for a
signed formula containing it as main operator as well as for its conjugate (the conju-
gate of “T A” is “F A” and viceversa). This feature is shared by the tableau method
(which, however, is restricted to refutations of sets of formulae via elimination rules
only) and other bilateral systems of deduction, such as Bendall’s [3] or Rumfit’s [26].
The first-order version of the propositional DBBL rules, that allows for the presence
of parameters in formulae, is given in Figures 2 and 3. In the sequel we shall make
use of the following notation:

• F x
a denotes the result of replacing every occurrence of the variable x in F with
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T A æ B
T A

T B
T æE1

T A æ B
F B

F A
T æE2

F A æ B

T A
F æE1

F A æ B

F B
F æE2

T A ‚ B
F A

T B
T ‚E1

T A ‚ B
F B

T A
T ‚E2

F A ‚ B

F A
F ‚E1

F A ‚ B

F B
F ‚E2

T A · B

T A
T ·E1

T A · B

T B
T ·E2

F A · B
T A

F B
F ·E1

F A · B
T B

F A
F ·E2

F ¬A

T A
F¬E

T ¬A

F A
T¬E

Figure 2: Elimination rules for the propositional operators.

the parameter a;

• F a
x denotes the result of replacing every occurrence of the parameter a with

the variable x;

• F [a/x] denotes the result of replacing some or all occurrences of a with x.

T ’-elimination and F ÷-elimination.

T ’xF
T ’E

T F x

a

F ÷xF
F ÷E

F F x

a

where a is any parameter that already occurs above in the proof; or else a is a new
parameter, provided that no other parameter has been already introduced above by
an application of the same rule to a formula of the form T ’xG, respectively F ÷xG.
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F A

T A æ B
T æI1

T A

T A ‚ B
T ‚I1

F A

F A · B
F ·I1

provided that every parameter occurring in B already occurs above.

T B

T A æ B
T æI2

T B

T A ‚ B
T ‚I2

F B

F A · B
F ·I2

provided that every parameter occurring in A already occurs above.

T A
F B

F A æ B
F æI

F A
F B

F A ‚ B
F ‚I

T A
T B

T A · B
T ·I

T A

F ¬A
F¬I

F A

T ¬A
T¬I

Figure 3: Introduction rules for the propositional operators.

In essence, each bounded variable x in the premise of these rules can be instan-
tiated at most once by a new parameter, denoting an unknown individual drawn
from the W urn, although it can be instantiated by all the old parameters denoting
known individuals in the box D.

Example 3. Example of a wrong application of the T’E rule (the quantifier ’y has
been used at step 3 to introduce the new parameter b and again at step 5 to introduce
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the new parameter c).

1 T ’x’yRxy Premise
2 T ’yRay T ’E, 1
3 T Rab T ’E, 2
4 T ’yRby T ’E, 1
5 T Rbc T ’E, 4
6 T Rab · Rbc T ·I, 3, 5
7 T ’z(Rab · Rbz) T ’I, 6
8 T ’y’z(Ray · Ryz) T ’I, 7
9 T ÷x’y’z(Rxy · Ryz) T ÷I, 8

T ÷-elimination and F ’-elimination.

T ÷xF
T ÷E

T F x

a

F ’xF
F ’E

F F x

a

provided that a is a new parameter and no other parameter has been already in-
troduced above by an application of the same rule to a formula of the form T ÷xG,
respectively F ’xG.

In essence, each bounded variable x in the premise of these rules can be in-
stantiated at most once by a new parameter, denoting the result of a search for an
individual that fits the description in F .

When these rules are applied, we say that the new parameter a in the conclusion
of the rule is critical and depends on all the other parameters occurring in F .

Example 4. Example of a wrong application of the T÷E rule (the quantifier ÷y has
been used at step 3 to introduce the new parameter b and again at step 5 to introduce
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the new parameter c).

1 T ’x÷yRxy Premise
2 T ÷yRay T ’E, 1
3 T Rab T ÷E, 2
4 T ÷yRby T ’E, 1
5 T Rbc T ÷E, 4
6 T Rab · Rbc T ·I, 3, 5
7 T ÷z(Rab · Rbz) T ÷I, 6
8 T ÷y÷z(Ray · Ryz) T ÷I, 7
9 T ’x÷y÷z(Rxy · Ryz) T ’I, 8

T ’-introduction and F ÷-introduction.

T F
T ’I

T ’xF a

x

F F
F ÷I

F ÷xF a

x

Provided that a is not critical and F does not contain critical parameters depending
on a. Moreover, x is not bound in F .

Example 5. Example of a wrong application of the T’I rule (b is a critical param-
eter depending on a).

1 T ’x÷yRxy Premise
2 T ÷yRay T ’E, 1
3 T Rab T ÷E, 2
4 T ’xRxb T ’I, 3
5 T ÷y’xRxy T ÷I, 4

T ÷-introduction and F ’-introduction.

T F
T ÷I

T ÷xF [a/x]
F F

F ’I
F ’xF [a/x]

provided x is not bound in F .
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General restriction on quantifier eliminations. In order to guarantee that
the Principle of Quantificational Analyticity (PQAú) is always satisfied, we also
need the following general restriction on the application of the quantifier elimination
rules: their application is allowed only if their premise is not the conclusion of an
introduction. It is easy to see how the violation of this general restriction may lead
to violations of (PQAú). Consider, for example, the following proof:

1 T ’x÷yRxy premise
2 T ÷yRay from 1
3 T Rab from 2
4 T ÷zRaz from 3
5 T ’x÷zRxz from 4
6 T ÷zRbz from 5
7 T Rbc from 6
8 T Rab · Rbc from 3 and 7
9 T ÷z(Rab · Rbz) from 8
10 T ÷y÷z(Ray · Ryz) from 9
11 T ’x÷y÷z(Rxy · Ryz) from 10

Here, the number of parameters occurring in the proof exceeds the Q-complexity of
the premise. The proof is not analytic.

0-depth inferences (analytic sequences). An analytic sequence based on �,
where � is in PPNF, is any sequence of signed formulae starting from the formulae
in T � = {T B | B œ �} and such that each subsequent signed formula results from
signed formulae previously occurring in the sequence by means of an application of
the intelim rules. An analytic proof of A from � is an analytic sequence based on
T � that ends with T A. We say that A is deducible from � at depth 0 when there is
an analytic proof of A from �.

Note that A, ¬A „0 B for any B, as shown by the following analytic sequence:

1 T A premise
2 T ¬A premise
3 F A from 2 by T¬E
4 T A ‚ B from 1 by T‚I
5 T B from 4 and 3 by T‚E

However, this sequence is not “analytic” in one of the widespread senses of this word,
in that it does not enjoy the subformula property (and indeed there is no 0-depth
proof of B from {A, ¬A} with the subformula property). If we want the subformula
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property to hold in general, we need to modify our definition of 0-depth deducibility
as follows. An analytic sequence based on � is closed if it contains both T B and
F B for some formula B. Otherwise we say that it is open. A 0-depth refutation of
� is a closed analytic sequence based on �. Then we say that A is deducible from �
at depth 0 when either there is 0-depth proof of A from � or a 0-depth refutation
of �. On the other hand, if our notion of analytic proof is restricted to sequences
with the subformula property, then the previous notion of analytic proof delivers
a paraconsistent notion of 0-depth deducibility. Since our aim in this paper is to
outline a depth-bounded approach to classical first-order logic, we shall adopt the
amended definition of 0-depth deducibility. Note, however, that according to this
definition, not all classically inconsistent set of formulae are explosive, but only
those whose inconsistency can be detected at depth 0, i.e., by virtue of the surface
informational meaning of the logical operators.8

The notion of 0-depth inference intends to capture the idea of an inference that
is performed by virtue of the surface informational meaning of the quantifiers and
makes no use of virtual information (no discharge of temporary hypothetical assump-
tions). The following example illustrates the restriction on the Boolean introduction
rules that are needed to preserve the quantificational analyticity of proofs.

Example 6. Example of a wrong application of the T ‚ I rule (at step 4, a new
parameter, namely c, occurs in the second disjunct of TRab ‚ Rbc).

1 T ’x÷yRxy Premise
2 T ÷yRay T ’E, 1
3 T Rab T ÷E, 2
4 T Rab ‚ Rbc T ‚I, 3
5 T ’z(Rab ‚ Rbz) T ’I, 4
6 T ÷y’z(Ray ‚ Ryz) T ÷I, 5
7 T ÷x÷y’z(Rxy ‚ Ryz) T ÷I, 6

8For a further discussion of this point see [6, Section 8].
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Example 7. T’x÷yRxy, T’x’w(Rxw æ Rwx) „0 T’x÷y(Rxy · Ryx)

1 T ’x÷yRxy Premise
2 T ’x’w(Rxw æ Rwx) Premise
3 T ÷yRay T ’E, 1
4 T Rab T ÷E, 3
5 T ’w(Raw æ Rwa) T ’E, 2
6 T Rab æ Rba T ’E, 5
7 T Rba T æE, 4, 6
8 T Rab · Rba T ·I, 4, 7
9 T ÷y(Ray · Rya) T ÷I, 8

10 T ’x÷y(Rxy · Ryx) T ’I, 9

Let us write � „0 A whenever A is 0-depth deducible from �, and let „C denote
the relation of deducibility in classical first-order logic. The soundness of „0 with
respect to „C is trivial.

Proposition 2. � „0 A =∆ � „C A.

It can also be shown that:

Proposition 3. If � „0 A, then there exists an analytic proof of A from � with the
subformula property.

For the propositional part, the proof can be found in [6]. Its extension to the
first-order case is immediate given the general restriction on quantifier eliminations,
according to which the premise of a quantifier elimination cannot be the conclusion
of an introduction. In principle one could impose a similar restriction on the propo-
sitional elimination rules, so as to obtain only proofs with the subformula property.

Note that, as for its propositional counterpart, „0 is a Tarskian logic, i.e. it
satisfies reflexivity, monotonicity, transitivity and substitution invariance. Moreover,
it is not di�cult to show that 0-depth inferences satisfy (PQAú), and that this fact
implies the following:

Proposition 4. The logic „0 is decidable.

Given that „0 is tractable for its propositional fragment, we conjecture that it is
tractable also in the first-order case, but a proof of this conjecture will be the topic
of future research.
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To summarize, the 0-depth first-order logic captures a notion of analytic infer-
ence that makes no use of virtual information and satisfies the (PQAú) principle of
quantificational analyticity.

7 Depth-bounded natural deduction for full first-order
logic

Virtual information. The role of virtual information in the DBBL approach has
been briefly illustrated in Section 4 and is discussed at length in [11, 10, 8, 7, 6].
In the context of this section it will be convenient to work with the relation of k-
depth derivability between finite sets of signed formulae and signed formulae defined
in the obvious way. Accordingly we can say that A is k-depth deducibile from �
whenever T A is k-depth derivable from the set of signed formulae in T �. However,
the notion of k-depth derivability is defined for arbitrary finite sets of signed formulae
(not necessarily in PPNF) and arbitrary formulae. We shall use X, Y , Z, etc. as
variables ranging over finite sets of signed formulae and Ï, Â, ‰, etc. as variables
ranging over signed formulae.

Starting from 0-depth derivability, the transition from one degree of depth to the
next is associated with the use of a structural rule that governs the use of virtual
information in a proof. This is the only discharge rule of the system and takes the
following form:

If Ï is k-depth derivable from X fi {T A} and from Y fi {F A}, then
Ï is k + 1-depth derivable from X fi Y .

(RB)

This rule simulates the transition from an information state in which we do not
possess any information about the truth or falsity of A, to a richer one, in which
the formula A is decided, that is, either we actually possess the information that it
is true or we actually possess the information that it is false. It can be seen as a
principle of potential omniscience and it is the informational version of the classical
principle of bivalence. Accordingly we call this rule “Rule of Bivalence” (RB).

Given that the virtual assumptions T A and F A introduced by an application
of this rule may contain parameters, its use suggests the need for a further restric-
tion on the T ’I and F ÷I rules, namely that the parameter a does not occur in
any undischarged virtual assumption on which the premise of the rule application
depends.

In the following examples we shall use boxes to represent the subproofs to which
the RB rule is applied. The depth of a derivation is nothing but the maximum
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number of nested boxes occurring in it. We write � „k A to mean that A is k-depth
deducible from � (T A is k-depth derivable from T �).

Example 8. T’x(Qx æ Rx), T’x(Rx æ Sx) „1 T’x(Qx æ Sx)

1 T ’x(Qx æ Rx) Premise
2 T ’x(Rx æ Sx) Premise
3 T Qa æ Ra T ’E, 1
4 T Ra æ Sa T ’E, 2
5 T Qa

6 T Ra TæE, 3, 5
7 T Sa T æE, 4, 6
8 T Qa æ Sa T æI, 7

F Qa

T Qa æ Sa T æI, 5

9 T Qa æ Sa

10 T ’x(Qx æ Sx) T ’I, 9

Note that in the above proof the application of the rule T ’I at step 10 is allowed
because the virtual assumptions containing the parameter a have already been dis-
charged.

Example 9. Consider again the example discussed in Section 3. We transform the
premises of the argument in PPNF and obtain the following set � = {’x’y÷z(Rxy æ
(Gxz · Gzy)), ’x’y÷w(Gxy æ (Bxw · Bwy)), ’x’y((Bxy · Cx) æ Cy)}. Figure
4 illustrates the configuration of the premises in �. The derivation of the conclu-
sion T ’x’y((Rxy · Cx) æ Cy) from the premises T �, which is shown in Figure
5, has depth 2. Notice that, unlike the former, the latter application of the RB in-
troduces a new quantifier ÷v, the elimination of which permits the introduction into
the argument of a new individual e. As a result, this derivation violates (PQA) and
vindicates Hintikka’s insights.

Liberalized introduction rules. In [6], D’Agostino, Gabbay and Modgil have
shown that, towards the normalization result, it is convenient to prove that every
derivation can be transformed into its RB-canonical form, i.e. into a derivation in
which there is no application of a rule below the conclusion of an application of
RB. In that paper, the authors have shown that this outcome can be achieved by
applying the transformation depicted in Figure 6, where ‰ is the conclusion of a rule
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a

c

b

d

G G
R

G
B B

B

Figure 4: This figure illustrates the configuration of the premises in PPNF of the
example shown in Section 3.

having as its premise(s) Â (and Ï). The iterated application of this transformation
results in pushing downwards all the applications of RB so that, eventually, the
conclusion of an application of RB is never used as a premise of a rule and must be
identical to the conclusion of the whole derivation.

This theorem concerning RB-canonical derivations, that D’Agostino, Gabbay
and Modgil proved for propositional logic, might be useful also in DBFOLs. However,
the result of the transformation shown in Figure 7 is not sound, because, as we have
seen above, the T ’I rule might be applied to a formula such as T B(c) whenever
c does not occur in any undischarged assumption on which the premise of the rule
application depends. Therefore, if we want to prove that every derivation of DBFOLs
can be transformed into an equivalent one in RB-canonical form, we are required
to liberalize the use of the rule T ’I (and of the rule F ÷I), in such a way that the
transformation shown in Figure 7 turns out to be sound.

We say that an individual denoted by a is arbitrary for a certain property F (x)
expressed by an open formula with a free variable x, if either F x

a is false, or F x
a

is true for every individual a in the domain. Note that we can always assume,
with no loss of generality, that a new parameter introduced in a virtual assumption
via an application of the RB denotes an individual that is arbitrary for a certain
property F (x). The crucial point is that if a is arbitrary for F (x), then it might
not be arbitrary for a syntactically distinct property G(x). The idea behind the
liberalized versions of T ’I and F ÷I is that if an individual denoted by the parameter
a is arbitrary for a certain property, the same individual cannot be arbitrary for a
di�erent property:
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T ’x’y÷z(Rxy æ (Gxz · Gzy)) Premise
T ’x’y÷w(Gxy æ (Bxw · Bwy)) Premise
T ’x’y((Bxy · Cx) æ Cy) Premise
T ’y÷z(Ray æ (Gaz · Gzy))
T ÷z(Rab æ (Gaz · Gzb))
T Rab æ (Gac · Gcb)
T ’y÷w(Gay æ (Baw · Bwy))
T ÷w(Gac æ (Baw · Bwc))
T Gac æ (Bad · Bdc)
T ’y÷w(Gcy æ (Bcw · Bwy))
T ÷w(Gcb æ (Bcw · Bwb))
T ’y((Bay · Ca) æ Cy)
T (Bad · Ca) æ Cd

T ’y((Bdy · Cd) æ Cy)
T (Bdc · Cd) æ Cc

T Rab · Ca

T Rab

T Ca

T Gac · Gcb

T Gac

T Gcb

T Bad · Bdc

T Bad

T Bdc

T Bad · Ca

T Cd

T Bdc · Cd

T Cc

T ÷v(Gcb æ (Bcv ·Bvb))
T Gcb æ (Bce · Beb)
T Bce · Beb

T Bce

T Beb

T ’y((Bcy · Cc) æ Cy)
T (Bce · Cc) æ Ce

T Bce · Cc

T Ce

T ’y((Bey · Ce) æ Cy)
T (Beb · Ce) æ Cb

T Beb · Ce

T Cb

T (Rab · Ca) æ Cb

F ÷v(Gcb æ (Bcv · Bvb))
F (Gcb æ (Bce · Beb))
F ÷w(Gcb æ (Bcw ·Bwb))
◊

T (Rab · Ca) æ Cb

F Rab · Ca

T (Rab · Ca) æ Cb

T (Rab · Ca) æ Cb

T ’y((Ray · Ca) æ Cy)
T ’x’y((Rxy · Cx) æ Cy)

Figure 5: Example of a derivation of depth 2. Due to space restrictions the justifi-
cations of the steps are omitted. 447
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...
Ï

T A
...
Â

F A
...
Â

Â
‰
...

≠æ

...
Ï

T A
...
Â
‰

F A
...
Â
‰

‰
...

Figure 6: Iterated applications of this transformation turn any derivation into an
RB-canonical one: ‰ is the conclusion of an intelim-rule having as its premise(s) Â
(and Ï) [6].

...
T A(c)
...
T B(c)

F A(c)
...
T B(c)

T B(c)
T ’xB(x)

...

≠æ

...
T A(c)
...
T B(c)
T ’xB(x)

F A(c)
...
T B(c)
T ’xB(x)

T ’xB(x)
...

Figure 7: The result of this transformation shows an application of the liberalized
T ’I rule.

T F
T ’I

T ’xF a

x

F F
F ÷I

F ÷xF a

x

Provided that a is not critical, F does not contain critical parameters depending
on a and x is not bound in F . Moreover, the rule T ’I (respectively F ÷I) is not
applied to T G(a) (respectively, F G(a)) obtaining T ’xGa

x (respectively, F ÷xGa
x) for

any formula G syntactically distinct from F .

Example 10. Example of a wrong application of the liberalized I-rule. The T ’I
rule cannot be applied both at step 2 left and at step 3 right, because the individual
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denoted by c cannot be arbitrary for both T Ac and T ¬Ac.

1 T Ac

2 T ’xAx T ’I, 1
3 T ’xAx ‚ ’x¬Ax T ‚I, 2
4

F Ac

T ¬Ac T ¬I, 1
T ’x¬Ax T ’I, 2
T ’xAx ‚ ’x¬Ax T ‚I, 3

5 T ’xAx ‚ ’x¬Ax

Example 11. Example of a correct application of the liberalized I-rule:
„1 T ’xAx ‚ ÷x¬Ax

1 T Ac

2 T ’xAx T ’I, 1
3 T ’xAx ‚ ÷x¬Ax T ‚I, 2
4

F Ac

T ¬Ac T ¬I, 1
T ÷x¬Ax T ÷I, 2
T ’xAx ‚ ÷x¬Ax T ‚I, 3

5 T ’xAx ‚ ÷x¬Ax

Example 12. Example of a correct application of the liberalized I-rule:
T ’x÷y(¬Ay ‚ Ax) „1 T ÷y¬Ay ‚ ’xAx

1 T ’x÷y(¬Ay ‚ Ax) Premise
2 T ÷y(¬Ay ‚ Aa) T ’E, 1
3 T ¬Ab ‚ Aa T ÷E, 2
4 T Aa

5 T ’xAx T ’I, 4
6 T ÷y¬Ay ‚ ’xAx T ‚ I, 5
7

F Aa

T ¬Ab T ‚ E, 3, 4
T ÷y¬Ay T ÷I, 5
T ÷y¬Ay ‚ ’xAx T ‚ I, 6

8 T ÷y¬Ay ‚ ’xAx

The propositions stated above, at the end of Section 6 for the notion of 0-depth
deducibility, can be extended to the general case. Here we state them without proof.

Proposition 5. A formula A is a classical consequence of � if and only if there is
a k-depth proof of A from � for some k œ N.
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We just observe that completeness can be proven via simulation of a classical
natural deduction system (with or without the liberalized introduction rules). Appli-
cations of the standard quantifier eliminations that increase the number of distinct
parameters beyond the Q-complexity of the premises can be simulated via suitable
applications of the RB rule introducing virtual information and so increasing the
depth of the proof.

Proposition 6. If A is a classical consequence of �, there is a k-depth proof of A
from � with the subformula property for some k œ N.

A detailed proof-theoretical investigation of the normalization problem will be
the topic of a future paper.

Proposition 7. The notion of k-depth inference is decidable for every fixed k.

Decidability follows from depth-boundedness: only a finite number of new pa-
rameters can be introduced by increasing the depth of the proof. It is open whether
k-depth inference (for normal proofs with the subformula property) is tractable, i.e.,
if there exists a polynomial time decision procedure. This problem will also be a
crucial topic of further research.
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