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Summary 26 

Background: Identifying patients at higher risk of healthcare-associated infections (HAIs) in 27 

intensive care unit (ICU) represents a major challenge for public health. Machine learning 28 

could improve patient risk stratification and lead to targeted infection prevention and control 29 

interventions.  30 

Aim: To evaluate the performance of the Simplified Acute Physiology Score (SAPS) II for 31 

HAIs risk prediction in ICUs, using both traditional statistical and machine learning 32 

approaches.  33 

Methods: We used data of 7827 patients from the “Italian Nosocomial Infections 34 

Surveillance in Intensive Care Units” project.  The Support Vector Machines (SVM) 35 

algorithm was applied to classify patients according to sex, patient origin, non-surgical 36 

treatment for acute coronary disease, surgical intervention, SAPS II at admission, presence of 37 

invasive devices, trauma, impaired immunity, antibiotic therapy in 48 hours before ICU 38 

admission. 39 

Findings: The performance of SAPS II for predicting the risk of HAIs provides a ROC 40 

(Receiver Operating Characteristics) curve with an AUC (Area Under the Curve) of 0.612 41 

(p<0.001) and an accuracy of 56%. Considering SAPS II along with other characteristics at 42 

ICU admission, we found an accuracy of the SVM classifier of 88% and an AUC of 0.90 43 

(p<0.001) for the test set. In line, the predictive ability was lower when considering the same 44 

SVM model but removing the SAPS II variable (accuracy= 78% and AUC= 0.66).  45 

Conclusions: Our study suggested the SVM model as a tool to early predict patients at higher 46 

risk of HAI at ICU admission.  47 

 48 

Keywords: healthcare-associated infections; machine learning; intensive care unit; risk 49 

prediction 50 

Jo
urn

al 
Pre-

pro
of



 3

 51 
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Italian Study Group of Hospital Hygiene (GISIO) 58 
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Support Vector Machines (SVM) 60 

K-Nearest Neighbor (K-NN)  61 
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Sequential Organ Failure Assessment (SOFA) 68 
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Introduction 76 

Healthcare-associated Infections (HAIs) are one of the major threats for public health 77 

worldwide, due to their significant impact on mortality, hospital stays, and assistance costs 1-
78 

3. In particular, frequency of HAIs is higher among people staying in Intensive Care Units 79 

(ICUs), because they have more severe clinical conditions, they are often immune-80 

compromised, and more likely to be intubated and catheterized than those staying in other 81 

hospital wards 4, 5. Furthermore, high antibiotic resistance rates have been reported together 82 

with increasing trends of resistant microorganisms, highlighting the need for continuous 83 

comprehensive strategies targeting not only the prudent use of antibiotics, but also infection 84 

control measures to control the epidemic spread of resistant isolates, especially in ICUs 3, 6-9. 85 

As reported by the European Center for Disease Prevention and Control (ECDC), in 2017 on 86 

a total of approximately 143,000 patients staying in ICU, 8% presented at least one HAI on a 87 

given day. In line, among ICU-surveilled HAIs, pneumonia, bloodstream infection and 88 

urinary tract infections accounted for 6%, 4% and 2%, respectively 10.  89 

 90 

Although HAIs depend on microorganisms’ characteristics - such as infectivity, 91 

pathogenicity, modes of transmission – several patients’ characteristics and the inappropriate 92 

use of invasive devices during the hospital stay represent some of the leading causes of HAIs 93 

in all the hospital wards, and especially in ICUs 4, 11, 12. In the last decades, several early 94 

warning scores have been developed in clinical practice to measure health conditions or 95 

illness severity of ICU patients. In particular, the Simplified Acute Physiology Score (SAPS) 96 

II represents the most widely used instrument for the prediction of prognosis, HAIs risk, 97 

sepsis and mortality 13-17. This validated score is calculated considering twelve routine 98 

physiological variables collected during the first hours of ICU admission, not including the 99 

type admission 18, 19. For these reasons, the identification of patients at higher risk of HAIs in 100 
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ICU still remains a major challenge for public health, with so many healthcare professionals 101 

which have studied and continue to examine personal and clinical characteristics associated 102 

with HAI risk 20-25. In this scenario, recent advances in statistical and mathematical 103 

approaches to automatically learn from a given dataset have made possible to identify 104 

patients or subgroups of patients which are more likely to be affected by HAI during their 105 

hospital stay 26-28. Indeed, there is a strong need for reliable tools that can guide patient 106 

management 29 by predicting the risk of HAIs and adverse associated outcomes, and thus 107 

reducing their burden on healthcare systems 30, 31. Furthermore, the availability of large 108 

amount of patient and facility data and the appropriate application of machine learning 109 

methods in healthcare epidemiology could help the understanding of risk factors for HAIs, 110 

the development of patient risk stratification tools and the identification of pathways for the 111 

spread of infections. This, in turn, could lead to targeted prevention interventions 32. 112 

Particularly, machine learning has been proposed to predict specific adverse events and for 113 

risk stratification in the ICU, becoming a useful way to improve quality of care 33. 114 

 115 

Here, we aimed to identify and predict patients at higher risk of HAIs, according to their 116 

characteristics at ICU admission. To do that, we used data from the “Italian Nosocomial 117 

Infections Surveillance in Intensive Care Units” (SPIN-UTI) project, which was established 118 

by the Italian Study Group of Hospital Hygiene (GISIO) of the Italian Society of Hygiene, 119 

Preventive Medicine and Public Health (SItI) in 2006. The SPIN-UTI network, since then, 120 

has collected data related to approximately 20,000 patients, more than 4,300 infections and 121 

5,300 microorganisms 20-25, 34. Our hypothesis is that, in the framework of predictive and 122 

personalized medicine, machine learning algorithms could enrich conventional statistical 123 

approaches, especially in terms of prediction of ICU prognosis, clinical deterioration and risk 124 

assessment 35. Accordingly, the current study first evaluates the performance of SAPS II for 125 

Jo
urn

al 
Pre-

pro
of



 6

HAI’s risk prediction in ICUs using a traditional statistical method. Next, we applied a 126 

Support Vector Machines (SVM) algorithm, considering SAPS II in combination with 127 

additional features at ICU admission, in order to distinguish non-infected patients from those 128 

who were diagnosed with at least one HAIs during their ICU stay and thus contribute to 129 

efforts to enhance patient management by ensuring better prevention, prognosis and therapy. 130 
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Methods  131 

Study design and data collection 132 

In the current study, we used data collected during the seven editions of the SPIN-UTI project 133 

according to the ECDC protocol 36.  From 2006 to 2019, the SPIN-UTI project prospectively 134 

surveyed 20,060 patients staying in ICUs for more than 2 days, recording data at patient, ICU 135 

and hospital levels during their stay in ICU. The study was approved by the ethics committee 136 

of the involved institution (Ethics Committee “Catania 1”, Catania, Italy; protocol numbers 137 

111/2018/PO and 295/2019/EMPO). Study design, protocols and full details on data 138 

collection were described elsewhere 20-25, 34.  139 

 140 

For the current analysis, SAPS II was initially used as the main exposure variable. Its 141 

computation was based on the following components, as previously described by Le Gall and 142 

colleagues 37: age; heart rate; systolic blood pressure; temperature; Glasgow coma scale; 143 

continuous positive airway pressure; PaO2; FiO2; urine output; blood urea nitrogen; sodium; 144 

potassium; bicarbonate; bilirubin; white Blood Cell; chronic diseases; type of admission. The 145 

SAPS II components were measured 24 hours after admission to the ICU and the worst 146 

values within those 24 hours were recorded. Each SAPS II component has a weighted value 147 

in points and the total score must be computed adding the weighted values 37. Additional 148 

exposure variables were used to develop a machine learning algorithm for the prediction of 149 

HAIs acquired in ICU. Specifically, the machine learning algorithm combined SAPS II with 150 

all variables collected at ICU admission but not included in the SAPS II computation. Thus, 151 

the original dataset contained only 39% of patients (n=7827) with a complete assessment of 152 

variables considered in our study (Figure S I in Supplementary File I.).  153 

 154 

 155 
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 8

Training and Test Set composition and comparison 156 

Since machine learning approaches require large and balanced data set for training, we first 157 

built a novel training data set made of recovered and synthetics data to tune the learning 158 

algorithms. Specifically, methods for data imputation and balancing of the training set are 159 

fully described in the in Supplementary File I. In brief, recovered data were obtained from 160 

incomplete records of the original dataset by replacing the missing values using the K-161 

Nearest Neighbor (K-NN) imputation method, as described by Malarvizhi and Thanamani 38. 162 

Instead, synthetic data were generated to balance the two classes of infected and non-infected 163 

patients using the Synthetic Minority Over-sampling Technique (SMOTE). This technique is 164 

a common oversampling method to resample the minority class data following those in the 165 

majority class. While the classic oversampling technique duplicates minority data from the 166 

minority data population, the SMOTE works by utilizing a K-NN algorithm to create 167 

synthetic data. In simple terms, SMOTE first start by choosing random data from the 168 

minority class population, then identifies the K-NN, and finally generates synthetic data from 169 

the random data and the randomly selected K-NN 39. 170 

 171 

The test set was instead composed by real data of patients with a complete assessment of the 172 

following variables at ICU admission: sex (dichotomous), patient’s origin (categorical: other 173 

ward/healthcare facility, community), non-surgical treatment for acute coronary disease 174 

(dichotomous), surgical intervention (dichotomous), SAPS II at admission (continuous), 175 

presence of invasive devices at ICU admission (three dichotomous variables for urinary 176 

catheter, intubation and central venous catheter, respectively), trauma (dichotomous), 177 

impaired immunity (dichotomous), antibiotic therapy in 48 hours before ICU admission 178 

(dichotomous). 179 

Jo
urn

al 
Pre-

pro
of



 9

Thus, the training set was made by recovered (n= 7,758) and synthetics records (n=2,544), 180 

while the test set included 7,827 real data. The distribution of infected and non-infected 181 

patients between the training and test sets is summarized in Table S1 in Supplementary File I. 182 

To evaluate the goodness of the training set records, we compared the distributions of each 183 

single variable with those of the test set to assess that the training data are compliant with the 184 

real data. As reported by Figure S II (Supplementary File I), SAPS II and age followed the 185 

same distribution in the training and test sets. Likewise, Figures S III and S IV 186 

(Supplementary File I) show that the distributions of categorical variables were similar 187 

between training and test sets.  188 

 189 

Learning model generation 190 

To improve the predicting performance of the model, a machine learning algorithm 191 

combining the SAPS II with additional variables collected at ICU admission (i.e. sex, 192 

patient’s origin, non-surgical treatment for acute coronary disease, surgical intervention, 193 

presence of intubation, presence of urinary catheter, presence of central vascular catheter; 194 

trauma, impaired immunity, antibiotic therapy in 48 hours before ICU admission) was 195 

applied. Specifically, we chose the SVM as modeling tool. SVM is a supervised learning 196 

algorithm which can be used for classification - especially for binary classification - and 197 

regression problems. In the case of two or three exposure variables, the functions used to 198 

classify between features are a line or a plane, respectively. In the case of more than three 199 

exposure variables, like our model, the function classifying features is referred to a 200 

hyperplane. Accordingly, the rationale behind SVM is to find an optimal hyperplane that 201 

clearly classifies the different classes (in our case, infected and non-infected patients). The 202 

separating hyperplane found by the algorithm provides the largest margin between the two 203 

classes. However, our dataset was not linearly separable even in a feature space, not allowing 204 
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 10 

to satisfy all the constraints of SVM 40. For this reason, we used a non-linear Kernel function 205 

(i.e., the Gaussian Kernel, also called as Radial basis function Kernel, RBF). Gaussian RBF is 206 

a popular Kernel function used in SVM models to map data that are not originally linearly 207 

separable into a higher dimensional feature space where they are made linearly separable. It 208 

is worth mentioning that linear kernels are less time consuming than non-linear ones, but they 209 

provides less accuracy 40. To compare the predictive ability of SVM with that obtained 210 

through SAPS II alone, we calculated the accuracy (i.e., the proportion of total records that 211 

are correctly predicted by the model) and the area under the curve (AUC; ranging from 0.5 212 

for no prediction to 1.0 for perfect prediction 13, 15, 41, 42). In addition, we calculated two 213 

evaluation metrics for classification problems, namely precision and recall. Precision - also 214 

called positive predictive value - is the fraction of the positive predictions which are truly 215 

positive. Recall - often referred to as sensitivity - is the fraction of the initial positives which 216 

have been predicted correctly. A perfect classifier should have precision and recall both equal 217 

to 1. Data analyses were performed through Python and the SciPy stack. Full details on the 218 

computational methods are given in the in Supplementary File I. 219 

 220 

Statistical Analysis 221 

Statistical analyses were performed using SPSS software (version 26.0, SPSS, Chicago, IL). 222 

The Kolmogorov- Smirnov test was used to check the normal distribution of continuous 223 

variables. Patients’ characteristics were described using median and interquartile range (IQR) 224 

or percentage. Comparisons between variables were analyzed by the Chi-squared test for 225 

categorical variables, while the Mann-Whitney U test was used for continuous variables with 226 

skewed distribution. To test the accuracy of the SAPS II in HAI’s risk prediction along the 227 

range of possible values, we used the Receiver Operating Characteristics (ROC) curve 228 

analysis. A ROC curve is a useful graphical tool to evaluate the performance of a binary 229 
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classifier as its discrimination threshold is varied. In particular, the predictive performance 230 

was assessed by calculating the accuracy and the area under the curve (AUC) 13, 15, 41, 42.  All 231 

statistical tests were two-sided, and p-values < 0.05 were considered statistically significant. 232 

 233 

  234 
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Results  235 

Study population  236 

On a total of 20060 SPIN-UTI participants, the current analysis was performed on a 237 

subsample of 7827 patients (median age= 69 years; 60.6% males) enrolled from 2006 to 238 

2019. The remaining 12233 participants (61%) were excluded because of missing data on the 239 

assessment at ICU admission. In this subsample, patients coming from other wards/hospitals 240 

and reporting a surgical type of ICU admission were 73.9% and 52.4%, respectively. In 241 

general, median SAPS II at admission was 40 (IQR= 28) and length of ICU stay was 5 days 242 

(IQR= 10). Patients who reported trauma and impaired immunity were 3.4% and 8.6%, 243 

respectively. With respect to medical treatments, 10.2% and 40.9% of patients underwent to 244 

non-surgical treatment for acute coronary disease or surgical intervention, while 59% of 245 

patients were on antibiotic therapy. In particular, the presence of urinary catheter, intubation 246 

and central venous catheter was 77.5%, 59.8% and 41%, respectively. Finally, we observed 247 

that percentage of ICU-acquired sepsis among patients enrolled was 6.1%, whereas ICU 248 

mortality was 23.2%. 249 

 250 

Characteristics of infected patients 251 

Overall, Table I also shows the comparison between infected (n = 1,225; 15.7%) and non-252 

infected patients (n = 6,602; 84.3%) for characteristics at ICU admission. Infected patients 253 

were more likely to come from the community and to report a medical type of ICU admission 254 

than those non-infected. In particular, infected group consisted of patients who were more 255 

likely to report impaired immunity, also including more patients with trauma. This translated 256 

into higher SAPS II among infected patients if compared with non-infected. 257 

 258 
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With respect to the presence of invasive devices, infected patients were also more likely to be 259 

intubated at ICU admission and less likely to be catheterized than those non-infected. As 260 

expected, infected patients exhibited higher length of ICU stay (20.0 days vs. 4.0 days; 261 

p<0.001) compared to non-infected patients. In line with these findings, mortality was also 262 

higher in infected patients (35.1%) than in those non-infected (21.0%; p<0.001). No 263 

differences were evident for age, sex, non-surgical treatment for acute coronary disease, 264 

antibiotic therapy in 48 hours before ICU admission and presence of central venous catheter 265 

at ICU admission.  266 

 267 

ROC Curve Analysis using traditional statistical approach 268 

Using traditional statistical analysis, we aimed to evaluate the performance of SAPS II  at 269 

ICU admission in predicting HAIs for all patients staying in ICU for more than two days.  270 

Figure 1 shows the ROC curve with an AUC of 0.612 (95% Confidence Interval = 0.60-0.63; 271 

p<0.001). Although this test was statistically significant, the accuracy of SAPS II for 272 

predicting the risk of HAIs was of 56%.  273 

 274 

ROC Curve Analysis using SVM model 275 

To improve the accuracy for predicting the risk of HAIs, we employed the SVM algorithm, 276 

working on SAPS II along with other characteristics at ICU admission. Figure 2 shows the 277 

ROC curve of SVM prediction model for the test set. We report that the accuracy of the SVM 278 

classifier was 88% on the test set. Specifically, precision and recall were 0.95 and 0.91 for 279 

non-infected patients and 0.60 and 0.73 for those who were diagnosed with at least one HAIs 280 

during their ICU stay. In line, the predictivity was assessed using ROC curve, which provided 281 

an AUC of 0.90 (95% Confidence Interval = 0.88-0.91; p<0.001). Our results indicated the 282 

reliability of our SVM- model against overfitting. Finally, we aimed to compare our prediction 283 
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performance with those obtained on the same SVM model, without accounting for the SAPS 284 

II variable in the test set. Figure 3 shows the ROC curve of SVM prediction model for the test 285 

set, reporting an accuracy of 78%. Accordingly, precision and recall were 0.87 and 0.87 for 286 

non-infected patients and 0.31 and 0.32 for those infected, respectively. As expected, the AUC 287 

value provided by the ROC curve was 0.66 (95% Confidence Interval = 0.65-0.68; p<0.001), 288 

indicating a lower predictive ability. 289 

 290 

  291 
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Discussion 292 

Identifying patients at higher risk of HAIs still represents a major challenge for public health, 293 

suggesting the need for novel tools that can guide patient management in ICUs 29-31. In the 294 

past decades, several early warning scores have been developed to evaluate disease severity 295 

and to predict the risk of adverse outcomes during ICU stay 43-46. Among many scores, 296 

however, SAPS II still represents one of the most widely used in ICU setting and, therefore, 297 

the most represented in the SPIN-UTI dataset. Thus, we first aimed to evaluate the accuracy 298 

of SAPS II – calculated at ICU admission – for identifying patients who developed at least 299 

one HAI during their ICU stay. In line with previous studies 14, 15, 17, patients who developed 300 

at least one HAI exhibited higher SAPS II on ICU admission than those who did not. 301 

However, the ROC curve analysis discouraged a predictive application of SAPS II, because 302 

both AUC and accuracy were very low albeit statistically significant. Indeed, when AUC 303 

obtained from ROC curve analysis is near to 0.5, it means the model has a poor predictive 304 

performance.  305 

 306 

Beyond SAPS II, other factors have been associated with the risk of HAIs and related 307 

outcomes 4. For instance, the prolonged use of invasive devices, impaired immunity, surgical 308 

intervention and comorbidity were considered as the main risk factors for HAIs in ICU 4, 47. 309 

Since infected and non-infected patients included in our study differed in other information 310 

available at the time of ICU admission, we hypothesized that combining SAPS II with other 311 

patients’ characteristics could improve the predictive performance of our model. In this 312 

scenario, machine learning approaches represent a possible strategy for healthcare facilities, 313 

making possible to build a specific prediction model targeted to demographics and clinical 314 

characteristics of patients 26, 27. Indeed, there is current consensus that machine learning 315 

algorithms could support and enrich conventional statistical approaches, especially in terms 316 
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of prediction of ICU prognosis, clinical deterioration and risk assessment 26, 27, 35. Machine 317 

learning systems have been developed in many fields of medicine including infectious 318 

diseases control and clinical decision support 48.  Particularly, machine learning technique has 319 

been applied in patients with sepsis 49, to predict candidemia 50 or complications related to 320 

Clostridium difficile infection 51, to improve the prediction of antimicrobial resistance 52, and 321 

for surveillance purpose 53.  322 

 323 

To the best of our knowledge, the present study is the first employing machine learning 324 

methods to identify patients at higher risk of HAIs, according to their individual 325 

characteristics at ICU admission. To do that, we trained and tested a machine learning model, 326 

which combined SAPS II with additional patients’ characteristics collected at ICU admission. 327 

Our intention was to use variables that are easily and routinely collected at ICU admission, 328 

such as patients’ demographic, origin and type of admission, medical history, and disease 329 

severity. Notably, our findings demonstrated a high performance of our model, as indicated 330 

by an AUC of 0.90. In line, the accuracy on the test set was 88%, with precision and recall 331 

values of 95% and 91% for non-infected patients, and 60% and 73% for those who developed 332 

at least one HAI. It is worth mentioning that an excellent model has AUC near to the 1, which 333 

means it has a good predictive performance. Although SAPS II was the predictor that 334 

weighted more on the model – as demonstrated by the sensitivity analysis – the inclusion of 335 

additional characteristics significantly improved the prediction of patients who developed 336 

HAIs in ICU (i.e. AUC raised from 0.6 for SAPS II alone to 0.9 for the machine learning 337 

model).  338 

 339 

Our findings confirm that applying machine learning algorithms for classification and 340 

predictive problems might help solve many public health issues, including those plaguing 341 
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critical ill patients. These machine learning algorithms, if properly applied, could overcome 342 

limitations of existing traditional tools such as early warning scores 43-46, 54-60. However, it 343 

will be our duty to compare the performance of our model with other early warning scores, 344 

including the Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II) 345 

and the Sequential Organ Failure Assessment (SOFA) 13, 16.  346 

 347 

The main strengths of our work also include some methodological aspects worthy of note. 348 

Indeed, our model was trained and tested on large datasets obtained through patient-based 349 

prospective surveillance across Italian regions. Moreover, the surveillance is based on 350 

structured and standardized tools provided by the ECDC protocols. This allows not only to 351 

establish an Italian benchmark for planning preventive strategies in the future, but also to 352 

compare and to validate our findings with those that will be obtained in other European 353 

countries. On the other hand, however, there are some points to keep in mind when 354 

interpreting our results. The first one is that machine learning algorithms should not be seen 355 

as substitutes of existing scores, but rather they could support clinicians in the decision-356 

making process. For instance, on the basis of our findings, it could be hypothesized to 357 

develop an automated tool able to identify patients who need more attention because of their 358 

high risk of HAI. However, our approach must not be seen as a fixed model, but it could be 359 

integrated and/or modified according to specific needs. Similarly, in the near future, it is our 360 

intention to apply a similar approach to stratify for specific type of HAIs and to predict other 361 

adverse outcomes (e.g. mortality) for critical ill patients, also considering length of stay in 362 

ICU. The second point to be considered is that approximately 60% of SPIN-UTI records were 363 

incomplete. Although this did not exclude potential bias that cannot be controlled in the 364 

current analysis, we used incomplete records to generate recovered data. If on the one hand it 365 

would be preferable to use real data, on the other hand our novel approach gives an 366 
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alternative when data are scarce or incomplete. The third point is that machine learning is 367 

frequently referred to as a “black box” for clinicians, which however expect to become 368 

familiar with it and to be able to pinpoint why a decision is suggested 61, 62. For this reason, 369 

data scientists are trying to develop more interpretable algorithms in medical fields, even if 370 

we are only just beginning to build trust in these new technologies 61, 62. 371 

 372 

Conclusions 373 

Our findings provide a promising evaluation of a better predictive performance of the SVM 374 

algorithm than conventional statistical approaches, suggesting the SVM as a possible tool to 375 

identify and predict patients at higher risk of HAIs at ICU admission, providing clinicians 376 

sufficient time to potentially prevent HAI and mitigate its severity, targeting specific 377 

infection prevention and control interventions to high-risk groups in order to improve quality 378 

of care.  379 

  380 
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Figure legends 381 

Figure 1. ROC curve of the SAPS II predicting healthcare associated infections. The figure 382 

shows the ability of SAPS II to identify patients who developed at least one HAI during their 383 

ICU stay. The curve plots true positive rate (i.e., sensitivity) versus false positive rate (i.e., 1 - 384 

specificity) at different classification thresholds. The blue curve represents the ability of 385 

SAPS II to discriminate patients who developed at least one HAI from those who did not 386 

(Area Under the Curve, AUC = 0.612; 95% Confidence Interval = 0.60-0.63; p<0.001). The 387 

black dotted line is the reference for no predictive ability (AUC=0.500).   388 

Figure 2. ROC curve of support vector machine algorithm predicting healthcare associated 389 

infections. The model is based on a Support Vector Machines (SVM) algorithm, which 390 

combines SAPS II with additional features at ICU admission. The curve plots true positive 391 

rate (i.e., sensitivity) versus false positive rate (i.e., 1 - specificity). The blue curve represents 392 

the ability of the SVM algorithm to predict patients who developed at least one HAI from 393 

those who did not (Area Under the Curve, AUC= 0.90; 95% Confidence Interval = 0.88-0.91; 394 

p<0.001). The black dotted line is the reference for no predictive ability (AUC=0.500). 395 

Figure 3. ROC curve of support vector machine algorithm predicting healthcare associated 396 

infections, by excluding SAPS II. The model is based on a support vector machine algorithm, 397 

which combines patients’ characteristics collected at ICU admission. The curve plots true 398 

positive rate (i.e., sensitivity) versus false positive rate (i.e., 1 - specificity). The blue curve 399 

represents the ability of the SVM algorithm to predict patients who developed at least one 400 

HAI from those who did not (Area Under the Curve, AUC= 0.66; 95% Confidence Interval = 401 

0.65-0.68; p<0.001). The black dotted line is the reference for no predictive ability 402 

(AUC=0.500). 403 
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Table I. Characteristics of patients according to their infectious status 

 

*Results are reported as median (interquartile range) for continuous variables, or percentage for 

categorical variables. Statistical analyses were performed using the Mann-Whitney or the Chi-

squared test. 

 

Characteristics Patients 
(n=7827) 

Infected 
patients 
(n=1225) 

Non- infected 
patients 
(n=6602) 

p-value 

Age, years 69.0 (21.0) 69.0 (21.0) 69.0 (21.0) 0.064 
Sex (% men) 60.6% 62.8% 60.1% 0.084 
Patient’s origin     
Other ward/healthcare facility 73.9% 67.7% 75.1% 

<0.001 
Community 26.1% 32.3% 24.9% 
SAPS II score at admission 40.0 (28.0) 47.0 (27.0) 38.0 (27.0) <0.001 
Type of ICU admission     
Medical 47.6% 53.6% 46.5% 

<0.001 
Surgical 52.4% 46.4% 53.5% 
Trauma 3.4% 5.0% 3.2% 0.001 
Impaired immunity 8.6% 10.4% 8.2% 0.015 
Non-surgical treatment for 
acute coronary disease 

10.2% 8.9% 10.4% 0.109 

Surgical intervention 40.9% 36.7% 41.7% <0.001 
Antibiotic therapy in 48 
hours before ICU admission 

59% 59.8% 58.9% 0.579 

Presence of urinary 
catheter at ICU admission 

77.5% 74.4% 78.0% 0.006 

Presence of intubation at 
ICU admission 

59.8% 63.8% 59.1% 0.002 

Presence of central venous 
catheter at ICU admission 

41% 39.7% 41.3% 0.295 

ICU-acquired sepsis (%yes) 6.1% 37.6% - - 
Outcome (%death) 23.2% 35.1% 21.0% <0.001 
Length of ICU stay, days 5.0 (10.0) 20.0 (20.0) 4.0 (6.0) <0.001 
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