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Summary

Background: ldentifying patients at higher risk of healthcass@ciated infections (HAIS) in
intensive care unit (ICU) represents a major chgkefor public health. Machine learning
could improve patient risk stratification and l¢gadargeted infection prevention and control
interventions.

Aim: To evaluate the performance of the Simplified Acates/siology Score (SAPS) Il for
HAIs risk prediction in ICUs, using both traditidnatatistical and machine learning
approaches.

Methods. We used data of 7827 patients from the “ltalian ddosnial Infections
Surveillance in Intensive Care Units” projectThe Support Vector Machines (SVM)
algorithm was applied to classify patients accaydin sex, patient origin, non-surgical
treatment for acute coronary disease, surgicaivetgion, SAPS Il at admission, presence of
invasive devices, trauma, impaired immunity, awofiici therapy in 48 hours before ICU
admission.

Findings: The performance of SAPS Il for predicting the risk HAIs provides a ROC
(Receiver Operating Characteristics) curve withAC (Area Under the Curve) of 0.612
(p<0.001) and an accuracy of 56%. Considering SAR®Ng with other characteristics at
ICU admission, we found an accuracy of the SVM sifees of 88% and an AUC of 0.90
(p<0.001) for the test set. In line, the predictaelity was lower when considering the same
SVM model but removing the SAPS Il variable (accyra78% and AUC= 0.66).
Conclusions: Our study suggested the SVM model as a tool ty @aedict patients at higher

risk of HAI at ICU admission.

Keywords. healthcare-associated infections; machine learninggnsive care unit; risk

prediction
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Abbreviations

Healthcare Associated Infection (HAI)

Intensive Care Unit (ICU)

European Center for Disease Prevention and Cofi@DC)

Simplified Acute Physiology Score (SAPS II)

Italian Nosocomial Infections Surveillance in Intare Care Units (SPIN-UTI)
Italian Study Group of Hospital Hygiene (GISIO)

Italian Society of Hygiene, Preventive Medicine &ublic Health (Sitl)
Support Vector Machines (SVM)

K-Nearest Neighbor (K-NN)

Synthetic Minority Over-sampling Technique (SMOTE)

Radial basis function Kernel (RBF)

Interquartile range (IQR)

Receiver Operating Characteristics (ROC)

Area under the curve (AUC)

Acute Physiologic Assessment and Chronic HealtHuagi@n 11 (APACHE 1)

Sequential Organ Failure Assessment (SOFA)
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Introduction

Healthcare-associated Infections (HAIs) are oneth&f major threats for public health

worldwide, due to their significant impact on mditta hospital stays, and assistance cdsts

3 In particular, frequency of HAIs is higher amopeople staying in Intensive Care Units
(ICUs), because they have more severe clinical itond, they are often immune-

compromised, and more likely to be intubated antietarized than those staying in other
hospital ward$" >. Furthermore, high antibiotic resistance ratesehiaeen reported together

with increasing trends of resistant microorganisimghlighting the need for continuous

comprehensive strategies targeting not only thelgmtiuse of antibiotics, but also infection
control measures to control the epidemic spreadsitant isolates, especially in IC#§°

As reported by the European Center for Diseaseeaten and Control (ECDC), in 2017 on

a total of approximately 143,000 patients staym¢dU, 8% presented at least one HAI on a
given day. In line, among ICU-surveilled HAIs, pn@onia, bloodstream infection and

urinary tract infections accounted for 6%, 4% af Pespectively®.

Although HAIs depend on microorganisms’ charactess - such as infectivity,
pathogenicity, modes of transmission — severakp#di characteristics and the inappropriate
use of invasive devices during the hospital stayesent some of the leading causes of HAIls
in all the hospital wards, and especially in ICtI$" 2 In the last decades, several early
warning scores have been developed in clinical tim@ado measure health conditions or
iliness severity of ICU patients. In particularet8implified Acute Physiology Score (SAPS)
Il represents the most widely used instrument Fa& prediction of prognosis, HAIs risk,
sepsis and mortality®>*". This validated score is calculated consideringlte routine
physiological variables collected during the fingturs of ICU admission, not including the

type admissiont® ' For these reasons, the identification of patiantsigher risk of HAls in
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ICU still remains a major challenge for public bkalith so many healthcare professionals
which have studied and continue to examine persanalclinical characteristics associated
with HAI risk 2% In this scenario, recent advances in statistamadl mathematical
approaches to automatically learn from a given sdtdnave made possible to identify
patients or subgroups of patients which are mdwyito be affected by HAI during their
hospital stay’®?® Indeed, there is a strong need for reliable tdb& can guide patient
management® by predicting the risk of HAIs and adverse asgedisoutcomes, and thus
reducing their burden on healthcare systeéths® Furthermore, the availability of large
amount of patient and facility data and the appeterapplication of machine learning
methods in healthcare epidemiology could help théetstanding of risk factors for HAls,
the development of patient risk stratification ®ahd the identification of pathways for the
spread of infections. This, in turn, could lead tavgeted prevention interventions.
Particularly, machine learning has been proposegrédict specific adverse events and for

risk stratification in the ICU, becoming a usefuaywo improve quality of caré.

Here, we aimed to identify and predict patientigher risk of HAIs, according to their
characteristics at ICU admission. To do that, wedudata from the “Italian Nosocomial
Infections Surveillance in Intensive Care UnitsP(N-UTI) project, which was established
by the Italian Study Group of Hospital Hygiene (@®$ of the Italian Society of Hygiene,
Preventive Medicine and Public Health (SItl) in 800 he SPIN-UTI network, since then,
has collected data related to approximately 20 j@tents, more than 4,300 infections and
5,300 microorganism&>?> 3 Our hypothesis is that, in the framework of peéide and
personalized medicine, machine learning algoritroosld enrich conventional statistical
approaches, especially in terms of prediction df i@ognosis, clinical deterioration and risk

assessmerif. Accordingly, the current study first evaluates frerformance of SAPS I for
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HAI's risk prediction in ICUs using a traditionatasistical method. Next, we applied a
Support Vector Machines (SVM) algorithm, considgri8APS Il in combination with

additional features at ICU admission, in order igtidguish non-infected patients from those
who were diagnosed with at least one HAIs duringirthCU stay and thus contribute to

efforts to enhance patient management by ensuattgriprevention, prognosis and therapy.
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Methods

Sudy design and data collection

In the current study, we used data collected duhegseven editions of the SPIN-UTI project
according to the ECDC protocl From 2006 to 2019, the SPIN-UTI project prosivety
surveyed 20,060 patients staying in ICUs for mbent2 days, recording data at patient, ICU
and hospital levels during their stay in ICU. Thedy was approved by the ethics committee
of the involved institution (Ethics Committee “Caia 1”, Catania, Italy; protocol numbers
111/2018/PO and 295/2019/EMPO). Study design, poddoand full details on data

collection were described elsewhété® 3

For the current analysis, SAPS Il was initially dises the main exposure variable. Its
computation was based on the following componesfqreviously described by Le Gall and
colleagues®”: age; heart rate; systolic blood pressure; teniperaGlasgow coma scale;
continuous positive airway pressure; PaO2; FiORieuoutput; blood urea nitrogen; sodium;
potassium; bicarbonate; bilirubin; white Blood Celhronic diseases; type of admission. The
SAPS Il components were measured 24 hours afteisadm to the ICU and the worst
values within those 24 hours were recorded. EacRSSA component has a weighted value
in points and the total score must be computednadtie weighted value¥. Additional
exposure variables were used to develop a mackaraihg algorithm for the prediction of
HAIs acquired in ICU. Specifically, the machineraag algorithm combined SAPS Il with
all variables collected at ICU admission but naiuded in the SAPS Il computation. Thus,
the original dataset contained only 39% of patiénts/827) with a complete assessment of

variables considered in our study (Figure S | ip@ementary File.).



156  Training and Test Set composition and comparison

157  Since machine learning approaches require largebal@mhced data set for training, we first
158  built a novel training data set made of recovered synthetics data to tune the learning
159  algorithms. Specifically, methods for data impuwatiand balancing of the training set are
160 fully described in the in Supplementary File I.dnef, recovered data were obtained from
161 incomplete records of the original dataset by r@pk the missing values using the K-
162  Nearest Neighbor (K-NN) imputation method, as désct by Malarvizhi and Thanamatfi
163  Instead, synthetic data were generated to baldmecevo classes of infected and non-infected
164  patients using the Synthetic Minority Over-samplirechnique (SMOTE). This technique is
165 a common oversampling method to resample the nmynolass data following those in the
166  majority class. While the classic oversampling teghe duplicates minority data from the
167 minority data population, the SMOTE works by utilig a K-NN algorithm to create
168 synthetic data. In simple terms, SMOTE first stiyt choosing random data from the
169  minority class population, then identifies the K-Ndhd finally generates synthetic data from
170  the random data and the randomly selected K3RIN

171

172  The test set was instead composed by real datatieings with a complete assessment of the
173  following variables at ICU admission: sex (dichotmms), patient’s origin (categorical: other
174  ward/healthcare facility, community), non-surgida¢atment for acute coronary disease
175 (dichotomous), surgical intervention (dichotomouSAPS Il at admission (continuous),
176  presence of invasive devices at ICU admission ¢thdehotomous variables for urinary
177 catheter, intubation and central venous cathetespeactively), trauma (dichotomous),
178 impaired immunity (dichotomous), antibiotic therapy 48 hours before ICU admission

179  (dichotomous).
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Thus, the training set was made by recovered (ii88j,and synthetics records (n=2,544),
while the test set included 7,827 real data. Trstridution of infected and non-infected
patients between the training and test sets is suiped in Table S1 in Supplementary File |
To evaluate the goodness of the training set recoveé compared the distributions of each
single variable with those of the test set to asf&gt the training data are compliant with the
real data. As reported by Figure S Il (SupplemegnBle 1), SAPS Il and age followed the
same distribution in the training and test setskewise, Figures S Ill and S IV
(Supplementary File 1) show that the distributionfs categorical variables were similar

between training and test sets.

Learning model generation

To improve the predicting performance of the model,machine learning algorithm
combining the SAPS II with additional variables leoted at ICU admission (i.e. sex,
patient’s origin, non-surgical treatment for acatonary disease, surgical intervention,
presence of intubation, presence of urinary cathg@tesence of central vascular catheter;
trauma, impaired immunity, antibiotic therapy in #®urs before ICU admission) was
applied. Specifically, we chose the SVM as modelingl. SVM is a supervised learning
algorithm which can be used for classification pexsally for binary classification - and
regression problems. In the case of two or thrg@suxre variables, the functions used to
classify between features are a line or a plarspedively. In the case of more than three
exposure variables, like our model, the functiomssifying features is referred to a
hyperplane. Accordingly, the rationale behind SV#to find an optimal hyperplane that
clearly classifies the different classes (in owsesanfected and non-infected patients). The
separating hyperplane found by the algorithm presithe largest margin between the two

classes. However, our dataset was not linearlyrabfgeven in a feature space, not allowing
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to satisfy all the constraints of SVl For this reason, we used a non-linear Kerneltfanc
(i.e., the Gaussian Kernel, also called as Radisislfunction Kernel, RBF). Gaussian RBF is
a popular Kernel function used in SVM models to ndapa that are not originally linearly
separable into a higher dimensional feature spdeesthey are made linearly separable. It
is worth mentioning that linear kernels are lesgetconsuming than non-linear ones, but they
provides less accuracl. To compare the predictive ability of SVM with thabtained
through SAPS Il alone, we calculated the accuraey, the proportion of total records that
are correctly predicted by the model) and the areder the curve (AUC; ranging from 0.5
for no prediction to 1.0 for perfect predictidh *> ** %. In addition, we calculated two
evaluation metrics for classification problems, eanprecision and recall. Precision - also
called positive predictive value - is the fractiohthe positive predictions which are truly
positive. Recall - often referred to as sensitivitg the fraction of the initial positives which
have been predicted correctly. A perfect class#tevuld have precision and recall both equal
to 1. Data analyses were performed through Pytimohtlae SciPy stack. Full details on the

computational methods are given in the in SuppleargrFile 1

Satistical Analysis

Statistical analyses were performed using SPS®/addt(version 26.0, SPSS, Chicago, IL).
The Kolmogorov- Smirnov test was used to check nthemal distribution of continuous
variables. Patients’ characteristics were descrisg median and interquartile range (IQR)
or percentage. Comparisons between variables wealyzed by the Chi-squared test for
categorical variables, while the Mann-Whitney U te@as used for continuous variables with
skewed distribution. To test the accuracy of tha®SAI in HAI's risk prediction along the
range of possible values, we used the Receiver apgr Characteristics (ROC) curve

analysis. A ROC curve is a useful graphical tookt@luate the performance of a binary

10
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was assessed by calculating the accuracy and ¢aeuader the curve (AUCY *> 4142 Al

statistical tests were two-sided, and p-value)8 Qiere considered statistically significant.
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Results

Sudy population

On a total of 20060 SPIN-UTI participants, the eatr analysis was performed on a
subsample of 7827 patients (median age= 69 ye&@r§%6 males) enrolled from 2006 to
2019. The remaining 12233 participants (61%) wexdueled because of missing data on the
assessment at ICU admission. In this subsamplenpgicoming from other wards/hospitals
and reporting a surgical type of ICU admission wéB9% and 52.4%, respectively. In
general, median SAPS Il at admission was 40 (IQBFa2d length of ICU stay was 5 days
(IQR= 10). Patients who reported trauma and imgairemunity were 3.4% and 8.6%,
respectively. With respect to medical treatmen®s2% and 40.9% of patients underwent to
non-surgical treatment for acute coronary diseassuogical intervention, while 59% of
patients were on antibiotic therapy. In particutae presence of urinary catheter, intubation
and central venous catheter was 77.5%, 59.8% a%g fdspectively. Finally, we observed
that percentage of ICU-acquired sepsis among patienrolled was 6.1%, whereas ICU

mortality was 23.2%.

Characteristics of infected patients

Overall, Table | also shows the comparison between infected (,225; 15.7%) and non-
infected patientsn(= 6,602; 84.3%) for characteristics at ICU admissimfected patients
were more likely to come from the community andeport a medical type of ICU admission
than those non-infected. In particular, infectedugr consisted of patients who were more
likely to report impaired immunity, also includimgore patients with trauma. This translated

into higher SAPS Il among infected patients if camgal with non-infected.

12
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With respect to the presence of invasive devicdscted patients were also more likely to be
intubated at ICU admission and less likely to bthetrized than those non-infected. As
expected, infected patients exhibited higher lengftHCU stay (20.0 days vs. 4.0 days;
p<0.001) compared to non-infected patients. In i these findings, mortality was also
higher in infected patients (35.1%) than in thosm-mfected (21.0%; p<0.001). No
differences were evident for age, sex, non-surgicztment for acute coronary disease,
antibiotic therapy in 48 hours before ICU admissam presence of central venous catheter

at ICU admission.

ROC Curve Analysis using traditional statistical approach

Using traditional statistical analysis, we aimedet@luate the performance of SAPS Il at
ICU admission in predicting HAIs for all patientsagng in ICU for more than two days.

Figure 1 shows the ROC curve with an AUC of 0.642% Confidence Interval = 0.60-0.63;

p<0.001). Although this test was statistically sfgaint, the accuracy of SAPS Il for

predicting the risk of HAIs was of 56%.

ROC Curve Analysis using SYM mode

To improve the accuracy for predicting the riskHAls, we employed the SVM algorithm,
working on SAPS Il along with other characteristatsiICU admission. Figure 2 shows the
ROC curve of SVM prediction model for the test $&e report that the accuracy of the SVM
classifier was 88% on the test set. Specificallgcsion and recall were 0.95 and 0.91 for
non-infected patients and 0.60 and 0.73 for thdse were diagnosed with at least one HAIs
during their ICU stay. In line, the predictivity wassessed using ROC curve, which provided
an AUC of 0.90 (95% Confidence Interval = 0.88-0.p40.001). Our results indicated the

reliability of our SVM- model against overfittinginally, we aimed to compare our prediction

13
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performance with those obtained on the same SVMemedthout accounting for the SAPS

Il variable in the test set. Figure 3 shows the RfDve of SVM prediction model for the test

set, reporting an accuracy of 78%. Accordinglycmien and recall were 0.87 and 0.87 for
non-infected patients and 0.31 and 0.32 for thofeied, respectively. As expected, the AUC
value provided by the ROC curve was 0.66 (95% Genite Interval = 0.65-0.68<0.001),

indicating a lower predictive ability.

14
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Discussion

Identifying patients at higher risk of HAIs stikpresents a major challenge for public health,
suggesting the need for novel tools that can gpateent management in ICU83L In the
past decades, several early warning scores havedseloped to evaluate disease severity
and to predict the risk of adverse outcomes dul®l stay ***° Among many scores,
however, SAPS Il still represents one of the masiely used in ICU setting and, therefore,
the most represented in the SPIN-UTI dataset. Tladjrst aimed to evaluate the accuracy
of SAPS Il — calculated at ICU admission — for itgig patients who developed at least
one HAI during their ICU stay. In line with previsstudies® *> ** patients who developed
at least one HAI exhibited higher SAPS Il on ICUmaskion than those who did not.
However, the ROC curve analysis discouraged a grediapplication of SAPS I, because
both AUC and accuracy were very low albeit stat&édly significant. Indeed, when AUC
obtained from ROC curve analysis is near to 0.5petins the model has a poor predictive

performance.

Beyond SAPS I, other factors have been associatéid the risk of HAIs and related
outcomes'. For instance, the prolonged use of invasive dmyiompaired immunity, surgical
intervention and comorbidity were considered asmtaén risk factors for HAls in ICY .
Since infected and non-infected patients includedur study differed in other information
available at the time of ICU admission, we hypoihess that combining SAPS Il with other
patients’ characteristics could improve the predectperformance of our model. In this
scenario, machine learning approaches represeossabte strategy for healthcare facilities,
making possible to build a specific prediction modegeted to demographics and clinical
characteristics of patienfS' %’ Indeed, there is current consensus that macleiamihg

algorithms could support and enrich conventionatistical approaches, especially in terms

15
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of prediction of ICU prognosis, clinical deteridmat and risk assessmefit 2 *> Machine
learning systems have been developed in many fiefdmedicine including infectious
diseases control and clinical decision supfbriParticularly, machine learning technique has
been applied in patients with sepSisto predict candidemi2’ or complications related to
Clostridium difficile infection>, to improve the prediction of antimicrobial resiste®*, and

for surveillance purposg.

To the best of our knowledge, the present studthésfirst employing machine learning
methods to identify patients at higher risk of HAlaccording to their individual
characteristics at ICU admission. To do that, wwen&d and tested a machine learning model,
which combined SAPS Il with additional patientsachcteristics collected at ICU admission.
Our intention was to use variables that are easily routinely collected at ICU admission,
such as patients’ demographic, origin and typedwhiasion, medical history, and disease
severity. Notably, our findings demonstrated a hpginfformance of our model, as indicated
by an AUC of 0.90. In line, the accuracy on the tet was 88%, with precision and recall
values of 95% and 91% for non-infected patientd, @026 and 73% for those who developed
at least one HAI. It is worth mentioning that arcellent model has AUC near to the 1, which
means it has a good predictive performance. Altho8PS Il was the predictor that
weighted more on the model — as demonstrated bgehsitivity analysis — the inclusion of
additional characteristics significantly improveuak tprediction of patients who developed
HAIs in ICU (i.e. AUC raised from 0.6 for SAPS lloae to 0.9 for the machine learning

model).

Our findings confirm that applying machine learniatgorithms for classification and

predictive problems might help solve many publi@ltie issues, including those plaguing
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critical ill patients. These machine learning altfons, if properly applied, could overcome
limitations of existing traditional tools such aarlg warning score§>*® >*%° However, it
will be our duty to compare the performance of owrdel with other early warning scores,
including the Acute Physiologic Assessment and Gierblealth Evaluation Il (APACHE II)

and the Sequential Organ Failure Assessment (S&FR)

The main strengths of our work also include soméhouological aspects worthy of note.
Indeed, our model was trained and tested on laagasdts obtained through patient-based
prospective surveillance across ltalian regions.rédweer, the surveillance is based on
structured and standardized tools provided by t8®E protocols. This allows not only to
establish an Italian benchmark for planning prewenstrategies in the future, but also to
compare and to validate our findings with thoset thdl be obtained in other European
countries. On the other hand, however, there amespoints to keep in mind when
interpreting our results. The first one is that mae learning algorithms should not be seen
as substitutes of existing scores, but rather tmyd support clinicians in the decision-
making process. For instance, on the basis of mlinigs, it could be hypothesized to
develop an automated tool able to identify patievite need more attention because of their
high risk of HAI. However, our approach must notdeen as a fixed model, but it could be
integrated and/or modified according to specifiedwe Similarly, in the near future, it is our
intention to apply a similar approach to stratiby §pecific type of HAIs and to predict other
adverse outcomes (e.g. mortality) for criticalphlitients, also considering length of stay in
ICU. The second point to be considered is that@pprately 60% of SPIN-UTI records were
incomplete. Although this did not exclude potentids that cannot be controlled in the
current analysis, we used incomplete records terges recovered data. If on the one hand it

would be preferable to use real data, on the otteerd our novel approach gives an

17
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alternative when data are scarce or incomplete. tiiné point is that machine learning is
frequently referred to as a “black box” for cliraas, which however expect to become
familiar with it and to be able to pinpoint why adision is suggesteéd' ®2 For this reason,

data scientists are trying to develop more intagtle algorithms in medical fields, even if

we are only just beginning to build trust in thessv technologie&" ®2

Conclusions

Our findings provide a promising evaluation of dtéepredictive performance of the SVM

algorithm than conventional statistical approaclseggesting the SVM as a possible tool to
identify and predict patients at higher risk of lBAdt ICU admission, providing clinicians

sufficient time to potentially prevent HAI and ngéte its severity, targeting specific

infection prevention and control interventions tgharisk groups in order to improve quality

of care

18
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Figurelegends

Figure 1. ROC curve of the SAPS Il predicting healthcare es$éed infections. The figure
shows the ability of SAPS Il to identify patienthovdeveloped at least one HAI during their
ICU stay. The curve plots true positive rate (isensitivity) versus false positive rate (i.e., 1 -
specificity) at different classification threshaldBhe blue curve represents the ability of
SAPS Il to discriminate patients who developedeaist one HAI from those who did not
(Area Under the Curve, AUC = 0.612; 95% Confidelterval = 0.60-0.63p<0.001). The

black dotted line is the reference for no predetbility (AUC=0.500).

Figure 2. ROC curve of support vector machine algorithm pra healthcare associated
infections. The model is based on a Support VeMachines (SVM) algorithm, which
combines SAPS Il with additional features at ICUn&skion. The curve plots true positive
rate (i.e., sensitivity) versus false positive r@te., 1 - specificity). The blue curve represents
the ability of the SVM algorithm to predict patisnivho developed at least one HAI from
those who did not (Area Under the Curve, AUC= 0®®% Confidence Interval = 0.88-0.91,

p<0.001). The black dotted line is the referencenfopredictive ability (AUC=0.500).

Figure 3. ROC curve of support vector machine algorithm pay healthcare associated

infections, by excluding SAPS Il. The model is lthsa a support vector machine algorithm,
which combines patients’ characteristics colleca&dCU admission. The curve plots true
positive rate (i.e., sensitivity) versus false pgsirate (i.e., 1 - specificity). The blue curve
represents the ability of the SVM algorithm to pcegbatients who developed at least one
HAI from those who did not (Area Under the Curvé)@= 0.66; 95% Confidence Interval =

0.65-0.68; p<0.001). The black dotted line is the reference far predictive ability

(AUC=0.500).
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Table |. Characteristics of patients according to their infectious status

. Infected Non- infected
. Patients . .
Characteristics (n=7827) patients patients p-value
(n=1225) (n=6602)
Age, years 69.0 (21.0) 69.0 (21.0) 69.0 (21.0) 0.064
Sex (% men) 60.6% 62.8% 60.1% 0.084
Patient’s origin
Other ward/healthcare facility 73.9% 67.7% 75.1% <0.001
Community 26.1% 32.3% 24.9% '
SAPS Il score at admission 40.0 (28.0) 47.0 (27.0) 38.0 (27.0) <0.001
Type of ICU admission
Medical 47.6% 53.6% 46.5% <0.001
Surgical 52.4% 46.4% 53.5% '
Trauma 3.4% 5.0% 3.2% 0.001
Impaired immunity 8.6% 10.4% 8.2% 0.015
Non-surgical treatment for 10.2% 8.9% 10.4% 0.109
acute coronary disease
Surgical intervention 40.9% 36.7% 41.7% <0.001
Antibiotic therapy in 48
hours before ICpJ admission 59% 59.8% 58.9% 0.579
Presence of urinar
catheter at ICU admission Y 775% (37" 78.0% 0.006
Presence of intubation at g g9, 63.8% 50.1% 0.002
ICU admission
Presence of central venous
catheter at ICU admission 41% 39.7% 41.3% 0.295
ICU-acquired sepsis (%yes) 6.1% 37.6% - -
Outcome (%death) 23.2% 35.1% 21.0% <0.001
Length of ICU stay, days 5.0 (10.0) 20.0 (20.0) 4.0 (6.0 <0.001

*Results are reported as median (interquartile range) for continuous variables, or percentage for

categorica variables. Statistical analyses were performed using the Mann-Whitney or the Chi-

squared test.
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