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To
The Inhabitants of SPACETIME IN GENERAL

And ALL THE TEACHERS of his life IN PARTICULAR
This Work is Dedicated
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Of FOUR DIMENSIONS
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With ONLY THREE,

So the Citizens of that Celestial Region
May aspire yet higher and higher

To the Secrets of FIVE or EVEN SIX Dimensions
Of their Universe and even of New Ones,
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To the Enlargement of THE IMAGINATION

And the possible Development
Of that most and excellent Gift of MODESTY

Among the Superior Races
Of FOURDIMENSIONAL HUMANITY.

Agli
Abitanti dello SPAZIOTEMPO IN GENERALE
e a TUTTI GLI INSEGNANTI della sua vita IN PARTICOLARE,
Un Umile Nativo dello Spazio
Dedica questa Opera
Nella Speranza che,
Così come egli fu Iniziato ai Misteri
Delle QUATTRO DIMENSIONI
Dopo aver avuto �no ad allora dimestichezza
Con TRE SOLTANTO,
Così i Cittadini di quella Regione Celeste
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Ai Segreti delle CINQUE o PERFINO SEI Dimensioni
Del loro Universo e anche di Nuovi
Contribuendo in tal modo
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E alla eventuale Di�usione
Del Dono quanto mai raro ed eccelso della MODESTIA
Tra le Razze Superiori
Dell'UMANITÀ QUADRIDIMENSIONALE.

The present dedication is inspired by that of the novel �Flatland� by Edwin A. Abbott.
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Abstract

In this thesis I deal with the linear stability analysis of static, spherically sym-
metric wormholes supported by phantom self-interacting scalar �elds, in the
framework of General Relativity with arbitrary spacetime dimension. In the
previous literature, a gauge-invariant stability analysis of wormhole con�g-
urations often succeeds in decoupling the linearized �eld equations, yielding
a wave-type master equation which, however, is typically singular where the
radial coe�cient of the metric has a critical point, that is, at the worm-
hole throat. In order to overcome this problem a regularization method has
been proposed in previous works, which transforms the singular wave equa-
tion to a regular one; this method is usually referred to as �S-deformation�
(and sometimes requires a partly numerical implementation, especially, in
the case of scalar �elds with nontrivial self-interaction). The �rst result of
my work is the reduction of the linearized �eld equations to a completely
regular, constrained wave system for two suitably de�ned gauge-invariant
functions of the perturbations in the metric coe�cients and in the scalar
�eld; the second result is a strategy for decoupling this system, obtaining a
single wave-type master equation for another gauge-invariant quantity. No
step of this construction causes the appearing of singularities at the worm-
hole throat or elsewhere (provided that the unperturbed scalar �eld has no
critical points, which occurs in many examples); therefore, it is not necessary
to regularize a posteriori the master equation via the S-deformation method.
This gauge-invariant and singularity-free formalism, which generalizes to ar-
bitrary spacetime dimensions the approach of my paper [1], is then applied to
some known static wormhole solutions (most, but not all of them considered
in [1]). The most relevant application is a certain Anti-de Sitter (AdS) worm-
hole, whose linear stability analysis does not seem to have been performed
previously by other authors; by using the present method, it is possible to
derive a completely regular master equation describing the perturbations of
the AdS wormhole and prove that the latter is actually linearly unstable, af-
ter providing a detailed analysis of the spectral properties of the Schrödinger
type operator appearing in the master equation. A partial instability result
is derived along the same lines for the analogous de Sitter (dS) wormhole, a
technically more subtle case due to the presence of horizons. As a further ap-
plication, I rederive in a singularity-free fashion the master equations for the
perturbed Ellis-Bronnikov and Torii-Shinkai wormholes. As a supplement,
the linear instability results for the AdS and for the Torii-Shinkai wormholes
are also recovered using an alternative, singularity free but gauge-dependent
method: in this case a regular master equation is derived for the perturbed
radial coordinate, and the gauge-independence of the instability result is
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tested a posteriori. This alternative, gauge-dependent approach generalizes
that introduced in my paper [2] for the re�ection symmetric Ellis-Bronnikov
wormhole. Let me also cite [3], from which I report some facts about the
previously mentioned wormholes in absence of perturbations.
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Introduction

Wormholes in higher dimensional General Rela-

tivity and the problem of their stability

One of the most fascinating features of Einstein's theory of General Relativity
(GR) consists in the fact that spacetime may be curved and topologically non-
trivial, describing intriguing objects like black holes and wormholes. Black
hole spacetimes appear under rather natural conditions in GR, and they
are expected to form in Nature, for instance, from the collapse of su�ciently
massive stars at the end of their life. Furthermore, there is by now compelling
evidence for their existence in our Universe which has recently been reinforced
by the observation of gravitational waves from binary black hole mergers [4]
and the �rst image of the shadow of the supermassive black hole in the center
of the galaxy M87 [5].

In contrast to this, the occurrence of wormholes (1) is much more spec-
ulative, and so far, there is no observational evidence for the existence of
such structures. From the theoretical point of view, there are important con-
straints on their existence, such as the topological censorship theorem [6].
This theorem implies that asymptotically �at, globally hyperbolic wormhole
spacetimes (including those whose Cauchy surfaces have topology R × S2

and represent a throat connecting two asymptotically �at ends) require the
existence of �exotic� matter to support the throat, that is, they require mat-
ter whose stress-energy-momentum tensor violates the (averaged) null energy
condition. Intuitively, the need for exotic matter can be understood by the
fact that a light bundle that traverses a wormhole throat must focus as it
approaches the throat, but then must expand again as it moves away from
the throat, which is opposite to the focusing e�ect for light due to ordinary
matter [7].

On the other hand, it has also been shown that an in�nitesimally small

1In this thesis, when talking about wormholes, we always refer to traversable Lorentzian
wormhole spacetimes in a metric theory of gravity.
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Intoduction

quantity of matter violating the averaged null condition is su�cient to sup-
port the throat [8]. This leads to the hope that quantum e�ects may give
rise to a semiclassical theory in which wormhole spacetimes are allowed, in
a similar way than quantum e�ects (Hawking radiation) induce black hole
evaporation although an area decrease of the event horizon is forbidden in
classical GR with matter �elds satisfying the null energy condition [7]. Nev-
ertheless, it remains to be seen whether or not such e�ects are strong enough
to give rise to a traversable wormhole throat of macroscopic size [9].

Instead of invoking quantum e�ects, an alternative way to violate the
null energy condition (which has received important motivation from cos-
mology, see for example Ref. [10]) is the consideration of phantom scalar
�elds, i.e. scalar �elds that have a negative kinetic energy (see for instance
Ref. [11] and references therein). Due to this property, such �elds may lead
to gravitational repulsion, and hence induce interesting e�ects like the ac-
celerated expansion in the universe, universes with no particle horizon [12]
or the ability of supporting a wormhole throat [13, 14]. On the other hand,
the presence of unbounded negative kinetic energy might cast doubt on the
possibility that any stationary solution found in this theory could ever be
stable. (2) Therefore, a pressing question regarding the relevance of static
wormhole solutions in such theories (or other GR theories involving exotic
matter �elds) is their dynamical stability under small perturbations.

The most widely studied wormhole models (including those analyzed in
the present thesis) are based on static, spherically symmetric spacetimes in
which the world sheet of the throat consists of spheres of minimal area [16].
Within the context of phantom scalar �elds, many such solutions have been
found; the simplest ones are obtained for a real scalar �eld and are due
to pioneering work by Ellis [13] and by Bronnikov [14]. Since then, these
solutions have been generalized to the following supporting �elds: a scalar
with a self-interaction potential [17, 18], a complex phantom scalar [19],
a family of conventional and/or phantom scalars [20, 21, 22], a phantom
scalar and an electromagnetic �eld [23], and, very recently, a k-essence scalar
[24]. For the linear stability analysis of many of these solutions, see Refs.
[25, 23, 21, 26, 18, 2, 24]; furthermore, all these studies conclude that the
static, spherically symmetric wormhole solutions are linearly unstable, with
numerical simulations [20, 27, 28] revealing that the throat either collapses
to a black hole or expands on timescales comparable to the light-crossing

2However, the presence of unbounded negative kinetic energy by itself does not imply
that any stationary solution in the theory is necessarily unstable. For example, it turns out
that the Minkowski spacetime is nonlinearly stable in Einstein theory minimally coupled
to a scalar �eld irrespectively of the sign of the gravitational coupling constant (see the
comments and references in appendix B.5 in Ref. [15]).

12



Wormholes in higher dimensional General Relativity and the problem of
their stability

time of the radius of the throat. Therefore, �nding a static, spherically
symmetric wormhole solution in GR with exotic matter which can be shown
to be linearly stable (or unstable with a large time scale associated with all
the unstable modes) remains a challenging open problem. (3)

Wormhole spacetimes have been considered even in the context of GR in
arbitrary dimension. Higher-dimensional theories have a long story, starting
from the work of Kaluza and Klein in the 1920's and marked by the advent
of string theory in the 1970's; actually, the interest on wormholes in higher
dimensional GR is nothing new: see, for example, the pioneering works of
Chodos and Detweiler [31] and of Clément [32], and the generalizations of
wormholes in the Einstein-Gauss-Bonnet gravity [33] and in the k-essence
scalar theory [34]. However, it was only with [35] that the question of the
linear stability of such structures was seriously investigated; indeed, in Ref.
[35] the authors introduced a generalization of the re�ection symmetric Ellis-
Bronnikov wormhole in dimension (d + 1), d ≥ 3 (in the sequel referred to
as Torii-Shinkai wormhole) and proved that it is linearly unstable, in any
dimension, under spherically symmetric time-dependent perturbations.

In this work, I focus on Einstein gravity in arbitrary dimension minimally
coupled to a single, real phantom scalar �eld Φ with an arbitrary self-
interaction potential V (Φ); the most important result is the development
of a new, general, gauge-invariant framework to analyze the linear stability
of arbitrary dimensional, static, spherically symmetric wormhole solutions in
these theories (generalizing the four-dimensional approach of Ref. [1]). In
addition, the latter is tested in speci�c applications.

In order to clarify which are the novelties of this thesis, it is necessary
to sketch the previous state of the art in this area. Linearized perturba-
tions of wormhole solutions of Einstein's equations have been previously dis-
cussed, even in a gauge-invariant language. However, most of the previous
approaches are based on �xing the radial coordinate and deriving a linearized
wave equation for perturbations of the scalar �eld; due to the fact that the
radial coordinate has a critical point at the throat, the e�ective potential ap-
pearing in this wave equation (usually called master equation) is necessarily
singular at the throat. (4) As explained in Ref. [25] (see also Ref. [26]) this

3See also Ref. [29] for the construction of static, spherically symmetric wormholes
in Einstein-Dilaton-Gauss-Bonnet theory, a modi�ed gravity theory, which does not re-
quire exotic matter. However, a careful stability analysis has recently revealed that these
solutions are linearly unstable as well [30].

4Note that these singularities keep a�ecting the linearized wave equation, even after
expressing it in a gauge-invariant fashion, thus no longer assuming the radial coordinate
to be �xed (see, for example Ref. [25]).
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yields an arti�cial (mirror-like) boundary condition at the throat which pre-
vents perturbations from traversing the wormhole. This arti�cial boundary
condition e�ectively restricts the class of physically admissible perturbations,
and, as it turns out, the unstable modes associated with wormholes is pre-
cluded from this class, leading to the erroneous conclusion that the wormhole
is linearly stable.

To overcome these problems, a method for transforming the singular wave
equation to a regular one was introduced in Ref. [25] to treat the linearized
perturbations of the Ellis-Bronnikov wormhole; this approach was subse-
quently generalized and referred to as �S-deformation method� in Ref. [26].
Both Refs. [25] and [26] refer to four- dimensional spacetimes. As already
mentioned, higher dimensional extensions have been considered in Ref. [35],
where the (d + 1)- dimensional (with d ≥ 3) Torii-Shinkai wormhole is in-
troduced; here the linear stability analysis of this wormhole was performed,
using again the S-deformation method to overcome singularity problems at
the throat and eventually showing that the wormhole under consideration is
unstable in any dimension.

I am now ready to describe the novelties of the present thesis; this the-
sis is related to papers [2, 1, 3] which I coauthored or authored during my
doctoral studies; however, these articles consider only the case of spacetime
dimension d+1. (5) Here I work in spacetime dimension d+1 (with d ≥ 3), in
the framework already outlined (a phantom scalar with self-interaction mini-
mally coupled to gravity, the static spherically symmetric wormhole solutions
arising from this setting and their linear stability analysis). The �rst result is
the derivation of a coupled, 2× 2 linear wave system subject to a constraint,
describing the linearized dynamics of time-dependent spherically symmetric
perturbations of such static solutions in terms of two gauge-invariant linear
combination of the linearized perturbed metric coe�cients and scalar �eld;
a key feature of this system is that it is regular at the throat, provided the
scalar �eld does not have a critical point there. The second result of my
work is that, provided a non-trivial time-independent solution of the cou-
pled 2× 2 system is known, it is possible to decouple the system, obtaining
a single wave equation (again regular) for an appropriate, gauge-invariant
linear combination of the perturbed metric coe�cients and scalar �eld, from
which all other perturbations can be reconstructed; in most situations, such
a time-independent solution can be found by varying the parameters of the
family of static wormhole solutions under consideration. The above two re-
sults provide a general frame for spherically symmetric wormholes and their

5In particular, the present Introduction is greatly indebted to paper [1].
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Wormholes in higher dimensional General Relativity and the problem of
their stability

linear stability analysis which generalize to higher dimensions the approach
of Ref. [1] and which represent an alternative to the S-deformation approach
of Refs. [25, 26, 35]: no S-deformation of the linearized perturbation equa-
tions is necessary in the gauge-invariant approach of this thesis, since there
is no singularity to be eliminated.

The method is then applied to the Torii-Shinkai and the Ellis-Bronnikov
wormholes, and to a spherically symmetric Anti-de Sitter (AdS)-type worm-
hole which connects two asymptotic AdS ends (in the sequel referred to as
AdS wormhole) (6) Let me recall that such wormholes live in spacetime di-
mension d + 1, with arbitrary d ≥ in the Torii-Shinkai case and with d = 3
in the Ellis-Bronnikov and AdS cases. In the case of the Ellis-Bronnikov
and the AdS wormholes, the derivation reduces exactly to that proposed in
Ref. [1]; in particular, for the Ellis-Bronnikov wormhole, I show that the
master equation agrees precisely with the one obtained in Ref. [25] by the
S-method. Note that the linear instability of the AdS wormhole has been
addressed for the �rst time right in Ref. [1], using the four-dimensional ver-
sion of the gauge-invariant method presented in this thesis. In the case of
the Torii-Shinkai wormhole, I obtain a master equation that coincides with
that found by Torii and Shinkai themselves in Ref. [35], after applying the
S-method. However, as already mentioned, di�erently from the deduction of
Ref. [35], my inference of the linear instability of the Torii-Shinkai wormhole
does not involve the occurrence of any singularity.

The AdS wormhole has a de Sitter (dS) analog which, however, presents
horizons; to go beyond the horizons it is necessary to consider a Kruskal-
type extension of the dS wormhole spacetime, which, however, is non static
and thus it outside the mainstream of the thesis. In any case, following the
scheme of Ref. [1], I discuss the above issues and also present a partial result
of linear instability, concerning the static part of the wormhole spacetime .

In addition to the just mentioned gauge-invariant method and its ap-
plications, in this thesis I provide two examples in which it is possible to
decouple the linearized �eld system by �xing a particular gauge; indeed,
by choosing two di�erent coordinate systems for the Torii-Shinkai and the
AdS wormholes, I derive (also in this case) completely regular wave-type
master equations, describing the temporal behaviour of the radial perturba-
tion. Although this approach does not employ gauge-invariant quantities,
the coordinate-independent linear instability of the two wormholes is proved
by showing that the perturbed spacetime tends to become singular in the
large time limit. This inference of the linear instability of the Torii-Shinkai

6This is a special case of a family of static solution of the Einstein-scalar equations
derived by Bronnikov and Fabris in Refs. [36, 11].
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Intoduction

wormhole generalizes the approach of Ref. [2], in which an analougue proof is
provided in the four-dimensional case for the EBMT wormhole. The interest
of this deduction lies in the fact that all the equations and the quantities
involved are regular and, in contrast to the scheme of Ref. [35] for the Torii-
Shinkai wormhole and analogously to that of Ref. [1] for the AdS case, there
is no need to introduce any regularization formalism like the S-deformation
method.

Finally, in order to complete the stability discussion, in this thesis I also
provide a detailed analysis for the behaviour of the solution of the master
equations in the Torii-Shinkai, Ellis-Bronnikov, AdS and dS case, based on
a rigorous spectral analysis of the Schrödinger operator appearing therein.
In general, a negative eigenvalue of the Schrödinger operator gives rise to a
pair of modes, one exponentially growing and the other one exponentially
decaying with respect to the time variable; a positive eigenvalue gives rise
to a pair of oscillating modes, while a positive energy level lying in the con-
tinuous spectrum gives rise to a pair of non-normalizable oscillating modes,
corresponding to generalized eigenfunctions of the Schrödinger operator; if
zero is an eigenvalue it gives rise to a pair of normalizable modes, one of them
constant and the other one linearly growing with time. Partially following
the results of Ref. [1], I show that in the Ellis-Bronnikov case, the solution
can be expanded in terms of an exponentially growing, an exponentially de-
caying, a constant, a linearly growing mode and a continuum of oscillators
associated with non-normalizable modes, while in the Torii-Shinkai and in
the EBMT case, the solution can be expanded in terms of an exponentially
growing, an exponentially decaying and a continuum of oscillators associ-
ated with non-normalizable modes. In contrast to this, in the AdS case the
spectrum of the Schrödinger operator is a pure point spectrum, giving rise
to an exponentially growing, an exponentially decaying, and to an in�nite,
discrete set of oscillating normalizable modes: this is due to the Dirichlet-
type boundary conditions imposed at the AdS boundary, which give rise to
a regular Sturm-Liouville problem.

Although the linear stability analysis is undoubtedly the fundamental
issue of this work, some of its sections are devoted to the study of the geo-
metrical properties of static spherically symmetric wormhole con�gurations,
considering in particular their embedding diagrams and geodesic motion. I
provide a general method to build the embedding diagrams of the Chaucy
surface (at a �xed value of an angular coordinate) of wormholes as two-
dimensional �tunnel-shaped� hypersurfaces of suitably chosen ambient spaces;
this is applied to the Ellis-Bronnikov, the EBMT and the AdS cases, show-
ing, in particular, that the slices of the EMBT and of the AdS whormholes

16



Organization of the thesis

can be entirely embedded, respectively, into the three-dimensional euclidean
space and into a space with constant curvature. In addition, it is proved that
the Ellis-Bronnikov and the AdS wormholes' slices can not be embedded in
R3, unless you settle for embedding just a neighbourhood of the throat.

A complete analysis of the null and timelike geodesic motion in the case of
the Ellis-Bronnikov and the AdS wormholes is also performed, showing that
in both cases it is possible to obtain circular orbits as well as trajectories
which cross the wormhole throat; some of these geodesics are plotted in
the corresponding embedding diagrams. Admittedly, the Ellis-Bronnikov's
diagram and geodesics have already been considered in the recent paper [37];
they have been introduced in the present thesis just for completeness. On
the contrary, to my knowledge, the AdS case has not been considered so far.
Actually, in the very recent paper [38], which appeared after submission of
my work [3], a complete analysis of the geodesic motion near the throats
of static, spherically symmetric traversable wormholes is performed, even in
the case in which the coupling phantom scalar �eld has a self-interacting
potential; however, the authors of Ref. [38] consider only wormholes which
are asymptotically �at, which is not the case of the AdS wormhole.

Organization of the thesis

The present thesis is divided in two parts. The �rst part is substantially an
introduction on static spherically symmetric wormholes supported by self-
interacting phantom scalar �eld in higher dimensional General Relativity.
The �rst part is organized as follows.

Chapter 1 contains some general results on the Lagrangian formulation
for (d+ 1)-dimensional (d ≥ 3) spacetimes supported by a (phantom) scalar
�eld with an arbitrary self-interaction potential, and the derivation of the
corresponding �eld equations, that is, the Einstein's and the Klein-Gordon
equations.

In Chapter 2, I specialize this equations to the case of spherically sym-
metric wormholes: in Sections 2.1 and 2.2, I introduce the most general local
representation of a metric describing a spherically symmetric spacetimeMd+1

di�eomorphic to M2×Sd−1, where M2 is a two dimensional Lorentzian man-
ifold and Sd−1 is the unit (d− 1)-sphere. In Section 2.3, I derived some con-
ditions that the coe�cients of a spherically symmetric metric must ful�ll in
order to describe a (four-dimensional) static wormhole con�guration; in par-
ticular, the radial coe�cient of the angular part of a wormhole metric has to
possess a positive minimum, which represent the throat size. In the same sec-
tion, �xing a value for the temporal and of an angular coordinate, I propose a
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Intoduction

general strategy to embed the corresponding two-dimensional wormhole slice
as a �tunnel-shaped� hypersurface into a suitably de�ned ambient space. In
the next Section 2.4, I prove that every matter or �eld con�guration support-
ing a wormhole spacetime, if any, has to violate the weak energy condition;
an example of this fact is given by the phantom scalar �eld supporting the
Ellis-Bronnikov-Morris-Thorne (EBMT) wormhole. In the last Section 2.5, I
write explicitly the �eld equations for the spherically-symmetric wormholes
and phantom scalar �elds.

In Chapter 3, I presented some known static wormhole spacetimes, deriv-
ing their metric (and the corresponding scalar �eld) directly from the static
�eld equation (background equation) given in Section 3.1: Section 3.2 is fo-
cused on the (d+ 1)-dimensional Torii-Shinkai wormhole, Section 3.3 on the
non re�ection symmetric Ellis-Bronnikov wormhole, while Section 3.4 consid-
ers a wormhole connecting two Anti-de Sitter (AdS) universes. In particular,
for the EBMT, the Ellis-Bronnikov and the AdS wormholes, I build the em-
bedding diagrams, following the general strategy introduced in Chapter 1; in
addition, I fully study the qualitative features of timelike and null geodesics in
these wormholes, pro�ting from a general discussion on this topic, contained
in Appendix A. In the last Section 3.5, I consider a wormhole connecting two
de Sitter (dS) universes; by introducing di�erent coordinations, I built an
extension of the dS metric beyond the cosmological horizons of its spacetime.

The second part of the thesis is devoted to the linear stability analysis of
static wormhole con�gurations. Some preliminaries are contained in Chapter
4, where I introduce spherically symmetric perturbations (Section 4.1), I
make a few general comments regarding the possibility of transforming their
expressions by introducing an in�nitesimal gauge transformation (Section
4.2), and I derive the corresponding linearized �eld equations (Section 4.3).
Some of the results of Section 4.2 are explained in detail in Appendix B.

In the next Chapter 5, I describe a gauge-dependent method for studying
the linear stability of the Torii-Shinkai and the AdS wormholes; this consists
in �xing a particular gauge (which strictly depends on the static solution
under consideration) such that the linearized �eld equations are easily de-
couplable. I show that, considering a suitably de�ned coordinate system, it
is possible to write two of the perturbations functions in terms on the ra-
dial perturbation, which is proved to satisfy a single regular wave-type mas-
ter equation. This master equation has an associated Schrödinger operator
possessing a unique bound state with negative energy, a fact which implies
the divergence in the large temporal limit of the radial perturbation. The
(gauge-invariant) linear instability of the two considered wormholes is proved
by showing that the linearized scalar curvature of the perturbed spacetimes
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Mathematical and physical background

diverge in any coordinate system.
In Chapter 6, which is the core of the thesis, I outline a general gauge-

invariant method for decoupling the linearied �eld equations for a perturbed
(d+ 1)-dimensional static spherically symmetric wormhole solution. In par-
ticular: I consider gauge-�xed setting (in which the scalar �eld is held �xed)
in order to simplify and partially decouple the linearized �eld system (Sec-
tions 6.1 and 6.2); in Sections 6.3 and 6.4, I introduce a set of combinations
of the perturbations which are invariant with respect to in�nitesimal coordi-
nate transformations, and the linearized �eld equations are then cast into a
constrained wave system for two of these gauge-invariant quantities; �nally,
in Section 6.5, I show how to decouple this wave system, provided a static
solution of the linearized �eld equations is available, in which case a single
regular master wave equation is obtained.

In the forthcoming Chapter 7, I apply the gauge-invariant method of
Chapter 6 to the Torii-Shinkai, the Ellis-Bronnikov and the AdS wormholes,
yielding three wave-type master equations. To this purpose, in Section 7.1,
a general strategy is given to provide the static solution of the linearized
�eld equations required, by varying the parameters on which the family of
wormholes under consideration depend. In Section 7.5, the gauge-invariant
method is also applied to the (unextended) static dS wormhole, deriving
a master equation concerning perturbations which are con�ned within the
horizons, that is, in the static part of this spacetime.

All the master equations obtained in Chapter 7 contain Schrödinger-type
di�erential operators with a point spectrum consisting in a single, negative
eigenvalue, a fact that implies the divergence of the gauge-invariant solutions
of the equations, and then the linear instability of the Torii-Shinkai, the Ellis-
Bronnikov, the AdS wormholes, and of the static part of the dS wormhole.

The last (non numbered) chapter includes conclusions, limitations and
possible future applications (mainly of the gauge-invariant method of Chap-
ter 6).

The technical details concerning the solution of the master equations
and the spectral properties of the corresponding Schrödinger-type operators
(based on rigorous techniques from functional analysis) are contained in the
remaining appendices; in particular, in Appendix C, I recall some general
results about the spectral decomposition of selfadjoint operators in L2 with
respect to (generalized) orthonormal bases made up of their proper and im-
proper eigenfunctions; Appendix D is devoted to the analysis of the spectral
features of the Schrödinger operators appearing in the master equations for
the Torii-Shinkai, the Ellis-Bronnikov, the AdS and the dS wormhole; �nally,
the spectral decomposition of the solutions of all the corresponding master
equations are derived in Appendix E.
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Mathematical and physical background

Throughout this thesis I use the the formalism of the higher dimensional Gen-
eral Relativity and the common notations and symbols for the mathematical
objects usually involved. In particular, let me stipulate what follows.

(i) A (d + 1)-dimensional spacetime (Md+1,g) (with d ≥ 3) is a (d + 1)-
dimensional di�erential manifoldMd+1 provided with a Lorentzian met-
ric g with signature (1, d) and the associated Levi-Civita connection,
hereafter indicated with ∇.

(ii) A system of coordinates (xµ)µ ≡ (xµ)µ=1,...,d+1 on Md+1 is an homeo-
morphism onto its image

(xµ)µ : Od+1 ⊆Md+1 → Od+1 ⊆ Rd+1 ,

where, Od+1 is an open subset of Md+1; in the sequel, we will use the
following abuse of notation: the symbol (xµ)µ stands for both the above
de�ned mapping, de�ning the coordinate system, and for a generic
point of its image Od+1, which is the range of the coordinate system.

(iii) The coordinate bases of the tangent space and the cotangent space in
x := (x1, ..., xd+1) ∈ Od+1 are(

∂

∂xµ

∣∣∣∣
x

)
µ=1,...,d+1

and
(
dxµ
∣∣∣
x

)
µ=1,...,d+1

.

(iv) In terms of the coordinates (xµ)µ, the metric g can be locally written
as (7)

g = gµν(x)dxµ ⊗ dxν , (x ∈ Od+1) ,

where the coe�cients

gµν : O ⊆ Rd+1 → R (µ, ν = 1, ..., d+ 1)

are smooth functions such that

[gµν ]
T = [gµν ] , det[gµν ] < 0 , [gµν ]

−1 = [gµν ] ;

in the sequel we will write

(dxµ)2 := dxµ ⊗ dxµ , dxµdxν :=
1

2
(dxµ ⊗ dxν + dxν ⊗ dxµ) ,

so that
g = gµν(x)dxµdxν , (x ∈ Od+1) .

7In the sequel, we will use the same symbol for the metric and its local representation.
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Mathematical and physical background

(v) The Christo�el coe�cients associated to the Levi-Civita connection ∇
in any coordinate system (xµ)µ are

Γλµν =
1

2
gλρ
[
∂

∂xµ
gρν +

∂

∂xν
gρµ −

∂

∂xρ
gµν

]
(λ, µ, ν = 1, ..., d+ 1).

(1)

(vi) The components of the Riemann tensor associated to the Levi-Civita
connection ∇ in any coordinate system (xµ)µ are

Rκ
µνλ =

∂

∂xν
Γκλµ−

∂

∂xλ
Γκνµ+ΓκνρΓ

ρ
λµ−ΓκλρΓ

ρ
νµ (κ, µ, ν, λ = 1, ..., d+1).

(2)

(vii) The components of the Ricci tensor associated to the Levi-Civita con-
nection ∇ in any coordinate system (xµ)µ are

Rµν = Rρ
µρν (µ, ν = 1, ..., d+ 1). (3)

(viii) The scalar curvature associated to the Levi-Civita connection ∇ is

R = Rµ
µ = gµνRνµ. (4)

(ix) The components of the Einstein tensor associated to the Levi-Civita
connection ∇ in any coordinate system (xµ)µ are given by

Gµν = Rµν −
1

2
gµνR (µ, ν = 1, ..., d+ 1). (5)

(x) The Einstein �eld equations (in the sequel usually referred to as Ein-
stein's equations) for the spacetime metric g in presence of energy, mat-
ter of �elds represented by a stress-energy tensor �eld with components
Tµν are

Gµν = κTµν (µ, ν = 1, ..., d+ 1). (6)

where κ = 8πG
c4

is the usual coupling constant.

Remark 1 Throughout this work we choose units in which

c = 1 , ~ = 1

and the signature convention (−,+, ...+) for the metric g.
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Remark 2 Einstein's equations (6) have the equivalent form

Rµν = κ

(
Tµν −

1

2
gµνT

)
(µ, ν = 1, ..., d+ 1), (7)

where T := T µµ .

Remark 3 In the case in which

Tµν = −Λ

κ
gµν Λ ∈ R (µ, ν = 1, ..., d+ 1) , (8)

Einstein's equations (6) reads

Gµν + Λgµν = 0 (µ, ν = 1, ..., d+ 1) . (9)

The tensor (8) describes a vacuum state with constant energy density ρvac,
and isotropic pressure pvac de�ned as

ρvac = −pvac =
Λ

κ
.

The equations (9) were introduced by Einstein himself with a somehow dif-
ferent motivation; the constant Λ appearing therein is usually referred to as
�cosmological constant�.

22



Part I

Static spherically symmetric

wormholes supported by

self-interacting phantom scalar

�elds

23



Chapter 1

Spacetimes supported by

self-interacting scalar �elds in

arbitrary dimension

In this Chapter, I would like to make a brief overview on scalar �elds in the
context of General Relativity. In particular, in Section 1.1, I will rederive
the Klein-Gordon equation for scalar �elds and its generalizations to GR.
In Section 1.2, I will recover the �eld equations for spacetimes of arbitrary
dimension, whose gravitational �eld is minimally coupled to a self-interacting
scalar �eld; these equations are exactly the Einstein's and the Klein-Gordon
equations. I will �nally prove that the Klein-Gordon equation is actually
implied by Einstein's equations. Obviously, all the content of the present
chapter can be found in any textbook on Quantum Mechanics and General
Relativity (see, e.g. Refs. [39, 40]). However, most of the forthcoming,
well-known equations involving scalar �elds are rewritten using a parameter
ς, which is usually set to 1 for standard �elds. In the sequel we will see
that the choice ς = −1 de�nes a class of scalar �elds, usually referred to as
�phantom scalar �elds�, which is of great importance in studying wormhole
con�gurations in General Relativity.

1.1 Scalar �elds and Klein-Gordon equation

In the context of quantum mechanics, it is well known that every system is
described by an Hilbert spaceH whose vectors ψ ≡ ψt represents the possible
states of the system at �xed time t; in 1925, Erwin Schrödinger postulated
that the evolution of the states of the system was described by the well known
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1.1. Scalar �elds and Klein-Gordon equation

equation

i
dψ

dt
= Ĥψ , (1.1)

where i is the imaginary unit and Ĥ is the Hamiltonian operator, namely a
linear operator in H corresponding to the energy of the system (recall that
in Remark 1 we have stipulated } = 1). Obviously, d

dt
denotes the derivative

of the vector ψ ≡ ψt with respect to the time parameter t. In the case of a
quantum particle with mass m and velocity v (i.e. with momentum p = mv)
moving in the three-dimensional space R3 and subject to an external potential
U(x) = U(x,u, z), one choose as the Hilbert space H, the functional space
L2(R3) made of complex valued, square integrable functions on R3 and de�nes
the Hamiltonian operator as

Ĥψ ≡
(
p̂2

2m
+ Û

)
ψ := − 1

2m
∇2ψ + U(x)ψ ,

where ∇2 := ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplace operator of the three-dimensional

Euclidean space; with abuse of notation, one can interpret the vectors rep-
resenting the states of the system as the functions ψ ≡ ψt(x) = ψ(t, x) such
that ψ(t, ·) ∈ L2(R3) for all t ∈ R (actually, the time parameter t should not
be considered as a variable of the function). With this abuse of notation, it
results that every state function ψ must satisfy the wave-type equation

i
∂ψ

∂t
= − 1

2m
∇2ψ + U(x)ψ ; (1.2)

note that the replacement of symbol for ordinary derivatives d
dt
appearing in

Eq. (1.1) with that for partial derivatives ∂
∂t

is coherent with the abuse of
notation ψ = ψ(t, x).
One of the main limit of the Schrödinger equation (1.2) lies in the fact that it
not relativistic invariant and therefore can not describe the motion relativistic
particles; in 1929, it was this fact that motivated Oskar Klein and Walter
Gordon to look for a new equation which should have been a generalization
of the Schrödinger equation. In special relativity, according to an inertial
observer, the energy of a particle with rest mass m and three-momentum
p is E =

√
p2 +m2 (recall that in Remark 1 we have stipulated c = 1);

the corresponding Hamiltonian operator can be obtained by quantizing the
energy E, that is

Ĥ :=
√
−∇2 +m2c4 ,

which, inserted into Eq. (1.1), gives

i
dψ

dt
=
√
−∇2 +m2ψ .
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1. Spacetimes supported by self-interacting scalar �elds in arbitrary
dimension

In order to remove the disadvantages related to the presence of a square root
of a di�erential operator, one can raise to the square the equation, getting(

− ∂2

∂t2
+∇2

)
ψ = m2ψ . (1.3)

Note that the right hand side of Eq. (1.3) is the d'Alembert operator of the
function ψ in the Minkowski space de�ned by the metric

ηµν = (−1, 1, 1, 1) · Id4

(indeed, it is equal to ηµν∂ν∂µψ). Therefore, Eq. (1.3) can be naturally
generalized to a higher dimensional curved spacetime with metric g ≡ gµν
by making the formal substitutions ηµν 7→ gµν and ∂µ 7→ ∇ν ; renaming the
unknown �eld ψ with the Greek letter Φ, these replacements leads to the
so-called Klein-Gordon equation

∇µ∇µΦ = m2Φ , (1.4)

where ∇µ∇µ = gµν∇µ∇ν is the d'Alambert operator of the metric g.
Therefore, we say that a �scalar �eld with mass m� in General Relativity is
a scalar function de�ned on a spacetime (Md+1,g)

Φ : Md+1 → R (1.5)

which satis�es the Klein-Gordon equation (1.4); for m = 0 one speaks of a
massless scalar �eld. The most common generalization of the above de�nition
consists in replacing the termm2Φ on the right hand side of Eq. (1.4) with an
arbitrary function of Φ, which is sometimes (but non necessarily) polynomial
in Φ; the scalar �eld satisfying such a modi�ed nonlinear equation is usually
referred to as �self-interacting scalar �eld�. In the next section, we will use
the Lagrangian formulation to provide a precise de�nition of such �elds.

1.2 Lagrangian formulation for spacetimes in

arbitrary dimension supported by a self-

interacting scalar �eld

Let us consider a (d + 1)-dimensional spacetime (Md+1,g) with d ≥ 3 and
the associated Levi-Civita connection, as already mentioned indicated with
∇; moreover, we assume that the gravitational �eld g is minimally coupled
to a self-interacting scalar �eld Φ as in Eq. (1.5). In the sequel we will
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1.2. Lagrangian formulation for spacetimes in arbitrary dimension
supported by a self-interacting scalar �eld

indicate with the same letter Φ, the local representation of the scalar �eld Φ
according to the coordinate system (xµ)µ, that is, we will assume

Φ : Od+1 ⊆ R4 → R , (1.6)

where Od+1 is the range of the coordinates. The common assumption is that
this con�guration is de�ned by the sum of the Hilbert action functional SH
and a functional SKG (to which we will refer to as the Klein-Gordon action
functional) de�ned as

S[g,Φ] := SH [g,Φ] + SKG[g,Φ] ,

SH [g,Φ] :=

∫
Md+1

R

2κ
dv , SKG[g,Φ] :=

∫
Md+1

−
[ ς

2
∇µΦ · ∇µΦ + V (Φ)

]
dv ;

(1.7)
where the scalar function

V : Φ(Od+1) ⊆ R→ R

is a potential which describes the self-interaction of the scalar �eld Φ, while

κ = 8πG, R and dv =
√
| det[gµν ]|

d∏
µ=0

dxµ are, respectively, the usual cou-

pling constant, the scalar curvature of the spacetime Md+1 and the volume
element associated with the metric g. In the case of standard scalar �elds,
the constant ς is equal to 1. However, we will see that sometimes it can
be useful (and acceptable) to consider di�erent values of ς; hence, for the
moment, we keep its value undetermined. The evolution of the system is
described by the stationary conditions

δS

δgµν
= 0 ,

δS

δΦ
= 0 ; (1.8)

since the functional derivatives of the Hilbert action with respect to gµν is
δSH
δgµν

= − 1
2κ

(
Rµν − 1

2
gµνR

)
, (8( while, obviously, δSH

δΦ
= 0, the stationary

conditions (1.8) can be rephrased as

Rµν − 1

2
gµνR = 2κ

δSKG
δgµν

,
δSKG
δΦ

= 0 . (1.9)

The next theorem states that the equations in (1.9) are respectively equiv-
alent to Einstein's equations with a stress-energy tensor �eld related to
the scalar �eld Φ and to the generalized Klein-Gordon equation with self-
interacting potential, hence justifying the assumption (1.7).

8See, e.g., Ref. [39] (page 454): here, the functional derivative is computed with
respect to the variation δgµν which is de�ned as the variation of the inverse metric gµν

corresponding to δgµν ; in the sequel we will call this quantity δ[gµν ] and prove that it is
equal to −gµρgνλδgλρ [see Eq. (1.12)]. Therefore, we have that δSKG

gµν
= −gµρgνλ δSKGgµν .
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1. Spacetimes supported by self-interacting scalar �elds in arbitrary
dimension

Theorem 1 The stationary conditions (1.9) are equivalent to

Rµν −
1

2
gµνR = κTµν , (Einstein's equations with a scalar �eld)

Tµν := ∇µΦ · ∇νΦ− gµν
( ς

2
∇λΦ · ∇λΦ + V (Φ)

)
(1.10)

ς∇µ∇µΦ = V ′(Φ) (Klein-Gordon equation) (1.11)

Proof. Let us start computing the functional derivative of the Klein-Gordon
action SKG with respect to the metric g. Let be δgµν an in�nitesimal variation
of the metric tensor gµν of compact support if seen as a function from the
spacetime Md+1 to the tensor bundle T 2

0Md+1; hence, denoting with g the
absolute value of the metric determinant det[gµν ] and with δ[·] the variation
of a given quantity corresponding to δgµν , one has that

δ[g] = g gµν δgµν , δ [
√
g] =

1

2

√
g gµν δgµν , δ [gµν ] = −gµρ gνλ δgλρ .

(1.12)

The �rst equality of Eq. (1.12) is proven directly observing that

g + δ[g] = det [gµν + δgµν ] = det[gµλ] det[δλν + gλρ δgρν ]

= g
(

1 + Tr
(
gλρ δgρν

) )
= g gλρ δgλρ . (1.13)

The second equality of Eq. (1.12) is a consequence of the �rst one since
δ
[√
g
]

= 1
2
√
g
δg. Finally, the third equality of Eq. (1.12) follows noting that

0 = δ[δνρ ] = δ[gρλ g
λν ] = δ[gρλ] g

λν + gρλ δ[g
λν ], which implies that gρλ δ[g

λν ] =
−gλν δ[gρλ]; the thesis is obtained by multiplying the both the sides of the
last equality by gµρ.

Setting dx :=
d∏

µ=0

dxµ and recalling that dv =
√
g dx, we are now ready to

compute the variation of SKG:

δSKG = −
∫
Md+1

{[ ς
2
δ[gµν ]∇νΦ · ∇µΦ

]√
g +

[ ς
2
∇µΦ · ∇µΦ + V (Φ)

]
δ[
√
g]

}
dx

= −
∫
Md+1

{
−
[ ς

2
∇λΦ · ∇ρΦ

]√
g δgλρ

+
[ ς

2
∇λΦ · ∇λΦ + V (Φ)

] 1

2

√
ggµνδgµν

}
dx

=
1

2

∫
Md+1

δgµν

{
ς∇µΦ · ∇νΦ− gµν

[ ς
2
∇λΦ · ∇λΦ + V (Φ)

]}√
g dx .
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This concludes the computation of δSKG
δgµν

since, by de�nition, δSKG =
∫
δgµν ·

δSKG
δgµν

dv; then, Eq. (1.10) is obtained inserting the expression for δSKG
δgµν

in the

�rst equality of Eq. (1.9) and lowering the indices.
Now, it remains to prove Eq. (1.11). Let be δΦ an in�nitesimal variation
of the scalar �eld Φ of compact support; analogously as before, we denote
with δ[·] the variation of a given quantity due to the variation δΦ. It is not
di�cult to prove that

δ[∇µΦ] = ∇µδΦ , δ[∇µΦ] = ∇µδΦ , δ[V (Φ)] = V ′(Φ)δΦ ,

so that the variation of SKG corresponding to δΦ is given by

δSKG =

∫
Md+1

−
[ ς

2
δ[∇µ]Φ · ∇µΦ +

ς

2
∇µΦ · δ[∇µΦ] + δ[V (Φ)]

]
dv

=

∫
Md+1

−
[ ς

2
gµν∇νδΦ · ∇µΦ +

ς

2
gµν∇νΦ · ∇µδΦ + V ′(Φ)δΦ

]
dv

=

∫
Md+1

δΦ [ς∇µ∇µΦ− V ′(Φ)] dv .

In the last equality we have used the fact that ∇µΦ∇µδΦ = ∇µ(∇µΦ · δΦ)−
∇µ∇µΦ · δΦ = divX − ∇µ∇µΦ · δΦ, where Xµ = ∇µΦ · δΦ, and the fact
that

∫
divX dv=0 (which is due to Stokes's theorem and to the fact that δΦ

has a compact support). The expression for the functional derivative δSKG
δΦ

is

obtained again from the variation δSKG since δSKG =
∫
δΦ · δSKG

δΦ
dv; then,

Eq. (1.11) is obtained inserting the expression for δSKG
δΦ

into the second sta-
tionary condition in Eq. (1.9).

�

Actually, the two �eld equations (1.10,1.11) for the metric g and the
scalar �eld Φ are not independent, as stated by the following

Theorem 2 Einstein's equations (1.10) imply the Klein-Gordon equation
(1.11).

Proof. Since the Einstein tensor Gµν = Rµν − 1
2
gµνR has null divergence,

every stress-energy tensor satisfying Einstein's equations must have the same
property, namely ∇µT

µ
ν = 0; indeed this is a condition on the energy and the

matter that can be interpreted as a conservation law.
In the case in which the matter is described by a scalar �eld Φ, the stress-
energy tensor Tµν reads as in Eq. (1.10); the computation of its the divergence
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is

∇µT
µ
ν = ∇µ

[
ς∇µΦ · ∇νΦ− δµν

( ς
2
∇λΦ · ∇λΦ + V (Φ)

)]
= ς(∇µ∇µΦ) · ∇νΦ + ς∇µΦ · (∇µνΦ)

− δµν
[ ς

2
(∇µ∇λΦ) · ∇λΦ +

ς

2
∇λΦ · (∇µλΦ) + V ′(Φ)∇µΦ

]
= ς(∇µ∇µΦ) · ∇νΦ + ς∇µΦ · ∇µνΦ−

ς

2
(∇ν∇λΦ) · ∇λΦ

− ς

2
∇λΦ · ∇νλΦ− V ′(Φ)∇νΦ

= ς(∇µ∇µΦ) · ∇νΦ + ς∇µΦ · ∇µνΦ−
ς

2
∇µΦ · ∇νµΦ− ς

2
∇µΦ · ∇νµΦ

− V ′(Φ)∇νΦ

= [ς∇µ∇µΦ− V ′(Φ)] · ∇νΦ ;

in the penultimate equality we have use the fact that (∇ν∇λΦ) · ∇λΦ =
∇ν(g

µλ∇µΦ) · ∇λΦ = ∇µΦ · ∇νµΦ, while in the last equality we have used
the symmetry of ∇µνΦ.
Therefore, the conservation of energy ∇µT

µ
ν = 0 is equivalent to

[ς∇µ∇µΦ− V ′(Φ)] · ∇νΦ = 0 . (1.14)

Let us prove that Eq. (1.14) actually implies the Klein-Gordon equation
(1.11). Let be D the subset of Md+1 de�ned as

D := {m ∈Md+1 : ∇νΦ(m) 6= 0} ;

obviously, on this subset Eq. (1.14) implies the Klein-Gordon equation. Our
goal is to show that the Klein-Gordon equation holds even on the comple-
ment Md+1\D. Evidently, this is nontrivial as long as Md+1\D 6= ∅; hence
we assume that the D 6= Md+1, or in other words that the boundary of D is
not empty. Since in this case the Klein-Gordon equation has to be satis�ed
on the boundary of D by continuity, we have that ς∇µ∇µΦ(m) = V ′(Φ(m))
for every m in the closed set D. We observe now that from the de�nition of
D and (again) by continuity one has that ∇νΦ = 0 on the complement of D,
that is Φ = const on each connected component of Md+1\D; without loss of
generality, from now on we can assume that Md+1\D is connected since, if it
does not, one can simply make the following considerations for everyone of
its connected components. Now, since the Klein-Gordon equation holds on
the boundary of D, where, by continuity, Φ = const and ∇ν

µΦ = 0, one has
that V ′(const) = 0; but this means that the Klein-Gordon equation holds on
Md+1\D, since therein Φ = const and ∇ν

µΦ = 0, and thus the equation is
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equivalent to V ′(const) = 0.
�

Before concluding the present section, for completeness, we give an alter-
native form to Einstein's equations (1.10).

Proposition 1 Einstein's equations (1.10) are equivalent to

Rµν = κ [ς∇µΦ · ∇νΦ + V (Φ)gµν ] . (1.15)

Proof. The trace of the stress-energy tensor of scalar-�eld Φ in Eq. (1.10)
is

T = T µµ = ς∇µΦ ·∇µΦ− 4

(
ς

2
∇λΦ ·∇λΦ +V (Φ)

)
= −ς∇λΦ ·∇λΦ− 4V (Φ) ;

the thesis is obtained immediately by inserting the expressions of Tµν and T
into the alternative form of Einstein's equation (7).

�
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Chapter 2

Spherically symmetric wormholes

in arbitrary dimension

2.1 Preliminaries

2.1.1 Some facts on two-dimensional Lorentzian mani-
folds

Let us consider a two-dimensional Lorentzian manifold (M2,g2) and a coor-
dinate system (t, x)

(t, x) : O ⊆M2 → O ⊆ R2

such that the metric g2 can be locally written as

g2 = −α(t, x)2dt2 + γ(t, x)2 (dx+ β(t, x)dt)2 , (2.1)

where the coe�cients α, γ : O ⊆ R2 → (0,+∞) and β : O ⊆ R2 → R are
three smooth functions.

Remark 4 Every two-dimensional Lorentzian metric g2 has the local rep-
resentation (2.1) in any coordinate system (t, x) with x spacelike.

Proof. We start recalling that, in an arbitrary coordinate system (t, x), the
two-dimensional Lorentzian metric g2 has the general local representation

g2 = g00(t, x)dt2 + 2g10(t, x)dt dx+ g11(t, x)dx2 (2.2)

where g00, g10, g11 : O ⊆ R2 → R are three smooth functions such that

det[gµν ](t, x) := g00(t, x)g11(t, x)− g01(t, x)2 < 0 ,

for every (t, x) ∈ O ⊆ R2 .
(2.3)
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2.1. Preliminaries

Moreover, if the coordinate x is spacelike, then

0 < g2

(
∂

∂x
,
∂

∂x

)
= g11(t, x)

for every (t, x) ∈ O ⊆ R2. Hence, we set

γ(t, x) :=
√
g11(t, x) , β(t, x) :=

g01(t, x)

γ(t, x)2
;

the function γ is smooth and never vanishes, whence β is well de�ned and
smooth. Note that, using the functions γ and β, Eq. (2.3) yields

det[gµν ](t, x) = γ2(t, x)
[
g00(t, x)− γ(t, x)2β(t, x)2

]
< 0 ,

from which it turns out that the function

α(t, x) :=
√
−g00(t, x) + γ(t, x)2β(t, x)2

is well de�ned, smooth and strictly positive. Finally, in terms of the functions
α, γ, β, the expression (2.2) becomes

g2 = (−α(t, x)2 + γ(t, x)2β(t, x)2)dt2 + 2γ2(t, x)β(t, x)dx dt+ γ(t, x)2dx2 ,

which is exactly Eq. (2.1).
�

Actually, by making an appropriate choice of the coordinates (t, x) on
M2 it is possible to make the function β disappear. This fact is stated (and
proved) in the following

Lemma 1 Let (M2,g2) be a two-dimensional Lorentzian manifold and let
(t, x) be an arbitrary coordinate system onM2 with domain O ⊆M2. Suppose
that there exists a smooth function x̂ : O ⊆ M2 → R with the property that
its gradient grad(x̂) is everywhere spacelike, that is,

g2

(
grad(x̂), grad(x̂)

)
> 0 . (2.4)

Then, for every m ∈ M2 there exists a neighbourhood Ô ⊆ O of m and a
smooth function t̂ : Ô ⊆ O ⊆M2 → R such that:

(i) (t̂, x̂) is a coordinate system on M2 with domain Ô ⊆ M2 and range

(t̂, x̂)(Ô) = Ô ⊆ R2;
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2. Spherically symmetric wormholes in arbitrary dimension

(ii) (t̂, x̂) is an orthogonal coordinate system, that is, in these coordinates,
the metric g2 possesses a local diagonal representation

g2 = −α̂(t̂, x̂)2dt̂2 + γ̂(t̂, x̂)2dx̂2 , (2.5)

where α̂, γ̂ : Ô ⊆ R2 → (0,+∞) are two smooth and positive functions.

Moreover, t̂ has the property that its gradient grad(t̂) is everywhere timelike,
that is,

g2

(
grad(t̂), grad(t̂)

)
< 0 ; (2.6)

Proof. We have already recalled that in an arbitrary coordinate system
(t, x), the two-dimensional Lorentzian metric g2 has the general local repre-
sentation (2.2), where the three smooth coe�cients g00, g10, g11 : O ⊆ R2 →
R satisfy Eq. (2.3); in addition, the gradient of the metric g2 applied to any
smooth function f : O ⊆M2 → R has the local representation

grad(f) =

[
g00(t, x)

∂f

∂t
+ g01(t, x)

∂f

∂x

]
∂

∂t
+

[
g01(t, x)

∂f

∂t
+ g11(t, x)

∂f

∂x

]
∂

∂x
,

(2.7)
where [gµν ]µ,ν=0,1 denotes the inverse matrix of [gµν ]µ,ν=0,1. Let us observe
that the metric (2.2) is diagonal (i.e. g01 = 0) if and only if

g2

(
grad(t), grad(x)

)
= 0 .

To prove this fact, we notice that, for f = t and f = x, Eq. (2.7) reads

grad(t) = g00(t, x)
∂

∂t
+ g01(t, x)

∂

∂x
, grad(x) = g01(t, x)

∂

∂t
+ g11(t, x)

∂

∂x
,

which implies that

g2

(
grad(t), grad(x)

)
= g00(t, x)dt

(
grad(t)

)
dt
(
grad(x)

)
+ g01(t, x)dt

(
grad(t)

)
dx
(
grad(x)

)
+ g10(t, x)dx

(
grad(t)

)
dt
(
grad(x)

)
+ g11(t, x)dx

(
grad(t)

)
dx
(
grad(x)

)
= g00(t, x)g00(t, x)g01(t, x) + g01(t, x)g00(t, x)g11(t, x)

+ g10(t, x)g01(t, x)g01(t, x) + g11(t, x)g01(t, x)g11(t, x) =

=
1

det[gµν ]2
[
− g00(t, x)g01(t, x)g11(t, x) + g00(t, x)g01(t, x)g11(t, x)

+ g01(t, x)3 − g00(t, x)g01(t, x)g11(t, x)
]

= − g01(t, x)

det [gµν ]
2 ; (2.8)
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2.1. Preliminaries

therefore g2((grad(t), grad(x)) = 0 if and only it g01 = 0.
Note that, in the diagonal case, one has that the coe�cient g11 is positive if
and only if

g2

(
grad(x), grad(x)

)
> 0 ;

this is easily proved noting that, if g01 = 0 then

g2

(
grad(x), grad(x)

)
= g11(t, x)g11(t, x)g11(t, x) =

g11(t, x)g00(t, x)2

det[gµν ]2
. (2.9)

Moreover, if g01 = 0 and g11 > 0 then g00 < 0 as

0 > det[gµν ] = g00(t, x)g11(t, x) . (2.10)

As a consequence of the previous considerations, we can replace the item (ii)
of the statement with the following item:

(ii') t̂ has the property that its gradient grad(t̂) is orthogonal to the gradi-
ent of x̂, that is,

g2

(
grad(t̂), grad(x̂)

)
= 0 . (2.11)

Let us prove the equivalence of (ii) and (ii'). If (ii) is veri�ed, that is the
metric is diagonal g01 = 0, then, from Eq. (2.8) we have that (2.11) holds,
namely (ii') is veri�ed. Conversely, if (ii') is veri�ed, that is the condition
(2.11) holds, then, from Eq. (2.8), the metric is diagonal Eq. (2.8); in
addition, since g01 = 0, the hypothesis (2.4) is equivalent to g11 > 0 [Eq.(2.9)],
which guarantees that g00 < 0 because of Eq. (2.10).
In addition, it is not di�cult to see that (ii') actually implies (i). Hence, we
are left to prove only (ii').
In order to prove item (ii'), let us introduce a one-form θ̂ such that

θ̂
(
grad(x̂)

)
= 0 . (2.12)

Note that it always possible to de�ne (at least locally) a form θ̂ satisfying
(2.12); indeed, in the coordinates (t, x) we have that θ̂ = θ̂0dt + θ̂1dx and
grad(x̂) = grad(x̂)0 ∂

∂t
+ grad(x̂)1 ∂

∂x
, so that the condition (2.12) reads

θ̂0

θ̂1

= −grad(x̂)1

grad(x̂)0
,

which can always be satis�ed.
In addition, for any point m ∈ O ⊆ M2, we introduce the following one-
dimensional subspaces of the tangent space of M2 in m

V1
m := {v ∈ TmM2 : θ̂(v) = 0} ⊆ TmM2 ; (2.13)
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2. Spherically symmetric wormholes in arbitrary dimension

since the dependence on m is smooth, the union of the sets (2.13) as m varies
in O ⊆M2 is a one-dimensional distribution on O:

V1 :=
⋃
m∈O

V1
m .

Using the Frobenius's Theorem one can easily see that every one-dimensional
distribution is integrable: this is equivalent to say that for every point m ∈
O ⊆ M2 there exists an open neighbourhood Ô ⊆ O of m and a function
t̂ : Ô ⊆ O ⊆M2 → R such that

V1
m = {v ∈ TmM2 : dt̂(v) = 0} . (2.14)

By comparing Eq. (2.13) and Eq. (2.14), we deduce that the one-forms θ̂
and dt̂ share the same zeroes. Therefore, since grad(x̂) is a zero of θ̂ [Eq.
(2.12)], then grad(x̂) is also a zero of dt̂; this implies that

0 = dt̂
(
grad(x̂)

)
= g2

(
grad(t̂), grad(x̂)

)
,

as, by de�nition, dt̂ = g2

(
grad(t̂), ·

)
. This concludes the proof of item (ii').

Finally, in order to prove Eq. (2.6), let us note that

g2

(
grad(t̂), grad(t̂)

)
= g00(t̂, x̂)g00(t̂, x̂)g00(t̂, x̂)

=
g00(t̂, x̂)g11(t̂, x̂)2

det[gµν ]2
= −α(t̂, x̂)2γ(t̂, x̂)4

det[gµν ]2
< 0 .

�

Remark 5 It can be proved that there is still one degree of freedom in the
choice of the coordinates of M2; indeed, one can de�ne another orthogo-
nal coordinate system (ť, x̌) such that g is conformal to the 2-dimensional
Minkowski �at metric, namely the metric has the form (2.5) with α = γ, that
is, g = γ(ť, x̌)2

(
−dť2 + dx̌2

)
; this gauge is often referred to as �conformally

�at gauge�.

Remark 6 The static case corresponds to the situation in which the func-
tions α and γ are independent of the variable t, thus we write α(t, x) = α(x)
and γ(t, x) = γ(x); since in this case the metric (3.1) is de�ned for every
t ∈ R then the range O ⊆ R2 of the coordinates (t, x) is rectangular, that is

O = R× x(O) . (2.15)

36



2.1. Preliminaries

Remark 7 In the static case, it is possible to use the remaining degree of
freedom in the choice of the gauge onM2 such that the metric g̃ has the form
(2.5) with αγ = 1. This can be easily reached if one de�nes the new spatial
coordinate x̆ as

x̆ =

∫ x̂

0

α(y)γ(y)dy + x0

(here x0 is an integration constant).

2.1.2 Some facts on Riemannian manifolds with con-
stant curvature

We start introducing the concept of sectional curvature for a (d−1)-dimensional
Riemannian manifold with d ≥ 2, which is related to the concept of constant
curvature manifolds:

De�nition 1 Let (N, a) be an (d − 1)-dimensional Riemannian manifold
with d ≥ 2; in addition, let be n an element of N and v, w two linearly inde-
pendent vectors of the tangent space TnN . The sectional curvature K(v, w) of
v and w is de�ned as the Gaussian curvature of the two-dimensional manifold
described by the geodesics which are tangent in n to the plane π := span 〈v|w〉.
Given a real number K ∈ R, the manifold (N, a) is said to have a constant
curvature K if K(v, w) is constant and equal to K for every v, w ∈ TnN and
for every n ∈ N .

The next classical theorem provides a characterization for a manifold to
have a constant curvature (see, e.g. Corollary 2.2.5 at page 56 of [41]).

Theorem 3 Let (N, a) be an (d−1)-dimensional Riemannian manifold with
d ≥ 2 and let (x2, ..., xd) a coordinate system on N . Then, N is a manifold
of constant curvature K if and only if the Riemann tensor Ri

jkl is de�ned as:

Ri
jkl = K

(
δik ajl − δil akj

)
(i, j, k, l = 2, ..., d) , (2.16)

where aij are the coe�cients of the metric a in the coordinates (x2, ..., xd),
that is, a = aijdx

idxj. Moreover, if Eq. (2.16) holds then the Ricci tensor
Rij and the scalar curvature R of N read, respectively,

Rij = (d− 2)Kaij (i, j = 2, ..., d) , R = (d− 1)(d− 2)K . (2.17)

Example 1 In the Euclidean space Rd (d ≥ 1) with orthogonal coordinates
(x1, ..., xd), we consider the hypersurface (d − 1)-sphere of radius r0 > 0,
which is de�ned as

Sd−1 := {x ∈ Rd : ||x||2 = r2
0} , (2.18)
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2. Spherically symmetric wormholes in arbitrary dimension

where ||x|| :=
√

(x1)2 + ...+ (xd)2 is the Euclidean norm. Let (x2, ..., xd) be
the coordinates system induced on Sd−1:

(x2, ..., xd) : Sd−1 → Od−1 ⊆ Rd−1 ,

where Od−1 := (xi)i=2,...,d+1(Sd−1) is the range of the coordinates; in addition,
let a = aijdx

i dxj be the induced metric on Sd−1, where aij : Od−1 ⊆ Rd−1 →
R are smooth functions for every i, j = 2, ..., d. Then (Sd−1, a) is a (d − 1)-
dimensional Riemannian manifold of constant curvature 1

r20
; in particular, the

Ricci tensor and the scalar curvature of Sd−1 reads, respectively,

Rij =
d− 2

r2
0

aij , R =
(d− 1)(d− 2)

r2
0

(i, j = 2, ..., d) (2.19)

Example 2 Let us focus on the three-dimensional case of the previous
example, that is, lets set d = 3 and introduce the spherical coordinates on
R3

(r, ϑ, ϕ) : R3 \ {(0, 0, 0)} → (0,+∞)× [0, π)× [0, 2π) .

Then, the induced metric on the 2-sphere with radius r0 > 0 (de�ned in Eq.
(2.18)) reads

a = r2
0

(
dϑ2 + sin2 ϑ dϕ2

)
=: r2

0 dΩ2 ; (2.20)

moreover, the Ricci tensor and the scalar curvature in Eq. (2.19) become

[Rij] =

(
1 0
0 sin2 ϑ

)
, R =

2

r2
0

. (2.21)

2.2 Geometry of spherically symmetric space-

times

Throughout the present section we stipulate the forthcoming assumptions:

(i) (Md+1,g) is a (d+1)-dimensional spacetime with d ≥ 3 and the symbol
∇ indicates the Levi-Civita connection associated with the Lorentzian
metric g.

(ii) (M2,g2) denotes a two-dimensional Lorentzian manifold with coordi-
nates (t, x) such that x is spacelike, so that the metric g2 can be locally
written in the form (2.1); O ⊆ R2 is the range of (t, x).
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(iii) (x2, ..., xd) is the coordinate system of the unit (d− 1)-sphere Sd−1 in-
troduced in Example 1 and a = aijdx

idxj (i, j = 2, ..., d) is the induced
metric: in this case, the Ricci tensor and the scalar curvature are as in
Eq. (2.19) with r0 = 1; Od−1 ⊆ Rd−1 is the range of the coordinates
(x2, ..., xd).

Let us recall a very important class of spacetimes:

De�nition 2 Let (Md+1,g) be an (d+ 1)-dimensional spacetime with d ≥ 2.
Md+1 is spherically symmetric if Md+1 possesses a subgroup of its isometry
group which is isomorphic to the d-dimensional rotation group SO(d), and
the orbits of this subgroup (i.e. the points resulting from the action of the
subgroup on a given point) are (d− 1)-spheres.

In addition to the assumptions (i)(ii)(iii), from now on, we assume that
the spacetime (Md+1,g) is spherically symmetric; actually, in order to further
simplify the discussion, we assume that

(iv) Md+1 is spherically symmetric and is di�eomorphic to the Lorentzian
manifold

Md+1 'M2 × Sd−1 , (2.22)

so that the metric �eld g is de�ned as

g(m,p) := g2(m) + r(m)2 a(p) , for every (m, p) ∈M2 × Sd−1 ,

where r : M2 → (0,+∞) is a smooth functions.

Remark 8 Given the coordinates (t, x) onM2 and the coordinates (x2, ..., xd)
on Sd−1 of items (ii-iii), one can easily see that

(t, x, x2, ..., xd) : O × Sd−1 → O× Od−1 ⊆ R2 × Rd−1 (2.23)

is actually a coordinate system on Md+1 and the metric g can be locally
written as

g =− α(t, x)2dt2 + γ(t, x)2(dx+ β(t, x)dt)2

+ r(t, x)2aij(x
2, ..., xd) dxi dxj ,

(2.24)

where the coe�cients α, γ, r : O ⊆ R2 → (0,+∞) and β : O ⊆ R2 → R
are three smooth functions. In the sequel, we will use the Greek letters
µ, ν, ... ∈ {0, ..., d} as subscript to denotes the components of the tensors with
respect to the frame (t, x, x2, ..., xd) and the Latin letters i, j, ... ∈ {2, ..., d}
as subscript to denotes the components of the tensors with respect to the
coordinates (x2, ..., xd). Moreover, in the following, a dot and a prime always
refer to partial di�erentiation with respect to t and x, respectively: hence,
for every smooth function f(t, x) de�ned on O ⊆ R2 we will write ḟ and f ′

to indicate, respectively, ∂f
∂t

and ∂f
∂x
.
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2. Spherically symmetric wormholes in arbitrary dimension

Remark 9 In the four-dimensional case d = 3, one can choose for the
manifold S2 the coordinate system (x2 := ϑ, x3 := ϕ) as in Example 2; in
this case the metric (2.24) reads

g = −α(t, x)2dt2 + γ(t, x)2(dx+ β(t, x)dt)2 + r(t, x)2dΩ2 , (2.25)

where (again) dΩ2 := dϑ2 + sin2 ϑdϕ2 .

Remark 10 As stated by Lemma 1, one can introduce an orthogonal coor-
dinate system (t̂, x̂) on M2 such that the function β vanishes and the metric
(2.24) reduces to

g = −α(t̂, x̂)2dt̂2 + γ(t̂, x̂)2dx̂2 + r(t̂, x̂)2aij(x
2, ..., xd) dxi dxj ; (2.26)

in the sequel, for the sake of simplicity, we will often make use of these or-
thogonal coordinates; in those cases, in order not to make heavy the notation,
we will keep using the symbols (t, x) instead of (t̂, x̂). As just mentioned in
Remark 9, in the four-dimensional case d = 3, one can set (x2 := ϑ, x3 := ϕ),
so that the metric (2.26) reduces to

g = −α(t, x)2dt2 + γ(t, x)2dx2 + r(t, x)2dΩ2 . (2.27)

Remark 11 Generalizing Remark 6,we have that the static case corre-
sponds to the situation in which the functions α, γ, r are independent of
the variable t, thus we write α(t, x) = α(x), γ(t, x) = γ(x), r(t, x) = r(x);
since in this case the metric (2.24) is de�ned for every t ∈ R, the range of
the coordinates (t, x) is rectangular, that is O = R× x(O).

Example 3 The Anti-de Sitter spacetime is a static, spherically symmetric,
four-dimensional Lorentzian manifold (MAdS,gAdS) with constant negative
scalar curvature

RAdS := −12k2 (k > 0) ;

note that is possible to introduce a coordinate system (t, x, ϑ, ϕ) such that
the metric gAdS has the form (2.25) with

α(t, x) = γ−1(t, x) =
√

1 + k2x2 , β(t, x) = 0 , r(t, x) = x . (2.28)

The coordinates (t, x, ϑ, ϕ) are an �almost global coordinate system� since
the metric (2.28) is singular only at x = 0 and therefore describes almost
fully the manifold MAdS. Note that the metric (2.28) is a solution to vacuum
Einstein's equations with the cosmological constant Λ = −3k2 (see Remark
3).
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2.2. Geometry of spherically symmetric spacetimes

Example 4 The de Sitter spacetime is a static, spherically symmetric, four-
dimensional Lorentzian manifold (MdS,gdS) with constant positive scalar cur-
vature

RdS := 12k2 (k > 0) ;

note that is possible to introduce a coordinate system (t, x, ϑ, ϕ) such that
the metric gdS has the local form (2.25) with

α(t, x) = γ−1(t, x) =
√

1− k2x2 , β(t, x) = 0 , r(t, x) = x . (2.29)

The coordinates (t, x, ϑ, ϕ) are a coordinate system which is singular at x = 0
and for x = ± 1

k
; it can be proved that the singularities x = ± 1

k
are just two

cosmological horizons, i.e. it is possible to introduce two new coordinates
(T,X) such that the metric (2.29) can be extended continuously beyond the
two horizons; the extended metric results in a conformal factor times the line
element of the static Einstein universe, that is,

gdS =
1

k2 cos2 T

[
− dT 2 + dX2 + sin2XdΩ2

]
. (2.30)

Note that this extended metric is not static. Finally, let us recall that the
metric (2.29) is a solution to vacuum Einstein's equations with the cosmo-
logical constant Λ = 3k2 (see Remark 3).

The Einstein tensor and the scalar curvature of a spherically sym-
metric spacetime

For a (d + 1)-dimensional spherically symmetric spacetime (2.22) with met-
ric (2.24), it results that the components of the Einstein tensor Gµν [Eq.
(5)] that do not vanish are those corresponding to the indices (µ, ν) ∈
{(0, 1), (1, 0), (µ, µ) : µ = 0, ..., d}; however, due to the symmetry in the
indices and the spherical symmetry of the metric tensor (2.24), it turns out

that G01 = G10 and that Gii
aii

=
Gjj
ajj

for every i, j = 2, ..., d. Therefore, setting

Ga := Gii
aii

for any i = 2, ..., d, one has that the non vanishing components of
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2. Spherically symmetric wormholes in arbitrary dimension

the Einstein tensor are (9)

G00 :=
d− 1

2

[
(d− 2)α2

r2
+

1

r

(
(d− 2)ṙ2

r
+

2γ̇ṙ

γ

)
+
α2

γ2r

(
2γ′ r′

γ
− (d− 2)r′2

r
− 2r′′

)]
+
d− 1

r
Gβ

00 , (2.31)

G01 := (d− 1)

[
1

r

(
α′ṙ

α
+
γ̇r′

γ
− ṙ′

)]
+
d− 1

r
Gβ

01 , (2.32)

G11 :=
d− 1

2

[
− (d− 2)γ2

r2

(
1 +

ṙ2

α2

)
+

2γ2

α2r

(
α̇ṙ

α
− r̈
)

+
r′

r

(
2α′

α
+

(d− 2)r′

r

)]
+
d− 1

r
Gβ

11 , (2.33)

Ga :=
(d− 2)(d− 3)

2

(
r′2

γ2
− ṙ2

α2
− 1

)
+

(d− 2)r

α2

(
α̇ṙ

α
− γ̇ṙ

γ
− r̈
)

+
r2

αγ

(
α̇γ̇

α2
− α′′γ′

γ2
+
α′′

γ
− γ̈

α

)
+

(d− 2)r

γ2

(
α′r′

α
− γ′r′

γ
+ r′′

)
+
r2

α2
Gβ
a , (2.34)

where

9In order to compute the Ricci tensor Rµν (and consequently the scalar curvature R)
of the metric g it is su�cient to observe that, for any i, j = 1, ..., d,

Rij = R̃ij + aij r

[
r̈

α2
− r′′

γ2
+

(
γ′

γ
− α′

α
− (d− 2)

r′

r

)
r′

γ2

(
γ̇

γ
− α̇

α
+ (d− 2)

ṙ

r

)
ṙ

α2

]
where R̃ij is the Ricci tensor of the metric a, which is given by Eq. (2.19) with r20 = 1.
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Gβ
00 :=

[(
β′ +

γ̇

γ

)
r′ +

(
2
α′

α
− γ′

γ

)
ṙ − (d− 2)

r′ṙ

r
− 2ṙ′

]
β

+

[
− d− 2

2

γ2

r
− r′ (αγ)′

αγ
+ (d− 2)

r′2

r
+ 2r′′

+
γ2

α2

(
β̇r′ +

α̇ṙ

α
− d− 2

2

ṙ2

r
− r̈
)]

β2

−
[(
β′ +

α̇

α

)
r′ +

(
α′

α
− (d− 2)

r′

r

)
ṙ − 2ṙ′

]
γ2

α2
β3

+

[(
α′

α
− d− 2

2

r′

r

)
r′ − r′′

]
γ2

α2
β4 − ṙβ′ , (2.35)

Gβ
01 :=

[
− d− 2

2

γ2

r
+

(
− γ′

γ
+
d− 2

2

r′

r

)
r′ + r′′

+
γ2

α2

(
r′β̇ +

(
α̇

α
− d− 2

2

ṙ

r

)
ṙ − r̈

)]
β

−
[(

β′ +
α̇

α

)
r′ +

(
α′

α
− (d− 2)

r′

r

)
ṙ − 2ṙ′

]
γ2

α2
β2

+

[(
α′

α
− d− 2

2

r′

r

)
r′ − r′′

]
γ2

α2
β3 , (2.36)

Gβ
11 :=

[(
β′ +

α̇

α

)
r′ +

(
α′

α
− (d− 2)

r′

r

)
ṙ − 2ṙ′

]
γ2β

+

[(
α′

α
− d− 2

2

r′

r

)
r′ − r′′

]
γ2

α2
β2 +

γ2

α2
r′β̇ , (2.37)

Gβ
a :=

[(
α′

α
− 2(d− 2)

r′

r
− 3

γ′

γ

)
β′ − β′′

−
(
γ′

γ
+ (d− 2)

r′

r

)
α̇

α
−
(
α′

α
− (d− 2)

r′

r

)
γ̇

γ

+(d− 2)

(
γ′

γ
− α′

α
+ (d− 3)

r′

r

)
ṙ

r
+ 2

γ̇′

γ
+ 2(d− 2)

ṙ′

r

]
β

+

[
α′

α

γ′

γ
+ (d− 2)

(
α′

α
− γ′

γ
− d− 3

2

r′

r

)
r′

r
− γ′′

γ
− (d− 2)

r′′

r

]
β2

+

(
γ′

γ
+ (d− 2)

r′

r

)
β̇ +

(
2
γ̇

γ
− α̇

α
+ (d− 2)

ṙ

r
− β′

)
β′ + β̇′ .

(2.38)

Here and in the following, the dots and the primes refer to the partial deriva-
tives with respect to t and x, respectively, as mentioned in Remark 8.
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2. Spherically symmetric wormholes in arbitrary dimension

In addition, for future convenience, we compute the scalar curvature [Eq.
(4)]; this reads

R :=− 2

α2

(
α̇

α

γ̇

γ
− γ̈

γ
− (d− 1)

r̈

r

)
+

2

γ2

(
α′

α

γ′

γ
− α′′

α
− (d− 1)

r′′

r

)
+ 2(d− 1)

α

γ3

r′

r

∂

∂x

[
γ

α

]
− 2(d− 1)

γ

α3

ṙ

r

∂

∂t

[
α

γ

]
+

(d− 2)(d− 1)

r2

(
1− r′2

γ2
+
ṙ2

α2

)
+Rβ , (2.39)

where

Rβ := 2
β

α2

[
β′
(
−α

′

α
+ 2(d− 1)

r′

r
+ 3

γ′

γ

)
+
α̇

α

(
(d− 1)

r′

r
+
γ′

γ

)
+
γ̇

γ

(
α′

α
− (d− 1)

r′

r

)
+ (d− 1)

r′

r

(
α′

α
− γ′

γ

)
+ β′′

− 2(d− 1)
ṙ′

r
− (d− 2)(d− 1)

ṙr′

r2
− 2

γ̇′

γ

]
+ 2

β2

α2

[
(d− 1)

r′

r

(
γ′

γ
− α′

α

)
− α′

α

γ′

γ

+
(d− 1)(d− 2)

2

r′2

r2
+ (d− 1)

r′′

r
+
γ′′

γ

]
+

2

α2

[
β′
(
β′ +

α̇

α
− (d− 1)

ṙ

r
− 2

γ̇

γ

)
− β̇

(
(d− 1)

r′

r
+
γ′

γ

)
− β̇′

]
.

(2.40)

Remark 12 In the orthogonal coordinate system introduced in Lemma 10
(in which the function β vanishes), the expressions for the Einstein tensor
Gµν (2.31-2.34) and the scalar curvature (2.39) signi�cantly simplify since

the quantities Gβ
00, G

β
01, G

β
11, G

β
a and Rβ in Eqs. (2.35-2.38,2.40) are zero.

Remark 13 The (d + 1)-dimensional static, spherically symmetric space-
time de�ned by

α = γ = 1 , r = x

is �at and generalizes the Minkowski spacetime to higher dimension: indeed,
in this case, the scalar curvature R is zero everywhere.
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2.3. Geometry of (four-dimensional) spherically symmetric wormholes

2.3 Geometry of (four-dimensional) spherically

symmetric wormholes

In this section I try to de�ne the general properties that a metric has to pos-
sess in order to describe a spherically symmetric, static wormhole spacetime;
for simplicity, we focus on four-dimensional con�gurations, although our ap-
proach can be easily generalized to the (d+ 1)-dimensional case. Therefore,
from now on we keep the following assumptions:

(i) (M,g) is a four-dimensional spherically-symmetric static spacetime;

(ii) (t, x, ϑ, ϕ) is the orthogonal coordiante system for M introduced in
Remark 10;

(iii) in the coordinates (t, x, ϑ, ϕ), the static metric g reads as in Eq. (2.27),
that is

g = −α(x)2dt2 + γ(x)2dx2 + r(x)2dΩ2 , (2.41)

where the coe�cients α, γ, r : x(O)→ (0,+∞) are three smooth func-
tions (recall that in the static case the range of the coordinates (t, x)
is O = R× x(O)).

Let us start with few elementary considerations about the metric (2.41):

(a) one can easily see that the spacetime (M,g) is spherically symmetric
and static from the fact that the coe�cients of the metric g do not
depend on the angular coordinates ϑ and ϕ nor on the temporal co-
ordinate t; in addition, the coordinates (x, ϑ, ϕ) de�ne a coordinate
system for the �space� of a static observer in this spacetime, while the
temporal coordinate t represents its �time�;

(b) the �rst term −α(x)2dt2 of g is the proper time (physical time) mea-
sured by someone which is at rest according to the static observer; note
that the proper time depends on the spatial variable x and, therefore,
the function α can be used to quantify the �gap� between the time
lengths signed by two clocks at rest for the static observer depending
on their relative positions;

(c) the second term

γ(x)2dx2 + r(x)2dΩ2 (2.42)

is the metric of each of the three-dimensional spherically symmetric
manifolds t := {m ∈ M | t(m) = const} ⊂ M which represent the
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2. Spherically symmetric wormholes in arbitrary dimension

space seen by the static observer at a �xed time; for this reason, we
can say that the functions γ and r determines what we reasonably
would call the �shape� of the spacetime (M,g).

A very useful tool for visualizing the geometrical properties of the spatial
slice t is the embedding diagram. In general, a smooth map ι : M → N
between two di�erential manifolds M and N is an embedding if both ι and
its di�erential dι are everywhere injective and ι : M → ι(M) is a homeomor-
phism. Of course, it might be impossible to embed the three-dimensional slice
t in a four-dimensional �at space; however, if it is the case, pro�ting from the
spherical symmetry of (2.42), one can build up a picture of the embedded
slice ι(t) �xing the value of an angle. In fact, the embedding ι transforms
the spacetime slices tϑ0 := {m ∈ M | t(m) = const, ϑ(m) = ϑ0} ⊂ M into
two-dimensional surfaces in the three-dimensional euclidean space: these rep-
resentations of the spatial part of a spacetime are called embedding diagrams.
Note that, as the value of ϑ0 is immaterial, from now on we �x ϑ0 = π/2.

After these preliminary considerations, we can propose a naive de�nition
of a static spherically symmetric wormhole spacetime metric: the metric
(2.41) represents a static spherically symmetric wormhole if each of its tπ

2

slices (de�ned by the metric (2.42) with ϑ = π/2), once embedded in a
three-dimensional �at space, look as a �tunnel-shaped� hypersurface, a form
familiar from popular accounts of wormholes. However, this statement is too
restrictive since, as we will see later, there are spacetimes whose tπ

2
slices

cannot be embedded in a �at space, but nevertheless, in some sense these
slices have still the �shape of a tunnel� if embedded in a di�erent suitable
ambient space. Indeed, the distinctive aspect of a wormhole spacetime is the
presence of a throat; therefore, one can simply ask that a wormhole spacetime
is embeddable as a three-dimensional �tunnel-shaped� hypersurface only in a
neighbourhood of the throat. This is the main idea of the following

De�nition 3 (Local de�nition of wormhole metric)
The metric (2.41) describes a spherically symmetric static wormhole if there
exist a point x0 and neighbourhood Ux0 of x0 such that the following hold:
(i) each of the tπ

2
slices (de�ned by the metric (2.42) with ϑ = π/2), once

intersected with Ux0, can be embedded via an embedding ι into the three-
dimensional euclidean �at space R3;
(ii) introducing the cylindrical coordinates (z, ρ, ϕ̂) ∈ R × (0,+∞) × (0, 2π)
on R3, the embedding of tπ

2
∩ Ux0 is a �tunnel-shaped� hypersurface, namely

an hypersurface de�ned as

S := {(z, ρ, ϕ̂) : ρ = F (z)} ⊂ R3 ,
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2.3. Geometry of (four-dimensional) spherically symmetric wormholes

where the function F : dom(F ) ⊆ R → (0,+∞) is smooth and possesses a
positive minimum of size b > 0 at a certain point of its domain z0.

In order to simplify the forthcoming discussion, we prescribe that z0 is
the only minimum point of F . In short, we require that the function F has
the following properties:

F ∈ C∞ , F (z0) = b > 0 ,

F ′(z0) = 0 , F ′(z)(z − z0) > 0 for all z ∈ dom(F )/{z0} .
(2.43)

Note that the function F can be e�ectively regarded as the �pro�le� of the
tunnel; with the assumption (2.43), it is clear that the minimum b of the
function F represents the size of the tunnel throat.

The local de�nition of wormholes has a critical aspect: since the De�nition
3 considers only the topological features of wormholes in a neighbourhood of
the throat, the pro�le function F cannot be used to �see� the behaviour of the
wormhole in the large x limits. For these reasons, in the following, I provide
an alternative (and more general) de�nition of wormhole spacetimes. In this
regard, let us consider a three-dimensional Riemannian manifold (MA,gA)
with the cylindrical coordinates (z, ρ, ϕ̂) ∈ R × (0,+∞) × (0, 2π) and the
metric gA de�ned as

gA = A(ρ)2dz2 +
1

A(ρ)2
dρ2 + ρ2dϕ̂2 , (2.44)

where A : (0,+∞)→ (0,+∞) is a smooth and positive function; in addition,
we assume that A(0) = 1. This is the ambient space in which we ask that
the embedding of the tπ

2
slices of the wormhole have the shape of a tunnel.

De�nition 4 (Global de�nition of wormhole metric) (10)

The metric (2.41) describes a spherically symmetric static wormhole if the
following hold:
(i) each of the tπ

2
slices (de�ned by the metric (2.42) with ϑ = π/2) can be

embedded via an embedding ι into the three-dimensional Riemannian mani-
fold (MA,gA), where gA is de�ned in Eq. (2.44);
(ii) in the cylindrical coordinates (z, ρ, ϕ̂) ∈ R×(0,+∞)×(0, 2π) on MA, the
embedding of tπ

2
is a �tunnel-shaped� hypersurface, namely an hypersurface

de�ned as
S := {(z, ρ, ϕ̂) : ρ = F (z)} ⊂MA , (2.45)

10The adjective �global� might be confusing, since we are de�ning whether a local rep-
resentation of a metric describes a wormhole con�guration; actually, the globality of this
de�nition refers to the possibility of embed the tπ

2
slices entirely in a suitable ambient

space a a �tunnel-shaped� hypersurface.
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where the function F : dom(F ) ⊆ R → (0,+∞) is smooth and possesses a
positive minimum of size b > 0 at z = z0.

Even in this case, the function F can be regarded as the �pro�le� of the
wormhole: indeed, in a neighbourhood of ρ = 0, MA approaches to the �at
three-dimensional space and the hyperfurface Sπ

2
[Eq. (2.45)] can be locally

interpreted as a �tunnel-shaped� hypersurface in R3 in a neighbourhood of the
throat z = z0. Moreover, the large z limits represent the far ends of two sepa-
rate hypersurfaces ofMA linked by the tunnel throat; these hypersurfaces are
de�ned, respectively, by {(z, F (z), ϕ̂) | z > z0}} and {(z, F (z), ϕ̂) | z < z0}}.

In the following, we look for some properties that the functions α, γ and
r has to possess in such a way that the corresponding metric (2.41) describes
a wormhole according to De�nition 4.
Let us start observing that, as ρ = F (z) and dρ = F ′(z)dz on the hypersur-
face S, the induced metric on S ⊂MA reads

dS2 =

[
A(F (z))2 +

F ′(z)2

A(F (z))2

]
dz2 + F (z)2dϕ̂2 . (2.46)

Therefore, we are looking for a metric (2.41) such that, given a �pro�le func-
tion� F , it exists an embedding ι : tπ

2
⊂ M → MA such that the embedded

slice S := ι(tπ
2
) ⊂ MA has the metric (2.46). Working in coordinates, the

embedding ι is speci�ed by three smooth bijections:

z = z(x, ϕ) , ρ = ρ(x, ϕ) , ϕ̂ = ϕ̂(x, ϕ) ;

note that, as we are in a spherically symmetric con�guration, we can take
ϕ̂ = ϕ and the functions z(·) and ρ(·) to be angles-independent, i.e we can
set

z = z(x) , ρ = ρ(x) , ϕ̂ = ϕ . (2.47)

Provided Im(z) ⊆ dom(F ), one can insert the embedding functions (2.47)
and their di�erentials into (2.46), obtaining the original form of the tπ

2
slice

metric:

dt2
π
2

= A(F (z(x)))2z′(x)2

[
1 +

F ′(z(x))2

A(F (z(x)))4

]
dx2 + F (z(x))2dϕ̂2 . (2.48)

Without loss of generality, from now on we also stipulate that z(0) = 0 and
z′(x) > 0 for all x ∈ R.
By comparing the two expression (2.42) and (2.48) for the metric of the slice
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tπ
2
, we get the expressions of the functions γ and r in dependence of F and

z = z(x):

r(x) = F (z(x)) , (2.49)

γ(x) = A(F (z(x)))z′(x)

√
1 +

F ′(z(x))2

A(F (z(x)))4
. (2.50)

Summing up, in this section we have proved the following

Proposition 2 For all smooth functions α : R → (0,+∞), z : R → Im(z),
F : dom(F ) ⊆ R→ [b,+∞), A : (0,+∞)→ (0,+∞) such that
(i) z is a bijection with z′(x) > 0 for all x ∈ R,
(ii) Im(z) ⊆ dom(F ),
(iii) z(0) = 0 ∈ dom(F ),
(iv) F satis�es the requirements in Eq. (2.43),
(v) A(0) = 1,
the metric (2.41) with r and γ as in Eqs. (2.49,2.50) represents a static
spherically symmetric wormhole spacetime; indeed, the embedded hypersur-
face S = ι(tπ

2
) ⊂ Mk has a �tunnel-shaped� structure with a throat of

size b located at z = z0. Moreover, the slice tπ
2
of the wormhole space-

time has the throat of size b at x = x0 =: z−1(z0) and links together the
two separate universes de�ned, respectively by {m ∈ M |x(m) > x0} and
{m ∈M |x(m) < x0}.

Remark 14 From equation (2.49), from the fact that z(x) is injective and
from the properties (2.43) on the function F we have that the radial coe�-
cient r of a wormhole spacetime metric satis�es

r(x) > r(x0) = b > 0 , r′(x0) = 0 , r′(x) (x− x0) > 0 for all x 6= x0 .
(2.51)

Now, given a static metric (2.41) describing a wormhole, I propose the
following question: when and how is it possible to �nd a pro�le function F
and an embedding z satisfying the requirements (i)-(iv) of Proposition 2?
The answer to this question strongly depends on the choice of the ambient
space MA, i.e. on the function A appearing in Eq. (2.44): this has to be
guessed for example by looking the asymptotic behaviour of the wormhole.
Hence, let us suppose that we are given with four functions α, γ, r and A.
Recalling that ρ(x) = F (z(x)) on the embedded hypersurface S = ι(tπ

2
),
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2. Spherically symmetric wormholes in arbitrary dimension

Eqs. (2.49,2.50) becomes

r(x) = ρ(x) , (2.52)

γ(x) = A(ρ(x))

√
z′(x)2 +

ρ′(x)2

A(ρ(x))4
, (2.53)

F (z) := ρ(x(z)) , (2.54)

where x = x(z) is the inverse function of z = z(x). Hence, Eqs. (2.52,2.53)
are a system of two di�erential equations in the unknown ρ = ρ(x), z = z(x)
which is trivially solved by setting

ρ(x) = r(x) , z(x) =

∫ x

0

1

A(r(x̃))

√
γ(x̃)2 − r′(x̃)2

A(r(x̃))2
dx̃ (2.55)

(note that in solving Eq. (2.53) we have required that z(0) = 0). Finally, the
pro�le function F is obtained by composing the function ρ and the inverse
function of z, according to Eq. (2.54). Obviously, the function z in Eq.
(2.55) is an embedding of the whole slice tπ

2
only if

γ(x)2 ≥ r′(x)2

A(r(x))2
for every x ∈ x(O) . (2.56)

Moreover, Eq. (2.55) can always be used to build a local embedding of the
wormhole spacetime in the three-dimensional Euclidean space, in a neigh-
bourhood U0 of the throat: this is reached by setting A(ρ) ≡ 1 in Eq. (2.55).
The neighbourhood U0 corresponds to the region where the embedding func-
tion z is well de�ned, i.e. where

γ(x)2 ≥ r′(x)2 . (2.57)

Remark 15 To my knowledge, there is at least one example in literature of
the previous construction in the case of a static spherically symmetric space-
time whose spatial part is embeddable as a �tunnel-shaped� hypersurface in
a �at ambient space: in his textbook [42], Hartle describes how to built the
embedding of the tπ

2
slice of a very simple wormhole (therein referred gener-

ically as �a Wormhole Spacetime") in the three-dimensional euclidean space
R3. We will return to Hartle's example in Subsection 3.3.1.
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2.4 Necessity of exotic matter: phantom scalar

�elds

Throughout this section we set:

(i) (Md+1,g) is a (d + 1)-dimensional spherically-symmetric static space-
time;

(ii) (t, x, x2, ..., xd) is the coordiante system forMd+1 introduced in Remark
10;

(iiii) in the coordinates (t, x, x2, ..., xd), the static metric g reads (see Eq.
(2.27))

g = −α(x)2dt2 + γ(x)2dx2 + r(x)2aij(x
2, ..., xd) dxi dxj , (2.58)

where the coe�cients α, γ, r : x(O) → (0,+∞) and aij : Od−1 → R
are three smooth functions for every i, j = 2, ..., d.

Remark 16 Setting d = 3, in Remark 14 we have shown that a static spher-
ically symmetric metric (2.58) describes a wormhole con�guration according
to De�nition 3 and De�nition 4) if and only if the radial coe�cient r is such
that Eq. (2.51) holds. For simplicity, let us assume that x0 = 0. In par-
ticular, by continuity, it turns out that there exists a neighbourhood U0 of
zero such that r′′(x) > 0 for every x ∈ U0\{0}. Actually, r′′(0) might vanish,
although this is not the case for all the wormholes presented in this work; for
this reason, from now on, along with Eq. (2.51), we assume that for every
wormhole with metric (2.58) there exists a neighbourhood U0 of the throat
such that

r′′(x) > 0 for every x ∈ U0 . (2.59)

Obviously, all these considerations (and all the considerations of the previous
section) can be easily extended to higher dimensions d ≥ 3.

At this point, one might wonder whether and how it is possible to in-
troduce some matter or �elds which could support a spherically symmetric
wormhole con�guration; in other words, the question is: is it possible to �nd
a physically meaningful stress-energy tensor Tµν which satis�es Einstein's
equations [Eq. (6)] for the metric (2.58) with the conditions (2.51,2.59) on
the function r?
In order to deal with this problem, in the next subsection I will recall three
main prescriptions that, according to GR, every stress-energy tensor �eld is
believed to satisfy when describes some physically reasonable classical matter
of �elds: the weak, the strong and the dominant energy condition.
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2. Spherically symmetric wormholes in arbitrary dimension

2.4.1 Energy conditions

Let Tµν be a stress-energy tensor �eld associated to a physically reasonable
classical con�guration of matter or �elds; then Tµν is supposed to satisfy at
least one of the following three conditions.

De�nition 5 A stress-energy tensor �eld Tµν is said to satisfy the weak en-
ergy condition (WEC) if its energy density is not negative for all observes;
since the energy density of Tµν according to an observer with four-velocity
ξµ(11) is represented by the quantity Tµνξ

µξν, then the WEC can be written
as

Tµνξ
µξν ≥ 0 for every timelike vector ξµ (WEC). (2.60)

De�nition 6 A stress-energy tensor �eld Tµν is said to satisfy the strong
energy condition (SEC) if the quantity Rµνξ

µξν (here, Rµν is the Ricci tensor)
is nonnegative; the alternative form of Einstein's equation [Eq. (7)] implies
that this condition is equivalent to

Tµνξ
µξν ≥ −1

2
T for every timelike vector ξµ (SEC). (2.61)

De�nition 7 A stress-energy tensor �eld Tµν is said to satisfy the dominant
energy condition (DEC) if the speed of the four-current density of matter
according to any observer is less then the speed of light; since the four-current
density according to an observer with four-velocity ξµ is represented by by the
quantity −T µνξµ, then the DEC can be written as

− T µν ξµ is timelike or null for every timelike vector ξµ (DEC). (2.62)

Remark 17 For the sake of completeness, let us recall that the only relation
among the three energy conditions is (DEC)⇒(WEC). In particular, despite
of their names, it can be veri�ed that (SEC)6⇒(WEC); the strengthen of the
(SEC) lays in the fact that the assumption Eq. (2.62) is physically stronger
to be assumed when comparing to the assumption (2.60).

2.4.2 The violation of the weak energy condition (WEC)

Let us now return to our question, namely, whether and how it is possible to
�nd a physically meaningful stress-energy tensor Tµν which satis�es Einstein's
equations for the static spherically symmetric metric with the conditions

11This means that ξµ is a timelike vector such that ξµξµ = −1.
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2.4. Necessity of exotic matter: phantom scalar �elds

(2.51,2.59) on the function r. In this section we will show that every stress-
energy tensor supporting a wormhole con�guration, howsoever it is de�ned,
necessarily violates the WEC (2.60); this important fact tells us that the
matter or �eld con�gurations described by such a Tµν , if any, can not be
�classical� but rather �exotic�.
We start computing the Einstein tensorGµν for a static spherically symmetric
metric, namely we insert the assumption Eq. (2.58) into Eqs. (2.31-2.34),
that is

α = α(x) , γ = γ(x) , r = r(x) , β = 0 ;

it turns out that G01 vanishes; therefore, the most general form that Tµν has
to possess in order to satisfy Einstein's equations [Eq. (6)] is

Tµν =


ρα2 0 0 · · · 0

0 pr γ
2 0 · · · 0

0 0 pa r
2 a1,1 · · · pa r

2 a1,d−1

0 0
...

. . .
...

0 0 pa r
2 ad−1,1 · · · pa r

2 ad−1,d−1

 (2.63)

where ρ, pr and pa are three real functions depending on the spatial coordi-
nate x. It is well known that ρ and pr may be interpreted, respectively, as
the rest energy density and the radial pressure of the matter.
I now recall the following lemma which provides a necessary condition re-
quired to Tµν in the form (2.63) in order to satisfy the WEC (2.60)

Lemma 2 Let (Md+1, g) be a (d+ 1)-dimensional static spherically symmet-
ric spacetime with the metric of the form (2.58) supported by a stress-energy
tensor �eld Tµν of the form (2.63); if Tµν satis�es the WEC (2.60) then the
following inequalities hold

ρ ≥ 0 , ρ+ pr ≥ 0 . (2.64)

Proof. Let us observe that if Tµν satis�es the WEC (2.60), then the condition
Tµνξ

µξν ≥ 0 holds, in particular, for all the normalised, future-directed,

timelike vector �elds of the form ξµ =
(√

1+c2

α
, c
γ
, 0, ..., 0

)
with c ∈ R; in

other words, we have that the following inequality holds

(1 + c2)ρ+ c2pr ≥ 0 , for every c ∈ R. (2.65)

The �rst condition ρ ≥ 0 in Eq. (2.64) is simply obtained from the inequality
(2.65) with the particular choice c = 0; the second condition ρ + pr ≥ 0 is
obtained dividing both sides of (2.65) by c2 and taking the limit c→ +∞.
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2. Spherically symmetric wormholes in arbitrary dimension

�

We are now ready to prove the following

Proposition 3 Let (Md+1, g) be a (d+1)-dimensional static spherically sym-
metric spacetime with the metric of the form (2.58) supported by a stress-
energy tensor �eld Tµν of the form (2.63); a necessary condition for the
spacetime Md+1 to have a throat (i.e. to have a radial coe�cient satisfying
(2.51,2.59)) is that Tµν violates the WEC (2.60).

Proof. Since, according to Eq. (2.63), T00 = ρα2 and T11 = pr γ
2, the

Einstein's equations corresponding to the indices (0, 0) and (1, 1) imply that

G00

α2
+
G11

γ2
= ρ+ pr . (2.66)

Moreover, from the static version of Eqs. (2.31,2.33), we have that the right
hand side of the previous inequality reads

G00

α2
+
G11

γ2
=
d− 1

γ2r

[(
α′

α
+
γ′

γ

)
r′ − r′′

]
.

Thus, since at the wormhole throat r(0) = b > 0 and r′(0) = 0, then Eq.
(2.66) reads

−d− 1

b

r′′(0)

γ(0)2
= ρ+ pr ;

obviously, in order to have r′′(0) > 0 one has that ρ+ pr < 0, which violates
the WEC (2.60).

�

Remark 18 Let me �nally highlight that the previous result is well known
in the four-dimensional case; e.g., an analogue proof of Proposition 3 with
d = 3 can be found in Ref. [11].

2.4.3 An example of exotic matter supporting a worm-
hole: phantom scalar �elds

The most simple static four-dimensional spherically symmetric wormhole
spacetime that one can guess has the metric (2.41) with

α = γ−1 = 1 , r =
√
x2 + b2 , (2.67)
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where b > 0 is a positive constant with the dimension of a length; indeed, the
coe�cient r satis�es the conditions (2.51,2.59). For x → ±∞, the metric g
approaches the �at Minkowski metric −dt2 +dx2 +x2dΩ2. Hence, the region
with x ' 0 represents the wormhole throat, of size b which connects the
regions x � 0, x � 0, representing two asymptotically �at universes. This
spacetime geometry received special attention in the classical 1988 paper by
Morris and Thorne [16], considered as the origin of modern investigations
on wormholes. Actually, the line element (2.67) had appeared in the liter-
ature before [16] (a fact on which Thorne apologized in Ref. [43]); indeed,
this spacetime geometry was considered in a 1973 paper by Ellis [13], with
the denomination of �drainhole� (and with a somehow di�erent motivation,
namely, to model an elementary particle); here the metric (2.67) was derived
solving Einstein's equations in presence of a scalar �eld Φ minimally coupled
to gravity, after changing arti�cially the sign of the action functional for Φ.
Again in Ref. [13], the scalar �eld was found to depend on x with the law

Φ =

√
2

κ
arctan

x

b
. (2.68)

Almost simultaneously to Ellis, Bronnikov [14] proposed a family of scalar
�eld solutions of Einstein's equations containing, as a special case, the solu-
tion (2.67,2.68). (12) The scalar �elds considered by Ellis and Bronnikov, with
an anomalous sign in (the kinetic part of) their action functional, have be-
come popular with the denomination of �phantom scalar �elds�; their stress-
energy violates the usual conditions of positivity of the energy density (that
is, the WEC), thus mimicking at the classical level a well known feature of
quantum �elds in their vacuum states [7, 44]. The action functional describ-
ing the system considered by Ellis and Bronnnikov is as in Eq. (1.7) with
the choices ς = −1 (and V (Φ) = 0).
In the rest of this paper I will refer to the names of the previously mentioned
authors (Ellis, Bronnikov, Morris and Thorne) using the initials EBMT in
the expressions �EBMT wormhole�, �EBMT solution� which will be used to
indicate the phantom �eld solution (2.67,2.68) of Einstein's equations.
In Chapter 3, I will recover how the EBMT solution arises directly from the
Einstein-scalar equations (1.10,1.11) in the phantom case (ς = −1).

Remark 19 The example of the EBMT wormhole directs our attention
to the phantom scalar �elds as a possible exotic source to support other

12We will return to this solution in Section 3.3; for the moment, let me only mention that
the family of Bronnikov solutions (that we will call �Ellis-Bronnikov wormhole�) depends
on a �mass� parameter γ1, which is zero in the case (2.67,2.68).
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2. Spherically symmetric wormholes in arbitrary dimension

wormhole solutions. Hence, from now on we will focus on static spherically
symmetric spacetimes minimally coupled to a phantom scalar �eld Φ that
self-interacts according to a potential V (Φ). As just mentioned, this con-
�guration is described by the action functional Eq. (1.7) with the choice
ς = −1.

Remark 20 For completeness, let me mention that a phantom scalar �eld is
not the unique source producing the EBMT metric via Einstein's equations.
Another source has been considered by Shatskii, Novikov and Kardashev [45]:
this consists of a �phantom� �uid (with negative mass-energy density) and
of an electromagnetic �eld. Of course, this alternative source requires a sep-
arate analysis for the stability problem. Bronnikov, Lipatova, Novikov and
Shatskiy [46] have shown that, assuming a non conventional equation of the
state for the �uid, the system is linearly stable under radially symmetric and
axial perturbations; the same authors have conjectured the linear stability
under arbitrary perturbations.

2.5 Field equations for a spherically symmetric

spacetime supported by a self-interacting

phantom scalar �eld

In the present section we are interested in deriving the �eld equations for a
(d + 1)-dimensional (non-static) spherically symmetric spacetime (Md+1,g)
with d ≥ 3 whose gravitational �eld g, in the coordinates (t, x, x2, ..., xd)
introduced in Remark 8, has the local representation (2.24) and which is
minimally coupled to a phantom scalar �eld Φ that self-interacts according
to a potential V (Φ). Obviously, in order to support a (non-static) spheri-
cally symmetric con�guration, the scalar �eld has to be independent of the
coordinates (x2, ..., xd); thus, we suppose that

Φ : O ⊆ R2 → R , V : Φ(O) ⊆ R→ R (2.69)

are two smooth functions.
The �eld equations corresponding to this con�guration are (1.10,1.11) with
ς = −1 (phantom case); we write

Eµν = 0 , Eµν := Gµν − κ
[
∇µΦ · ∇νΦ− gµν

(
−1

2
∇λΦ · ∇λΦ + V (Φ)

)]
,

(2.70)

EKG = 0 , EKG := ∇µ∇µΦ + V ′(Φ) , (2.71)
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where gµν are the coe�cients of the metric g de�ned by Eq. (2.24) and Φ, V
are as in Eq. (2.69). From the symmetry in the indices and the spherical
symmetry of the metric and stress-energy tensor �elds it turns out that the
only non trivial Einstein's equations (2.70) are those corresponding to the
indices (µ, ν) ∈ {(0, 1), (1, 0), (µ, µ) : µ = 0, ..., d}; moreover, one has that

E01 = E10 and that Eii
aii

=
Ejj
ajj

for every i, j = 2, ..., d. Therefore, setting

Ea := Eii
aii

for any i = 2, ..., d, and using the expressions for Gµν given in Eqs.
(2.31-2.34), the �eld equations (2.70,2.71) reduce to

E00 = 0 , E01 = 0 , E11 = 0 , Ea = 0 , EKG = 0 , (2.72)

where

E00 =
d− 1

2

[
(d− 2)α2

r2
+

1

r

(
(d− 2)ṙ2

r
+

2γ̇ṙ

γ

)
+
α2

γ2r

(
2γ′ r′

γ
− (d− 2)r′2

r
− 2r′′

)]
+
κα2

2

(
Φ̇2

α2
+

Φ′2

γ2
− 2V (Φ)

)
+
d− 1

r
E
β
00 , (2.73)

E01 = (d− 1)

[
1

r

(
α′ṙ

α
+
γ̇r′

γ
− ṙ′

)]
+ κΦ̇Φ′ +

d− 1

r
E
β
01 , (2.74)

E11 =
d− 1

2

[
− (d− 2)γ2

r2

(
1 +

ṙ2

α2

)
+

2γ2

α2r

(
α̇ṙ

α
− r̈
)

+
r′

r

(
2α′

α
+

(d− 2)r′

r

)]
+
κγ2

2

(
Φ̇2

α2
+

Φ′2

γ2
+ 2V (Φ)

)
+
d− 1

r
E
β
11 , (2.75)

Ea =
(d− 2)(d− 3)

2

(
r′2

γ2
− ṙ2

α2
− 1

)
+

(d− 2)r

α2

(
α̇ṙ

α
− γ̇ṙ

γ
− r̈
)

+
r2

αγ

(
α̇γ̇

α2
− α′′γ′

γ2
+
α′′

γ
− γ̈

α

)
+

(d− 2)r

γ2

(
α′r′

α
− γ′r′

γ
+ r′′

)
+
κr2

2

(
Φ̇2

α2
− Φ′2

γ2
+ 2V (Φ)

)
+
r2

α2
Eβa , (2.76)

EKG =
Φ̈

α2
+

Φ̇

α2

(
α̇

α
− γ̇

γ
− (d− 1)

ṙ

r

)
+

Φ′′

γ2

+
Φ′

γ2

(
α′

α
− γ′

γ
− (d− 1)

r′

r

)
+ V ′(Φ) +

1

α2
E
β
KG , (2.77)
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and

E
β
00 := Gβ

00 +
κ

d− 1
Φ′Φ̇β

+
κ

d− 1
r

(
− Φ′2 + (d− 2)γ2rV (Φ) +

1

2

γ2Φ̇2

α2

)
β2

− κ

d− 1
rΦ′Φ̇

γ2

α2
β3 +

κ

2(d− 1)
rΦ′2

γ2

α2
β4 , (2.78)

E
β
01 := Gβ

01 +
κ

2(d− 1)

(
2γ2V (Φ)− Φ′2 +

γ2

α2
Φ̇2

)
rβ

− κ

d− 1
rΦ′Φ̇

γ2

α2
β2 +

κ

2
rΦ′2

γ2

α2
β3 , (2.79)

E
β
11 := Gβ

11 +
κ

d− 1
rΦ′Φ̇γ2β +

κ

2(d− 1)
rΦ′2

γ2

α2
β2 , (2.80)

Eβa := Gβ
a − κΦ′Φ̇β +

κ

2
Φ′2β2 , (2.81)

E
β
KG :=

[
−
(
α′

α
− γ′

γ
− (d− 1)

r′

r

)
Φ̇

−
(
α̇

α
− γ̇

γ
− (d− 1)

ṙ

r
+ 2β′

)
Φ′ + 2Φ̇′

]
β

+

[(
α′

α
− γ′

γ
− (d− 1)

r′

r

)
Φ̇− Φ̇′′

]
β2 + Φ′β̇ + β′Φ̇ . (2.82)

(Gβ
00, G

β
01, G

β
11 and Gβ

a appearing in Eqs. (2.78-2.82) are de�ned as in Eqs.
(2.35-2.38.) Clearly, the quantities Eβ00, E

β
01, E

β
11, E

β
a and E

β
KG vanish as long as

the coe�cient β vanishes: this happens, for example, if (t, x) is an orthogonal
coordinate system on M2 (see Remark 10).

Remark 21 Let us remind that Einstein's equations Eµν = 0 and the Klein-
Gordon equation EKG = 0 are non independent, since the latter is automat-
ically satis�ed if Einstein's equations hold (see Theorem 2); despite of this
fact, by considering all the equations in (2.72), one can introduce a useful
recombination of the quantities E00, ...,EKG such that the �eld system (2.72)
can be rewritten in the following way
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E1 = 0 , E1 :=
∂

∂t

[
γ̇

α

]
− ∂

∂x

[
α′

γ

]
+(d− 2)

(
− γ

α

ṙ2

r2
+
α

γ

r′2

r2
− αγ

r2

)
+
d− 3

2r

(
∂

∂t

[
γ

α
ṙ

]
− ∂

∂x

[
α

γ
r′
])

− κ

2

(
γ

α
Φ̇2 − α

γ
Φ′2
)

+
γ

α
Eβ1 , (2.83)

E2 = 0 , E2 :=
d− 1

2

(
∂

∂t

[
γ

α
rṙ

]
− ∂

∂x

[
α

γ
rr′
])

+
(d− 1)(d− 3)

2

(
γ

α
ṙ2 − α

γ
r′2
)

+
d(d− 3)

2
αγ

− αγ
(
κr2V (Φ)− 1

)
+
d− 1

2

γr2

α
Eβ2 , (2.84)

E3 = 0 , E3 :=
∂

∂t

[
γ

α
r2Φ̇

]
− ∂

∂x

[
α

γ
r2Φ′

]
+(d− 3)

(
γ

α
ṙΦ̇− α

γ
r′Φ′

)
r − αγr2V ′(Φ) +

γr2

α
Eβ3 , (2.85)

H = 0 , H :=
d− 1

2

α

γ

[
2
r′′

r
+
r′

r

(
(d− 2)

r′

r
− 2

γ′

γ

)]

− d− 1

2

γ

α

ṙ

r

(
ṙ

r
+ 2

γ̇

γ

)
− d(d− 3) + 2

2

αγ

r2

− κ

2

(
γ

α
Φ̇2 +

α

γ
Φ′2
)

+ καγV (Φ) + (d− 1)
γ

α
Hβ , (2.86)

M = 0 , M := (d− 1)

(
ṙ′

r
− ṙ

r

α′

α
− r′

r

γ̇

γ

)
− κΦ̇Φ′ + (d− 1)Mβ ,

(2.87)

where
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2. Spherically symmetric wormholes in arbitrary dimension

Eβ1 :=
1

4

[
− κΦ′(t, x)2 + (d− 2)(d− 1)

r′2

r2
+ 2(d− 1)

(
r′′

r
− α′

α

r′

r

)]
γ2

α2
β4

+
1

2

[
2

(
−α

′

α
+ 3

γ′

γ
+ (d− 3)

r′

r

)
β′(t, x) + 2β′′(t, x)

+
α̇

α

(
2
γ′

γ
+ (d− 3)

r′

r

)
+

(
2
α′

α
+ (5− 3d)

r′

r

)
γ̇

γ

+

(
−(d+ 1)

α′

α
− (d− 3)

γ′

γ
+ 4(d− 2)

r′

r

)
ṙ

r
− 4

γ̇′

γ
+ 4

ṙ′

r

]
β

+
(d− 1)

2

[(
β′ +

α̇

α

)
r′

r
+

κ

(d− 1)
Φ′Φ̇

+

(
α′

α
− (d− 2)

r′

r

)
ṙ

r
− 2

ṙ′

r

]
γ2

α32
β3

+
1

4

[
(d− 1)

(
(d− 2)

ṙ2

r2
+ 2

r̈

r
− κ

d− 1
Φ̇2 − 2

r′β̇

r
− 2

α̇ṙ

αr

)
γ2

α2

+(d− 2)(d− 1)
γ2

r2
+ κ

(
Φ′2 − 2γ2V (Φ)

)
+2

(
2
α′

α
+ (3d− 5)

γ′

γ
− (d− 2)(d+ 3)

r′

r

)
r′

r

−4
α′

α

γ′

γ
− 2(d+ 1)

r′′

r
+ 4

γ′′

γ

]
β2

+

(
α̇

α
− 2

γ̇

γ
− d− 3

2

ṙ

r
+ β′

)
β′ − β̇′ −

(
γ′

γ
+
d− 3

2

r′

r

)
β̇ , (2.88)
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2.5. Field equations for a spherically symmetric spacetime supported by a
self-interacting phantom scalar �eld

Eβ2 :=

{[(
− α′

α
+

1

2

γ′

γ
+

3(d− 2)

2

r′

r

)
r′

r

+
κ

2(d− 1)

(
2α2V (Φ) + Φ̇2 − 3Φ′2

)]
α2

γ2
− d− 2

2

α2

r2

+

(
α̇

α
− d− 2

2

ṙ

r
+ β̇

)
ṙ

r
+

(
3
r′′

r
− r̈

r

)}
γ2

α2
β2

+

[
α̇

α

r′

r
+
ṙ

r

(
3α′

α
− 2(d− 2)r′

r

)
+ 2β′

r′

r

+
γ̇

γ

r′

r
− γ′

γ

ṙ

r
− 4

ṙ′

r
+

2κ

d− 1
Φ′Φ̇

]
β

+

[
−
(
β′ +

α̇

α

)
r′

r
+

(
(d− 2)

r′

r
− α′

α

)
ṙ

r

+2
ṙ′

r
− κ

d− 1
Φ′Φ̇

]
γ2

α2
β3

+

[(
α′

α
− d− 2

2

r′

r

)
r′

r
− r′′

r
+

κ

2(d− 1)
Φ′2
]
γ2

α2
β4

−β̇ r
′

r
− β′ ṙ

r
, (2.89)

Eβ3 :=

[(
α̇

α
− (d− 1)

ṙ

r
− γ̇

γ
+ 2β′

)
Φ′

+

(
α′

α
− (d− 1)

r′

r
− γ′

γ

)
Φ̇− 2Φ̇′

]
β

+

[(
γ′

γ
− α′

α
+ (d− 1)

r′

r

)
Φ′ + Φ′′

]
β2 − β̇Φ′ − β′Φ̇ , (2.90)
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Hβ :=

{(
α′

α
+
γ′

γ
− 2(d− 2)

r′

r

)
r′

r
− 2

r′′

r

+

[(
d− 2

2

ṙ

r
− α̇

α

)
ṙ

r
+
d− 2

2

α2

r2
− β̇ r

′

r

+
r̈

r
− κ

2(d− 1)

(
Φ̇2 + 2α2V (Φ) + 2α2γ2Φ′2

)]γ2

α2

}
β2

+

[(
−2

α′

α
+
γ′

γ
+ (d− 2)

r′

r

)
ṙ

r

+

(
β′ − γ̇

γ

)
r′

r
+ 2

ṙ′

r
− κ

d− 1
Φ′Φ̇

]
β

+

[(
α̇

α
+ β′

)
r′

r
+

(
α′

α
− (d− 2)

r′

r

)
ṙ

r

−2
ṙ′

r
+

κ

d− 1
Φ′Φ̇

]
γ2

α2
β3

+

[(
− α′

α
+
d− 2

2

r′

r

)
r′

r
+
r′′

r
− κ

2(d− 1)
Φ′2
]
γ2

α2
β4 +

ṙ

r
β′ ,

(2.91)

Mβ :=

{[(
d− 2

2

ṙ

r
− α̇

α

)
ṙ

r
− β̇ r

′

r
+
r̈

r

]
γ2

α2

+

(
γ′

γ
− d− 2

2

r′

r

)
r′

r
+
d− 2

2

γ2

r2
− r′′

r

+
κ

2

(
Φ′2 − γ2

α2
Φ̇2 − 2γ2V (Φ)

)}
β

+

[(
α̇

α
+ β′

)
r′

r
+

(
α′

α
− (d− 2)

r′

r

)
ṙ

r

−2
ṙ′

r
+

κ

d− 1
Φ′Φ̇

]
γ2

α2
β2

+

[(
d− 2

2

r′

r
− α′

α

)
r′

r
+
r′′

r
− κ

2(d− 1)
Φ′2
]
γ2

α2
β3 . (2.92)

Note that the quantities Eβ1 , E
β
2 , E

β
3 , Hβ and Mβ vanish when β = 0, that

is, when (t, x) is an orthogonal coordinate system for M2 (see Remark 10).
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self-interacting phantom scalar �eld

Proof. In order to prove the statement of the previous remark, we have to
show that the systems (2.72) is actually equivalent to the system (2.83-2.87).
Indeed, one can see that

E1 = − γ

2α
E00 +

α

2γ
E11 −

αγ

r2
Ea , (2.93)

E2 =
γr2

2α
E00 −

αr2

2γ
E11 , (2.94)

E3 = −αγrEKG , (2.95)

H = −γ
α
E00 , (2.96)

M = −E01 ; (2.97)

clearly, this implies that if Eq. (2.72) holds than the system (2.83-2.87) is
trivially satis�ed. Conversely, lets suppose that Eqs. (2.83-2.87) hold; then,
since α, γ, r vanish nowhere in the coordinates domain, from Eqs. (2.95-2.97)
one has that the equations EKG = 0, E00 = 0 and E01 = 0 are satis�ed. Fi-
nally, from Eq. (2.94) and Eq. (2.93) and from the fact that E00 vanishes,
one infers that even E11 and Ea vanish too.

�

2.5.1 A constrained �eld system in the β = 0 gauge

Let us consider the orthogonal gauge on the manifold M2 introduced in Re-
mark 10: this is equivalent to set the coe�cient β = 0. In this case the �eld
system (2.83-2.87) can be interpreted as a constrained evolution system in
the sense stated by the following

Proposition 4 In the gauge β = 0, the equations H = 0 and M = 0
[Eqs. (2.86,2.87)] are two constraints for the second order evolution equations
E1 = 0, E2 = 0, E3 = 0 [Eqs. (2.83-2.85)]; this means that if (α, γ, r,Φ) is a
(time-dependent) solution of the system (2.83-2.85) satisfying the equations
H = 0, M = 0 at time t = 0, then (α, γ, r,Φ) satis�es equations H = 0,
M = 0 for every time t.

Proof. Let E1, E2, E3, H andM the quantities de�ned in Eqs. (2.83-2.87)
with Eβ1 = Eβ2 = Eβ3 = Hβ =Mβ = 0 (since we have chosen a gauge in which
β = 0). Then, it is not di�cult to prove that the following identities hold
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2. Spherically symmetric wormholes in arbitrary dimension

Ḣ =

[
α′

α
+
α

γ

(
−γ

′

γ
+ (d− 1)

r′

r

)]
M+

[
α̇

α
− γ̇

γ
− (d− 1)

ṙ

r

]
H +

α

γ
M′

− (d− 1)
ṙ

r
E1 −

κΦ̇

r2
E2 −

2

r2

[
γ̇

γ
+
d− 1

2

ṙ

r

]
E3 , (2.98)

Ṁ =

[
α̇

α
− γ̇

γ
− (d− 1)

ṙ

r

]
M+

[
α′

α
+
α

γ

(
−γ

′

γ
+ (d− 1)

r′

r

)]
H +

α

γ
H′

− (d− 1)
α

γ

r′

r
E1 − 2

α

γr2

[
γ′

γ
− d− 5

2

r′

r

]
E2 + 2

α

γr2
E′2 −

α

γ

κΦ′

r2
E3 .

(2.99)

Now, let (α, γ, r,Φ) be a solution of the evolution equations (2.83-2.85); then
(α, γ, r,Φ) satis�es the identities (2.98,2.99) with E1 = E2 = E′2 = E3 = 0;
�xing the spatial coordinate x, these can be seen as a dynamical system in
the unknowns H(t) ≡ H(t, x) andM(t) ≡M(t, x) with smooth coe�cients.
Since by hypothesis the solution (α, γ, r,Φ) satis�es Eqs. (2.86,2.87) at time
t = 0, then the dynamical system (2.98,2.99) has the initial conditionsH(0) =
M(0) = 0; obviously, this implies that Ḣ(t) = Ṁ(t) = 0 for every time t,
i.e. H(t, x) =M(t, x) = 0 for every time t and every x.

�

Remark 22 Actually, in the gauge δβ = 0, the equations H = 0 and
M = 0 [Eqs. (2.86,2.87)] are, respectively, the Hamiltonian and the mo-
mentum constraints of pag. 187 of Ref. [47]; indeed, in this case the frame
(t, x, x2, ..., xd) coincides exactly with the Chauchy adapted frame (θi)i=1,...,d

with lapse N = α(t, x). Indeed, coherently with the result of Proposition 4,
these two equations can be interpreted as prescriptions on the geometry of
the spacetime at �time zero�, that is, on the initial data for the evoultion of
the spacetime Md+1 determined by the system E1 = 0, E2 = 0, E3 = 0 [Eqs.
(2.83.2.85)].
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Chapter 3

Static wormhole solutions

In this chapter we deal with some examples of static wormhole solutions
that have been considered previously in the literature. To this purpose, we
consider a (d + 1)-dimensional spherically symmetric spacetime (Md+1,g)
as in items (i-iv) of Section 2.2 where the gravitational �eld g minimally
couples to a phantom scalar �eld Φ with a self-interacting potential V (Φ).
In order to simplify the computations, throughout this chapter we assume
for the manifold M2 the orthogonal gauge given in Remark 10 in which the
function β vanishes. In addition, since we are interested in static wormhole
solutions, we assume that the metric g (as in Eq. (2.24)) and the scalar �eld
Φ are t-independent, and (generalizing the results of Section 2.3) we assume
that the radial coe�cient of the metric satis�es the prescriptions (2.51,2.59).
Let us recall that in the static case the range of the coordinates (t, x) is
O = R× x(O) (see Remark 11). Hence, we set

β = 0 , (α, γ, r,Φ) := (α(x), γ(x), r(x),Φ(x)) ; (3.1)

if not otherwise speci�ed, V (Φ) is an arbitrary real smooth function depend-
ing on the scalar �eld Φ:

V : Φ(x(O)) ⊆ R→ R .

3.1 Background equations

Let us consider the constrained �eld system (2.83-2.87). In the static case
under consideration (3.1) the momentum constraintM is identically satis�ed;
hence, the �eld system reduces to Eqs. (2.83-2.86). Note that the the latter
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3. Static wormhole solutions

can be recombined, leading to a new equivalent system:

E3 = 0 , (3.2)

2E2 + r2H = 0 (3.3)

E2 + r2H = 0 , (3.4)

(d− 1)r2E1 + (d+ 1)E2 + (d− 1)r2H = 0 , (3.5)

Indeed, Eq. (3.2) is exactly Eq. (2.85); moreover, since the couple (3.3,3.4)
is clearly equivalent to the couple (2.84,2.86), then the remaining equations
(3.3,3.4,3.5) are clearly equivalent to Eqs. (2.83,2.84,2.86).
The interesting fact of the new static system (3.2-3.5) is that one can isolate
the the xx derivatives of the static functions α, Φ and r from the �rst three
equations, and the square r′2 from the remaining one; this yields to

Φ′′ =

(
γ′

γ
− α′

α
− (d− 1)

r′

r

)
Φ′ − γ2V ′(Φ) , (3.6)

α′′ =

(
γ′

γ
− (d− 1)

r′

r

)
α′ − 2κ

d− 1
αγ2V (Φ) , (3.7)

r′′ =

(
γ′

γ
+
α′

α

)
r′ +

κ

d− 1
rΦ′2 , (3.8)

r′2 = γ2 − κr2

(d− 1)(d− 2)

(
2γ2V (Φ) + Φ′2

)
− 2

d− 2

α′r′

α
. (3.9)

In the sequel, we will refer to Eqs. (3.6-3.9) as background equations since
they fully describe a general static solution (3.1) whose stability features will
be discussed in the chapters of the second part of this work.

3.2 EBMT wormhole in higher dimension: the

Torii-Shinkai wormhole

In this section we assume a zero potential, that is V (Φ) ≡ 0, in addition
to the assumption (3.1). In this case, as already mentioned in Remark 7,
one can further adjust the coordinate x so that αγ = 1. In this case, the
static �eld equations (2.83-2.87) can be reduced to the following four ordinary
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di�erential equations (13)

r′2 +
κr2Φ′2

(d− 1)(d− 2)
− 1

α2
=

4r2(αα′)′ + 2(d− 3)rr′αα′

(d+ 1)(d− 2)α2
, (3.10)

r′′ − d− 2

r

(
1

α2
− r′2

)
= −2

α′r′

α
, (3.11)

[α2rd−1Φ′]′ = 0 , (3.12)

r

α2

[
α2r′

]′
+ [rr′]

′
+ (d− 3)r′2 =

κ

d− 1
r2Φ′2 +

d− 2

α2
. (3.13)

Obviously, Eq. (3.12) gives the relation

Φ′ =
Φ0

α2rd−1
, (3.14)

where Φ0 is an integration constant. If we now set α = 1 (and hence γ = 1),
the right hand sides of Eqs. (3.10,3.11) vanish. Moreover, since we are
interested in static wormhole-type spacetimes, we introduce the prescription
(2.51), which guarantees the existence of a throat of size b at x = 0. With
these assumptions, Eq. (3.10) is satis�ed if and only if the following holds

r(0) = b , r′ = sign(x)

√
1− b2(d−2)

r2(d−2)
, Φ0 = bd−2

√
(d− 1)(d− 2)

κ
, (3.15)

where

sign(x) :=


−1 if x < 0

0 if x = 0

1 if x > 0

(3.16)

One can easily verify that if Eq. (3.15) holds then the remaining �eld equa-
tions (3.11,3.13) are automatically satis�ed. Summing up, we have found the
(implicitly de�ned) static solution

α = γ−1 = 1 , r(0) = b , r′ = sign(x)

√
1− b2(d−2)

r2(d−2)
,

Φ =

√
(d− 1)(d− 2)

κ
bd−2

∫ x

x0

dx̃

r(x̃)d−1
,

(3.17)

13 Lets prove that the equivalence of the �eld system (2.83-2.87) and the system (3.10-
3.13). As we have already observed, that in the static case the momentumM is identically
null: hence we can get rid of Eq. (2.87). Moreover, we observe that Eq. (3.10) arises
directly from the recombination 2E1 + d−3

d−1H = 0, Eq. (3.11) arises immediately from
2

(d−1)α2rE2 = 0, Eq. (3.12) is equal to−rd−3E3 = 0, while Eq. (3.13) is equal to 2
d−1

r2

α2H =

0. Therefore, if E1 = 0, E2 = 0, E3 = 0 and H = 0 hold, then Eqs. (3.10-3.13) are trivially
satis�ed; conversely, if the system (3.10-3.13) holds then the quantities E1, E2, E3 and H
must vanish, since the their coe�cients in the recombinations which de�ne Eqs. (3.10-3.13)
never vanish nor diverge.

67



3. Static wormhole solutions

where the value of x0 is immaterial. An elementary qualitative analysis,
based on the conservation of energy and on the initial data for r, also gives
that r is an even function such that

r(x) > b for x ∈ R\{0} , r(x)→ ±∞ for x→ ±∞ . (3.18)

The next theorem provides an explicit solution to the ODE for r appearing
in Eq. (3.17) in terms of the hypergeometric function 2F1 and the gamma
function Γ.

Theorem 4 The solution of the Cauchy problem{
r′ = sign(x)

√
1− b2(d−2)

r2(d−2)

r(0) = b
(3.19)

is
r(x) = bF−1

(∣∣∣x
b

∣∣∣) for every x ∈ R , (3.20)

where

F : [1,+∞)→ [0,+∞) ,

% 7→ F (%) := Cd + % 2F1

(
1

2
,− 1

2(d− 2)
,

2d− 5

2(d− 2)
;

1

%2(d−2)

)
, (3.21)

Cd := −
√
π Γ
(
− 1

2(d−2)

)
(d− 1) Γ

(
− d−1

2(d−2)

) ; (3.22)

moreover, the solution (3.20) has the following asymptotic expansion at in-
�nity

r(x) = |x| − bCd +O

(
1

|x|2d−5

)
for x 7→ ±∞ (Cd as in Eq. (3.22)) .

(3.23)

Proof. We introduce the function ρ(x) := r(bx)
b

de�ned for every x ∈ R;
then the function r satis�es the Cauchy problem (3.19) if and only in the the
function ρ satis�es the Cauchy problem{

ρ′ = sign(x)
√

1− 1
ρ2(d−2)

ρ(0) = 1
(3.24)

Integrating by separation of variables, it turns out that, for every x ∈ R

|x| = F (ρ(x)) , (3.25)
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3.2. EBMT wormhole in higher dimension: the Torii-Shinkai wormhole

where

F (%) :=

∫ %

1

dr√
1− 1

r2(d−2)

=
1

2(d− 2)

√
1− 1

%2(d−2)

∫ 1

0

t−
1
2 (1− t)0

[
1−

(
1− 1

%2(d−2)

)
t

]−2d+3
2(d−2)

dt ;

(3.26)

in the last equality I have performed the change of variable r 7→ t de�ned by

r =

[
1−

(
1− 1

%2(d−2)

)
t

]− 1
2(d−2)

0 ≤ t ≤ 1 .

Now, one can use the standard integral representation of the hypergeometric
function 2F1 (see Ref. [48], Eq. 15.3.1) in order to obtain a �rst hypergeo-
metric representation for the function F

F (%) =
1

2(d− 2)

√
1− 1

%2(d−2)

Γ
(

1
2

)
Γ(1)

Γ
(

3
2

) 2F1

(
2d− 3

2(d− 2)
,
1

2
,
3

2
; 1− 1

%2(d−2)

)
=

1

d− 2

√
1− 1

%2(d−2) 2F1

(
1

2
,

2d− 3

2(d− 2)
,
3

2
; 1− 1

%2(d−2)

)
. (3.27)

(In the last equality I have used the symmetry of the hypergeometric function
in the �rst two parameters 2F1(a, b, c; z) = 2F1(b, a, c; z) and the fact that

Γ
(

1
2

)
=
√
π, Γ

(
3
2

)
=
√
π

2
and Γ (1) = 1.) The hypergeometric representation

for F given in Eq. (3.21) can obtained from Eq. (3.27) performing a Kummer
transformation (see Ref. [48], Eq. 15.3.6):

F (%) =
1

d− 2

√
1− 1

%2(d−2)

Γ
(

3
2

)
Γ
(
− 1

2(d−2)

)
Γ (1) Γ

(
d−3

2(d−2)

)
× 2F1

(
1

2
,− 2d− 3

2(d− 2)
,− 2d− 3

2(d− 2)
;

1

%2(d−2)

)

+
1

d− 2

√
1− 1

%2(d−2)
%

Γ
(

3
2

)
Γ
(

1
2(d−2)

)
Γ
(

1
2

)
Γ
(

2d−3
2(d−2)

)
× 2F1

(
1,

d− 3

2(d− 2)
,

2d− 5

2(d− 2)
;

1

%2(d−2)

)
=Cd + % 2F1

(
1

2
,− 1

2(d− 2)
,

2d− 5

2(d− 2)
;

1

%2(d−2)

)
,
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3. Static wormhole solutions

with Cd de�ned as in Eq. (3.22). In the last equality of the previous equation,
to treat the �rst hypergeometric term, I have used the identity 2F1(a, b, b; z) =
(1− z)−a (see Ref. [48], Eq. 15.1.8)) and the fact that

Γ

(
d− 3

2(d− 2)

)
= Γ

(
− d− 1

2(d− 2)
+ 1

)
= − d− 1

2(d− 2)
Γ

(
− d− 1

2(d− 2)

)
;

while, to deal with the second hypergeometric term, I have performed a
linear transformation (see Ref. [48], Eq. 15.3.3)) together with the previous
mentioned symmetric property of the hypergeometric function and the fact
that

Γ

(
2d− 3

2(d− 2)

)
= Γ

(
1

2(d− 2)
+ 1

)
=

1

2(d− 2)
Γ

(
1

2(d− 2)

)
.

In addition, the de�nition of F as an integral over r of a positive quantity
given in Eq. (3.26) makes evident that F is strictly increasing on [1,+∞),
with F (1) = 0 and lim%→+∞ F (%) = +∞; thus F is one to one between
[1,+∞) and [0,+∞), so that, for every x ∈ R, one has that

|x| = F (ρ(x)) if and only if ρ(x) = F−1(|x|) .

This concludes the proof of the �rst statement, recalling that r(x) = bρ
(
x
b

)
.

In order to analyze the large |x| behaviour of ρ (and, consequently, the large
|x| behaviour of r), I consider the hypergeometric representation for F given
in Eq. (3.21). Noting that, 2F1(a, b, c; ε) = 1+O(ε) for ε→ 0, we readily infer
from this representation that F (%) = Cd + %(1 + O(1/%2d−4)) for % → +∞,
i.e.,

F (%) = %+ Cd +O

(
1

%2d−5

)
for %→ +∞ ; (3.28)

if we now set % = ρ(x), recalling Eq. (3.18) and that |x| = F (ρ(x)), we infer
the following:

ρ(x) = |x| − Cd +O

(
1

|x|2d−5

)
for x→ ±∞ , (3.29)

whence Eq. (3.23) follows, recalling (again) that r(x) = bρ
(
x
b

)
.

�

Remark 23 Note that, if ρ(x) is a solution to the Cauchy problem (3.24),
then it is not di�cult to see that

ρ′′ =
d− 2

ρ2d−3
; (3.30)
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this and Eq. (3.29) imply the following asymptotic expansions for the �rst
and the second derivatives

ρ′(x) = ±
(

1− 1

2|x|2d−4

)
+O

(
1

|x|2d−3

)
for x→ ±∞,

ρ′′(x) =
d− 2

|x|2d−3
+O

(
1

|x|2d−2

)
for x→ ±∞.

Therefore, we have proved that Eq. (3.17) implicitly de�nes a (d + 1)-
dimensional solution to the Einstein-scalar equations, which has the explicit
form

α = γ−1 = 1 , r = bρ
(x
b

)
, Φ =

√
(d− 1)(d− 2)

κ
φ
(x
b

)
,

ρ(x) = F−1(x) (F as in Eq. (3.21)) , φ(x) =

∫ x

x0

1

ρ(x̃)d−1
dx̃ ,

(3.31)

where x0 is an immaterial real constant.

Remark 24 Note that, due to the asymptotic expansion (3.23), the metric
g de�ned by Eq. (3.31) is asymptotic for x → ±∞ to the �at line element
−dt2 + dx2 + x2aijdx

idxj (see Remark 13); moreover, since r possesses a
positive minimum at x = 0 (see Eq. (3.18)), the metric (3.31) describes
a wormhole made up of two asymptotically �at universes connected by a
throat of size r(0) = b. Let us remark that the fact that the wormhole metric
approaches to the �at metric in the large x limit requires that, asymptoti-
cally, the role of the scalar �eld becomes irrelevant; indeed, from the integral
expression for Φ given in Eq. (3.31), it turns out that

Φ =

√
(d− 1)(d− 2)

κ

∫ x
b

x0

dx̃

ρ(x̃)d−1
→ ±

√
(d− 1)(d− 2)

κ

∫ +∞

±x0

dx̃

ρ(x̃)d−1

for x→ ±∞ (3.32)

and the above integral converges, since 1/ρ(x̃)d−1 ∼ 1/x̃d−1 for x̃→ +∞ and
d − 1 ≥ 2. This implies that Φ is constant in the large x limit and then it
becomes immaterial (this is a consequence of the fact that the scalar �eld
appears in the static �eld equations only through its x and xx derivatives).

Remark 25 Actually, the wormhole solution given in Eq. (3.31) was ob-
tained by Torii and Shinkai [13] and therefore we will refer to it as �Torii-
Shinkai wormhole� or �Torii-Shinkai solution�.
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3. Static wormhole solutions

For future convenience, we introduce the rescaled coordinates

t :=
t

b
, x :=

x

b
; (3.33)

in these coordinates the Torii-Shinkai wormhole (3.31) reads

α = γ = 1 , r = ρ(x) , Φ =

√
(d− 1)(d− 2)

κ
φ(x) ,

with ρ and φ as in Eq. (3.31). (3.34)

(The metric (3.31) has been obtained from the metric (2.24,3.31) applying
the coordinate transformation (3.33) and dividing the resulting metric by b2.)

Remark 26 In the four-dimensional case d = 3, one can introduce for
M4 the coordinates (t, x, ϑ, ϕ) de�ned in Remark 10; it turns out that the
equation for r in (3.24) can be solved by means of transcendental functions
as well as the integral appearing in the expression for Φ, leading to

α = γ−1 = 1 , r =
√
x2 + 12 , Φ =

√
2

κ
arctan x . (3.35)

Performing the change of variables (t, x) 7→ (t, x) de�ned in Eq. (3.33), one
gets the solution

α = γ−1 = 1 , r =
√
x2 + b2 , Φ =

√
2

κ
arctan

x

b
, (3.36)

which is exactly the EBMT solution (2.67,2.68) introduced in Subsection
2.4.3. Therefore, the Torii-Shinkai wormhole can be interpreted as a full-
�edged (d+ 1)-dimensional generalization of the EBMT wormhole.

Remark 27 We conclude this subsection observing that, in the present
case, Eq. (2.39) for the scalar curvature and the asymptotics (3.23) for r
give

R =− (d− 1)(d− 2)
1

ρ2(d−1)(x)

=− (d− 1)(d− 2)
1

|x|2(d−1)
+O

(
1

|x|2d−1

)
for x→ ±∞. (3.37)
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3.3. Ellis-Bronnikov wormhole

3.3 Ellis-Bronnikov wormhole

Let us now focus on the zero potential, static four-dimensional case, that
is, we stipulate V (Φ) ≡ 0, Eq. (3.1) and d = 3; in this case, it is possible
introduce a useful recombination of the equations E1 = 0, E2 = 0, E3 = 0,
H = 0 such that the �eld system (2.83-2.87) can be rewritten as (14) Eq.
(3.13) plus

[α2r2]′′ = 2 , [α2rr′]′ = 1 , [α2rd−1Φ′]′ = 0 . (3.38)

The equations (3.38) are obviously satis�ed by the functions (15)

α = γ−1 = eγ1 arctan x
b , r =

√
x2 + b2 γ , Φ = Φ1 arctan

x

b
, (3.39)

where, b > 0, γ1 and Φ1 are integration constants; the remaining equation
(3.13) enforces the relation

κΦ2
1 = 2(1 + γ2

1) . (3.40)

Remark 28 In the literature, the solution (3.39,3.40), �rstly found by Bron-
nikov [14], is often referred to as Ellis-Bronnikov wormhole and describes an
asymptotically �at traversable wormhole with a throat of size b̃ := b

√
1 + γ2

1

e−γ1 arctan γ1 located at x = γ1b. Indeed, it is not di�cult to verify that the
metric g de�ned by Eq. (3.39) is asymptotic for x → ±∞ to the �at line
element −dt2 +dx2 +x2dΩ2 and that r(γ1b) = b̃ with r′(γ1b) = 0. Let us also
mention the recent paper of Yazadjiev [49] for an important uniqueness result
of this family (every spherically symmetric (traversable) asymptotically �at
wormhole belongs to the family of the Ellis-Bronnikov wormhole).

Remark 29 Note that in the case γ1 = 0, the Ellis-Bronnikov metric (3.39)
is re�ection symmetric with respect to x and coincides with the EBMT metric
(3.36).

14More explicitly, the three �eld equations in Eq. (3.38) have been obtained in the
following way: the �rst equation arises form the recombination 2r2(E1 + H) + 6E3 = 0;
the second and the third equations are actually equivalent to Eq. (2.84) and Eq. (2.85),

respectively; as already stated in Footnote (13), Eq. (3.13) is equal to 2
d−1

r2

α2H = 0. The
equivalence of the �elds equations (2.83-2.87) and the system (3.38,3.13) is proved easily
in the same way as in the Footnote (13).

15Actually, the most general solution of Eq. (3.38) is α = γ−1 = eγ1 arctan x
b+γ0 (γ0, γ1 ∈

R) and r, Φ as in Eq. (3.39). Obviously, this is exactly the solution Eq. (3.39) up to the
constant multiplier e2γ0 ; hence, without loss of generality, we can set γ0 = 0.
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3. Static wormhole solutions

Remark 30 At this point, one could wonder if it is possible to �nd a (d +
1)- dimensional extension of the Ellis-Bronnikov wormhole which extends
the Ellis-Bronnikov metric (3.39,3.40) in the same way as the Torii-Shinkai
wormhole (3.34) extends the EBMT metric (3.36). The most obvious and
naive ansatz that one could consider for this possible extension is

r = rTSγ , Φ = Φ2ΦTS , (3.41)

where rTS and ΦTS are, respectively, the radius and the scalar �eld of the
Torii-Shinkai wormhole [Eq. (3.31)], while γ and Φ2 are, respectively, the
dx2 coe�cient of the metric and a constant to be determined. Unfortunately,
inserting the ansatz (3.41) into the third �eld equation (3.12), it results that
the latter is satis�ed if and only if one of the following two possibilities occur:
γ = α−1 = const or, alternatively, d = 3. This means that the only solutions
to the Einstein-scalar equations of the form (3.41) are the Ellis-Bronnikov
wormhole (d = 3) and the Torii-Shinkai wormhole (d ≥ 3, γ = α−1 = 1).

3.3.1 Embedding diagram and geodesics of the EBMT
and the Ellis-Bronnikov wormholes

Embedding diagram of the EBMT and the Ellis-Bronnikov worm-
holes

In this subsection we consider all the notations and the results of Section 2.3;
therein, we have mentioned that in Hartle's book [42] there is an example of
the embedding of a wormhole in R3. This is actually the EBMT wormhole
(3.35) which is recovered, for example, from the Ellis-Bronnikov wormhole
(3.39) by setting γ1 = 0 (see Remark 29). The construction made by Hartle
leads to an embedding diagram for this wormhole, described (in our notation)
by the pro�le and the embedding functions

FEBMT(z; b) := b cosh
z

b
, zEBMT(x; b) := b arcsinh

x

b
; (3.42)

the pro�le function FEBMT and the embedded slice

SEBMT(b) := {(z, ρ, ϕ) : ρ = FEBMT(z; b)} ⊂ R3

are represented in Figure 3.1 for b = 1.
In the following, I will show that the functions (3.42) can be generalized to
the case γ1 6= 0 in order to describe the embedding of the Ellis-Bronnikov
wormhole. So, from now on, let us consider the metric (3.39) assuming that
γ1 6= 0. Moreover, since for every �xed value of γ1, the metrics corresponding
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3.3. Ellis-Bronnikov wormhole

-2 -1 0 1 2 z

1
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4

F

Figure 3.1: The pro�le function FEBMT and the embedding diagram SEBMT of
the EBMT wormhole with b = 1.

to the values ±γ1 are actually the same metric (16), from now on we will focus
on the case

γ1 > 0 . (3.43)

From the inequality (2.57), it is not di�cult to see that the tπ
2
slices of this

metric can be embedded in a three-dimensional �at space only in the interval

x ≥ b(γ2
1 − 1)

2γ1

(γ1 > 0) . (3.44)

Let us recall that the minimum of the radial coe�cient r of the Ellis-Bronnikov
wormhole is located at x = bγ1; since bγ1 >

b(γ21−1)

2γ1
for any b, γ1 > 0, the in-

terval in Eq. (3.44) does contain the wormhole throat x = bγ1.
At this point, one might want to look for a di�erent ambient space (MA,gA)
[Eq. (2.44)] in which the tπ

2
slices of the Ellis-Bronnikov wormhole can be

integrally embedded. However, this can be very hard to do; moreover, the
interval (3.44) is unbounded and contains even one of the asymptotically �at
universes linked by the wormhole. For these reasons, we settle for the local
embedding in the euclidean space in the region (3.44): this is de�ned by the
integral expression appearing in Eq. (2.55) with A(ρ) = 1, which reads

z(x) ≡ zEB(x; γ1, b) =
√
b

∫ x

0

e−γ1 arctan x̃
b

√
2γ1x̃+ b− bγ2

1

x̃2 + b2
dx̃ . (3.45)

16Indeed, to see this, it is su�cient to perform the change of coordinates x→ −x.
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3. Static wormhole solutions

For every �xed values of the constants b, γ1, the embedding function zEB
is integrated numerically and then inverted, allowing to obtain the pro�le
function F (z) ≡ FEB(z; γ1, b) according to Eq. (2.54), that is

F (z) ≡ FEB(z; k, b) =
√
x(z)2 + b2 e−γ1 arctan

x(z)
b . (3.46)

An elementary computation shows that, for all b > 0 and γ1 > 0, the func-
tions z and F satisfy the conditions (i-iv) of Proposition 2. Note that Eqs.
(3.45,3.46) actually generalize Eq. (3.42) to the case γ1 > 0 as it is not di�-
cult to see that zEB(x; 0, b) = zEBMT(x; b) and FEB(x; 0, b) = FEBMT(x; b).
In Figure, 3.2, the embedded surface

SEB(γ1, b) := {(z, ρ, ϕ) : ρ = FEB(z; γ1, b)} ⊂ R3

has been plotted in the region (see Eq. (3.44))

z ≥ z−1

(
b(γ2

1 − 1)

2γ1

)
(γ1 > 0)

for the particular choice b = γ1 = 1.

-3 -2 -1 0 1 2 3 z

1

2

3

4

5

F

Figure 3.2: The pro�le function FEB and the embedding diagram SEB of the
Ellis-Bronnikov wormhole with b = 1 and γ1 = 1.
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3.3. Ellis-Bronnikov wormhole

Geodesics of the EBMT and the Ellis-Bronnikov wormholes

Let us now specialize the considerations on the study of the geodesic motion
in a four-dimensional spherically symmetric static spacetime of Appendix
A to the Ellis-Bronnikov wormhole; in this case we have that the e�ective
potential (A.18) reads

Ve�(x) ≡ Ve�,EB(x; b, γ1, k, L) :=
L2

2

e4γ1 arctan x
b

x2 + b2
+

k

2

(
e2γ1 arctan x

b − 1
)
. (3.47)

Note that the e�ective potential for the EBMT wormhole is obtained by set-
ting γ1 = 0 in the previous expression.
In the following, a complete analysis of the analytical properties of Ve� will
be performed by varying the values of the parameters b, γ1, k, L in their re-
spective ranges; (17) in this way we can deduce some information about the
geodesic motion in the considered wormholes.

We start from the limit case of the EBMT wormhole corresponding the
choice γ1 = 0: depending on the value of the angular momentum L, we en-
counter only two qualitatively di�erent situations: if L = 0, the potential Ve�
is identically null, while, if L 6= 0, it possesses an asymptotically null �bell
curve� shape with the maximum L2/(2b2) located in x = 0. This means that
in the EBMT wormhole:
(i) there is no di�erence between timelike and null geodesics;
(ii) the are not stable orbits;
(iii) if E > L2/(2b2) both particles and light rays heading towards the center
of the wormhole will pass from one universe to the other and never come
back (unless they accelerate or are deviated).
Figure 3.3 contains the plots of three possible e�ective potentials Ve� and
values of the total energy E for the geodesic motion in the EBMT wormhole;
for each possibility the motion of a particular null geodesic P(τ), τ ∈ [0, τ1]
has been computed numerically and plotted in the embedding diagram (3.1).

We now focus on the Ellis-Bronnikov case, so suppose γ1 > 0. We consider
�rstly the motion of a light ray (k = 0). In this case we have a situation
similar to that of the EBMT wormhole: if L = 0, the potential is again
identically zero, while if L 6= 0, the potential Ve� has once more a �bell
curve� shape with a vanishing horizontal asymptote. However, in this case
the potential is not re�ection symmetric in the coordinate x, as the maximum

17We recall that the EBMT wormhole corresponds to the choice γ1 = 0, while the
Ellis-Bronnikov wormhole corresponds to the choice γ1 > 0, according to the assumption
(3.43).
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3. Static wormhole solutions

a) L = 1, E = 0.52 b) L = 1, E = 0.5 c) L = 1, E = 0.48
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x(0) = 3, ẋ(0) < 0, τ1 = 11 x(0) = 3, ẋ(0) < 0, τ1 = 12 x(0) = 3, ẋ(0) < 0, τ1 = 12

Figure 3.3: E�ective potential and embedding diagram of some geodesics in
the EBMT wormhole with b = 1.

of value L2e4γ1 arctan(2γ1)/(2b2(1 + 4γ2
1)) is located at x = 2bγ1; note that the

point of maximum is greater than the point of minimum x = bγ1 of the
radial coe�cient. In Figure 3.3, the e�ective potential Ve� and the total
energy E have been plotted in three di�erent possible occurrences; in each
case the motion of a particular (null or timelike) geodesic P(τ), τ ∈ [0, τ1]
has been computed numerically and plotted in the embedding diagram of the
Ellis-Bronnikov wormhole.
Secondly, we consider the timelike geodesic motion (k = 1). For every values
of the angular momentum L, the e�ective potential is asymptotic to the
values (e±πγ1−1)/2, respectively for x→ ±∞. Let us now look for any local
extrema of the potential; since from the expression

V ′e�(x) =
e2γ1 arctan x

b

(x2 + b2)2

[
L2e2γ1 arctan x

b (2bγ1 − x) + bγ1(x2 + b2)
]
,

we have that V ′e�(2bγ1) = 0 only if γ1 = 0, then all the possible local extrema
of Ve�(x) are contained in the solution of the equation

f1(x) = f2(x) , f1(x) := e2γ1 arctan x
b , f2(x) :=

bγ1(x2 + b2)

L2 (x− 2bγ1)
. (3.48)

The function f1 is bounded between e−πγ1 and eπγ1 , while the function f2 is
unbounded from above for x→ −∞ and x→ 2bγ−1 , and is unbounded from
below for x → 2bγ+

1 and x → +∞; moreover, f2 has one point of minimum
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3.3. Ellis-Bronnikov wormhole

a) L = 0, E = 5 b) L = 1, E = 8.5 c) L = 1, E = 8.3
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x(0) = 0, ẋ(0) > 0, τ1 = 7 x(0) = 0, ẋ(0) > 0, τ1 = 10 x(0) = 8, ẋ(0) < 0, τ1 = 10

Figure 3.4: E�ective potential and embedding diagram of null geodesics in
the Ellis-Bronnikov wormhole with b = 1 and γ1 = 1.

and the point of maximum, respectively at xm := 2bγ1 + b
√

1 + 4γ2
1 and

xM := 2bγ1 − b
√

1 + 4γ2
1 . Since for x < 2bγ1, f1(x) > 0 while f2(x) < 0,

the eventual solutions of Eq. (3.48) are contained in the interval x > 2bγ1;
hence, the graphics of f1 and f2 certainly intersect twice if f1(xm) ≥ f2(xm),
while they certainly do not if intersect f2(xm) ≥ eπγ1 . Given the values of b
and γ1, the equation f2(xm) ≥ eπγ1 holds if and only if

|L| ≤ L1 :=
√

2γ1 b e
−γ1 π2

√
2γ1 +

√
1 + 4γ2

1 , (3.49)

while the equation f1(xm) ≥ f2(xm) is satis�ed if and only if

|L| ≥ L2 :=
√

2γ1 b e
−γ1 arctan

(
2γ1+
√

1+4γ21

)√
2γ1 +

√
1 + 4γ2

1 . (3.50)

(Note that, obviously, L1 < L2.) Summing up, given the values of b and γ1,
we have proved that:
(i) if |L| ≤ L1 with L1 as in Eq. (3.49), then the e�ective potential has no
local extrema;
(ii) if |L| ≥ L2 with L2 as in Eq. (3.49) then the e�ective potential has
exactly one local maximum and one local minimum;
(iii) there exists a value L0 ∈ (L1, L2) such that: if |L| ≤ L0 the e�ective
potential has no local extrema (and for |L| = L0 has exactly one in�ection)
and if |L| > L0 the e�ective potential has exactly one local maximum V max

e�
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3. Static wormhole solutions

and one local minimum V min
e� .

As a consequence, in the Ellis-Bronnikov wormhole the timelike geodesics
can be bounded only in the case in which L > L0 and the energy is E ∈
(V min

e� , V max
e� ). In Figure 3.5, I set b = γ1 = 1 and for three di�erent values

of (E,L) such that L > L2 ' 0.88, I plotted the e�ective potential Ve� (with
two local extrema) and the total energy E; in each case the motion of a
particular timelike geodesic P(τ), τ ∈ [0, τ1] has been computed numerically
and plotted. Note that in the �rst and in the second cases the orbits are not
bounded since, respectively, E > V max

e� and lim
x→+∞

Ve�(x) < E < V max
e� .

a) L = 3, E = 81 b) L = 3, E = 75 c) L = 0.76, E = 10
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x(0) = 0, ẋ(0) > 0, τ1 = 4 x(0) = 15, ẋ(0) < 0, τ1 = 4 x(0) = 6, ẋ(0) > 0, τ1 = 100

Figure 3.5: E�ective potential and embedding diagram of timelike geodesics
in the Ellis-Bronnikov wormhole with b = 1 and γ1 = 1.

3.4 A four-dimensional wormhole connecting two

AdS universes

3.4.1 The general Bronnikov-Fabris solution

We consider the static four-dimensional case, that is, we stipulate Eq. (3.1)
and d = 3; moreover, we set the gauge such that αγ = 1 (see Remark 7). In
this section we look for solutions with self-interacting scalar �eld, therefore
we do not assume the potential V (Φ) to be zero.
Let us show that a family of such solutions can be obtained by putting

r =
√
x2 + b2 , (3.51)
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3.4. A four-dimensional wormhole connecting two AdS universes

where b > 0. Indeed, with this choice it is easy to show that the combination
of Eq, (2.84) and Eq. (2.86) de�ned as E2 + r2H = 0, is satis�ed if and only
if

Φ =

√
2

κ
arctan

x

b
+ Φ0 (3.52)

with Φ0 a constant. With this expression for the scalar �eld, Eq. (2.83) leads
to

α = γ−1 =

√
1−K (b2 + x2) +M (b2 + x2) arctan

x

b
+ bMx , (3.53)

where K andM are two integration constants. The remaining two equations
Eq. (2.84) (or, alternatively, Eq. (2.86)) (18) and Eq. (2.85) can be solved
putting

V (Φ(x)) =
K(b2 + 3x2)−M (b2 + 3x2) arctan x

b
− 3bMx

κ (b2 + x2)
.

Choosing, without loss of generality, Φ0 = 0 and by inverting Eq. (3.52), we
obtain for V (Φ)

V (Φ) =
K

κ

[
3− 2 cos2

(√
κ

2
Φ

)]
− M

κ

{
3 sin

(√
κ

2
Φ

)
cos

(√
κ

2
Φ

)
+

√
κ

2
Φ

[
3− 2 cos2

(√
κ

2
Φ

)]}
. (3.54)

Remark 31 Actually, the solution (3.51,3.52,3.53,3.54) is exactly the gen-
eral solution given by Bronnikov and Fabris in Ref. [36] and reconsidered
in the recent survey [11] (with some reparametrization of the involved con-
stants). This describes an heterogeneous family of wormholes with throats
of size b, since the function r in Eq. (3.51) clearly satis�es the requirements
throat.

3.4.2 The AdS wormhole

Let us consider now the Bronnikov-Fabris solution (3.51-3.54) with the choice

M = 0 , (3.55)

18Indeed, the system made up of the equations E1 = 0, E2 = 0, E3 = 0, H = 0 [Eqs.
(2.83-2.86)] is clearly equivalent to the system E1 = 0, E2 = 0, E3 = 0, E2 + r2H = 0, but
is also equivalent to the system E1 = 0, E2 + r2H = 0, E3 = 0, H = 0.
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3. Static wormhole solutions

which corresponds to a re�ection symmetric metric with respect to the throat;
moreover, we set

K ≡ −k2 , (k > 0) . (3.56)

With the choices (3.55.3.56), the Bronnikov-Fabris solution simpli�es to

α = γ−1 =
√

1 + k2(x2 + b2) , r =
√
x2 + b2 , (3.57)

Φ =

√
2

κ
arctan

x

b
, V (Φ) = −k

2

κ

[
3− 2 cos2

(√
κ

2
Φ

)]
. (3.58)

Remark 32 In the limit case b → 0 the metric (3.57) becomes singular
at x = 0; if we replace its second equality with r = x for x > 0 and with
r = −x for x < 0, the corresponding metrics describe two AdS universes
with cosmological constant Λ = −3k2 (see Example 3). Therefore, if we have
b > 0, the metric (3.57) is regular for every

x ∈ (−∞,+∞) ; (3.59)

since r(x) ∼ |x| and α = γ−1 ∼
√

1 + k2x2 for x → ±∞, we can interpret
the metric in (3.57) as describing a wormhole with a throat of size b connect-
ing two separate asymptotically AdS universes with the same cosmological
constant Λ = −3k2. For this reason one could call the solution (3.57,3.58) an
�AdS-AdS wormhole�; in the sequel this expression will be always shortened
into �AdS wormhole� or �AdS solution�.

Remark 33 Let us note that, for k → 0, the potential V (Φ) in Eq. (3.58)
vanishes and the AdS wormhole (3.57,3.58) (with b �xed) becomes the re�ec-
tion symmetric Ellis-Bronnikov wormhole (EBMT wormhole) [Eq. (3.36)].

Remark 34 For further convenience, we introduce the new parameter

B := bk , B > 0 (3.60)

and the change of variables

t =
s

2k
√

1 +B2
, s ∈ (−∞,∞)

x =

√
1 +B2

k
tan

u

2
, u ∈ (−π, π)

(3.61)
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3.4. A four-dimensional wormhole connecting two AdS universes

so that in the new coordinate system (s, u) the AdS wormhole (3.57,3.58) is
transformed into a solution with a self-interacting scalar �eld and a metric
g of the form (2.24) with (t, x) replaced by (s, u) such that

α = γ =
1

2k cos u
2

, β = 0 , r =

√
1 + 2B2 − cosu√

2k cos u
2

,

Φ =

√
2

κ
arctan

(√
1 +B2 tan u

2

B

)
, V (Φ) as in Eq. (3.58) .

(3.62)

Let us observe that the limits x → ±∞, describing the far ends of the AdS
wormhole, are equivalent to the limits u→ ±π.
Finally, we note that in the coordinates (s, u) it is no more possible to recover
the EBMT wormhole from the AdS wormhole, since in the limit k → 0 the
transformation (3.61) becomes singular.

3.4.3 Embedding diagram and geodesics of the AdS worm-
hole

Embedding diagram of the AdS wormhole

In this subsection we consider all the notations and the results of Section 2.3.
Moreover, we consider the AdS metric in the form (3.57) with k > 0; note
that, in the limit case k = 0, we have to recover the results of Subsection
3.3.1 for the EBMT wormhole (see Remark 33).
Not surprisingly, the tπ

2
slices of the AdS wormhole can not be embedded in

a three-dimensional �at space: this is due to the fact that in the large x limit,
the tπ

2
slices of the AdS wormhole approaches to two two-dimensional sur-

faces with constant negative curvature and such manifolds cannot be globally
embedded in R3. Indeed, the inequality (2.57) has the solution

x ∈
[
−
√
B√
2k

√√
4 +B2 −B ,

√
B√
2k

√√
4 +B2 −B

]
,

which is a neighbourhood of the throat x = 0 in which the tπ
2
slices of the

AdS wormhole can be embedded in R3.
However, it is not di�cult to see that the the two-dimensional asymptotic
surfaces of the wormhole can be trivially embedded in a three-dimensional
space with the same asymptotic negative constant curvature −3k2: this am-
bient space is given by the metric (2.44) with

A(ρ) :=
√

1 + k2ρ2 . (3.63)
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3. Static wormhole solutions

Indeed, with this position, the inequality (2.57) is automatically satis�ed and
the second integral in Eq. (2.55) can be easily solved giving the following
explicit expression for the function z = z(x)

z(x) ≡ zAdS(x; k, b) =
b√

1 + b2k2
arcsinh

(
x

b
√

1 + k2(x2 + b2)

)
; (3.64)

this can be inverted so that Eq. (2.54) reads

F (z) ≡ FAdS(z; k, b) =
b cosh

(√
1+b2k2z
b

)
√

1 + b2k2
(

1− cosh2
(√

1+b2k2z
b

)) . (3.65)

An elementary computation shows that, for all b > 0 and k > 0, the func-
tions z and F satisfy the conditions (i-iv) of Proposition 2. Note that Eqs.
(3.64,3.65) actually generalize Eq. (3.42) to the case k > 0 as trivially
zAdS(x; 0, b) = zEBMT(x; b) and FAdS(x; 0, b) = FEBMT(x; b).

-3 -2 -1 0 1 2 3 z

1

2

3

4

5

F

Figure 3.6: The pro�le function FAdS and the embedding diagram SAdS of the
AdS wormhole with b = 1 and k = 0.1.

At this point one might want to visualize the embedding of the AdS worm-
hole, namely a three-dimensional picture of the embedded slice ι(tπ

2
). Obvi-

ously, this is not possible since the ambient space MA is not �at, unless we
settle for an approximation. Locally, for k → 0 or ρ → 0 the metric of the
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3.4. A four-dimensional wormhole connecting two AdS universes

ambient space (2.44) tends to become �at; this means that the bidimensional
surface in R3 de�ned as

SAdS(k, b) := {(z, ρ, ϕ) : ρ = FAdS(z; k, b)} ⊂ R3

approaches to ι(tπ
2
) ⊂ MA in a region �suitably close� to the origin; this

region can be very large if k is very small. In Figure, 3.6 one can see the
plots of the pro�le function FAdS and the embedding diagram SAdS ⊂ R3 for
a particular choice of the parameters b and k.

Geodesics of the AdS wormhole

Let us now specialize the considerations on the study of the geodesic motion
in a four-dimensional spherically symmetric static spacetime of Appendix A
to the AdS wormhole; in this case we have that the e�ective potential (A.18)
reads

Ve�(x) ≡ Ve�,AdS(x; b, k, k, L) :=
L2

2

(
1

x2 + b2
+ k2

)
+

k

2
k2(x2 + b2) . (3.66)

In the following, a complete analysis of the analytical properties of Ve� will be
performed by varying the values of the parameters b, k, k, L in their respec-
tive ranges; in this way we can deduce some information about the geodesic
motion in the AdS wormhole. We will focus on the pure AdS case, so suppose
k > 0.
We consider �rstly the motion of a light ray (k = 0). In this case we have
a situation similar to that of the EBMT wormhole (see Subsection 3.3.1): if
L = 0, the potential is again identically zero, while if L 6= 0, the potential Ve�
has once more a �bell curve� shape with the maximum of value L2(k2+1/b2)/2
located in x = 0 and a non vanishing horizontal asymptote of value L2k2/2.
In Figure 3.7, the e�ective potential Ve� and the total energy E have been
plotted in three di�erent possible occurrences; in each case the motion of a
particular null geodesic P(τ), τ ∈ [0, τ1] has been computed numerically and
plotted in the embedding diagram of the AdS wormhole.
Secondly, we consider the timelike geodesic motion (k = 1). If |L| ≤ b2k,
the e�ective potential is a convex function with the minimum V0 := b2k2/2+
L2(k2 + 1/b2)/2 at x = 0; if |L| > b2k, the e�ective potential has a �Mexican
hat� shape, with the local maximum of value V0 located in x = 0, the two
local minima in x = ±

√
|L|/k − b2 both of value k|L|(1 + k|L|/2) and limits

Ve�(x)→ +∞ for x→ ±∞.
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a) L = 3, E = 4.8 b) L = 3, E = 3 c) L = 3, E ' 4.545
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x(0) = 2, ẋ(0) < 0, τ1 = 5 x(0) = 4, ẋ(0) < 0, τ1 = 5 x(0) = 4, ẋ(0) < 0, τ1 = 5

Figure 3.7: E�ective potential and embedding diagram of null geodesics in
the AdS wormhole with b = 1 and k = 0.1.

a) L = 0.09, E = 0.1 b) L = 0.3, E = 0.06 c) L = 1, E = 0.15
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Figure 3.8: E�ective potential and embedding diagram of timelike geodesics
in the AdS wormhole with b = 1 and k = 0.1.
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3.5. A dS wormhole with horizons

Therefore, in the AdS wormhole the timelike geodesics:
(i) orbit in a bounded region of the spacetime which depends on b, k, E, L
and is de�ned by{
m : |x(m)| ≤ 1√

2k

√
2E − k2(L2 + 2b2) +

√
4E2 + k2L2(k2L2 − 4(E + 1))

}
;

(ii) if E > V0 the particles pass from one universe to the other and keep
oscillating between them (unless they accelerate).
Figure 3.8 contains the plot of three possible e�ective potentials Ve� and
values of the total energy E for the timelike geodesic motion; as usual, for
each possibility the motion of a particular null geodesic P(τ), τ ∈ [0, τ1] has
been computed numerically and plotted in the embedding diagram of the
AdS wormhole.

3.5 A dS wormhole with horizons

Let us return to the Bronnikov-Fabris wormhole solution (3.51-3.54), de-
pending on the parameters M and K. Keeping the assumption M = 0 [Eq.
(3.55)] we can as well consider, as an alternative to (3.56), the choice

K ≡ k2 , (k > 0) . (3.67)

In this way we obtain

α = γ−1 =
√

1− k2(x2 + b2) , r =
√
x2 + b2 , (3.68)

Φ =

√
2

κ
arctan

x

b
, V (Φ) =

k2

κ

[
3− 2 cos2

(√
κ

2
Φ

)]
. (3.69)

For b→ 0 the metric (3.68) becomes singular at x = 0, exactly as for the AdS
wormhole (see Remark 32); if we replace (again)

√
x2 with r = x for x > 0

and by r = −x for x < 0, the corresponding metrics represent the static part
of two dS universes with cosmological constant Λ = 3k2 (see Example 4).
Therefore, by analogy with the terminology of section 3.4, we refer to the
solution (3.68,3.69) as a �dS wormhole�; let us note that the expressions for
α, γ and r in Eq. (3.68) and for Φ and V (Φ) in Eq. (3.69) can be obtained
formally from the analogous expressions of the AdS case [Eqs. (3.57,3.58)]
making the replacement k 7→ ik. However, di�erently from the AdS case,
the metric (3.68) makes sense only if 0 < kb < 1 (otherwise, the coe�cients
α and γ are singular for every x ∈ R); hence, from now on we intend

b ∈
(

0,
1

k

)
. (3.70)
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3. Static wormhole solutions

In the rest of this section we will study in detail the geometry of the space-
time (3.68) for b as in Eq. (3.70).

We set

B := b k ∈ (0, 1) , ` :=

√
1−B2

k
; (3.71)

the limitation of B, which is due to the assumption (3.70), makes the def-
inition of ` consistent. The metric (3.68) in the coordinates (t, x, ϑ, ϕ) (see
Remark 10) with the above constants reads

g = −
[
1− k2(x2 + b2)

]
dt2 +

dx2

1− k2(x2 + b2)
+
(
x2 + b2

)
dΩ2

= −(1−B2)

(
1− x2

`2

)
dt2 +

dx2

(1−B2)
(
1− x2

`2

) +
(
x2 + b2

)
dΩ2 . (3.72)

Let us introduce the regions

I := {(t, x) | t ∈ R , x ∈ (−`, `)} ,
E− := {(t, x) | t ∈ R , x ∈ (−∞,−`)} , E+ := {(t, x) | t ∈ R , x ∈ (`,+∞)} ;

(3.73)

then the expressions for α and γ in Eq.(3.68) are well de�ned in a literal
sense over I; more substantially, the metric (3.72) is well de�ned over I ×S2

and the vector �elds ∂t and ∂x are, respectively, timelike and spacelike on
this domain. However, Eq. (3.72) also gives a Lorentzian metric on each
one of the regions E− and E+; here ∂t is spacelike and ∂x is timelike, so the
metric is non static. In the sequel we often refer to I as the internal region
and to E± as the exterior regions in (t, x) space. At x = ±` the metric
seems to be ill de�ned but, as explained hereafter, these are just apparent
singularities related to the coordinate system: the hypersurfaces x = ±` are
indeed cosmological horizons and the metric is non singular across them. Let
us note that the b → 0 limit of the previous statement corresponds to well
known features of the dS universes, having an horizon at x = ` = 1

k
(if x > 0).

In the rest of the present section, I will follow Ref. [1], where the authors
introduce an alternative parametrizations for the dS wormhole, yielding a
Kruskal type extension of the metric (3.72) which is regular across x = ±`.
The extended universe constructed in this way can also be interpreted as a
regular black hole with an expanding cosmology beyond the horizons, and is
hence referred to as a �black universe� in Ref. [11].
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3.5. A dS wormhole with horizons

3.5.1 Another coordinate system for the internal region
I

In this subsection we consider an alternative coordinatization for the internal
region I introducing the analogs of the AdS wormhole coordinates (s, u) (see
Eq. (3.61)); let us put

t =
`

2 (1−B2)
s , x = ` tanh

u

2
, (s, u) ∈ R2 ; (3.74)

the map (s, u) 7→ (t, x) is one to one between R2 and the inner region I with
inverse

s =
2(1−B2)

`
t , u = 2 arctanh

x

`
= log

`+ x

`− x .

We can regard (s, u) as an alternative coordinate system for I; this does not
eliminate the apparent singularities at x = ±` but sends them to in�nity
since the limits x → ±` correspond to the limits u → ±∞. In the new
coordinates the metric (3.72) becomes

g =
1

4k2 cosh2 u
2

[
−ds2 + du2 + 2

(
coshu− 1 + 2B2

)
dΩ2

]
, (3.75)

with radial null geodesics given by the straight lines s = ±u+ const.

Remark 35 To conclude this subsection, let us remark that the trans-
formation (3.74) and the expression (3.75) for the metric can be obtained
from their AdS analogs [Eqs. (3.61,3.62)] making the formal replacements
k 7→ ik, B 7→ iB, s 7→ is, u 7→ iu.

3.5.2 A �rst spacetime extension

We start our construction from the internal region I, that we describe in
terms of the coordinates (s, u):

I := {(s, u) | s, u ∈ R} , (3.76)

Let us set

s = log

(
−U
V

)
, u = − log(−UV ) , (U, V ) ∈ (0,+∞)×(−∞, 0) ; (3.77)

the transformation (U, V ) 7→ (s, u) is one to one between the sets (0,+∞)×
(−∞, 0) and R2. By compositions with (3.74) we obtain the transformation

t =
`

2(1−B2)
log

(
−U
V

)
, x = `

1 + UV

1− UV , (U, V ) ∈ (0,+∞)× (−∞, 0) ,

(3.78)
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3. Static wormhole solutions

which is a di�eomorphism between (0,+∞)×(−∞, 0) and the inner region I.
The �rst cosmological horizon x = −` corresponds to U → +∞ or V → −∞,
while the second cosmological horizon x = ` coincides with UV = 0. Now
the metric (3.75) reads

g =
1

k2(1− UV )2

[
− 4dUdV +

[
B2(1− UV )2 + (1−B2)(1 + UV )2

]
dΩ2

]
.

(3.79)
It is evident that this metric is regular on the cone UV = 0 and can be
extend beyond the corresponding horizon to the region R× S2, where

R := {(U, V ) ∈ R2 | UV < 1} , (3.80)

is a region bounded by the two branches of the hyperbola UV = 1, cor-
responding to the spacelike in�nity x = +∞. The two branches of the
hyperbola UV = −1 correspond to the throat x = 0. To go on, let us extend
the transformation (3.78) setting

t =
`

2(1−B2)
log

∣∣∣∣UV
∣∣∣∣ , x = `

1 + UV

1− UV , (U, V ) ∈ R |V 6= 0 . (3.81)

The map (U, V ) 7→ x is smooth throughout the region R, while (U, V ) 7→ t
is well de�ned and smooth on the subregion {(U, V ) ∈ R | UV 6= 0}. The
correspondence (U, V ) 7→ (t, x) gives di�eomorphisms between the following
pairs of regions:

(0,+∞)× (−∞, 0) ' I ,

(−∞, 0)× (0,+∞) ' I ,

{(U, V ) ∈ (0,+∞)2 |UV < 1} ' E+ ,

{(U, V ) ∈ (−∞, 0)2 |UV < 1} ' E+ ,

where E+ is the exterior region de�ned in Eq. (3.73). Under each one of
these four di�eomorphisms, the metric of Eq. (3.72) takes the form (3.79).
To conclude we note that, writing Φ as in Eq. (3.69) and x as in Eq. (3.81)
we obtain a smooth extension of the scalar �eld Φ to the whole region R.

3.5.3 Extending spacetime further: the nonstatic Kruskal
type extension beyond the horizons

We now consider a �compacti�cation� of the extended region R [Eq. (3.80)]
based on the reparametrization

U = tanU , V = tanV . (3.82)
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3.5. A dS wormhole with horizons

We know that the cone UV = 0 and the limits U → +∞, V → −∞ and
U → −∞, V → +∞ correspond to the horizons x = ±` in (3.81); the cone
and the indicated limits are associated, according to (3.82) to �nite values
of U and V, so the e�ect of the above transformation is to bring both the
horizons at �nite distances. One could use U and V as an alternative set of
coordinates and reexpress the metric (3.79) and so on; but the situation can
be described in a simpler way making a further transformation (essentially,
a rotation of π

4
and a translation of the axes)

U =
T

2
− X

2
+
π

4
, V =

T

2
+
X

2
− π

4
. (3.83)

The composition of Eqs. (3.82,3.83), whenever they make sense, gives

U = tan

(
T

2
− X

2
+
π

4

)
, V = tan

(
T

2
+
X

2
− π

4

)
; (3.84)

the application (T,X) 7→ (U, V ) is a bijection between the following regions:

R ' R

R as in Eq. (3.80) and

R :=

{
(T,X) ∈ R2| − π

2
< T <

π

2
, −π

2
< X − T,X + T <

3

2
π

}
.

In the coordinates (T,X, ϑ, ϕ) the metric (3.79) assumes the form

g =
1

k2 cos2 T

[
− dT 2 + dX2 +

[
B2 cos2 T + (1−B2) sin2X

]
dΩ2

]
, (3.85)

which clearly admits a further extension to the region S × S2, where

S :=

{
(T,X) ∈ R2 | − π

2
< T <

π

2

}
. (3.86)

Eqs. (3.85,3.86) provide the �nal form of our dS wormhole spacetime; the
strip S is represented in Fig. 3.9, which also accounts for some facts illus-
trated hereafter. Note that the metric (3.85) is invariant under the spatial
translation, the spatial re�ection and the time re�ection

T : (T,X) 7→ (T,X + π) , S : (T,X) 7→ (T, π −X) ,

R : (T,X) 7→ (−T,X) .
(3.87)

Let us also remark that, in the limit case B → 0, the expression (3.85)
reduces to the non-static extension of the dS metric (2.30). For any B > 0,
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3. Static wormhole solutions

the connection between the spacetime (3.85,3.86) and the original setting
(3.72,3.73) is understood expressing the original variables (t, x) in terms of
the new variables (T,X). To this purpose we note that the compositions of
the transformations (3.81,3.84), whenever they make sense, gives

t =
`

2(1−B2)
log

∣∣∣∣sinT + cosX

sinT − cosX

∣∣∣∣ , x = `
sinX

cosT
. (3.88)

The map of (T,X) 7→ x is everywhere smooth on S, while the map of
(T,X) 7→ t has singularities at the points of S where the argument of the
logarithm vanishes or diverges; this occurs at points where sinT = ∓ cosX,
which are just the points where x = ∓`. Moreover, we note that (t, x) ◦T =
(−t,−x), (t, x) ◦S = (−t, x) and (t, x) ◦R = (−t, x); the behaviour of g, t, x
under T implies the invariance of each one of these three objects under the
translation T2 : (T,X) 7→ (T,X + 2π).

To go on, let us now introduce the diamond I and the triangles E∓ de�ned
by

I :=

{
(T,X) ∈ R2 | − π

2
< T −X,T +X <

π

2

}
,

E− :=

{
(T,X) ∈ R2 |T <

π

2
, T −X >

π

2
, T +X > −π

2

}
, (3.89)

E+ :=

{
(T,X) ∈ R2 |T <

π

2
, T −X > −π

2
, T +X >

π

2

}
(see again Fig. 3.9); then the map (T,X) → (t, x), described by Eq. (3.88),
gives isometric di�eomorphisms between the following pairs of regions

I ' I , E∓ ' E∓ ,

where I and E∓ are, respectively, the internal region and the two the exte-
rior regions (3.73) with the metric (3.72). Moreover, we have that x = ±`
along the sides of I, x = −` and x = −∞ along the sides of E− and x = `
and x = +∞ along the sides of E+ (see once more Fig. 3.9). It easy to
construct in�nitely many replicas of the previous statement using the previ-
ous information of the behaviour of g, t, x under the transformations (3.87).
For example, using the fact that g, t, x are invariant under all the iterates
T2h : (T,X) 7→ (T,X + 2hπ) (h ∈ Z), one readily shows that for each h ∈ Z,
the map (3.88) gives isometric di�eomorphisms between the following pairs
of regions

T2h(I) ' I , T2h(E∓) ' E∓ .
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3.5. A dS wormhole with horizons

Moreover, applying the time re�ection R to each one of the translated trian-
gles T2h(E∓) one gets other regions isometrically di�eomorphic to E∓.
Finally, let us recall that we have already noted that the points (T,X) where
Eq. (3.88) gives singularities for t are just the points at which the same equa-
tion gives x = ±`; so from the viewpoint of the extended manifold S × S2,
the apparent singularities at x = ±` of the original metric (3.72) are just due
to the singularities of t as a coordinate on S.

Up to now, we have not considered the scalar �eld Φ; the prescription

Φ =

√
2

κ
arctan

x

b
, with x as in Eq. (3.88) (3.90)

gives a smooth function everywhere on S, with the properties Φ ◦ T = −Φ,
Φ ◦ T2 = Φ and so on. The triple S × S2,g,Φ in Eqs. (3.86,3.85,3.90) is a
solution to the Einstein-scalar equations (with �eld self-potential V (Φ) as in
(3.69)).

Of course, the extended spacetime S × S2 has the topology of R2 × S2.
For any �xed p = 1, 2, 3, ... we can take the quotient of the strip S with
respect to the iterated translation Tp; the quotient S/Tp has the topology of
R× S1 and the metric (3.85) can be projected on (S/Tp)× S2, thus getting
a new spacetime with the topology R × S1 × S2. The function Φ of Eq.
(3.90) is projectable on this quotient spacetime for p even, since in this case
Φ ◦Tp = Φ; on the contrary, Φ is not projectable for p odd because Φ ◦Tp =
−Φ. Finally, let us mention that all spacetimes S × S2 and (S/Tp) × S2

(p = 1, 2, 3...) are time orientable: in fact, ∂/∂T is a smooth timelike vector
�eld, de�ned everywhere on S×S2 and projectable on (S/Tp)×S2 both for p
even and for p odd. One could also consider the quotients (S/(Tp ◦R)) with
p = 1, 2, 3, . . . involving the time re�ection, which yield smooth spacetimes
which are, however, not time orientable.
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3. Static wormhole solutions

x
=
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x
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x = −∞
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E− E+

Figure 3.9: Penrose diagram showing the strip S in the �nal extended
spacetime of our dS wormhole (Eqs. (3.86,3.85)). The dashed lines are
lines with constant x, determined according to Eq. (3.88). Also indicated
are the red diamond region I and the green triangular regions E± of Eq.
(3.89) which correspond to the original regions (3.73) in the (t, x) coordinate
space; the same can be said of the images of I and E± under any transla-
tion T2h : (T,X) 7→ (T,X + 2hπ) (h ∈ Z). Applying the time re�ection
R : (T,X) 7→ (−T,X) to the triangles E∓ and to the translated triangles
mentioned before, one obtains other regions which are isometric to E∓.
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Part II

Linear stability analysis of static

wormhole solutions
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Chapter 4

Field equations for perturbed

static wormhole solutions

Throughout this chapter, we consider an arbitrary (d+1)-dimensional spher-
ically symmetric static solution of the Einstein-scalar equations (2.72) (or,
alternatively, (2.83-2.87)) in the gauge β = 0 (see Remark 10) with self-
interacting potential V (Φ). Hence, we set again

β = 0 , (α, γ, r,Φ) := (α(x), γ(x), r(x),Φ(x)) . (4.1)

We recall that, the in this case, the range of the coordinates (t, x) is as in Eq.
(2.15). As proved in Section 3.1, the static solution (4.1) is fully described
by the background equations (3.6-3.9).

4.1 Perturbations of the metric and the scalar

�eld

In this chapter, we consider a (non-static) perturbation of the static solution
(3.1), i.e., we introduce �ve smooth real functions

δα, δβ, δγ, δr, δΦ : O = R× x(O) ⊆ R2 → R
(t, x) 7→ δα(t, x), δβ(t, x), δγ(t, x), δr(t, x), δΦ(t, x)

(4.2)
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4.2. Possible gauge choices

and a small real parameter ε, such that the perturbed metric has the form
(2.24) with the coe�cients de�ned as (19)

α(t, x) := α(x) + ε δγ(t, x) , β(t, x) := ε δβ(t, x) ,

γ(t, x) := γ(x) + ε δα(t, x) , r(t, x) := r(x) + ε δr(t, x) , (4.3)

and such that the perturbed �eld reads

Φ(t, x) := Φ(x) + ε δΦ(t, x) . (4.4)

Note that a physically reasonable perturbation leaves the function V (·), de-
scribing the self-interaction of the potential, unchanged.

In order to fully study the stability of the static con�guration (4.1), ide-
ally, one has to insert the perturbed metric and scalar �eld (4.3,4.4) into
the �eld equations (2.83-2.87) and solve the resulting system of PDEs in the
unknown functions (δα, δγ, δr, δΦ); then the behaviour of this solution in the
large t limit might be used to infer a stability result. However, this can be
impractical to do because of the di�culties in solving the exact system (2.83-
2.87); for this reason, it is usual to consider linear perturbations and settle
for a linear stability result; therefore, from now on we restrict our study to
linear perturbations, i.e., to perturbations of the form (4.3,4.4) for which we
neglect any power of the parameter ε greater then one.

4.2 Possible gauge choices

Let us pass from the coordinate system (t, x) : O ⊆ M2 → O ⊆ R2 (20) to a
new coordinate system

(t̃, x̃) := φε ◦ (t, x) : Õ ⊆M2 → Õ ⊆ R2 , (4.5)

19This notation might seem a little misleading, since, very often, the use of the pre�x δ
implies that the quantities δα, ... are small; if one desires to introduce the small parameter
ε in de�ning the perturbations as in Eqs. (4.3,4.4), then the letter δ should be replaced,
for example, by the letter ∆. Actually, our unusual choice of notation is merely motivated
by the coherence with the notation of [1]; hence, throughout this thesis, the symbols δα, ...
represent just smooth functions.

20In this section, as elsewhere in the thesis, we use the following abuse of notation: the
symbol (t, x) stands for both the mapping O ⊆ M2 → O ⊆ R2 de�ning the coordinate
system and for a generic point of its range O. A similar, twofold meaning is given to the
notation (t̃, x̃). Other abuses of notation employed in this section will be pointed out in
the sequel; this can be useful, due to some subtleties in the subject of the section.
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4. Field equations for perturbed static wormhole solutions

where ε must be ultimately sent to zero and φε is a di�eomorphism ε-close
to the identity: (21)

φε : O ⊆ R2 → Õ ⊆ R2

(t, x) 7→ (t̃, x̃) = φε(t, x) = (t− ε δt(t, x) +O(ε2), x− ε δx(t, x) +O(ε2)) .

(4.6)

The pair of functions

δX := (δt, δx) : O ⊆ R2 → R2

are assumed to be smooth, and de�ne a vector �eld on O. The transformation
φε can be inverted: the inverse function φ−1

ε = ψε has the form

ψε : Õ ⊆ R2 → O ⊆ R2

(t̃, x̃) 7→ (t, x) = ψε(t̃, x̃) = (t̃+ ε δt(t̃, x̃) +O(ε2), x̃+ δx(t̃, x̃) +O(ε2)) .

(4.7)

Let us now recall that the spacetime manifoldMd+1 carries other coordinates
x2, ..., xd, that we can use to de�ne the coordinate systems (t, x, x2, ..., xd) and
(t̃, x̃, x2, ..., xd); these are connected by the transformations

(t, x, x2, ..., xd) 7→ (t̃, x̃, x2, ..., xd) = (φε(t, x), , x2, ..., xd), (4.8)

(t̃, x̃, x2, ..., xd) 7→ (t, x, x2, ..., xd) = (ψε(t̃, x̃), , x2, ..., xd), (4.9)

that in the sequel, by a natural abuse of notation, will be as well indicated
with φε and ψε. In the same spirit, we will write δX for the vector �eld on
Rd+1 whose �rst two components are δt(t, x), δx(t, x), while all other com-
ponents are zero.

In this paragraph we want to understand how the transformation φε acts
on the perturbed metric (2.24,4.3).

Remark 36 Before going on, let us observe that the perturbed metric
(2.24,4.3) can be rewritten in the form

g = g0 + ε δg +O(ε2) (4.10)

where g0 is the static unperturbed metric and δg is the perturbation of the
metric:

g0 := −α2dt2 + γ2dx2 + r2 aij(x
2, ..., xd) dxi dxj , (4.11)

δg := −2α δα dt2 + 2γ2 δβ dt dx+ 2γ δγ dx2 + 2r δr aij(x
2..., xd) dxi dxj .

(4.12)
21The minus sign is introduced in Eq. (4.6) before εδt, εδx for coherence with [1].
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4.2. Possible gauge choices

It is well known that, under the transformation φε, the perturbed metric in
Eq. (4.10) and the perturbed scalar �eld Φ(t, x) in Eq. (4.4) are transformed
by the pullback of the inverse map φ−1

ε = ψε, that is
(22)

g 7→ g̃ := ψ∗εg = g + ε£δX g = g0 + ε (δg + £δX g0) +O(ε2) , (4.13)

Φ(t, x) 7→ Φ̃(t̃, x̃) := ψ∗εΦ(t̃, x̃) = Φ(t̃, x̃) + ε£δX Φ(t̃, x̃)

= Φ(x̃) + ε
(
δΦ(t̃, x̃) + £δX Φ(x̃)

)
+O(ε2) ; (4.14)

in the �rst identities of Eqs. (4.13,4.14) we have used the expression for the
pullback ψ∗ε of the in�nitesimal transformation ψε parametrized by the vector
�eld ε δX in terms of the Lie derivative £δX with respect to the �eld δX;
in the second identities we have used Eqs. (4.10,4.4), neglecting the terms
multiplied by ε2. Looking at Eqs. (4.13,4.14), one can assume that in the
new coordinates (t̃, x̃) the transformed perturbed metric and �eld have the
same structure as in the coordinates (t, x), namely

g̃ = g̃0 + ε δ̃g +O(ε2) Φ̃(t̃, x̃) := Φ̃(x̃) + ε δ̃Φ(t̃, x̃) +O(ε2) , (4.15)

where the unperturbed solution (g̃0, Φ̃(x̃)) remains unchanged, that is

g0 7→ g̃0 := g0 , Φ(x) 7→ Φ̃(x̃) := Φ(x̃) . (4.16)

while the perturbation metric δ̃g and the perturbation �eld δ̃Φ(t̃, x̃) are trans-
formed according to

δg 7→ δ̃g := δg + £δX g0 , δΦ(t, x) 7→ δ̃Φ(t̃, x̃) := δΦ(t̃, x̃) + £δX Φ(x̃) .
(4.17)

Let us introduce the transformed perturbation coe�cients (δ̃α, δ̃β, δ̃γ, δ̃r) of
the transformed perturbation metric δ̃g such that

δ̃g =: −2α δ̃α dt̃2 + 2γ2 δ̃β dt̃ dx̃+ 2γ δ̃γ dx̃2 + 2r δ̃r aij(x
2, ..., xd) dxi dxj ;

(4.18)

22Here we are using other notational abuses. We are considering two coordinate sys-
tems (t, x, x2, ..., xd) : Od+1 ⊆ Md+1 → Od+1 ⊆ Rd+1 and (t̃, x̃, x2, ..., xd) : Od+1 ⊆
Md+1 → Õd+1 ⊆ Rd+1, connected by the transformations (4.8) (4.9) that we have decided
to indicate simply with φε and ψε. In principle we should distinguish g from its local rep-
resentations h, h̃, which are the metrics on Od+1, Õd+1 such that g = (t, x, x2, ..., xd)∗h =
(t̃, x̃, x2, ..., xd)∗h̃, with ∗ indicating the pullbacks along the two coordinate systems; it
turns out that h̃ = ψ∗εh = h + ε£δX h + O(ε2). In Eq. (4.13), the notations g, g̃ stand
in fact for the local representations h, h̃. Eq. (4.14) contains a similar abuse, with Φ and
Φ̃ standing for the local representations of the scalar �eld in the two coordinate systems.
Similar comments could be made for equations appearing elsewhere in this work.
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4. Field equations for perturbed static wormhole solutions

then, by computing the Lie derivatives appearing in Eq. (4.17), it can be
proved that the in�nitesimal transformation (4.7) transforms the perturba-
tions (δα, δβ, δγ, δr, δΦ) as

δα 7→ δ̃α := δα + α′δx+ α δ̇t , (4.19)

δβ 7→ δ̃β := δβ + δẋ− α2

γ2
δt′ , (4.20)

δγ 7→ δ̃γ := δγ + (γδx)′ , (4.21)

δr 7→ δ̃r := δr + r′δx , (4.22)

δΦ 7→ δ̃Φ := δΦ + Φ′δx , (4.23)

where the dots and the primes in the above equations stand, respectively, for
the partial derivatives with respect to t̃ and x̃. This results has been included
in Ref. [1]; for an exhaustive proof see Appendix B.1.

Remark 37 Eqs. (4.19-4.23) make evident that the two degrees of freedom
in choosing the transformation functions δt and δx might be used in order to
eliminate two of the perturbation functions. For example, using Eq. (4.20),
one can eliminate the perturbation δβ (that is, send this perturbation to the
perturbation δ̃β = 0) by setting

δt(t̃, x̃) =

∫ x̃

x̃1

γ(x)2

α(x)2

(
δβ(t̃, x) + ˙δx(t̃, x)

)
dx , x̃1 ∈ R ; (4.24)

note that this is equivalent to �x the orthogonal gauge on M2 introduced in
Lemma 1 in which the perturbed metric coe�cient β(t, x) is set to zero (to
see this, it is su�cient to look at Eq. (4.3)). In addition, we can prescribe
that the transformation φε sends another perturbation to zero or transforms
two perturbations into functions that are proportional; we will see that this
choice is crucial in performing the stability analysis. For the moment, we do
not impose any prescription on the gauge.

Before concluding this section, let us introduce an important concept that
will be widely used throughout the present thesis.

De�nition 8 Consider a functional (23)

F : (δα, δβ, δγ, δr, δΦ) 7→ F [δα, δβ, δγ, δr, δΦ] ;

this is said to be gauge-invariant if, for every in�nitesimal change of coordi-
nates (4.6,4.7), it is

F [δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ] = F [δα, δβ, δγ, δr, δΦ]

where δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ are as in Eqs. (4.19-4.23).
23F might even depend on the derivatives or on other attributes of the functions

δα, δβ, δγ, δr, δΦ.
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4.3. Linearizing the �eld equations (and the scalar curvature)

4.3 Linearizing the �eld equations (and the scalar

curvature)

We expand the �eld equations (2.72) for the perturbed static solution (4.3,4.4)
up to the �rst order in ε; neglecting all the powers of ε grater or equal then
2, we obtain the linearized equations

E
(1)
ij (ε) = 0 , E

(1)
ij (ε) := Eij

∣∣
ε=0

+ ε δEij (i, j = 0, 1) ,

E(1)
a (ε) = 0 , E(1)

a (ε) := Ea
∣∣
ε=0

+ ε δEa ,

where

δEij :=
dEij
dε

∣∣∣∣
ε=0

(i, j = 0, 1) , δEa :=
dEa
dε

∣∣∣∣
ε=0

;

of course, these equations are satis�ed to the zeroth order in ε, corresponding
to the static solution (4.1), while the �rst order in ε vanishes if and only if
the following hold:

δE00 = 0 , δE00 =− (d− 1)
α2

γ2

[(
α′

α

r′

r
+

2κ

d− 1
γ2V (Φ)

)
δr

r

+

(
(d− 2)

r′

r
− γ′

γ

)
δr′

r
+
δr′′

r

+

(
2κ

d− 1
V (Φ)− d− 2

r2

)
δγ

γ

− r′

r

δγ′

γ
+

κ

d− 1

(
γ2V ′(Φ)δΦ− Φ′δΦ′

) ]
+ δEβ00 , (4.25)

δE01 = 0 , δE01 =
∂

∂t

[
(d− 1)

r′

r

(
δγ

γ
+
α′

α

δr

r′
+
δr′

r′

)
+ κΦ′δΦ

]
+ δEβ01 ,

(4.26)
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4. Field equations for perturbed static wormhole solutions

δE11 = 0 , δE11 =(d− 1)

[
γ

(
2κ

d− 1
V (Φ)− d− 2

r2

)
δγ

+

(
α′

α

r′

r
+

κ

d− 1

(
2γ2V (Φ)− Φ′2

))δr
r

+

(
α′

α
+ (d− 2)

r′

r

)
δr′

r
− γ2

α2

δr̈

r
+
r′

r

∂

∂x

[
δα

α

]
+

κ

d− 1

(
γ2V ′(Φ)δΦ + Φ′δΦ′

) ]
+ (d− 1)

γ2

α2
δEβ11 ,

(4.27)

δEa = 0 , δEa =
r2

γ2

[(
α′

α

r′

r
+

2κ

d− 1
γ2V (Φ)

)
δα

α
+

(
(d− 2)

r′

r
− γ′

γ

)
δα′

α

+
δα′′

α
+ γ

(
2κV (Φ)− (d− 2)(d− 3)

r2

)
δγ

−
(
α′

α
+ (d− 2)

r′

r

)
∂

∂x

[
δγ

γ

]
+

(
κ

d− 1

(
2(d− 3)γ2V (Φ)− Φ′2

)
− 2

α′

α

r′

r

)
δr

r

+ (d− 2)

(
α′

α
− γ′

γ
+ (d− 3)

r′

r

)
δr′

r

+ (d− 2)
δr′′

r
− γ2

α2

∂2

∂t2

[
δγ

γ
+ (d− 2)

δr

r

]
+ κ

(
γ2V ′(Φ)δΦ− Φ′δΦ′

) ]
+
r2

α2
δEβa , (4.28)

where (24)

δEβ00 := 0 , δEβ01 := 0 ,

δEβ11 :=
r′

r
δβ̇ , δEβa :=

(
(d− 2)

r′

r
+
γ′

γ

)
δβ̇ + δβ̇′ .

24Despite the notation, the quantities δEβ00, δE
β
01, etc. are not the linearizations of the

quantities E
β
00, E

β
01; the same can be said for the quantities δEβ1 , δE

β
2 , etc. of Es. (4.34)

and for δRβ in Eq. (4.38). This choice of notation has been made just to distinguish the
parts of the linearized quantities δE00, δE01, etc. that vanish when β = 0.
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4.3. Linearizing the �eld equations (and the scalar curvature)

For future convenience, we provide also the linearization of the �eld sys-
tem (2.83-2.87) for the perturbed static solution (4.3,4.4), that is

E
(1)
i (ε) = 0 , E

(1)
i (ε) := Ei

∣∣
ε=0

+ ε δEi (i = 1, 2, 3)

H(1)(ε) = 0 , H(1)(ε) := H
∣∣
ε=0

+ ε δH ,
M(1)(ε) = 0 , M(1)(ε) :=M

∣∣
ε=0

+ ε δM ,

where

δEi :=
dEi
dε

∣∣∣∣
ε=0

(i = 1, 2, 3) , δH :=
dH
dε

∣∣∣∣
ε=0

, δM :=
dM
dε

∣∣∣∣
ε=0

;

of course, even in this case, the linearized equations are satis�ed to the zeroth
order in ε, as it correspons to the static solution, while the �rst order in ε is
satis�ed if and only if the following hold: (25)

δE1 = 0 , δE1 =
γ

α

∂2

∂t2

[
δγ

γ

]
− ∂

∂x

[
α

γ

∂

∂x

[
δα

α

] ]

− α

γ

(
α′

α
+
d− 3

2

r′

r

)
∂

∂x

[
δα

α
− δγ

γ

]
+

[
(d− 1)

α

γ

r′

r
− d− 3

2

∂

∂x

[
α

γ

]]
∂

∂x

[
δr

r

]
− 2(d− 2)αγ

r2

(
δγ

γ
− δr

r

)
+κ

α

γ
Φ′δΦ′

+
d− 3

2

(
γ

α

∂2

∂t2

[
δr

r

]
− α

γ

∂2

∂t2

[
δr

r

])
− γ

α
δEβ1 , (4.29)

25The expressions in Eqs. (4.31,4.32,4.34) have been simpli�ed using the background
equations (3.6,3.8,3.9).
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δE2 = 0 , δE2 =

[
d− 1

2

γ

α

∂2

∂t2

[
δr

r

]
− d− 1

2

∂

∂x

[
α

γ

∂

∂x

[
δr

r

] ]

− d− 1

2

α

γ

r′

r

∂

∂x

[
δα

α
− δγ

γ
+ 2(d− 1)

δr

r

]
+

(d− 1)(d− 2)αγ

r2

(
δγ

γ
− δr

r

)
− καγ

[
2V (Φ)

δγ

γ
+V ′(Φ)δΦ

]]
r2 − d− 1

2

γ

α
δEβ2 , (4.30)

δE3 = 0 , δE3 =
γ

α
δΦ̈− ∂

∂x

[
α

γ
δΦ′
]
− (d− 1)

α

γ

r′

r
δΦ′

− α

γ
Φ′

∂

∂x

[
δα

α
− δγ

γ
+ (d− 1)

δr

r

]
− αγ

[
2V ′(Φ)

δγ

γ
+ V ′′(Φ)δΦ

]
− γ

α
δEβ3 , (4.31)

δH = 0 , δH =(d− 1)(d− 2)
αγ

r2

(
δr

r
− δγ

γ

)
+ καγ

(
2V (Φ)

δγ

γ
+V ′(Φ)δΦ

)
+ (d− 1)

α

γ

[
∂2

∂x2

[
δr

r

]

+

(
d
r′

r
− γ′

γ

)
∂

∂x

[
δr

r

]
− r′

r

∂

∂x

[
δγ

γ

]
− κ

d− 1
Φ′δΦ′

]
+ δHβ ,

(4.32)

δM = 0 , δM =(d− 1)
∂

∂t

[
∂

∂x

[
δr

r

]
− r

α

∂

∂x

[
α

r

]
δr

r

− r′

r

δγ

γ
− κ

d− 1
Φ′δΦ

]
+ δMβ , (4.33)

where

δEβ1 :=

(
d− 3

2

r′

r
+
γ′

γ

)
δβ̇ + δβ̇′ , δEβ2 := rr′δβ̇ , δEβ3 := r2Φ′δβ̇ ,

δHβ := 0 , δMβ := 0 .
(4.34)
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For future use, we add the linearization of the scalar curvature (2.39):
this is de�ned as

R(1)(ε) := R0 + ε δR , (4.35)

where

R0 := R
∣∣
ε=0

, δR :=
dR

dε

∣∣∣∣
ε=0

;

of course the zeroth order in ε is exactly the scalar curvature of the static
metric (4.1), that is,

R0 =
2

γ2

(
α′

α

γ′

γ
− α′′

α
− (d− 1)

r′′

r

)
+ 2(d− 1)

α

γ3

r′

r

∂

∂x

[
γ

α

]
+

(d− 2)(d− 1)

r2

(
1− r′2

γ2

)
, (4.36)

while the �rst order in ε reads (26)

δR =
2

d− 1

{[(
1

d− 1

α′

α
+
r′

r

)(
δγ

γ

)′
+

(
γ′

γ
− α′

α
− (d− 2)r′

r

)
δr′

r

+

(
1

d− 1

γ′

γ
− r′

r

)
δα′

α
− 1

d− 1

δα′′

α
+

κ

d− 1
Φ′2

δγ

γ
− r′′

r

]
1

γ2

− 2κ

d− 1

(
1

d− 1

δα

α
+
d+ 1

d− 1

δγ

γ
+
δr

r

)
V (Φ)

+

(
1

d− 1

δγ̈

γ
+
δr̈

r

)
1

α2
+ (d− 2)

δγ

γ

1

r2

}
− 2

α2
δRβ , (4.37)

where

δRβ :=

(
(d− 1)

r′

r
+
γ′

γ

)
β̇ + δβ̇′ . (4.38)

4.3.1 Linearization of the constrained system and the
scalar curvature in the δβ = 0 gauge

In Section 4.2 (and, in particular, in Remark 37) we have discussed the chance
of introducing a coordinate transformation such that in the new gauge the
perturbation function δβ vanishes. In this case the linearized �eld system
(4.29-4.33) becomes simpler as the quantities Eβ1 , E

β
2 , E

β
3 , Hβ andMβ in Eq.

26The expression for δR has been simpli�ed using the background equations (3.6,3.8,3.9).
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4. Field equations for perturbed static wormhole solutions

(4.34) are zero; in addition, it turns out that, analogously to the exact system
(2.83-2.87) in the β(t, x) = 0 gauge (see Subsection 2.5.1), the linearized
system (4.29-4.33) is made up of three evolution equations δE1 = 0, δE2 = 0,
δE3 = 0 subject to the constraints δH = 0 and δM = 0. This fact is stated
more precisely in the following

Proposition 5 In the gauge δβ = 0, the equations δH = 0 and δM = 0
[Eqs. (4.32,4.33)] are two constraints for the second order evolution equa-
tions δE1 = 0, δE2 = 0, δE3 = 0 [Eqs. (4.29-4.31)]; this means that if
(δα, δγ, δr, δΦ) is a (time-dependent) solution of the system (4.29-4.31) sat-
isfying equations δH = 0, δM = 0 at time t = 0, then (δα, δγ, δr, δΦ)
satis�es equations δH = 0, δM = 0 for every time t.

Proof. Analogously as in the proof of Proposition 4, we show that if
(δα, δγ, δr, δΦ) is a solution of the linearized evolution equations (4.29-4.31),
then the corresponding quantities δH and δM de�ned in Eqs. (4.32,4.33)
satisfy a �rst order dynamical system with smooth coe�cients. Indeed, the
quantities δE1, δE2, δE3, δH and δM de�ned in Eqs. (4.29-4.33) are related
by the following identities (27)

˙δH =

[(
α

γ

)′
+ (d− 1)

α

γ

r′

r

]
δM+

α

γ
δM′ , (4.39)

˙δM =

[(
α

γ

)′
+ (d− 1)

α

γ

r′

r

]
δH +

α

γ
δH′

− (d− 1)
α

γ

r′

r
δE1 − 2

α

γr2

[
γ′

γ
− d− 5

2

r′

r

]
δE2 + 2

α

γr2
δE′2 −

α

γ

κΦ′

r2
δE3 .

(4.40)

Therefore, if the perturbation functions (δα, δγ, δr, δΦ) satisfy Eqs. (4.29-
4.31) for every t and x, and satisfy Eqs. (4.32,4.33) at t = 0, then, for every
�xed value of x, the corresponding quantities δH(t) ≡ δH(t, x) and δM(t) ≡
δM(t, x) satisfy the dynamical system (4.39,4.40) with δE1 = δE2 = δE′2 =
δE3 = 0 and the initial condition δH(0) = δM(0) = 0; obviously, this implies
that ˙δH(t) = ˙δM(t) = 0 for every time t, i.e. δH(t, x) = δM(t, x) = 0 for
every time t and every x.

�

27In deriving the system (4.39,4.40) we have used the background equations (3.6-3.9) in
order to eliminate the derivatives Φ′′, α′′, r′′ and r′2 of the static solution.
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Chapter 5

A gauge-dependent linear

stability analysis of two wormhole

solutions

In this chapter we present a �rst, probably naive but nevertheless instructive,
strategy for analyse the stability of some static wormhole con�gurations of
the form (4.1), namely

β = 0 , (α, γ, r,Φ) := (α(x), γ(x), r(x),Φ(x)) . (5.1)

This approach strongly relies on the choice of a particular, suitably de�ned
gauge, which is made in order to �simplify� as much as possible the linearized
�eld equations. Obviously, this choice strictly depends on the expression of
the static solution under consideration and therefore can not be generalized
in any sense. Having set the coordinate system, with a little luck, one can
gradually decouple the system, �nally obtaining a single equation involving
only one of the unknown perturbations: we refer to this equation as master
equation. Once the master equation has been solved, the remaining compo-
nents of the perturbation are derived from its solution. In all the cases that
we present, the master equation turns out to be a wave type equation for (a
function of) the radial perturbation δr: pro�ting from the spectral analysis
of the Schrödinger-type operator appearing in the master equation, we can
infer both qualitative and quantitative features of its solution.

A divergence of δr, as the temporal coordinate goes to in�nity, at least
for some particular initial data, is a signi�cant hint of the linear instability
of the wormhole con�guration; actually, this fact is not su�cient to infer
the instability, since the expression of δr depends on the gauge chosen. In-
deed, in order to prove the linear instability, one has to prove that there
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5. A gauge-dependent linear stability analysis of two wormhole solutions

exists a solution δr of the master equation such that the corresponding per-
turbed spacetime becomes singular as the temporal coordinate t approaches
in�nity. To check this fact, it is su�cient to show that at least one intrinsic
scalar quantity diverges to in�nity, like, for example, the scalar curvature. Of
course, since we are considering time dependent linear perturbations of the
spacetime, one is led to prove that the linearization of the scalar curvature
diverges for large value of the coordinate t. Unfortunately, the divergence of
the linearization of the scalar curvature for t→ ±∞ could be an artifact that
can be eliminated by an everywhere smooth in�nitesimal coordinate change
φε [Eq. (4.6)] (see Appendix B.2 for an example). In conclusion, one has to
verify that:

(i) the divergence of the perturbation δr for t → +∞ corresponds to the
divergence of the linearization of the scalar curvature, in the large t
limit, at least at a �xed position x;

(ii) the divergence of the linearization of the scalar curvature can not be
eliminated by changing the gauge via an in�nitesimal coordinate trans-
formation.

In the forthcoming sections we deal with the linear stability problem
of two static wormhole solutions presented in Chapter 3: the Torii-Shinkai
(3.34) and the Ellis-Bronnikov wormhole (3.39). We follow the approach
explained in the previous paragraph; more precisely, for both the solutions
we stick to the following general program:

(a) we set a particular gauge;

(b) we write the corresponding linearized Einstein equations and scalar
curvature by substituting the static solution under analysis and the
ansatz on the perturbations, made in (a), into Eqs. (4.25-4.28) and
into Eqs. (4.35,4.36,4.37);

(c) we analyze the system of linear equations for the perturbations arising
from (b), and reduce it to a single master equation;

(d) we prove the divergence of the solution of the master equation from a
spectral analysis of the di�erential operator in the master equation;

(e) we infer the linear instability of the wormhole as in items (i-ii), showing
in particular that the linearization of the scalar curvature diverges and
that this divergence does not depend on the gauge chosen in (a).
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5.1. Gauge-dependent linear stability analysis of the Torii-Shinkai
wormhole

5.1 Gauge-dependent linear stability analysis

of the Torii-Shinkai wormhole

5.1.1 Gauge choice

We consider a general perturbation of the Torii-Shinkai wormhole solution,
that is, the metric (2.24) and the scalar �eld de�ned by Eqs. (4.3,4.4) with
(t, x) in place of (t, x), where the static solution (5.1) is given by Eq. (3.34);
in this case, it is always possible to introduce a new coordinate system (t̃, x̃)
by de�ning a gauge transformation (δt, δx) such that the transformed per-
turbations δ̃β and δ̃α vanishes. Indeed, using Eq. (4.19) with (δt, δx) in
place of (δt, δx) and with (t, x) in place of (t, x) (recalling that α = 1, and
then α′ = 0), δα is sent to zero if the transformation δt is de�ned as

δt(t̃, x̃) =

∫ t̃

t̃0

−δα(t, x̃) dt , t̃0 ∈ R ; (5.2)

moreover, using Eq. (4.20) (again with (δt, δx) and (t, x) in place, respec-
tively, of (δt, δx) and (t, x)), one can make the transformed perturbation δ̃β
equal to zero by setting (28)

δx(t̃, x̃) =

∫ t̃

t̃1

(−δβ(t, x̃) + δt′(t, x̃)) dt , t̃1 ∈ R (5.3)

with δt as in Eq. (5.2).
Hence, throughout the present section we consider the coordinates (t̃, x̃)
that for the sake of intelligibility, we will denote simply with (t, x); this is
equivalent to assume that

δα := 0 δβ := 0 . (5.4)

In addition, just to simplify the subsequent calculations, we introduce three
smooth dimensionless functions Γ,R,Ψ : R2 → R and set

δγ := Γ(t, x) , δr := ρ
5−3d

2 (x)R(t, x) , δΦ :=

√
(d− 1)(d− 2)

κ
Ψ(t, x) ,

(5.5)

where ρ is the function de�ned in Eq. (3.31).

28The position (5.3) is equivalent to the position (4.24) expressed in the coordinates

(t, x) in place of (t, x) and with γ2

α2 = 1.
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5. A gauge-dependent linear stability analysis of two wormhole solutions

5.1.2 Field equations and the linearization of the scalar
curvature

Let us substitute the expressions (3.34,5.4,5.5) into the linearized Einstein
equations (4.25-4.28) with the coordinates (t, x) replaced by (t, x): whenever
we meet the derivatives ρ′, ρ′′, φ′ we express them via Eqs. (3.14,3.15). We
get

δE00 =0 , δE00 =
d− 1

ρd−1

{
(d− 2)ρd−3Γ + ρd−2 sign

√
1− 1

ρ2(d−2)
Γ′

− 3d− 5

4ρ
5(d−1)

2

[
(d+ 1)ρ2(d−2) − 3(d− 3)

]
R

+
2d− 3

ρ
d+1
2

sign

√
1− 1

ρ2(d−2)
R′ − R′′

ρ
d−1
2

+ (d− 2)Ψ′

}
,

(5.6)

δE01 =0 , δE01 =
d− 1

ρd−1

{
ρd−2 sign

√
1− 1

ρ2(d−2)
Γ̇

+
3d− 5

2ρ
d+1
2

sign

√
1− 1

ρ2(d−2)
Ṙ− Ṙ′

ρ
d−1
2

+ (d− 2)Ψ̇

}
, (5.7)

δE11 =0 , δE11 =− (d− 1)(d− 2)

ρ2

{
Γ− d− 1

2ρ
7d−11

2

[
3− 3d− 5

d− 1
ρ2(d−2)

]
R

− 1

ρ
3d−5

2

sign

√
1− 1

ρ2(d−2)
R′ +

R̈

(d− 2)ρ
3d−7

2

− Ψ′

ρd−3

}
,

(5.8)

δEa =0 , Ea =− (d− 2)

{
(d− 3)Γ + ρ sign

√
1− 1

ρ2(d−2)
Γ′ +

ρ2

d− 2
Γ̈

+
d− 3

4ρ
7d−11

2

[
9(d− 1)2 − (d+ 3)(3d− 5)ρ2(d−2)

]
R

+
2(d− 1)

ρ
3d−5

2

sign

√
1− 1

ρ2(d−2)
R′ +

(R̈− R′′)

ρ
3d−7

2

+
d− 1

ρd−3
Ψ′

}
.

(5.9)
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5.1. Gauge-dependent linear stability analysis of the Torii-Shinkai
wormhole

For future use, we also write down the �rst order expansion of the scalar
curvature (4.35,4.36,4.37), which is as follows (recall that in the gauge (5.4)
we have that δRβ = 0):

R(1)(ε) = R0 + ε δR , (5.10)

where

R0 =− (d− 1)(d− 2)

ρ2(d−1)
, (5.11)

δR =2(d− 1)

[
d− 2

ρ2(d−1)

[
1 + ρ2(d−2)

]
Γ +

1

ρ
sign

√
1− 1

ρ2(d−2)
Γ′ +

Γ̈

d− 1

− 3d− 5

4ρ
7d−7

2

[
(d+ 1)ρ2(d−2) − 3(d− 1)

]
R +

(2d− 3)Rx

ρ
5d−5

2

+
(R̈− R′′)

ρ
3(d−1)

2

]
.

(5.12)

5.1.3 Decoupling the �eld equations

Finding the �eld perturbation Ψ

Integrating with respect to t, we see that Eq. (5.7) holds if and only if

Ψ =
ρd−2

d− 2

[
− sign

√
1− 1

ρ2(d−2)

(
Γ +

3d− 5

2ρ3 d−1
2

R

)
+

R′

ρ
3d−5

2

]
+ C(x)

where C : R → R is a smooth function. Inserting this espression for Ψ into
Eq. (5.6), we see that the latter holds if and only if C is constant. Summing
up: Eqs. (5.6)(5.7) hold if and only if

Ψ(t, x) =
ρ(x)d−2

d− 2

[
− sign(x)

√
1− 1

ρ(x)2(d−2)

(
Γ(t, x) +

3d− 5

2ρ3 d−1
2

R(t, x)

)

+
R′(t, x)

ρ
3d−5

2

]
+ C (5.13)

where C ∈ R is a constant. The value of C is immaterial since Ψ appears
in the linearized equations (5.6-5.9) only through its derivatives as the same
can be said for Φ in the exact equations (2.73-2.76).
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5. A gauge-dependent linear stability analysis of two wormhole solutions

The perturbations Γ and Ψ as functions of R

Now we are left with Eqs. (5.8,5.9); E11 and Ea are reduced, after substituting
the expression (5.13) for Ψ, to the expressions

δE11 =− (d− 1)

{
2(d− 2)

ρ2
Γ +

1

ρ
sign

√
1− 1

ρ2(d−2)
Γ′

+
1

4ρ
7(d−1)

2

[
3(d− 1)2 + (3d− 5)(d− 5)ρ2(d−2)

]
R

+
d− 1

ρ
3d−1

2

sign

√
1− 1

ρ2(d−2)
R′ − R′′

ρ
3(d−1)

2

+
R̈

ρ
3(d−1)

2

}
, (5.14)

δEa =− 1

ρ2

{
− 2(d− 2)

ρ2
Γ− 1

ρ
sign

√
1− 1

ρ2(d−2)
Γ′ + Γ̈

− 1

4ρ
7(d−1)

2

[
3(d− 1)2 + (3d− 5)(d− 5)ρ2(d−2)

]
R

− d− 1

ρ
3d−1

2

sign

√
1− 1

ρ2(d−2)
R′ − R′′

ρ
3(d−1)

2

+ (d− 2)
R̈

ρ
3(d−1)

2

}
. (5.15)

Evidently, the system δE11 = 0, δEa = 0 is equivalent to the system formed
by δE11 = 0 and − δE11

d−1
− δEa

ρ2
= 0; the latter combination, which reads

Γ̈ +
d− 1

ρ
3(d−1)

2

R̈ = 0 , (5.16)

can be integrated twice in time t, leading to

Γ(t, x) = − d− 1

ρ
3(d−1)

2 (x)
R(t, x) + P0(x) + tP1(x) (5.17)

where P0,P1 : R → R are smooth integration functions; these are closely
related to the set of initial data

Γ0(x) := Γ(0, x) , Γ1(x) := Γ̇(0, x) ,

R0(x) := R(0, x) , R1(x) := Ṙ(0, x) ,
(5.18)

since (5.17) and its t derivative imply (once evaluated in t = 0)

Pi(x) = Γi(x) +
d− 1

ρ
3(d−1)

2 (x)
Ri(x) (i = 0, 1) . (5.19)
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wormhole

Returning to Eq. (5.13) for Ψ, and substituting therein Eq. (5.17) for Γ, we
obtain for the �eld perturbation the �nal expression

Ψ(t, x) =
1

d− 2

[
− d− 3

2ρ
d+1
2 (x)

sign(x)

√
1− 1

ρ2(d−2)(x)
R(t, x) +

R′(t, x)

ρ
d−1
2 (x)

−ρd−2(x) sign(x)

√
1− 1

ρ2(d−2)(x)

(
P0(x) + tP1(x)

)]
+ C (5.20)

A master equation for the radial perturbation R

We �nally substitute the expressions (5.17,5.20) for Γ and Ψ into Eq. (5.14);
the equation obtained in this way holds if and only if the following wave
equation holds [

∂2

∂t2
− ∂2

∂x2
+ V

]
R = J0 + t J1 , (5.21)

where

V(x) ≡Vd,b(x) :=
1

4ρ2(x)

[
(d− 3)(d− 5)− 3(d− 1)2

ρ2(d−2)(x)

]
(x ∈ R) , (5.22)

Ji(x) :=− ρ 7−3d
2 (x)

[
2(d− 2)Pi(x) + ρ(x) sign(x)

√
1− 1

ρ2(d−2)(x)
P′i(x)

]
(i = 0, 1) . (5.23)

Eq. (5.21) is our master equation for the linear perturbation analysis of the
Torii-Shinkai wormhole: this is a wave-type equation for R with the potential
V and the source term J0(x) + t J1(x).

Remark 38 The functions Ji are fully determined by the functions Pi or,
due to Eq. (5.19), by the initial data Γi, Ri (i = 0, 1):

Ji(x) =− 2(d− 2)ρ
3d−7

2 (x)Γi(x)

− d− 1

ρ2(d−1)(x)

[
3(d− 1) + (d− 5)ρ2(2d−1)(x)

]
Ri(x)

− 1

ρ(x)
sign(x)

√
1− 1

ρ2(d−2)(x)

(
ρ

3(d−1)
2 (x)Γ′i(x) + (d− 1)R′i(x)

)
.

(5.24)
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Remark 39 For future use, we note that the potential V in Eq. (5.22) is
an even function, with the asymptotics

V(x) = (d− 3)(d− 5)

(
1

4|x|2 +
Cd

2|x|3
)

+O

(
1

|x|4
)

for x→ ±∞ (5.25)

(this follows from the fact that ρ is even and from Eq. (3.29) about the large
|x| asymptotics of this function; recall that Cd is de�ned by Eq.(3.22)).

5.1.4 Solution of the master equation and linear in-
stability of the Torii-Shinkai wormhole - gauge-
dependent formulation

For every d ≥ 3 and every b > 0, let us consider the master equation (5.21),
which contains the potential (5.22) and the source term J0 + tJ1, where Ji
are de�ned in Eq. (5.23) for i = 0, 1; the master equation can be rewritten
as

R̈(t) +HR(t) = J0 + t J1 (t ∈ R), (5.26)

where

H := − d2

dx2
+ V (V ≡ V(x) as in Eq. (5.22)) (5.27)

is, formally, a Schrödinger type operator in space dimension 1 with potential
V ; the unknown of Eq. (5.26) is a function

R(t) ≡ R(t, ·) : x 7→ R(t, x) for every t ∈ R .

Remark 40 If we want a rigorous functional setting for Eq. (5.26), we are
led to consider the Hilbert space

H := L2(R, dx) (5.28)

made of complex valued, square integrable functions on R, for the measure
dx with its inner product 〈 | 〉 and the associated norm ‖ ‖. (29) H can be
regarded as a selfadjoint operator in H, if we give for it the precise de�nition

H := − d2

dx2
+ V : D ⊂ H→ H , D := {f ∈ H | fxx ∈ H} , (5.29)

intending all x-derivatives in the distributional sense. (30)

In Appendix D.1 we prove the following facts which are valid for every d ≥ 3
and every b > 0:

29For more details, see Remark 84 in Appendix C.
30See Footnote 67 in Appendix D.
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(i) H possesses a point spectrum consisting of a unique, simple eigenvalue
µ1 < 0;

(ii) H possesses a continuous spectrum which coincides with [0,+∞).

In addition, in Appendix E.1 we show that it is possible to built a generalized
orthonormal basis of the Hilbert space H, using

(i) a normalized eigenfunction e1 for the eigenvalue µ1 < 0, i.e.

e1 ∈ D : ‖e1‖ = 1 , He1 = µ1e1

(e1 is proved to be C∞(R));

(ii) two suitably chosen and linearly independent �improper eigenfunctions�
eiλ (i = 1, 2) for each λ ∈ (0,+∞), i.e.,

eiλ ∈ C∞(R) \D : Heiλ = λeiλ (i = 1, 2 ; λ > 0) .

Now, we can search the solution R(t) of the master equation (5.26) with
appropriate smoothness properties and with the initial conditions given in
Eq. (5.18), that is

R(0) = R0 , Ṙ(0) = R1 , (5.30)

where

Ri : R→ R , Ri : x 7→ Ri(x) (i = 0, 1)

are two functions with an appropriate regularity.
For all technical details, one can refer to Appendix E.1.2; therein, we intro-
duce the space E(R,R) [Eq. (E.30)] and we show that (see Proposition 18),
for any initial data such that

Rj,Γj ∈ C∞(R,R) : Rj, Jj ∈ E(R,R) for j = 0, 1

(Ji's are de�ned by Eqs. (5.19,5.23)), the linearized Einstein equations (5.6-
5.9) has a unique solution (R(t, x),Γ(t, x),Φ(t, x)), de�ned for every (t, x) ∈
R2, such that:

R(t, x),Γ(t, x),Φ(t, x) ∈ C∞(R2,R) , R(t, x) ≡ R(t) ∈ C∞(R, E(R,R)) ;

the functions Γ,Φ can be expressed in terms of the function R via Eqs.
(5.17,5.20,5.19), while the function R(t), for all t ∈ R, can be decomposed
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by means of the previously mentioned generalized orthonormal basis as

R(t) =

[
〈e1|R0〉 cosh(|µ1|1/2t) + 〈e1|R1〉

sinh(|µ1|1/2t)

|µ1|1/2

+ 〈e1|J0〉
cosh(|µ1|1/2t− 1

|µ1|
+ 〈e1|J1〉

sinh(|µ1|1/2t)− |µ1|1/2t
|µ1|3/2

]
e1

+
∑
i=1,2

∫ +∞

0

[
〈eiλ|R0〉 cos(λ1/2t) + 〈eiλ|R1〉

sin(λ1/2t)

λ1/2

+ 〈eiλ|J0〉
1− cos(λ1/2t)

λ
+ 〈eiλ|J1〉

λ1/2t− sin(λ1/2t)

λ3/2

]
eiλ dλ ,

(5.31)

As explained in Remark 100, the symbols 〈·|·〉 in the above formula indi-
cate usual inner products in H, or suitably de�ned generalizations, while the
integrals over λ are understood in a weak sense.

Remark 41 Let us now choose the initial data

R0(x) := e1(x) , R1(x) := 0 , Γ0(x) = −(d− 1)e1(x)

ρ(x)
3
2

(d−1)
, Γ1(x) := 0 .

Then, from Eqs. (5.19,5.23) we have

Pi = 0 and Ji = 0 (i = 0, 1) ,

while, from the orthonormality of the basis [Eq. (C.4)] we have

〈e1|R0〉 = 1 and 〈eiλ|R0〉 = 0 (i = 0, 1) .

From here and from Eqs. (5.31,5.17,5.20) we have that the solution of the
linearized system reads

R(t, x) = cosh(|µ1|1/2t)e1(x) , Γ(t, x) = −(d− 1)R(t, x)

ρ(x)
3
2

(d−1)
,

Φ(t, x) = −(d− 3)sign(x)R(t, x)

2(d− 2)ρ(x)
1
2

(d+1)

√
1− 1

ρ(x)2(d−2)
+

R′(t, x)

(d− 2)ρ(x)
1
2

(d−1)
+ C .

(5.32)
Clearly, the solution (5.32) diverges exponentially for t 7→ ±∞; however the
functions (R(t, x), Γ(t, x), Φ(t, x)) obviously do depend on the gauge chosen,
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hence their divergence does not allow to infer a linear instability result for the
Torii-Shinkai wormhole. Indeed, as already mentioned at the beginning of
this chapter in order to prove the linear instability, one has to prove that the
solution (5.32) corresponds to a perturbed spacetime which becomes singular
as the timelike coordinate t approaches in�nity. To check this fact, in the
rest of the present section we will verify that the perturbed spacetime tends
to be singular as t→ ±∞ by showing that the linearized scalar curvature of
the spacetime blows at the throat, independently on the gauge chosen.

Remark 42 Substituting Eq. (5.32) into Eqs. (5.10-5.12) (and using the
relation He1 = −µ1e1, i.e., e

′′
1(x) = (−µ1 + V(x))e1(x)) we have that the

linearization of the scalar curvature reads

R(1)(ε) =− (d− 1)(d− 2)

ρ(x)2(d−1)
+
[
(d− 1)(d− 2)K(x) cosh(|µ1|1/2t)

]
ε , (5.33)

K(x) :=
1

ρ(x)
7
2

(d−1)

[(
d− 1− (d− 3)ρ(x)2(d−2) +

2µ1ρ(x)2(d−1)

d− 2

)
e1(x)

+ 2ρ(x)2d−3sign(x)

√
1− 1

ρ(x)2(d−2)
e′1(x)

]
. (5.34)

For any �xed value of ε > 0 the linearization of the scalar curvature (5.33)
diverges as t → ±∞; in particular, R(1)(ε) → ∞ in correspondence of the
throat x = 0. In order to see this fact it is su�cient to show that the function
K does not vanish at x = 0, that is

K(0) =
2

d− 2
(d− 2 + µ1) e1(0) 6= 0 . (5.35)

Let us prove Eq. (5.35). The estimate in Remark 92 of Appendix D.1.2 for
the eigenvalue µ1 gives the numerical evidence that µ1 < 2 − d for every
d ≥ 3, from which d − 2 + µ1 6= 0. Moreover, let us show that e1(0) 6= 0.
To this purpose, we recall that e1 is an even function (see item (iii)(a) of
Appendix D.1.1), whence e′1(0) = 0: if it were also e1(0) = 0, making obvious
considerations on the initial value problem for the di�erential equation e′′1 =
(−µ1 + V(x))e1, we could infer e1(x) = 0 for all x ∈ R, which is clearly
impossible.

Remark 43 At the very beginning of the present chapter, we have men-
tioned that the divergence of the linearization of the scalar curvature R1(ε)
(that is, of the coe�cient of ε in Eq. (5.33)) could be an artifact that can be
eliminated by an everywhere smooth in�nitesimal coordinate change φε [Eq.
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5. A gauge-dependent linear stability analysis of two wormhole solutions

(4.6)]. However, in Appendix B.2, we show the following general fact (see
Proposition 14): given a coordinate system (t, x) and a linearized function

R0(t, x) + ε δR(t, x) (5.36)

such that:

(a) R0(t, x) ≡ R0(x), that is, the term of the zeroth order in ε is t-
independent;

(b) δR(t, x0)→∞ as t→∞ for a given x0, that is, the linearization (5.36)
diverges in the large t limit at x = x0;

(c) R′0(x0) = 0;

then, the linearization (5.36) written in any coordinate system (t̃, x̃) ε-close
to the coordinate system (t, x) still diverges in x̃ = x0 as t̃→∞.
In conclusion, we can say that the linearized scalar curvature R(1)(ε) diverges
at the spacetime points such that x = 0 if it satis�es items (a-c): items (a)
is trivially satis�ed and we have already veri�ed that (b) holds for x = 0; in
addition, we have that

∂

∂x

[
− (d− 1)(d− 2)

ρ(x)2(d−1)

]
=

2(d− 1)2(d− 2)sign(x)

ρ(x)2d−1

√
1− 1

ρ(x)2(d−2)

which clearly vanishes in x = 0, so that the condition (c) is satis�ed.
Hence, we have proved that for t → ±∞ the perturbed spacetime becomes
singular at least in correspondence of spacetime points such that x = 0, which
are clearly reachable by geodesics of the wormhole in �nite proper time.

The previous three remarks are the proof of the following

Theorem 5 (Linear instability of the Torii-Shikai wormhole - gauge-
dependent version)
For all d ≥ 3 and for all b > 0, the Torii-Shinkai wormhole is linearly un-
stable under small spherically symmetric perturbations of its metric and the
associated scalar �eld; more precisely, for some special initial data of the per-
turbation functions, the perturbed spacetime becomes singular as the temporal
coordinate t goes to ±∞.

Remark 44 Since the previous result is valid for all d ≥ 3, in the case
d = 3, it states the linear instability of the EBMT wormhole; moreover, in
this case the gauge-dependent approach used in this section reduced exactly
to the deduction given in Ref. [2].
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5.2. Gauge-dependent linear stability analysis of the AdS wormhole

Remark 45 Admittedly, the linear instability of the EBMT and the Torii-
Shinkai wormholes have �rstly been proved, respectively, in Refs. [25] and
[35] using a di�erent approach; a closer comparison between the scheme pro-
posed in this section (and in Ref. [2]) and that adopted in Refs. [25, 35]
(and in other subsequent papers on the same subject) will be performed in
Chapter 8.

5.2 Gauge-dependent linear stability analysis

of the AdS wormhole

5.2.1 Gauge choice

We start introducing a general perturbation of the AdS wormhole solution,
that is, the metric (2.24) and the scalar �eld de�ned by Eqs. (4.3,4.4) with
(s, u) in place of (t, x), where the static solution (5.1) is given by Eq. (3.62);
we now show that in this case it is always possible to provide a gauge trans-
formation (δs, δu) such that the transformed perturbations δ̃β, δ̃α, δ̃r satisfy

δ̃β = 0 , α δ̃α =
1

4(1 +B2)
r δ̃r . (5.37)

From Eqs. (4.19,4.22) with (s, u) and (δs, δu) in place, respectively, of (t, x)
and (δt, δx), we have that the �rst condition in Eq. (5.37) can be satis�ed
by setting (31)

δu(s̃, ũ) =

∫ s̃

s̃1

(−δβ(s, ũ) + δs′(s, ũ)) ds , s̃1 ∈ R , (5.38)

while the second condition in Eq. (5.37) is obtained as long as the following
equation holds

δ̇s = −δα
α

+
1

4(1 +B2)

r δr

α2
+

(
1

4(1 +B2)
r r′ − αα′

)
δu

α2
. (5.39)

In general, one has to insert the expression for δu given Eq. (5.38) into Eq.
(5.39) and then, hopefully, solve the resulting partial di�erential equation in
the unknown δs(s̃, ũ); fortunately, in the AdS case of the coe�cient of δu in
Eq. (5.39) is zero since one can verify that

α2 =
1

4k2(1 +B2)
+

1

4(1 +B2)
r2 ,

31The position (5.38) is equivalent to the positions (4.24,5.3) expressed in the coordinates

(s, u) in place, respectively of (t, x) and (t, x), and with γ2

α2 = 1.
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which implies that (deriving both sides with respect to x and dividing by 2)

αα′ =
1

4(1 +B2)
r r′ .

Hence, Eq. (5.39) can be trivially solved leading to

δs(s̃, ũ) =

∫ ũ

ũ0

(
−δα(s̃, u)

α(u)
+

1

4(1 +B2)

r(u) δr(s̃, u)

α(u)2

)
du , ũ0 ∈ R .

(5.40)
In conclusion, the assumptions (5.37) can be reached by setting the transfor-
mation δs as in Eq. (5.40) and, consequently, δu as in Eq. (5.38).
Therefore, throughout the present section we assume the coordinates (s̃, ũ)
that, for the sake of clearness, we will keep denoting with (s, u); hence we set

δβ = 0 , α δα =
1

4(1 +B2)
r δr . (5.41)

In addition, in order to simplify the subsequent calculations, we introduce
three smooth dimensionless functions Γ,R,Ψ : R2 → R and set

δα :=
bR(s, u)

2
√

2(1 +B2)
√

1 + 2B2 − cosu
, δγ := b2 Γ(s, u) ,

δr :=
bR(s, u)

1 + 2B2 − cosu
, δΦ :=

√
2

κ
Ψ(s, u) .

(5.42)

Note that the second assumption in Eq. (5.41) is obviously satis�ed by the
perturbations δα and δr given in Eq. (5.42).
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5.2. Gauge-dependent linear stability analysis of the AdS wormhole

5.2.2 Field equations and the linearization of the scalar
curvature

We now substitute the expressions (3.62,5.42) into the linearized Einstein
equations (4.25-4.28) with the coordinates (t, x) replaced by (s, u). It results

δE00 = 0 , δE00 =
B

1 + 2B2 − cosu

[
2
√
B2 + 1

(
Ψ′ + tan

u

2
Ψ

)
+
(
B2 + 1

)(
4 sin

u

2
Γ′ − (cosu− 3) sec

u

2
Γ

)
+

√
2 cos u

2√
1 + 2B2 − cosu

(
3 sinu

1 + 2B2 − cosu
R′ − 2R′′

)
+

(
24B4 + 38B2 + 6− (8B4 + 16B2 + 17) cosu

4
√

2 (1 + 2B2 − cosu)5/2

+
10 (B2 + 1) cos(2u) + cos(3u)

4
√

2 (1 + 2B2 − cosu)5/2

)
sec

u

2
R

]
, (5.43)

δE01 = 0 , δE01 =
B

1 + 2B2 − cosu

[
2
√
B2 + 1

(
2
√
B2 + 1 sin

u

2
Γ̇ + Ψ̇

)
+

√
2√

1 + 2B2 − cosu

×
(

3 + 2B2 + cosu

1 + 2B2 − cosu
sin

u

2
Ṙ− 2 cos

u

2
Ṙ′
)]

, (5.44)

δE11 = 0 , δE11 =
B

1 + 2B2 − cosu

[
2
√
B2 + 1

(
Ψ′ − tan

u

2
Ψ

)
+ 2

(
B2 + 1

)
(cosu− 2) sec

u

2
Γ

+
2
√

2√
1 + 2B2 − cosu

×
(

2 + 3B2 − cosu

1 + 2B2 − cosu
sin

u

2
R′ − cos

u

2
R̈

)
+

(
− 24B4 + 44B2 + 24− (24B4 + 56B2 + 25) cosu

4
√

2 (1 + 2B2 − cosu)5/2

+
4B2 cos(2u)− cos(3u)

4
√

2 (1 + 2B2 − cosu)5/2

)
sec

u

2
R

]
, (5.45)
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δEa = 0 , δEa =B

[
− 4
√
B2 + 1

(
Ψ′ + tan

u

2
Ψ

)
+

√
2 cos u

2√
1 + 2B2 − cosu

(
− 2
√

2Γ̈
(
1 + 2B2 − cosu

)3/2

+
3 + 4B2 − cosu

B2 + 1
R′′ − 2R̈

)
− 2

(
3 + 4B2 − cosu

)
sin

u

2
Γ′

− 1

4

(
24B2 + 17− 8

(
B2 + 2

)
cosu− cos(2u)

)
sec

u

2
Γ

−
√

2
9 + 10B2 − cosu

(B2 + 1) (1 + 2B2 − cosu)3/2
sin

u

2
cos2 u

2
R′

−
(

96B4 + 136B2 + 26− (32B4 + 80B2 + 65) cosu

8
√

2 (1 + 2B2 − cosu)5/2

+
(40B2 + 38) cos(2u) + cos(3u)

8
√

2 (1 + 2B2 − cosu)5/2

)
sec

u

2
R

]
. (5.46)
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In addition, we consider the �rst order expansion of the scalar curvature
(2.39), which, in the AdS case, reads (note that in the gauge (5.41) δRβ = 0):

R(1)(ε) = R0 + ε δR , (5.47)

where

R0 =− 2k2

(
3 (6B4 + 8B2 + 3)− 2 (3B4 + 11B2 + 6) cosu

(1 + 2B2 − cosu)2

+
(2B2 + 3) cos(2u)

(1 + 2B2 − cosu)2

)
, (5.48)

δR =
B3 cos u

2

2 (1 + 2B2 − cosu)2

[
8
√

2 cos2 u

2

√
1 + 2B2 − cosu

×
(

2
√

2
(
1 + 2B2 − cosu

)3/2
Γ̈− 5 + 6B2 − cosu

B2 + 1
R′′ + 4R̈

)
+ 2
√

2 sin
u

2
cos

u

2

(
1 + 2B2 − cosu

)(
4
√

2
(
5 + 6B2 − cosu

)
Γ′

− 24B4 + 8B2 − 13− 4 (10B2 + 9) cosu+ cos(2u)

(B2 + 1) (1 + 2B2 − cosu)3/2
R′
)

+
(

240B4 + 336B2 + 118−
(
48B4 + 224B2 + 145

)
cosu

+ 2
(
8B2 + 13

)
cos(2u) + cos(3u)

)
Γ

+

(
192B4 + 300B2 + 86− (96B4 + 224B2 + 149) cosu√

2 (1 + 2B2 − cosu)3/2

+
(52B2 + 58) cos(2u) + 5 cos(3u)√

2 (1 + 2B2 − cosu)3/2

)
R

]
. (5.49)

5.2.3 Decoupling the �eld equations

Finding the �eld perturbation Ψ

Eq. (5.44) can be integrated in the temporal variable s, yielding

Ψ = −2
√

1 +B2 sin
u

2
Γ +

√
2 cos u

2
R′√

1 +B2
√

1 + 2B2 − cosu
+

− sin u
2

(3 + 2B2 + cosu)R
√

2
√

1 +B2 (1 + 2B2 − cosu)3/2
+ C(u)
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where C : R → R is a smooth function. Inserting this espression for Ψ into
Eq. (5.43), we see that the latter holds if and only if C is constant. Summing
up: Eqs. (5.43,5.44) hold if and only if

Ψ(s, u) = −2
√

1 +B2 sin
u

2
Γ(s, u) +

√
2 cos u

2
R′(s, u)√

1 +B2
√

1 + 2B2 − cosu
+

− sin u
2

(3 + 2B2 + cosu)R(s, u)
√

2
√

1 +B2 (1 + 2B2 − cosu)3/2
+ C cos2 u

2
(5.50)

where C ∈ R is a constant that depends on the initial data.

The perturbations Γ and Ψ as functions of R

Inserting the expression (5.50) for Ψ into the remaining two linearized Ein-
stein equations (5.45,5.46) one obtains δE11 = 0 and δEa = 0, where

δE11 =− B (1 +B2) (cosu+ 3) sec u
2

Γ

1 + 2B2 − cosu
− 4B (1 +B2) sin u

2
Γ′

1 + 2B2 − cosu

− B (1 +B2) sec u
2

(1 + 8B2 − 4 cosu+ 3 cos(2u))R

2
√

2 (1 + 2B2 − cosu)7/2

− 2
√

2B cos u
2
R̈

(1 + 2B2 − cosu)3/2
−
√

2B sin u
2

(3 + 2B2 + cosu)R′

(1 + 2B2 − cosu)5/2

+
2
√

2B cos u
2
R′′

(1 + 2B2 − cosu)3/2
− 2CB

√
1 +B2 sinu

1 + 2B2 − cosu
, (5.51)

δEa =B (cosu+ 3) cos
u

2
Γ + 4B sin

u

2
cos2 u

2
Γ′

− 4B cos
u

2

(
1 + 2B2 − cosu

)
Γ̈

+
B cos u

2
(1 + 8B2 − 4 cosu+ 3 cos(2u))R

2
√

2 (1 + 2B2 − cosu)5/2
− 2

√
2B cos u

2
R̈√

1 + 2B2 − cosu

+

√
2B sin u

2
cos2 u

2
(3 + 2B2 + cosu)R′

(1 +B2) (1 + 2B2 − cosu)3/2

− 2
√

2B cos3
(
u
2

)
Ruu

(1 +B2)
√

1 + 2B2 − cosu
. (5.52)

The system δE11 = 0 and δEa = 0 is clearly equivalent to the system made
up of

δE11 = 0 , δE11 +
(1 +B2) sec2 u

2

1 + 2B2 − cosu
δEa = 0 ;
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the latter combination is reduced to

− 4B
(
1 +B2

)
sec

u

2
Γ̈−
√

2B sec
(
u
2

)
(3 + 2B2 + cosu) R̈

(1 + 2B2 − cosu)3/2

− 2CB
√

1 +B2 sinu

1 + 2B2 − cosu
= 0 ,

which can be integrated twice in s, leading to an expression for Γ depending
only on R:

Γ(s, u) =− (3 + 2B2 + cosu)R(s, u)

2
√

2 (1 +B2) (1 + 2B2 − cosu)3/2

− C sinu cos u
2
s2

4
√

1 +B2 (1 + 2B2 − cosu)
+ P0(u) + sP1(u) , (5.53)

where P0,P1 : R → R are smooth integration functions; these are closely
related to the set of initial data

Γ0(u) := Γ(0, u) , Γ1(u) := Γ̇(0, u) ,

R0(u) := R(0, u) , R1(u) := Ṙ(0, u) ,
(5.54)

since (5.53) and its s derivative imply (once evaluated in s = 0)

Pi(u) = Γi(u) +
(3 + 2B2 + cosx)Ri(u)

2
√

2 (B2 + 1) (1 + 2B2 − cosu)3/2
(i = 0, 1) . (5.55)

Inserting Eq. (5.53) into Eq. (5.50), it is possible to write an expression for
the perturbation function Ψ depending only on the function R

Ψ(s, u) =

√
2 cos u

2
R′√

1 +B2
√

1 + 2B2 − cosu
+

[
cos2 u

2
+

sin2 u s2

4(1 + 2B2 − cosu)

]
C

− 2
√

1 +B2 sin
u

2

(
P0(u) + sP1(u)

)
.

(5.56)

Evaluating the previous expression (5.56) for Ψ in (s, u) = (0, 0) and using
Eq. (5.54), we have that the constant C is related to the initial datum R0

and to the initial datum for the perturbed �eld

Ψ0 := Ψ(0, 0) (5.57)

via

C = Ψ0 −
R′0(0)

B
√

1 +B2
. (5.58)
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A master equation for the radial perturbation R

Inserting the expression (5.53) for the function Γ into equation δE11 = 0 and

dividing both sides by − 2
√

2B cos u
2

(1+2B2−cosu)3/2
we get the following wave equation

for R [
∂2

∂s2
− ∂2

∂u2
+ V

]
R = J0 + s J1 + s2 J2 , (5.59)

where

V(u) ≡VB(u) := −B
2(2 +B2 + cosu)

(1 + 2B2 − cosu)2
(u ∈ (−π, π)) , (5.60)

J0(u) :=− C
√

2
√

1 +B2 sin
u

2

√
1 + 2B2 − cosu+

− 1

2
√

2

(
1 +B2

)
sec2 u

2

√
1 + 2B2 − cosu

×
(
2 sinuP0

′(u) + P0(u)(cosu+ 3)
)
, (5.61)

J1(u) :=− 1

2
√

2

(
1 +B2

)
sec2

(u
2

)√
1 + 2B2 − cosu

×
(
2 sinuP1

′(u) + P1(u)(cosu+ 3)
)
, (5.62)

J2(u) :=
C

4
√

2

√
1 +B2 sin

u

2

−1 + 4B2 + 2 (4B2 + 1) cosu− cos(2u)

(1 + 2B2 − cosu)3/2
,

(5.63)

Eq. (5.59) is our master equation for the linear perturbation analysis of the
AdS wormhole: this is a wave-type equation for R with the potential V and
the source term J0(u) + s J1(u) + s2 J2(u).
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Remark 46 For i = 0, 1, the functions Ji are fully determined by the
functions Pi or, due to Eq. (5.55), by the initial data Γi, Ri, that is,

(32)

Ji(u) =− 1

2
√

2

(
B2 + 1

)
(cosu+ 3) sec2 u

2

√
1 + 2B2 − cosuΓi(u)

−
√

2
(
B2 + 1

)
tan

u

2

√
1 + 2B2 − cosuΓ′i(u)

−
(

1 + 19B2 + 12B4 + 4 (B4 + 2B2 − 1) cosu

8 (1 + 2B2 − cosu)2

− (5B2 + 3) cos(2u)

8 (1 + 2B2 − cosu)2

)
sec2 u

2
Ri(u)

− tan u
2

(3 + 2B2 + cosu)

2 (1 + 2B2 − cosu)
R′i(u)

+ (i− 1)C
√

2B2 + 2 sin
u

2

√
1 + 2B2 − cosu . (5.64)

Remark 47 For the following, we assume for the function R, the Dirichlet
boundary conditions at the two asymptotic AdS ends, that is,

R(s,±π) = 0 for every s ∈ R. (5.65)

Indeed, from Eq. (5.42) we have that this is equivalent to set (in the gauge
(5.41)) that the perturbation function δr vanishes at the far ends u = ±π
of the wormhole for every time s ∈ R, which is a physically reasonable
prescription. For general considerations on boundary conditions for �eld
theories on AdS spaces, see Refs. [50, 51, 52].

5.2.4 Solution of the master equation and linear insta-
bility of the AdS wormhole - gauge-dependent for-
mulation

Let us consider the master equation (5.59) de�ned for every B > 0: this
equation, which contains the potential (5.60) and the source term J0 + sJ1 +
s2J2, with Ji de�ned by Eqs. (5.61-5.63), can be rewritten as

R̈(s) +HR(s) = J0 + s J1 + s2 J2 (s ∈ R), (5.66)

where

H := − d2

du2
+ V (V ≡ V(u) as in Eq. (5.60)) (5.67)

32The letter i in the last line of Eq. (5.64) does not stand for the imaginary unit, but
for the parameter i = 0, 1 specifying the function Ji.
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is, formally, a one-dimensional Schrödinger type operator with potential V .
The unknown of Eq. (5.66) is a function

R(s) ≡ R(s, ·) : u 7→ R(s, u) for every s ∈ R .

Remark 48 In order to provide a technical precise functional framework for
discussing Eq. (5.66) with boundary conditions (5.65), we have to introduce
the Hilbert space

H := L2((−π, π), du) (5.68)

made of complex valued, square integrable functions on (−π, π), for the mea-
sure du with its inner product 〈 | 〉 and the associated norm ‖ ‖. (33) In order
to regard H as a selfadjoint operator in H, we have to de�ne it as

H := − d2

du2
+ V : D ⊂ H→ H , D := {f ∈ H | fuu ∈ H , f(±π) = 0} ;

(5.69)
clearly, the u-derivatives have to be intended in the distributional sense. (34)

Moreover, in Appendix D.3 we prove that for every B > 0 the operator H
has a purely discrete {µn}n∈N with a single negative eigenvalue µ1 and an
increasing sequence of positive eigenvalues µ2 < µ3 < . . . .
In addition, in Appendix E.3 we see that one can built an orthonormal basis
of the Hilbert space H, which is made up of the normalized eigenfunctions
{en}n∈N of H, i.e.

en ∈ D : ‖en‖ = 1 , Hen = µnen (n ∈ N)

(en is proved to be C∞(R) for all n ∈ N).

Let us look for the solution R(s) of the master equation (5.66) with ap-
propriate smoothness properties and with the initial conditions given in Eq.
(5.54), that is

R(0) = R0 , Ṙ(0) = R1 , (5.70)

where
Ri : R→ R , Ri : x 7→ Ri(x) (i = 0, 1)

are two functions with an appropriate regularity.
For all technical details, one we refer to Appendix E.3.2; one introduced the
space E [Eq. (E.30)] and one can show that (see Proposition 21), for any
initial data such that

Ψ0 ∈ R , Rj,Γj ∈ C∞((−π, π),R) : Rj, Jj ∈ E((−π, π),R) for j = 0, 1

33For more details, see Remark 84 in Appendix C.
34See Footnote 69 in Appendix D.
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(Ji's are de�ned by Eqs. (5.55,5.61-5.62)), the linearized Einstein equations
(5.43-5.46) has a unique solution (R(s, u),Γ(s, u),Φ(s, u)), de�ned for every
(s, u) ∈ R× (−π, π), such that:

R(s, u),Γ(s, u),Φ(s, u) ∈ C∞(R× (−π, π),R) ,

R(s, u) ≡ R(s) ∈ C∞(R, E((−π, π),R)) ;

in addition, the functions Γ,Φ can be expressed in terms of the function R

via Eqs. (5.53,5.56,5.55,5.58), while the function R(s), for all s ∈ R, can be
decomposed by means of the previously mentioned orthonormal basis as

R(s) =

[
〈e1|R0〉 cosh(|µ1|1/2s) + 〈e1|R1〉

sinh(|µ1|1/2s)
|µ1|1/2

+ 〈e1 | J0〉
cosh(|µ1|1/2s)− 1

|µ1|
+ 〈e1 | J1〉

sinh(|µ1|1/2s)− |µ1|1/2s
|µ1|3/2

+ 〈e1 | J2〉
2 cosh(|µ1|1/2s)− |µ1|s2 − 2

|µ1|2
]
e1

+
+∞∑
n=2

[
〈en|q〉 cos(µ1/2

n s) + 〈en|p〉
sin(µ

1/2
n s)

µ
1/2
n

+ 〈en | J0〉
1− cos(µ

1/2
n s)

µn
+ 〈en | J1〉

µ
1/2
n s− sin(µ

1/2
n s)

µ
3/2
n

+ 〈en | J2〉
2 cos(µ

1/2
n s) + µns

2 − 2

µ2
n

]
en . (5.71)

Remark 49 Let us now choose the initial data

Ψ0 :=
e′1(0)

B
√

1 +B2
, R0(u) := e1(u) , R1(u) := 0 ,

Γ0(u) = − 3 + 2B2 + cosu

2
√

2(1 +B2)(1 + 2B2 − cosx)3/2
e1(x) , Γ1(x) := 0 .

Then, from Eqs. (5.55,5.58,5.61-5.63) we have

C = 0 , P0 = P1 = 0 and J0 = J1 = J2 = 0 ,

while, from the orthonormality of the basis [Eq. (C.1)] we have

〈e1|R0〉 = 1 and 〈en|R0〉 = 0 (n = 2, 3, . . .) .
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From here and from Eqs. (5.71,5.53,5.56) we have that the solution of the
linearized system is

R(s, u) = cosh(|µ1|1/2s)e1(u) , Γ(s, u) = − (3 + 2B2 + cosu)R(s, u)

2
√

2(1 +B2)(1 + 2B2 − cosu)3/2
,

Φ(s, u) =

√
2 cos u

2
R(s, u)√

1 +B2
√

1 + 2B2 − cosu
.

(5.72)
Clearly, the solution (5.72) diverges exponentially for s 7→ ±∞; as already
mentioned in the Torii-Shinkai case (see Remark 41) the functions R(s, u),
Γ(s, u), Φ(s, u) obviously do depend on the gauge chosen, hence their diver-
gence does not allow to infer a linear instability result for the AdS wormhole.
In the rest of the present section we will show that the solution (5.72) corre-
sponds to a perturbed spacetime which becomes singular as s→ ±∞.

Remark 50 Substituting Eq. (5.72) into Eqs. (5.48-5.49) (and using the
relation He1 = −µ1e1, i.e., e

′′
1(x) = (−µ1 + V(x))e1(x)) we have that the

linearization of the scalar curvature reads

R(1)(ε) =
2k2

(1 + 2B2 − cosu)2

[
− 3

(
3 + 8B2 + 6B4

)
+ 2

(
6 + 11B2 + 3B4

)
cosu− (3 + 2B2) cos(2u)

]
+

[
8
√

2 k2B cos2 u
2
K(u) cosh(|µ1|1/2s)

(1 + 2B2 − cosu)7/2

]
ε , (5.73)

K(u) := cos
u

2

[
B2(1 + cosu) + 2(1 + 2B2 − cosu)2µ1

]
e1(u)

+ sin
u

2

[
2 + 5B2 + 6B4 − (3 + 7B2) cosu+ cos(2u)

]
e′1(u) . (5.74)

We note that, even in this case, for any �xed value of ε > 0 the linearization
of the scalar curvature (5.73) diverges as s → ±∞; indeed, for example,
R(1)(ε) → ∞ at the throat u = 0. One can verify this fact noting that the
function K does not vanish at u = 0, that is

K(0) = 8B4

(
1

4B2
+ µ1

)
e1(0) 6= 0 . (5.75)

We now prove the latter equation. From the estimate in Eq. D.47 (Appendix
D.3), we have that µ1 ≡ µ1(B) ≤ ε(B) for each B < 0, where the function
ε(B) is de�ned in Eq. (D.46). It is not di�cult to see that ε(B) < − 1

4B2 for

every B >

√
7−
√

17

4
=: B∗ (B∗ ' 0.424), whence µ1 < − 1

4B2 for every B > B∗.
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5.2. Gauge-dependent linear stability analysis of the AdS wormhole

Unfortunately, for 0 < B ≤ B∗, we have that − 3
4B2 < − 1

4B2 ≤ ε(B), so that
it can be possible that µ1 ≡ µ1(B) = − 1

4B2 (see Eq. (D.51)). However, some
numerical considerations lead to the conclusion that µ1 ≡ µ1(B) 6= − 1

4B2

even for 0 < B ≤ B∗. (35) In addition, it turns out that e1(0) 6= 0; indeed,
since the potential V ≡ VB is an even function which trivially satis�es the
assumptions (D.4) of Appendix D.1.1, then e1 must be an even function (see
item (iii)(a) of the same Appendix), whence e′1(0) = 0. As already stated
at the end of Remark 42, this fact implies that e1(0) 6= 0, since the initial
conditions e1(0) = e′1(0) = 0 for the di�erential equation e′′1 = (−µ1 +V(u))e1

gives e1(u) = 0 for all u ∈ (−π, π), which is clearly impossible.

Remark 51 As already mentioned in Remark 43, one has to check that the
divergence of the linearization of the scalar curvature R1(ε) is not a mirage
due to a bad (or good) gauge choice. Fortunately, even in this case the
linearized scalar curvature satis�es items (a-b) of Remark 43 at u = 0 (with
(t, x) replaced by (s, u)); in addition, one can see that the derivative

∂

∂u

[
2k2

(1 + 2B2 − cosu)2

[
− 3

(
3 + 8B2 + 6B4

)
+ 2

(
6 + 11B2 + 3B4

)
cosu− (3 + 2B2) cos(2u)

]]
=

4 k2B2 (1 +B2) (1 + 6B2 − 5 cosu) sinu

(1 + 2B2 − cosu)3
(5.76)

vanishes at u = 0, so that even item (c) is satis�ed. Therefore, this is
su�cient to infer that for s → ±∞ the perturbed AdS wormhole becomes
singular at least in correspondence of spacetime points such that u = 0, as
therein the linearized scalar curvature diverges and these points are clearly
reachable by geodesics of the wormhole in �nite proper time.

The results of the previous three remarks are contained in the following

Theorem 6 (Linear instability of the AdS wormhole - gauge-depen-
dant version)
For all B > 0 and for all k > 0 (or, equivalently, for all b > 0 and for all k >
0), the AdS wormhole is linearly unstable under small spherically symmetric

35The eigenvalue equation −e′′1 + VB(u)e1 = − 1
4B2 e1 with initial data e1(−π) =

0, e′1(−π) = 1 can be solved numerically using any package for ODEs; since one can
see that for any B ∈ (0, B∗], the solutions e1(u;B) do not vanish in u = π, it turns out
that e1(u;B) is not an element of D, whence − 1

4B2 is not an eigenvalue of the operatorH
for every B ∈ (0, B∗].
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perturbations of its metric and the associated scalar �eld; more precisely, for
some special initial data of the perturbation functions, the perturbed spacetime
becomes singular as the temporal coordinate s goes to ±∞.

Remark 52 The deduction of the linear instability of the AdS wormhole
presented in this section is alternative end equivalent to the gauge-invariant
deduction contained in Ref. [1], which will be reproposed in Section 7.4 of
this thesis. The present deduction has been included to provide a second
example of the gauge-dependent approach that has been adopted to �rstly
prove the linear instability of the EBMT wormhole without encountering
any singularity [2]. For a closer comparison between the approaches of the
present deduction and that of [1] see Chapter 8 and, in particular Section
8.3.
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Chapter 6

A gauge-invariant method for the

linear stability analysis of

wormhole solutions

In Ref. [1], a gauge-invariant method has been introduced for decoupling
the linearized �eld equations (4.29,4.33) in the four dimensional case; in
this chapter, I provide a generalization of this method to higher dimension.
Analogously to [1], I consider a general (d+ 1)-dimensional static solution of
the form (5.1), i.e.,

β = 0 , (α, γ, r,Φ) := (α(x), γ(x), r(x),Φ(x)) ; (6.1)

di�erently from the gauge-dependent approach of the previous chapter, the
only hypothesis that we make on the static solution (6.1) is that it satis�es
the background equations (3.6-3.9). Then, I will prove that the correspond-
ing linearized Einstein-scalar equations can be rewritten, in any gauge, as a
2 × 2 constrained wave system involving two gauge-invariant quantities; in
addition, I will prove that, provided a static solution of the system is known,
the latter can be decoupled, leading to a single wave type-equation (which
will be referred to as master equation) for a suitably de�ned combination
of the above mentioned gauge-invariant quantities. Usually, the static solu-
tion of the wave system can be obtained on a case-by-case basis, following
a general method which consists in varying the free parameters of the static
wormhole under consideration.

Before delving into details, let me underline the following fact; the 2× 2
constrained wave system will be obtained initially by simplifying the lin-
earized �eld equations by stetting a gauge in which δβ = δΦ = 0. It might
seem counter-intuitive to the reader that the gauge-invariant construction of
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this chapter (and of the construction in Ref. [1]) relies on the possibility of
suitable combining of the linearized �eld equations in a particular gauge; ac-
tually, we will show that the system obtained with this choice of coordinates
can be easily generalized to a system which is valid in any gauge. There-
fore, the gauge assumptions that we will make in this chapter do not a�ect
the gauge-invariance of the method, hence they are substantially di�erent
from those made in Chapter 5 (see Eq. (5.4) and Eq. (5.41)), in which the
approach strongly depended on the coordinates chosen.

6.1 Study of the constraint equations in the

δβ = 0 gauge and the S = 0 assumption

From now on we assume the gauge introduced in Remark 37 (that for the
sake of simplicity we denote again with (t, x)) in which

δβ = 0 . (6.2)

As explained in Subsection 4.3.1, in this case the linearized �eld equations
(4.29-4.33) can be interpreted as a constrained evolution system in the un-
knowns (δα, δγ, δr, δΦ). In the present section, we begin the general study of
this constrained system from a complete analysis the constraints (4.32,4.33).
Let us start integrating the second constraint δM = 0 once in t; hence, we
get

δr′ =
α′

α
δr + r′

δγ

γ
+

κ

d− 1
rΦ′δΦ +

2

d− 1
rΣ(x) , (6.3)

where Σ : x(O)→ R is a smooth function depending on the initial data for
the perturbation functions. Eq. (6.3) and its derivatives enable to eliminate
δr′, δr′′ and δṙ′ from the �rst constraint δH = 0, yielding (36)

2
α

γ

[
Σ ′(x) +

(
α′

α
− γ′

γ
+ (d− 1)

r′

r

)
Σ(x)

]
= 0. (6.4)

This di�erential equation can be solved in the unknown Σ, leading to

Σ(x) = σ
γ

α rd−1
, (6.5)

where σ is an integration constant. Summing up, we have shown that if the
two constraints δH = 0 and δM = 0 are satis�ed then Eq. (6.3) holds with

36In order to obtain Eq. (6.4) I have used the background equations (3.6-3.9).
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the function Σ de�ned by Eq. (6.5); in other words, the two constraints
(4.32,4.33) imply the following equation

S = σ ∈ R , S :=
d− 1

2

α rd−2

γ

(
δr′ − α′

α
δr − r′ δγ

γ
− κ

d− 1
rΦ′δΦ

)
.

(6.6)
Conversely, if S = σ ∈ R is satis�ed (with S de�ned by Eq. (6.6)), then
δH = 0 and δM = 0 are satis�ed too, by noting that the following identities
hold (37)

δH = 2
1

rd−1
S′ , δM = 2

γ

αrd−1
Ṡ . (6.7)

In conclusion, we have proved the equivalence of the constraint equations
(4.32,4.33) with Eq. (6.6); moreover, in some sense, the latter is still a
constraint of the evolution �eld system (4.29-4.31), as stated by the following

Proposition 6 For every σ ∈ R, the equation S = σ [Eq. (6.6)] is a
constraint for the second order evolution equations δE1 = 0, δE2 = 0,
δE3 = 0 [Eqs. (4.29-4.31)] in the following sense: if (δα, δγ, δr, δΦ) is a
(time-dependent) solution of the system (4.29-4.31) satisfying the initial con-
ditions (38)

S(0, x) = σ , Ṡ(0, x) = 0 , for every x ∈ x(O) , (6.8)

then (δα, δγ, δr, δΦ) satis�es the equation S = σ for every time t and every
x.

Proof. The proof is trivial. Indeed, from the identities (6.7) we see that
the initial conditions (6.8) (see the equivalent form contained in the foot-
note (38)) are trivially equivalent to the initial conditions δH(0, x) = 0 and
δM(0, x) = 0; since δH and δM are two constraints of the system δE1 = 0,
δE2 = 0, δE3 = 0, then every solution (δα, δγ, δr, δΦ) of Eqs. (4.29-4.31)
satisfy δH = 0 and δM = 0 for every x and t. As already proved, this is
equivalent to say that S = σ̃ for some σ̃ ∈ R for every x and t; however, since
S = σ at t = 0, by continuity we have that σ̃ = σ.

�

37In order to prove the �rst identity of Eq. (6.7), the derivatives Φ′′, α′′, r′′ and r′2 of
the static solution have been removed using the background equations (3.6-3.9).

38Obviously, these are equivalent to the conditions S(0, 0) = σ, S′(0, x) = 0, Ṡ(0, x) = 0
for every x ∈ x(O).
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Remark 53 For future convenience, in the following lines I provide an
alternative proof of the previous proposition. Let us consider the identities
(4.39-4.40); replacing the quantities δH and δM with the partial derivatives
of S, according to the formulas in Eq. (6.7), one can easily see that the �rst
equation (4.39) is automatically satis�ed, while the second equation (4.40)
becomes

2
γ

αrd−1

[
∂2

∂t2
−
(
α

γ

∂

∂x

)2 ]
S = −(d− 1)

α

γ

r′

r
δE1

− 2
α

γr2

[
γ′

γ
− d− 5

2

r′

r

]
δE2 + 2

α

γr2
δE′2 −

α

γ

κΦ′

r2
δE3 . (6.9)

Therefore, every perturbation (δα, δγ, δr, δΦ) which satis�es Eqs. (4.29-4.31),
satis�es the identity (6.9) with the right hand side vanishing; in the new
coordinate

ρ = ρ(x) :=

∫ x

0

γ(y)

α(y)
dy , (6.10)

this becomes the one dimensional wave equation[
∂2

∂t2
− ∂2

∂ρ2

]
S̃ = 0 , (6.11)

where S̃(t, ρ) := S(t, x(ρ)), where x(ρ) is the inverse map of the trans-
formation (6.10). It is well known that the solution of the wave equa-
tion (6.11) has the general form S̃(t, ρ) = F (ρ − t) + G(ρ + t), where F
and G are two smooth functions depending on the initial data on S̃ in the

following way: if S̃(0, 0) = S̃0, S̃′(0, ρ) = f(ρ) and
˙̃
S(0, ρ) = g(ρ), then

F (ρ−t) = 1
2

∫ ρ−t
0

(f(y)− g(y)) dy+S̃0 and G(ρ+t) = 1
2

∫ ρ+t

0
(f(y) + g(y)) dy.

In our case, since ρ(0) = 0 = x(0) and α
γ
∂
∂x

= ∂
∂ρ
, the initial conditions (6.8)

(in the equivalent form contained in the footnote (38)) read

S̃(0, 0) = σ , S̃′(0, ρ) = 0 ,
˙̃
S(0, ρ) = 0 for every ρ ∈ ρ(x(O));

from the general solution with f(ρ) = g(ρ) = 0 and S̃0 = σ, one has that
the solution of the wave equation (6.11) is S̃(t, ρ) = σ for every (t, ρ) ∈
R × ρ(x(O)). Finally, one notes that this is equivalent to S(t, x) = σ for
every (t, x) ∈ R× x(O).

At this point one might want to investigate the meaning of the constant
σ appearing in Eq. (6.6): in the rest of this section I will make some consid-
erations on this integration constant. Let us start with a trivial proposition:
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Proposition 7 Let (δα1, δγ1, δr1, δΦ1) and (δα2, δγ2, δr2, δΦ2) be two (time-
dependent) solutions of the linearized constrained system (4.29,4.30,4.31,6.6)
which satisfy the constraint equation (6.6), respectively, with constants σ =
σ1 and σ = σ2. Then the solution (δα, δγ, δr, δΦ) of the linearized sys-
tem de�ned as a linear combination of the solutions (δα1, δγ1, δr1, δΦ1) and
(δα2, δγ2, δr2, δΦ2), namely

δα := a1δα1 + a2δα2 , δγ := a1δγ1 + a2δγ2 ,

δr := a1δr1 + a2δr2 , δΦ := a1δΦ1 + a2δΦ2 , a1, a2 ∈ R ,

satis�es the constraint equation (6.6) with the constant σ = a1σ1 + a2σ2.

Remark 54 Suppose now that there exists a static solution

(δα0, δγ0, δr0, δΦ0) = (δα0(x), δγ0(x), δr0(x), δΦ0(x)) (6.12)

of the linearized system (4.29,4.30,4.31,6.6) that satis�es the constraint (6.6)
with a constant σ = σ0 6= 0; then the previous proposition assures that
for every (time-dependent) solution (δα, δγ, δr, δΦ) of the linearized system
such that the constraint (6.6) holds with a constant σ ∈ R, then the (time-
dependent) solution (δ̃α, δ̃γ, δ̃r, δ̃Φ) de�ned as

δ̃α := δα− σ

σ0

δα0 , δ̃γ := δγ − σ

σ0

δγ0 ,

δ̃r := δr − σ

σ0

δr0 , δ̃Φ := δΦ− σ

σ0

δΦ0

is a solution of the linearized system such that the constraint (6.6) holds
with the constant σ = 0. This means that, for every (time-dependent)
solution (δα, δγ, δr, δΦ) of the linearized system (4.29,4.30,4.31,6.6), it is
possible to �nd another (time-dependent) solution (δ̃α, δ̃γ, δ̃r, δ̃Φ) of Eqs.
(4.29,4.30,4.31) and S = 0, and the latter is such that the di�erence between
the two solutions is static, a fact which implies that their temporal behaviour
is qualitatively similar.
One can �nd a concrete example of this fact in Section 3.1 of Ref. [25], where
the authors show directly that the parameters b and γ1 of the Ellis-Bronnikov
wormhole label the static solutions of the linearized �eld equations.

The considerations of the previous remark suggest that one can substan-
tially simplify the linear stability analysis of a static wormhole solution by
considering only the perturbations (δα, δγ, δr, δΦ) for which the constraint
equation (6.6) holds with σ = 0. Note that, it can be possible that a static
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solution such that S = σ0 6= 0 can not be provided; in such case we are get-
ting rid of plenty of time-dependent perturbations of the system. However,
since we expect that most of known wormhole solutions are actually linearly
unstable, the loss of some solutions does not a�ect the possibility to infer
an instability result: indeed, to do this, it is su�cient to �nd at least one
perturbation (gauge-invariantly) diverging in time.
Hence, from now on, we assume that Eq. (6.6) holds with σ = 0, that is, Eq.
(6.6) is replaced by

S = 0 , S :=
d− 1

2

α rd−2

γ

(
δr′ − α′

α
δr − r′ δγ

γ
− κ

d− 1
rΦ′δΦ

)
. (6.13)

6.2 The gauge-dependent quantities A, C, D
and the δΦ = 0 gauge

For future use, it is advantageous to introduce the quantities (39)

D :=
δα

α
, A :=

δγ

γ
, C :=

δr

r
. (6.14)

Then the system of Eqs. (4.29,4.30,4.31,6.13) (namely, the linearized �eld
system (4.29,4.30,4.31,6.6) with the condition σ = 0) becomes

δE1 = 0 , δE1 =
γ

α
Ä − ∂

∂x

[
α

γ
D′
]
− α

γ

(
α′

α
+
d− 3

2

r′

r

)
(D −A)′+[

(d− 1)
α

γ

r′

r
− d− 3

2

(
α

γ

)′ ]
C ′ − 2(d− 2)αγ

r2
(A− C)

+ κ
α

γ
Φ′δΦ′ +

d− 3

2

(
γ

α
C̈ − α

γ
C ′′
)
, (6.15)

39This choice of notation is somehow awkward; however the reason for it is to maintain
compatibility with the notation used in Refs. [53, 1].
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δE2 = 0 , δE2 =

[
d− 1

2

γ

α
C̈ − d− 1

2

∂

∂x

[
α

γ
C ′
]

− d− 1

2

α

γ

r′

r
(D −A+ 2(d− 1)C)′

+
(d− 1)(d− 2)αγ

r2
(A− C)

− καγ [2V (Φ)A+ V ′(Φ)δΦ]

]
r2 , (6.16)

δE3 = 0 , δE3 =
γ

α
δΦ̈− ∂

∂x

[
α

γ
δΦ′
]
− (d− 1)

α

γ

r′

r
δΦ′

− α

γ
Φ′(D −A+ (d− 1)C)′ − αγ [2V ′(Φ)A+ V ′′(Φ)δΦ] ,

(6.17)

S = 0 , S =
d− 1

2

α rd−1

γ

[
C ′ −

(
α′

α
− r′

r

)
C − r′

r
A− κ

d− 1
Φ′δΦ

]
.

(6.18)

Remark 55 Eqs. (6.15-6.18) only assume the gauge δβ = 0; as already
mentioned, at the linearized level there is still liberty in the choice of the
coordinates, which is related to the choice of the transformation functions
(δt, δx) (see Section 4.2 and, in particular, Remark 37). One possible choice
that has been considered in several work (see, e.g., Refs. [25, 11]) is keeping
�x the radial coe�cient r of the static solution, that is, setting δr = 0; with
this prescription, C = 0 and Eqs. (6.18,6.16) allow to express the functions A
andD′ in terms of δΦ. Inserting these expressions into Eq. (6.17), one obtains
a master equation for the linearized scalar �eld δΦ. (40) Unfortunately, due
to this choice of the gauge, it happens that the potential of this wave-type
master equation has a singularity in correspondence of the wormhole throat,
where r′ = 0 (see Refs. [25, 11] for more details). This, from a physical point
of view, is related to the fact that the assumption δr = 0 amounts in forcing
the perturbations to vanish at the throat, which is much too restrictive for
wormhole con�gurations. On the other hand, at a mathematical level, the
occurrence of this singularity can be easily deduced from Eq. (4.22). Indeed,
in order to send δr (simultaneously with δβ) to zero, the function δt has to
be de�ned as in Eq. (4.24) with δx = − δr

r′
; of course, the latter occurs to

be singular whenever the derivative of the coe�cient r of the static metric

40Note that, once Eqs. (6.16-6.18) have been solved, the remaining equation (6.15) is
automatically satis�ed thanks to the relation (6.9).
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vanishes, which is exactly the case for wormhole spacetimes. However, while
r′ = 0 at the wormhole throat, in all the static wormhole solutions introduced
in Chapter 3, the spatial derivative of the scalar �eld Φ′ never vanishes: as
a consequence, we may choose, instead,

δx(t̃, x̃) =− δΦ(t̃, x̃)

Φ′(x̃)
and

δt(t̃, x̃) =

∫ x̃

x̃1

γ(x)2

α(x)2

(
δβ(t̃, x)−

˙δΦ(t̃, x)

Φ′(x)

)
dx , x̃1 ∈ R

(6.19)

and send δΦ (simultaneously with δβ) to zero (see Eqs. (4.20,4.23,4.24)).
Thus, form now till the end of this section, we �x a gauge in which δβ = 0
(as before) and

δΦ = 0 ; (6.20)

again, we keep denoting the new coordinates simply with (t, x).

In the new gauge (6.2,6.20), the linearized system (6.15-6.18) reduce to

δE1 = 0 , δE1 :=
γ

α
Ä − ∂

∂x

[
α

γ
D′
]
− α

γ

(
α′

α
+
d− 3

2

r′

r

)
(D −A)′

+

[
(d− 1)

α

γ

r′

r
− d− 3

2

(
α

γ

)′ ]
C ′

− 2(d− 2)αγ

r2
(A− C) +

d− 3

2

(
γ

α
C̈ − α

γ
C ′′
)
, (6.21)

δE2 = 0 , δE2 :=

[
d− 1

2

γ

α
C̈ − d− 1

2

∂

∂x

[
α

γ
C ′
]

− d− 1

2

α

γ

r′

r
(D −A+ 2(d− 1)C)′

+
(d− 1)(d− 2)αγ

r2
(A− C)− 2καγV (Φ)A

]
r2 , (6.22)

δE3 = 0 , δE3 := −α
γ

Φ′(D −A+ (d− 1)C)′ − 2αγV ′(Φ)A , (6.23)

S = 0 , S :=
d− 1

2

α rd−1

γ

[
C ′ −

(
α′

α
− r′

r

)
C − r′

r
A
]
. (6.24)

Remark 56 Note that, using δE3 = 0 one can isolate D′ and substitute
its expression into Eqs. (6.21,6.22); obviously, this can be done as long
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as the derivative Φ′ of the scalar �eld does not vanish anywhere, but this
is exactly the assumption that we have made for considering the δΦ = 0
gauge. Moreover, a suitable recombination of δE1 = 0 and δE2 = 0 allows to
eliminate the second derivative C̈ from Eq. (6.21): in this way, making use
again of the background equation (3.6), we can rewrite Eqs. (6.21-6.24) as
follows

EÄ = 0 , EÄ :=
γ

α
Ä − ∂

∂x

[
α

γ
(A′ − (d− 1)C ′)

]
+ (d− 1)

α

γ

(
α′

α
+ (d− 2)

r′

r

)
C ′−(d− 1)(d− 2)

αγ

r2
(A− C)

+
2αγV ′(Φ)

Φ′
A′ + 2αγ

[
(d− 3)κ

d− 1
V (Φ) + γ2V

′(Φ)2

Φ′2

+

(
3
α′

α
+ (d− 1)

r′

r

)
V ′(Φ)

Φ′
+ V ′′(Φ)

]
A , (6.25)

EC̈ = 0 , EC̈ :=
γ

α
C̈ − ∂

∂x

[
α

γ
C ′
]
− (d− 1)

α

γ

r′

r
C ′ + 2(d− 2)

αγ

r2
(A− C)

+ 2αγ

[
r′

r

V ′(Φ)

Φ′
− 2κ

d− 1
V (Φ)

]
A , (6.26)

ED′ = 0 , ED′ := D′ −A′ + (d− 1)C ′ + 2γ2V
′(Φ)

Φ′
A , (6.27)

EC′ = 0 , EC′ := C ′ −
(
α′

α
− r′

r

)
C − r′

r
A . (6.28)

The equivalence of the systems (6.21,6.24) and (6.25-6.28) is easily proved
observing that

EÄ = δE1 +
d− 3

(d− 1)r2
δE2 −

1

r2Φ′

(
2
α′

α
− γ′

γ
+ (d− 3)

r′

r
+ γ2V

′(Φ)

Φ′

)
δE3

+
1

r2Φ′
δE′3 , (6.29)

EC̈ =
1

r2

(
2

(d− 1)
δE2 −

r′

rΦ′
δE3

)
, (6.30)

ED′ = − γ

αr2Φ′
δE3 , (6.31)

EC′ =
2

d− 1

γ

αrd−1
S ; (6.32)

indeed, one implication of the equivalence is trivial, since δE1 = δE2 =
δE3 = S = 0 immediately implies EÄ = EC̈ = ED′ = EC′ = 0. Conversely,
if ED′ = EC′ = EC̈ = 0 then δE3 = S = δE2 = 0 since the coe�cients of
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δE3, S and δE2, respectively, in Eq. (6.31), Eq. (6.32) and Eq. (6.30) are
smooth and never vanish; �nally, Eq. (6.29) combined with δE3 = δE2 = 0
and EÄ = 0 implies immediately that δE1 = 0.
Note that, obviously, Eq. (6.28) is still a constraint for the system (6.25-
6.27): indeed, the constraint S = 0 is equivalent to EC′ = 0, while the
evolution system δE1 = 0, δE2 = 0, δE3 = 0 is equivalent to the system
EÄ = 0, EC̈ = 0, ED′ = 0.
In addition, since the recombinations (6.29-6.32) have been introduced in
order to make the function D disappear from Eqs. (6.25,6.26,6.28), then the
linearized system (6.25-6.28) can be regarded as an evolution system only
for A and C (6.25,6.26) subject to the constraint (6.28); from the remaining
equation (6.27) one can isolate D′ and then �nd an expression for the function
D in dependence of A and C:

D(t, x) = A(t, x)− (d− 1)C(t, x) + 2

∫ x

x0

γ(y)2V ′(Φ(y))

Φ′(y)
A(t, y)dy , (6.33)

where x0 is an arbitrary point depending on the initial data of A, C and D.
All the considerations contained in the previous remark are reassumed in

the following

Proposition 8 In the gauge δβ = δΦ = 0, the linearized �eld equations
(4.29-4.33), together with the condition S = 0 [Eq. (6.13)], are equivalent
to the system (6.25-6.28), where the functions A, C and D are de�ned in
Eq. (6.14). In addition, Eq. (6.27) gives the expression (6.33) for the
function D in terms of the functions A and C, while the remaining three
equations (6.25,6.26,6.28) can be regarded as a constrained evolution system
in the following sense: if (A, C) is a (time-dependent) solution of the system
EÄ = 0, EC̈ = 0 [Eqs. (6.25,6.26)] satisfying the initial conditions

EC′(0, x) = 0 , ĖC′(0, x) = 0 , for every x ∈ x(O) , (6.34)

then (A, C) satis�es the equation EC′ = 0 [Eq. 6.28] for every time t and
every x.

Proof. Basically, the proposition has already been proved; we have just to
verify that the initial conditions for EC′ in Eq. (6.34) are equivalent to the
initial conditions for S in Eq. (6.8). Actually, in the case σ = 0, the initial
conditions (6.8) reduce to S(0, x) = 0 and Ṡ(0, x) = 0 for every x ∈ x(O);
these are exactly the conditions (6.34) as the coe�cient 2

d−1
γ

αrd−1 appearing
in Eq. (6.32) is time independent and never vanishes.

�
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6.3 The gauge-invariant quantities A, C, E and

the linearized �eld equations for A, C, E in

an arbitrary gauge

Let us return for a moment to the gauge transformation φε of Eq. (4.6) and to
the corresponding transformations (4.19-4.23) of the perturbation functions
δα, δβ, δγ, δr, δΦ; then the following proposition is trivially proved.

Proposition 9 The following quantities are invariant with respect to gauge
transformations φε [Eq. (4.6)]:

A :=
δγ

γ
− 1

γ

(
γ
δΦ

Φ′

)′
, (6.35)

C :=
δr

r
− r′

r

δΦ

Φ′
, (6.36)

E :=

(
δα

α

)′
−
(
α′

α

δΦ

Φ′

)′
+
γ2

α2

(
δβ̇ − δΦ̈

Φ′

)
. (6.37)

and S de�ned in Eq. (6.6).

Proof. The gauge transformations (4.6) transform the quantities A, C, E
and S into the quantities Ã, C̃, Ẽ and S̃ de�ned as A, C, E and S with δα,
δβ, δγ, δr, δΦ replaced by δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ; to prove the invariance, it is
su�cient to see that Ã = A, C̃ = C, Ẽ = E and S̃ = S with δ̃α, δ̃β, δ̃γ, δ̃r,
δ̃Φ de�ned as in Eqs. (4.19-4.23) (see De�nition 8).

�

Remark 57 Given any static solution (6.1) such that Φ′ never vanishes, we
introduce the following equivalence relation for the perturbation functions
δα,δβ,δγ,δr,δΦ

(δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ) ∼ (δα, δβ, δγ, δr, δΦ) ⇔ ∃φε, ψε as in Eqs. (4.6,4.7) :

δ̃α = δα + α′δx+ α δṫ , δ̃β = δβ + δẋ− α2

γ2
δt′ ,

δ̃γ = δγ + (γδx)′ , δ̃r = δr + r′δx , δ̃Φ = δΦ + Φ′δx ,
(6.38)

the corresponding equivalence class[
(δα, δβ, δγ, δr, δΦ)

]
∼ :={

(δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ) | (δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ) ∼ (δα, δβ, δγ, δr, δΦ)
}

(6.39)
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and the corresponding quotient

[C∞(O,R)]5/∼ :={[
(δα, δβ, δγ, δr, δΦ)

]
∼ | δα, δβ, δγ, δr, δΦ ∈ C

∞(O,R)
}
. (6.40)

Note that, every in�nitesimal coordinate transformation of the coordinates
(t, x) as in Eqs. (4.6,4.7) is class invariant under the equivalence relation ∼
(confront Eqs. (4.19-4.23) and Eq. (6.38)), that is, it sends perturbations
(δα, δβ, δγ, δr, δΦ) to perturbations (δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ) that belong to the
same equivalence class of the perturbations (δα, δβ, δγ, δr, δΦ).
For future use, let us remark that the equivalence class

[
(δα, δβ, δγ, δr, δΦ)

]
∼

coincides exactly with the the equivalence class
[
(δα, δ̃β, δγ, δr, δ̃Φ)

]
∼ for

every smooth functions δ̃β and δ̃Φ; in particular, it coincides with the class[
(δα, 0, δγ, δr, 0)

]
∼, where 0 stands for the zero function (i.e. the function

which vanishes for every t and every x). To see this fact, it is su�cient to
prove that, for every smooth functions δβ, δΦ, δ̃β, δ̃Φ there exist two smooth
functions δt, δx such that

δ̃β = δβ + δẋ− α2

γ2
δt′ , δ̃Φ = δΦ + Φ′δx ,

but this is reached by setting

δx =
δ̃Φ− δΦ

Φ′
and δt :=

∫
γ2

α2

(
δβ − δ̃β +

˙̃δΦ− ˙δΦ

Φ′

)
dx ; (6.41)

indeed, δx and δt are well de�ned and smooth since Φ′, α 6= 0 for every x.
The equivalence relation ∼ of the present remark has been introduced in
order to prove the forthcoming proposition.

Proposition 10 The expressions (6.35-6.37) de�ne a one-to-one relation

[C∞(O,R)]5/∼ → [C∞(O,R)]3[
(δα, δβ, δγ, δr, δΦ)

]
∼ 7→ (A,C,E)

(6.42)

Proof. For every equivalence class
[
(δα, δβ, δγ, δr, δΦ)

]
∼, one can de�ne

the corresponding gauge-invariant quantities A,C,E using the expressions
(6.35-6.37), where (δα, δβ, δγ, δr, δΦ) is any representative of the class. Let
us prove that the correspondence is well de�ned. By de�nition, any other
representative (δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ) of the class, is related to the representative
(δα, δβ, δγ, δr, δΦ) as in Eq. (6.38) for an in�nitesimal coordinate transfor-
mation ψε; looking at Eqs. (4.19-4.23), we have that (δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ) are
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exactly the transformed perturbations of (δα, δβ, δγ, δr, δΦ) via the gauge
transformation ψε. Hence, the application is well de�ned since the quantities
A,C,E are gauge-invariant. Thus, we write the application (6.42) as

A :=
[δγ]∼
γ
− 1

γ

(
γ

[δΦ]∼
Φ′

)′
, (6.43)

C :=
[δr]∼
r
− r′

r

[δΦ]∼
Φ′

, (6.44)

E :=

(
[δα]∼
α

)′
−
(
α′

α

[δΦ]∼
Φ′

)′
+
γ2

α2

(
[δβ̇]∼ −

[δΦ̈]∼
Φ′

)
, (6.45)

where we have introduced the abuse of notation

([δα]∼, [δβ]∼, [δγ]∼, [δr]∼, [δΦ]∼) ≡
[
(δα, δβ, δγ, δr, δΦ)

]
∼ .

Let us show that the application (6.43-6.45) can be inverted in the following
way: to any three smooth functions (A,C,E) we associate the equivalence
class

[
(δα, δβ, δγ, δr, δΦ)

]
∼ with representative

δα := α

∫
E dx , δβ := 0 , δγ := γA , δr := rC , δΦ := 0 . (6.46)

Let us prove that the the latter is actually the inverse function of Eqs.
(6.43-6.45). Firstly, consider (A,C,E), de�ne the equivalence class asso-
ciated to the perturbations (6.46) and then the quantities (Ã, C̃, Ẽ) as in
Eqs. (6.436.45) with (Ã, C̃, Ẽ) in place of (A,C,E); hence, we have trivially
that (Ã, C̃, Ẽ) = (A,C,E). Conversely, take an arbitrary equivalence class[
(δα, δβ, δγ, δr, δΦ)

]
∼ and �x any representative (δα, δβ, δγ, δr, δΦ), de�ne

the quantities (A,C,E) using Eqs. (6.356.37) and then write the perturba-
tions (δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ) using Eq. (6.46) with (δ̃α, δ̃β, δ̃γ, δ̃r, δ̃Φ) in place of
(δα, δβ, δγ, δr, δΦ); therefore, we have that δ̃β = δ̃Φ = 0 and

δγ

γ
− 1

γ

(
γ
δΦ

Φ′

)′
= A =

δ̃γ

γ
(6.47)

δr

r
− r′

r

δΦ

Φ′
= C =

δ̃r

r
(6.48)(

δα

α

)′
−
(
α′

α

δΦ

Φ′

)′
+
γ2

α2

(
δβ̇ − δΦ̈

Φ′

)
= E =

(
δ̃α

α

)′
, (6.49)
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from which

δ̃α = δα− α′ − δΦ

Φ′
+ α

∫
γ2

α2

(
˙δβ − δ̈Φ

Φ′

)
dx , (6.50)

δ̃γ = δγ −
(
γ
δΦ

Φ′

)′
, (6.51)

δ̃r = δr − r′ δΦ
Φ′

. (6.52)

Let us prove that
[
(δα, δβ, δγ, δr, δΦ)

]
∼ =

[
(δ̃α, 0, δ̃γ, δ̃r, 0)

]
∼. As already

proved, [δβ]∼ = [0]∼ and [δΦ]∼ = [0]∼; this can be veri�ed by de�ning the
transformations δt and δx as in Eq. (6.41) with δ̃β = δ̃Φ = 0, namely

δx = −δΦ
Φ′

and δt :=

∫
γ2

α2

(
δβ −

˙δΦ

Φ′

)
dx ; (6.53)

hence, we have that [δα]∼ = [δ̃α]∼, [δγ]∼ = [δ̃γ]∼, [δr]∼ = [δ̃r]∼, whence
(δα, δβ, δγ, δr, δΦ) ∼ (δ̃α, 0, δ̃γ, δ̃r, 0), since Eqs. (6.50-6.52) are exactly the
relations in Eq. (6.38) with δt and δx as in Eq. (6.53).

�

Remark 58 It is well known that the (linearized) Einstein-scalar equations
are gauge-invariant: this means that, if Eq. (4.29-4.33) are satis�ed in a
particular gauge, then they are satis�ed in every gauge. Now, since the
constraints equations (4.32,4.33) are equivalent to the constraint equation
(6.6), then, S = σ in a �xed gauge implies that for every gauge there exists a
constant σ̃ ∈ R such that S = σ̃. However, in Proposition 9 we have proved
that S is gauge-invariant: therefore, if S = σ in a �xed gauge, then S = σ in
every coordinate system.

Let us now return to the gauge-invariant quantities A, C, E de�ned in
Eqs. (6.35-6.37): these are well de�ned as long as Φ′ 6= 0 and, as already
noted, this request is satis�ed by all the static wormhole solutions of Chapter
3 and in most of other known wormhole solutions. (41) Moreover, we note that
in the particular gauge used in the previous section, for which δβ = δΦ = 0,
it turns out that A = A, C = C and E = D′, where A, C and D are de�ned in
Eq. (6.14). Therefore, since the linearized �eld equations are gauge-invariant

41As already mentioned in the Introduction, in a very recent paper [22], Carvente et al.
have introduced a new class of wormholes with scalar �elds that have zero derivative in
correspondence of the wormhole throats.
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even for the particular choice S = 0 (see Remark 58), the equivalent system
(6.25-6.28) obtained in the gauge δβ = δΦ = 0 is transformed by any gauge
transformation (4.6,4.7) into the same system in which the quantities A, C
and D′ are replaced by A, C and E; this system reads

EÄ = 0 , EÄ :=
γ

α
Ä− ∂

∂x

[
α

γ
(A′ − (d− 1)C ′)

]
+ (d− 1)

α

γ

(
α′

α
+ (d− 2)

r′

r

)
C ′−(d− 1)(d− 2)

αγ

r2
(A− C)

+
2αγV ′(Φ)

Φ′
A′ + 2αγ

[
(d− 3)κ

d− 1
V (Φ) + γ2V

′(Φ)2

Φ′2

+

(
3
α′

α
+ (d− 1)

r′

r

)
V ′(Φ)

Φ′
+ V ′′(Φ)

]
A , (6.54)

EC̈ = 0 , EC̈ :=
γ

α
C̈ − ∂

∂x

[
α

γ
C ′
]
− (d− 1)

α

γ

r′

r
C ′ + 2(d− 2)

αγ

r2
(A− C)

+ 2αγ

[
r′

r

V ′(Φ)

Φ′
− 2κ

d− 1
V (Φ)

]
A , (6.55)

EE = 0 , EE := E − A′ + (d− 1)C ′ + 2γ2V
′(Φ)

Φ′
A , (6.56)

EC′ = 0 , EC′ := C ′ −
(
α′

α
− r′

r

)
C − r′

r
A . (6.57)

Remark 59 We remark again that the system (6.54-6.57) actually gen-
eralizes the linearized system (6.25-6.28) to an arbitrary gauge (thus, not
assuming that δβ = δΦ = 0) and the unknown of this system, A, C, E
are gauge-invariant; once that the system has been solved, form the expres-
sions of A, C, E and by using the de�nitions (6.35-6.37), one can recover
the gauge-dependent perturbation functions δα, δβ, δγ, δr, δΦ (of course, in
doing this, there are two degrees of freedom, due to the gauge choice - see
Proposition 10).

All the previous considerations are summed up in the following

Proposition 11 In any gauge, the linearized �eld equations (4.29-4.33), to-
gether with the conditions Φ′ 6= 0 and S = 0 [Eq. (6.13)], are equivalent
to the system (6.54-6.57), where the functions A, C, E are the three gauge-
invariant quantities de�ned in Eqs. (6.35-6.37). Moreover, from Eq. (6.56)
the function E can be expressed in terms of the functions A, C

E(t, x) = A′(t, x)− (d− 1)C ′(t, x)− 2γ2(x)
V ′(Φ(x))

Φ′(x)
A(t, x) , (6.58)
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while the remaining three equations (6.54,6.55,6.57) can be regarded as a
constrained evolution system in the following sense: if (A,C) is a (time-
dependent) solution of the system EÄ = 0, EC̈ = 0 [Eq. (6.54,6.55)] satisfying
the initial conditions

EC′(0, x) = 0 , ˙EC′(0, x) = 0 , for every x ∈ x(O) , (6.59)

then (A,C) satis�es the equation EC′ = 0 [Eq. (6.57)] for every time t and
every x.

Remark 60 The hypothesis Φ′ 6= 0 of the previous proposition is no more
connected to the choice of the gauge δΦ = 0 (see Remark 55), but it is due to
the de�nitions of the gauge-invariant quantities A, C, E in Eqs. (6.35-6.37).
Note, however, that the de�nitions (6.35-6.37) have been clearly inspired by
the form of the system (6.25-6.28), which have been obtained by setting δΦ
(and δβ) equal to zero.

Example 5 As a simple example, let us consider the EBMT wormhole [Eq.
(3.36)] for which α = γ = 1 and r =

√
x2 + b2. In this case, the di�erence

between Eq. (6.54) and Eq. (6.55), along with Eq. (6.57) (used to eliminate
the derivative C ′), gives

χ̈− χ′′ − 3b2

(x2 + b2)2
χ = 0 , χ :=

A− C
r

, (6.60)

which coincides with Eq. (15) in Ref. [53]. The interest of this equation
is that it involves only one unknown gauge-invariant function χ(t, x) and
reduces the linear stability analysis of the EBMT wormhole to the spectral
analysis of the Schrödinger operator − d2

dx2
− 3b2

(x2+b2)2
. Since this has one nega-

tive eigenvalue (see Refs. [53, 25]), one concludes that the EBMT wormhole
is unstable. We will return to the possibility of decoupling the linearized �eld
equations in Section 6.5 and, in particular, to the master equation (6.60) for
the EBMT wormhole in Chapter 7.

6.3.1 A straightforward deduction of the system (6.54-
6.57) and its generalizations to the case S 6= 0

In Proposition 11 we have stated that the linearized �eld equations (4.29-
4.33) can be rewritten as a system involving only gauge-invariant quantities
and the static solution; this equivalent system has been obtained after a long
discussion, introducing the assumption Φ′ 6= 0 on the static solution and
the condition S = 0 on the perturbation functions. We now show that the
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system (6.54-6.57) can be generalized to a system which is equivalent to the
linearized Einstein-scalar equations even for perturbations such that S 6= 0.

Let us consider the quantities δE1, δE2, δE3, δH and δM de�ned in Eqs.
(4.29-4.33) in a general gauge (thus, not assuming that δβ = 0 nor δΦ = 0),

and de�ne the quantities ẼÄ, ẼC̈ , ẼE, EδH and EδM as follows (42)

ẼÄ := δE1 +
d− 3

(d− 1)r2
δE2 −

1

r2Φ′

(
2
α′

α
− γ′

γ
+ (d− 3)

r′

r
+ γ2V

′(Φ)

Φ′

)
δE3

+
1

r2Φ′
δE′3 , (6.61)

ẼC̈ :=
1

r2

(
2

(d− 1)
δE2 −

r′

rΦ′
δE3

)
, (6.62)

ẼE := − γ

αr2Φ′
δE3 , (6.63)

EδH :=
rd−1

2
δH , (6.64)

EδM :=
α

γ

rd−1

2
δM ; (6.65)

clearly, the system ẼÄ = 0, ẼC̈ = 0, ẼE = 0, EδH = 0, EδM = 0 is equivalent
to the linearized �eld system.
In addition, we introduce the gauge-invariant quantities A, C, E, de�ned as
in Eqs. (6.35-6.37); isolating the functions δγ, δr and δβ̇, we get

δγ = γA+

(
γ
δΦ

Φ′

)′
, (6.66)

δr = rC + r′
δΦ

Φ′
, (6.67)

δβ̇ =

[
E +

(
δα

α

)′
−
(
α′

α

δΦ

Φ′

)′ ]
α2

γ2
+
δΦ̈

Φ′
; (6.68)

with the substitutions (6.66-6.68) one can verify that

ẼÄ = EÄ , ẼC̈ = EC̈ , ẼE = EE , (6.69)

EδH =
d− 1

2

∂

∂x

[
αrd−1

γ
EC′

]
, EδM =

d− 1

2

∂

∂t

[
αrd−1

γ
EC′

]
, (6.70)

where EÄ, EC̈ , EE, EC′ are the quantities de�ned in Eqs. (6.54-6.57). We
have already mentioned that δH = 0, δM = 0 are equivalent to EδH = 0,

42The right hand sides of Eqs. (6.61-6.63) are exactly the right hand sides of Eqs.
(6.29-6.31) without the assumption δβ = 0.
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EδM = 0; from Eq. (6.70) it results that these are equivalent to

d− 1

2

∂

∂x

[
αrd−1

γ
EC′

]
= 0 ,

d− 1

2

∂

∂t

[
αrd−1

γ
EC′

]
= 0 .

Integrating the previous equations in x and t, respectively, it turns out that

EC′ = σ
2

d− 1

γ

αrd−1
, σ ∈ R , EC′ := C ′ −

(
α′

α
− r′

r

)
C − r′

r
A . (6.71)

Note that Eq. (6.71) actually generalizes Eq. (6.57) to perturbations such
that S = σ ∈ R (and, obviously, the two equations coincides for σ = 0):
indeed, one can see that (43)

EC′ =
2

d− 1

γ

αrd−1
S , (6.72)

with S de�ned in Eq. (6.6) and EC′ de�ned in Eq. (6.71), where A and C
are as in Eqs. (6.35,6.36.

The results of the present subsection are summed up in the next propo-
sition, which generalizes Proposition 11.

Proposition 12 In any gauge, the linearized �eld equations (4.29-4.33), to-
gether with the condition Φ′ 6= 0, are equivalent to the system (6.54,6.55,6.56,
6.71), where the functions A, C, E are the three gauge-invariant quantities
de�ned in Eqs. (6.35-6.37). Eq. (6.56) gives the expression for the function
E given in Eq. (6.58). The arbitrary parameter σ in Eq. (6.71) is related to
the perturbation functions as follows: if (A,C,E) is a solution of the system
(6.54,6.55,6.56,6.71) for a �xed constant σ, then the corresponding pertur-
bations (δα, δβ, δγ, δr, δΦ) are such that the quantity S in Eq (6.13) is equal
to σ. (44) For perturbations such that S = 0, Eq. (6.71) reduces to Eq.
(6.57); in this case the three equations (6.54,6.55,6.57) can be regarded as a
constrained evolution system in the sense explained in Proposition 11.

43This is exactly Eq. (6.32), expressed in an arbitrary gauge.
44Clearly, the perturbations (δα, δβ, δγ, δr, δΦ) are not uniquely determined, since there

are two degrees of freedom due to the gauge choice (see Proposition 10); note that, however,
the quantity S is gauge-invariant.

150



6.4. The gauge-invariant quantities F and G: the linearized �eld equations
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6.4 The gauge-invariant quantities F and G:
the linearized �eld equations as a constrained

wave system

Let us recall Example 5, where we have shown that that, in the EBMT case,
the constrained �eld system (6.54,6.55,6.57) can be decoupled, obtaining a
single equation involving only one unknown gauge-invariant function [Eq.
(6.60)]. In the rest of this chapter we illustrate a general method to reduce
the system (6.54,6.55,6.57) to one master equation (thus, generalizing the
considerations in Example 5). To this purpose we start with the following

Proposition 13 Let (A,C) be a solution of the constrained evolution system
Eqs. (6.54,6.55,6.57), then the gauge-invariant quantities

F :=
A− C
r

, G :=
C

r
(6.73)

satisfy the hyperbolic system of wave equations and the �rst order ODE

EF̈ = 0 ,
EG̈ = 0 ,

(
EF̈
EG̈

)
:= D

(
F
G

)
,

D :=

[
∂2

∂t2
−
(
α

γ

∂

∂x

)2

+

(
Y0 Y0

0 0

)
α

γ

∂

∂x
+
α2

γ2

(
W11 W12

W21 W22

)]
,

(6.74)

EG′ = 0 , EG′ := G ′ −
(
α′

α
− r′

r

)
G − r′

r
F ; (6.75)

here, the functions Y0 and Wij are given in terms of the static solution (6.1)
as follows:

Y0 := 2αγ
V ′(Φ)

Φ′
+ (d− 3)

α′

γ

r′

r
, (6.76)

W11 :=
r′

r

(
2(d− 1)

α′

α
+ d

r′

r

)
− 3(d− 2)

γ2

r2
+ Z11 , (6.77)

W12 := 2(d− 1)
α′2

α2
+ (d− 3)

r′

r

(
r′

r
− α′

α

)
+ Z12 , (6.78)

W21 := −4
r′2

r2
+ (d− 1)

γ2

r2

+(d− 3)

(
2

d− 2

α′

α

r′

r
+

κ

(d− 1)(d− a)
Φ′2
)

+ Z21 , (6.79)

W22 :=
r′

r

(
−d

2 + d− 8

d− 2

α′

α
+ 3

r′

r

)
− γ2

r2
− (d− 3)κ

(d− 1)(d− 2)
Φ′2 + Z22 ,

(6.80)
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where

Z11 := Z12 +
2κ

d− 1
γ2V (Φ) , (6.81)

Z12 := 2γ2

[
γ2V

′(Φ)2

Φ′2
+

(
3
α′

α
+ (d− 1)

r′

r

)
V ′(Φ)

Φ′
+ V ′′(Φ)

]
, (6.82)

Z21 := 2γ2

[
− κ

d− 2
V (Φ) +

r′

r

V ′(Φ)

Φ′

]
, (6.83)

Z22 := Z21 −
2(d− 4)κ

(d− 1)(d− 2)
γ2V (Φ) . (6.84)

Conversely, if (F ,G) is a solution of Eqs. (6.74,6.75), then the quantities
A := r(F + G) and C := rG satisfy the constrained system (6.54,6.55,6.57).

Proof. The equivalence of the systems (6.54,6.55,6.57) and (6.74,6.75) is
proved immediately by observing that the quantities EF̈ , EG̈ and EG′ (with
F and G de�ned as in Eq. (6.73)) can be written as combinations of the
quantities EÄ, EC̈ , EC′ and E′C′ as follows:

EF̈ =
α

γr

[
EÄ − EC̈ + (d− 1)

α

γ

(
γ′

γ
− 3

α′

α
− d2 − 3d+ 4

d− 1

r′

r

)
EC′

− (d− 1)
α

γ
E′C′

]
, (6.85)

EG̈ =
α

γr

[
EC̈ + (d+ 1)

α

γ

r′

r
EC′

]
, (6.86)

EG′ =
1

r
EC′ . (6.87)

�

Remark 61 Let us underline the following fact: although from Eq. (6.87)
it is evident that the constraint equation EC′ = 0 is equivalent to the equation
EG′ = 0, it is not necessary true that the latter is still a constraint for the
wave system (6.74), if with the term �constraint� we indicate an equation
that acts as a restriction in the choice of the initial data of an evolution
system; indeed, the recombinations (6.85-6.86) make evident that the wave
system (6.74) has been obtained from the evolution system (6.54,6.55) using
also the constraint EG′ = 0. This inevitably modi�es the relation among Eqs.
(6.74,6.75) which now reads

ËG′ −
α2

γ2
E′′G′ − 3

α

γ

(
α

γ

)′
E′G′ + J0EG′ +

r′

r
EF̈ +

r

α

(
α

r

)′
EG̈ −E′G̈ = 0 , (6.88)
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where

J0 :=
α2

γ2

[
γ′′

γ
− 3

γ′2

γ2
− α′2

α2
+
α′

α

(
3
γ′

γ
+ 2

d2 − 2d− 1

d− 2

r′

r

)

+
(2d− 5)κ

(d− 1)(d− 2)

(
2γ2V (Φ) + Φ′2

) ]
− (d− 3)

α2

r2
.

The identity (6.88) can be veri�ed by hand using the de�nitions given in Eqs.
(6.74,6.75) and the background equations (3.6-3.9); alternatively, one can see
that this identity is exactly Eq. (6.9) reformulated in an arbitrary gauge and
with the quantities δE1, δE2, δE3, S expressed in terms of the new quantities
EF̈ , EG̈, EE, EG′ using Eqs. (6.61-6.63,6.69,6.72) and then Eqs. (6.85-6.87)
(this can be done since the quantities δE1, δE2, δE3, S are gauge-invariant).
Note that, in doing this, EE disappears from the identity.
In spite of this fact, in Ref. [1], Eq. (6.75) (therein indicated with the
number (43)) is regarded as a constraint for the wave system (6.74) (therein
indicated with the number (42)); in this case the epithet �constraint� was
simply used to highlight that Eq. (6.75) does not contain second temporal
derivatives. After this clari�cation, in order to maintain compatibility with
the terminology used in Ref. [1], in the sequel we usually refer to Eqs.
(6.74,6.75) as �constrained wave system�.

Example 6 Let us observe that in the case of the EBMT wormhole [Eq.
(3.36)], it follows that Y0 = W12 = 0, so that the equation EF̈ = 0 for F in
the system (6.74) decouples trivially from the remaining ones; note that this
equation actually coincides with Eq. (6.60) as, in this case, F and χ are the
the same function.

6.5 A master equation for the gauge-invariant

quantity χ and the solution of the linearized

�eld equations

In the previous section we have rewritten the linearized equations (6.54,6.57)
as the wave system (6.74 subject to the constraint (6.75); in the EBMT case
this system is already decoupled (see Example 6). Inspired by this possibility,
in the following theorem, we describe a general trick which allows to decouple
the constrained wave system (6.74,6.75); this requires that a static solution

(F0,G0) := (F0(x),G0(x))

of Eqs. (6.74,6.75) is known, such that G0(x) 6= 0 for every x ∈ x(O).
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Theorem 7 Let (F ,G) and (F0,G0) be, respectively, a (time-dependent) so-
lution and a static solution of the constrained wave system (6.74,6.75), such
that G0(x) 6= 0 for every x ∈ x(O), then the gauge-invariant quantity

χ̃ := F − F0

G0

G (6.89)

satis�es the decoupled wave equation

Eχ̃ = 0 , Eχ̃ :=

[
∂2

∂t2
−
(
α

γ

∂

∂x

)2

+ Y0
α

γ

∂

∂x
+
α2

γ2
Ṽ
]
χ̃ (6.90)

with the potential

Ṽ = W11 −
F0

G0

W21 − 2
r′

r

(F0

G0

)′
+
γ

α

r′

r
Y0

(F0

G0

+ 1

)
; (6.91)

moreover, the couple (G, χ̃) satis�es the equations

EG̈,χ̃ = 0 , EG̈,χ̃ :=

[
∂2

∂t2
−
(
α

γ

∂

∂x

)2

+
α2

γ2

(F0

G0

W21 +W22

)]
G +

α2

γ2
W21χ̃ ,

(6.92)

EG′,χ̃ = 0 , EG′,χ̃ := G0
∂

∂x

[ G
G0

]
− r′

r
χ̃ . (6.93)

Conversely, if (G, χ̃) satis�es Eqs. (6.90,6.92,6.93), then the quantities F :=
χ̃+ F0

G0 G and G satisfy the constrained wave system (6.74,6.75).

Proof. In order to show that the system (6.74,6.75) is equivalent to the
system (6.90,6.92,6.93) it is su�cient to note that the following identities
hold (with χ̃ de�ned as in Eq. (6.89))

Eχ̃ = EF̈ −
F0

G0

EG̈ +K0EG′ , (6.94)

EG̈,χ̃ = EG̈ , (6.95)

EG′,χ̃ = EG′ , (6.96)

where

K0 :=

{
α2

γ2

2

G0

[
F0
r′

r

(
1− F0

G0

)
+ α

(F0

α

)′ ]
−W0

(
1 +
F0

G0

)}
.
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Note that, in verifying Eqs. (6.94,6.96), one has to use the fact that (F0,G0)
is a solution of the static version of Eqs. (6.74,6.75) in order to get rid of the
derivatives F ′′0 , G ′′0 and G ′0. As an example, the proof of Eq. (6.96) reads

EG′,χ̃ := G ′−G
′
0

G0

G− r
′

r
χ̃ = G ′−

[(
α′

α
− r′

r

)
G0 +

r′

r
F0

] G
G0

− r
′

r

(
F − F0

G0

G
)

= G ′ −
(
α′

α
− r′

r

)
G − r′

r
F =: EG′ .

�

Remark 62 Let us observe that it is always possible to eliminate the �rst
spatial derivative from Eq. (6.90); indeed, if one de�nes the gauge-invariant
quantity

χ :=
χ̃

a
, a(x) = a0e

∫ x
x0

Y0(y)γ(y)
2α(y)

dy
, (6.97)

where a0 and x0 are two constants, then χ̃ satis�es Eq. (6.90) if and only if
χ satis�es the wave equation (45)

Eχ = 0 , Eχ :=

[
∂2

∂t2
−
(
α

γ

∂

∂x

)2

+
α2

γ2
V
]
χ (6.98)

with the potential

V = Ṽ +
1

4

γ2

α2
Y 2

0 −
1

2

γ

α
Y ′0 . (6.99)

As a consequence of the previous remark, we can provide a new version
of Theorem 7:

Theorem 8 Let (F ,G) and (F0,G0) be, respectively, a (time-dependent) so-
lution and a static solution of the constrained wave system (6.74,6.75), then
the gauge-invariant quantity

χ :=
1

a

(
F − F0

G0

G
)
, a(x) = a0e

∫ x
x0

Y0(y)γ(y)
2α(y)

dy
, a0, x0 ∈ R (6.100)

45This can be easily proved noting that a satis�es

a′ =
Y0γ

2α
a , a′′ =

[(
Y0γ

2α

)′
+

(
Y0γ

2α

)2
]
a .
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satis�es the decoupled wave equation

Eχ = 0 , Eχ :=

[
∂2

∂t2
−
(
α

γ

∂

∂x

)2

+
α2

γ2
V
]
χ (6.101)

with the potential

V :=
d− 1

2(d− 2)

[
(d− 5)

α′

α

r′

r
− 3κ

2
Φ′2
]

+
(d− 3)(d− 5)

4

γ2

r2
− 2

r′

r

(F0

G0

)′
+ γ2

[
2γ2V

′(Φ)2

Φ′2
+ 4

(
α′

α
+
d− 1

2

r′

r

)
V ′(Φ)

Φ′
+ V ′′(Φ)− d+ 1

d− 2

κ

2
V (Φ)

]
+

2

d− 2

[
(d− 2)

γ2

r2
− 2(d− 1)

α′

α

r′

r
− κΦ′2 − 2κ

d− 1
γ2V (Φ)

] F0

G0

;

(6.102)

moreover, the couple (G, χ̃) satis�es the equations

EG̈,χ = 0 , EG̈,χ :=

[
∂2

∂t2
−
(
α

γ

∂

∂x

)2

+
α2

γ2

(F0

G0

W21 +W22

)]
G + a

α2

γ2
W21χ ,

(6.103)

EG′,χ = 0 , EG′,χ := G0
∂

∂x

[ G
G0

]
− ar

′

r
χ . (6.104)

Conversely, if (G, χ) satis�es Eqs. (6.101,6.103,6.104), then the quantities
F := aχ+ F0

G0 G and G satisfy the constrained wave system (6.74,6.75).

Proof. Substantially, the theorem has already been proved. Indeed, the
function χ in Eq. (6.100) is exactly the function de�ned in Remark 62 by
Eq. (6.100) (recalling the de�nition of χ̃ in Eq. (6.89)); analogously, Eq.
(6.101) is exactly Eq. (6.98). The new expression for the potential V in Eq.
(6.102) has been computed from the expression in Eq. (6.99) by using the
expression for Ṽ in Eq. (6.91) and by using Eqs. (6.76,6.77,6.79) in order
to make explicit the dependence of Y0, W11 and W21 on the static solution
(6.1); the background equations (3.6,3.8,3.9) have also been employed in or-
der to remove the derivatives Φ′′, r′′ and r′2. Finally Eqs. (6.103,6.104) are
precisely Eqs. (6.92,6.93) in which the function χ̃ has been replaced by aχ
(see Eq. (6.97)).

�

In the sequel, we always refer to Eq. (6.101) as the master equation since
this reduces the linear stability analysis of the solution (6.1) to the spectral
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analysis of the linear, Schrödinger-type operator arising from Eq. (6.101)

H := −
(
α

γ

d

dx

)2

+
α2

γ2
V .

Finally, let me repeat that the above approach for decoupling the linearized
�eld equations (yielding the master equation) requires the knowledge of a
static solution (F0(x),G0(x)) of Eqs. (6.74,6.75): in the next chapter I will
show that for static wormholes depending on parameters, this static solution
can be obtained following a general strategy.

6.5.1 A solution of Eqs. (6.103,6.104) in dependence of
χ, and the recovering of the perturbations δα, δβ,
δγ, δr, δΦ

Once the master equation (6.101) has been solved for the function χ(t, x),
one has still to solve Eqs. (6.103,6.104) in order to �nd G(t, x). For the
moment, let us suppose that this system is solvable and let G be its solution;
then from χ and G it is possible to reconstruct the gauge-invariant quantity
F recalling that

F(t, x) = a(x)χ(t, x) +
F0(x)

G0(x)
G(t, x) . (6.105)

The quantities A, C, E are immediately obtained by inverting the de�nitions
(6.73) and using Eq. (6.58):

A(t, x) = r(x)

[
a(x)χ(t, x) +

(
1 +
F0(x)

G0(x)

)
G(t, x)

]
, (6.106)

C(t, x) = r(x)G(t, x) , (6.107)

E(t, x) = −2γ2r
V (Φ)

Φ′

(
1 +
F0

G0

)
G − ∂

∂x

[
r

(
d− 2− F0

G0

)
G
]

+ a r

[(
r′

r
+
a′

a
− 2γ2V

′(Φ)

Φ′

)
χ+ χ′

]
. (6.108)

Finally, as already mentioned in Section 6.3, the perturbation functions δα,
δβ, δγ, δr, δΦ can be recovered (after �xing a gauge - see Proposition 10) by
inverting the de�nitions of A, C and E in Eqs. (6.35-6.37) and using their
expressions in Eqs. (6.106-6.108).
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solutions

Let us return to the system (6.103,6.104) in the unknown G (the function
χ is the solution of the master equation Eχ = 0 and is supposed to be given);
in general, there is no hope to �nd a function satisfying a system of two
independent di�erential equations. Fortunately, Eqs. (6.103,6.104) are not
independent: indeed, one can rewrite the identity (6.88) with the quantities
EG′ , EF̈ , EG̈ replaced by EG′,χ, Eχ, EG̈,χ by using Eqs. (6.94-6.96) and the
fact that Eχ̃ = Eχ, EG̈,χ̃ = EG̈,χ, EG′,χ̃ = EG′,χ (if χ = aχ̃). In this way Eq.
(6.88) becomes

¨EG′,χ −
α2

γ2
E′′G′,χ − 3

α

γ

(
α

γ

)′
E′G′,χ +

[
J0 −

r′

r
K0

]
EG′,χ

+
r′

r
Eχ − E′G̈,χ +

[
α′

α
−
(

1− F0

G0

)
r′

r

]
EG̈,χ = 0 . (6.109)

Suppose now that G satis�es the equation EG′,χ = 0 [Eq. (6.104)] (and, as
already mentioned, that χ is a solution of the master equation Eχ = 0);
hence, the identity (6.109) gives

E′G̈,χ =

[
α′

α
−
(

1− F0

G0

)
r′

r

]
EG̈,χ . (6.110)

Now, Eq. (6.110) can be interpreted as an ordinary di�erential equation of
the �rst order in the unknown EG̈,χ(x) ≡ EG̈,χ(t, x), whose solutions depend
on the initial condition EG̈,χ(0) ≡ EG̈,χ(t, 0). In particular, if EG̈,χ(t, 0) = 0
for every time t, then the solution of Eq. (6.110) is EG̈,χ(t, x) ≡ 0 for every
t and x, namely, Eq. (6.103) holds. Therefore, in order to �nd a solution
of the system (6.103,6.104), it is su�cient to �nd (for any �xed solution χ
of the master equation Eχ = 0) a solution G of the equation EG′,χ = 0 [Eq.
(6.104)] such that

EG̈,χ(t, 0) = 0 for every time t, (6.111)

where EG̈,χ(t, x) ≡ EG̈,χ is de�ned by Eq. (6.103).
Luckily, Eq. (6.104) can be easily integrated, leading to

G(t, x) = G0(x)

x∫
x0

r′(y)

r(y)

a(y)

G0(y)
χ(t, y)dy + G0(x)P (t) , (6.112)

where x0 and P (t) are, respectively, an integration constant and an integra-
tion function: we can use these two degrees of freedom in determining the
function G in order to impose the condition (6.111). Indeed, inserting the
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expression (6.112) into Eq. (6.111) and set x0 = 0, it turns out that the
function P (t) has to solve the second order ODE

P ′′ + p1P = p2 χ(t, 0) (6.113)

where p1 and p2 are two real constants de�ned as

p1 :=
α(0)2

γ(0)2

[
W22(0) +W21(0)

F0(0)

G0(0)

]
, p2 := −α(0)2

γ(0)2

W21(0)

G0(0)
. (6.114)

Eq. (6.113) can be solved by means of the variation of constants method,
yielding (46)

P (t) =
p2

2
√−p1

[
e
√
−p1t

∫ t

t0

χ(s, 0)e−
√
−p1sds− e−

√
−p1t

∫ t

t0

χ(s, 0)e
√
−p1sds

]
with p1, p2 as in (6.114). (6.115)

Thus, the following theorem is proved

Theorem 9 In any gauge, the linearized �eld equations (4.29-4.33), together
with the conditions Φ′ 6= 0 and S = 0 [Eq. (6.13)], are equivalent to the sys-
tem (6.101,6.108,6.112,6.115), where the functions χ, G, E are three gauge-
invariant quantities de�ned, respectively, by Eqs. (6.100,6.73,6.35,6.36), by
Eqs. (6.73,6.36) and by Eq. (6.37), where (F0(x),G0(x)) is a static solution
of the system (6.74,6.75).
Moreover, the system (6.101,6.108,6.112,6.115) is decoupled since Eq. (6.101)
is a wave equation in the only unknown χ and, once this equation is solved,
Eq. (6.108) and Eqs. (6.112,6.115) de�ne, respectively, the functions E and
G in terms of χ.

46Let us recall again that the present gauge-invariant decoupling method actually gener-
alizes to arbitrary dimension the four-dimensional method introduced in Ref. [1]; here, the
constrained system (6.74,6.75) and the master equation (6.101) are derived for d = 3. In
addition, an attempt �nd the general solution (F ,G) of (6.74,6.75) in terms of the solution
χ of the master equation was made; unfortunately, the authors obtain Eqs. (6.105,6.112)
with P (t) = 0 for every t, which in general is not true (see Eqs. (61,62) of Ref. [1]).
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Chapter 7

Applications of the

gauge-invariant method

7.1 A general strategy for obtaining a static so-

lution (F0,G0) of the constrained wave sys-

tem (6.74,6.75)

Let us suppose to have a static wormhole solution of the form (6.1) depending
on certain parameters λ = {λ1, ..., λn} ∈ L ⊆ Rn with L an open subset of
Rn and n ≥ 1; we write

β = 0 , (α, γ, r,Φ) :=
(
α(λ;x), γ(λ;x), r(λ;x),Φ(λ;x)

)
. (7.1)

For example, one can think of the Torii-Shinkai wormhole (3.31) and the
EBMT wormhole (3.36), depending on the parameter b > 0, the Ellis-
Bronnikov wormhole (3.39), depending on the parameters b > 0, γ1 ∈ R,
or the AdS wormhole (3.62) depending on the parameters k > 0, B > 0. For
every �xed value of the parameters λ ∈ L, we introduce a �perturbation�
of the static solution (7.1) near λ, that is, we introduce n real constants
δλ1, ..., δλn ∈ R (δλ := {δλ1, ..., δλn} ∈ Rn) and a small real parameter ε,
such that the �perturbed� metric has the form (2.24) with the coe�cients
de�ned as

α(t, x) := α(λ + ε δλ;x) , β(t, x) := 0

γ(t, x) := γ(λ + ε δλ;x) , r(t, x) := r(λ + ε δλ;x) , (7.2)

and such that the �perturbed� �eld reads

Φ(t, x) := Φ(λ + ε δλ;x) . (7.3)
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The expansions up to the �rst order in ε of the �perturbed� static solution
read

α(λ + εδλ;x) = α(λ;x) + ε

(
∂α

∂λ1

(λ;x), ...,
∂α

∂λn
(λ;x)

)
· δλ +O(ε2) ,

γ(λ + ε δλ;x) = γ(λ;x) + ε

(
∂γ

∂λ1

(λ;x), ...,
∂γ

∂λn
(λ;x)

)
· δλ +O(ε2) ,

r(λ + εδλ;x) = r(λ;x) + ε

(
∂r

∂λ1

(λ;x), ...,
∂r

∂λn
(λ;x)

)
· δλ +O(ε2) ,

Φ(λ + εδλ;x) = Φ(λ;x) + ε

(
∂Φ

∂λ1

(λ;x), ...,
∂Φ

∂λn
(λ;x)

)
· δλ +O(ε2) .

(7.4)

where the symbol · denotes the scalar product in Rn. Hence, a small modi�-
cation of the parameters λ can be indeed interpreted as a static perturbation
of the static solution (7.1) in the sense of Eqs. (4.3,4.4), where the pertur-
bation functions are de�ned as

δα :=

(
∂α

∂λ1

(λ;x), ...,
∂α

∂λn
(λ;x)

)
· δλ ,

δγ :=

(
∂γ

∂λ1

(λ;x), ...,
∂γ

∂λn
(λ;x)

)
· δλ ,

δr :=

(
∂r

∂λ1

(λ;x), ...,
∂r

∂λn
(λ;x)

)
· δλ ,

δΦ :=

(
∂Φ

∂λ1

(λ;x), ...,
∂Φ

∂λn
(λ;x)

)
· δλ ,

δβ := 0

(7.5)

(to see this, it is su�cient to compare Eqs. (4.3,4.4) and Eqs. (7.2,7.3,7.4,
recalling that, at the linearized level, we neglect all the powers of ε greater
or equal then 2).

Remark 63 The static perturbations (7.5) satisfy the linearized �eld equa-
tions (4.25-4.28) (or, equivalently, (4.29-4.33)) for every perturbations δλ of
the parameters λ. Although this fact is quite obvious, we give an example
for n = 1 to make it clearer.
Let us consider the di�erential equation

E

(
f(λ;x),

∂f

∂x
(λ;x),

∂2f

∂x2
(λ;x)

)
= 0 , (7.6)

where E is a smooth real function de�ned on a subset of R3 and λ is a real
parameter. Let us introduce a solution f0(λ, x) of Eq. (7.6), de�ned for any

161



7. Applications of the gauge-invariant method

λ ∈ L ⊆ R with L an open subset of Rn, and a (static) perturbation of this
solution de�ned as

f(λ;x) = f0(λ;x) + ε δf(λ;x) , (7.7)

where ε is a small real parameter and δf is a smooth function to be deter-
mined. The linearization of Eq. (7.6) evaluated in Eq. (7.7) with respect to
ε reads

δE = 0 , δE :=ε

(
δf(λ;x),

∂δf

∂x
(λ;x),

∂2δf

∂x2
(λ;x)

)
· ∇R3

E

(
f0(λ;x),

∂f0

∂x
(λ;x),

∂2f0

∂x2
(λ;x)

)
; (7.8)

here and in the following∇R3
and · denote, respectively, the three-dimensional

Euclidean gradient and the scalar product in R3.
Let us now de�ne a (static) perturbation of the solution f0(λ;x) obtained
from a perturbation of the parameter λ (analogously to what we have done
in Eq. (7.5)):

f0(λ+ ε δλ;x) = f0(λ;x) + ε
∂f0

∂λ
(λ;x)δλ+O(ε2) , (7.9)

where, ε is a small real parameter and δλ is a real constant; we now prove
that the static perturbation

δf(λ;x) :=
∂f0

∂λ
(λ;x)δλ (7.10)

is actually a solution of the linearized equation (7.8) for every value of δλ ∈
R. We start observing that, since for ε small enough λ + ε δλ ∈ L, then
f0(λ + ε δλ;x) is still an exact solution of the di�erential equation (7.6);
hence

E

(
f0(λ+ ε δλ;x),

∂f0

∂x
(λ+ ε δλ;x),

∂2f0

∂x2
(λ+ ε δλ;x)

)
≡ 0 . (7.11)

Hence, the linearization with respect to ε of the previous identity gives

δE =E

(
f0(λ;x),

∂f0

∂x
(λ;x),

∂2f0

∂x2
(λ;x)

)
+ ε

(
∂f0

∂λ
(λ;x) δλ,

∂

∂x

∂f0

∂λ
(λ;x) δλ,

∂2

∂x2

∂f0

∂λ
(λ;x) δλ

)
· ∇R3

E

(
f0(λ;x),

∂f0

∂x
(λ;x),

∂2f0

∂x2
(λ;x)

)
≡ 0 , (7.12)
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which implies that the two addends are identically zero; the �rst term is zero
since f0(λ;x) is a solution of Eq. (7.6), while the cancelling of the second
term tells us that the (static) perturbation (7.10) is actually a solution of the
linearized equation (7.8).

We now return to the method outlined in Section 6.5 for decoupling the
linearized �eld equations, which assumes the knowledge of a static solution
(F0(x),G0(x)) of the system (6.74,6.75). The previous remark and the con-
siderations at the beginning of this section provide a general strategy to ob-
tain a solution (F0(x),G0(x)) for static wormholes depending on one or more
parameters. Indeed, we have proved that the static perturbations (7.5), ob-
tained by varying the parameter(s) of the considered wormholes, actually
satisfy the linearized system (2.83�2.87); as a consequence, the correspond-
ing static gauge-invariant �elds A ≡ A0(x) and C ≡ C0(x) (de�ned by Eqs.
(6.35,6.36)) ful�ll the system (6.54,6.55,6.57), provided the vanishing condi-
tion S = 0 [Eq. (6.13)] holds. The latter additional condition is indeed a
condition on the variation(s) δλ = (δλ1, ..., δλn) in Eq. (7.5); then, under
this prescription, the gauge-invariant �elds F ≡ F0(x) and G ≡ G0(x), asso-
ciated with A ≡ A0(x) and C ≡ C0(x) according to Eq. (6.73), are a static
solution of the constrained wave system (6.74,6.75). In this chapter we will
apply this general strategy to the cases of the Torii-Sinkai, Ellis-Bronnikov
and AdS wormholes. In the last section, the problem of the linear stability
of the dS wormhole is partially treated in the same fashions.

7.2 Gauge-invariant stability analysis of the Torii-

Shinkai wormhole

We �rstly deal with the (d + 1)-dimensional Torii-Shinkai wormhole in the
coordinate system (t, x, x2, ..., xd), de�ned by Eq. (3.34); we would like to
apply the general method presented in Chapter 6 with (t, x) in place of (t, x).
However, the metric (3.34) does not depend on any parameter, a fact that
seems to prevent from applying the method of the variation of the parameters
which allows to �nd the static solution (F0,G0), introduced in the �rst section
of this chapter. (47) This problem can be easily overcome by considering for

47Of course it is possible to use the Torii-Shinkai metric in the coordinates (t, x), in
which the metric is as in Eq. (3.31), thus depending on the parameter b > 0; however, in
this coordinate system the forthcoming equations would become less elegant.
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any b > 0 the equivalent solution

α = γ = b , r = b ρ(x) , Φ =

√
(d− 1)(d− 2)

κ
φ(x) ,

with ρ and φ as in Eq. (3.31). (7.13)

Note that the parameter b in Eq. (7.13) does not represent any more the size
of the wormhole throat (which is 1) and its introduction is purely technical.
Therefore, the static perturbation (7.5) (with n = 1 and λ1 := b) reads

δα = δγ = δb δβ = δΦ = 0 , δr = ρ(x) δb ; (7.14)

in the �rst section of this chapter we have shown that the functions in Eq.
(7.14) satisfy the linearized �eld system (4.25-4.28) (or, equivalently, (4.29-
4.33)) for every variation δb. If now we introduce Eq. (7.14) into Eqs.
(6.35,6.36) we get following expressions for the gauge-invariant quantities A
and C:

A ≡ A0(x) =
δb

b
, C ≡ C0(x) =

δb

b
; (7.15)

these are a static solution even of the system (6.54,6.55,6.57) only if the
variation δb satis�es the condition S = 0. Inserting Eq. (7.14) into the very
de�nition of S in Eq. (6.13), we have that S ≡ 0 for every choice of δb; hence,
we can set δb := 1. If we now insert Eq. (7.15) in the de�nition (6.73) of F
and G, we get a static solution of the system (6.74,6.75):(

F
G

)
≡
(
F0(x)
G0(x)

)
:=

(
0
1

b2 ρ(x)

)
. (7.16)

Clearly, G0 is strictly positive. Using the non-trivial solution (7.16) we can
now obtain the master equation for the perturbed Torii-Shinkai wormhole; in-
deed, since F0

G0 = 0, the function χ̃ in Eq. (6.89) coincides with F . Moreover,
since in this case

Y0 =
(d− 3) sign(x)

ρ(x)

√
1− 1

ρ(x)2(d−2)
,

we have to distinguish between the four-dimensional case, in which d = 3
and Y0 ≡ 0, and the higher dimension case, in which d > 3 and Y0 6≡ 0.

Let us consider �rstly the four-dimensional case d = 3; since, in this case
Y0 = 0, we can set a = 1 in Eq. (6.100), so that V = Ṽ and χ = χ̃. Therefore,
χ = F satis�es the master equation[

∂2

∂t2
− ∂2

∂x2
− 3

(x2 + 1)2

]
χ = 0 . (7.17)
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We consider now the case d > 3 and introduce the functions a and χ
de�ned as in Eq. (6.100). It turns out that, setting x0 = 0 and a0 = 1,

a(x) = ρ(x)
d−3
2 ;

hence, the function

χ :=
F

ρ(x)
d−3
2

(7.18)

satis�es the master equation (6.101) which reads (recalling that α/γ = 1 for
the Torii-Shinkai wormhole)[

∂2

∂t2
− ∂2

∂x2
+ V

]
χ = 0 , (7.19)

with the potential

V(x) ≡ Vd,b(x) :=
1

4ρ2(x)

[
(d− 3)(d− 5)− 3(d− 1)2

ρ2(d−2)(x)

]
x ∈ R . (7.20)

Remark 64 As already mentioned, in the four-dimensional case, the Torii-
Shinkai wormhole reduces to the EBMT wormhole in the coordinates (t, x)
[Eq. (3.35)]. Note that the potential (7.20) is well de�ned also for d = 3 and
is equal to V(x) = − 3

(x2+1)2
; hence, the master equation (7.19) reduces to Eq.

(7.17); note that the latter coincides exactly with the master equation for
the EBMT wormhole (6.60), after performing the coordinate change t = b t,
x = b x [Eq. (3.33)].

7.2.1 Solution of the master equation and linear in-
stability of the Torii-Shinkai wormhole - gauge-
invariant formulation

For every d ≥ 3 and every b > 0, the master equation (7.19), containing the
potential (7.20) can be written as

χ̈(t) +Hχ(t) = 0 (t ∈ R), (7.21)

where

H := − d2

dx2
+ V (V ≡ V(x) as in Eq. (7.20)) (7.22)
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and the unknown is a function

χ(t) ≡ χ(t, ·) : x 7→ χ(t, x) for every t ∈ R .

Remark 65 In order to rigorously studying the solutions of the master equa-
tion (7.21), we have to consider again the Hilbert space (5.28) and the selfad-
joint operator H de�ned in Eq. (5.29); now, we can pro�t from the discussion
in Appendices D.1 and E.1 on the spectra of this operator and the possibil-
ity of introducing a generalized orthonormal basis consisting in its proper
and improper eigenfunctions. The results therein contained are reassumed
in Remark 40.

Then, pro�ting from the considerations contained in the previous remark,
one can search the solution χ(t) of the master equation (7.21) with appro-
priate smoothness properties and with the initial conditions

χ(0) = q , χ̇(0) = p , (7.23)

where
q : x 7→ q(x) , p : x 7→ p(x)

are su�ciently regular functions.
For all technical details, we refer to Appendix E.1.1; here we introduce two
Hilbertian structures on the domains D and D1/2 of the operators H and
|H|1/2 and we show that, for any

q ∈ D , p ∈ D1/2

Eqs. (7.21,7.23) have a unique solution χ(t) de�ned for every t ∈ R such
that

χ ∈ C2(R,H) ∩ C1(R,D1/2) ∩ C(R,D) ; (7.24)

this solution, for all t ∈ R, can be decomposed by means of the previously
mentioned generalized orthonormal basis as follows

χ(t) =

[
〈e1|q〉 cosh(|µ1|1/2t) + 〈e1|p〉

sinh(|µ1|1/2t)

|µ1|1/2
]
e1

+
2∑
i=1

∫ +∞

0

[
〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉

sin(λ1/2t)

λ1/2

]
eiλ dλ . (7.25)

As explained in Remark 100, the symbols 〈·|·〉 in the above formula indicate
usual inner products in H, or suitably de�ned generalizations, while the in-
tegrals over λ are understood in a weak sense. Of course we are interested
in the case in which χ(t) is real valued for each t, a fact that occurs if and
only if the data q, p are real valued functions.
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Remark 66 From the expression (7.25) for χ(t), one can see that the co-
e�cient of e1 diverges exponentially both for t → −∞ and for t → +∞
(except for very special choices of 〈e1|q〉 and 〈e1|p〉); (48) this su�ces to infer
the (linear) instability of the Torii-Shinkai wormhole [35]. Indeed, we have
proved that for some special initial data, there exists a combination χ of
the linearized perturbation functions δα, δβ, δγ, δr, δΦ which diverges as the
temporal coordinate t goes to in�nity; moreover, even after introducing an
in�nitesimal coordinate transformation (4.6,4.7), the transformed �perturba-
tion� χ̃ still diverges for t̃→ ±∞ as the quantity χ is gauge-invariant, that
is χ̃(t̃, x̃) = χ(t̃, x̃).
Finally, let us remark that the integrals over λ in Eq. (7.25) are super-
positions of �non normalizable� oscillatory modes, living outside the space
H = L2(R, dx) like the improper eigenfunctions eiλ.

Hence, we have shown the following �nal result.

Theorem 10 (Linear instability of the Torii-Shikai wormhole - gauge-
invariant formulation)
For all d ≥ 3 and for all b > 0, the Torii-Shinkai wormhole is linearly un-
stable under small spherically symmetric perturbations of its metric and the
associated scalar �eld; more precisely, there exists a gauge-invariant quan-
tity χ (depending on the perturbations) which, for some special initial data,
diverges as the temporal coordinate t goes to ±∞.

Remark 67 Since the previous result is valid for all d ≥ 3, in the case
d = 3, it reduces to the statement of the linear instability of the EBMT
wormhole (see Example 5). Note that the present approach is the same of
that in Ref. [1].

Remark 68 As already mentioned in Remark 45, the linear instability of
the EBMT wormhole has been proved �rstly in Ref. [25] (and then repro-
posed in Refs. [53, 2]), while the �rst deduction of the same feature for
the Torii-Shinkai wormhole can be found in Ref. [35]. All these papers
use a di�erent approach from that of the present section; in particular, in
Ref. [2] the linear instability of the EBMT wormhole is derived using the
�gauge-dependent� approach explained in Section 5.1 in the four-dimensional
case d = 3. To see a closer comparison among the schemes of the previous
mentioned cited works, see Chapter 8.

48For 〈e1|q〉 = 〈e1|p〉 = 0, the coe�cient of e1 in Eq. (7.25) vanishes. For 〈e1|q〉 =
ξ〈e1|p〉/|µ1|1/2 6= 0, with ξ = ±1, the coe�cient of e1 diverges for t → ξ(+∞) and
vanishes for t→ ξ(−∞).
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7.3 Gauge-invariant stability analysis of the Ellis-

Bronnikov wormhole

We consider the Ellis-Bronnikov solution given in Eqs. (3.39,3.40); hence
in this section we set d = 3. The Ellis-Bronnikov solution depends on two
parameters b > 0 and γ1 ∈ R; therefore, one can apply the general strategy
introduced at the beginning of the present chapter in order to �nd the static
solution (F0,G0) of the system (6.74,6.75). The knowledge of this static
solution is su�cient to decouple the latter system, thanks to the gauge-
invariant method explained in Chapter 6.
Let us consider the static perturbations (7.5) obtained from the linearization
of the solution (3.39,3.40) with respect to small variations of b and γ1:

δα =
(

arctan
x

b

)
α δγ1 −

γ1x

x2 + b2
α δb ,

δβ = 0 ,

δγ = −
(

arctan
x

b

)
γ δγ1 +

γ1x

x2 + b2
γ δb ,

δr = −
(

arctan
x

b

)
r δγ1 +

b+ γ1x

x2 + b2
r δb ,

δΦ =
γ1

1 + γ2
1

(x2 + b2)
(

arctan
x

b

)
Φ′
δγ1

b
− xΦ′

δb

b
.

(7.26)

The previous functions satisfy the linearized �eld system (4.25-4.28) (or,
equivalently, (4.29-4.33)) for every choice of the variation δb, δγ1; introducing
into Eqs. (6.35,6.36), they give rise to rise to the gauge-invariant quantities

A ≡ A0(x) = − 1

1 + γ2
1

[
γ1 +

(
1 + 2γ1

x

b

)
arctan

x

b

]
δγ1 +

δb

b
, (7.27)

C ≡ C0(x) = −1 + γ1
x
b

1 + γ2
1

(
arctan

x

b

)
δγ1 +

δb

b
. (7.28)

As explained previously, the functions A0 and C0 automatically satisfy the
system of equations (6.54,6.55,6.57) for all the variations δb, δγ1 such that
S = 0. In this case the de�nition of S in Eq. (6.13) gives S = −δb γ1−b δγ1 =
δ(b γ1), so that the condition S = 0 holds if and only if

δγ1 = −γ1

b
δb . (7.29)

Inserting Eqs. (7.27,7.28,7.29) into the de�nition (6.73) of F and G (and
choosing for simplicity δb = b), one obtains the following time-independent
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7.3. Gauge-invariant stability analysis of the Ellis-Bronnikov wormhole

solution of the constrained wave system (6.74,6.75): (49)

(
F
G

)
≡
(
F0(x)
G0(x)

)
:=

1

r

(
γ21

1+γ21

[
1 + x

b
arctan x

b

]
F (x)

)
,

F (x) := 1 +
γ1

1 + γ2
1

(
1 + γ1

x

b

)
arctan

x

b
.

(7.30)

Note that the function F : R → R is smooth and strictly positive (50) and
that

F0

G0

= γ2
1

1 + x
b

arctan x
b

1 + γ2
1 + γ1

(
1 + γ1

x
b

)
arctan x

b

;

therefore, we can now apply the general method for decoupling the wave
system (6.74,6.75), choosing the static solution (F0(x),G0(x)) as in Eq. (7.30).
In this case, for every γ1 and every b > 0, we have Y0 = 0 so that we can
choose a = 1 in Eq. (6.100), which implies that V = Ṽ and χ = χ̃. Hence,
the function χ de�ned as

χ := F + γ2
1

1 + x
b

arctan x
b

1 + γ2
1 + γ1

(
1 + γ1

x
b

)
arctan x

b

G

satis�es the master equation (6.101) for the Ellis-Bronnikov wormhole, which
reads [

∂2

∂t2
−
(
α

γ

∂

∂x

)2

+
α2

γ2
V
]
χ = 0 (7.31)

where

V(x) ≡ Vb,γ1(x) =
γ2

α2

1

b2
W
(x
b

)
x ∈ R , (7.32)

W (x) := e4γ1 arctan x
b

[
− 3

x2 + 1
+ 3

(x− γ1)2

(x2 + 1)2 + 2

(
F ′

F

)2

−4
γ1

x2 + 1

F ′

F
+ 4

γ1

γ2
1 + 1

x− γ1

(x2 + 1)2

1

F

]
(F as in Eq. (7.30)) ; (7.33)

49The use of the letter F to denote the static solution G0 can seem somehow confusing;
this choice has been made to maintain the notation of Ref. [25].

50For γ1 = 0, F = 1 and the statement is trivial. When γ1 6= 0 one has F (x) →
+∞ for x → ±∞, thus F has a global minimum at some x = x0, where 0 = (1 +
γ21)bF ′(x0) = γ1

[
γ1 arctan(x0/b) + (b+ γ1x0)b/(x20 + b2)

]
. Eliminating the arctan term

one obtains from this (1+γ21)F (x0) = (x0−bγ1)2/(x20 +b2). However, this minimum value
must be strictly positive since otherwise x0 = bγ1 which would imply that (1+γ21)bF ′(x0) =
γ1 (γ1 arctan γ1 + 1) which cannot be zero since γ1 6= 0.
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7. Applications of the gauge-invariant method

one can see that the function W de�ned in Eq. (7.33) coincides exactly
with the potential de�ned in Eq. (32) of Ref. [25]. In other word, we have
recovered the master equation found in the just mentioned paper where the
whole potential α

2

γ2
V of the master equation Eq. (7.31) agrees up to a rescaling

with the potential W , namely(
α2

γ2
V
)

(x) =
1

b2
W
(x
b

)
. (7.34)

Remark 69 In the re�ection symmetric case γ1 = 0, the Ellis-Bronnikov
solution reduces to the EBMT wormhole (see Remark 29); in this case α2

γ2
= 1,

the function F in Eq. (7.30) is equal to 1 and

V(x) = − 3b2

(x2 + b2)2 (7.35)

so that the master equation (7.31) becomes[
∂2

∂t2
− ∂2

∂x2
− 3b2

(x2 + b2)2

]
χ = 0 . (7.36)

Note that this is exactly the master equation (6.60); moreover, as already
stated in Remark 64, it coincides with the four-dimensional Torii-Shinkai
master equation (7.17) up to the rescaling t = b t, x = b x [Eq. (3.33)].

Remark 70 As noted in Ref. [25], in the non re�ection symmetric case γ1 6=
0, the analysis of the master equation (7.31) can be simpli�ed by introducing
the new coordinate

ρ = ρ(x) :=

∫ x

0

γ(y)

α(y)
dy ; (7.37)

note that the mapping x 7→ ρ(x) is a di�eomorphism of R to itself, and
ρ(x) ∼ e∓πγ1x for x → ±∞. By construction α

γ
∂
∂x

= ∂
∂ρ
; so, writing (as an

abbreviation)
χ(t, ρ) ≡ χ(t, x(ρ)) ,

where x(ρ) is the inverse map of Eq. (7.37), we can rephrase the master
equation (7.31) as [

∂2

∂t2
− ∂2

∂ρ2
+ U

]
χ = 0 , (7.38)

with the potential

U(ρ) :=

(
α2

γ2
V
)

(x(ρ)) (V as in Eq. (7.32)) ρ ∈ R . (7.39)
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7.3.1 Solution of the master equation and linear insta-
bility of the Ellis-Bronnikov wormhole

The linear instability of the re�ection symmetric Ellis-Bronnikov wormhole
(EBMT wormhole) given by γ1 = 0 has already been proved in Subsection
7.2.1 (see, in particular, Remark 67); for this reason, we now focus on the
non re�ection symmetric case, so we set

γ1 6= 0 .

For every b > 0, the master equation (7.38), with the potential (7.39) can be
written as

χ̈(t) +Hχ(t) = 0 (t ∈ R), (7.40)

where

H := − d2

dρ2
+ U (U ≡ U(ρ) as in Eq. (7.39)) (7.41)

and the unknown is a function

χ(t) ≡ χ(t, ·) : ρ 7→ χ(t, ρ) for every t ∈ R .

Remark 71 A rigorous functional setting for Eq. (7.40) is obtained by
considering the Hilbert space

H := L2(R, dρ) (7.42)

made of complex valued, square integrable functions on R, for the measure
dρ with its inner product 〈 | 〉 and the associated norm ‖ ‖. (51) Hence, the
operator H can be considered as a selfadjoint operator in H, if we provide
the precise de�nition

H := − d2

dρ2
+ U : D ⊂ H→ H , D := {f ∈ H | fρρ ∈ H} , (7.43)

where the ρ-derivatives have to be intended as usual in the distributional
sense. (52)

In Appendix D.2 we show the following facts which are valid for every b > 0
and every γ1 6= 0:

(i) H possesses a point spectrum consisting of two, simple eigenvalues
µ1 < 0 and µ2 = 0;

51For more details, see Remark 84 in Appendix C.
52See Footnote 67 with ρ in place of x.
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7. Applications of the gauge-invariant method

(ii) H possesses a continuous spectrum which coincides with (0,+∞).

Moreover, in Appendix E.2 we show that it is possible to built a generalized
orthonormal basis of the Hilbert space H, consisting in

(i) two normalized eigenfunctions e1, e2 for the eigenvalues µ1 < 0 and
µ2 = 0, i.e.

e1, e2 ∈ D : He1 = µ1e1 , He2 = 0 , ‖e1‖ = ‖e2‖ = 1 ;

(e1, e2 are proved to be C∞(R));

(ii) two suitably chosen and linearly independent �improper eigenfunctions�
eiλ (i = 1, 2) for each λ ∈ (0,+∞), i.e.,

eiλ ∈ C∞(R) \D : Heiλ = λeiλ (i = 1, 2 ; λ > 0) .

In this way, pro�ting from the considerations contained in the previous
remark, it is possible to look for the solution χ(t) of the master equation
(7.40) with appropriate smoothness properties and with the initial conditions

χ(0) = q , χ̇(0) = p , (7.44)

where
q : ρ 7→ q(ρ) , p : ρ 7→ p(ρ)

are su�ciently regular functions.
For more technical details, we refer to Appendix E.2, where we introduce
two Hilbertian structures on the domains D and D1/2 of the operators H
and |H|1/2 and we show that, setting

q ∈ D , p ∈ D1/2 ,

then Eqs. (7.40,7.44) have a unique solution χ(t) de�ned for every t ∈ R
such that

χ ∈ C2(R,H) ∩ C1(R,D1/2) ∩ C(R,D) ; (7.45)

for every t ∈ R, one can decompose this solution by means of the previously
mentioned generalized orthonormal basis as follows

χ(t) =

[
〈e1|q〉 cosh(|µ1|1/2t) + 〈e1|p〉

sinh(|µ1|1/2t)
|µ1|1/2

]
e1 +

[
〈e2|q〉+ 〈e2|p〉t

]
e2

+
2∑
i=1

∫ +∞

0

[
〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉

sin(λ1/2t)

λ1/2

]
eiλ dλ . (7.46)
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As explained in Subsection E.1.2, the symbols 〈·|·〉 in the above formula
indicate usual inner products in H, or suitably de�ned generalizations, while
the integrals over λ are understood in a weak sense. Since in our setting
χ(t) has to be real valued for each t, one has to choose q, p as real valued
functions.

Remark 72 Analogously to the re�ection symmetric case (EMBT worm-
hole), the function χ(t) in Eq. (7.46) has the coe�cient of e1 which is expo-
nentially divergent for t→ ±∞ (except for very special choices of 〈e1|q〉 and
〈e1|p〉); (53) in addition, is contains a term diverging linearly for t→ ±∞ (if
〈e2|p〉 6= 0). In any case the wormhole is linearly unstable (see comments in
Remark 66 for inference of the linear instability of a wormhole having veri�ed
that χ diverges).
Let us note that, as in Eq. (7.25), the present expression for χ(t) contains
an integral over λ of non normalizable oscillatory modes, proportional to the
improper eigenfunctions eiλ which live outside H.

Hence, we have proved the following �nal result.

Theorem 11 (Linear instability of the Ellis-Bronnikov wormhole)
For all γ1 ∈ R and for all b > 0, the Ellis-Bronnikov wormhole is linearly un-
stable under small spherically symmetric perturbations of its metric and the
associated scalar �eld; more precisely, there exists a gauge-invariant quan-
tity χ (depending on the perturbations) which, for some special initial data,
diverges as the temporal coordinate t goes to ±∞.

Remark 73 The proof of the linear instability of the Ellis-Bronnikov worm-
hole presented in this section is exactly that proposed in the recent paper
[1]; however, as a matter of fact, the authors of Ref. [25] arrived to the same
conclusion in 2009 following a pretty di�erent approach. In Chapter 8 (and
in particular in Section 8.1), we propose a closer comparison between the
method used in the two just cited papers.

53See the Footnote 48 in the discussion after Eq. (7.25), which is readily adapted to the
present framework.
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7.4 Gauge-invariant stability analysis of the AdS

wormhole

We now analyze the AdS wormhole in the coordinate system (s, u), as de-
scribed by Eq. (3.62) for arbitrary parameters k,B > 0, and apply the gen-
eral framework presented in Chapter 6 with (s, u) in place of (t, x) and in
the case d = 3. In this respect, we consider the method of the variation of
the parameters introduced at the beginning of the present chapter in order
to �nd the static solution (F0,G0) of the wave system (6.74,6.75); note that,
although the AdS solution formally depends on two parameters B and k, it
is important to note that k also appears in the potential function V (Φ) (see
Eq.(3.58)): indeed, since we regard the potential to be �xed in our perturba-
tion analysis, we should exclude the possibility of varying k. In contrast to
k, the parameter B is free, and variation of the solution (3.62) with respect
to it (see Eq. (7.5)) gives

δα = δβ = δγ = 0 ,

δr =
2B

1 + 2B2 − cosu
r δB , δΦ = − sinu

B(1 +B2)
Φ′ δB ;

(7.47)

as already mentioned, the functions in Eq. (7.47) satisfy the linearized �eld
system (4.25-4.28) (or, equivalently, (4.29-4.33)) for every choice of the vari-
ation δB. Eq. (7.47), introduced into Eqs. (6.35,6.36), yields the following
expressions for the gauge-invariant quantities A and C:

A ≡ A0(u) =
1 + cosu

2B(1 +B2)
δB , C ≡ C0(u) =

δB

B
; (7.48)

these are a static solution of Eqs. (6.54,6.55,6.57), as long as the variation
δB satis�es the condition S = 0. From Eq. (7.47) and from the de�nition
of S in Eq. (6.13), we see that S ≡ 0, as required, for every choice of the
perturbation δB. Inserting Eq. (7.48) in the de�nition (6.73) of F and G
(and choosing for simplicity δB = 1) one obtains a static solution of the wave
system (6.74,6.75):(

F
G

)
≡
(
F0(u)
G0(u)

)
:=

√
2k

B
cos
(u

2

)
×
(
−
√

1+2B2−cosu
2(1+B2)

1√
1+2B2−cosu

)
. (7.49)

Note that G0 is a strictly positive function of u ∈ (−π, π), and that

F0

G0

= −1 + 2B2 − cosu

2(1 +B2)
.
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Having found the non-trivial solution (7.49), we can now obtain the master
equation governing the spherical symmetric linearized perturbations of the
AdS wormhole, following the general method explained in the last chapter.
We observe that in the AdS case Y0 = −2 tan u

2
; hence, we have to introduce

the functions a and χ de�ned as in Eq. (6.100). Setting x0 = 0 and a0 = 4k2,
it turns out that

a(u) =
1

α2(u)
;

hence, the function

χ :=

(
F +

1 + 2B2 − cosu

2(1 +B2)
G
)
α2 (7.50)

satis�es the master equation (6.101) which reads (recalling that α/γ = 1 for
the AdS wormhole in coordinates (s, u))[

∂2

∂s2
− ∂2

∂u2
+ V

]
χ = 0 , (7.51)

with the potential

V(u) ≡ VB(u) := −B
2 (2 +B2 + cosu)

(1 + 2B2 − cosu)2 u ∈ (−π, π) . (7.52)

Remark 74 For the following, we assume for the gauge-invariant quantity
χ, the Dirichlet boundary conditions at the two asymptotic AdS ends, that
is,

χ(s,±π) = 0 for every s ∈ R. (7.53)

Since one has that

χ(s, u) =
1√

2
√

1 + 2B2 − cosu
δγ(s, u)− 1 + cosu

4(1 +B2)(1 + 2B2 − cosu)
δr(s, u)

−
√
κ sec u

2

4Bk

( √
1 +B2 tan u

2√
1 + 2B2 − cosu

δΦ(s, u) +

√
1 + 2B2 − cosu√

1 +B2
δΦ′(s, u)

)
,

a su�cient condition for Eq. (7.53) to hold is that, in any gauge, the per-
turbation functions δr, δγ and δΦ vanish at the far ends u = ±π of the
wormhole for every time s ∈ R, along with the derivative δΦ′, which is a
physically reasonable prescription, as already mentioned in Remark 47.
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7.4.1 Solution of the master equation and linear insta-
bility of the AdS wormhole - gauge-invariant for-
mulation

For every B > 0, the master equation (7.51), containing the potential (7.52)
can be written as

χ̈(s) +Hχ(s) = 0 (s ∈ R), (7.54)

where

H := − d2

du2
+ V (V ≡ V(u) as in Eq. (7.52)) (7.55)

and the unknown is a function

χ(s) ≡ χ(s, ·) : u 7→ χ(s, u) for every s ∈ R .

Remark 75 In order to provide a rigorous setting for studying the solutions
of the master equation (7.54) with boundary conditions (7.53), one is led to
consider again the Hilbert space (5.68) and introduce the selfadjoint operator
H de�ned in Eq. (5.69); in this way, we can take advantage of the discus-
sion in Appendices D.3 and E.3 on the spectrum of this operator and the
possibility of introducing an orthonormal basis made up of its normalized
eigenfunctions. The results obtained in the previously mentioned appendices
have been already reassumed in Remark 48.

Using the results mentioned in the previous remark, we can search the
solution χ(s) of the master equation (7.51) with appropriate smoothness
properties and with the initial conditions

χ(0) = q , χ̇(0) = p , (7.56)

where
q : x 7→ q(x) , p : x 7→ p(x)

are functions with a regularity to be speci�ed.
All the technical details of the forthcoming statements can be found in Ap-
pendix E.3. If one introduce two Hilbertian structures on the domains D
and D1/2 of the operators H and |H|1/2, it is possible to show that, choosing
the initial data as

q ∈ D , p ∈ D1/2 ,

then Eqs. (7.51,7.56) possess a unique solution χ(s) de�ned for every s ∈ R
which is such that

χ ∈ C2(R,H) ∩ C1(R,D1/2) ∩ C(R,D) ; (7.57)
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in addition, for all s ∈ R, this solution can be decomposed by means of the
previously mentioned orthonormal basis as follows

χ(s) =

[
〈e1|q〉 cosh(|µ1|1/2s) + 〈e1|p〉

sinh(|µ1|1/2s)
|µ1|1/2

]
e1

+
+∞∑
n=2

[
〈en|q〉 cos(µ1/2

n s) + 〈en|p〉
sin(µ

1/2
n s)

µ
1/2
n

]
en . (7.58)

Note that we are interested in the case where χ(s) is real valued for each s
and this occurs if and only if the data q, p are real valued functions.

Remark 76 The coe�cient of e1 in the expression Eq. (7.58) for χ diverges
exponentially both for s → −∞, and for s → +∞ (except for very special
choices of 〈e1|q〉 and 〈e1|p〉); (54) so, the AdS wormhole is linearly unstable
(see comments in Remark 66 for inference of the linear instability of a worm-
hole having veri�ed that χ diverges).
In this case, for each n ≥ 2, the n-th term in Eq. (7.58) represents a �nor-
malizable� oscillatory mode, living like en inside the Hilbert space H (indeed,
inside the subspace D ⊂ H). This is a relevant di�erence with respect to the
�non normalizable� oscillatory modes that we have found for the perturbed
Torii-Shinkai wormhole and Ellis-Bronnikov wormhole, associated with the
continuous spectrum and living outside the Hilbert space of the system (see
Remarks 66 and 72).

Hence, we have veri�ed the validity of the following �nal result.

Theorem 12 (Linear instability of the AdS wormhole - gauge-inva-
riant formulation)
For all B > 0 and for all k > 0 (or, equivalently, for all b > 0 and for all k >
0), the AdS wormhole is linearly unstable under small spherically symmetric
perturbations of its metric and the associated scalar �eld; more precisely,
there exists a gauge-invariant quantity χ (depending on the perturbations)
which, for some special initial data, diverges as the temporal coordinate s
goes to ±∞.

Remark 77 The linear instability of the AdS wormhole has been �rstly
inferred very recently in Ref. [1]: the deduction of this paper is exactly that
presented in this section.

54See the Footnote 48 in the discussion after Eq. (7.25), which is readily adapted to the
present framework.
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Remark 78 In Section 5.2 of the present thesis we have proposed an al-
ternative, gauge-dependent deduction of the linear instability of the AdS
wormhole; in Chapter 8 (and in particular in Section 8.3), we provide a
closer comparison between the present approach and that of Section 5.2.

7.5 Gauge-invariant stability analysis of the static

part of the dS wormhole

If one con�nes the attention to the restriction of the dS wormhole de�ned
as (I × S2,g,Φ), where I is the inner region (3.73) in (t, x) space and g
and Φ are, respectively, as in Eq. (3.72) and in Eq. (3.69), the analysis of
linearized perturbations for the Einstein-scalar equations is rather simple in
the framework of Chapter 6.

First of all, one replaces the coordinates (t, x) with the coordinates (s, u) ∈
R2 de�ned by Eq. (3.74). After this, one should in principle apply the general
scheme of Chapter 6 (in the coordinates (s, u)) to the linearized perturbations
of this solution, ultimately yielding a master equation. As a matter of fact,
it is not even necessary to carry on this construction and it su�ces to use the
following trick: since the dS wormhole under analysis is connected to the AdS
wormhole through the formal replacement rules (k,B, s, u) 7→ (ik, iB, is, iu)
(see Remark 35), the master equation for the perturbed dS wormhole can
be obtained making formally the same replacements in Eqs. (7.51,7.52) of
the AdS case. In conclusion, the master equation governing linear perturba-
tions of the inner region of the dS wormhole, in the unknown gauge-invariant
function χ(s, u), reads [

∂2

∂s2
− ∂2

∂u2
+ V

]
χ = 0 , (7.59)

and involves the potential

V(u) ≡ VB(u) := − B
2 (2−B2 + coshu)

(−1 + 2B2 + coshu)2 (u ∈ R) . (7.60)

7.5.1 Solution of the master equation and linear insta-
bility of the static part of the dS wormhole

As usual, for every B > 0, the master equation (7.59), with the potential
(7.60) can be written as

χ̈(s) +Hχ(s) = 0 (s ∈ R), (7.61)
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where

H := − d2

du2
+ V (V ≡ V(u) as in Eq. (7.60)) (7.62)

and the unknown is a function

χ(s) ≡ χ(s, ·) : u 7→ χ(s, u) for every s ∈ R .

Remark 79 As usual, one has to consider the Hilbert space

H := L2(R, du) (7.63)

made of complex valued, square integrable functions on R, for the measure
dρ with its inner product 〈 | 〉 and the associated norm ‖ ‖. (55) in order to
built a rigorous functional setting for studying Eq. (7.61). Therefore, the
operator H can be regarded as a selfadjoint operator in H, if one provides
the precise de�nition

H := − d2

du2
+ V : D ⊂ H→ H , D := {f ∈ H | fuu ∈ H} , (7.64)

where the u-derivatives have to be intended as usual in the distributional
sense. (56)

In Appendix D.4 we show the following facts which are true for every B > 0:

(i) H possesses a point spectrum consisting of a unique, simple eigenvalues
µ1 < 0;

(ii) H possesses a continuous spectrum which coincides with [0,+∞).

Moreover, in Appendix E.4 we show that it is possible to built a generalized
orthonormal basis of the Hilbert space H, consisting in

(i) a normalized eigenfunctions e1 for the eigenvalue µ1 < 0 i.e.

e1 ∈ D : He1 = µ1e1 , ‖e1‖ = 1 ;

(e1 is proved to be C∞(R));

(ii) two suitably chosen and linearly independent �improper eigenfunctions�
eiλ (i = 1, 2) for each λ ∈ (0,+∞), i.e.,

eiλ ∈ C∞(R) \D : Heiλ = λeiλ (i = 1, 2 ; λ > 0) .

55For more details, see Remark 84 in Appendix C.
56See, again, Footnote 67 in Appendix D.
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Hence, one can look for a solution χ(t) of the master equation (7.61) with
appropriate smoothness properties and with the initial conditions

χ(0) = q , χ̇(0) = p , (7.65)

where
q : u 7→ q(u) , p : u 7→ p(u)

are su�ciently regular functions.
For more technical details, we refer to Appendix E.4, where we introduce
two Hilbertian structures on the domains D and D1/2 of the operators H
and |H|1/2 and we show that, setting

q ∈ D , p ∈ D1/2 ,

then Eqs. (7.61,7.65) have a unique solution χ(s) de�ned for every s ∈ R
such that

χ ∈ C2(R,H) ∩ C1(R,D1/2) ∩ C(R,D) ; (7.66)

one can decompose the solution χ(s) for every s ∈ R by means of the previ-
ously mentioned generalized orthonormal basis as follows

χ(s) =

[
〈e1|q〉 cosh(|µ1|1/2s) + 〈e1|p〉

sinh(|µ1|1/2s)
|µ1|1/2

]
e1

+
2∑
i=1

∫ +∞

0

[
〈eiλ|q〉 cos(λ1/2s) + 〈eiλ|p〉

sin(λ1/2s)

λ1/2

]
eiλ dλ . (7.67)

As explained in Remark 100, the symbols 〈·|·〉 in the above formula indicate
usual inner products in H, or suitably de�ned generalizations, while the in-
tegrals over λ are understood in a weak sense. Of course, in our setting χ(s)
has to be real valued for each s, and this is true as long as q, p as real valued
functions.
The situation is similar to that of the Torii-Shinkai wormhole: the coe�cient
of e1 in the expression (7.67) for χ(s) exponentially diverges for s → ±∞
(except for very special choices of 〈e1|q〉 and 〈e1|p〉); (57) Again as in the
Torii-Shinkai case, the present expression for χ(s) contains an integral over
λ of non normalizable oscillatory modes, proportional to the improper eigen-
functions eiλ which live outside H.

Hence, we have proved the following �nal result.

57See the footnote 48 in the discussion after Eq. (7.25), which is readily adapted to the
present framework.
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wormhole

Theorem 13 (Linear instability of the static part of the dS worm-
hole)
For all k > 0 and for all b > 0 (or, equivalently, for all k > 0 and for all
B < 0), the dS wormhole is linearly unstable under small spherically symmet-
ric perturbations of its metric and the associated scalar �eld con�ned in the
static part of the spacetime; more precisely, there exists a gauge-invariant
quantity χ (depending on perturbations de�ned in a suitable small neigh-
bourhood of the throat) which, for some special initial data, diverges as the
temporal coordinate s goes to ±∞.

Remark 80 Exactly as for the AdS case, the linear instability of the static
part dS wormhole has been inferred for the �rst time in 2020 in Ref. [1]: in
this paper, the Ellis-Bronnikov, the AdS and the dS wormholes are introduced
as three possible applications of a four-dimensional gauge-invariant method
for studying the linear instability of some wormhole spacetimes. This method
has been extended to higher dimension and proposed in Chapter 6 of the
present thesis.

Remark 81 For a full understanding of the linear instability of the dS worm-
hole under discussion, linearized perturbations of the Einstein-scalar equa-
tions should be treated on the extended spacetime S ×S2 of subsection 3.5.3
(or on the quotients (S/Tp)×S2), possibly in a gauge-invariant fashion. The
discussion of this problem would bring us outside the scope of the present
thesis, since the extended spacetime S×S2 is not static. One can reasonably
expect that the instability result about the inner region will eventually pro-
duce a precise statement of linear instability for the extended dS wormhole.
However, we prefer to postpone these matters to future works; let us also
mention that the notion of linear instability is not so obvious if one perturbs
a non static spacetime, and requires in our opinion a general discussion before
reconsidering the speci�c case of the extended dS wormhole.

181



Chapter 8

A comparison between the

gauge-dependent and the

gauge-invariant approaches, and

the state of the art

8.1 The Ellis-Bronnikov wormhole

8.1.1 A comparison between the gauge-invariant approach
of Section 7.3 and Refs. [25, 27, 26, 11]

In Ref. [25] the linear instability of the Ellis-Bronnikov solution (and, in
particular, of the EBMT wormhole) is derived via a two-steps construction,
that I now describe brie�y. The �rst step is the reduction of the linearized
Einstein equations and the linearized Klein-Gordon equation to a scalar mas-
ter equation where the unknown is a suitable gauge-invariant recombination
of the perturbation components, here indicated with χsing; in our notation,
the master equation and the function χsing read[

∂2

∂t2
−
(
α

γ

∂

∂x

)2

+
α2

γ2
Vsing

]
χsing = Q(x) , (8.1)

χsing := r

(
δΦ− Φ′

δr

r′

)
= −r

2Φ′

r′
C , (8.2)

Vsing := 1− r′2

r2
+ κ

Φ′2r2

r′2
, Q(x) := −2σ

Φ′

r′2
αγ

r
(8.3)

with C as in Eq. (6.36) (see Eq. (17) of Ref. [25]). The potential Vsing in
this master equation occurs to be singular at the wormhole throat as well as
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8.1. The Ellis-Bronnikov wormhole

the source term Q(x) and, obviously, the very de�nition of the recombination
χsing. Note that the constant σ appearing in the de�nition of Q(x) is exactly
the value of the gauge-invariant quantity S de�ned in Eq. (6.6), which can
be set to zero; so the authors of [25] assume that Q(x) ≡ 0. The second step
in the construction of Ref. [25] removes the singularities by a clever strategy:
the idea is to apply to χsing a suitable �rst order di�erential operator, so as
to obtain a function χ ful�lling a regular master equation. This is in fact
possible if one knows a static solution of the singular master equation χsing0;
the transformation relating χsing and χ reads, in our notations

χ = D+ χsing , where D+ :=
α

γ

∂

∂x
− 1

χsing0

α

γ

∂χsing0

∂x
(8.4)

and the latter is proved to satisfy a master equation which is completely
regular (in the case of the Ellis-Bronnikov wormhole). (58) In our notations,
this equation coincides exactly with Eq. (7.31), with the nowhere singular
potential (7.34) and b = 1 (see Eqs. (30,32) of [25]). Note that, in the special
EBMT case (γ1 = 0), the regular potential coincides with the potential in
Eq. (7.35) and the master equation reduces to Eq. (7.36) (again with b = 1).
In comparison with Ref. [25], the novelty of the gauge-invariant deduction
of the linear instability of the Ellis-Bronnikov wormhole (and, in particular,
of the EBMT wormhole), �rstly presented in Ref. [1] and reproposed in this

58Let us give some more details on this fact. In addition to the di�erential operator D+

de�ned in Eq. (8.4), the authors of [25] introduce the operator

D− := −α
γ

∂

∂x
− 1

χsing0

α

γ

∂χsing0
∂x

;

recalling that, by de�nition,
(
α
γ
∂
∂x

)2
χsing0 = α2

γ2 Vsingχsing0, one can easily prove that

D−D+ = −
(
α

γ

∂

∂x

)2

+
α2

γ2
Vsing , D+D− = −

(
α

γ

∂

∂x

)2

−α
2

γ2
Vsing+2

α2

γ2

(
1

χsing0

∂χsing0
∂x

)2

.

Hence, in the case σ = 0, the master equation can be rewritten as[
∂2

∂t2
+D−D+

]
χsing = 0 ;

applying to both sides the operator D+ and recalling the de�nition (8.4) of χ, one has
that the latter satis�es the equation[

∂2

∂t2
−
(
α

γ

∂

∂x

)2

+
α2

γ2
V
]
χ = 0 , V := −Vsing + 2

(
1

χsing0

∂χsing0
∂x

)2

.
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thesis in Section 7.3, is that we manage to derive a regular master equation
in a direct way, with no need to use the previous two-steps construction.
Substantially, this result has been achieved by choosing a di�erent gauge at
the very beginning of the respective discussions: while the authors of Ref.
[25] choose a gauge such that δβ = δr = 0, in Ref. [1] we set the coordinates
(t, x) so that δβ = δΦ = 0 (see Remark 55). However, one might wonder how
a gauge-invariant treatment such that of Refs. [25, 1] can be a�ected by a
coordinate choice? In both papers, the strategy to obtain the master equation
for a gauge-invariant quantity, relies on the possibility of decoupling the
linearized �eld equations; in order to do so, the linearized �eld equations are
simpli�ed by a suitable gauge choice. Then, the gauge-invariant quantities
χsing as in Eq. (8.2) and χ as in Eq. (6.100) satisfying, respectively, the
master equations (6.101) and (8.1), are de�ned a posteriori. (59) Typically,
these gauge-invariant quantities occurs to be singular exactly where the gauge
transformation (δt, δx) which realizes the initial gauge choice, is not de�ned.
In particular, the transformation (δt, δx) which gives δβ = δr = 0 is singular
where r′ = 0 exactly as χsing [Eq. (8.2)], while the transformation (δt, δx)
which gives δβ = δr = 0 is singular where Φ′ = 0 exactly as χ [Eq. (6.100)].
Paper [25] has a companion work by the same authors [27] where the exact,
nonlinear Einstein equations for the perturbed Ellis-Bronnikov solution are
treated numerically, providing evidence that the initial perturbation produces
a rapid growth of the wormhole's throat or a collapse to a black hole. (A
numerical analysis of the exact, perturbed Einstein equations is also given
in the second half of Ref. [53] for the special EBMT case). Admittedly, this
issue is beyond the aims of the present thesis.
Returning to the linear stability analysis, let us point out that the two-steps
approach (a singular master equation and its subsequent regularization) has
been extended by Bronnikov, Fabris and Zhidenko [26] to the whole class of
static, radially symmetric scalar �eld solutions of Einstein's equations with
throats (including cases with an external potential for the scalar �eld) and
referred to as �S-deformation method�.
Let us also mention a very recent paper of Bronnikov [11], an excellent review
about wormholes and black holes supported by scalar �elds that considers,
amongst else, the two-steps approach to linear stability problems.

59For example, see the paragraph just before Eq. (6.54), noting that the de�nition of χ
strictly depends on the choice of A,C.
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8.1.2 Some comments on Ref. [53]

In Ref. [53] a �rst attempt was made to provide a gauge-invariant formulation
for the linear stability analysis of the EBMT wormhole which would not
require the two step approach of Ref. [25], that is, which would not present
the arise of any singularity. The conclusion of the cited article is that a
suitable gauge-invariant recombination χ of two gauge-invariant quantities
A and C, which are in turn recombinations of the perturbation functions,
ful�lls exactly the master equation (7.17); however, while the two gauge-
invariant quantities A and C were correctly de�ned, the quantity D de�ned
in Eq. (8) of Ref. [53] is only invariant with respect to the restricted set
of gauge transformations for which δ̇t = 0. Unfortunately, in general, this
restricted set is not su�cient to achieve both conditions δΦ = 0 and δβ = 0
simultaneously, on which the derivation in Ref. [53] was based (see Remark
55 and, in particular Eq. (6.19)).

8.2 The Torii-Shinkai wormhole

8.2.1 A comparison between the gauge-invariant approach
of Section (7.2) and Ref. [35]

In Ref. [35] the authors, in dealing with the linear stability analysis of the
Torii-Shinkai wormhole solution (3.34), derive from linearized Einstein equa-
tions (and from the linearized Klein-Gordon equation for the perturbed scalar
�eld) a master equation for a gauge-invariant quantity χsing analogue to that
introduced in Ref. [25](see Eq. (8.2)); actually, Ref. [35] assumes from the
very beginning a gauge such that δβ = 0 and such that the other compo-
nents of the perturbation have a sinusoidal time dependence , that is (in our
notation)

δγ(t, x) = δ̂γ(x) cos(ωt) , δr(t, x) = δ̂r(x) cos(ωt) ,

δΦ(t, x) = δ̂Φ(x) cos(ωt) ,

where ω > 0 is a frequency, to be determined like the functions δ̂γ, δ̂r, δ̂Φ.
The function χsing is de�ned as

χsing(t, x) := χ̂sing(x) cos(ωt) , χ̂sing(x) := r

(
δ̂Φ− Φ′

δ̂r

r′

)
. (8.5)

However, the coe�cients in the linear combination de�ning χsing and in the
master equation are singular at the wormhole throat x = 0; to remove the
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singularities, the authors of Ref. [35] generalize the scheme developed by
[25] to spacetime dimension d + 1 with d ≥ 3 (60) introducing a new gauge-
invariant function χ related to χsing by an ad hoc built, nontrivial di�erential
transformation:

χ = Dχsing , where D :=
∂

∂x
− χsing

′
0

χsing0

;

here χsing0 is a static solution of the previously mentioned, singular master
equation. Then, the gauge-invariant quantity χ is shown to ful�ll a regular-
ized master equation, with no singularities at x = 0; in our notation, this
reads exactly (7.19) with the nowhere singular potential (7.20). (61)

Di�erently from the approach of Ref. [35], our computations never meet sin-
gularities at x = 0 (nor elsewhere) and our master equation for χ has been
obtained in direct way, with no need to introduce regularizing transforma-
tions. One of the features of our strategy marking a di�erence with respect
to Ref. [35], is that our approach relies on a di�erent initial gauge choice
and, consequently, on a di�erently de�ned gauge-invariant quantity χ (see
Subsection 8.1.1).

8.2.2 A comparison between the gauge-dependent ap-
proach od Section 5.1 and the gauge-invariant ap-
proach of Section 7.2

In both the gauge-invariant and the gauge-dependent deductions of the lin-
ear instability of the Torii-Shinkai wormhole of Sections (5.1,7.2) the lin-
earized �eld equations are decoupled obtaining a wave-type master equation
which is everywhere regular. However, while in the �rst case we introduce a
gauge-invariant quantity satisfying the master equation, in the second case
the unknown of the equation is substantially the perturbation coe�cient δr
(multiplied by a suitable de�ned time-independent function), which clearly
depends on the coordinates chosen. Indeed, using this second approach,
in order to infer a coordinate-independent linear instability result, we had
to study the behaviour of the linearized scalar curvature of the perturbed
spacetime, showing that it diverges as t approach ±∞ (and that it is true
even after an in�nitesimal gauge change). This inconvenient (i.e., the gauge-
dependence of the unknown of the master equation) is indeed removed using

60See Subsection 8.1.1, for more details on the four-dimensional case.
61Actually, due to the ansatz on the temporal dependence of the perturbation functions,

Torii and Shinkai found the eigenvalue equation of the operator H in Eq. (7.20) with
unknown eigenfunctions χ̂sing and unknown eigenvalues ω2.
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the gauge-invariant strategy of Section 7.2.
Actually, there is a deep reason why the the two master equations for the
gauge-invariant quantity χ and for the gauge-dependent quantity R are sub-
stantially the same equation (indeed, they are exactly the same except for
the presence of a source term in the equation for R). Using the very de�-
nition of the gauge-invariant quantities C and E in Eqs. (6.36,6.37) for the
static Torii-Shinkai solution (3.34), in the gauge (5.4) for which δβ = δα = 0
it turns out that

δ̈r = ρ(x)C̈ − ρ′(x)E ;

then, applying the linearized �eld equations (6.55,6.57) and the background
equation (3.8), we get

R̈ = −(d− 2)
A− C
ρ(x)

1

ρ(x)
d−3
2

= −(d− 2)
F

ρ(x)
d−3
2

= −(d− 2)χ , (8.6)

where we have set R(t, x) = ρ(x)
3d−5

2 δr as in Eq. (5.5), F as in Eq. (6.73)
and χ as in Eq. (7.18). Let me recall that the master equation (5.21) for R
(in the gauge δβ = δα = 0) is[

∂2

∂t2
− ∂2

∂x2
+ V

]
R = J0(x) + J1(x)t (8.7)

with V as in Eq. (5.22); deriving both sides twice in t and recall Eq. (8.6),
we get [

∂2

∂t2
− ∂2

∂x2
+ V

]
χ = 0 , (8.8)

which is exactly the master equation (7.19). Note that, since the linearized
�eld equations and the quantity χ are gauge-invariant, Eq. (8.8) is valid in
any gauge.
Let us underline that this relation is not so obvious, since the master equation
(7.19) is valid only for perturbations such that S = 0, with S as in Eq.
(6.6); however, in this case, introducing the expressions (5.5,5.17,5.20) for
the perturbations δr, δγ, δΦ into Eq. (6.6), we get

S :=
(d− 1)(d− 2)

2
C ,

which vanishes if one set C = 0 (note that this is possible since the constant
C in Eq. (5.20) is immaterial).
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8.3 The AdS wormhole

8.3.1 A comparison between the gauge-dependent ap-
proach of Section 5.2 and the gauge-invariant ap-
proach of Section 7.4

In Section 7.4, we have presented a deduction of the linear instability of the
AdS wormhole, which relies in studying the temporal behaviour of the radial
perturbation of the AdS metric (which is of course gauge-dependent) and then
in using this result in order to show that the perturbed spacetime becomes
singular with the increasing of the temporal coordinate. As in the case of the
Torii-Shinkai wormhole, there is a reason why the master equation arising
from this gauge-dependent deduction is very similar to the master equation
obtained following the gauge-invariant approach. In the gauge (5.41), for
which δβ = 0 and α δα = 1

4(1+B2)
r δr, from the very de�nition of the gauge-

invariant quantities C,E in Eqs. (6.36,6.37) for the static AdS solution (3.62)
one gets that

δ̈r =

√
2 cscu sin3 u

2

√
1 + 2B2 − cosu

k

[
C − 2(1 +B2) cscuE

1 + 2B2 − cosu

+ cscuC ′ + csc2 u

2
C̈

]
;

then, applying the linearized �eld equations (6.55,6.57) and the background
equation (3.8), we get

R̈ = −
B sec u

2

(
2(1 +B2)A− (1 + cosu)C

)
2
√

2
√

1 + 2B2 − cosu
= −2Bk(1 +B2)χ , (8.9)

where we have set R(s, u) = 1+2B2−cosu
b

δr as in Eq. (5.42) and χ as in Eq.
(7.50) (recalling the de�nitions (6.73) of F and G).
Let me rewrite the master equation (5.59) for R (which is valid in the gauge
(5.41)) [

∂2

∂s2
− ∂2

∂u2
+ V

]
R = J0(u) + J1(u)s+ J2(u)s2 (8.10)

with V as in Eq. (5.60). Deriving both sides of the previous equation twice
in t, recalling Eq. (8.9), we get[

∂2

∂s2
− ∂2

∂u2
+ V

]
χ = 2 J2(u) . (8.11)
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This is not the master equation (7.51) for χ because of the presence of the
source term 2J2(u); indeed, we have just mentioned that the master equation
(7.51) is not valid for every perturbations, but only for perturbations such
that the gauge-invariant quantity S vanishes. In the AdS case, if we introduce
the expressions (5.42,5.53,5.56) for the perturbations δr, δγ, δΦ into Eq. (6.6),
we obtain

S = −b
√

1 +B2

2k
C ;

note that in this case the constant C in Eq. (5.56) is not immaterial, hence
we can not set C = 0. However, if we restrict ourselves to �eld perturbations
such that C = 0, then the conditions S = 0 is satis�ed; indeed, in this case the
coe�cient J2 in Eq. (5.63) vanishes and Eq. (8.11) actually reduces exactly
to the master equation (7.51) (in any gauge).
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developments

In this thesis I have analyzed the linear stability of a class of (d + 1)-
dimensional (with d ≥ 3) static, spherically symmetric wormhole solutions
in higher dimensional GR with a self-interacting phantom scalar �eld min-
imally coupled to gravity. To this purpose, in the �rst part of the the-
sis, I have introduced some known wormhole solutions, recovering directly
their metrics (and the corresponding scalar �eld and self-interacting poten-
tial) from the (d + 1)-dimensional Einstein-scalar equations: these are the
(d + 1)-dimensional Torii-Shinkai wormhole [35], the four-dimensional Ellis-
Bronnikov wormhole [14] and a four-dimensional AdS wormholes [36], for
which the scalar �eld is subject to a non-trivial self-interaction term. All of
them are generalization of the celebrated the Ellis-Bronnikov-Morris-Thorne
(EBMT) wormhole, which is included as a special case. Again in the �st
part, I have also construct (and plotted) the embedding diagrams of the
Ellis-Bronnikov and AdS wormholes; for the same wormholes, I have per-
formed a complete study of the timelike and of the null geodesic motions,
plotting some of their trajectories on the previously mentioned embedding
diagrams. In the last section of the �rst part, I have considered a dS worm-
hole with horizons, showing how it is possible to extend its metric beyond
the horizons, obtaining a non static extended spacetime [1].
The second part of the thesis is devoted to the linear stability analysis of
the wormholes introduced in the �rst part. To this purpose, I have consid-
ered a general, coordinate-dependent perturbation of an arbitrary (d + 1)-
dimensional static, spherically symmetric scalar-solution, deriving the corre-
sponding linearized �eld equations and studying their transformation under
in�nitesimal coordinate changes.
In Chapter 5, I have focused on the Torii-Shinkai and AdS wormholes; by
introducing a suitably de�ned gauge, I have shown that in both cases it is
possible to decoupled the linearized �eld equations, yielding a completely
regular master equation for the radial perturbation, which has a source term
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depending on the initial data of the perturbation. I have obtained an in-
stability result of the two wormholes (which has been �rstly inferred, re-
spectively in Refs. [35] and [1]) by showing that the solutions of the master
equations possess a unique, exponentially in time growing mode associated
with a bound state of negative energy of the Schrödinger operator arising in
the master equations themselves. Indeed, I have proved that these solutions
generates perturbed spacetimes that become singular in the large temporal
limit, independently of the chosen gauge.
In Chapter 6, I have described a gauge-invariant perturbation formalism that
describes the dynamics of linearized, spherically symmetric, time-dependent
perturbations of a wormhole metric and of the associated scalar �eld, re-
sulting in a coupled 2 × 2 linear wave system subject to a constraint (see
Eqs. (6.74,6.75)). Provided that a nontrivial, time-independent solution is
known (as is usually the case when a family of static solutions is available),
I have shown that this system can be decoupled yielding a master wave
equation for a gauge-invariant quantity which is regular at the throat. This
construction, which generalizes to arbitrary dimension that introduced in
Ref. [1], relies on a basic requirement: the derivative Φ′ of the (background)
scalar �eld should vanish nowhere. The relevance of this condition in this
approach is indicated by the almost ubiquitous presence of the reciprocal
1/Φ′ in the equations of Chapter 6.
Based on the gauge-invariant formalism of Chapter 6, in Chapter 7 I have re-
derived the regular master equations �rst obtained in Refs. [35] and [25] for
the linear spherical perturbations of the Torii-Shinkai and the Ellis-Bronnikov
wormholes. My approach never produces singularities at the throat, di�er-
ently from Refs. [35, 25], where the intermediate steps in the construction
contain singularities, which are eliminated a posteriori by means of the S-
method. In addition, I have applied the gauge-invariant approach to the AdS
and dS wormhole, recovering the master equations and the linear instability
results presented in Ref. [1]; however, in the dS case, the instability result
refers only to the static spacetime region within the horizons.
In Appendices CDE, I have performed a spectral analysis of the Schrödinger
operators appearing in the master wave equations, providing a detailed and
rigorous discussion for the mode decomposition of their solutions in all the
aforementioned examples, which revealed that besides the exponentially in
time growing modes (whose existence is su�cient to infer a linear instability
result), there might be linearly growing modes, while all the remaining modes
are oscillatory. In particular, the AdS wormhole has in�nitely many normal-
izable, oscillatory modes in addition to the pair of exponential growing and
decaying modes associated with the unique bound state of negative energy
of the Schrödinger operator.
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Conclusion and possible future developments

Let me conclude with some remarks on the possible future developments of
the present work. I have already mentioned that the linear stability theory
for non static wormhole solutions, and its application to the (extended) dS
wormhole, deserves further work in my opinion. Sticking to the case of static
wormholes and of their linearized perturbations, I think that the forthcoming
issues (i-iii) are worthy of future investigations.

(i) The intent to avoid the arising of singularities in the analysis of worm-
holes stability is not only motivated by �aesthetic� instances, because
the S-deformation method used to regularize the potential in singular
master equations requires to solve a Riccati-type equation, which can
often be done only numerically: this fact prevents to obtain an explicit
expression for the regularized potential. An example among others of
the occurrence of this situation is the linear stability analysis of the
M-AdS wormhole of Ref. [18]. In the future, it could be interesting to
rephrase the stability analysis of the M-AdS wormhole (and of other
similar wormhole con�gurations) using the gauge-invariant method pro-
posed in this thesis.

(ii) A basic requirement of the gauge-invariant approach presented in this
thesis, recalled above, is the condition that Φ has no critical points.
Removing this requirement would be interesting since, recently, a large
class of new wormhole solutions of the Einstein-scalar equations has
been found [22], generalizing previous work [19], in which the scalar
�eld Φ has an extremum at the throat. Since r has a global minimum
at the throat (like every wormhole spacetime) and r′ converges to zero
as fast or faster than Φ′, it turns out the gauge-invariant quantity C
de�ned in Eq. (6.36) is still well-de�ned; unfortunately, it is unclear
if a decoupled equation for C can be obtained which is regular at the
throat. In connection with this problem, one could try to recover the S-
deformation method of Refs. [25, 26] (the formulation of this method in
Ref. [26] indeed considers the gauge-invariant quantity C). However,
as it happens for the M-AdS wormhole, when the potential V (Φ) is
non-zero, this method seems to require the numerical integration of
a Riccati-type equation to �nd the regularized potential, and further
one still needs to justify a posteriori the validity of the transformed
equation at the throat. An alternative possibility consists in applying
a variation of the approach discussed in this article, in which Φ′ is
absent from all denominators, thanks to the use of new gauge-invariant
quantities in place of the functions A,C,E of Eqs. (6.35-6.37); at
present, it is not clear whether this will be possible.
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Conclusion and possible future developments

(iii) Let me propose the following question: is there a deep geometrical
reason for which the approaches presented in this thesis succeed, in
certain cases, in decoupling the perturbation equations and reducing
them to a single, scalar master equation? Typically, the possibility of
reducing to a simpler form a PDE or of a system of PDEs is due to the
presence of a Lie group of symmetries; an interpretation of this kind
could perhaps be given for the decoupling methods of this thesis. As
already recalled, the gauge-invariant approach of Chapter 6 uses a static
solution of Eqs. (6.74-6.75), arising from variations with respect to the
parameters of a family of static wormhole solutions. The availability
of such parametric families could perhaps be interpreted in terms of a
Lie group of symmetries, acting on the static solutions of the Einstein-
scalar system; if so, it would be interesting to understand the interplay
of these symmetries with the linearized perturbation equations.

193



Appendix A

Geodesic motion in a

four-dimensional spherically

symmetric static spacetime

Let us �rstly recall that the trajectory described by a free-falling particle
or by a light ray in a four-dimensional spacetime (M,g) is represented by a
geodesic of M , i.e. a world line τ 7→ P(τ) such that [54, 39]

∇
dτ

dP
dτ

= 0 (A.1)

where ∇ is the covariant derivative de�ned by the Levi-Civita connection of
the metric g and τ ∈ dom(P) ⊆ R is the temporal parameter of the geodesic.
Moreover, it is always possible to rede�ne the parameter τ in such a way that,
for all τ

gP(τ)

(
dP
dτ
,
dP
dτ

)
= −k , k =

{
1 for timelike geodesics (free-falling particles)

0 for null geodesics (light rays)

(A.2)
In this appendix we will study the geodesic motion in a four-dimensional
spherically symmetric spacetime de�ned in the coordinates (xµ) := (t, x, θ, ϕ)
by the metric

g = −α(x)2dt2 +
1

α(x)2
dx2 + r(x)2dΩ2 , (A.3)

where the coe�cients α, r : x(O) → (0,+∞) are two smooth functions;
each geodesic P in this spacetime is described locally by four functions of
the parameter τ

(xµ(P(τ))) =: (xµ(τ)) =: (t(τ), x(τ), θ(τ), ϕ(τ)) (A.4)
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satisfying the geodesic equation (A.1). This equation locally reads

d2xµ

dτ 2
+ Γµλν

dxλ

dτ

dxν

dτ
= 0 , µ = 1, ..., 4 , (A.5)

where Γµλν are the Christo�el symbols of the Levi-Civita connection of g.
Moreover, it can be proved [55] that the geodesics equations (A.5) are equiv-
alent to the Euler�Lagrange equations d

dτ
∂L
∂ẋµ
− ∂L

∂xµ
= 0, µ = 1, ..., 4, for the

Lagrangian

L(xµ, ẋµ) :=
1

2
gλν(x

µ)ẋλẋν = −α(x)2

2
ṫ2 +

1

2α(x)2
ẋ2 +

r2

2

(
θ̇2 + sin2 θ ϕ̇2

)
;

(A.6)
these are satis�ed if and only if the following system of four ordinary di�er-
ential equation holds

d

dτ

(
α(x)2ṫ

)
= 0 , (A.7)

d

dτ

(
1

α(x)2
ẋ

)
= α(x)r(x)r′(x)

(
θ̇2 + sin2 θ ϕ̇2

)
− α(x)2α′(x)ṫ2 ,(A.8)

d

dτ

(
r(x)2θ̇

)
= r(x)2 sin θ cos θ ϕ̇2 , (A.9)

d

dτ

(
r(x)2ϕ̇

)
=

d

dτ

(
r(x)2ϕ̇ cos2 θ

)
. (A.10)

Before starting with the study of the system (A.7-A.10), let me summarize
some general and useful results about Lagrangian systems:

(i) in a time-independent n-dimensional Lagrangian system (L(qi, q̇i), qi =
qi(t), i = 1, ..., n), the total energy function de�ned by E := ∂L

∂q̇i
q̇i − L

is conserved;

(ii) in the the hypothesis of (i), the system of the n Euler-Lagrange equa-
tions for the Lagrangian L is equivalent to the system made up of n−1
Euler-Lagrange equations and the conservation law E = const;

(iii) in the the hypothesis of (i) and if the Lagrangian L is a quadratic
function in the generalised velocities q̇i, it follows that E = L and the
conservation law reads L = const.

These results immediately apply to the Lagrangian (A.6); moreover, since
for all τ

L(xµ(τ), ẋµ(τ)) =
1

2
gλν(x

µ(τ))ẋλ(τ)ẋν(τ) =
1

2
gP(τ)

(
dP
dτ
,
dP
dτ

)
,
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A. Geodesic motion in a four-dimensional spherically symmetric static
spacetime

and recalling the position (A.2), we have that the conservation law becomes
L = −k/2.
We are now ready to study of the system (A.7-A.10), starting from the third
equation (A.9); obviously, this equation and the initial conditions

τ0 = 0 , θ(τ0) =
π

2
, θ̇(τ0) = 0 (A.11)

imply that θ(τ) = π
2
for every τ . Since it is always possible to rede�ne the

coordinates θ and ϕ and the parameter τ so that the previous conditions on
θ are true, from now on we assume (A.11); in this way the four-dimensional
system (A.7-A.10) reduces to the three-dimensional system:

d

dτ

(
α(x)2ṫ

)
= 0 , (A.12)

d

dτ

(
r(x)2ϕ̇

)
= 0 , (A.13)

− α(x)2

2
ṫ2 +

1

2α(x)2
ẋ2 +

r(x)2

2
ϕ̇2 = −k

2
, (A.14)

where we have substituted the second equation (A.8) with the conservation
law L = −k/2, thanks to (i)-(iii) after Eq. (A.10) and the forthcoming
remark.
Let us start with Eqs. (A.12,A.13); note that, hopefully performing the
parameter change τ 7→ −τ , the vector dP/dτ can be regarded as future-
oriented, so that one can always suppose that ṫ > 0. Thanks to this remark,
it is clear that Eqs. (A.12,A.13) holds if and only if there exists two constants
E ≥ −k/2 and L ∈ R [39] such that

α(x)2ṫ =
√
k + 2E , r(x)2ϕ̇ = L ; (A.15)

these two equations can be easily solved, leading to

t(τ) =

∫ τ

0

√
k + 2E

α(x(τ̃))2
dτ̃ + t(0) , ϕ(τ) =

∫ τ

0

L

r(x(τ̃))2
dτ̃ + ϕ(0) . (A.16)

Note that it results from Eq. (A.15) that the two constants E and L are
fully determined by the initial data:

E :=
ṫ(0)2h(x(0))4 − k

2
, L = ϕ̇(0)r(x(0))2 .

It is easy to see that in the limit case of a particle moving slowly in a weak
gravitational potential (i.e. α(x) ' 1) E and L approach, respectively, to
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the classical total energy and the angular momentum per unit rest mass of
the particle [39]; therefore, in the timelike case, one can interpret L and E as
a relativistic generalisation of the total energy and the angular momentum
per unit rest mass of a free-falling particle and, in the null case, ~L and ~E
as the angular momentum and the total energy of a photon (recall that in
Remark 1 we have stipulated ~ = 1).
Inserting Eq. (A.16) into the conservation law (A.14), we have that the
reduced Lagrangian system (A.12,A.13,A.14) is equivalent to the dynamical
system made up of Eq. (A.16) and

1

2
ẋ2 + Ve�(x) = E (A.17)

where we have de�ned the e�ective potential

Ve�(x) :=
L2

2

α(x)2

r(x)2
+

k

2

(
α(x)2 − 1

)
. (A.18)

Summing up, provided a suitable change of coordinates, the problem of �nd-
ing the qualitative behaviour of a timelike (k = 1) or a null (k = 0) geodesic
in a spacetime with a metric of the form (A.3) is reduced to studying its
radial motion, which satis�es Eq. (A.17) with the potential (A.18); since
this raidal motion is the same as the motion of a unit mass particle of en-
ergy E in ordinary one-dimensional, nonrelativistic mechanics moving in the
e�ective potential Ve�, in order to understand of the qualitative features of
the geodesic motion one has to investigate the analytical properties of Ve� in
dependence of the values of the parameters appearing in its de�nition (A.18).
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Appendix B

Supplements on gauge

transformations

B.1 Gauge transformations of the perturbation

functions

Let us keep the notation of Section 4.2; in particular, let us introduce the
static metric g, the perturbed metric δg, and the transformed perturbation
metric δ̃g as in Eqs. (4.11,4.12,4.18) these are related according to Eq. (4.17),
i.e.

δ̃g = δg + £δX g0 . (B.1)

Note that the previous equation has to be evaluated in the new coordinates
(t̃, x̃); however, for the sake of simplicity in the sequel, we omit the tildes,
as there is no possibility of misunderstanding. In Eq. (B.1) the symbol £δX

stands for the Lie derivative with respect to the vector �eld δX on Rd+1 with
the �rst two smooth components

(δt, δx) : O ⊆ R2 → R2 (B.2)

and all other vanishing; moreover, we write the quantities appearing in Eq.
(B.1) as

g0 := −α2dt2 + γ2dx2 + r2 aij(x
2, ..., xd) dxi dxj , (B.3)

δg := −2α δα dt2 + 2γ2 δβ dt dx+ 2γ δγ dx2 + 2r δr aij(x
2, ..., xd) dxi dxj ,

(B.4)

δ̃g := −2α δ̃α dt2 + 2γ2 δ̃β dt dx+ 2γ δ̃γ dx2 + 2r δ̃r aij(x
2, ..., xd) dxi dxj .

(B.5)
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B.1. Gauge transformations of the perturbation functions

Our aim is to show that Eq. (B.1) is satis�ed if and only if the transformed
perturbation coe�cients (δ̃α, δ̃β, δ̃γ, δ̃r) are related to the perturbation coef-
�cients (δα, δβ, δγ, δr) according to Eqs. (4.19-4.23).
We start computing the Lie derivative appearing in Eq. (B.1); with this
respect, let us recall the following

Remark 82 For every vector �eld δX on Rd+1, for every integers 0 ≤ µ, ν ≤
d+ 1 and for every smooth function f : x(O)→ R, the following holds

£δX

[
f(x)dxµ ⊗ xν

]
= (£δX f(x))dxµ ⊗ xν + f(x)(£δX dx

µ)⊗ dxν + f(x)dxµ ⊗ (£δX dx
ν) ;

in addition, if the �rst two components of the vector �eld δX are de�ned
as in Eq. (B.2) while the others are zero, then, for every smooth function
f : O→ R

£δX dt = δ̇t dt+ δt′ dx , £δX dx = ˙δx dt+ δx′ dx ,

£δX dx
i = 0 (2 ≤ i ≤ d+ 1) ,

£δX f(t, x, x2, ..., xd) = ḟ(t, x, x2, ..., xd)δt+ f ′(t, x, x2, ..., xd)δx .

In particular, for every smooth functions f : x(O) → R and a : Od−1 → R,
one has that

£δX f(x) = f ′(x)δx , £δX a(x2, ..., xd) = 0 .

Therefore, from the previous remark it follows that

£δX

[
α2dt2

]
= £δX

[
α2dt⊗ dt

]
= (2αα′δx+ 2α2 δ̇t) dt⊗ dt+ α2 δt′(dt⊗ dx+ dx⊗ dt)
= (2αα′δx+ 2α2 δ̇t) dt2 + 2α2 δt′ dt dx ,

£δX

[
γ2dt2

]
= £δX

[
γ2dt⊗ dt

]
= (2γγ′δx+ 2γ2 δx′) dx⊗ dx+ α2 ˙δx(dt⊗ dx+ dx⊗ dt)
= (2γγ′δx+ 2α2 δx′) dx2 + 2γ2 ˙δx dt dx ,

£δX

[
r2 aij(x

2, ..., xd) dxi dxj
]

=
1

2
£δX

[
r2 aij(x

2, ..., xd) dxi ⊗ dxj
]

+
1

2
£δX

[
r2 aij(x

2, ..., xd) dxj ⊗ dxi
]

= r δx(dxi ⊗ dxj + dxj ⊗ dxi) = 2r δx dxi dxj ;

hence,

£δX g0 =−£δX

[
α2dt2

]
+ £δX

[
γ2dx2

]
+ £δX

[
r2 aij(x

2, ..., xd) dxi dxj
]

=− (2αα′δx+ 2α2 δ̇t) dt2 + (2γγ′δx+ 2α2 δx′) dx2

+ (2γ2 ˙δx− 2α2 δt′) dt dx+ 2r δx dxi dxj . (B.6)
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B. Supplements on gauge transformations

Inserting Eqs. (B.4,B.5,B.6) into Eq. (B.1), we have that the latter is iden-
tically satis�ed if and only if

δ̃α = δα + α′δx+ α δ̇t , δ̃β = δβ + δẋ− α2

γ2
δt′ ,

δ̃γ = δγ + (γδx)′ , δ̃r = δr + r′δx , δ̃Φ = δΦ + Φ′δx ,

a fact which justi�es Eqs. (4.19-4.23).

B.2 On the divergence of linearized quantities

Let us consider on a two-dimensional Lorentzian manifoldM2 a smooth scalar
function of the form

R(1) = R0 + εδR

where R0, δR are as well smooth scalars on M2 and ε is a small parameter.
In addition, let us consider for M2 a general coordinate system (t, x) and
introduce the local representation of the above scalars in these coordinates,
that we indicate for simplicity with the same symbols:

R(1)(t, x) = R0(t, x) + ε δR(t, x) . (B.7)

Remark 83 Let us now introduce an arbitrary in�nitesimal gauge transfor-
mation φε as in Eq. (4.6); then the quantity (B.7) is transformed by the
pullback of the inverse map φ−1

ε = ψε [Eq. (4.7)], namely

R(1)(t, x) 7→ R̃(1)(t̃, x̃) := ψ∗εR
(1)(t̃, x̃) = R(1)(t̃, x̃) + ε£δXR

(1)(t̃, x̃)

= R0(t̃, x̃) + ε
(
δR(t̃, x̃) + £δXR0(t̃, x̃)

)
+O(ε2)

= R0(t̃, x̃) + ε
(
δR(t̃, x̃) + Ṙ0(t̃, x̃)δt(t̃, x̃) +R′0(t̃, x̃)δx(t̃, x̃)

)
;

(B.8)

in the �rst identity we have used the expression for the pullback ψ∗ε of the
in�nitesimal transformation ψε parametrized by the vector �eld ε δX in terms
of the Lie derivative £δX with respect to the �eld δX; in the second identity
we have used Eq. (B.7); in the third identity we have neglected all the powers
of ε greater or equal then 2 and we have used the fact that for every smooth
function f : O ⊆ R2 → R

£δX f(t, x) = ḟ(t̃, x̃)δt+ f ′(t̃, x̃)δx .
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B.2. On the divergence of linearized quantities

Example 7 Suppose that O := R2 and de�ne

R(1)(t, x) = (1 + x2)(−e−t2 + 2ε t2) ((t, x) ∈ R2) ; (B.9)

then R(1)(t, x) → +∞ for t → ±∞ and for every �xed x ∈ R. Let us show
that it is possible to �nd an in�nitesimal gauge transformation φε as in Eq.
(4.6), with inverse ψε as in Eq. (4.7) such that the transformed linearized
quantity is such that

R̃(1)(t̃, x̃)→ 0 as t̃→ ±∞
for every �xed x̃ ∈ R. Indeed, by setting

ψε(t̃, x̃) := ( t := t̃+ ε (1− et̃2 t̃) , x := x̃ ) ((t̃, x̃) ∈ R2)

that is, by setting

δt(t̃, x̃) = 1− et̃2 t̃ , δx(t̃, x̃) = 0 ((t̃, x̃) ∈ R2)

and by using Eq. (B.8), we have that the transformed quantity (B.9) reads

R̃(1)(t̃, x̃) = (1 + x̃2)(−e−t̃2 + 2ε t̃e−t̃
2

) ,

which clearly vanishes for t→ ±∞ and for every �xed x̃ ∈ R.
In the following proposition we provide some su�cient requirements that

the linearized quantity (B.7) has to possess in order to diverge in every ε-close
coordinate systems.

Proposition 14 Let us suppose that the linearized quantity (B.7) satis�es
the following hypotheses:

(i) R0(t, x) ≡ R0(x);

(ii) δR(t, x0)→∞ as t→∞ for a given x0;

(iii) R′0(x0) = 0;

then, the linearization (B.7), in any coordinate system (t̃, x̃) ε-close to (t, x),
still diverges in x̃ = x0 as t̃→∞.

Proof. Let us consider an arbitrary in�nitesimal gauge transformation φε
as in Eq. (4.6), with inverse ψε as in Eq. (4.7). Then, from Eq. (B.8) and
using (i) we have that the transformed linearized quantity (B.7) reads

R̃(1)(t̃, x̃) = R0(x̃) + ε
(
δR(t̃, x̃) + δx(t̃, x̃)R′0(x̃)

)
;

therefore, using (ii-iii) we have that

R̃(1)(t̃, x0) = R0(x0) + ε δR(t̃, x0)→∞ as t̃→ ±∞ .

�
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Appendix C

On the spectral decomposition of

selfadjoint operators in L2

Remark 84 Throughout this appendix, we consider the Hilbert space (62)

H := L2((a, b), dx) , −∞ ≤ a < b ≤ +∞ ,

made of complex valued, square integrable functions on R, for the measure
dx with its inner product 〈 | 〉 and the associated norm ‖ ‖ de�ned by

〈f |g〉 :=

∫ b

a

f(x)g(x)dx , ‖f‖2 = 〈f |f〉 , for all f, g ∈ H .

C.1 (Generalized) orthonormal bases of L2

Let us start with the following

De�nition 9 (Orthonormal basis)
A system of functions {en}n∈N such that en ∈ H for all n ∈ N is called
orthonormal basis of H if the following conditions (a-b) hold:

(a) For all f ∈ H the following element is trivially well de�ned

f̂n := 〈en | f〉 ∈ C (n ∈ N) ;

then the sequence {f̂n}n∈N is in the space of the complex sequences l2,
that is

+∞∑
n=1

|f̂n|2 =
+∞∑
n=1

| 〈en | f〉 |2 < +∞ .

62Throughout the thesis, the expression �Hilbert space� is an abbreviation for �complex,
separable Hilbert space�.
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C.1. (Generalized) orthonormal bases of L2

(b) The linear map

H→ l2 , f 7→ {f̂n}n∈N =
{
〈en | f〉

}
n∈N

is unitary, that is, it is one-to-one and preserves the inner products:

〈f | g〉 =
+∞∑
n=1

f̂nĝn =
+∞∑
n=1

〈en | f〉 〈en | g〉 for all f, g ∈ H .

As a consequence of the previous de�nition we have the following

Proposition 15 (Decomposition for orthonormal bases)
Let us consider an orthonormal basis {en}n∈N of H; then each f ∈ H can be
expanded in terms of this basis as follows

f =
+∞∑
n=1

f̂nen =
+∞∑
n=1

〈en | f〉 en .

Remark 85 The orthonormality of the previously de�ned basis {en}n∈N
can be easily recovered from the previous decomposition for the elements of
the basis, hence for f = en, n ∈ N; indeed, this gives rise to

〈en, em〉 = δnm :=

{
1 if n = m

0 if n 6= m
(C.1)

The concept of orthonormal bases can be generalized as follows

De�nition 10 (Generalized orthonormal basis)
A system of functions

{
{en}n=1,...,N , {eiλ |λ ∈ Λ}i=1,...,I

}
with N, I ∈ N and

Λ ⊆ R such that

en ∈ H (n = 1, ..., N) , eiλ ∈ C∞((a, b),C) (i = 1, ..., I;λ ∈ Λ)

is called generalized orthonormal basis of H if the following conditions (a-c)
hold [56]:

(a) For all f ∈ C := Cc((a, b),C) ⊂ H the following element is well de�ned
(63)

f̂i(λ) := 〈eiλ | f〉 ∈ C (i = 1, ..., I;λ ∈ Λ) ;

then the function λ→ f̂i(λ) is in the space L2(Λ, dλ), that is∫
Λ

|f̂i(λ)|2dλ =

∫
Λ

| 〈eiλ | f〉 |2dλ < +∞ .

63This is due to the fact that eiλf ∈ C ⊆ H.
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C. On the spectral decomposition of selfadjoint operators in L2

(b) For all i = 1, ..., I linear maps

C ⊂ H→ L2(Λ, dλ) , f 7→ f̂i(λ) = 〈eiλ | f〉
are continuous with respect to the norms of the Hilbert spaces H and
L2(Λ, dλ); thus, by density of C in H, all these maps have a unique
continuous (and linear) extension to H, that we write has

H→ L2(Λ, dλ) , f 7→ f̂i(λ) =: 〈eiλ | f〉 .

The previous extension gives for each f ∈ H the map λ → f̂i(λ) =
〈eiλ | f〉 which is said to de�ne the �generalized inner product� between
the eiλ's and f (for a �xed λ the product 〈eiλ | f〉 does not make sense,
since the generalized inner product is a function in L2(Λ, dλ)).

(c) Consider the direct sum Hilbert space Ĥ :=

(
N
⊕
n=1

C
)
⊕
(

I
⊕
n=1

L2(Λ, dλ)

)
;

then the linear map

H→ Ĥ , f 7→
(
f̂1, ..., f̂N , f̂1(λ), ..., f̂I(λ)

)
=
(
〈e1 | f〉 , ..., 〈eN | f〉 , 〈e1λ | f〉 , ..., 〈eIλ | f〉

)
(C.2)

is unitary, that is, it is one-to-one and preserves the inner products:

〈f | g〉 =
N∑
n=1

f̂nĝn +
I∑
i=1

∫
Λ

f̂iλĝiλdλ

=
N∑
n=1

〈en | f〉 〈en | g〉+
I∑
i=1

∫
Λ

〈eiλ | f〉 〈eiλ | g〉 for all f, g ∈ H .

Remark 86 The forthcoming items (i-ii) describe some consequences of the
previous de�nition:

(i) Fix i ∈ {1, ..., I} and consider F ∈ L2(Λ, dλ). Since the map g →
ĝi(λ) = 〈eiλ | g〉 is linear and continuous from H and L2(Λ, dλ), then
the application

H→ C , g →
∫

Λ

F (λ) 〈eiλ | g〉 dλ

is a continuous linear functional of the space H; therefore, the Riesz
representation theorem ensures that there exists a function fF ∈ H
such that

〈fF | g〉 =

∫
Λ

F (λ) 〈eiλ | g〉 dλ ;

204



C.1. (Generalized) orthonormal bases of L2

the element fF is often indicated with
∫

Λ
F (λ)eiλdλ, so that the previ-

ous identity reads〈∫
Λ

F (λ)eiλdλ

∣∣∣∣ g〉 =

∫
Λ

F (λ) 〈eiλ | g〉 dλ .

The element
∫

Λ
F (λ)eiλdλ ∈ H is called weak integral of the function

λ 7→ F (λ)eiλ.

(ii) The inverse of the unitary map (C.2) can be expressed in terms of weak
integrals as

Ĥ→ H ,
(
z1, ..., zN , F1(λ), ..., FI(λ)

)
7→

N∑
n=1

znen +
I∑
i=1

∫
Λ

Fi(λ)eiλdλ .

(C.3)

The following proposition is a direct consequence of the previous remark.

Proposition 16 (Decomposition for generalized orthonormal bases)
Let us consider a generalized orthonormal basis

{
{en}n=1,...,N , {eiλ |λ ∈ Λ}i=1,...,I

}
with N, I ∈ N and Λ ⊆ R; then each f ∈ H can be expanded in terms of this
basis as follows

f =
N∑
n=1

f̂nen +
I∑
i=1

∫
Λ

f̂iλeiλdλ =
N∑
n=1

〈en | f〉 en +
I∑
i=1

∫
Λ

〈eiλ | f〉 eiλdλ .

Remark 87 The �orthonormality� (in a generalized sense) of the previously
de�ned basis

{
{en}n=1,...,N , {eiλ |λ ∈ Λ}i=1,...,I

}
can be easily recovered from

the previous decomposition for the elements of the basis, hence for f = en,
n = 1, ..., N and for f = eiλ, i = 1, ..., I and λ ∈ Λ; indeed, this gives rise to
(64)

〈en, em〉 = δnm :=

{
1 if n = m

0 if n 6= m
,

〈eiλ1 , ejλ2〉 = δij δ(λ1 − λ2) =

{
δ(λ1 − λ2) if i = j

0 if i 6= j
, 〈eiλ, en〉 = 0 .

(C.4)

64With the expression δ(λ) we intend the distribution Dirac delta function; since we do
not make use of this distribution, we do not recall its de�nition.
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C. On the spectral decomposition of selfadjoint operators in L2

C.2 Spectral theorem for selfadjoint operators

in L2

In this section we consider a selfadjoint operator H in H with domain D,
that is, a linear operator

H : D ⊆ H→ C

such that the domain D is dense in H and H = H†, where H† is the adjoint
operator of H.

C.2.1 Operators with a purely discrete spectrum

We �rstly focus on the case in which the operator H has a purely discrete
spectrum

σ(H) = σp(H) = {µn}n∈N
such that each eigenvalue µn ∈ σp(H) is simple, i.e., the corresponding
eigenspace is one-dimensional. In this case the spectral theorem for self-
adjoint operators in L2 becomes:

Theorem 14 (Spectral theorem for selfadjoint operators with a purely
discrete spectrum)
For each eigenvalue µn ∈ σp(H) there exists an eigenfunction en, i.e.

en ∈ D : Hen = µnen n ∈ N ,

such that {en}n∈N is an orthonormal basis of H. Moreover, for every f ∈ D,
the following representation for the operator H holds

Ĥfn =µnf̂n (n ∈ N)

m
〈en|Hf〉 =µn〈en|f〉 (n ∈ N)

m

Hf =
+∞∑
n=1

µnf̂nen =
+∞∑
n=1

µn〈en|f〉en ; (C.5)

in addition, the domain of H can be characterized as

D =
{
f ∈ H |

{
µnf̂n

}
n∈N =

{
µn 〈en | f〉

}
n∈N ∈ l2

}
. (C.6)
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C.2. Spectral theorem for selfadjoint operators in L2

Remark 88 It is well known that the domain D of the operator H has
the structure of Hilbert space if provided with the (complete) inner product
〈 | 〉D : D×D→ C de�ned as (65)

〈f |g〉D := 〈f |g〉+ 〈Hf |Hg〉 for all f, g ∈ D .

The decomposition for orthonormal bases and the spectral theorems [Propo-
sition 15 and Theorem 14] give an expression of the inner product in D in
terms of the eigenfunctions en and the eigenvalues µn, that is

〈f |g〉D =
+∞∑
n=1

(1 + µ2
n)f̂nĝn =

+∞∑
n=1

(1 + µ2
n)〈en | f〉 〈en | g〉 for all f, g ∈ D .

(C.7)

Remark 89 As well known, a functional calculus exists for selfadjoint
Hilbert space operators (see, e.g., Ref. [57]): for each (Borel-) measurable
function de�ned on the spectrum of the operator H

F : σ(H)→ C (C.8)

one can de�ne the operator

F(H) : DF ⊂ H→ H (C.9)

where DF is a suitable domain, determined by H and F; the operator F(H) is
selfadjoint if F is real valued. Making reference to the previously mentioned
orthonormal basis of eigenfunctions of H, one can prove that for every f ∈
DF, the following representation for the operator F(H) holds

F̂(H)fn =F(µn)f̂n (n ∈ N)

m
〈en|F(H)f〉 =F(µn)〈en|f〉 (n ∈ N)

m

F(H)f =
+∞∑
n=1

F(µn)f̂nen =
+∞∑
n=1

F(µn)〈en|f〉en . (C.10)

65One could as well consider the alternative inner product 〈 | 〉′D : D ×D → C de�ned
setting

〈f |g〉′D := 〈Hf |Hg〉 ;
this has a structure similar to those of the inner product 〈 | 〉D. However, in the present
situation the two inner products are equivalent.
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C. On the spectral decomposition of selfadjoint operators in L2

moreover, the following facts and characterization of the domain of F(H)
hold

en ∈ DF and F(H)en = F(µn)en (n ∈ N) ; (C.11)

DF =
{
f ∈ H |

{
F(µn)f̂n

}
n∈N =

{
F(µn) 〈en | f〉

}
n∈N ∈ l2

}
. (C.12)

In addition, one can see that the domain DF of the operator F(H) has the
structure of Hilbert space if provided with the (complete) inner product
〈 | 〉DF : DF ×DF → C de�ned as

〈f |g〉DF := 〈f |g〉+ 〈F(H)f |F(H)g〉 for all f, g ∈ DF . (C.13)

For our purposes it is important to consider the choice F(γ) := |γ|1/2 for all
γ ∈ σ(H), producing a selfadjoint operator that we indicate with

|H|1/2 : D1/2 ⊂ H→ H (C.14)

and that behaves on every f ∈ D1/2 as follows in relation to our orthonormal
basis:

̂|H|1/2fn =|µn|1/2f̂n (n ∈ N)

m
〈en
∣∣|H|1/2f〉 =|µn|1/2〈en|f〉 (n ∈ N)

m

|H|1/2f =
+∞∑
n=1

|µn|1/2f̂nen =
+∞∑
n=1

|µn|1/2〈en|f〉en ; (C.15)

in addition, Eqs. (C.11,C.12) become

en ∈ D1/2 and |H|1/2en = |µn|1/2en (n ∈ N) ; (C.16)

D1/2 =
{
f ∈ H |

{
|µn|1/2f̂n

}
n∈N =

{
|µn|1/2 〈en | f〉

}
n∈N ∈ l2

}
. (C.17)

Finally, let us write down explicitly in the expression of the inner product
(C.13) with which the domain D1/2 becomes an Hilbert space:

〈f |g〉D1/2 = 〈f |g〉+ 〈|H|1/2f
∣∣|H|1/2g〉 =

+∞∑
n=1

(1 + |µn|)f̂nĝn

=
+∞∑
n=1

(1 + |µn|)〈en | f〉 〈en | g〉 for all f, g ∈ D . (C.18)
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C.2. Spectral theorem for selfadjoint operators in L2

C.2.2 Operators with discrete and continuous spectrum

We now focus on the case in which the operator H has the spectrum σ(H)
made up of a �nite discrete spectrum

σp(H) = {µn}n=1,...,N N ∈ N

and a continuous spectrum

σc(H) : σ̊c(H) := Λ ⊆ R

(σ(H) = σp(H)∪σc(H)), such that each eigenvalue µn ∈ σp(H) is simple and
for each improper eigenvalue λ ∈ σc(H) there are I ∈ N linearly independent
improper eigenfunctions. In this case the spectral theorem of selfadjoint
operators in L2 becomes:

Theorem 15 (Spectral theorem for selfadjoint operators with a dis-
crete and continuous spectrum)
For each eigenvalue µn ∈ σp(H) there exists an eigenfunction en, i.e.

en ∈ D : Hen = µnen (n = 1, ..., N) ,

and for each improper eigenvalue λ ∈ σc(H) there exist I ∈ N improper
eigenfunctions {eiλ}i=1,...,I , i.e.

(66)

eiλ ∈ C∞((a, b)) \D : Heiλ = λeiλ (i = 1, ..., I ;λ ∈ Λ) ,

such that
{
{en}n=1,...,N , {eiλ , λ ∈ Λ}i=1,...,I

}
is a generalized orthonormal ba-

sis of H. Moreover, for every f ∈ D, the following representation for the
operator H holds

Ĥfn =µnf̂n (n = 1, ..., N) ,

Ĥf i(λ) =λf̂i(λ) (i = 1, ..., I ;λ ∈ Λ) ,

m
〈en|Hf〉 =µn〈en|f〉 (n = 1, ..., N) ,

〈eiλ|Hf〉 =λ〈eiλ|f〉 (i = 1, ..., I ;λ ∈ Λ) ,

m

Hf =
N∑
n=1

µnf̂nen+
I∑
i=1

∫
Λ

λf̂i(λ)eiλdλ

=
N∑
n=1

µn〈en|f〉en+
I∑
i=1

∫
Λ

λ 〈eiλ | f〉 eiλdλ ; (C.19)

66Although eiλ does not belong to D the expression Heiλ = −∂2eiλ
∂x2 + Veiλ makes sense

as eiλ ∈ C∞((a, b)).
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C. On the spectral decomposition of selfadjoint operators in L2

in addition, the domain of H can be characterized as

D =
{
f ∈ H | λf̂i(λ) = λ 〈eiλ | f〉 ∈ L2(Λ, dλ) for i = 1, ..., I

}
. (C.20)

Remark 90 In Remark 88 we have recalled that it is possible to provide
the domain D of the operator H with the structure of Hilbert space by
introducing the (complete) inner product 〈 | 〉D : D×D→ C de�ned in Eq.
(C.7). The decomposition for generalized orthonormal bases and the spectral
theorems [Proposition 16 and Theorem 15] give an expression of the inner
product in D in terms of the eigenfunctions en, eiλ and the eigenvalues µn,
λ, that is

〈f |g〉D =
N∑
n=1

(1 + µ2
n)f̂nĝn +

I∑
i=1

∫
Λ

(1 + λ2)f̂i(λ)ĝi(λ)dλ

=
N∑
n=1

(1 + µ2
n)〈en | f〉 〈en | g〉+

I∑
i=1

∫
Λ

(1 + λ2)〈eiλ | f〉 〈eiλ | g〉 dλ

for all f, g ∈ D .

Remark 91 In Remark 89 we have introduced for for each (Borel-) mea-
surable function (C.8) the operator F(H) (C.9). Making reference to the
previously mentioned generalized orthonormal basis of proper and improper
eigenfunctions of H, one can prove that for every f ∈ DF, the following
representation for the operator F(H) holds

F̂(H)fn =F(µn)f̂n (n = 1, ..., N) ,

F̂(H)f i(λ) =F(λ)f̂i(λ) (i = 1, ..., I ;λ ∈ Λ) ,

m
〈en|F(H)f〉 =F(µn)〈en|f〉 (n = 1, ..., N) ,

〈eiλ|F(H)f〉 =F(λ)〈eiλ|f〉 (i = 1, ..., I ;λ ∈ Λ) ,

m

F(H)f =
N∑
n=1

F(µn)f̂nen+
I∑
i=1

∫
Λ

F(λ)f̂i(λ)eiλdλ

=
N∑
n=1

F(µn)〈en|f〉en+
I∑
i=1

∫
Λ

F(λ) 〈eiλ | f〉 eiλdλ ; (C.21)

moreover, the following facts and characterization of the domain of F(H)
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hold

en ∈ DF and F(H)en = F(µn)en (n = 1, ..., N) ; (C.22)

DF =
{
f ∈ H | F(λ)f̂i(λ) = F(λ) 〈eiλ | f〉 ∈ L2(Λ, dλ)

}
. (C.23)

As already mentioned in Remark 89, we are interested in the case F(γ) :=
|γ|1/2 for all γ ∈ σ(H), which produces the selfadjoint operator (C.14); for
every f ∈ DF, this has the following representation:

̂|H|1/2fn =|µn|1/2f̂n (n = 1, ..., N) ,

̂|H|1/2f i(λ) =|λ|1/2f̂i(λ) (i = 1, ..., I;λ ∈ Λ) ,

m
〈en
∣∣|H|1/2f〉 =|µn|1/2〈en|f〉 (n = 1, ..., N) ,

〈eiλ
∣∣|H|1/2f〉 =|λ|1/2〈eiλ|f〉 (i = 1, ..., I;λ ∈ Λ) ,

m

|H|1/2f =
N∑
n=1

|µn|1/2f̂nen+
I∑
i=1

∫
Λ

|λ|1/2f̂i(λ)eiλdλ

=
N∑
n=1

|µn|1/2〈en|f〉en+
I∑
i=1

∫
Λ

|λ|1/2 〈eiλ | f〉 eiλdλ ; (C.24)

moreover, in this case Eqs. (C.22,C.23) become

en ∈ D1/2 and |H|1/2en = |µn|1/2en (n = 1, ..., N) ; (C.25)

D1/2 =
{
f ∈ H | |λ|1/2f̂i(λ) = |λ|1/2 〈eiλ | f〉 ∈ L2(Λ, dλ)

}
. (C.26)

Finally, let us write down explicitly in the expression of the inner product
(C.13) with which the domain D1/2 becomes an Hilbert space:

〈f |g〉D1/2 = 〈f |g〉+ 〈|H|1/2f
∣∣|H|1/2)g〉

=
N∑
n=1

(1 + |µn|)f̂nĝn +
I∑
i=1

∫
Λ

(1 + λ2)f̂i(λ)ĝi(λ)dλ

=
N∑
n=1

(1 + |µn|)〈en | f〉 〈en | g〉+
I∑
i=1

∫
Λ

(1 + λ2)〈eiλ | f〉 〈eiλ | g〉 dλ

for all f, g ∈ D .
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Appendix D

Spectral features of the

Schrödinger operators appearing

in the master equations

D.1 Spectral features of the Schrödinger oper-

ator (5.29,5.22) (Torii-Shinkai wormhole)

In this section we deal with the spectral features of the operator

H := − d2

dx2
+ V : D ⊂ H→ H , D := {f ∈ H | fxx ∈ H} ,

V(x) :=
1

4ρ2(x)

[
(d− 3)(d− 5)− 3(d− 1)2

ρ2(d−2)(x)

]
(ρ(x) as in Eq. (3.31))

(D.1)
in the Hilbert space

H := L2(R, dx) . (D.2)

Note that we will intend all x-derivatives in the distributional sense.(67) Let
us recall that in Eq. (5.25) we have proved that the potential V in Eq. (D.1)
has the asymptotics

V(x) = (d− 3)(d− 5)

(
1

4|x|2 +
Cd

2|x|3
)

+O

(
1

|x|4
)

for x→ ±∞

(Cd as in Eq. (3.22)).

(D.3)

67The conditions f ∈ H and fxx ∈ H imply fx ∈ H, due to the Gagliardo-Nirenberg
interpolation inequality (see e.g. Ref. [58]); D is just the usual Sobolev space W 2,2(R) ≡
H2(R). Let us also remark that, for f ∈ H, one has automatically Vf ∈ H due to the
boundedness of V.
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D.1. Spectral features of the Schrödinger operator (5.29,5.22)
(Torii-Shinkai wormhole)

D.1.1 Some general facts on Schrödinger operators with
smooth, decaying potential

In this subsection we deal with the spectral features the Schrödinger type
operators of the general form

H := − d2

dx2
+ V

V ∈ C∞(R,R) ∩ L1(R,R) , : V ,Vx,Vxx, etc. ∈ L∞(R,R) .
(D.4)

Here, we are not assuming that V has any special form. As usual, the x-
derivatives appearing in Eq. (D.4) will be intended in the sense of the
Schwartz distributions theory [59]. In addition, we consider the Hilbert space

H := L2(R, dx) (D.5)

of complex valued, square integrable functions on R, for the measure dx with
its inner product 〈 | 〉 and the associated norm ‖ ‖.
The forthcoming statements are extracted from Refs. [56, 57, 60], or are sim-
ple consequences of statements proved therein, or follow from other references
cited hereafter.

(i) Consider the operator H restricted to the domain D de�ed as

D := {f ∈ H | Hf ∈ H} ;

then, H is a selfadjoint operator in H.

(ii) The spectrum σ(H) is the union of the point and continuous spectra
σp(H), σc(H), i.e.

σ(H) = σp(H) ∪ σc(H) .

(iii) The point spectrum σp(H), the set of the eigenvalues, is a �nite (pos-
sibly empty), or countable subset of R such that

σp(H) ⊆ (−∞, 0) .

Moreover, each eigenvalue is simple, i.e. has an associate space of
square integrable eigenfunctions of dimension 1; the eigenfunctions of
H ere proved to be C∞.
In this section we will set

N := number of elements of σp(H) , N ∈ {0, 1, 2, ...,+∞} .
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equations

It is known that (68)

N ≤ 1 +

∫
R
(1 + |x|)|V−(x)|dx V−(x) := min{V(x), 0} ; (D.6)

lim sup
x→±∞

x2 V(x) > −1

4
⇒ N < +∞ . (D.7)

The eigenvalues of H, if any, can be arranged in increasing order, thus
we write

σp(H) = {µn}n≥1 µ1 < µ2 < . . . < 0 .

For each n ≥ 1 the (nonzero) eigenfunctions corresponding to the n-th
eigenvalue µn have exactly n zeroes.
Let us suppose that V is an even function; then the following hold:

(a) the eigenfunctions corresponding to µn have the same parity as
n+ 1;

(b) let χ±0 ∈ C∞(R,R) denote the solutions of the zero energy Schrödinger
equations de�ned, respectively, by the Cauchy problems

Hχ+
0 = 0 ,

χ+
0 (0) = 1 ,

χ+
0
′
(0) = 0 ,


Hχ−0 = 0 ,

χ−0 (0) = 0 ,

χ−0
′
(0) = 1 ;

(D.8)

then χ+
0 and χ0

− are, respectively, an even and an odd function;

(c) if N± is the number of zeroes of χ±0 , then

N+ ∈ {0, 2, 4, ...,+∞} , N− ∈ {1, 3, 5, ...,+∞}

and the number of eigenvalues of H is

N =
1

2
N+ +

1

2
(N− − 1) . (D.9)

(iv) The continuous spectrum is

σc(H) = [0,+∞) .

Every point λ ∈ (0,+∞) has an associated, two-dimensional space of
�generalized� eigenfunctions: these are C∞ functions f which ful�ll the
equation Hf = λf but do not belong to D.

68For a proof of Eq. (D.7), see Ref. [61].
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D.1. Spectral features of the Schrödinger operator (5.29,5.22)
(Torii-Shinkai wormhole)

(v) According to the Rayleigh-Ritz variational characterization (see e.g.
Ref. [57], pages 265-266) one has that

inf σ(H) = inf
f∈D\{0}

µ(f) ,

µ(f) :=
〈f |Hf〉
‖f‖2

for every f ∈ D \ {0}
(D.10)

(µ(f) is the familiar mean value of H over f). We note that

〈f |Hf〉 =

∫
R

(
−ff ′′ + V|f |2

)
dx

=

∫
R

(
|f ′|2 + V|f |2

)
dx ≥

∫
R
V|f |2dx ≥ inf

x∈R
V(x) ‖f‖2 (D.11)

(the second of these equalities follows from integration by parts). The
inequalities (D.11) and Eq. (D.10) imply that

µ(f) ≥ inf
x∈R
V(x) for all f ∈ D \ {0} , inf σ(H) ≥ inf

x∈R
V(x) .

Finally, on account of previous information on the point and continuous
spectrum, we have that

inf
f∈D\{0}

µ(f) ≤ 0 ,

inf
f∈D\{0}

µ(f) = 0 ⇔ σp(H) = ∅ ,

inf
f∈D\{0}

µ(f) < 0 ⇔ σp(H) 6= ∅ ,

inf
f∈D\{0}

µ(f) < 0 ⇒ inf
f∈D\{0}

µ(f) = µ1.

(D.12)

D.1.2 The point spectrum of the Schrödinger operator
(5.29,5.22) (Torii-Shinkai wormhole)

Let us consider the Hilbert space (D.2) and the operator (D.1), with the
speci�c potential V appearing therein (which depends on d ≥ 3). From the
asymptotics given on Eq. (D.3), we have that the potential V has all features
required in Eq. (D.4), so we can apply to it all the general results of the
previous subsection. Hereafter we �x the attention on the point spectrum
σp(H) ⊂ (−∞, 0), keeping the notations N , µ1 of the previous subsection
to indicate the total number of eigenvalues and, if N ≥ 1, the minimum
eigenvalue.
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equations

Remark 92 On the grounds of numerical tests, the authors of Ref. [35] pre-
sume for the operatorH the existence in any dimension d of at least one eigen-
value, for which they report the numerical values when d = 3, 4, ..., 9, 10, 19, 49, 99.
Hereafter we will prove analytically that H actually possesses eigenvalues,
and we will derive an upper bound for the minimum eigenvalue µ1. Our
approach relies on the trial function

f(x) :=
1

ρ(x)d/2
, −∞ < x < +∞ , (D.13)

which is C∞ and belongs to D. In the forthcoming Subsection D.1.3 we will
compute the mean value

µ(f) :=
〈f |Hf〉
‖f‖2

(D.14)

and �nd that

µ(f) = −
(d− 2)(16d− 9)Γ

(
d+1

2(d−2)

)
Γ
(

2d−3
2(d−2)

)
4(2d− 1)Γ

(
d−1

2(d−2)

)
Γ
(

2d−1
2(d−2)

) = −2d+O(1) for d→ +∞.

(D.15)
From the above expression it is evident that µ(f) < 0 for any dimension
d ≥ 3, which implies that

inf
f∈D\{0}

µ(f) ≤ µ(f) < 0 ,

these fact and Eq. (D.12) give

σp(E) 6= ∅ , µ1 ≤ µ(f) . (D.16)

In the subsequent Table 1 the second column reports, for the dimensions
d = 3, 4, ..., 9, 10, 19, 49, 99, the numerical eigenvalue determined by Ref. [35],
that I presume should be identi�ed with the minimum eigenvalue µ1; the third
column of the Table reports µ(f) which appears to be rather close to µ1 for
any d, and very close to it for large d.
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D.1. Spectral features of the Schrödinger operator (5.29,5.22)
(Torii-Shinkai wormhole)

Table 1

d µ1 (numer.) µ(f)
3 −1.39705 −1.30000
4 −2.98496 −2.86581
5 −4.68662 −4.57395
6 −6.46258 −6.36474
7 −8.28976 −8.20752
8 −10.1536 −10.0850
9 −12.0443 −11.9870
10 −13.9552 −13.9068
19 −31.5751 −31.5451
49 −91.3458 −91.2796
99 −191.283 −191.191

Remark 93 The considerations in Remark 92 prove that H has N ≥ 1
eigenvalues. Recalling the x → ±∞ asymtoptics (D.3) for V(x), we have
that

lim
x→±∞

x2V(x) =
1

4
(d− 3)(d− 5) ;

applying the criterion (D.7) we infer that N < +∞ for each d 6= 4; in the
case d = 4, we have that 1/4(d − 3)(d − 5) = −1/4 and (D.7) cannot be
applied.
In any dimension d, the value of N can be determined using Eq. (D.9) which
contains the number of zeroes N± of the solutions χ±0 of the systems (D.8).
We have computed numerically χ±0 for many values of d between 3 and 499
(see Subsection D.1.4 for some detail): these computations give numerical
evidence that, for any dimension d ≥ 3, it is N+ = 2, N− = 1 so that

N = 1 . (D.17)

In other terms, there is numerical evidence that H has just one eigenvalue
µ1 for any d ≥ 3.

Remark 94 Let us accept Eq. (D.17) in any dimension d ≥ 3. Then, for
any d, µ1 is the unique point of the spectrum of H, which is contained in
(−∞, 0). We will show in Subsection D.1.5 that from here and from the
Kato-Temple inequality it follows that

µ(f)

(
1 +

∆(f)2

µ(f)2

)
≤ µ1 ≤ µ(f) (D.18)

217



D. Spectral features of the Schrödinger operators appearing in the master
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where µ(f) is the mean of the previously mentioned trial function f [Eq.
(D.13)] de�ned by Eq. (D.14), while ∆(f) is the dispersion of f , which is
de�ned as

∆(f) :=
‖Hf − µ(f)f‖

‖f‖ . (D.19)

In Subsection D.1.3 we will show that

∆(f) =

[
3(d− 2)(44d− 3) Γ

(
2d−3

2(d−2)

)
Γ
(

d+3
2(d−2)

)
16(2d+ 1)Γ

(
2d+1

2(d−2)

)
Γ
(

d−1
2(d−2)

)
−

(d− 2)2(16d− 9)2 Γ
(

2d−3
2(d−2)

)2

Γ
(

d+1
2(d−2)

)2

16(2d− 1)2Γ
(

2d−1
2(d−2)

)2

Γ
(

d−1
2(d−2)

)2

] 1
2

=
d

2
√

2
+O(1) for d→ +∞.

(D.20)

From the explicit expressions of the quantities µ(f) and ∆(f) given by Eqs.
(D.15,D.20), one �nds that

∆(f)2

µ(f)2
< 0.1 for all d ≥ 3 .

Moreover, the asymoptotics for µ(f), ε(f) in Eqs. (D.15,D.20) imply

∆(f)2

µ(f)2
=

1

32
+O

(
1

d

)
= 0.03125 +O

(
1

d

)
for all d→ +∞ .

Summing up the results of the present subsection: the Schrödinger opera-
tor (D.1) de�ned for any dimension d ≥ 3 in the Hilbert space (D.2) possesses
the following features:

(i) H with the domain D is a selfadjoint operator in H;

(ii) the point spectrum of H consists of a unique, simple eigenvalue µ1 < 0,
thus we write

σp(H) = {µ1}
(this results has been deduced by accepting a numerical evidence);

(iii) the continuous spectrum of H is

σc(H) = [0,+∞) .
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D.1. Spectral features of the Schrödinger operator (5.29,5.22)
(Torii-Shinkai wormhole)

D.1.3 On the trial function f [Eq. (D.13)]

Let H, V and f be as in Eqs. (D.1,D.13); like ρ [Eq. (3.31)], these functions
are in C∞(R,R) and even. The second derivative f ′′ can be computed using
Eqs. (3.24,3.30) for ρ′ and ρ′′; recalling Eqs. (3.29,D.3) on the large x

behaviour of ρ and V one concludes that

f(x) =
1

ρ(x)d/2
= O

(
1

|x|d/2
)

for x→ ∓∞ , (D.21)

−f ′′(x) + V(x)f(x) = −5(2d− 3)

4ρ(x)
d
2

+2
+

4d− 3

4ρ(x)
5d
2
−2

= O

(
1

|x| d2+2

)
for x→ ∓∞ .

(D.22)

It is clear form Eqs. (3.29,D.21,D.22) that f,−f ′′+Vf ∈ H; thus, f is in the
domain of the Schrödinger operator H (D.1). In the sequel we will denote
with µ any real number. We have the following:

‖f‖2 =

∫ +∞

−∞
f(x)2dx = 2

∫ +∞

0

1

ρ(x)d
dx ,

〈f |Hf〉 =

∫ +∞

−∞
f(x)

[
− f ′′(x) + V(x)f(x)

]
dx

= 2

∫ +∞

0

[
−5(2d− 3)

4ρ(x)d+2
+

4d− 3

4ρ(x)3d−2

]
dx ,

‖Hf − µf‖2 =

∫ +∞

−∞

[
− f ′′(x) + V(x)f(x)− µf(x)

]2

dx

= 2

∫ +∞

0

[
−5(2d− 3)

4ρ(x)
d
2

+2
+

4d− 3

4ρ(x)5 d
2
−2
− µ

ρ(x)d

]2

dx .

To compute the above integrals it is convenient to perform the transformation

(0,+∞) ∈ x 7→ w = ρ(x)−2d+4 ∈ (0, 1) ,

so that
ρ(x) = w−

1
2(d−2) ,

while the measures dw, dx are related by

dw =
d

dx

[
ρ(x)−2d+4

]
dx = −2(d− 2)ρ(x)−2d+3ρ′(x)dx

= −2(d− 2)ρ(x)−2d+3
√

1− ρ(x)−2(d−2)dx = −2(d− 2)w
2d−3
2(d−2)

√
1− w dx .
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Hence, we have

‖f‖2 =
1

d− 2

∫ 1

0

w−
d−3

2(d−2)

√
1− w dw , (D.23)

〈f |Hf〉 =
1

4(d− 2)

∫ 1

0

−5(2d− 3)w−
d−5

2(d−2) + 5(4d− 3)w
d+1

2(d−2)

√
1− w dw ,

(D.24)

‖Hf − µf‖2 =
1

d− 2

∫ 1

0

w−
2d−3
2(d−2)

√
1− w

[
− 5(2d− 3)

4
w

d+4
4(d−2)

+
4d− 3

4
w

5d−4
4(d−2) − µwd/(2d−4)

]2

dw . (D.25)

Each one of the integrals in Eqs. (D.23-D.25) (even the last one, after ex-
panding the term [...]2 therein) can be written as a linear combination of
integrals of the form ∫ 1

0

dw
wα√
1− w =

√
π Γ
(
α + 1

2

)
Γ
(
α + 3

2

) (D.26)

for suitable values of α ∈ (−1,+∞). Repeated applications of Eq. (D.26)
gives explicit expressions for ‖f‖2, 〈f |Hf〉, ‖Hf − µf‖2 containing ratios of

Gamma terms of the form Γ
(

ad+b
2(d−2)

)
, for suitable integers a > 0 and b.

These expressions can be signi�cantly simpli�ed using the identity Γ(z) =
(z − 1)Γ(z − 1) until each Gamma term is reduced to a form with a = 1 or
a = 2; the �nal results are

‖f‖2 =

√
π Γ

(
d−1

2(d−2)

)
(d− 2)Γ

(
2d−3

2(d−2)

) , (D.27)

〈f |Hf〉 =−
(16d− 9)

√
π Γ

(
d+1

2(d−2)

)
4(2d− 1)Γ

(
2d−1

2(d−2)

) , (D.28)

‖Hf − µf‖2 =
3(d− 2)(44d− 3)

√
π Γ

(
d+3

2(d−2)

)
16(2d+ 1)Γ

(
2d+1

2(d−2)

)
+

(16d− 9)µ
√
π Γ

(
d+1

2(d−2)

)
2(2d− 1)Γ

(
2d−1

2(d−2)

) +
µ2
√
π Γ

(
d+1

2(d−2)

)
(d− 2)Γ

(
2d−3

2(d−2)

) (D.29)
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D.1. Spectral features of the Schrödinger operator (5.29,5.22)
(Torii-Shinkai wormhole)

Eqs. (D.27,D.28) yield the expression (D.15) for the mean value [Eq. (D.14)];
in addition, Eq. (D.27), Eq. (D.29) with µ = µ(f) and Eq. (D.15) for µ(f)
yield an expression for

∆(f)2 :=
‖Hf − µ(f)f‖2

‖f‖2

and taking the square root we obtain for the dispersion ∆(f) [Eq. (D.19)]
the representation in Eq. (D.20). The d → +∞ asymptotics for µ(f) and
∆(f) in Eqs. (D.15,D.20) are obtained via elementary manipulations, noting
the following for any h, k ∈ R:

Γ

(
d+ h

2d+ k

)
= Γ

(
1

2
+O

(
1

d

))
=
√
π +O

(
1

d

)
for d→ +∞ ,

Γ

(
2d+ h

2d+ k

)
= Γ

(
1 +O

(
1

d

))
= 1 +O

(
1

d

)
for d→ +∞ .

D.1.4 The functions χ±0 and their zeroes

Let us consider the operator H and the potential V of Eq. (D.1) and the
functions χ±0 ∈ C∞(R,R) mentioned in item (iii) of Subsection D.1.1 and in
Remark 93; these are the solutions of the systems D.8.
Let us consider, for example, the function χ+

0 ; explicitating V , we obtain

−χ+
0
′′

+
1

4ρ2

[
(d−3)(d−5)− 3(d− 1)2

ρ2(d−2)

]
χ+

0 = 0 , χ+
0 (0) = 1 , χ+

0
′
(0) = 0 .

(D.30)
The function ρ is de�ned in a rather implicit way as in Eq. (3.31); for
our purposes, it is convenient to characterize it as the unique function in
C∞(R, (0,+∞)) such that

ρ′′ =
d− 2

ρ2d−3
, ρ(0) = 1 , ρ′(0) = 0 (D.31)

(recall Eqs. (3.24,3.30). We can regard the pair (D.30,D.31) as a Cauchy
problem for the unknowns (χ+

0 (x), ρ(x)); this can be solved numerically us-
ing any package for ODEs (e.g., the ODE routines of Mathematica). Sim-
ilarly, we can write and solve numerically a Cauchy problem for the pair
(χ−0 (x), ρ(x)) formed by Eq. (D.31) and by the analogous of Eq. (D.30) for
χ−0 , prescribing the initial data χ−0 (0) = 0, χ−0

′
(0) = 1.

Following this strategy, we have determined numerically χ±0 (and ρ) for many
values of d between d = 3 and d = 500; for all the tested values of d, we
found that χ+

0 has just two zeros and χ−0 has just one zero (the point x = 0).
The forthcoming �gures report the graphs of χ±0 for d = 4.
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equations
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Figure D.1: Graphs of χ+
0 and χ+

0 in the case d = 4.

D.1.5 The Kato-Temple inequality, and the derivation
of Eq. (D.18)

Let us consider a general complex, separable Hilbert space H with inner
product 〈 | 〉 and norm ‖ ‖, and a selfadjoint operator

H : D ⊂ H→ H

with spectrum σ(H). Let us assume the following items (a-c):

(a) α, β are two extended real numbers such that −∞ ≤ α < β ≤ +∞,
and (α, β) ∩ σ(H) contains at most a simple proper eigenvalue of H;

(b) we are given a �trial vector� f ∈ D\{0}; µ(f), ∆(f) are the mean value
and the dispersion of H over this vector, i.e.,

µ(f) :=
〈f |Hf〉
‖f‖2

, ∆(f) :=
‖Hf − µ(f)f‖

‖f‖ ;

(c) α, β are such that

α < µ(f) < β , ∆(f)2 < (µ(f)− α)(β − µ(f)) .

The Kato-Temple theorem [62, 63, 64] states that, under the conditions (a-c),
the set (α, β) ∩ σ(H) actually consists of a simple eigenvalue µαβ such that

µ(f)− ∆(f)2

β − µ(f)
≤ µαβ ≤ µ(f) +

∆(f)2

µ(f)− α ; (D.32)

the above relation is usually called the Kato-Temple inequality.
Let us apply this theorem to the Schrödinger operator H in Eq. (D.1), acting
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D.2. Spectral features of the Schrödinger operator (7.43,7.39)
(Ellis-Bronnikov wormhole)

on the Hilbert space (D.2). For this operator, we accept the conclusions of
Remark 93, that is, for any d ≥ 3, H has only one eigenvalue µ1. From
general facts on Schröedinger operators of the form (D.4) (see Subsection
D.1.1, item (iii)), µ1 is simple and is the unique point of σ(H) contained
in (−∞, 0); so, the assumption (a) of the Kato-Temple theorem is ful�lled
with α := −∞ and β := 0. We now consider the trial function f of Eq.
(D.13); the corresponding mean and dispersion µ(f), ∆(f) are as in Eqs.
(D.15,D.20). With our choices for α, β the inequalities of item (c) take the
from −∞ < µ(f) < 0, ∆(f)2 < +∞ and are obviously satis�ed. Thus we
have the inequality (D.32) for µαβ = µ1; due again to the choice of α, β this
takes the form

µ(f) +
∆(f)2

µ(f)
≤ µ1 ≤ µ(f) , (D.33)

which is clearly equivalent to Eq. (D.18).

D.2 Spectral features of the Schrödinger opera-

tor (7.43,7.39) (Ellis-Bronnikov wormhole)

Let us consider the Hilbert space

H := L2 (R, dρ) (D.34)

and the operator

H := − d2

dρ2
+ U : D ⊂ H→ H , D := {f ∈ H | fρρ ∈ H} ,

U(ρ) :=

(
α2

γ2
V
)

(x(ρ)) (V as in Eq. (7.32))

(D.35)

with the ρ-derivatives intended in the distributional sense (see Footnote 67
with ρ in place of x). Even in this case we pro�t from the general results on
Schrödinger operators [56] and from the analysis performed in Ref. [25]; this
leads to the following statement:

(i) in the case γ1 6= 0, H with the domain D is a selfadjoint operator in H;

(ii) in the case γ1 6= 0, the point spectrum of H consists of two simple
eigenvalues µ1 < 0 and µ2 := 0, thus we write

σp(H) = {µ1, 0} ; (D.36)
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(iii) in the case γ1 6= 0, the continuous spectrum of H is

σc(H) = (0,+∞) .

Remark 95 In the re�ection symmetric case γ1 = 0, ρ = x and the operator
(D.35) reduces to the four-dimensional operator (D.1) (with d = 3), after
performing the coordinate change t = b t, x = b x [Eq. (3.33)]. Therefore,
quite obviously, the spectral properties of (D.35) in the case γ1 = 0 can be
inferred from the results of Section D.1 setting d = 3; in particular one sees
that

(i) in the case γ1 = 0, H with the domain D is a selfadjoint operator in H;

(ii) in the case γ1 = 0, the point spectrum of H consists of a unique, simple
eigenvalue µ1 < 0, thus we write

σp(H) = {µ1} ; (D.37)

(iii) in the case γ1 = 0, the continuous spectrum of H is

σc(H) = [0,+∞) .

For the sake of completeness, let us sketch a possible proof of the existence
of exactly two eigenvalues µ1 < 0 and µ2 = 0 [Eq. (D.36)] in the non re�ection
symmetric case γ1 6= 0 (and of the existence of exactly one eigenvalue µ1 < 0
[Eq. (D.37)] in the re�ection symmetric case γ1 = 0).
We start noting that, since dρ = γ

α
dx, working with the operator (7.32) in

the Hilbert (D.34) is equivalent to working directly with the operator

−
(
α

γ

d

dx

)2

+
α2

γ2
V

in the Hilbert space

L2
(
R,

γ

α
dx
)
. (D.38)

As shown in Ref. [25], the �zero energy� equation[
−
(
α

γ

d

dx

)2

+
α2

γ2
V
]
χ0 = 0

has a solution

χ0(x) =
x− bγ1

r(x)F (x)
, (D.39)
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D.3. Spectral features of the Schrödinger operator (5.69,5.60) (AdS
wormhole)

which has precisely one zero in the interval (−∞,+∞). According to the
Sturm oscillation theorem (see for instance Refs. [65, 66] and references
therein) it follows that for each γ1 (including γ1 = 0), the Schrödinger op-
erator in the master equation possesses a single bound state with negative
energy. Note that for γ1 6= 0 the function χ0 decays as 1/|x| for large |x|,
so that it describes an element of the Hilbert space (D.38); moreover, it
can be proved that in this case χ0 belongs to the domain of selfadjointness
of H, which implies that χ0 is an eigenfunction of H corresponding to the
eigenvalue µ2 = 0. On the contrary, for γ1 = 0 Eq. (D.39) reduces to
χ0(x) = x/

√
1 + x2 which is not an element of the Hilbert space (D.38) and

hence can not be considered as an eigenfunction of H; thus, for γ1 = 0, zero
is not an eigenvalue of the operator H.

D.3 Spectral features of the Schrödinger oper-

ator (5.69,5.60) (AdS wormhole)

In this section we study the spectral features of the operator

H := − d2

du2
+ V : D ⊂ H→ H , D := {f ∈ H | fuu ∈ H , f(±π) = 0} ,

V(u) ≡ VB(u) = −B
2 (2 +B2 + cosu)

(1 + 2B2 − cosu)2 ,

(D.40)
in the Hilbert space

H := L2((−π, π), du) . (D.41)

Here and in the sequel, the u-derivatives like fuu are understood distribu-
tionally; a function f ∈ H with fuu ∈ H is in fact in C1([−π, π]), so it can be
evaluated at u = ±π (69).

Remark 96 As an operator in the Hilbert space H, the operator H in Eq.
(D.40) has the following properties: (70)

(i) it is selfadjoint;

69The conditions f ∈ H, fuu ∈ H imply fu ∈ H, due to the already mentioned Gagliardo-
Nirenberg interpolation inequality [58]. The space {f ∈ H | fuu ∈ H} coincides with the
standard Sobolev space W 2,2(−π, π) ≡ H2(−π, π), which is contained in C1([−π, π]) by
the Sobolev embedding theorem (see again Ref. [58]). Let us also remark that, due to the
boundedness of the function V, for each f ∈ H one has automatically Vf ∈ H.

70For some general facts about Hilbert space operators with properties (i-iii), see e.g.
Ref. [57] (especially, pages 37, 178 and 265-67).
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(ii) it is bounded from below;

(iii) it has a purely discrete spectrum.

As known in general for Hilbert space operators ful�lling (i-iii), it is possible
to represent the eigenvalues of H as an increasing sequence µ1 < µ2 < . . . ;
thus, we write

σ(H) = σp(H) = {µn}n∈N µ1 < µ2 < . . . . (D.42)

In addition, H has the following properties:

(iv) any of its eigenfunctions is in the space C∞([−π, π]);

(v) each one of its eigenvalues is simple.

For completeness, let us give more information on the above issues (i-v) for
the operator H. In this regard, let us recall that the operator

H0 := − d2

du2
: D ⊂ H→ H

(with the domain D as in Eq. (D.40)) also has the properties (i-v); in this
case the eigenvalues are

µ0
n :=

n2

4
n ∈ N

and for each eigenvalue µ0
n the corresponding normalized eigenfunction is

f 0
n(u) :=

1√
π

sin
[n

2
(u+ π)

]
n ∈ N .

The properties (i-v) of H0 and the expressions given above for its eigenvalues
and eigenfunctions are checked �by hand� (71). Now consider any function
V ∈ C∞([−π, π],R); then, due to the boundedness of this function, the mul-
tiplication operator by V is a bounded selfadjoint operator on H. As well
known the properties (i), or (i-ii), or (i-iii) of an operator in an abstract
Hilbert space are preserved by the addition of a bounded selfadjoint pertur-
bation (see again Ref. [57]); therefore the operator HV := H0 +V = − d2

du2
+V

with domain D ful�lls (i-iii). Moreover, the operator HV is proved to have
also the properties (iv-v). (72) All the previous statements apply, in particu-
lar, with V as in Eq. (D.40) (hence for HV = H).

71 The eigenfunctions of H0 are proved to be smooth due to the following regularity
result: if f is a distribution on an open interval Ω ⊂ R (with derivatives f (i), i = 0, 1, . . .)

and f ful�lls a homogeneous linear ODE f (k)+
∑k−1
i=0 aif

(i) = 0 of any order k ∈ {1, 2, . . .}
with C∞ coe�cients ai : Ω→ C, then f is a C∞ function on Ω: this follows from Theorem
IX in Ref. [67], page 130.

72For the proof of (iv) for HV one can use again the cited regularity result for distri-
butional, homogeneous linear ODEs (see Footnote 71); a derivation of (v) for HV can be
found e.g. in Ref. [68], page 30.
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Remark 97 Using (again) the Sturm oscillation theorem (see Theorem 3.4
in Ref. [66]), one can prove that the operator H has exactly one negative
eigenvalue, while all other eigenvalues are positive, namely, one can see that

µ1 < 0 < µ2 < µ3 < . . . . (D.43)

Indeed, the zero energy Schrödinger equation[
− d2

du2
+ V

]
χ0 = 0

admits for each �xed B > 0 the general solution

χ0(u) = C1

sin u
2√

1 + 2B2 − cosu
+ C2

−2u sin u
2

+ 4B2 cos u
2√

1 + 2B2 − cosu
, −π < u < π ,

(D.44)
with constants C1, C2 ∈ C. The Dirichlet boundary conditions χ0(±π) = 0
are satis�ed only in the trivial case C1 = C2 = 0, which shows that none
of these solutions is an eigenfunction of our Schrödinger operator (and thus
showing that zero is not an eigenvalue of H). For C1 = −2πC2 6= 0 the
zero energy solution satis�es the left boundary condition, i.e. χ0(−π) = 0,
and since this solution has precisely one zero in the interval (−π, π), (73) it
follows from the Sturm oscillation theorem (see Theorem 3.4 in Ref. [66])
that our Schrödinger operator (with Dirichlet boundary conditions) has a
single negative eigenvalue µ1 < 0.

In the remainder of this section, the notations H, V , H, D, {µn}n∈N will
always indicate, respectively, the Hilbert space in Eq. (D.41), the potential,
the operator and its domain in Eq. (D.40) and its eigenvalues in increasing
order [Eq. (D.42)]. In addition, it will be useful to emphasize that the poten-
tial V depends on the parameter B ∈ (0,+∞), thus originating in a similar
dependence for the corresponding operator, and its eigenvalues: V ≡ VB,
H ≡ HB, µn ≡ µn(B) (n ∈ N).

In what follows, we provide estimates for the eigenvalues of µn(B).
We start with an upper bound for the ground state energy µ1 ≡ µ1(B). We

73Let us justify this statement on the number of zeroes of χ0 for the special choice
C1 = −2πC2 6= 0. In this case we can write χ0(u) =

(
−2C2 cos u2

)
w(u)/

√
1 + 2B2 − cosu

where w : (−π, π) → R, u 7→ w(u) := (u+ π) tan u
2 − 2B2. The zeroes of χ0 in (−π, π)

coincide with the zeroes of the function w. To �nd the zeroes of w, it is useful to note that
this function has derivative w′(u) =

(
1
2 sec2 u2

)
(u+ sinu+ π) > 0 for all u ∈ (−π, π); from

w′ > 0 it follows that w is a strictly monotonic bijection of (−π, π) to (−2B2 − 2,+∞),
and thus possesses a unique zero.
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have already recalled that, for a spectrum of type (D.43), the Rayleigh-Ritz
variational characterization ensures that (see Eq. (D.12))

µ1(B) = inf
f∈D\{0}

〈f |HBf〉
||f ||2 . (D.45)

Choosing in D the function

f(u) := cos
u

2
, −π < u < π ,

we get

〈f |HBf〉
||f ||2 =

1

4
−B2 +

√
1 +B2 (4B2 − 3)

4B
=: ε(B) , (D.46)

which, together with Eq. (D.45), yields the estimate

µ1(B) ≤ ε(B) for each B > 0 . (D.47)

It can be checked that B 7→ ε(B) is a negative, monotonously increasing
function on (0,+∞) with the properties

lim
B→0+

ε(B) = −∞ , lim
B→+∞

ε(B) = 0− .

Therefore, we obtain the upper bound for the ground state energy,

µ1(B) ≤ ε(B) < 0 (D.48)

which provides an independent proof for the fact that it is negative (see Re-
mark 97).
Next, we provide two-sided bounds on the eigenvalues µn ≡ µn(B) for ar-
bitrary n. In order to achieve this, we check that for any �xed B > 0, one
has

min
u∈[−π,π]

VB(u) = VB(0) = −1

4
− 3

4B2
,

max
u∈[−π,π]

VB(u) = VB(±π) = −1

4
+

1

4(1 +B2)
.

(D.49)

In the Hilbert space H, let us consider the operator H and the operators

H− := − d2

du2
− 1

4
− 3

4B2
, H+ := − d2

du2
− 1

4
+

1

4(1 +B2)
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all of them with the same domain D as de�ned in Eq. (D.40); note that all of
these operator satisfy the properties (i-v) of Remark (96). Due to Eq. (D.49)
we have 〈

f
∣∣H−f〉 ≤ 〈f |Hf〉 ≤ 〈f ∣∣H+f

〉
for all f ∈ D ,

and this implies (see e.g. Ref. [57], pages 230 and 267)

µ−n ≤ µn ≤ µ+
n n ∈ N

where µ∓1 < µ∓2 < . . . are the eigenvalues of H∓. On the other hand, the
eigenvalues of H∓ are obtained shifting those of H0 = − d2

du2
, i.e.,

µ−n =
n2

4
− 1

4
− 3

4B2
, µ+

n =
n2

4
− 1

4
+

1

4(1 +B2)
.

In conclusion, the eigenvalues of H satisfy the two-side bounds

n2 − 1

4
− 3

4B2
≤ µn(B) ≤ n2 − 1

4
+

1

4(1 +B2)
n ∈ N . (D.50)

Combining this result with Eq. (D.48) one obtains the following two-side
bound for the ground state energy:

− 3

4B2
≤ µ1(B) ≤ ε(B) = − 1

2B2
+O

(
1

B4

)
. (D.51)

D.4 Spectral features of the Schrödinger oper-

ator (7.64,7.60) (dS wormhole)

Let us consider the Hilbert space

H := L2 (R, du) (D.52)

and the operator

H := − d2

du2
+ V : D ⊂ H→ H , D := {f ∈ H | fuu ∈ H} ,

V(u) := − B
2 (2−B2 + coshu)

(−1 + 2B2 + coshu)2

(D.53)

(the ρ-derivatives have to be intended in the distributional sense as in Foot-
note 67). Note that V(u) is everywhere negative and vanishes like − 1

coshu
for

u→ ±∞; hence the situation of this operator is rather similar to that of the
re�ection symmetric Ellis- Bronnikov wormhole (see Remark 95):
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(i) H with the domain D is a selfadjoint operator in H;

(ii) the point spectrum of H consists of a unique, simple eigenvalue µ1 < 0,
thus we write

σp(H) = {µ1} ; (D.54)

(iii) the continuous spectrum of H is

σc(H) = [0,+∞) .

For the sake of completeness, let us proof the previous items (ii-iii).
Consider the zero energy Schrödinger equation[

− d2

du2
+ V

]
χ0 = 0 ;

the general solution of this equation is obtained from the analogous solution
(D.44) for the AdS case with the formal replacements (u,B) 7→ (iu, iB) and
reads

χ0(u) = C1

sinh u
2√

−1 + 2B2 + coshu
+ C2

2u sinh u
2
− 4B2 cosh u

2√
−1 + 2B2 + coshu

,

with constants C1, C2 ∈ C. One has χ0 ∈ L2(R, du) if and only if C1 = C2 =
0, thus zero is not an eigenvalue of H. If C1 ∈ R \ {0} and C2 = 0 it is
evident that χ0 has a unique zero in R (namely, u = 0). If C2 ∈ R \ {0}
and C1 ∈ R, one can show that χ0 possesses two zeroes in R (via an analy-
sis rather similar to that given for the function χ0 of the AdS case after E.
(D.44). Summing up, the minimal number of zeroes of the real, non identi-
cally vanishing solutions χ0 of the zero energy equation is one. The Sturm
oscillation theorem (Theorem 14.8 of Ref. [65]) states that such a minimal
number of zeroes is the number of negative eigenvalues of H. So, H has a
unique negative eigenvalue; in addition, due to general facts on Schrödinger
operators (and to the previous remark that 0 is not an eigenvalue), H has
continuous spectrum [0,+∞).
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Appendix E

Solutions of the master equations

We start this appendix with a trivial remark on the general solution of a
second order ODE with a polynomial source term.

Remark 98 The solution of the second order ordinary Cauchy problem in
the unknown y = y(t)

ÿ + Ey = J0 + J1s+ J2s
2 (E < 0, J0, J1, J2 ∈ R) ,

y(0) = y0 (y0 ∈ R) ,

ẏ(0) = y1 (y1 ∈ R) ,

(E.1)

is

y(t) = y0 cosh(|E|1/2t) + y1
sinh(|E|1/2t)
|E|1/2 +

cosh(|E|1/2t)− 1

|E| J0

+
sinh(|E|1/2t)− |E|1/2t

|E|3/2 J1 +
2 cosh(|E|1/2t)− |E|t2 − 2

|E|2 J2 . (E.2)

The solution of the second order ordinary Cauchy problem in the unknown
y = y(t)

ÿ + Ey = J0 + J1s+ J2s
2 (E > 0, J0, J1, J2 ∈ R) ,

y(0) = y0 (y0 ∈ R) ,

ẏ(0) = y1 (y1 ∈ R) ,

(E.3)

is

y(t) = y0 cos(E1/2t) + y1
sin(E1/2t)

E1/2
+

1− cos(E1/2t)

E
J0

+
E1/2t− sin(E1/2t)

E3/2
J1 +

2 cos(E1/2t) + Et2 − 2

E2
J2 . (E.4)
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E. Solutions of the master equations

E.1 Solution of the master equations of the Torii-

Shinkai wormhole

In this section we deal with the master equations (5.26,7.21); we will show
how the resolution of these equations can be reduced to the spectral analysis
of the operator (D.1) in the Hilbert space (D.2).

Remark 99 In Section D.1 (and in particular in Subsection D.1.2) we have
stated that there is numerical evidence that the spectrum σ(H) the operator
in Eq. (D.1) is made up of a simple proper eigenvalue µ1 < 0 and a contin-
uous spectrum σc(H) = [0,+∞); from now on we accept this result as true.
Therefore, the spectral theorem 15 ensures that one can construct a general-
ized orthonormal basis of the Hilbert space H, in the sense of De�nition 10
with N = 1 and I = 2 which is made up of:

(i) a normalized eigenfunction e1 for the eigenvalue µ1 < 0, i.e.

e1 ∈ D : ‖e1‖ = 1 , He1 = µ1e1

(e1 is proved to be C∞(R));

(ii) two suitably chosen and linearly independent �improper eigenfunctions�
eiλ (i = 1, 2) for each λ ∈ σ̊c(H) = (0,+∞), i.e.,

eiλ ∈ C∞(R) \D : Heiλ = λeiλ (i = 1, 2 ;λ > 0) .

E.1.1 Solution of the master equation (7.21) with low
regularity

Let us start with the master equation (7.21) with the initial conditions (7.23)
in the suitable Hilbertian framework introduced in Remark 40, i.e.,

χ̈(t) +Hχ(t) = 0 H as in Eq. (D.1) ,

χ(0) = q , χ̇(0) = p ,
(E.5)

where the unknown is a function

R 3 t 7→ χ(t) ∈ D .

We �rst proceed formally, assuming that the initial data q, p are in suitable
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spaces to be speci�ed later. Applying 〈e1| 〉 and 〈eiλ| 〉 to the di�erential
equation in Eq. (E.5), we obtain

0 =

〈
e1

∣∣∣∣ d2

dt2
χ(t) +Hχ(t)

〉
=

d2

dt2
〈e1 |χ(t)〉+ 〈e1 |Hχ(t)〉

=

(
d2

dt2
+ µ1

)
〈e1|χ(t)〉 (E.6)

and

0 =

〈
eiλ

∣∣∣∣ d2

dt2
χ(t) +Hχ(t)

〉
=

d2

dt2
〈eiλ |χ(t)〉+ 〈eiλ |Hχ(t)〉

=

(
d2

dt2
+ λ

)
〈eiλ|χ(t)〉 (i = 1, 2 ;λ > 0) . (E.7)

These are two wave equations respectively in the unknowns y1(t) := 〈e1|χ(t)〉
and yiλ(t) := 〈eiλ|χ(t)〉 with the initial conditions given by Eq. (E.5), i.e.{

y1(0) = 〈e1|χ(0)〉 = 〈e1|q〉 ,
ẏ1(0) = 〈e1|χ̇(0)〉 = 〈e1|p〉 ,

(E.8){
yiλ(0) = 〈eiλ|χ(0)〉 = 〈eiλ|q〉 (i = 1, 2 ;λ > 0) ,

ẏiλ(0) = 〈eiλ|χ̇(0)〉 = 〈eiλ|p〉 (i = 1, 2 ;λ > 0) .
(E.9)

On account of the previous conditions, from Eq. (E.2) with E = µ1 < 0 and
Eq. (E.4) with E = λ > 0 with Ji = 0 for i = 0, 1, 2, we have that the wave
equations (E.6,E.7) have solutions

〈e1|χ(t)〉 = 〈e1|q〉 cosh(|µ1|1/2t) + 〈e1|p〉
sinh(|µ1|1/2t)

|µ1|1/2
, (E.10)

〈eiλ|χ(t)〉 = 〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉
sin(λ1/2t)

λ1/2
, (i = 1, 2 ;λ > 0) ;

(E.11)

the spectral decompositions of the function χ(t) ∈ H [Proposition 16] implies
that the system (E.5) has the solution

χ(t) =

[
〈e1|q〉 cosh(|µ1|1/2t) + 〈e1|p〉

sinh(|µ1|1/2t)

|µ1|1/2
]
e1

+
2∑
i=1

∫ +∞

0

[
〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉

sin(λ1/2t)

λ1/2

]
eiλ dλ , (E.12)

thus providing a formal justi�cation for Eq. (7.25).
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Remark 100 Let us stress the fact that, as explained in Remark 86, the
symbols 〈·|·〉 in the above formula indicate the usual inner product in H, or
its suitably de�ned generalization, while the integrals over λ are understood
in a weak sense.

Remark 101 It can be checked a posteriori that all the previous manipula-
tions make sense if one assumes that

q ∈ D , p ∈ D1/2 , (E.13)

where D1/2 is the domain of the operator |H|1/2 de�ned in Remark 91 (see, in
particular Eq. (C.26)). With the assumptions (E.13), Eq. (E.12) describes
the unique solution χ : R 3 t 7→ χ(t) of the system (E.5) such that

χ ∈ C2(R,H) ∩ C1(R,D1/2) ∩ C(R,D) ; (E.14)

in particular, χ(t) ∈ H ∩D = D for all t ∈ R, as required.
As an example of the necessary tests to prove the previous statement, let us
consider any t ∈ R and show that χ(t) de�ned by Eq. (E.12) is an element
of D ∩ D1/2. Let us start showing that χ(t) ∈ D. Due to the descriptions
(C.2,C.3) for H and (C.20) for D, χ(t) in Eq. (E.12) is in fact in D if we are
able to prove the following for i = 1, 2 (and for �xed t, as already indicated):

λ 7→
[
〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉

sin(λ1/2t)

λ1/2

]
∈ L2((0,+∞), dλ) , (E.15)

λ 7→λ
[
〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉

sin(λ1/2t)

λ1/2

]
= λ〈eiλ|q〉 cos(λ1/2t) + λ1/2〈eiλ|p〉 sin(λ1/2t) ∈ L2((0,+∞), dλ) .

(E.16)

Indeed, Eq. (E.15) follows noting that

λ 7→ cos(λ1/2t) , λ 7→ sin(λ1/2t)

λ1/2
∈ L∞((0,+∞), dλ) ,

λ 7→ 〈eiλ|q〉 , λ 7→ 〈eiλ|p〉 ∈ L2((0,+∞), dλ)

(E.17)

(the statements on q, p in (E.17) are correct, since Eq. (E.13) obviously
implies q, p ∈ H). Moreover, Eq. (E.16) follows noting that

λ 7→ cos(λ1/2t) , λ 7→ sin(λ1/2t) ∈ L∞((0,+∞), dλ) ;

λ 7→ λ〈eiλ|q〉 , λ 7→ λ1/2〈eiλ|p〉 ∈ L2((0,+∞), dλ)
(E.18)
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(the statements on q, p in (E.18) are correct, due to the assumption (E.13)
and to the characterizations (C.20) for D, (C.26) for D1/2).
We now show that χ(t) ∈ D1/2; this is equivalent to show that

λ 7→λ1/2

[
〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉

sin(λ1/2t)

λ1/2

]
= λ1/2〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉 sin(λ1/2t) ∈ L2((0,+∞), dλ) .

(E.19)

The previous equation can be veri�ed using the statements (E.17) on q, p,
the statements (E.18) on the trigonometric functions and observing that for
every λ ≥ 0

|λ1/2〈eiλ|q〉| ≤ |(1 + λ)〈eiλ|q〉| ≤ |〈eiλ|q〉|+ |λ〈eiλ|q〉|
(the later is square integrable again for Eqs. (E.17,E.18)).

The results of the previous remark are summed up in the following

Proposition 17 Under the assumption (E.13) on the initial data, the Cauchy
problem (E.5), arising from the gauge-invariant linear stability analysis of the
Torii-Shinkai wormhole, has a unique solution χ(t) de�ned for every t ∈ R
as in (E.14); moreover the solution χ(t) can be decomposed with respect to
the generalized orthonormal basis made up of proper and improper eigenfunc-
tions of the operator (D.1) as in Eq. (E.12).

E.1.2 Solution of the master equation (5.26) with high
regularity

Let us keep all notations of Section (5.1). Therein, we have proved that if
Γ(t, x),R(t, x),Ψ(t, x) ∈ C∞(R2,R) are solutions of the linearized Einstein
equations (5.6-5.9), then Γ(t, x),Ψ(t, x) are given by Eqs. (5.17,5.20) where
R(t, x) satis�es the master equation (5.21); note that Eqs. (5.17,5.20,5.21)
involve the initial data Γi,Ri [Eq. (5.18)] through Eqs. (5.19,5.23).
In Remark 40, we have introduced an Hilbertian framework for the mas-
ter equation (5.21) with the initial condition (5.18), yielding the system
(5.26,5.30), that is

R̈(t) +HR(t) = J0 + t J1 H as in Eq. (D.1) ,

R(0) = R0 , Ṙ(0) = R1 ,
(E.20)

where the unknown is a function

R 3 t 7→ R(t) ∈ D .
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The subsequent calculations are purely formal and they assume that the
initial data R0,R1 are in suitable spaces to be speci�ed later. Applying
〈e1| 〉 and 〈eiλ| 〉 to the di�erential equation in Eq. (E.20) we get (see Eqs.
(E.6,E.7) with R(t) in place of χ(t) to threat the left hand sides)(

d2

dt2
+ µ1

)
〈e1|R(t)〉 = 〈e1 | J0〉+ t 〈e1 | J1〉 (E.21)

and(
d2

dt2
+ λ

)
〈eiλ|R(t)〉 = 〈eiλ | J0〉+ t 〈eiλ | J1〉 (i = 1, 2 ;λ > 0) . (E.22)

These are two wave equations with source, respectively in the unknowns
y1(t) := 〈e1|R(t)〉 and yiλ(t) := 〈eiλ|R(t)〉, and with the initial conditions
given by Eq. (E.20), i.e.{

y1(0) = 〈e1|R(0)〉 = 〈e1|R0〉 ,
ẏ1(0) = 〈e1|Ṙ(0)〉 = 〈e1|R1〉 ,

(E.23){
yiλ(0) = 〈eiλ|R(0)〉 = 〈eiλ|R0〉 (i = 1, 2 ; λ > 0) ,

ẏiλ(0) = 〈eiλ|Ṙ(0)〉 = 〈eiλ|R1〉 (i = 1, 2 ; λ > 0) .
(E.24)

From the previous initial conditions (and by using Eq. (E.2) with E = µ1 < 0
and Eq. (E.4) with E = λ > 0 and the source coe�cients J0 = 〈eiλ | J0〉,
J1 = 〈eiλ | J1〉, J2 = 0), the wave equations (E.6,E.7) have the solutions

〈e1|R(t)〉 = 〈e1|R0〉 cosh(|µ1|1/2t) + 〈e1|R1〉
sinh(|µ1|1/2t)

|µ1|1/2
(E.25)

+ 〈e1|J0〉
cosh(|µ1|1/2t− 1

|µ1|
+ 〈e1|J1〉

sinh(|µ1|1/2t)− |µ1|1/2t
|µ1|3/2

,

(E.26)

〈eiλ|R(t)〉 = 〈eiλ|R0〉 cos(λ1/2t) + 〈eiλ|R1〉
sin(λ1/2t)

λ1/2
(E.27)

+ 〈eiλ|J0〉
1− cos(λ1/2t)

λ
+ 〈eiλ|J1〉

λ1/2t− sin(λ1/2t)

λ3/2
, (i = 1, 2 ;λ > 0) ;

(E.28)

the spectral decompositions of the function R(t) ∈ H [Proposition 16] implies
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that the system (E.20) has the solution

R(t) =

[
〈e1|R0〉 cosh(|µ1|1/2t) + 〈e1|R1〉

sinh(|µ1|1/2t)

|µ1|1/2

+ 〈e1|J0〉
cosh(|µ1|1/2t− 1

|µ1|
+ 〈e1|J1〉

sinh(|µ1|1/2t)− |µ1|1/2t
|µ1|3/2

]
e1

+
∑
i=1,2

∫ +∞

0

[
〈eiλ|R0〉 cos(λ1/2t) + 〈eiλ|R1〉

sin(λ1/2t)

λ1/2

+ 〈eiλ|J0〉
1− cos(λ1/2t)

λ
+ 〈eiλ|J1〉

λ1/2t− sin(λ1/2t)

λ3/2

]
eiλ dλ ,

(E.29)

thus providing a formal justi�cation for Eq. (5.31). Let us recall that the
above expression has to be intended in the sense explained in Remark 100.

Remark 102 For subsequent use, we introduce the function space

E((a, b),K) := {f | f,Hf,H2f, . . . ∈ L2((a, b),K)} ,
K := R,C , −∞ ≤ a < b ≤ +∞ ,

(E.30)

which is a Fréchet space [59] with the countably many norms

f 7→
{
‖f‖ , ‖Hf‖ , ‖H2f‖ , ...

}
; (E.31)

note that the eigenfunctions en ∈ E(R,R) for each n ∈ N. By means of some
Sobolev imbeddings (see Ref. [59], Theorem 7.25), one shows that

E((a, b),K) = {f ∈ C∞((a, b),K) | f, fx, fxx, ... ∈ L2((a, b),K)}
and that the family of norms in Eq. (E.31) is topologically equivalent to the
family of (semi-)norms

f 7→
{
‖f‖ , ‖fx‖ , ‖fxx‖ , ...

}
.

Note that, obviously, E(R,R) ⊂ D and E(R,R) ⊂ C∞(R,R).

With some e�ort, one can prove the following proposition [2].

Proposition 18 Under the assumption

Rj,Γj ∈ C∞(R,R) : Rj, Jj ∈ E(R,R) (j = 0, 1) ,

where the Jj's are de�ned by Eqs. (5.235.19), the linearized Einstein equa-
tions (5.6-5.9), arising from the gauge-dependent linear stability analysis of
the Torii-Shinkai wormhole, has a unique solution (R(t, x),Γ(t, x),Ψ(t, x)),
de�ned for every (t, x) ∈ R2, such that:
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(a) R(t, x),Γ(t, x),Ψ(t, x) ∈ C∞(R2,R);

(b) R(t, x) ≡ R(t) ∈ C∞(R, E(R,R)); (74)

(c) Rj,Γj (j = 0, 1) are the initial data for R and Γ, in the sense of Eq.
(5.18) ;

(d) Γ,Ψ can be expressed in terms of the function R via Eqs. (5.17,5.20,5.19);

moreover, the solution R(t, x) ≡ R(t) can be decomposed with respect to the
generalized orthonormal basis made up of proper and improper eigenfunctions
of the operator (D.1) as in Eq. (E.29).

E.2 Solution of the master equation of the non

re�ection symmetric Ellis-Bronnikov worm-

hole

We now deal with the master equation (7.40) in the non re�ection symmetric
case; hence, throughout this section we stipulate

γ1 6= 0 .

In a similar way to the Torii-Shinkai case, in order to obtain the solution
of this equations one has to consider the spectral properties of the operator
(D.35) in the Hilbert space (D.34).

Remark 103 In Section D.2 we have shown that, in the non re�ection
symmetric case γ1 6= 0, the operator in Eq. (D.35) has two simple proper
eigenvalues µ1 < 0, µ2 = 0 and a continuous spectrum σc(H) = (0,+∞);
therefore, applying Theorem 15, one can construct a generalized orthonormal
basis of the Hilbert space H, in the sense of De�nition 10 with N = 2 and
I = 2, which is made up of:

(i) two normalized eigenfunction e1, e2 for the eigenvalues µ1 < 0 and
µ2 = 0, i.e.

e1, e2 ∈ D : He1 = µ1e1 , He2 = 0 , ‖e1‖ = ‖e2‖ = 1

(e1, e2 are proved to be C∞(R));

(ii) two suitably chosen and linearly independent �improper eigenfunctions�
eiλ (i = 1, 2) for each improper eigenvalue λ ∈ σc(H) = (0,+∞), i.e.,

eiλ ∈ C∞(R) \D : Heiλ = λeiλ (i = 1, 2 ;λ > 0) .
74This means that each for each t ∈ R the map R(t, ·) : x 7→ R(t, x) is an element of
E(R,R), and that the map t 7→ R(t, ·) is C∞ from R to E(R,R).
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E.2. Solution of the master equation of the non re�ection symmetric
Ellis-Bronnikov wormhole

E.2.1 Solution of the master equation (7.40) with low
regularity

Let us consider the equation (7.40) in the non re�ection symmetric case
γ1 6= 0, with the initial conditions (7.44); after introducing the Hilbertian
framework of Remark 71, one can rewrite the master equation as

χ̈(t) +Hχ(t) = 0 H as in Eq. (D.35) ,

χ(0) = q , χ̇(0) = p ;
(E.32)

the unknown of the previous Cauchy problem is a function

R 3 t 7→ χ(t) ∈ D .

Analogously to Torii-Shinkai case [Subsection E.1.1], one formally applies
〈e1| 〉, 〈eiλ| 〉 and 〈e2| 〉 to the di�erential equation in Eq. (E.32) assuming
that the initial data q, p are in suitable spaces to be speci�ed later. In
this way, one obtains, respectively, two wave equations analogous to Eqs.
(E.6,E.7) and the equation

0 =

〈
e2

∣∣∣∣ d2

dt2
χ(t) +Hχ(t)

〉
=

d2

dt2
〈e2 |χ(t)〉+〈e2 |Hχ(t)〉 =

d2

dt2
〈e2|χ(t)〉 ;

(E.33)

the �rst two equations leads to two solutions similar to the solutions in Eqs.
(E.10,E.11), while Eq. (E.33), which can be as well regarded as a wave
equation in the unknown y2(t) := 〈e2 |χ(t)〉 with the initial conditions{

y2(0) = 〈e2|χ(0)〉 = 〈e2|q〉 ,
ẏ2(0) = 〈e2|χ̇(0)〉 = 〈e2|p〉 ,

(E.34)

has the trivial solution

〈e1|χ(t)〉 = 〈e2|q〉+ 〈e2|p〉t . (E.35)

Moreover, again as in the re�ection symmetric case, one can de�ne two
Hilbert structures for the domains D, D1/2 of the operators H, |H|1/2 as
in Remark 91. In this way, by using Proposition 16 for the decomposition of
the solution χ(t) ∈ H, one can prove the following

Proposition 19 Under the assumption

q ∈ D , p ∈ D1/2 ,
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on the initial data, the Cauchy problem (E.32), arising from the gauge-
invariant linear stability analysis of the non re�ection symmetric Ellis-Bronnikov
wormhole, has a unique solution χ(t) de�ned for every t ∈ R such that

χ ∈ C2(R,H) ∩ C1(R,D1/2) ∩ C(R,D) ;

moreover the solution χ(t) can be decomposed with respect to the general-
ized orthonormal basis made up of proper and improper eigenfunctions of the
operator (D.35) as

χ(t) =

[
〈e1|q〉 cosh(|µ1|1/2t) + 〈e1|p〉

sinh(|µ1|1/2t)
|µ1|1/2

]
e1 +

[
〈e2|q〉+ 〈e2|p〉t

]
e2

+
2∑
i=1

∫ +∞

0

[
〈eiλ|q〉 cos(λ1/2t) + 〈eiλ|p〉

sin(λ1/2t)

λ1/2

]
eiλ dλ . (E.36)

The latter proposition provides a justi�cation of Eq. (7.46). Let us �nally
underline the fact that, as explained in Remark 100, the above expression
has to be suitably intended.

E.3 Solution of the master equations of the AdS

wormhole

Let us consider the master equations (5.66,7.54); analogously to the previous
examples, the solution of these equations can be reduced to the spectral
analysis of the operator (D.40) in the Hilbert space (D.41).

Remark 104 In Section D.3 we have shown that the operator in Eq. (D.40)
has a purely discrete spectrum {µn}n∈N with a single negative eigenvalue µ1

and an increasing sequence of positive eigenvalues µ2 < µ3 < . . . ; hence, the
spectral theorem 14, tells us that one can get an orthonormal basis of the
Hilbert space H [De�nition 9] using the normalized eigenfunctions {en}n∈N
of H, i.e.

en ∈ D : ‖en‖ = 1 , Hen = µnen (n ∈ N)

(en is proved to be C∞(R) for all n ∈ N).

E.3.1 Solution of the master equation (7.54) with low
regularity

Let us consider the master equation as written in Eq. (7.54) with the initial
conditions given therein [Eq. 7.56], in the suitable Hilbertian framework
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E.3. Solution of the master equations of the AdS wormhole

introduced in Remark 48, that is

χ̈(s) +Hχ(s) = 0 H as in Eq. (D.40)

χ(0) = q , χ̇(0) = p ;
(E.37)

the unknown of this system is a function

R 3 s 7→ χ(s) ∈ D .

As in the previous cases, the spaces containing the data q, p have to be
speci�ed and, in the meanwhile, we proceed formally: applying 〈en| 〉 to the
di�erential equation in Eq. (E.37) we get

0 =

〈
en

∣∣∣∣ d2

ds2
χ(s) +Hχ(s)

〉
=

d2

ds2
〈en |χ(s)〉+ 〈enHχ(s)〉

=

(
d2

ds2
+ µn

)
〈en|χ(s)〉 (n ∈ N) , (E.38)

which are a countable set of wave equations in the unknowns yn(s) :=
〈en |χ(s)〉. Taking into account the initial conditions{

yn(0) = 〈en|χ(0)〉 = 〈en|q〉 (n ∈ N) ,

ẏn(0) = 〈en|χ̇(0)〉 = 〈en|p〉 (n ∈ N) ,
(E.39)

and the fact that µ1 < 0 < µ2 < µ3 < . . . (and by using Eq. (E.2) with
E = µ1 < 0 and Eq. (E.4) with E = µn > 0 (n ≥ 2), both with vanishing
source coe�cients Ji = 0 for i = 0, 1, 2), we conclude that

〈e1|χ(s)〉 = 〈e1|q〉 cosh(|µ1|1/2s) + 〈e1|p〉
sinh(|µ1|1/2s)
|µ1|1/2

,

〈en|χ(s)〉 = 〈en|q〉 cos(µ1/2
n s) + 〈en|p〉

sin(µ
1/2
n s)

µ
1/2
n

(n = 2, 3, . . .) .

Thus, having de�ned the operator |H|1/2 and the corresponding domain D1/2

as in Remark 89 and recalling the spectral decompositions of the function
χ(s) ∈ H [Proposition 15], one can see (with a little e�ort) that the following
proposition holds:

Proposition 20 Under the assumption

q ∈ D , p ∈ D1/2 ,
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on the initial data, the Cauchy problem (E.37), arising from the gauge-
invariant linear stability analysis of the AdS wormhole, has a unique solution
χ(s) de�ned for every s ∈ R such that

χ ∈ C2(R,H) ∩ C1(R,D1/2) ∩ C(R,D) ;

moreover the solution χ(s) can be decomposed with respect to the orthonormal
basis made up of the normalized eigenfunctions of the operator (D.40) as

χ(s) =

[
〈e1|q〉 cosh(|µ1|1/2s) + 〈e1|p〉

sinh(|µ1|1/2s)
|µ1|1/2

]
e1

+
+∞∑
n=2

[
〈en|q〉 cos(µ1/2

n s) + 〈en|p〉
sin(µ

1/2
n s)

µ
1/2
n

]
en . (E.40)

Note that the previous expression provides a justi�cation of Eq. (7.58) and
that, unlike in the case of the Torii-Shinkai and the Ellis-Bronnikov worm-
holes, the inner products 〈·|·〉 appearing in the decomposition on the solution
of the master equation are the usual inner product in H.

E.3.2 Solution of the master equation (5.66) with high
regularity

Let us keep all notations of Section (5.2). Therein, we have shown that
if Γ(s, u),R(s, u),Ψ(s, u) ∈ C∞(R × (−π, π),R) are solutions of the lin-
earized Einstein equations (5.43-5.46), then Γ(s, u),Ψ(s, u) are given by Eqs.
(5.53,5.56) where R(s, u) satis�es the master equation (5.59); note that Eqs.
(5.53,5.56,5.59) involve the initial data Γi,Ri,Ψ0 [Eqs. (5.54,5.57)] through
Eqs. (5.55,5.58,5.61-5.63).
In Remark 48, we have introduced an Hilbertian framework for the mas-
ter equation (5.59) with the initial condition (5.54), yielding the system
(5.66,5.70), that is

R̈(s) +HR(s) = J0 + s J1 + s2 J2 H as in Eq. (D.40) ,

R(0) = R0 , Ṙ(0) = R1 ,
(E.41)

where the unknown is a function

R 3 s 7→ R(s) ∈ D .

We now make some computations that are purely formal as they assume
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E.3. Solution of the master equations of the AdS wormhole

that the initial data R0,R1 are in suitable spaces that have to be recovered a
posteriori. For every n ∈ N, let us apply 〈en| 〉 to the di�erential equation in
Eq. (E.41); this yields (see Eq. (E.38) with R(s) in place of χ(s) to threat
the left hand sides)

(
d2

ds2
+ µn

)
〈en|R(s)〉 = 〈en | J0〉+ s 〈e1 | J1〉+ s2 〈en | J2〉 (n ∈ N) .

(E.42)
These are a countable set of wave equations with source, in the unknowns
yn(s) := 〈en|R(s)〉 and with the initial conditions given by Eq. (E.41),
namely

{
yn(0) = 〈en|R(0)〉 = 〈en|R0〉 (n ∈ N) ,

ẏn(0) = 〈en|Ṙ(0)〉 = 〈en|R1〉 (n ∈ N) .
(E.43)

From the previous initial conditions and from Eq. (E.2) with E = µ1 < 0
and Eq. (E.4) with E = µn > 0 (n ≥ 2), both with source coe�cients J0 =
〈en | J0〉, J1 = 〈en | J1〉, J2 = 〈en | J2〉, it turns out that the wave equations
(E.42) have the solutions

〈e1|R(s)〉 =〈e1|R0〉 cosh(|µ1|1/2s) + 〈e1|R1〉
sinh(|µ1|1/2s)
|µ1|1/2

+ 〈e1 | J0〉
cosh(|µ1|1/2s)− 1

|µ1|
+ 〈e1 | J1〉

sinh(|µ1|1/2s)− |µ1|1/2s
|µ1|3/2

+ 〈e1 | J2〉
2 cosh(|µ1|1/2s)− |µ1|s2 − 2

|µ1|2
,

〈en|R(s)〉 =〈en|R0〉 cos(µ1/2
n s) + 〈en|R1〉

sin(µ
1/2
n s)

µ
1/2
n

+ 〈en | J0〉
1− cos(µ

1/2
n s)

µn
+ 〈en | J1〉

µ
1/2
n s− sin(µ

1/2
n s)

µ
3/2
n

+ 〈en | J2〉
2 cos(µ

1/2
n s) + µns

2 − 2

µ2
n

(n = 2, 3, . . .) ;
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E. Solutions of the master equations

the spectral decompositions of the function R(s) ∈ H [Proposition 15] implies
that the system (E.41) has the solution

R(s) =

[
〈e1|R0〉 cosh(|µ1|1/2s) + 〈e1|R1〉

sinh(|µ1|1/2s)
|µ1|1/2

(E.44)

+ 〈e1 | J0〉
cosh(|µ1|1/2s)− 1

|µ1|
+ 〈e1 | J1〉

sinh(|µ1|1/2s)− |µ1|1/2s
|µ1|3/2

(E.45)

+ 〈e1 | J2〉
2 cosh(|µ1|1/2s)− |µ1|s2 − 2

|µ1|2
]
e1 (E.46)

+
+∞∑
n=2

[
〈en|q〉 cos(µ1/2

n s) + 〈en|p〉
sin(µ

1/2
n s)

µ
1/2
n

(E.47)

+ 〈en | J0〉
1− cos(µ

1/2
n s)

µn
+ 〈en | J1〉

µ
1/2
n s− sin(µ

1/2
n s)

µ
3/2
n

(E.48)

+ 〈en | J2〉
2 cos(µ

1/2
n s) + µns

2 − 2

µ2
n

]
en , (E.49)

thus providing a formal justi�cation for Eq. (5.71).

Remark 105 Consider the function space E((a, b),K) de�ned in Eq. (E.30)
with the operatorH as in Eq. (D.40); then one can see that en ∈ E((−π, π),R)
for each n ∈ N and that, obviously, E((−π, π),R) ⊂ D and E((−π, π),R) ⊂
C∞((−π, π),R).

With some e�ort one can prove the following proposition (which is ana-
logue to Proposition 18).

Proposition 21 Under the assumption

Ψ0 ∈ R , Rj,Γj ∈ C∞((−π, π),R) : (E.50)

Rj, Ji ∈ E((−π, π),R) (i,= 0, 1, 2 , ; j = 0, 1) (E.51)

where the Ji's are de�ned by Eqs. (5.61-5.63,5.55,5.58) the linearized Ein-
stein equations (5.43-5.46), arising from the gauge-dependent linear stability
analysis of the AdS wormhole, has a unique solution (R(s, u),Γ(s, u),Ψ(s, u)),
de�ned for every (s, u) ∈ R× (−π, π), such that:

(a) R(s, u),Γ(s, u),Ψ(s, u) ∈ C∞(R× (−π, π),R);

(b) R(s, u) ≡ R(u) ∈ C∞(R, E((−π, π),R)); (75)

75This means that each for each s ∈ R the map R(s, ·) : u 7→ R(s, u) is an element of
E((−π, π),R), and that the map s 7→ R(s, ·) is C∞ from R to E((−π, π),R).
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E.4. Solution of the master equations of the dS wormhole

(c) Ψ0,Rj,Γj (j = 0, 1) are the initial data for Ψ, R, Γ, in the sense of
Eqs. (5.57,5.54) ;

(d) Γ,Ψ can be expressed in terms of the function R via Eqs. (5.53,5.56,
5.55,5.58);

moreover, the solution R(s, u) ≡ R(s) can be decomposed with respect to the
orthonormal basis made up of the normalized eigenfunctions of the operator
(D.40) as in Eq. (E.49).

E.4 Solution of the master equations of the dS

wormhole

In this section we deal with the master equation (7.61); we will show that in
this case the solution of the master equation can be reduced to the spectral
analysis of the operator (D.53) in the Hilbert space (D.52).

Remark 106 In Section D.4 we have stated that the spectrum σ(H) the
operator in Eq. (D.53) is made up of a simple proper eigenvalue µ1 < 0
and a continuous spectrum σc(H) = [0,+∞); hence the spectral theorem 15
ensures that one can construct a generalized orthonormal basis of the Hilbert
space H, in the sense of De�nition 10 with N = 1 and I = 2, which is made
up of:

(i) a normalized eigenfunction e1 for the eigenvalue µ1 < 0, i.e.

e1 ∈ D : ‖e1‖ = 1 , He1 = µ1e1

(e1 is proved to be C∞(R));

(ii) two suitably chosen and linearly independent �improper eigenfunctions�
eiλ (i = 1, 2) for each λ ∈ σ̊c(H) = (0,+∞), i.e.,

eiλ ∈ C∞(R) \D : Heiλ = λeiλ (i = 1, 2 ;λ > 0) .

E.4.1 Solution of the master equation (7.61) with low
regularity

Let us consider Eq. (7.61), with the initial conditions (7.65), in the suitable
Hilbertian framework introduced in Remark 79, namely

χ̈(s) +Hχ(s) = 0 H as in Eq. (D.53) ,

χ(0) = q , χ̇(0) = p ;
(E.52)
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E. Solutions of the master equations

the unknown of the previous Cauchy problem is a function

R 3 s 7→ χ(s) ∈ D .

The situation is exactly analogue to that of the Torii-Shinkai case [see Sub-
section E.1.1]: de�ning the Hilbert space structures for the domains D, D1/2

of the operators H, |H|1/2 as in Remark 91, and using the spectral decompo-
sitions of the function χ(s) ∈ H [Proposition 16], one can prove the following

Proposition 22 Under the assumption

q ∈ D , p ∈ D1/2 ,

on the initial data, the Cauchy problem (E.52), arising from the gauge-
invariant linear stability analysis of the dS wormhole, has a unique solution
χ(s) de�ned for every s ∈ R such that

χ ∈ C2(R,H) ∩ C1(R,D1/2) ∩ C(R,D) ;

moreover the solution χ(s) can be decomposed with respect to the general-
ized orthonormal basis made up of proper and improper eigenfunctions of the
operator (D.53) as

χ(s) =

[
〈e1|q〉 cosh(|µ1|1/2s) + 〈e1|p〉

sinh(|µ1|1/2s)
|µ1|1/2

]
e1

+
2∑
i=1

∫ +∞

0

[
〈eiλ|q〉 cos(λ1/2s) + 〈eiλ|p〉

sin(λ1/2s)

λ1/2

]
eiλ dλ . (E.53)

The latter proposition provides a justi�cation of Eq. (7.67); let us �nally
underline the fact that, as explained in Remark 100, the symbols 〈·|·〉 and
the integrals over λ have to be suitably intended.
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