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Abstract

In this paper we introduce the logic HTLC, for Hyperintensional Typed
Lambda Calculus. The system extends the typed λ-calculus with hyperinten-
sions and related rules. The polymorphic nature of the system allows to rea-
son with expressions for extensional, intensional and hyperintentsional entities.
We inspect meta-theoretical properties and show that HTLC is complete in
Henkin’s sense under a weakening of the cardinality constraint for the domain
of hyperintensions.
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1 Introduction

The literature in philosophical [11] and computational logic [18] has increasingly
been paying attention to the crucial distinction between reasoning about exten-
sional (functional values, like individuals or truth-values); intensional (functions);
and hyperintensional entities (abstract procedures, [6]; linguistic expressions, [18,
19, 10, 13]; proofs, [9, 8, 17, 21, 22]; or computations [3, 2]), including the dynamics
of hyperintensions, [1, 15].

The encapsulation of extensional, intensional and hyperintensional layers of rea-
soning in one logical system has been offered by Transparent Intensional Logic (TIL),
a hyperintensional, partial typed λ-calculus [6]: hyperintensional, because the mean-
ing of TIL λ-terms are procedures producing functions rather than the denoted
functions themselves; partial, because TIL is a logic of partial functions; and typed,
because all the entities of TIL ontology receive a type. TIL is endowed with a pro-
cedural semantics which explicates the meanings of language expressions as abstract
procedures encoded by the expressions. TIL is powerful in accounting for contexts
and their relations, especially for some natural language phenomena like partial de-
notations and modal modification, see e.g. [12]. But although it is technically an
extension of typed λ-calculus, it still misses a well-defined and agreed upon proof
theory. Because of this, it is not possible to reflect its semantics in properties of
derivations. A full system providing a proof-theoretic semantics to reason about
all these types of entities (extensional, intensional, hyperintensional) seems still to
be missing in the literature. In this paper, our goal is to provide an inferential
engine common to extensions, intensions and hyperintensions, able to express their
relations as well. Previous attempts in this direction are: either impure λ-calculi,
because they attempt to capture all of TIL, [16]; or ND-systems for TIL, which do
not offer a rule based semantics, see e.g. [7]. Our approach is limited compared to
the semantics of TIL, because we only aim at expressing what can be formulated in
standard proof-theoretic terms.

The system HTLC presented in this paper is an extension of a typed λ-calculus
with hyperintensions. Expressions in this language are of the form Γ ` t : T where,
as usual in typed λ-calculus: Γ is the context of assumptions; t is a term and T
is its type. Types express the extensional, intensional or hyperintensional nature
of terms. Hence, terms of HTLC denote, as usual in λ-calculus, functions from set
to set and their values, with the added hyperintensional terms denoting procedures
or computations which we call constructions; the output produced by a construc-
tion is called its product. Hyperintensional terms are defined proof-theoretically by
introduction and elimination rules, thereby extending a standard typed λ-calculus,
see Figure 2. The Trivialization rule works as an introduction rule: given an exten-
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sional or intensional term t, Trivialization returns a hyperintensional term t∗, whose
denotation is a construction. The Execution rule works as an elimination: given a
hyperintensional term t∗, Execution returns the term t denoting the product of the
corresponding construction.1 Execution eventually provides a non-hyperintensional
term as an output, in which case we say that the construction denoted by the hyper-
intensional term produces the object denoted by the non-hyperintensional one. We
also obtain higher-order hyperintensional terms by Trivialization on a term denoting
a construction; Execution applied on a term denoting a higher-order construction
results in a term denoting a lower-order construction, until it is applied to a term
denoting a construction, producing an extensional or intensional object.

To offer a very basic example, consider the number 2, which in our system is
a term of type N. Many different functional expressions may denote this number,
for example [+ 1 1] and [− 5 3] are two of those. Each of those terms denoting
the number 2 may have different constructions, or hyperintensions. For example,
hyperintensional terms having [+ 1 1] as their product are: Integer.sum(1, 1) where
the operation at hand is the Java command for addition, or S(S(0) + 0) which is
the recursive equation presenting the number 2 with addition as successor. When
moving from the term [+ 1 1] to the corresponding hyperintensional level, any of
those two terms could be obtained; we will use in our language the expression [+ 1 1]∗
to denote any hyperintensional term producing [+ 1 1]. When moving back to the
functional level, the term [+ 1 1] should always be produced, together with its
denotation the number 2. Hyperintensional terms having [− 5 3] as their products
could be Integer.minus(5, 3) and S(S(S(S(S(0)))))− S(S(S(0))), where we assume
subtraction can be redefined as a predecessor function. Each of those terms produces
[− 5 3] and this in turn denotes 2. We will use in our language the expression [− 5 3]∗
to stand for any linguistic expression (written for instance in some programming
language) denoting the operation [− 5 3]. The former is thus an hyperintension for
the latter. Again, when moving from the hyperintensional level to the functional
level, a unique functional term should be obtained. This functional term denotes only
one entity, its hyperintensional counterpart denotes instead different constructions.

Although partly inspired by TIL, and reflecting some of its terminology, our
approach differs in several aspects. First, we use a bottom-up approach: we start
from well-typed extensional and intensional terms and define hyperintensional ones
from them. Because of this strategy, there is always a term obtained by an instance
of the Execution rule. In other words, our system does not allow the derivation of
improper constructions, i.e. hyperintensions that do not produce any object. TIL
cases of improperness caused by execution of non-constructions are avoided in our

1We borrow the names for these rules from TIL.
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system by requiring that only trivialized canonical terms can be executed.2 Second,
another source of improperness in TIL is composition applied to partial functions,
i.e. when application may fail for some specific argument: we deal only with total
functions, thus function application always returns an output. Third, Composition
in TIL can fail also if the types of arguments do not match with the type required
by the bound variables in the body of the expression: in our system, type checking
will forbid the rule application in such cases. Fourth, in our calculus the product
of a construction is obtained by explicit application of Execution, i.e. it is never
implicitly denoted. Fifth, our semantics does not use quantification over worlds and
times. Finally, to show the logical and analytical (i.e. under term decomposition)
equivalence of terms denoting constructions, our only means is to perform Execution
and check identity by reduction on the terms denoting the corresponding products.
In the following, to aid readability, we will sometimes avoid referring to the terms
of the language as denoting constructions, functions, numbers etc., and we will
conventionally refer to their denotations: hence we might say that in a derivation
both intensions and hyperintensions occur, or that a function of constructions occurs,
while technically we intend that terms denoting such objects occur in the derivation.3

The rest of this paper is structured as follows. In Section 2 we present the
language of HTLC . We define first the polymorphic set of rules which technically
reduces to a typing system à la Curry, i.e. where types are assigned to pure λ-
terms; for HTLC, this means that the same rules set can be instantiated not only
by extensional and intensional terms, but also by hyperintensional ones. We then
formulate those rules for each of the relevant types, offering thereby the extensional,
intensional and hyperintensional fragments. We offer examples of derivations with
terms of different types, and in particular in Section 3 we formulate an example
where the same expression is treated first at the extensional/intensional level, and
then at the hyperintensional level. In Section 4 we provide the meta-theoretical
results, including the definition of term occurrence, normalization across contexts
and completeness with respect to a Henkin’s style of general model. Finally we
provide some conclusions and ideas for possible further extensions of our work.

2The restriction on the canonicity of trivialized terms to be executed is close in spirit to the
constraint imposed by Martin-Löf on the application of β-reduction w.r.t the terms of his theory
of types, according to which a λ-term has to be β-reduced only “from without” and not “from
within”, i.e. guaranteeing that the way in which β-reduction is performed eventually coincides with
the evaluation of closed λ-terms, [14, p.160]. We owe this observation to one of the reviewers.

3For clarity: we use the expression “function of constructions” (or of functions, or of anything
else) to indicate a function that takes constructions (or functions, or anything else) as input and is
allowed to be heterogeneous, thus having something else as codomain.
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2 The System HTLC
The syntax of HTLC is a typed λ-calculus extended with a type for hyperintensional
terms.

Definition 1 (Grammar).

T ::= α | (T T1 . . . Tn) | ∗T

α ::= o | ι | τ | . . .
t ::= xi | [λx1 . . . xn.t] | [t t1 . . . tn] | t∗

The type syntax for T is inductively defined by three kinds of entities:

• Extensional entities of type α;

• Intensional entities of type (T T1 . . . Tn);

• Hyperintensional entities of type ∗T .

The set of atomic types can depend on the application, including o (set of truth
values: T, F ), ι (infinite set of individuals, members of the universe), τ (as a meta-
variable type for numbers: N,R - e.g. sets of natural and real numbers respectively
which might be added and should be defined through appropriate rules), and so
on. Functions will be defined accordingly, as mappings from the Cartesian product
of types (T1 × · · · × Tn) into the type T , for any arbitrary type (hence involving
sets of individuals, of truth values, of numbers and so on). We constraint these
to total functions. We simplify the arrow notation of multi-argument functions
(T1 → · · · → Tn → T ) with the pair notation (((T Tn) . . . )T1 ). As in standard
typed λ-calculi we use association to the left when dealing with function types,
so the curried version can be rewritten as (T Tn . . . T1).4 We can build higher
order functions that take functions as arguments and return a function as value.
Terms typed as hyperintensions denote abstract procedures whose outputs can be of
any type (including hyperintensions as we admit higher-order constructions); these
entities are constructions, computations or different “senses” in which lower order
constructions, extensional or intensional entities can be produced.

4The notation (T T1 . . . Tn) from Definition 1 and the notation (T Tn . . . T1) are equivalent:
the second one can be obtained from the first one by a simple and harmless renumbering of arbitrary
types Tx, and vice versa.
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Terms of the language have the following form: variables xi; abstraction terms
[λx1 . . . xn.t] denoting functions; application terms [t t1 . . . tn], denoting values of
functions on given arguments; and finally hyperintensional terms t∗, recursively
constructed and denoting constructions. We call a formula of our language an ex-
pression t : T , which declares a term t to belong to a given type T ; as usual in the
literature, a closed formula is one whose term does not contain any free variables,
i.e. only λ-bound ones; a list of assumptions of formulae {x1 : T1, . . . , xn : Tn} is
called a context; a judgement is the assertion of a formula under a given context,
denoted as x1 :T1, . . . , xn :Tn ` t : T .

Rules of the system HTLC are given below in four parts. First, we describe
the polymorphic fragment of our system with rules applicable to arbitrary terms of
any type. Then we focus on the extensional fragment, where types are extensional
values, especially truth values and functions defined on them; then we move up to
the intensional fragment, where objects of interest are functions of basic types, and
functions of higher order; finally, we present the hyperintensional fragment with
constructions and functions of constructions.

2.1 The Polymorphic Fragment

Rules for terms of arbitrary types are inference rules of the standard typed λ-calculus
(see Figure 1) extended with rules to define the meaning of hyperintensional terms
(see Figure 2): the latter are called intra-context rules as they allow to move reason-
ing from the extensional and intensional contexts to the hyperintensional one, and
back. Rules are applied on formulas of the form t : T , but we often say that a rule
is applied on a term t of type T , or that a rule returns such a term.

The Assumption rule allows for the derivation of a typed variable from its own
assumption. The Abstraction rule allows to construct a λ-term for a function type
(T T1 . . . Tn) from the corresponding judgement inferring a term t : T from variables
x1, . . . , xn having types T1, . . . , Tn. The Application rule creates a term of type T
denoting the value of a function, expressed by a term t on the n-tuple of arguments
expressed by terms t1, . . . , tn.

While inferring terms denoting intensional entities is guaranteed by Abstraction,
and their elimination is the result of Application, appropriate rules are given in
Figure 2 to shift to and from terms denoting hyperintensional entities. In line
with proof-theoretic semantics, we provide the meaning of hyperintensional terms
by defining an introduction and an elimination rule. The former establishes the
necessary conditions for the formulation of a construction; the latter provides the
minimal consequences of its use. The rules must be considered in pairs: a detour
Trivialization/Execution is well-behaving (i.e. harmonious) if given a term t of type

474



Hyperintensional Typed Lambda Calculus

Assumption
xi : T ` xi : T

Γ, x1 : T1, . . . , xn : Tn ` t : T
AbstractionΓ ` [λx1 . . . xn .t] : (T T1 . . . Tn)

Γ ` t : (T T1 . . . Tn) Γ1 ` t1 : T1 . . .Γn ` tn : Tn ApplicationΓ,Γ1, . . .Γn ` [t t1 . . . tn] : T

Figure 1: HTLC: Polymorphic Rules System

Γ ` t : T Trivialization
Γ ` t∗ : ∗T

Γ ` t∗ : ∗T ExecutionΓ ` t : T

Figure 2: HTLC: Intra-context Rules

T inducing a term t∗ of type ∗T by Trivialization, an instance of the Execution rule
applied to the latter will return the former. The rules are formulated for a general
term, and their version for complex terms is explained below.

The Trivialization rule defines the process of going from a given term t to the
hyperintensional term t∗ which denotes a construction of the object denoted by t.
When the trivialised term t is of type α, Trivialization allows to shift from a term
denoting an extensional entity to a hyperintensional one producing it. When the
trivialised term t is of type (T T1 . . . Tn), Trivialization allows to shift from a term
denoting an intensional entity to a hyperintensional one producing it. When the
trivialised term is of type ∗T , Trivialization results in a higher-order hyperintensional
entity denoted by t∗∗ , which produces still a (lower-order) hyperintensional entity.
In this latter case we will iterate on the type: Trivialization on a term t∗ of type
∗T returns a formula t∗

∗ : ∗∗T . By convention and to simplify notation, in the
following we do not iterate ∗ on terms that are trivialized and were already of type
∗T , but we agree just to rename the term; the relevant information on the iterated
Trivialization is carried by the type. This allows to introduce the notion of order of
the hyperintensional type:
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...
` Compute : (oι∗τ )

...
` Michal : ι

...
` Plus : (τττ)

...
` 5 : τ

...
` 1 : τ Application` [Plus 5 1] : τ

Trivialization` [Plus 5 1]∗ : ∗τ Application` [ComputeMichal [Plus 5 1]∗] : o
Trivialization` [ComputeMichal [Plus 5 1]∗]∗ : ∗o

Figure 3: HTLC: Trivialization example

Definition 2 (Hyperintensional type of order n). We say that a term t∗ is of a
hyperintensional type of order n, if and only if t∗ results from n instances of the
Trivialization rule. We denote the formula containing such term as

t∗ : ∗∗..
.
∗T

n−1

1

where T is either an extensional or intensional type.
In all the cases above, the necessary condition in order for a term of type ∗T

to be properly typed is that the term to be trivialized be a properly typed term of
type T . This, in turn, means that Trivialization is always defined in its argument,
and therefore we do not allow improper constructions. As a result, the trivialized
term can always be returned (by Execution, see below). An example of the use of
the Trivialization rule is illustrated in Figure 3. To aid readability, in this example
we keep empty the contexts on the left-hand side of all formulas: the Compute
relation takes by Application an individual as first argument, and the construction
of a function to add numbers 5 and 1 as second argument; the latter is obtained
by Trivialization on the functional term whose denotation is the object “6”; the
Application returns a truth-value; the proposition “Michal computes the sum of 5
and 1” is then Trivialized in the last step of the derivation.

Execution is the opposite process of going from a hyperintensional type (even-
tually of higher order) to an extensional or intensional one (or to a hyperintensional
type of lower order). Given a canonical term t∗ of type ∗α, Execution returns the
term t denoting the product of this construction, that is a term of type α. When
the term t∗ to be executed is of type ∗(T T1...Tn), Execution returns the term t that
denotes an intensional entity of type (T T1 . . . Tn). Given a term t∗ of hyperinten-
sional type of order n + 1, Execution returns a term t∗ of hyperintensional type of
order n.5 The condition on the canonicity of the term which is executed allows a

5It might be noted that our Execution rule has a stronger requirement than what is typical for
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general formulation of the rule under a non-empty context, required not to include
variables occurring in that term. On the other hand, this also means that a term
to be executed might require first additional steps according to the computational
rules of the system (see Figure 6) when not in canonical form. Hence, by closure
under Abstraction of trivialized terms, there can be also a term of the form [λx∗.t∗]
and type (∗T ∗T1): in this case, Execution is obtained by the following detour:

` [λx∗1.t∗] : (∗T ∗T1)
Execution` [λx1.t] : (T T1)

 
Assum.

x1 : T1 ` x1 : T1 Triv.
x1 : T1 ` x∗1 : ∗T1 ` [λx∗1.t∗] : (∗T ∗T1) App.

x1 : T1 ` [[λx∗1.t∗]x∗1] : ∗T [[λx∗1.t∗]x∗1]→β t
∗[x∗1/x∗1] ≡ t∗ : ∗T

Sub.Red.
x1 : T1 ` t∗ : ∗T Execution
x1 : T1 ` t : T Abstraction` [λx1.t] : (T T1)

In this tree we start from trivializing an assumed variable to type ∗T1 , to which
we apply our λ-term. We then have a subject reduction step where t∗[x∗1/x∗1] is
syntactically equivalent to t∗, execute this closed term,6 and abstract to obtain our
desired (now executed) λ-term. In the following we always abbreviate this detour
by direct Execution on each trivialized component of a λ-term and assume the
computational step to obtain a closed term is always performed before execution.

By closure under Application of trivialized terms, there can be a term of the
form [[λx∗1.t∗] t∗1] of type ∗T : in this case, Execution returns products for each of the
composing terms, combining the previous reduction with one additional available
premise:

` [λx∗1.t∗] : ∗T ∗T1 ` t∗1 : ∗T1
Application

` [[λx∗1.t∗] t∗1] : ∗T
Execution` [[λx1.t] t1] : T

 
proof-theoretic semantics, namely that it applies to canonical terms. Typically, an elimination rule
is applicable to arbitrary terms of the required type and, as a result, a selector s is applied to this
term. Then, if the term obtained is a redex (i.e. the selector is applied on a constructor), we can
apply reduction. Our rule requires the term already in canonical form (namely to be built with
constructor ∗), and we consider the reduction step as already performed and hidden, in order to
avoid executing improper constructions.

6Note that t∗ in this expression does not actually depend on x1 in the context. Despite the fact
that the variable x∗

1 appearing in t∗ has been obtained from x1 by the application of a Trivialization
rule, these two variables have to be taken as different, since in the derivation they are associated
with two different types: the variable x1 is associated with the type T1, while the variable x∗

1 is
associated with the type ∗T1 .
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...
Γ ` Loves∗ : ∗(oιι) Exec.Γ ` Loves : (oιι)

...
Γ1 ` John∗ : ∗ι Exec.Γ1 ` John : ι

...
Γ2 ` Mary∗ : ∗ι

Exec.Γ2 ` Mary : ι App.Γ,Γ1,Γ2 ` [Loves John Mary] : o
Triv.Γ,Γ1,Γ2 ` [Loves John Mary]∗ : ∗o

Figure 4: HTLC: Execution example

...
Γ, x∗ : ∗ι, y∗ : ∗ι ` Loves∗ : ∗o

Abs.Γ ` [λx∗ y∗.Loves∗] : (∗o ∗ ι ∗ ι)

...
Γ1 ` John : ι Triv.Γ1 ` John∗ : ∗ι

...
Γ2 ` Mary : ι

Triv.Γ2 ` Mary∗ : ∗ι App.Γ,Γ1,Γ2 ` [[λx∗ y∗.Loves∗] John∗Mary∗] : ∗o
Exec.Γ,Γ1,Γ2 ` [[λx y.Loves] John Mary] : o

Figure 5: HTLC: Second Execution example

` [λx∗1.t∗] : ∗T ∗T1

Execution` [λx1.t] : T T1

` t∗1 : ∗T1

Execution` t1 : T1 Application` [[λx1.t] t1] : T

Note that also in this case we require the application to be done on a closed term.
Again, we always abbreviate this derivation by direct Execution on each trivialized
component of an applied term.

An example of the use of Execution is depicted in Figure 4: we first derive a
construction of the relation “loves” between two individuals (e.g. its linguistic sense
which appears on this very page between the written names of those individuals); the
hyperintensional term denoting the function “loves” as well as its arguments are all
executed for the Application to be well-typed and to obtain the propositional content
“John loves Mary”, whose type is a truth value; finally we can apply Trivialization
back to obtain a construction of such propositional content, of type ∗o. In the second
example from Figure 5, the Execution of a construction is obtained by Application of
trivialised terms, where each component of this application is a construction. In this
case, Execution is required to act on all subterms according to the detour presented
above, bringing each term to its product: the formula [λx∗ y∗.Loves∗] : (∗o ∗ ι ∗ ι) is
executed to obtain the formula [λx y.Loves] : (o ι ι).

As an extension of the lambda calculus, in HTLC β-reduction is present in the
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Γ ` [[λx1 . . . xn .t] t1 . . . tn]→β t[x1/t1 . . . xn/tn] : T

Γ, x1 : T1, . . . , xn : Tn ` t→β t
′ : T

β-Abstr
Γ ` [λx1 . . . xn .t]→β [λx1 . . . xn .t′] : (T T1 . . . Tn)

Γ ` t→β t
′ : (T T1 . . . Tn) Γ1 ` t1 : T1 . . . Γn ` tn : Tn

β-App
Γ,Γ1 . . .Γn ` [t t1 . . . tn]→β [t′ t1 . . . tn] : T

Γ ` t : (T T1 . . . Ti . . . Tn) Γ1 ` t1 : T1 . . . Γn ` tn : Tn Γi ` ti →β t
′
i : Ti

β-App
Γ,Γ1 . . .Γn ` [t t1 . . . ti . . . tn]→β [t t1 . . . t′i . . . tn] : T

Figure 6: HTLC: β-rules

Γ ` t : T t�β t
′

Γ ` t′ : T

Figure 7: HTLC: Subject reduction

form of a computational step, i.e. it expresses a purely syntactic term transforma-
tion to go from a syntactically more complex to a reduced term. We present such
computation step applied to each of the possible rules, see Figure 6: β-reduction on
a lambda term [[λx1 . . . xn.t] t1 . . . tn] corresponds to the substitution of the terms
t1 . . . tn for variables x1 . . . xn occurring inside the term t; it is closed under the rules
for Abstraction and Application; it is moreover a type-preserving operation when
we take its transitive and reflexive closure �β, a fact which can be formulated as a
simple rule known as Subject reduction and illustrated in Figure 7.

The last set of rules for the polymorphic fragment reflects the structural be-
haviour of the system, see Figure 8: Weakening expresses the usual principle that
context extension is a monotonic operation in view of derivable terms; Exchange re-
flects the unstructured nature of contexts; Contraction allows to merge two variables
of the same type occurring in the same context (this latter operation is expressed in
terms of variable substitution inside the derivable term).
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Γ ` t : T WeakeningΓ, x : T1 ` t : T

Γ, x1 : T1, x2 : T2 ` t : T ExchangeΓ, x2 : T2, x1 : T1 ` t : T

Γ, x1 : T1, x2 : T1 ` t : T
ContractionΓ, x3 : T1 ` t[x1/x3;x2/x3] : T

Figure 8: HTLC: Structural rules

2.2 The Extensional Fragment
In the extensional implementation of the HTLC rules, we reason with atomic types
and functions defined over them. By creation of a function from atomic types,
we move from a term occurring extensionally to a term occurring intensionally;
and viceversa, by application of a function on an argument, we move from a term
occurring intensionally to a term occurring extensionally.7

A first obvious interpretation for atomic types is by propositional terms with
truth-values o as types, and functions defined on them. Rules of this fragment are
illustrated in Figure 9. The system can be extended with connectives for conjunction
and disjunction by adding pairs of propositions and projection on pairs respectively
for appropriate introduction and elimination rules. A second possible interpretation
of the extensional fragment is given by considering computational terms (programs)
and the type of their outputs.

2.3 The Intensional Fragment
In the intensional fragment, we are able to reason about functions and higher order
functions, see Figure 10. Beginning with functions of atomic types (i.e. functions
(T T1 . . . Tn), where T and the Ti are all atomic types and hence are considered of
order one), we can create functions defined over them (functions of higher order).
Functions of hyperintensions can also be obtained by the Abstraction rule in the hy-
perintensional fragment (see Section 2.4). When reasoning with functions, we work
with terms occurring intensionally; and when applying functions, we generate terms
that occur either extensionally (if one deals with a function of atomic types), or
intensionally themselves (if one deals with a higher-order function), or hyperinten-

7See Section 4.1 for an appropriate definition of term occurrence.
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Assumption

xi : o ` xi : o

Conditional proof (CP)

Γ, xi : o ` t : o
Γ ` λxi . t : (o o)

Modus ponendo ponens (MPP)

Γ ` λxi . t : (o o) Γ1 ` ti : o
Γ,Γ1 ` t : o

Figure 9: HTLC: Extensional fragment - propositional version

sionally (if one deals with a function of constructions). Function evaluation occurs
therefore within the extensional fragment when we are reasoning with functions of
atomic types; it occurs within the intensional fragment when working with higher-
order functions; and it occurs within the hyperintensional fragment when working
with functions of constructions.

An example of a higher order function is Map : ((o T2) (T2 T1) (o T1)), which
takes two arguments of the function type, and it returns an object of a function
type. In functional programming languages Map is used to apply a function to a list
and return another list. In order to replace lists, whose type we do not have explicitly
in our language, we can give up on ordering and define a set of type T by using a
characteristic function of type (o T ). For the Map function, consider a set expressed
by its characteristic function (o T1), and a function (T2 T1) applied to every element
of the input set, to obtain an output set of type (o T2), again as the characteristic
function of a set. For example, consider a term Square of type (N N) denoting the
function that transforms any natural number into its square; and consider the term
Primes of type (o N) denoting the characteristic function that selects the subset of
prime numbers from N. Then we can think of [Map Square Primes] : (oN) as the
application of Square on all members of Primes. The result is a new set containing
the squares of prime numbers. In this particular example, the typing of our map
function is Map : ((o N) (N N) (o N)).
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Assumption
xi : (T T1 . . . Tn) ` xi : (T T1 . . . Tn)

Γ, x1 : F1, . . . , xn : Fn ` t : F
AbstractionΓ ` [λx1 . . . xn . t] : (F F1 . . . Fn)

Γ ` t : (F F1 . . . Fn) Γ1 ` t1 : F1 . . .Γn ` tn : Fn ApplicationΓ,Γ1, . . . ,Γn ` [t t1 . . . tn] : F

where Fi = (Ti Ti1 . . . Tin)
Figure 10: HTLC: Intensional fragment

2.4 The Hyperintensional Fragment
At the highest level, we introduce the hyperintensional fragment, where our ob-
jects of interest are procedures whose products are objects of either an extensional,
or an intensional type, or procedures of lower order. Procedures are obtained by
Trivialization on a term t of a given type T . Here, we assume that the term t is
well-typed. Given a relation from the domain of basic types and function types to
their constructions as co-domain, in our calculus this relation is one-to-many.

Execution works as an elimination rule for the type ∗T ; if the rule is applied to a
higher-order construction, it lowers its degree. Note, however, that by Abstraction
on constructions, we move from a term occurring hyperintensionally to a term oc-
curring intensionally; and viceversa, by Application on constructions, we move from
a term occurring intensionally to a term occurring hyperintensionally.8 Therefore,
rules of the hyperintensional level allow us to reason about constructions, the cre-
ation of functions of constructions and their evaluation; to reason about functions
of constructions, we move down to the intensional fragment. Given a relation from
the set of constructions as domain to the set of their products as co-domain, in our
calculus such relation is many-to-one. The construction rules of this fragment are
shown in Figure 11. Note that by the explicit requirement that the term t∗ in the
syntax is defined recursively, we admit variables x∗i . While for terms appearing on
the right-hand side of the symbol `, the operator ∗ is obtained by Trivialization,
in the case of the Assumption rule for the hyperintenstional fragment, it is possible
instead to let appear the ∗ operator also on terms appearing on the left-hand side of
`, namely when these terms are variables. This is required to avoid improper con-
structions at the level of variables, i.e. obtaining hyperintensional terms on which no

8Again, in Section 4.1 we provide proper definitions of term occurrence.
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Assumption
x∗i : ∗T ` x∗i : ∗T

Γ, x∗1 : ∗T1 , . . . , x∗n : ∗Tn ` t∗ : ∗T
Abstraction

Γ ` [λx∗1 . . . x∗n . t∗] : (∗T ∗T1 . . . ∗Tn)

Γ ` t : (∗T ∗T1 . . . ∗Tn) Γ1 ` t∗1 : ∗T1 . . .Γn ` t∗n : ∗Tn

Application
Γ,Γ1, . . . ,Γn ` [t t∗1 . . . t∗n] : ∗T

Figure 11: HTLC: Hyperintensional fragment

Execution rule can be applied, and hence for which no product can be associated. To
avoid this, we consider variables for hyperintensional types of the form x∗i , then the
Execution rule can always be applied on them, producing a variable of extensional
or intensional type T .

In order to exemplify a derivation in which both terms of the hyperintensional
and intensional types occur, we show a tree where we move from a construction
t∗ : ∗(T T1) whose product is a function of type (T T1), to a function of type (∗T ∗T1):
for this, we require first that the function at the intensional level be obtained by
Execution and Application, followed by Trivialization and finally Abstraction:

Γ, x∗1 : ∗T1 ` t∗ : ∗(TT1)
Execution

Γ, x∗1 : ∗T1 ` t : (TT1)

...
` t1 : T1 Application

Γ, x∗1 : ∗T1 ` [t t1] : T
Trivialization

Γ, x∗1 : ∗T1 ` [t t1]∗ : ∗T
Abstraction

Γ ` [λx∗1 . [t t1]∗] : (∗T ∗T1)

In the opposite direction, we can easily proceed from a function of type (∗T ∗T1)
whose product is a function of type (T T1) obtained by the detour illustrated in
Section 2.1 for non-canonical terms, to a construction of type ∗(T T1):

Γ ` [λx∗1. t∗] : (∗T ∗T1)
ExecutionΓ ` [λx1.t] : (T T1)
Trivialization

Γ ` [λx1.t]∗ : ∗(T T1)
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...
`=: (oττ) Assum

x : τ ` x : τ

...
` 1 : τ Application

x : τ ` [= x 1] : o
Abstraction` [λx.[= x 1]] : (oτ)

...
` [Succ 0]∗ : ∗τ

Execution` [Succ 0] : τ Application` [[λx.[= x 1]] [Succ 0]] : o

Then we can perform β-reduction:

[[λx.[= x 1]] [Succ 0]]→β [= [Succ 0] 1]

Figure 12: HTLC: Functional identity between numbers

3 A Comparative Example

In a language like TIL, it is possible to compute with non-executed constructions and
their products. For example, one could construct the set of constructions producing
number one, and then take one element in such a set, e.g. “Successor of 0”. The
process of checking whether this element belongs to that set eventually results in
checking the equality of the product of this construction with number 1. HTLC
allows similar expressions, although it is more strict in terms of type matching, so
that the type a function requires for its argument must always be properly met:
i.e. either the functional term is of type (T1 ∗T2) and its argument of type ∗T2 (the
output type of this function is not relevant, and it can be ∗T1 as well); or respectively
(T1 T2) and T2.

The formulation of such a function at the intensional level between numbers is
reflected in the tree in Figure 12. In this example, the function = takes two numbers
as arguments (ττ) and it returns a truth-value (o). Given a variable in the type of
numbers, and number 1, by Application and Abstraction we build the λ-term that
takes a number to be substituted for a variable and it compares for equality with
1, in order to return a truth-value. Consider then a construction to produce the
successor function of the number 0, i.e a term of type ∗τ which denotes one of the
possible ways of expressing the successor of 0, for example by stroke notation 0′: by
Execution we obtain the term denoting the actual product of the construction; by
Application we pass the term denoting this number to the function of type (oτ), to
obtain a truth value. In this case the identity is at the extensional level, between
the product of a procedure (of order 1) and a number.

On the other hand, it is possible to express the same content at the hyperin-
tensional level as the equality between procedures, see Figure 13. In this case we
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...
`≈: (o ∗τ ∗τ ) Assum

x : ∗τ ` x : ∗τ
...

` 1∗ : ∗τ App.
x∗ : ∗τ ` [≈ x∗ 1∗] : o

Abstraction` [λx∗.[≈ x∗ 1∗]] : (o ∗τ )

...
` (Succ 0) : τ

Trivializ.` [Succ 0]∗ : ∗τ Application` [[λx∗.[≈ x∗ 1∗]] [Succ 0]∗] : o

Then we can perform β-reduction:

[[λx∗.[≈, x∗ 1∗]] [Succ 0]∗]→β [≈ [Succ 0]∗ 1∗]

Figure 13: HTLC: Functional Identity between Procedures

consider equality between a construction for a number and a construction for the
number 1, returning a truth value. In this example, the function ≈ takes two con-
structions as arguments (∗τ∗τ ) and it returns a truth-value (o). Given a variable for
the construction of numbers, and a construction for number 1, by Application and
Abstraction we build the λ-term that takes a construction for the successor of 0 to
be substituted for a variable, and it compares for identity with a construction for 1,
in order to return a truth-value. Note that we derive here the argument by Trivial-
ization. This term β-reduces to the identity between a construction for the successor
of 0 and a construction for 1, with the identity being false or true, depending from
which construction is chosen for number 1, i.e whether the same construction is se-
lected. Note that this corresponds to the function between constructions and their
products being many-to-one.

4 Meta-theory
4.1 Term occurrence
HTLC allows to identify extensional, intensional and hyperintensional terms by in-
specting the derivation tree under consideration and looking at the rule applied at
the relevant step. In the following, we provide appropriate definitions of the ex-
tensional, intensional or hyperintensional occurrence of a term at a given step of a
derivation.9

9For the same properties TIL relies on the inductive definition of the structure of the relevant
construction. For details, see [5].
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Definition 3 (Extensional Occurrence). A term t occurs extensionally at step n of
a tree if and only if it results from:

1. an Assumption rule, and it is of type α;

2. an Application rule, and it is of type α;

3. an Execution rule on a term of type ∗α.

Consider as an example the following derivation:

Γ ` [λx∗. t∗] : (∗o∗o) ` t∗1 : ∗o ApplicationΓ ` [[λx∗. t∗] t∗1] : ∗o
ExecutionΓ ` [[λx. t] t1] : o Weakening by x1Γ, x1 : o ` [[λx. t] t1] : o

AbstractionΓ ` [λx1.[[λx. t] t1]] : (o o)
Trivialization

Γ ` [λx1.[[λx. t] t1]]∗ : ∗(o o)

The term [[λx.t] t1] of type o resulting by Execution from the hyperintensional
term [[λx∗.t∗] t∗1] of type ∗o occurs extensionally at the third step of the derivation.

Definition 4 (Intensional Occurrence). A term t occurs intensionally at step n of
a tree if and only if it results from:

1. an Assumption rule and it is of type (T T1 . . . Tn);

2. an Abstraction rule;

3. an Application rule, and it is of type (T T1 . . . Tn);

4. an Execution rule on a term of type ∗(T T1...Tn).

Consider as an example the term [λx1.[[λx. t] t1]] of type (o o) in the above
derivation: it results from Abstraction, and it occurs therefore intensionally at the
fifth step of the derivation.

Definition 5 (Hyperintensional Occurrence). A term t occurs hyperintensionally
at step n of a tree if and only if it results from:

1. a Trivialization rule;

2. an Assumption rule, and it is of type ∗T ;
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3. an Application rule, and it is of type ∗T ;

4. an Execution rule on a term of type ∗∗T .

Consider as an example the term [λx1.[[λx. t] t1]]∗ of type ∗(o o) in the above
derivation: it results from Trivialization, and it occurs therefore hyperintensionally
at the last step of the derivation.

Finally, we are also able to define the occurrence of a term within a hyperinten-
sional term by inspecting the result of an Execution rule.

Definition 6. A term t occurs extensionally, respectively intensionally, or hyper-
intensionally in a hyperintensional term t∗ at step n of a tree if and only if at step
n+ 1 the term t occurs:

1. extensionally according to Definition 3, case 3;

2. intensionally according to Definition 4, case 4;

3. hyperintensionally according to Definition 5, case 4.

Consider as an example again the term [λx1.[[λx. t] t1]]∗ of type ∗(o o) obtained
by Trivialization in the above derivation from this section: it is a hyperintensional
term in which a term occurs intensionally, i.e. an application of the Execution rule
in a next step would return an intensional term.

4.2 Normalization

Execution is a converging rule, i.e. it is possible that distinct constructions can
be generated from β-equivalent terms (i.e. terms for which the symmetric closure
of �β holds) of a base type or of a function type by Trivialization, and hence
they return the same entity when executed. This is the classical example of failing
identity for hyperintensions, where the expressions “bachelor” and “unmarried man”
might fail to be identified as equal, but would eventually be applied truthfully to
the same individual. Accordingly, an application of Trivialization on distinct but
reducible terms t1, t2 may induce distinct hyperintensional terms t∗1, t∗2, each denoting
a distinct construction of the same product. This relation in its general formulation
is an instance of the so-called Diamond Lemma for terms related by Trivialization:

Lemma 1 (Trivialized Diamond). Let Γ ` t1 : T , Γ ` t2 : T and t1 �β t2. Let,
moreover, t∗1 : ∗T be obtained from t1 : T by Trivialization, and t∗2 : ∗T be obtained
from t2 : T by Trivialization. Then t∗1 �β t

∗
2.
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Proof. By induction on t∗1, we only reason on the base atomic case. First reduce t∗1
to t1 by Execution; now obtain t∗2 from t2 by Trivialization. Let us now denote with
�Exec the transitive closure of Execution and�β; with→Triv the term transforma-
tion resulting from Trivialization and with→Exec the term transformation resulting
from Execution. Then t∗1 �Exec t2 →Triv t

∗
2. If t∗1 and t∗2 are syntactically identical

terms, the Lemma is trivially satisfied. Else: if it is not the case that t∗1 �β t
∗
2 but

t∗1 →Exec t1 and t∗2 →Exec t2, then because of failure of subject reduction t1 and t2
cannot have the same type, against the assumption that t1 �β t2.

Note that subject reduction implies only β-reduction of constructions, which
might not be guaranteed and is a weaker requirement than the notoriously prob-
lematic identity of hyperintensions. We can also show convergence for the transitive
and reflexive closure of β-reduction (for the general case, i.e. also considering hy-
perintensions, not used in the above last step of the Diamond Lemma):
Theorem 1 (Church-Rosser). If Γ ` t : T , t�β t

′ and t�β t
′′ then there is a term

u such that t′ �β u and t′′ �β u and Γ ` u : T .
Proof. By induction on t, t′, t′′, and u using subject reduction, and the Diamond
Lemma if the term u is of the form t′∗ (and thus t′′∗).

4.3 Completeness
A recent conjecture presented in [4] states that the non-hyperintensional fragment
of total functions, without modalities (quantifying over possible worlds and times)
of TIL is Henkin complete. HTLC only expresses total functions and proper con-
structions, without modalities quantifying over possible worlds and times. On this
basis, we show the following version of completeness:
Theorem 2. For any consistent set of closed well-formed formulas Λ of the form
t : o from HTLC there is a general model, in which
• the domain of basic and function types is denumerable,

• and the domain for hyperintensional types is non-denumerable but strongly
reducible to a model with a denumerable domain for the lower types,

with respect to which Λ is satisfiable.
Proof. We first consider standard properties of any consistent set of closed formulas
Γ in HTLC.10 We also use normalization by β-equivalence across contexts as a

10Consistency in a typed λ-calculus is notoriously guaranteed by the impossibility of typing a
term λf.[λx.[f [xx]]λx.[f [xx]]]. We assume here therefore that recursion can only be externally
added to the language in order to preserve consistency of any set of formulas Γ.
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congruence relation on terms. We now build the standard model:

M := {Dα, D(T T1...Tn), D(∗T )}

containing a family of domains, one for each type:

• Dα stands for a meta-variable for each of the domains of basic types, i.e.
Do, Dι, . . . truth-values {True, False}, individuals, and any other required
basic type;

• D(T T1...Tn) is the domain of all total functions, with input of types (T1, . . . , Tn)
and values of type T , i.e. terms which after reduction by Application and
possibly Execution are in the domain Dα;

• D(∗T ) is the domain of all proper constructions, i.e. the set of elements of type
∗T generated from elements in the types α or (T T1 . . . Tn).

Note that we define the standard model, and subsequently adding an evaluation
on the equivalence class of formulas for the general model, by considering only the
domain of constructions of order 1. This is required because the full evaluation of
such domain can only be given by obtaining the terminal product of the construction,
i.e. for proper constructions. This also means that when in the presence of higher
order constructions, completeness can be guaranteed only by multiple Execution.

By an assignment φ with respect to the standard model we mean a relation from
the set of variables into the domain of the appropriate type, i.e. the value of φ(x : T )
is an element of DT . We now define a relation Vφ associated with an assignment φ
with respect to the standard model such that it assigns every formula to elements
of a domain:

• for a formula xi : T , the evaluation Vφ(xi : T ) = φ(xi : T ) ;

• for a formula [λx1, . . . , xn.t] : (T T1 . . . Tn), the evaluation Vφ([λx1, . . . , xn.t] :
(T T1 . . . Tn)) assigns an element in the domain D(T T1...Tn), i.e. a function
whose value for arguments di ∈ DTi is Vψ(t : T), where ψ is an assignment
with the same values as φ for all variables in t except for xi, while ψ(xi : Ti)
is di; and, Vφ([λx1.t] : (o o)) has overall value False iff Vφ(x1 : o) = True and
Vφ(t : o) = False, otherwise True;

• for a formula [t t1 . . . t1] : T , the evaluation Vφ([t t1 . . . tn] : T ) assigns the value
of the function Vφ(t : (T T1 . . . Tn)) in the domain DT for the values of the
arguments Vφ(ti : Ti) in the domain DTi ;
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• for a formula t∗ : ∗T , the evaluation Vφ(t∗ : ∗T ) assigns elements in the domain
D∗T that produce elements in the domain DT for each evaluation Vφ(t : T ).

Note that Vφ is one-to-many because Vφ(t∗ : ∗T ) assigns many elements in the
domain D∗T . With Vφ defined, let us define the standard notion of valid formula:

Definition 7 (Validity in the standard sense). A wff t : o is valid in the standard
sense if Vφ(t : o) = True for every assignment φ wrt the standard model.

We now define a frame F by induction on T containing a family of domains, one
for each type as defined above:

F := {Dα, D(o T1...Tn), D(∗T )}
Recall that we use β-equivalence as a congruence relation, thus two terms t and

t′ are equivalent iff t =β t
′ (i.e. the symmetric closure of�β). Given a formula t : T ,

we denote with dt : T e the equivalence class of formulas containing terms congruent
with t. Then we can define the following:

Definition 8 (General Model). A frame F is called a general model if a one-to-
many relation f(dt : T e) of equivalence classes of closed formulas t : T is such that
it assigns elements in the domain DT .

We now build the frame which is a model of a maximal consistent set of closed
formulas Γ, which is clearly a superset of Λ, as follows:

• f(dt : oe) is the value true or false depending on term t being in the set Γ or
not, and hence Do is the set of truth values {True, False};

• f(dt : ιe) is the equivalence class of individuals dt : ιe, hence Dι is the set of
equivalence classes of all terms of the type of individuals;

• and accordingly so for any other type in α;

• Assuming that Do and DTi have been defined, as well as the value of f for
all equivalence classes of terms of types o, and Ti and that every element of
Do, DT1 , . . . , DTn is the value of f for some dt : oe, dt1 : T1e, . . . , dtn : Tne,
respectively; then f(dt : (o T1 . . . Tn)e) is the function whose value in domain
D(o T1,...,T1) is given by the value for the element f(dt1 : T1e) of DT1 , up to
f(dtn : Tne) of DTn and returns the value of f(dt : oe) of Do;11

11Note that here we consider functions which have arguments of every possible type, including
higher-order functions and hyperintensions, but only outputs of type o, i.e. truth-values. This
allows us to define formulas in frames as those for which satisfiability and validity are defined.
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• Assuming that Dα and D(o T1...Tn) have been defined, as well as the value of f
for all equivalence classes of terms of types α and of type (o T1 . . . Tn) and that
every element of Dα is the value of f for some equivalence class dt : oe or dt : ιe
and that every element of D(o T1...Tn) is the value of f for some equivalence
class of corresponding terms; then f(dt∗ : ∗T e) is a construction with value
f(dt∗ : ∗T e) in D∗T for some element f(dt : T e) of DT .

• Assuming thatD∗T has been defined, as well as the value of f for all equivalence
classes of terms of types ∗T and that every element of D∗T is one of the values
of f for some t∗ : ∗T ; then f−1(dt∗ : ∗T e) is the execution of construction
whose unique value for the element f(dt∗ : ∗T e) of D∗T is f(dt : T e) of DT .

Note that f is one-to-many as well because the domain D∗T includes many values
for f(dt∗ : ∗T e), while the function f−1(dt∗ : ∗T e) returns the only input producing
all such outputs. We now define formula validity and satisfiability of a set of formulas
for the general type T = {α, (o T1 . . . Tn), ∗T }:
Definition 9 (Validity in the general sense). A wff t : o is valid in the general sense
if Vφ(t : o) = True for every assignment φ wrt the general model.

Definition 10 (Satisfiable set of formulas). A set of formulas Λ is satisfiable with
respect to the frame {DT } for any type T , if there exists a valuation φ such that
Vφ(t : o) = True for every formula t : o in Λ.

Lemma 2. For every φ and t : T , Vφ(t : T ) = f(dt : T e)
The proof of this intermediary Lemma is by induction on t : T .

• If t : α is of the form xi : α and φ(x : α) is the element f(dt : T e) in the
domain Dα, then φ(x : α) is a consistent formula t : α such that Vφ(x : α) =
φ(x : α) = f(dt : αe) = Vφ(t : α).

• If t : T is of the form [λx1 . . . xn.t] : (o T1 . . . Tn) and Vφ([λx1 . . . xn.t]); then the
element f(dt : oe) is a consistent formula in the domainDo when each φ(xi : Ti)
is a closed formula ti : Ti in the domain DTi , and if Vφ(xi : Ti) = φ(xi : Ti) =
f(dti : Tie) = Vφ(ti : Ti) then Vφ(t : o) = φ(t : o) = f(dt : oe) = Vφ(t : o).

• If t : T is of the form [t t1 . . . tn] : o and Vφ([t t1 . . . tn]) is the element
f(d[t t1 . . . tn] : oe) in the domain Do, then φ([t t1 . . . tn]) is a closed for-
mula such that every ti : Ti is one element in the corresponding domain DTi ,
in which case [t t1 . . . t1] : o is a closed formula interpreted in the domain
D(o T1,...Tn), such that Vφ([t t1 . . . tn]) = φ([t t1 . . . tn] : o) = f(d[t t1 . . . tn]e :
o) = Vφ([t t1 . . . tn]).
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• Let us consider here the novel case t∗ : ∗T . We assume that f(dt : T e) has
already been defined for T = α or T = (o T1 . . . Tn), and Vφ(t : T ) = f(dt : T e)
and Vφ(t : (T T1 . . . Tn)) = f(dt : (T T1 . . . Tn)e) respectively. Now the value of
f(t∗ : ∗T ) is defined as one of the elements in the Domain D∗T as the relation
is one-to-many. Consider any two terms {t∗1, t∗2} such that {t∗1, t∗2} ∈ D∗T ,
then t∗1 →β t

∗
2 must hold by Lemma 1, assuming it holds that t1 →β t2 for

{t1, t2} ∈ DT . Hence, if Vφ(t1 : T ) = f(t1 : T ) = f(t2 : T ) = Vφ(t2 : T ),
then f(t : T ) = f−1(t∗ : ∗T ), for t any of t1, t2 and t∗ any of t∗1, t∗2. Hence
Vφ(t : T ) = f−1(dt∗ : ∗T e).

The frame F = {Dα, D(o T1...Tn), D(∗T )} is a general model because for every
formula t : T and assignment φ, Vφ(t : T ) is an element of the domain DT for
each element of f(dt : T e). The elements of Dα and D(o T1...Tn) are in one-to-one
correspondence with the normalised set (equivalence class) of formulas, hence the
domains are infinitely enumerable (and possibly finite). For the domain D∗T though,
this is not the case as the relation between the values of f(t : T ) and f(t∗ : ∗T ) is
one-to-many. Any value of Vφ(t∗ : ∗T ) in the domain D∗T normalizes with respect
to the value of Vφ(t : T ) in the domain DT for which f−1(dt∗ : ∗T e) holds. Since for
every formula t : T its denotation in the domain is given by Vφ(t : T ) for φ arbitrary,
and for every t : α and t : (o T1 . . . Tn) of any consistent Γ there is such a term in
the appropriate domain Dα and D(o T1...Tn) respectively; and for every t∗ : ∗T there
is a function which returns an element in Dα or D(o T1...Tn); it follows that for every
Λ ⊆ Γ a valuation Vφ(t : T ) assigns an element in the domain DT , i.e. Λ is satisfiable
with respect to the modelM , andDT is denumerable for T = {α, (o T1 . . . Tn)}, while
elements of D∗T normalize with respect to elements in DT .

Theorem 3. Any closed wff t : T is derivable in HTLC if and only if t : T is valid
in the general sense.

Proof. We prove by induction from the basic case.

← 1. For t : o, the formula is valid by Definition 9 iff Vφ(xi : α) is valid once
every free variable xi occurring in t has been substituted, and there is an
element in the corresponding domain of the general model Do. In such a
case, any formula t′ : o with variable x′ with evaluation Vφ(t′ : o) = False
i.e. such that Vφ(x′i : α) = False cannot be consistent with t : o; in
particular, Vφ([λx′i.t : (o α)]) = True and Vφ([t t′] : o) = True;

2. For t : T of the form [λx1 . . . xn.t] : (o T1 . . . Tn), the argument generalizes
the previous one with several arguments;
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3. For t : T of the form t∗ : ∗T , such a formula is valid iff for every value of
Vφ(t∗ : ∗T ) the picked element from the domain D∗T (satisfying congru-
ence with any other in the same domain) corresponds to Vφ(t : o) = True.
Hence, one reduces first to such a value by an application of Execution
and then the argument runs according to the previous step for either t : α
or [λx1 . . . xn.t] : (o T1 . . . Tn)

→ Starting from our Assumption as axiom, both Abstraction and Application
preserve validity, using Execution where necessary. Note that Trivialization is
not invoked and all intra-context operations are from the domain D∗T to the
domain DT .

To conclude, we reformulate the last step of the completeness proof to show satis-
fiability based on compactness; the only constraint is again that in order to preserve
denumerability of the domain of reference, sets of formulas including hyperintensions
need to be reduce to the corresponding formulas with executed terms:

Theorem 4. A set Γ of closed well-formed formulas is satisfiable with respect to

• some model of denumerable domains Do, Do T1,...,Tn

• and some model of a non-denumerable domain D∗T

if and only if every finite subset Λ of Γ is satisfiable.

Proof. → – If Γ is not satisfiable with respect to some model of a denumerable
domain Do, Do T1,...,Tn then it is inconsistent by Theorem 2, i.e. in par-
ticular Γ ` [λxn.tn] : (on Tn). Then there is a finite Λ ⊂ Γ such that Λ =
{x1 : A1, . . . xn−1 : An−1} and ` [λx1, . . . , xn−1, xn.tn] : (on T1, . . . , Tn);
but then this formula is valid because derivable for Theorem 3 hence there
is also a Vφ(xi : Ti) = False, i = 1 . . . n − 1 for every φ with respect to
any model, hence Λ is not satisfiable. Then, if every Λ ⊂ Γ is satisfiable,
also Γ is satisfiable with respect to a denumerable domain.

– if Γ has formulas of the form t : ∗T , then the domain D∗T is non-
denumerable; apply Execution to reduce to Γ′ with respect to denumer-
able domains Do, Do T1,...,Tn . Proceed as above.

← Immediate: if every subset of Γ is satisfiable, then Γ is.
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5 Conclusions

The system HTLC is an extension of typed λ-calculus with hyperintensions. The
system is presented with a polymorphic rules set which can be applied to terms of
arbitrary types: a triplet of rules, namely Assumption, Abstraction and Applica-
tion known from λ-calculus are extended by Trivialization and Execution rules for
terms denoting hyperintensions, and reason with them. We have provided formal
definitions of term occurrence (which corrresponds to a proof inspection for type-
checking) and we formulated appropriate versions of the Diamond Lemma and the
Church-Rosser Theorem valid with respect to the extension to terms denoting hy-
perintensions. Finally, the system is shown to be complete in Henkin’s sense, with
respect to a general model of basic types, functions whose values belong to the set
of truth values, and constructions of these types. The important difference to be
drawn with standard completeness for Henkin’s model concerns the cardinality of
the model for hyperintensions, which cannot be denumerable. Nonetheless, our sys-
tems guarantees strong reducibility to the denumerable model of the trivialised term
for each hyperintensional one.

Further possible investigations of this system concern: a computational inter-
pretation of the extensional fragment, and the appropriate interpretation of both
intensional (by higher order computations) and hyperintensional fragments (e.g. in
terms of monads); a modal extension of the language, to express more precisely con-
texts in which lifting to hyperintensional terms is valid, e.g. on the lines formulated
in [20]; and an implementation for type-checking purposes.
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