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Sex-related differences are tied into neurodevelopmental and lifespan processes,

beginning early in the perinatal and developmental phases and continue into adulthood.

The present study was designed to investigate sexual dimorphism of changes in gray

matter (GM) volume in post-adolescence, with a focus on early and middle-adulthood

using a structural magnetic resonance imaging (MRI) dataset of healthy controls from the

European Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT).

Three hundred and seventy three subjects underwent a 3.0 T MRI session across

four European Centers. Age by sex effects on GM volumes were investigated using

voxel-based morphometry (VBM) and the Automated Anatomical Labeling atlas regions

(ROI). Females and males showed overlapping and non-overlapping patterns of GM

volume changes during aging. Overlapping age-related changes emerged in bilateral

frontal and temporal cortices, insula and thalamus. Both VBM and ROI analyses revealed

non-overlapping changes in multiple regions, including cerebellum and vermis, bilateral

mid frontal, mid occipital cortices, left inferior temporal and precentral gyri. These

findings highlight the importance of accounting for sex differences in cross-sectional

analyses, not only in the study of normative changes, but particularly in the context

of psychiatric and neurologic disorders, wherein sex effects may be confounded with

disease-related changes.
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FIGURE 1 | VBM results, age-related GM volume changes. Brain clusters showing significant GM volume reduction during adulthood in females (left panel), males

(central panel), and in both genders (right panel) (p < 0.05, pFWE, >200 voxels). VBM, voxel-based morphometry; GM, gray matter; pFWE, peak-based family

wise error.

FIGURE 2 | VBM results, age by sex interactions. Top: Brain clusters showing significant age by sex interaction effects (p ≤ 0.001, >100 voxels). The clusters with

enhanced age-related changes in females and males are represented in orange and cyan colors, respectively. Bottom: scatterplots showing normalized GM volume

changes with aging in females (orange) and males (cyan) in two exemplar clusters.

In the present study, voxel-based and region-based
approaches were used in concert to provide a detailed assessment
of the patterns of sexual dimorphism. Both sets of analyses
suggest that patterns of sexually dimorphic maturational
changes endure even in a relatively stable phase of the life
span, such as young and middle adulthood (Guo et al., 2016).
These findings are not surprising, especially because sex

differences in brain structure have been consistently observed
at different lifetime phases, including infancy (Knickmeyer
et al., 2014), adolescence (Gennatas et al., 2017) and late
adulthood (Ritchie et al., 2018). Thus, our results further
highlight that the brain volume is continuously changing,
with sexual dimorphism being more evident in some regions
than others.
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TABLE 3 | Age by sex interactions from VBM analysis and ROI analysis on VBM clusters.

VBM contrast # Voxels VBM peak

x, y, z (mm) AAL region T P (unc)

A.

Age negative, females >

males

755 24, −60, −44 Cerebelum 8, R 5.51 <0.001

1,766 −27, −65, −44 Cerebelum 8, L 5.09 <0.001

121 −57, −45, −38 Cerebelum crus 1, L 4.59 <0.001

275 6, −63, −9 Vermis 4 3.93 <0.001

292 5, −78, −24 Vermis 7 and 8 3.32 <0.001

B.

Age negative, males >

females

237 48, 2, 56 Mid frontal cortex, R 3.65 <0.001

114 −29, −75, 41 Mid occipital cortex, L 3.57 <0.001

298 −53, 5, 36 Precentral gyrus, L 3.50 <0.001

121 −35, 57, 14 Mid frontal cortex, L 3.34 <0.001

165 33, −92, 24 Mid occipital cortex, R 3.19 =0.001

145 −50, −56, −21 Inferior temporal gyrus, L 3.14 =0.001

VBM, voxel based morphometry; ROI, region of interest; x, y, z (mm), coordinates in MNI space; T, T-statistics on age by sex interaction contrast; P (unc), p-value, uncorrected; P (Bonf),

p-value after Bonferroni’s correction (N = 11); AAL, Automated Anatomical Labeling; n.s., not significant.

TABLE 4 | Age by sex interactions from ROI analysis on AAL atlas regions.

AAL region Linear age model Quadratic age model Age by sex interaction side

T P (unc) P (Bonf) T P (unc) P (Bonf)

Cerebelum 8, L 2.22 0.027 n.s. 2.08 0.038 n.s. Enhanced age effects in females

Cerebelum 8, R 2.05 0.041 n.s. 2.12 0.034 n.s.

Vermis 6 2.19 0.029 n.s. 2.17 0.031 n.s.

Vermis 7 2.50 0.013 n.s. 2.49 0.013 n.s.

Precentral, L 2.10 0.037 n.s. 1.66 n.s. n.s. Enhanced age effects in males

Inf occipital, R 2.49 0.013 n.s. 2.44 0.015 n.s.

Mid temporal, R 2.34 0.020 n.s. 2.5 0.013 n.s.

Inf temporal, R 2.21 0.028 n.s. 2.2 0.027 n.s.

T, T-statistics on age by sex interaction contrast; P (unc), p-value, uncorrected; P (Bonf), p-value after Bonferroni’s correction (N = 116); ROI, region of interest; AAL, Automated

Anatomical Labeling; n.s., not significant.

Age-Related GM Patterns in Females
In females, aging was associated with bilateral GM volume
reductions in cortical, including frontal, cingulate, insular
cortices and the temporo-parieto-occipital junction, and
subcortical, especially putamen and caudate, as well as cerebellar,
areas. Overall, these results aligned with the evidence reported
by previous literature showing selective GM volume deficits in
female subjects in healthy populations (Ritchie et al., 2018).

Notably, in our results, the more diffused age-related
reductions in females were located in areas considered key
regions for emotion recognition and processing, such as the
temporo-parietal junction (Lettieri et al., 2019), which are part
of the fronto-limbic pathway where sex-dependent differences
were often observed (Kong et al., 2014; Lungu et al., 2015). A
recent study (Abbruzzese et al., 2019) suggested that emotion
recognition might be influenced by both age and gender and
linked such differences to differential cognitive abilities and
exploration strategies among sexes. These findings could be
attributed to differences between men and women in sex steroid
hormones, as many studies reported a link between emotional

processing and testosterone, estrogen, and progesterone (Bos
et al., 2013; Toffoletto et al., 2014).

Importantly, our findings might be of interest also for clinical
psychiatric populations, given that the post-adolescence period is
critical for such diseases’ onset (Kelly et al., 2016). Also, strong
sex-dependent differences are well described in major depression
in terms of prevalence, symptoms (Salk et al., 2017), and
neurobiological alterations (Yang et al., 2017; Jenkins et al., 2018),
with females resulting more affected than males. Therefore,
increasing our understanding of how brain structures evolve
through post-adolescence and middle adulthood in healthy
subjects might help in further describe the onset and progression
of psychiatric disorders.

Similarly, sex differences have been often reported in the
incidence of late-life neurological disorders, including dementia,
where being a woman is considered one of the major risk
factors for late-onset Alzheimer disease (Farrer et al., 1997;
Ferretti et al., 2020). Moreover, these sex-specific effects were
more pronounced in women in peri- and, even more, in
post-menopause, suggesting a role of sex hormones and
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FIGURE 3 | ROI results, age by sex interactions. Scatterplots (and 2nd order fits) showing normalized GM volume changes with aging in females (orange) and males

(cyan) in the AAL ROIs with age by sex trend effects (p < 0.05). ROI, region of interest; AAL, Automated Anatomical Labeling.

aging. However, such differences might arise earlier in the
life span, and years before menopausal hormonal changes.
In conclusion, although these results need to be confirmed
by longitudinal studies, they might represent a first step
in a more detailed understanding of how our brain ages
through the years, thus opening new possibilities for the
understanding of neurodevelopmental disorders and prevention
of neurodegenerative diseases.

Age-Related GM Patterns in Males
In males, aging was associated with bilateral GM volume
reductions in the frontal cortex, in the three major temporal
gyri, insular, and mid cingulate cortices. Also in this case, these
results are in line with recent evidence reporting a steeper
volume decline in males in temporal regions (Ritchie et al.,
2018). One potential explanation of such specificity is the effect,
in specific areas, of sex-biased gene expression (Kang et al.,
2011) or other protective genetic or hormonal factors that
might “buffer” females from potential brain volume alterations,
especially against neurodevelopmental disorders (Jacquemont
et al., 2014). Among those, one candidate is the hypothesized
“female-protective” mechanism that involves a major genetic
stability against mutations in females, conferred by the second
copy of the X chromosome (Reinhold and Engqvist, 2013).

Notably, frontotemporal areas showed also great sexual
dimorphism in fMRI studies conducted on emotional tasks
(Hofer et al., 2007; Repple et al., 2018). Specifically, prefrontal
regions are involved in the top-down emotional control and a
recent study on healthy subjects pointed out the differential role
of these areas in men and women as a possible neurobiological
mechanism explaining the different response between sexes to

anger and aggressive impulses, usually considered more “manly”
behaviors (Repple et al., 2018). Moreover, both prefrontal and
temporal areas present sex-driven functional and structural
asymmetry (Hofer et al., 2007; Guadalupe et al., 2015) and
temporal gyri have been also described among the most
dimorphic areas of the brain, showing one of the strongest
sex-linked asymmetries, especially in males.

Finally, the possibility that the healthy brain might also help
us in shedding a light on brain disorders is also valid for the
results observed in our group of male subjects. Indeed, GM
abnormalities in the temporal gyri have been often associated
with psychotic syndromes, especially with schizophrenia (Ohi
et al., 2016; Delvecchio et al., 2017; Squarcina et al., 2017), which
is a disorder where sexual dimorphism is well-described, with
male individuals showing earlier onset, more severe course of the
illness, and poorer long-term prognosis compared to matched
females (Kelly et al., 2016).

Therefore, overall these findings point toward the hypothesis
that temporal regions might represent regions of specific fragility
in males.

Differences in Age-Related GM Changes
Between Males and Females
Voxel-based and region-based analyses were combined to
identify age by sex interaction effects on GM volume. The results
showed that females had enhanced age-related GM volume loss
in bilateral portions of the cerebellum and vermis, while males
exhibited higher age-related GM volume loss in portions of
frontal, occipital, and temporal gyri. Our findings are in line with
previous literature showing sex differences in cerebellum and
frontotemporal areas (Ruigrok et al., 2014; Ritchie et al., 2018),
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with males usually showing greater volumes in cerebellum, while
females having greater volumes in frontal regions.

The finding regarding cerebellum is especially interesting.
Far from being just a regulator of movement and balance, this
structure is known to have roles in cognition and emotions
in healthy individuals (Hofer et al., 2007). Moreover, recent
literature suggested that the cerebellum may play a key role in
modulating cognitive dysfunctions in Alzheimer (Jacobs et al.,
2018), a typically female disease (Ferretti et al., 2020). The
widespread cognitive deficits observable in Alzheimer patients
seem to be under cerebellar modulation and dependent from
cerebro-cerebellar circuits linked with the cerebral associative
and paralimbic regions (Jacobs et al., 2018). Therefore, the
enhanced reduction of cerebellar GM volume in relation to
age observed in our female subjects might suggest a specific
vulnerability for neurodegenerative diseases, rooted in sex-
dependent differences in brain maturation.

Finally, it is important to point out that sex differences in
brain structures are a product of the interplay of biological
and environmental influences on brain development (McCarthy
and Arnold, 2011). Animal and human studies have shown the
influence of steroid hormones, sex chromosomes (Arnold and
Chen, 2009), and the immune system (Lenz et al., 2013) on
the development of neural sexual differentiation, starting from
the prenatal period. In addition, environmental factors, such as
stress and maternal infections (Bale et al., 2010), and postnatal
factors, such as early childcare, have been also found to influence
brain development (Giedd et al., 2012). As it was hypothesized
(Pletzer, 2019), testosterone and estradiol/progesterone might
differentially affect GM volumes in areas that are usually larger
in males, such as hippocampus or cerebellum, or in females, such
as the frontal lobe (Ruigrok et al., 2014; Ritchie et al., 2018). In
this regard, our results seem to confirm such hypothesis, with
females showing a greater effect of age on cerebellum and males
on frontotemporal areas. Moreover, our results highlight how the
brain is in constant remodeling throughout adulthood, even in
a period of relative stability (Guo et al., 2016). This notion is in
line with the literature on developmental sex differentiation of
the brain that suggested the impact of genes on sex hormones
both during the development and in the adult’s brain (McEwen
and Milner, 2017).

Limitations and Future Perspectives
While evaluating the presented results, some limitations should
be considered. The major limitation to our study is its
cross-sectional design. Longitudinal studies—able to assess the
reduction in GM volumes over time and the association of
brain maturation trajectories with the onset of psychiatric and
neurodegenerative disorders—are needed to understand the
deep and intertwined effects of sex and age. The unequal
distribution of subjects within the considered age range,
with the majority of subjects in the early adulthood phase,
might have limited the power of identifying age differences
within and between sexes, undermining the age by sex
interaction effects in some brain regions. On the other hand,
this unbalance might have reduced the confounding effects
of menopause or associated hormone replacement therapy

on the brain (Zhang et al., 2016). Age by sex influences
on local GM volume mainly emerged at the trend level,
thus need to be reproduced on independent datasets. The
use of a linear model design might have undermined the
identification of more complex relations between the predictor
variables, including age and sex, and local GM volumes. At
the same time, this essential design facilitated the extraction
and interpretation of the complex interaction effects. Future
analyses using more flexible approaches, including smooth non-
parametric regressionmodels, are planned to confirm and extend
the obtained results. A further extension is represented by
surface-based analyses, both vertex- and region-wise, which
provide a complementary perspective of age by sex effects
on GM morphology. Handedness was not considered as an
inclusion/exclusion criterion. Therefore, although the effect of
handedness on brainmorphology is controversial, we cannot rule
out its impact on structural brain changes observed in our group
of healthy individuals. Finally, no behavioral measures were
available for our sample and therefore we could not correlate
brain alterations with behavioral data to have a clearer picture
of how age and sex shape brain structure and function and in
turn behavior.

CONCLUSIONS

As neurological and psychiatric research moves toward the
ideals of precision medicine (Pigoni et al., 2019), it is getting
everyday more necessary to have a clear, nuanced understanding
of similarities and differences in brain structures and functions
across the sexes. The potential effects of genes and hormones
on brain sex differences are likely active at multiple points
across the lifespan, representing a constant set of influences that
interact with the environment in a complex and intertwined
manner. For these reasons, it is of great importance to study
sex differences in human brain at different developmental
phases and to explore how they interact with normal and
pathological aging. Indeed, a better comprehension of how the
brain ages in post-adolescence and middle-adulthood and the
different trajectories between males and females might help
us in disentangling the different expression of psychiatric and
neurologic disorders that interact to a higher extent with sexual
dimorphic aspects in specific phases of life. Specifically, our
results corroborate the notion that the interaction between age
and sex occur even a relatively stable period of life, from
early to middle adulthood. Finally, despite the presence of
heterogeneities, especially in terms of enrollment and methods
employed (e.g., strength and type of MRI scanner, voxel-based
vs. ROI-based approaches), these findings might prove important
while studying the neural basis of the known differences between
males and females in the risk of developing psychiatric and
neurologic disorders.
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